1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright(c) 2019-2021 Xilinx, Inc.
4 * Copyright(c) 2016-2019 Solarflare Communications Inc.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_flow_tunnel.h"
17 #include "sfc_log.h"
18 #include "sfc_ev.h"
19 #include "sfc_rx.h"
20 #include "sfc_mae_counter.h"
21 #include "sfc_kvargs.h"
22 #include "sfc_tweak.h"
23
24 /*
25 * Maximum number of Rx queue flush attempt in the case of failure or
26 * flush timeout
27 */
28 #define SFC_RX_QFLUSH_ATTEMPTS (3)
29
30 /*
31 * Time to wait between event queue polling attempts when waiting for Rx
32 * queue flush done or failed events.
33 */
34 #define SFC_RX_QFLUSH_POLL_WAIT_MS (1)
35
36 /*
37 * Maximum number of event queue polling attempts when waiting for Rx queue
38 * flush done or failed events. It defines Rx queue flush attempt timeout
39 * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
40 */
41 #define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000)
42
43 void
sfc_rx_qflush_done(struct sfc_rxq_info * rxq_info)44 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
45 {
46 rxq_info->state |= SFC_RXQ_FLUSHED;
47 rxq_info->state &= ~SFC_RXQ_FLUSHING;
48 }
49
50 void
sfc_rx_qflush_failed(struct sfc_rxq_info * rxq_info)51 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
52 {
53 rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
54 rxq_info->state &= ~SFC_RXQ_FLUSHING;
55 }
56
57 /* This returns the running counter, which is not bounded by ring size */
58 unsigned int
sfc_rx_get_pushed(struct sfc_adapter * sa,struct sfc_dp_rxq * dp_rxq)59 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq)
60 {
61 SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL);
62
63 return sa->priv.dp_rx->get_pushed(dp_rxq);
64 }
65
66 static int
sfc_efx_rx_qprime(struct sfc_efx_rxq * rxq)67 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
68 {
69 int rc = 0;
70
71 if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
72 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
73 if (rc == 0)
74 rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
75 }
76 return rc;
77 }
78
79 static void
sfc_efx_rx_qrefill(struct sfc_efx_rxq * rxq)80 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
81 {
82 unsigned int free_space;
83 unsigned int bulks;
84 void *objs[SFC_RX_REFILL_BULK];
85 efsys_dma_addr_t addr[RTE_DIM(objs)];
86 unsigned int added = rxq->added;
87 unsigned int id;
88 unsigned int i;
89 struct sfc_efx_rx_sw_desc *rxd;
90 struct rte_mbuf *m;
91 uint16_t port_id = rxq->dp.dpq.port_id;
92
93 free_space = rxq->max_fill_level - (added - rxq->completed);
94
95 if (free_space < rxq->refill_threshold)
96 return;
97
98 bulks = free_space / RTE_DIM(objs);
99 /* refill_threshold guarantees that bulks is positive */
100 SFC_ASSERT(bulks > 0);
101
102 id = added & rxq->ptr_mask;
103 do {
104 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
105 RTE_DIM(objs)) < 0)) {
106 /*
107 * It is hardly a safe way to increment counter
108 * from different contexts, but all PMDs do it.
109 */
110 rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
111 RTE_DIM(objs);
112 /* Return if we have posted nothing yet */
113 if (added == rxq->added)
114 return;
115 /* Push posted */
116 break;
117 }
118
119 for (i = 0; i < RTE_DIM(objs);
120 ++i, id = (id + 1) & rxq->ptr_mask) {
121 m = objs[i];
122
123 __rte_mbuf_raw_sanity_check(m);
124
125 rxd = &rxq->sw_desc[id];
126 rxd->mbuf = m;
127
128 m->data_off = RTE_PKTMBUF_HEADROOM;
129 m->port = port_id;
130
131 addr[i] = rte_pktmbuf_iova(m);
132 }
133
134 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135 RTE_DIM(objs), rxq->completed, added);
136 added += RTE_DIM(objs);
137 } while (--bulks > 0);
138
139 SFC_ASSERT(added != rxq->added);
140 rxq->added = added;
141 efx_rx_qpush(rxq->common, added, &rxq->pushed);
142 rxq->dp.dpq.dbells++;
143 }
144
145 static uint64_t
sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)146 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
147 {
148 uint64_t mbuf_flags = 0;
149
150 switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
151 case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
152 mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
153 break;
154 case EFX_PKT_IPV4:
155 mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
156 break;
157 default:
158 RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN != 0);
159 SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) ==
160 RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN);
161 break;
162 }
163
164 switch ((desc_flags &
165 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
166 case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
167 case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
168 mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
169 break;
170 case EFX_PKT_TCP:
171 case EFX_PKT_UDP:
172 mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
173 break;
174 default:
175 RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN != 0);
176 SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) ==
177 RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN);
178 break;
179 }
180
181 return mbuf_flags;
182 }
183
184 static uint32_t
sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)185 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
186 {
187 return RTE_PTYPE_L2_ETHER |
188 ((desc_flags & EFX_PKT_IPV4) ?
189 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
190 ((desc_flags & EFX_PKT_IPV6) ?
191 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
192 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
193 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
194 }
195
196 static const uint32_t *
sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps,size_t * no_of_elements)197 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps,
198 size_t *no_of_elements)
199 {
200 static const uint32_t ptypes[] = {
201 RTE_PTYPE_L2_ETHER,
202 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
203 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
204 RTE_PTYPE_L4_TCP,
205 RTE_PTYPE_L4_UDP,
206 };
207
208 *no_of_elements = RTE_DIM(ptypes);
209 return ptypes;
210 }
211
212 static void
sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq * rxq,unsigned int flags,struct rte_mbuf * m)213 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
214 struct rte_mbuf *m)
215 {
216 uint8_t *mbuf_data;
217
218
219 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
220 return;
221
222 mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
223
224 if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
225 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
226 EFX_RX_HASHALG_TOEPLITZ,
227 mbuf_data);
228
229 m->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
230 }
231 }
232
233 static uint16_t
sfc_efx_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)234 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
235 {
236 struct sfc_dp_rxq *dp_rxq = rx_queue;
237 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
238 unsigned int completed;
239 unsigned int prefix_size = rxq->prefix_size;
240 unsigned int done_pkts = 0;
241 boolean_t discard_next = B_FALSE;
242 struct rte_mbuf *scatter_pkt = NULL;
243
244 if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
245 return 0;
246
247 sfc_ev_qpoll(rxq->evq);
248
249 completed = rxq->completed;
250 while (completed != rxq->pending && done_pkts < nb_pkts) {
251 unsigned int id;
252 struct sfc_efx_rx_sw_desc *rxd;
253 struct rte_mbuf *m;
254 unsigned int seg_len;
255 unsigned int desc_flags;
256
257 id = completed++ & rxq->ptr_mask;
258 rxd = &rxq->sw_desc[id];
259 m = rxd->mbuf;
260 desc_flags = rxd->flags;
261
262 if (discard_next)
263 goto discard;
264
265 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
266 goto discard;
267
268 if (desc_flags & EFX_PKT_PREFIX_LEN) {
269 uint16_t tmp_size;
270 int rc __rte_unused;
271
272 rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
273 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
274 SFC_ASSERT(rc == 0);
275 seg_len = tmp_size;
276 } else {
277 seg_len = rxd->size - prefix_size;
278 }
279
280 rte_pktmbuf_data_len(m) = seg_len;
281 rte_pktmbuf_pkt_len(m) = seg_len;
282
283 if (scatter_pkt != NULL) {
284 if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
285 rte_pktmbuf_free(scatter_pkt);
286 goto discard;
287 }
288 /* The packet to deliver */
289 m = scatter_pkt;
290 }
291
292 if (desc_flags & EFX_PKT_CONT) {
293 /* The packet is scattered, more fragments to come */
294 scatter_pkt = m;
295 /* Further fragments have no prefix */
296 prefix_size = 0;
297 continue;
298 }
299
300 /* Scattered packet is done */
301 scatter_pkt = NULL;
302 /* The first fragment of the packet has prefix */
303 prefix_size = rxq->prefix_size;
304
305 m->ol_flags =
306 sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
307 m->packet_type =
308 sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
309
310 /*
311 * Extract RSS hash from the packet prefix and
312 * set the corresponding field (if needed and possible)
313 */
314 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
315
316 m->data_off += prefix_size;
317
318 *rx_pkts++ = m;
319 done_pkts++;
320 continue;
321
322 discard:
323 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
324 rte_mbuf_raw_free(m);
325 rxd->mbuf = NULL;
326 }
327
328 /* pending is only moved when entire packet is received */
329 SFC_ASSERT(scatter_pkt == NULL);
330
331 rxq->completed = completed;
332
333 sfc_efx_rx_qrefill(rxq);
334
335 if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
336 sfc_efx_rx_qprime(rxq);
337
338 return done_pkts;
339 }
340
341 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
342 static unsigned int
sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq * dp_rxq)343 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
344 {
345 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
346
347 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
348 return 0;
349
350 sfc_ev_qpoll(rxq->evq);
351
352 return rxq->pending - rxq->completed;
353 }
354
355 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
356 static int
sfc_efx_rx_qdesc_status(struct sfc_dp_rxq * dp_rxq,uint16_t offset)357 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
358 {
359 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
360
361 if (unlikely(offset > rxq->ptr_mask))
362 return -EINVAL;
363
364 /*
365 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
366 * it is required for the queue to be running, but the
367 * check is omitted because API design assumes that it
368 * is the duty of the caller to satisfy all conditions
369 */
370 SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
371 SFC_EFX_RXQ_FLAG_RUNNING);
372 sfc_ev_qpoll(rxq->evq);
373
374 /*
375 * There is a handful of reserved entries in the ring,
376 * but an explicit check whether the offset points to
377 * a reserved entry is neglected since the two checks
378 * below rely on the figures which take the HW limits
379 * into account and thus if an entry is reserved, the
380 * checks will fail and UNAVAIL code will be returned
381 */
382
383 if (offset < (rxq->pending - rxq->completed))
384 return RTE_ETH_RX_DESC_DONE;
385
386 if (offset < (rxq->added - rxq->completed))
387 return RTE_ETH_RX_DESC_AVAIL;
388
389 return RTE_ETH_RX_DESC_UNAVAIL;
390 }
391
392 boolean_t
sfc_rx_check_scatter(size_t pdu,size_t rx_buf_size,uint32_t rx_prefix_size,boolean_t rx_scatter_enabled,uint32_t rx_scatter_max,const char ** error)393 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
394 boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
395 const char **error)
396 {
397 uint32_t effective_rx_scatter_max;
398 uint32_t rx_scatter_bufs;
399
400 effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
401 rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
402
403 if (rx_scatter_bufs > effective_rx_scatter_max) {
404 if (rx_scatter_enabled)
405 *error = "Possible number of Rx scatter buffers exceeds maximum number";
406 else
407 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
408 return B_FALSE;
409 }
410
411 return B_TRUE;
412 }
413
414 /** Get Rx datapath ops by the datapath RxQ handle */
415 const struct sfc_dp_rx *
sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)416 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
417 {
418 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
419 struct rte_eth_dev *eth_dev;
420 struct sfc_adapter_priv *sap;
421
422 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
423 eth_dev = &rte_eth_devices[dpq->port_id];
424
425 sap = sfc_adapter_priv_by_eth_dev(eth_dev);
426
427 return sap->dp_rx;
428 }
429
430 struct sfc_rxq_info *
sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)431 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
432 {
433 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
434 struct rte_eth_dev *eth_dev;
435 struct sfc_adapter_shared *sas;
436
437 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
438 eth_dev = &rte_eth_devices[dpq->port_id];
439
440 sas = sfc_adapter_shared_by_eth_dev(eth_dev);
441
442 SFC_ASSERT(dpq->queue_id < sas->rxq_count);
443 return &sas->rxq_info[dpq->queue_id];
444 }
445
446 struct sfc_rxq *
sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)447 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
448 {
449 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
450 struct rte_eth_dev *eth_dev;
451 struct sfc_adapter *sa;
452
453 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
454 eth_dev = &rte_eth_devices[dpq->port_id];
455
456 sa = sfc_adapter_by_eth_dev(eth_dev);
457
458 SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
459 return &sa->rxq_ctrl[dpq->queue_id];
460 }
461
462 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
463 static int
sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,__rte_unused struct sfc_dp_rx_hw_limits * limits,__rte_unused struct rte_mempool * mb_pool,unsigned int * rxq_entries,unsigned int * evq_entries,unsigned int * rxq_max_fill_level)464 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
465 __rte_unused struct sfc_dp_rx_hw_limits *limits,
466 __rte_unused struct rte_mempool *mb_pool,
467 unsigned int *rxq_entries,
468 unsigned int *evq_entries,
469 unsigned int *rxq_max_fill_level)
470 {
471 *rxq_entries = nb_rx_desc;
472 *evq_entries = nb_rx_desc;
473 *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
474 return 0;
475 }
476
477 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
478 static int
sfc_efx_rx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_rx_qcreate_info * info,struct sfc_dp_rxq ** dp_rxqp)479 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
480 const struct rte_pci_addr *pci_addr, int socket_id,
481 const struct sfc_dp_rx_qcreate_info *info,
482 struct sfc_dp_rxq **dp_rxqp)
483 {
484 struct sfc_efx_rxq *rxq;
485 int rc;
486
487 rc = ENOTSUP;
488 if (info->nic_dma_info->nb_regions > 0)
489 goto fail_nic_dma;
490
491 rc = ENOMEM;
492 rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
493 RTE_CACHE_LINE_SIZE, socket_id);
494 if (rxq == NULL)
495 goto fail_rxq_alloc;
496
497 sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
498
499 rc = ENOMEM;
500 rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
501 info->rxq_entries,
502 sizeof(*rxq->sw_desc),
503 RTE_CACHE_LINE_SIZE, socket_id);
504 if (rxq->sw_desc == NULL)
505 goto fail_desc_alloc;
506
507 /* efx datapath is bound to efx control path */
508 rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
509 if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
510 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
511 rxq->ptr_mask = info->rxq_entries - 1;
512 rxq->batch_max = info->batch_max;
513 rxq->prefix_size = info->prefix_size;
514 rxq->max_fill_level = info->max_fill_level;
515 rxq->refill_threshold = info->refill_threshold;
516 rxq->buf_size = info->buf_size;
517 rxq->refill_mb_pool = info->refill_mb_pool;
518
519 *dp_rxqp = &rxq->dp;
520 return 0;
521
522 fail_desc_alloc:
523 rte_free(rxq);
524
525 fail_rxq_alloc:
526 fail_nic_dma:
527 return rc;
528 }
529
530 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
531 static void
sfc_efx_rx_qdestroy(struct sfc_dp_rxq * dp_rxq)532 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
533 {
534 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
535
536 rte_free(rxq->sw_desc);
537 rte_free(rxq);
538 }
539
540
541 /* Use qstop and qstart functions in the case of qstart failure */
542 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
543 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
544
545
546 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
547 static int
sfc_efx_rx_qstart(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int evq_read_ptr,const efx_rx_prefix_layout_t * pinfo)548 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
549 __rte_unused unsigned int evq_read_ptr,
550 const efx_rx_prefix_layout_t *pinfo)
551 {
552 /* libefx-based datapath is specific to libefx-based PMD */
553 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
554 struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
555 int rc;
556
557 /*
558 * libefx API is used to extract information from Rx prefix and
559 * it guarantees consistency. Just do length check to ensure
560 * that we reserved space in Rx buffers correctly.
561 */
562 if (rxq->prefix_size != pinfo->erpl_length)
563 return ENOTSUP;
564
565 rxq->common = crxq->common;
566
567 rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
568
569 sfc_efx_rx_qrefill(rxq);
570
571 rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
572
573 if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
574 rc = sfc_efx_rx_qprime(rxq);
575 if (rc != 0)
576 goto fail_rx_qprime;
577 }
578
579 return 0;
580
581 fail_rx_qprime:
582 sfc_efx_rx_qstop(dp_rxq, NULL);
583 sfc_efx_rx_qpurge(dp_rxq);
584 return rc;
585 }
586
587 static void
sfc_efx_rx_qstop(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int * evq_read_ptr)588 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
589 __rte_unused unsigned int *evq_read_ptr)
590 {
591 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
592
593 rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
594
595 /* libefx-based datapath is bound to libefx-based PMD and uses
596 * event queue structure directly. So, there is no necessity to
597 * return EvQ read pointer.
598 */
599 }
600
601 static void
sfc_efx_rx_qpurge(struct sfc_dp_rxq * dp_rxq)602 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
603 {
604 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
605 unsigned int i;
606 struct sfc_efx_rx_sw_desc *rxd;
607
608 for (i = rxq->completed; i != rxq->added; ++i) {
609 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
610 rte_mbuf_raw_free(rxd->mbuf);
611 rxd->mbuf = NULL;
612 /* Packed stream relies on 0 in inactive SW desc.
613 * Rx queue stop is not performance critical, so
614 * there is no harm to do it always.
615 */
616 rxd->flags = 0;
617 rxd->size = 0;
618 }
619
620 rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
621 }
622
623 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
624 static int
sfc_efx_rx_intr_enable(struct sfc_dp_rxq * dp_rxq)625 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
626 {
627 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
628 int rc = 0;
629
630 rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
631 if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
632 rc = sfc_efx_rx_qprime(rxq);
633 if (rc != 0)
634 rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
635 }
636 return rc;
637 }
638
639 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
640 static int
sfc_efx_rx_intr_disable(struct sfc_dp_rxq * dp_rxq)641 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
642 {
643 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
644
645 /* Cannot disarm, just disable rearm */
646 rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
647 return 0;
648 }
649
650 struct sfc_dp_rx sfc_efx_rx = {
651 .dp = {
652 .name = SFC_KVARG_DATAPATH_EFX,
653 .type = SFC_DP_RX,
654 .hw_fw_caps = SFC_DP_HW_FW_CAP_RX_EFX,
655 },
656 .features = SFC_DP_RX_FEAT_INTR,
657 .dev_offload_capa = RTE_ETH_RX_OFFLOAD_CHECKSUM |
658 RTE_ETH_RX_OFFLOAD_RSS_HASH |
659 RTE_ETH_RX_OFFLOAD_KEEP_CRC,
660 .queue_offload_capa = RTE_ETH_RX_OFFLOAD_SCATTER,
661 .qsize_up_rings = sfc_efx_rx_qsize_up_rings,
662 .qcreate = sfc_efx_rx_qcreate,
663 .qdestroy = sfc_efx_rx_qdestroy,
664 .qstart = sfc_efx_rx_qstart,
665 .qstop = sfc_efx_rx_qstop,
666 .qpurge = sfc_efx_rx_qpurge,
667 .supported_ptypes_get = sfc_efx_supported_ptypes_get,
668 .qdesc_npending = sfc_efx_rx_qdesc_npending,
669 .qdesc_status = sfc_efx_rx_qdesc_status,
670 .intr_enable = sfc_efx_rx_intr_enable,
671 .intr_disable = sfc_efx_rx_intr_disable,
672 .pkt_burst = sfc_efx_recv_pkts,
673 };
674
675 static void
sfc_rx_qflush(struct sfc_adapter * sa,sfc_sw_index_t sw_index)676 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
677 {
678 struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
679 sfc_ethdev_qid_t ethdev_qid;
680 struct sfc_rxq_info *rxq_info;
681 struct sfc_rxq *rxq;
682 unsigned int retry_count;
683 unsigned int wait_count;
684 int rc;
685
686 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
687 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
688 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
689
690 rxq = &sa->rxq_ctrl[sw_index];
691
692 /*
693 * Retry Rx queue flushing in the case of flush failed or
694 * timeout. In the worst case it can delay for 6 seconds.
695 */
696 for (retry_count = 0;
697 ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
698 (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
699 ++retry_count) {
700 rc = efx_rx_qflush(rxq->common);
701 if (rc != 0) {
702 rxq_info->state |= (rc == EALREADY) ?
703 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
704 break;
705 }
706 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
707 rxq_info->state |= SFC_RXQ_FLUSHING;
708
709 /*
710 * Wait for Rx queue flush done or failed event at least
711 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
712 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
713 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
714 */
715 wait_count = 0;
716 do {
717 rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
718 sfc_ev_qpoll(rxq->evq);
719 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
720 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
721
722 if (rxq_info->state & SFC_RXQ_FLUSHING)
723 sfc_err(sa, "RxQ %d (internal %u) flush timed out",
724 ethdev_qid, sw_index);
725
726 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
727 sfc_err(sa, "RxQ %d (internal %u) flush failed",
728 ethdev_qid, sw_index);
729
730 if (rxq_info->state & SFC_RXQ_FLUSHED)
731 sfc_notice(sa, "RxQ %d (internal %u) flushed",
732 ethdev_qid, sw_index);
733 }
734
735 sa->priv.dp_rx->qpurge(rxq_info->dp);
736 }
737
738 static int
sfc_rx_default_rxq_set_filter(struct sfc_adapter * sa,struct sfc_rxq * rxq)739 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
740 {
741 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
742 boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
743 struct sfc_port *port = &sa->port;
744 int rc;
745
746 /*
747 * If promiscuous or all-multicast mode has been requested, setting
748 * filter for the default Rx queue might fail, in particular, while
749 * running over PCI function which is not a member of corresponding
750 * privilege groups; if this occurs, few iterations will be made to
751 * repeat this step without promiscuous and all-multicast flags set
752 */
753 retry:
754 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
755 if (rc == 0)
756 return 0;
757 else if (rc != EOPNOTSUPP)
758 return rc;
759
760 if (port->promisc) {
761 sfc_warn(sa, "promiscuous mode has been requested, "
762 "but the HW rejects it");
763 sfc_warn(sa, "promiscuous mode will be disabled");
764
765 port->promisc = B_FALSE;
766 sa->eth_dev->data->promiscuous = 0;
767 rc = sfc_set_rx_mode_unchecked(sa);
768 if (rc != 0)
769 return rc;
770
771 goto retry;
772 }
773
774 if (port->allmulti) {
775 sfc_warn(sa, "all-multicast mode has been requested, "
776 "but the HW rejects it");
777 sfc_warn(sa, "all-multicast mode will be disabled");
778
779 port->allmulti = B_FALSE;
780 sa->eth_dev->data->all_multicast = 0;
781 rc = sfc_set_rx_mode_unchecked(sa);
782 if (rc != 0)
783 return rc;
784
785 goto retry;
786 }
787
788 return rc;
789 }
790
791 int
sfc_rx_qstart(struct sfc_adapter * sa,sfc_sw_index_t sw_index)792 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
793 {
794 struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
795 sfc_ethdev_qid_t ethdev_qid;
796 struct sfc_rxq_info *rxq_info;
797 struct sfc_rxq *rxq;
798 struct sfc_evq *evq;
799 efx_rx_prefix_layout_t pinfo;
800 int rc;
801
802 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
803 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
804
805 sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
806
807 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
808 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
809
810 rxq = &sa->rxq_ctrl[sw_index];
811 evq = rxq->evq;
812
813 rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
814 if (rc != 0)
815 goto fail_ev_qstart;
816
817 switch (rxq_info->type) {
818 case EFX_RXQ_TYPE_DEFAULT:
819 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
820 rxq->buf_size,
821 &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
822 rxq_info->type_flags, evq->common, &rxq->common);
823 break;
824 case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
825 struct rte_mempool *mp = rxq_info->refill_mb_pool;
826 struct rte_mempool_info mp_info;
827
828 rc = rte_mempool_ops_get_info(mp, &mp_info);
829 if (rc != 0) {
830 /* Positive errno is used in the driver */
831 rc = -rc;
832 goto fail_mp_get_info;
833 }
834 if (mp_info.contig_block_size <= 0) {
835 rc = EINVAL;
836 goto fail_bad_contig_block_size;
837 }
838 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
839 mp_info.contig_block_size, rxq->buf_size,
840 mp->header_size + mp->elt_size + mp->trailer_size,
841 sa->rxd_wait_timeout_ns,
842 &rxq->mem, rxq_info->entries, rxq_info->type_flags,
843 evq->common, &rxq->common);
844 break;
845 }
846 default:
847 rc = ENOTSUP;
848 }
849 if (rc != 0)
850 goto fail_rx_qcreate;
851
852 rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
853 if (rc != 0)
854 goto fail_prefix_get_layout;
855
856 efx_rx_qenable(rxq->common);
857
858 rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
859 if (rc != 0)
860 goto fail_dp_qstart;
861
862 rxq_info->state |= SFC_RXQ_STARTED;
863
864 if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
865 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
866 if (rc != 0)
867 goto fail_mac_filter_default_rxq_set;
868 }
869
870 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
871 if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
872 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
873 RTE_ETH_QUEUE_STATE_STARTED;
874
875 return 0;
876
877 fail_mac_filter_default_rxq_set:
878 sfc_rx_qflush(sa, sw_index);
879 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
880 rxq_info->state = SFC_RXQ_INITIALIZED;
881
882 fail_dp_qstart:
883 efx_rx_qdestroy(rxq->common);
884
885 fail_prefix_get_layout:
886 fail_rx_qcreate:
887 fail_bad_contig_block_size:
888 fail_mp_get_info:
889 sfc_ev_qstop(evq);
890
891 fail_ev_qstart:
892 return rc;
893 }
894
895 void
sfc_rx_qstop(struct sfc_adapter * sa,sfc_sw_index_t sw_index)896 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
897 {
898 struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
899 sfc_ethdev_qid_t ethdev_qid;
900 struct sfc_rxq_info *rxq_info;
901 struct sfc_rxq *rxq;
902
903 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
904 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
905
906 sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
907
908 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
909
910 if (rxq_info->state == SFC_RXQ_INITIALIZED)
911 return;
912 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
913
914 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
915 if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
916 sa->eth_dev->data->rx_queue_state[ethdev_qid] =
917 RTE_ETH_QUEUE_STATE_STOPPED;
918
919 rxq = &sa->rxq_ctrl[sw_index];
920 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
921
922 if (ethdev_qid == 0)
923 efx_mac_filter_default_rxq_clear(sa->nic);
924
925 sfc_rx_qflush(sa, sw_index);
926
927 rxq_info->state = SFC_RXQ_INITIALIZED;
928
929 efx_rx_qdestroy(rxq->common);
930
931 sfc_ev_qstop(rxq->evq);
932 }
933
934 static uint64_t
sfc_rx_get_offload_mask(struct sfc_adapter * sa)935 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
936 {
937 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
938 uint64_t no_caps = 0;
939
940 if (encp->enc_tunnel_encapsulations_supported == 0)
941 no_caps |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
942
943 if (encp->enc_rx_include_fcs_supported == 0)
944 no_caps |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
945
946 if (encp->enc_rx_vlan_stripping_supported == 0)
947 no_caps |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
948
949 return ~no_caps;
950 }
951
952 uint64_t
sfc_rx_get_dev_offload_caps(struct sfc_adapter * sa)953 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
954 {
955 uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
956
957 return caps & sfc_rx_get_offload_mask(sa);
958 }
959
960 uint64_t
sfc_rx_get_queue_offload_caps(struct sfc_adapter * sa)961 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
962 {
963 return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
964 }
965
966 static int
sfc_rx_qcheck_conf(struct sfc_adapter * sa,unsigned int rxq_max_fill_level,const struct rte_eth_rxconf * rx_conf,__rte_unused uint64_t offloads)967 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
968 const struct rte_eth_rxconf *rx_conf,
969 __rte_unused uint64_t offloads)
970 {
971 int rc = 0;
972
973 if (rx_conf->rx_thresh.pthresh != 0 ||
974 rx_conf->rx_thresh.hthresh != 0 ||
975 rx_conf->rx_thresh.wthresh != 0) {
976 sfc_warn(sa,
977 "RxQ prefetch/host/writeback thresholds are not supported");
978 }
979
980 if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
981 sfc_err(sa,
982 "RxQ free threshold too large: %u vs maximum %u",
983 rx_conf->rx_free_thresh, rxq_max_fill_level);
984 rc = EINVAL;
985 }
986
987 if (rx_conf->rx_drop_en == 0) {
988 sfc_err(sa, "RxQ drop disable is not supported");
989 rc = EINVAL;
990 }
991
992 return rc;
993 }
994
995 static unsigned int
sfc_rx_mbuf_data_alignment(struct rte_mempool * mb_pool)996 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
997 {
998 uint32_t data_off;
999 uint32_t order;
1000
1001 /* The mbuf object itself is always cache line aligned */
1002 order = rte_bsf32(RTE_CACHE_LINE_SIZE);
1003
1004 /* Data offset from mbuf object start */
1005 data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
1006 RTE_PKTMBUF_HEADROOM;
1007
1008 order = MIN(order, rte_bsf32(data_off));
1009
1010 return 1u << order;
1011 }
1012
1013 static uint16_t
sfc_rx_mb_pool_buf_size(struct sfc_adapter * sa,struct rte_mempool * mb_pool)1014 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
1015 {
1016 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1017 const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
1018 const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
1019 uint16_t buf_size;
1020 unsigned int buf_aligned;
1021 unsigned int start_alignment;
1022 unsigned int end_padding_alignment;
1023
1024 /* Below it is assumed that both alignments are power of 2 */
1025 SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1026 SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1027
1028 /*
1029 * mbuf is always cache line aligned, double-check
1030 * that it meets rx buffer start alignment requirements.
1031 */
1032
1033 /* Start from mbuf pool data room size */
1034 buf_size = rte_pktmbuf_data_room_size(mb_pool);
1035
1036 /* Remove headroom */
1037 if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1038 sfc_err(sa,
1039 "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1040 mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1041 return 0;
1042 }
1043 buf_size -= RTE_PKTMBUF_HEADROOM;
1044
1045 /* Calculate guaranteed data start alignment */
1046 buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1047
1048 /* Reserve space for start alignment */
1049 if (buf_aligned < nic_align_start) {
1050 start_alignment = nic_align_start - buf_aligned;
1051 if (buf_size <= start_alignment) {
1052 sfc_err(sa,
1053 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1054 mb_pool->name,
1055 rte_pktmbuf_data_room_size(mb_pool),
1056 RTE_PKTMBUF_HEADROOM, start_alignment);
1057 return 0;
1058 }
1059 buf_aligned = nic_align_start;
1060 buf_size -= start_alignment;
1061 } else {
1062 start_alignment = 0;
1063 }
1064
1065 /* Make sure that end padding does not write beyond the buffer */
1066 if (buf_aligned < nic_align_end) {
1067 /*
1068 * Estimate space which can be lost. If guaranteed buffer
1069 * size is odd, lost space is (nic_align_end - 1). More
1070 * accurate formula is below.
1071 */
1072 end_padding_alignment = nic_align_end -
1073 MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1074 if (buf_size <= end_padding_alignment) {
1075 sfc_err(sa,
1076 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1077 mb_pool->name,
1078 rte_pktmbuf_data_room_size(mb_pool),
1079 RTE_PKTMBUF_HEADROOM, start_alignment,
1080 end_padding_alignment);
1081 return 0;
1082 }
1083 buf_size -= end_padding_alignment;
1084 } else {
1085 /*
1086 * Start is aligned the same or better than end,
1087 * just align length.
1088 */
1089 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1090 }
1091
1092 /*
1093 * Buffer length field of a Rx descriptor may not be wide
1094 * enough to store a 16-bit data count taken from an mbuf.
1095 */
1096 return MIN(buf_size, encp->enc_rx_dma_desc_size_max);
1097 }
1098
1099 int
sfc_rx_qinit(struct sfc_adapter * sa,sfc_sw_index_t sw_index,uint16_t nb_rx_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mb_pool)1100 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1101 uint16_t nb_rx_desc, unsigned int socket_id,
1102 const struct rte_eth_rxconf *rx_conf,
1103 struct rte_mempool *mb_pool)
1104 {
1105 struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1106 sfc_ethdev_qid_t ethdev_qid;
1107 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1108 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1109 int rc;
1110 unsigned int rxq_entries;
1111 unsigned int evq_entries;
1112 unsigned int rxq_max_fill_level;
1113 uint64_t offloads;
1114 uint16_t buf_size;
1115 struct sfc_rxq_info *rxq_info;
1116 struct sfc_evq *evq;
1117 struct sfc_rxq *rxq;
1118 struct sfc_dp_rx_qcreate_info info;
1119 struct sfc_dp_rx_hw_limits hw_limits;
1120 struct sfc_port *port = &sa->port;
1121 uint16_t rx_free_thresh;
1122 const char *error;
1123
1124 memset(&hw_limits, 0, sizeof(hw_limits));
1125 hw_limits.rxq_max_entries = sa->rxq_max_entries;
1126 hw_limits.rxq_min_entries = sa->rxq_min_entries;
1127 hw_limits.evq_max_entries = sa->evq_max_entries;
1128 hw_limits.evq_min_entries = sa->evq_min_entries;
1129
1130 rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1131 &rxq_entries, &evq_entries,
1132 &rxq_max_fill_level);
1133 if (rc != 0)
1134 goto fail_size_up_rings;
1135 SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1136 SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1137 SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1138
1139 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1140
1141 offloads = rx_conf->offloads;
1142 /* Add device level Rx offloads if the queue is an ethdev Rx queue */
1143 if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1144 offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1145
1146 rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1147 if (rc != 0)
1148 goto fail_bad_conf;
1149
1150 buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1151 if (buf_size == 0) {
1152 sfc_err(sa,
1153 "RxQ %d (internal %u) mbuf pool object size is too small",
1154 ethdev_qid, sw_index);
1155 rc = EINVAL;
1156 goto fail_bad_conf;
1157 }
1158
1159 if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1160 encp->enc_rx_prefix_size,
1161 (offloads & RTE_ETH_RX_OFFLOAD_SCATTER),
1162 encp->enc_rx_scatter_max,
1163 &error)) {
1164 sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1165 ethdev_qid, sw_index, error);
1166 sfc_err(sa,
1167 "RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1168 "PDU size %u plus Rx prefix %u bytes",
1169 ethdev_qid, sw_index, buf_size,
1170 (unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1171 rc = EINVAL;
1172 goto fail_bad_conf;
1173 }
1174
1175 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1176 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1177
1178 SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1179 rxq_info->entries = rxq_entries;
1180
1181 if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1182 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1183 else
1184 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1185
1186 rxq_info->type_flags |=
1187 (offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ?
1188 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1189
1190 if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1191 (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1192 RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1193 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1194
1195 if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH)
1196 rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1197
1198 if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0)
1199 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_FLAG;
1200
1201 if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 ||
1202 sfc_ft_is_active(sa))
1203 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_MARK;
1204
1205 if (port->vlan_strip)
1206 rxq_info->type_flags |= EFX_RXQ_FLAG_VLAN_STRIPPED_TCI;
1207
1208 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1209 evq_entries, socket_id, &evq);
1210 if (rc != 0)
1211 goto fail_ev_qinit;
1212
1213 rxq = &sa->rxq_ctrl[sw_index];
1214 rxq->evq = evq;
1215 rxq->hw_index = sw_index;
1216 /*
1217 * If Rx refill threshold is specified (its value is non zero) in
1218 * Rx configuration, use specified value. Otherwise use 1/8 of
1219 * the Rx descriptors number as the default. It allows to keep
1220 * Rx ring full-enough and does not refill too aggressive if
1221 * packet rate is high.
1222 *
1223 * Since PMD refills in bulks waiting for full bulk may be
1224 * refilled (basically round down), it is better to round up
1225 * here to mitigate it a bit.
1226 */
1227 rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1228 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1229 /* Rx refill threshold cannot be smaller than refill bulk */
1230 rxq_info->refill_threshold =
1231 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1232 rxq_info->refill_mb_pool = mb_pool;
1233
1234 if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1235 (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH))
1236 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1237 else
1238 rxq_info->rxq_flags = 0;
1239
1240 if (rxq_info->type_flags & EFX_RXQ_FLAG_INGRESS_MPORT)
1241 rxq_info->rxq_flags |= SFC_RXQ_FLAG_INGRESS_MPORT;
1242
1243 if (rxq_info->type_flags & EFX_RXQ_FLAG_VLAN_STRIPPED_TCI)
1244 rxq_info->rxq_flags |= SFC_RXQ_FLAG_VLAN_STRIPPED_TCI;
1245
1246 rxq->buf_size = buf_size;
1247
1248 rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_NIC_DMA_ADDR_RX_RING,
1249 efx_rxq_size(sa->nic, rxq_info->entries),
1250 socket_id, &rxq->mem);
1251 if (rc != 0)
1252 goto fail_dma_alloc;
1253
1254 memset(&info, 0, sizeof(info));
1255 info.refill_mb_pool = rxq_info->refill_mb_pool;
1256 info.max_fill_level = rxq_max_fill_level;
1257 info.refill_threshold = rxq_info->refill_threshold;
1258 info.buf_size = buf_size;
1259 info.batch_max = encp->enc_rx_batch_max;
1260 info.prefix_size = encp->enc_rx_prefix_size;
1261
1262 if (sfc_ft_is_active(sa))
1263 info.user_mark_mask = SFC_FT_USER_MARK_MASK;
1264 else
1265 info.user_mark_mask = UINT32_MAX;
1266
1267 info.flags = rxq_info->rxq_flags;
1268 info.rxq_entries = rxq_info->entries;
1269 info.rxq_hw_ring = rxq->mem.esm_base;
1270 info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1271 info.evq_entries = evq_entries;
1272 info.evq_hw_ring = evq->mem.esm_base;
1273 info.hw_index = rxq->hw_index;
1274 info.mem_bar = sa->mem_bar.esb_base;
1275 info.vi_window_shift = encp->enc_vi_window_shift;
1276 info.fcw_offset = sa->fcw_offset;
1277
1278 info.nic_dma_info = &sas->nic_dma_info;
1279
1280 rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1281 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1282 socket_id, &info, &rxq_info->dp);
1283 if (rc != 0)
1284 goto fail_dp_rx_qcreate;
1285
1286 evq->dp_rxq = rxq_info->dp;
1287
1288 rxq_info->state = SFC_RXQ_INITIALIZED;
1289
1290 rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1291
1292 return 0;
1293
1294 fail_dp_rx_qcreate:
1295 sfc_dma_free(sa, &rxq->mem);
1296
1297 fail_dma_alloc:
1298 sfc_ev_qfini(evq);
1299
1300 fail_ev_qinit:
1301 rxq_info->entries = 0;
1302
1303 fail_bad_conf:
1304 fail_size_up_rings:
1305 sfc_log_init(sa, "failed %d", rc);
1306 return rc;
1307 }
1308
1309 void
sfc_rx_qfini(struct sfc_adapter * sa,sfc_sw_index_t sw_index)1310 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1311 {
1312 struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1313 sfc_ethdev_qid_t ethdev_qid;
1314 struct sfc_rxq_info *rxq_info;
1315 struct sfc_rxq *rxq;
1316
1317 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1318 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1319
1320 if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1321 sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1322
1323 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1324
1325 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1326
1327 sa->priv.dp_rx->qdestroy(rxq_info->dp);
1328 rxq_info->dp = NULL;
1329
1330 rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1331 rxq_info->entries = 0;
1332
1333 rxq = &sa->rxq_ctrl[sw_index];
1334
1335 sfc_dma_free(sa, &rxq->mem);
1336
1337 sfc_ev_qfini(rxq->evq);
1338 rxq->evq = NULL;
1339 }
1340
1341 /*
1342 * Mapping between RTE RSS hash functions and their EFX counterparts.
1343 */
1344 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1345 { RTE_ETH_RSS_NONFRAG_IPV4_TCP,
1346 EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1347 { RTE_ETH_RSS_NONFRAG_IPV4_UDP,
1348 EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1349 { RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_IPV6_TCP_EX,
1350 EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1351 { RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_IPV6_UDP_EX,
1352 EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1353 { RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
1354 EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1355 EFX_RX_HASH(IPV4, 2TUPLE) },
1356 { RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
1357 RTE_ETH_RSS_IPV6_EX,
1358 EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1359 EFX_RX_HASH(IPV6, 2TUPLE) }
1360 };
1361
1362 static efx_rx_hash_type_t
sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,unsigned int * hash_type_flags_supported,unsigned int nb_hash_type_flags_supported)1363 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1364 unsigned int *hash_type_flags_supported,
1365 unsigned int nb_hash_type_flags_supported)
1366 {
1367 efx_rx_hash_type_t hash_type_masked = 0;
1368 unsigned int i, j;
1369
1370 for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1371 unsigned int class_tuple_lbn[] = {
1372 EFX_RX_CLASS_IPV4_TCP_LBN,
1373 EFX_RX_CLASS_IPV4_UDP_LBN,
1374 EFX_RX_CLASS_IPV4_LBN,
1375 EFX_RX_CLASS_IPV6_TCP_LBN,
1376 EFX_RX_CLASS_IPV6_UDP_LBN,
1377 EFX_RX_CLASS_IPV6_LBN
1378 };
1379
1380 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1381 unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1382 unsigned int flag;
1383
1384 tuple_mask <<= class_tuple_lbn[j];
1385 flag = hash_type & tuple_mask;
1386
1387 if (flag == hash_type_flags_supported[i])
1388 hash_type_masked |= flag;
1389 }
1390 }
1391
1392 return hash_type_masked;
1393 }
1394
1395 int
sfc_rx_hash_init(struct sfc_adapter * sa)1396 sfc_rx_hash_init(struct sfc_adapter *sa)
1397 {
1398 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1399 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1400 uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1401 efx_rx_hash_alg_t alg;
1402 unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1403 unsigned int nb_flags_supp;
1404 struct sfc_rss_hf_rte_to_efx *hf_map;
1405 struct sfc_rss_hf_rte_to_efx *entry;
1406 efx_rx_hash_type_t efx_hash_types;
1407 unsigned int i;
1408 int rc;
1409
1410 if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1411 alg = EFX_RX_HASHALG_TOEPLITZ;
1412 else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1413 alg = EFX_RX_HASHALG_PACKED_STREAM;
1414 else
1415 return EINVAL;
1416
1417 rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1418 RTE_DIM(flags_supp), &nb_flags_supp);
1419 if (rc != 0)
1420 return rc;
1421
1422 hf_map = rte_calloc_socket("sfc-rss-hf-map",
1423 RTE_DIM(sfc_rss_hf_map),
1424 sizeof(*hf_map), 0, sa->socket_id);
1425 if (hf_map == NULL)
1426 return ENOMEM;
1427
1428 entry = hf_map;
1429 efx_hash_types = 0;
1430 for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1431 efx_rx_hash_type_t ht;
1432
1433 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1434 flags_supp, nb_flags_supp);
1435 if (ht != 0) {
1436 entry->rte = sfc_rss_hf_map[i].rte;
1437 entry->efx = ht;
1438 efx_hash_types |= ht;
1439 ++entry;
1440 }
1441 }
1442
1443 rss->hash_alg = alg;
1444 rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1445 rss->hf_map = hf_map;
1446 rss->hash_types = efx_hash_types;
1447
1448 return 0;
1449 }
1450
1451 void
sfc_rx_hash_fini(struct sfc_adapter * sa)1452 sfc_rx_hash_fini(struct sfc_adapter *sa)
1453 {
1454 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1455
1456 rte_free(rss->hf_map);
1457 }
1458
1459 int
sfc_rx_hf_rte_to_efx(struct sfc_adapter * sa,uint64_t rte,efx_rx_hash_type_t * efx)1460 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1461 efx_rx_hash_type_t *efx)
1462 {
1463 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1464 efx_rx_hash_type_t hash_types = 0;
1465 unsigned int i;
1466
1467 for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1468 uint64_t rte_mask = rss->hf_map[i].rte;
1469
1470 if ((rte & rte_mask) != 0) {
1471 rte &= ~rte_mask;
1472 hash_types |= rss->hf_map[i].efx;
1473 }
1474 }
1475
1476 if (rte != 0) {
1477 sfc_err(sa, "unsupported hash functions requested");
1478 return EINVAL;
1479 }
1480
1481 *efx = hash_types;
1482
1483 return 0;
1484 }
1485
1486 uint64_t
sfc_rx_hf_efx_to_rte(struct sfc_rss * rss,efx_rx_hash_type_t efx)1487 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1488 {
1489 uint64_t rte = 0;
1490 unsigned int i;
1491
1492 for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1493 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1494
1495 if ((efx & hash_type) == hash_type)
1496 rte |= rss->hf_map[i].rte;
1497 }
1498
1499 return rte;
1500 }
1501
1502 static int
sfc_rx_process_adv_conf_rss(struct sfc_adapter * sa,struct rte_eth_rss_conf * conf)1503 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1504 struct rte_eth_rss_conf *conf)
1505 {
1506 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1507 efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1508 uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1509 int rc;
1510
1511 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1512 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1513 conf->rss_key != NULL)
1514 return EINVAL;
1515 }
1516
1517 if (conf->rss_hf != 0) {
1518 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1519 if (rc != 0)
1520 return rc;
1521 }
1522
1523 if (conf->rss_key != NULL) {
1524 if (conf->rss_key_len != sizeof(rss->key)) {
1525 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1526 sizeof(rss->key));
1527 return EINVAL;
1528 }
1529 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1530 }
1531
1532 rss->hash_types = efx_hash_types;
1533
1534 return 0;
1535 }
1536
1537 static int
sfc_rx_rss_config(struct sfc_adapter * sa)1538 sfc_rx_rss_config(struct sfc_adapter *sa)
1539 {
1540 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1541 int rc = 0;
1542
1543 if (rss->channels > 0) {
1544 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1545 rss->hash_alg, rss->hash_types,
1546 B_TRUE);
1547 if (rc != 0)
1548 goto finish;
1549
1550 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1551 rss->key, sizeof(rss->key));
1552 if (rc != 0)
1553 goto finish;
1554
1555 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1556 rss->tbl, RTE_DIM(rss->tbl));
1557 }
1558
1559 finish:
1560 return rc;
1561 }
1562
1563 struct sfc_rxq_info *
sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared * sas,sfc_ethdev_qid_t ethdev_qid)1564 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1565 sfc_ethdev_qid_t ethdev_qid)
1566 {
1567 sfc_sw_index_t sw_index;
1568
1569 SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1570 SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1571
1572 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1573 return &sas->rxq_info[sw_index];
1574 }
1575
1576 struct sfc_rxq *
sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter * sa,sfc_ethdev_qid_t ethdev_qid)1577 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1578 {
1579 struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1580 sfc_sw_index_t sw_index;
1581
1582 SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1583 SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1584
1585 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1586 return &sa->rxq_ctrl[sw_index];
1587 }
1588
1589 int
sfc_rx_start(struct sfc_adapter * sa)1590 sfc_rx_start(struct sfc_adapter *sa)
1591 {
1592 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1593 sfc_sw_index_t sw_index;
1594 int rc;
1595
1596 sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1597 sas->rxq_count);
1598
1599 rc = efx_rx_init(sa->nic);
1600 if (rc != 0)
1601 goto fail_rx_init;
1602
1603 rc = sfc_rx_rss_config(sa);
1604 if (rc != 0)
1605 goto fail_rss_config;
1606
1607 for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1608 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1609 (!sas->rxq_info[sw_index].deferred_start ||
1610 sas->rxq_info[sw_index].deferred_started)) {
1611 rc = sfc_rx_qstart(sa, sw_index);
1612 if (rc != 0)
1613 goto fail_rx_qstart;
1614 }
1615 }
1616
1617 return 0;
1618
1619 fail_rx_qstart:
1620 while (sw_index-- > 0)
1621 sfc_rx_qstop(sa, sw_index);
1622
1623 fail_rss_config:
1624 efx_rx_fini(sa->nic);
1625
1626 fail_rx_init:
1627 sfc_log_init(sa, "failed %d", rc);
1628 return rc;
1629 }
1630
1631 void
sfc_rx_stop(struct sfc_adapter * sa)1632 sfc_rx_stop(struct sfc_adapter *sa)
1633 {
1634 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1635 sfc_sw_index_t sw_index;
1636
1637 sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1638 sas->rxq_count);
1639
1640 sw_index = sas->rxq_count;
1641 while (sw_index-- > 0) {
1642 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1643 sfc_rx_qstop(sa, sw_index);
1644 }
1645
1646 efx_rx_fini(sa->nic);
1647 }
1648
1649 int
sfc_rx_qinit_info(struct sfc_adapter * sa,sfc_sw_index_t sw_index,unsigned int extra_efx_type_flags)1650 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1651 unsigned int extra_efx_type_flags)
1652 {
1653 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1654 struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1655 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1656 unsigned int max_entries;
1657
1658 max_entries = encp->enc_rxq_max_ndescs;
1659 SFC_ASSERT(rte_is_power_of_2(max_entries));
1660
1661 rxq_info->max_entries = max_entries;
1662 rxq_info->type_flags = extra_efx_type_flags;
1663
1664 return 0;
1665 }
1666
1667 static int
sfc_rx_check_mode(struct sfc_adapter * sa,struct rte_eth_rxmode * rxmode)1668 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1669 {
1670 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1671 uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1672 sfc_rx_get_queue_offload_caps(sa);
1673 struct sfc_rss *rss = &sas->rss;
1674 int rc = 0;
1675
1676 switch (rxmode->mq_mode) {
1677 case RTE_ETH_MQ_RX_NONE:
1678 /* No special checks are required */
1679 break;
1680 case RTE_ETH_MQ_RX_RSS:
1681 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1682 sfc_err(sa, "RSS is not available");
1683 rc = EINVAL;
1684 }
1685 break;
1686 default:
1687 sfc_err(sa, "Rx multi-queue mode %u not supported",
1688 rxmode->mq_mode);
1689 rc = EINVAL;
1690 }
1691
1692 /*
1693 * Requested offloads are validated against supported by ethdev,
1694 * so unsupported offloads cannot be added as the result of
1695 * below check.
1696 */
1697 if ((rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM) !=
1698 (offloads_supported & RTE_ETH_RX_OFFLOAD_CHECKSUM)) {
1699 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1700 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_CHECKSUM;
1701 }
1702
1703 if ((offloads_supported & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1704 (~rxmode->offloads & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1705 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1706 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1707 }
1708
1709 return rc;
1710 }
1711
1712 /**
1713 * Destroy excess queues that are no longer needed after reconfiguration
1714 * or complete close.
1715 */
1716 static void
sfc_rx_fini_queues(struct sfc_adapter * sa,unsigned int nb_rx_queues)1717 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1718 {
1719 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1720 sfc_sw_index_t sw_index;
1721 sfc_ethdev_qid_t ethdev_qid;
1722
1723 SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1724
1725 /*
1726 * Finalize only ethdev queues since other ones are finalized only
1727 * on device close and they may require additional deinitialization.
1728 */
1729 ethdev_qid = sas->ethdev_rxq_count;
1730 while (--ethdev_qid >= (int)nb_rx_queues) {
1731 struct sfc_rxq_info *rxq_info;
1732
1733 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1734 if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1735 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1736 ethdev_qid);
1737 sfc_rx_qfini(sa, sw_index);
1738 }
1739
1740 }
1741
1742 sas->ethdev_rxq_count = nb_rx_queues;
1743 }
1744
1745 /**
1746 * Initialize Rx subsystem.
1747 *
1748 * Called at device (re)configuration stage when number of receive queues is
1749 * specified together with other device level receive configuration.
1750 *
1751 * It should be used to allocate NUMA-unaware resources.
1752 */
1753 int
sfc_rx_configure(struct sfc_adapter * sa)1754 sfc_rx_configure(struct sfc_adapter *sa)
1755 {
1756 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1757 struct sfc_rss *rss = &sas->rss;
1758 struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1759 const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1760 const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas);
1761 const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues;
1762 bool reconfigure;
1763 int rc;
1764
1765 sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1766 nb_rx_queues, sas->ethdev_rxq_count);
1767
1768 rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1769 if (rc != 0)
1770 goto fail_check_mode;
1771
1772 if (nb_rxq_total == sas->rxq_count) {
1773 reconfigure = true;
1774 goto configure_rss;
1775 }
1776
1777 if (sas->rxq_info == NULL) {
1778 reconfigure = false;
1779 rc = ENOMEM;
1780 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total,
1781 sizeof(sas->rxq_info[0]), 0,
1782 sa->socket_id);
1783 if (sas->rxq_info == NULL)
1784 goto fail_rxqs_alloc;
1785
1786 /*
1787 * Allocate primary process only RxQ control from heap
1788 * since it should not be shared.
1789 */
1790 rc = ENOMEM;
1791 sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0]));
1792 if (sa->rxq_ctrl == NULL)
1793 goto fail_rxqs_ctrl_alloc;
1794 } else {
1795 struct sfc_rxq_info *new_rxq_info;
1796 struct sfc_rxq *new_rxq_ctrl;
1797
1798 reconfigure = true;
1799
1800 /* Do not uninitialize reserved queues */
1801 if (nb_rx_queues < sas->ethdev_rxq_count)
1802 sfc_rx_fini_queues(sa, nb_rx_queues);
1803
1804 rc = ENOMEM;
1805 new_rxq_info =
1806 rte_realloc(sas->rxq_info,
1807 nb_rxq_total * sizeof(sas->rxq_info[0]), 0);
1808 if (new_rxq_info == NULL && nb_rxq_total > 0)
1809 goto fail_rxqs_realloc;
1810
1811 rc = ENOMEM;
1812 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1813 nb_rxq_total * sizeof(sa->rxq_ctrl[0]));
1814 if (new_rxq_ctrl == NULL && nb_rxq_total > 0)
1815 goto fail_rxqs_ctrl_realloc;
1816
1817 sas->rxq_info = new_rxq_info;
1818 sa->rxq_ctrl = new_rxq_ctrl;
1819 if (nb_rxq_total > sas->rxq_count) {
1820 unsigned int rxq_count = sas->rxq_count;
1821
1822 memset(&sas->rxq_info[rxq_count], 0,
1823 (nb_rxq_total - rxq_count) *
1824 sizeof(sas->rxq_info[0]));
1825 memset(&sa->rxq_ctrl[rxq_count], 0,
1826 (nb_rxq_total - rxq_count) *
1827 sizeof(sa->rxq_ctrl[0]));
1828 }
1829 }
1830
1831 while (sas->ethdev_rxq_count < nb_rx_queues) {
1832 sfc_sw_index_t sw_index;
1833
1834 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1835 sas->ethdev_rxq_count);
1836 rc = sfc_rx_qinit_info(sa, sw_index, 0);
1837 if (rc != 0)
1838 goto fail_rx_qinit_info;
1839
1840 sas->ethdev_rxq_count++;
1841 }
1842
1843 sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues;
1844
1845 if (!reconfigure) {
1846 rc = sfc_mae_counter_rxq_init(sa);
1847 if (rc != 0)
1848 goto fail_count_rxq_init;
1849 }
1850
1851 configure_rss:
1852 rss->channels = (dev_conf->rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) ?
1853 MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1854
1855 if (rss->channels > 0) {
1856 struct rte_eth_rss_conf *adv_conf_rss;
1857 sfc_sw_index_t sw_index;
1858
1859 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1860 rss->tbl[sw_index] = sw_index % rss->channels;
1861
1862 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1863 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1864 if (rc != 0)
1865 goto fail_rx_process_adv_conf_rss;
1866 }
1867
1868 return 0;
1869
1870 fail_rx_process_adv_conf_rss:
1871 if (!reconfigure)
1872 sfc_mae_counter_rxq_fini(sa);
1873
1874 fail_count_rxq_init:
1875 fail_rx_qinit_info:
1876 fail_rxqs_ctrl_realloc:
1877 fail_rxqs_realloc:
1878 fail_rxqs_ctrl_alloc:
1879 fail_rxqs_alloc:
1880 sfc_rx_close(sa);
1881
1882 fail_check_mode:
1883 sfc_log_init(sa, "failed %d", rc);
1884 return rc;
1885 }
1886
1887 /**
1888 * Shutdown Rx subsystem.
1889 *
1890 * Called at device close stage, for example, before device shutdown.
1891 */
1892 void
sfc_rx_close(struct sfc_adapter * sa)1893 sfc_rx_close(struct sfc_adapter *sa)
1894 {
1895 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1896
1897 sfc_rx_fini_queues(sa, 0);
1898 sfc_mae_counter_rxq_fini(sa);
1899
1900 rss->channels = 0;
1901
1902 free(sa->rxq_ctrl);
1903 sa->rxq_ctrl = NULL;
1904
1905 rte_free(sfc_sa2shared(sa)->rxq_info);
1906 sfc_sa2shared(sa)->rxq_info = NULL;
1907 }
1908