xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision ba6a168a06581b5b3d523f984722a3e5f65bbb82)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_flow_tunnel.h"
17 #include "sfc_log.h"
18 #include "sfc_ev.h"
19 #include "sfc_rx.h"
20 #include "sfc_mae_counter.h"
21 #include "sfc_kvargs.h"
22 #include "sfc_tweak.h"
23 
24 /*
25  * Maximum number of Rx queue flush attempt in the case of failure or
26  * flush timeout
27  */
28 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
29 
30 /*
31  * Time to wait between event queue polling attempts when waiting for Rx
32  * queue flush done or failed events.
33  */
34 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
35 
36 /*
37  * Maximum number of event queue polling attempts when waiting for Rx queue
38  * flush done or failed events. It defines Rx queue flush attempt timeout
39  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
40  */
41 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
42 
43 void
sfc_rx_qflush_done(struct sfc_rxq_info * rxq_info)44 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
45 {
46 	rxq_info->state |= SFC_RXQ_FLUSHED;
47 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
48 }
49 
50 void
sfc_rx_qflush_failed(struct sfc_rxq_info * rxq_info)51 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
52 {
53 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
54 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
55 }
56 
57 /* This returns the running counter, which is not bounded by ring size */
58 unsigned int
sfc_rx_get_pushed(struct sfc_adapter * sa,struct sfc_dp_rxq * dp_rxq)59 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq)
60 {
61 	SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL);
62 
63 	return sa->priv.dp_rx->get_pushed(dp_rxq);
64 }
65 
66 static int
sfc_efx_rx_qprime(struct sfc_efx_rxq * rxq)67 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
68 {
69 	int rc = 0;
70 
71 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
72 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
73 		if (rc == 0)
74 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
75 	}
76 	return rc;
77 }
78 
79 static void
sfc_efx_rx_qrefill(struct sfc_efx_rxq * rxq)80 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
81 {
82 	unsigned int free_space;
83 	unsigned int bulks;
84 	void *objs[SFC_RX_REFILL_BULK];
85 	efsys_dma_addr_t addr[RTE_DIM(objs)];
86 	unsigned int added = rxq->added;
87 	unsigned int id;
88 	unsigned int i;
89 	struct sfc_efx_rx_sw_desc *rxd;
90 	struct rte_mbuf *m;
91 	uint16_t port_id = rxq->dp.dpq.port_id;
92 
93 	free_space = rxq->max_fill_level - (added - rxq->completed);
94 
95 	if (free_space < rxq->refill_threshold)
96 		return;
97 
98 	bulks = free_space / RTE_DIM(objs);
99 	/* refill_threshold guarantees that bulks is positive */
100 	SFC_ASSERT(bulks > 0);
101 
102 	id = added & rxq->ptr_mask;
103 	do {
104 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
105 						  RTE_DIM(objs)) < 0)) {
106 			/*
107 			 * It is hardly a safe way to increment counter
108 			 * from different contexts, but all PMDs do it.
109 			 */
110 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
111 				RTE_DIM(objs);
112 			/* Return if we have posted nothing yet */
113 			if (added == rxq->added)
114 				return;
115 			/* Push posted */
116 			break;
117 		}
118 
119 		for (i = 0; i < RTE_DIM(objs);
120 		     ++i, id = (id + 1) & rxq->ptr_mask) {
121 			m = objs[i];
122 
123 			__rte_mbuf_raw_sanity_check(m);
124 
125 			rxd = &rxq->sw_desc[id];
126 			rxd->mbuf = m;
127 
128 			m->data_off = RTE_PKTMBUF_HEADROOM;
129 			m->port = port_id;
130 
131 			addr[i] = rte_pktmbuf_iova(m);
132 		}
133 
134 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135 			     RTE_DIM(objs), rxq->completed, added);
136 		added += RTE_DIM(objs);
137 	} while (--bulks > 0);
138 
139 	SFC_ASSERT(added != rxq->added);
140 	rxq->added = added;
141 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
142 	rxq->dp.dpq.dbells++;
143 }
144 
145 static uint64_t
sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)146 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
147 {
148 	uint64_t mbuf_flags = 0;
149 
150 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
151 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
152 		mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
153 		break;
154 	case EFX_PKT_IPV4:
155 		mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
156 		break;
157 	default:
158 		RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN != 0);
159 		SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) ==
160 			   RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN);
161 		break;
162 	}
163 
164 	switch ((desc_flags &
165 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
166 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
167 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
168 		mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
169 		break;
170 	case EFX_PKT_TCP:
171 	case EFX_PKT_UDP:
172 		mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
173 		break;
174 	default:
175 		RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN != 0);
176 		SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) ==
177 			   RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN);
178 		break;
179 	}
180 
181 	return mbuf_flags;
182 }
183 
184 static uint32_t
sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)185 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
186 {
187 	return RTE_PTYPE_L2_ETHER |
188 		((desc_flags & EFX_PKT_IPV4) ?
189 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
190 		((desc_flags & EFX_PKT_IPV6) ?
191 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
192 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
193 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
194 }
195 
196 static const uint32_t *
sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps,size_t * no_of_elements)197 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps,
198 			     size_t *no_of_elements)
199 {
200 	static const uint32_t ptypes[] = {
201 		RTE_PTYPE_L2_ETHER,
202 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
203 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
204 		RTE_PTYPE_L4_TCP,
205 		RTE_PTYPE_L4_UDP,
206 	};
207 
208 	*no_of_elements = RTE_DIM(ptypes);
209 	return ptypes;
210 }
211 
212 static void
sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq * rxq,unsigned int flags,struct rte_mbuf * m)213 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
214 			struct rte_mbuf *m)
215 {
216 	uint8_t *mbuf_data;
217 
218 
219 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
220 		return;
221 
222 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
223 
224 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
225 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
226 						      EFX_RX_HASHALG_TOEPLITZ,
227 						      mbuf_data);
228 
229 		m->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
230 	}
231 }
232 
233 static uint16_t
sfc_efx_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)234 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
235 {
236 	struct sfc_dp_rxq *dp_rxq = rx_queue;
237 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
238 	unsigned int completed;
239 	unsigned int prefix_size = rxq->prefix_size;
240 	unsigned int done_pkts = 0;
241 	boolean_t discard_next = B_FALSE;
242 	struct rte_mbuf *scatter_pkt = NULL;
243 
244 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
245 		return 0;
246 
247 	sfc_ev_qpoll(rxq->evq);
248 
249 	completed = rxq->completed;
250 	while (completed != rxq->pending && done_pkts < nb_pkts) {
251 		unsigned int id;
252 		struct sfc_efx_rx_sw_desc *rxd;
253 		struct rte_mbuf *m;
254 		unsigned int seg_len;
255 		unsigned int desc_flags;
256 
257 		id = completed++ & rxq->ptr_mask;
258 		rxd = &rxq->sw_desc[id];
259 		m = rxd->mbuf;
260 		desc_flags = rxd->flags;
261 
262 		if (discard_next)
263 			goto discard;
264 
265 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
266 			goto discard;
267 
268 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
269 			uint16_t tmp_size;
270 			int rc __rte_unused;
271 
272 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
273 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
274 			SFC_ASSERT(rc == 0);
275 			seg_len = tmp_size;
276 		} else {
277 			seg_len = rxd->size - prefix_size;
278 		}
279 
280 		rte_pktmbuf_data_len(m) = seg_len;
281 		rte_pktmbuf_pkt_len(m) = seg_len;
282 
283 		if (scatter_pkt != NULL) {
284 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
285 				rte_pktmbuf_free(scatter_pkt);
286 				goto discard;
287 			}
288 			/* The packet to deliver */
289 			m = scatter_pkt;
290 		}
291 
292 		if (desc_flags & EFX_PKT_CONT) {
293 			/* The packet is scattered, more fragments to come */
294 			scatter_pkt = m;
295 			/* Further fragments have no prefix */
296 			prefix_size = 0;
297 			continue;
298 		}
299 
300 		/* Scattered packet is done */
301 		scatter_pkt = NULL;
302 		/* The first fragment of the packet has prefix */
303 		prefix_size = rxq->prefix_size;
304 
305 		m->ol_flags =
306 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
307 		m->packet_type =
308 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
309 
310 		/*
311 		 * Extract RSS hash from the packet prefix and
312 		 * set the corresponding field (if needed and possible)
313 		 */
314 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
315 
316 		m->data_off += prefix_size;
317 
318 		*rx_pkts++ = m;
319 		done_pkts++;
320 		continue;
321 
322 discard:
323 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
324 		rte_mbuf_raw_free(m);
325 		rxd->mbuf = NULL;
326 	}
327 
328 	/* pending is only moved when entire packet is received */
329 	SFC_ASSERT(scatter_pkt == NULL);
330 
331 	rxq->completed = completed;
332 
333 	sfc_efx_rx_qrefill(rxq);
334 
335 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
336 		sfc_efx_rx_qprime(rxq);
337 
338 	return done_pkts;
339 }
340 
341 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
342 static unsigned int
sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq * dp_rxq)343 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
344 {
345 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
346 
347 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
348 		return 0;
349 
350 	sfc_ev_qpoll(rxq->evq);
351 
352 	return rxq->pending - rxq->completed;
353 }
354 
355 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
356 static int
sfc_efx_rx_qdesc_status(struct sfc_dp_rxq * dp_rxq,uint16_t offset)357 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
358 {
359 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
360 
361 	if (unlikely(offset > rxq->ptr_mask))
362 		return -EINVAL;
363 
364 	/*
365 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
366 	 * it is required for the queue to be running, but the
367 	 * check is omitted because API design assumes that it
368 	 * is the duty of the caller to satisfy all conditions
369 	 */
370 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
371 		   SFC_EFX_RXQ_FLAG_RUNNING);
372 	sfc_ev_qpoll(rxq->evq);
373 
374 	/*
375 	 * There is a handful of reserved entries in the ring,
376 	 * but an explicit check whether the offset points to
377 	 * a reserved entry is neglected since the two checks
378 	 * below rely on the figures which take the HW limits
379 	 * into account and thus if an entry is reserved, the
380 	 * checks will fail and UNAVAIL code will be returned
381 	 */
382 
383 	if (offset < (rxq->pending - rxq->completed))
384 		return RTE_ETH_RX_DESC_DONE;
385 
386 	if (offset < (rxq->added - rxq->completed))
387 		return RTE_ETH_RX_DESC_AVAIL;
388 
389 	return RTE_ETH_RX_DESC_UNAVAIL;
390 }
391 
392 boolean_t
sfc_rx_check_scatter(size_t pdu,size_t rx_buf_size,uint32_t rx_prefix_size,boolean_t rx_scatter_enabled,uint32_t rx_scatter_max,const char ** error)393 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
394 		     boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
395 		     const char **error)
396 {
397 	uint32_t effective_rx_scatter_max;
398 	uint32_t rx_scatter_bufs;
399 
400 	effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
401 	rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
402 
403 	if (rx_scatter_bufs > effective_rx_scatter_max) {
404 		if (rx_scatter_enabled)
405 			*error = "Possible number of Rx scatter buffers exceeds maximum number";
406 		else
407 			*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
408 		return B_FALSE;
409 	}
410 
411 	return B_TRUE;
412 }
413 
414 /** Get Rx datapath ops by the datapath RxQ handle */
415 const struct sfc_dp_rx *
sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)416 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
417 {
418 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
419 	struct rte_eth_dev *eth_dev;
420 	struct sfc_adapter_priv *sap;
421 
422 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
423 	eth_dev = &rte_eth_devices[dpq->port_id];
424 
425 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
426 
427 	return sap->dp_rx;
428 }
429 
430 struct sfc_rxq_info *
sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)431 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
432 {
433 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
434 	struct rte_eth_dev *eth_dev;
435 	struct sfc_adapter_shared *sas;
436 
437 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
438 	eth_dev = &rte_eth_devices[dpq->port_id];
439 
440 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
441 
442 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
443 	return &sas->rxq_info[dpq->queue_id];
444 }
445 
446 struct sfc_rxq *
sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)447 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
448 {
449 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
450 	struct rte_eth_dev *eth_dev;
451 	struct sfc_adapter *sa;
452 
453 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
454 	eth_dev = &rte_eth_devices[dpq->port_id];
455 
456 	sa = sfc_adapter_by_eth_dev(eth_dev);
457 
458 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
459 	return &sa->rxq_ctrl[dpq->queue_id];
460 }
461 
462 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
463 static int
sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,__rte_unused struct sfc_dp_rx_hw_limits * limits,__rte_unused struct rte_mempool * mb_pool,unsigned int * rxq_entries,unsigned int * evq_entries,unsigned int * rxq_max_fill_level)464 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
465 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
466 			  __rte_unused struct rte_mempool *mb_pool,
467 			  unsigned int *rxq_entries,
468 			  unsigned int *evq_entries,
469 			  unsigned int *rxq_max_fill_level)
470 {
471 	*rxq_entries = nb_rx_desc;
472 	*evq_entries = nb_rx_desc;
473 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
474 	return 0;
475 }
476 
477 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
478 static int
sfc_efx_rx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_rx_qcreate_info * info,struct sfc_dp_rxq ** dp_rxqp)479 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
480 		   const struct rte_pci_addr *pci_addr, int socket_id,
481 		   const struct sfc_dp_rx_qcreate_info *info,
482 		   struct sfc_dp_rxq **dp_rxqp)
483 {
484 	struct sfc_efx_rxq *rxq;
485 	int rc;
486 
487 	rc = ENOTSUP;
488 	if (info->nic_dma_info->nb_regions > 0)
489 		goto fail_nic_dma;
490 
491 	rc = ENOMEM;
492 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
493 				 RTE_CACHE_LINE_SIZE, socket_id);
494 	if (rxq == NULL)
495 		goto fail_rxq_alloc;
496 
497 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
498 
499 	rc = ENOMEM;
500 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
501 					 info->rxq_entries,
502 					 sizeof(*rxq->sw_desc),
503 					 RTE_CACHE_LINE_SIZE, socket_id);
504 	if (rxq->sw_desc == NULL)
505 		goto fail_desc_alloc;
506 
507 	/* efx datapath is bound to efx control path */
508 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
509 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
510 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
511 	rxq->ptr_mask = info->rxq_entries - 1;
512 	rxq->batch_max = info->batch_max;
513 	rxq->prefix_size = info->prefix_size;
514 	rxq->max_fill_level = info->max_fill_level;
515 	rxq->refill_threshold = info->refill_threshold;
516 	rxq->buf_size = info->buf_size;
517 	rxq->refill_mb_pool = info->refill_mb_pool;
518 
519 	*dp_rxqp = &rxq->dp;
520 	return 0;
521 
522 fail_desc_alloc:
523 	rte_free(rxq);
524 
525 fail_rxq_alloc:
526 fail_nic_dma:
527 	return rc;
528 }
529 
530 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
531 static void
sfc_efx_rx_qdestroy(struct sfc_dp_rxq * dp_rxq)532 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
533 {
534 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
535 
536 	rte_free(rxq->sw_desc);
537 	rte_free(rxq);
538 }
539 
540 
541 /* Use qstop and qstart functions in the case of qstart failure */
542 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
543 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
544 
545 
546 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
547 static int
sfc_efx_rx_qstart(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int evq_read_ptr,const efx_rx_prefix_layout_t * pinfo)548 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
549 		  __rte_unused unsigned int evq_read_ptr,
550 		  const efx_rx_prefix_layout_t *pinfo)
551 {
552 	/* libefx-based datapath is specific to libefx-based PMD */
553 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
554 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
555 	int rc;
556 
557 	/*
558 	 * libefx API is used to extract information from Rx prefix and
559 	 * it guarantees consistency. Just do length check to ensure
560 	 * that we reserved space in Rx buffers correctly.
561 	 */
562 	if (rxq->prefix_size != pinfo->erpl_length)
563 		return ENOTSUP;
564 
565 	rxq->common = crxq->common;
566 
567 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
568 
569 	sfc_efx_rx_qrefill(rxq);
570 
571 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
572 
573 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
574 		rc = sfc_efx_rx_qprime(rxq);
575 		if (rc != 0)
576 			goto fail_rx_qprime;
577 	}
578 
579 	return 0;
580 
581 fail_rx_qprime:
582 	sfc_efx_rx_qstop(dp_rxq, NULL);
583 	sfc_efx_rx_qpurge(dp_rxq);
584 	return rc;
585 }
586 
587 static void
sfc_efx_rx_qstop(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int * evq_read_ptr)588 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
589 		 __rte_unused unsigned int *evq_read_ptr)
590 {
591 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
592 
593 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
594 
595 	/* libefx-based datapath is bound to libefx-based PMD and uses
596 	 * event queue structure directly. So, there is no necessity to
597 	 * return EvQ read pointer.
598 	 */
599 }
600 
601 static void
sfc_efx_rx_qpurge(struct sfc_dp_rxq * dp_rxq)602 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
603 {
604 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
605 	unsigned int i;
606 	struct sfc_efx_rx_sw_desc *rxd;
607 
608 	for (i = rxq->completed; i != rxq->added; ++i) {
609 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
610 		rte_mbuf_raw_free(rxd->mbuf);
611 		rxd->mbuf = NULL;
612 		/* Packed stream relies on 0 in inactive SW desc.
613 		 * Rx queue stop is not performance critical, so
614 		 * there is no harm to do it always.
615 		 */
616 		rxd->flags = 0;
617 		rxd->size = 0;
618 	}
619 
620 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
621 }
622 
623 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
624 static int
sfc_efx_rx_intr_enable(struct sfc_dp_rxq * dp_rxq)625 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
626 {
627 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
628 	int rc = 0;
629 
630 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
631 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
632 		rc = sfc_efx_rx_qprime(rxq);
633 		if (rc != 0)
634 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
635 	}
636 	return rc;
637 }
638 
639 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
640 static int
sfc_efx_rx_intr_disable(struct sfc_dp_rxq * dp_rxq)641 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
642 {
643 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
644 
645 	/* Cannot disarm, just disable rearm */
646 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
647 	return 0;
648 }
649 
650 struct sfc_dp_rx sfc_efx_rx = {
651 	.dp = {
652 		.name		= SFC_KVARG_DATAPATH_EFX,
653 		.type		= SFC_DP_RX,
654 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_RX_EFX,
655 	},
656 	.features		= SFC_DP_RX_FEAT_INTR,
657 	.dev_offload_capa	= RTE_ETH_RX_OFFLOAD_CHECKSUM |
658 				  RTE_ETH_RX_OFFLOAD_RSS_HASH |
659 				  RTE_ETH_RX_OFFLOAD_KEEP_CRC,
660 	.queue_offload_capa	= RTE_ETH_RX_OFFLOAD_SCATTER,
661 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
662 	.qcreate		= sfc_efx_rx_qcreate,
663 	.qdestroy		= sfc_efx_rx_qdestroy,
664 	.qstart			= sfc_efx_rx_qstart,
665 	.qstop			= sfc_efx_rx_qstop,
666 	.qpurge			= sfc_efx_rx_qpurge,
667 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
668 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
669 	.qdesc_status		= sfc_efx_rx_qdesc_status,
670 	.intr_enable		= sfc_efx_rx_intr_enable,
671 	.intr_disable		= sfc_efx_rx_intr_disable,
672 	.pkt_burst		= sfc_efx_recv_pkts,
673 };
674 
675 static void
sfc_rx_qflush(struct sfc_adapter * sa,sfc_sw_index_t sw_index)676 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
677 {
678 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
679 	sfc_ethdev_qid_t ethdev_qid;
680 	struct sfc_rxq_info *rxq_info;
681 	struct sfc_rxq *rxq;
682 	unsigned int retry_count;
683 	unsigned int wait_count;
684 	int rc;
685 
686 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
687 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
688 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
689 
690 	rxq = &sa->rxq_ctrl[sw_index];
691 
692 	/*
693 	 * Retry Rx queue flushing in the case of flush failed or
694 	 * timeout. In the worst case it can delay for 6 seconds.
695 	 */
696 	for (retry_count = 0;
697 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
698 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
699 	     ++retry_count) {
700 		rc = efx_rx_qflush(rxq->common);
701 		if (rc != 0) {
702 			rxq_info->state |= (rc == EALREADY) ?
703 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
704 			break;
705 		}
706 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
707 		rxq_info->state |= SFC_RXQ_FLUSHING;
708 
709 		/*
710 		 * Wait for Rx queue flush done or failed event at least
711 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
712 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
713 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
714 		 */
715 		wait_count = 0;
716 		do {
717 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
718 			sfc_ev_qpoll(rxq->evq);
719 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
720 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
721 
722 		if (rxq_info->state & SFC_RXQ_FLUSHING)
723 			sfc_err(sa, "RxQ %d (internal %u) flush timed out",
724 				ethdev_qid, sw_index);
725 
726 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
727 			sfc_err(sa, "RxQ %d (internal %u) flush failed",
728 				ethdev_qid, sw_index);
729 
730 		if (rxq_info->state & SFC_RXQ_FLUSHED)
731 			sfc_notice(sa, "RxQ %d (internal %u) flushed",
732 				   ethdev_qid, sw_index);
733 	}
734 
735 	sa->priv.dp_rx->qpurge(rxq_info->dp);
736 }
737 
738 static int
sfc_rx_default_rxq_set_filter(struct sfc_adapter * sa,struct sfc_rxq * rxq)739 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
740 {
741 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
742 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
743 	struct sfc_port *port = &sa->port;
744 	int rc;
745 
746 	/*
747 	 * If promiscuous or all-multicast mode has been requested, setting
748 	 * filter for the default Rx queue might fail, in particular, while
749 	 * running over PCI function which is not a member of corresponding
750 	 * privilege groups; if this occurs, few iterations will be made to
751 	 * repeat this step without promiscuous and all-multicast flags set
752 	 */
753 retry:
754 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
755 	if (rc == 0)
756 		return 0;
757 	else if (rc != EOPNOTSUPP)
758 		return rc;
759 
760 	if (port->promisc) {
761 		sfc_warn(sa, "promiscuous mode has been requested, "
762 			     "but the HW rejects it");
763 		sfc_warn(sa, "promiscuous mode will be disabled");
764 
765 		port->promisc = B_FALSE;
766 		sa->eth_dev->data->promiscuous = 0;
767 		rc = sfc_set_rx_mode_unchecked(sa);
768 		if (rc != 0)
769 			return rc;
770 
771 		goto retry;
772 	}
773 
774 	if (port->allmulti) {
775 		sfc_warn(sa, "all-multicast mode has been requested, "
776 			     "but the HW rejects it");
777 		sfc_warn(sa, "all-multicast mode will be disabled");
778 
779 		port->allmulti = B_FALSE;
780 		sa->eth_dev->data->all_multicast = 0;
781 		rc = sfc_set_rx_mode_unchecked(sa);
782 		if (rc != 0)
783 			return rc;
784 
785 		goto retry;
786 	}
787 
788 	return rc;
789 }
790 
791 int
sfc_rx_qstart(struct sfc_adapter * sa,sfc_sw_index_t sw_index)792 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
793 {
794 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
795 	sfc_ethdev_qid_t ethdev_qid;
796 	struct sfc_rxq_info *rxq_info;
797 	struct sfc_rxq *rxq;
798 	struct sfc_evq *evq;
799 	efx_rx_prefix_layout_t pinfo;
800 	int rc;
801 
802 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
803 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
804 
805 	sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
806 
807 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
808 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
809 
810 	rxq = &sa->rxq_ctrl[sw_index];
811 	evq = rxq->evq;
812 
813 	rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
814 	if (rc != 0)
815 		goto fail_ev_qstart;
816 
817 	switch (rxq_info->type) {
818 	case EFX_RXQ_TYPE_DEFAULT:
819 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
820 			rxq->buf_size,
821 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
822 			rxq_info->type_flags, evq->common, &rxq->common);
823 		break;
824 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
825 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
826 		struct rte_mempool_info mp_info;
827 
828 		rc = rte_mempool_ops_get_info(mp, &mp_info);
829 		if (rc != 0) {
830 			/* Positive errno is used in the driver */
831 			rc = -rc;
832 			goto fail_mp_get_info;
833 		}
834 		if (mp_info.contig_block_size <= 0) {
835 			rc = EINVAL;
836 			goto fail_bad_contig_block_size;
837 		}
838 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
839 			mp_info.contig_block_size, rxq->buf_size,
840 			mp->header_size + mp->elt_size + mp->trailer_size,
841 			sa->rxd_wait_timeout_ns,
842 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
843 			evq->common, &rxq->common);
844 		break;
845 	}
846 	default:
847 		rc = ENOTSUP;
848 	}
849 	if (rc != 0)
850 		goto fail_rx_qcreate;
851 
852 	rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
853 	if (rc != 0)
854 		goto fail_prefix_get_layout;
855 
856 	efx_rx_qenable(rxq->common);
857 
858 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
859 	if (rc != 0)
860 		goto fail_dp_qstart;
861 
862 	rxq_info->state |= SFC_RXQ_STARTED;
863 
864 	if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
865 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
866 		if (rc != 0)
867 			goto fail_mac_filter_default_rxq_set;
868 	}
869 
870 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
871 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
872 		sa->eth_dev->data->rx_queue_state[ethdev_qid] =
873 			RTE_ETH_QUEUE_STATE_STARTED;
874 
875 	return 0;
876 
877 fail_mac_filter_default_rxq_set:
878 	sfc_rx_qflush(sa, sw_index);
879 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
880 	rxq_info->state = SFC_RXQ_INITIALIZED;
881 
882 fail_dp_qstart:
883 	efx_rx_qdestroy(rxq->common);
884 
885 fail_prefix_get_layout:
886 fail_rx_qcreate:
887 fail_bad_contig_block_size:
888 fail_mp_get_info:
889 	sfc_ev_qstop(evq);
890 
891 fail_ev_qstart:
892 	return rc;
893 }
894 
895 void
sfc_rx_qstop(struct sfc_adapter * sa,sfc_sw_index_t sw_index)896 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
897 {
898 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
899 	sfc_ethdev_qid_t ethdev_qid;
900 	struct sfc_rxq_info *rxq_info;
901 	struct sfc_rxq *rxq;
902 
903 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
904 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
905 
906 	sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
907 
908 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
909 
910 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
911 		return;
912 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
913 
914 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
915 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
916 		sa->eth_dev->data->rx_queue_state[ethdev_qid] =
917 			RTE_ETH_QUEUE_STATE_STOPPED;
918 
919 	rxq = &sa->rxq_ctrl[sw_index];
920 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
921 
922 	if (ethdev_qid == 0)
923 		efx_mac_filter_default_rxq_clear(sa->nic);
924 
925 	sfc_rx_qflush(sa, sw_index);
926 
927 	rxq_info->state = SFC_RXQ_INITIALIZED;
928 
929 	efx_rx_qdestroy(rxq->common);
930 
931 	sfc_ev_qstop(rxq->evq);
932 }
933 
934 static uint64_t
sfc_rx_get_offload_mask(struct sfc_adapter * sa)935 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
936 {
937 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
938 	uint64_t no_caps = 0;
939 
940 	if (encp->enc_tunnel_encapsulations_supported == 0)
941 		no_caps |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
942 
943 	if (encp->enc_rx_include_fcs_supported == 0)
944 		no_caps |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
945 
946 	if (encp->enc_rx_vlan_stripping_supported == 0)
947 		no_caps |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
948 
949 	return ~no_caps;
950 }
951 
952 uint64_t
sfc_rx_get_dev_offload_caps(struct sfc_adapter * sa)953 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
954 {
955 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
956 
957 	return caps & sfc_rx_get_offload_mask(sa);
958 }
959 
960 uint64_t
sfc_rx_get_queue_offload_caps(struct sfc_adapter * sa)961 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
962 {
963 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
964 }
965 
966 static int
sfc_rx_qcheck_conf(struct sfc_adapter * sa,unsigned int rxq_max_fill_level,const struct rte_eth_rxconf * rx_conf,__rte_unused uint64_t offloads)967 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
968 		   const struct rte_eth_rxconf *rx_conf,
969 		   __rte_unused uint64_t offloads)
970 {
971 	int rc = 0;
972 
973 	if (rx_conf->rx_thresh.pthresh != 0 ||
974 	    rx_conf->rx_thresh.hthresh != 0 ||
975 	    rx_conf->rx_thresh.wthresh != 0) {
976 		sfc_warn(sa,
977 			"RxQ prefetch/host/writeback thresholds are not supported");
978 	}
979 
980 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
981 		sfc_err(sa,
982 			"RxQ free threshold too large: %u vs maximum %u",
983 			rx_conf->rx_free_thresh, rxq_max_fill_level);
984 		rc = EINVAL;
985 	}
986 
987 	if (rx_conf->rx_drop_en == 0) {
988 		sfc_err(sa, "RxQ drop disable is not supported");
989 		rc = EINVAL;
990 	}
991 
992 	return rc;
993 }
994 
995 static unsigned int
sfc_rx_mbuf_data_alignment(struct rte_mempool * mb_pool)996 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
997 {
998 	uint32_t data_off;
999 	uint32_t order;
1000 
1001 	/* The mbuf object itself is always cache line aligned */
1002 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
1003 
1004 	/* Data offset from mbuf object start */
1005 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
1006 		RTE_PKTMBUF_HEADROOM;
1007 
1008 	order = MIN(order, rte_bsf32(data_off));
1009 
1010 	return 1u << order;
1011 }
1012 
1013 static uint16_t
sfc_rx_mb_pool_buf_size(struct sfc_adapter * sa,struct rte_mempool * mb_pool)1014 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
1015 {
1016 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1017 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
1018 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
1019 	uint16_t buf_size;
1020 	unsigned int buf_aligned;
1021 	unsigned int start_alignment;
1022 	unsigned int end_padding_alignment;
1023 
1024 	/* Below it is assumed that both alignments are power of 2 */
1025 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1026 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1027 
1028 	/*
1029 	 * mbuf is always cache line aligned, double-check
1030 	 * that it meets rx buffer start alignment requirements.
1031 	 */
1032 
1033 	/* Start from mbuf pool data room size */
1034 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
1035 
1036 	/* Remove headroom */
1037 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1038 		sfc_err(sa,
1039 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1040 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1041 		return 0;
1042 	}
1043 	buf_size -= RTE_PKTMBUF_HEADROOM;
1044 
1045 	/* Calculate guaranteed data start alignment */
1046 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1047 
1048 	/* Reserve space for start alignment */
1049 	if (buf_aligned < nic_align_start) {
1050 		start_alignment = nic_align_start - buf_aligned;
1051 		if (buf_size <= start_alignment) {
1052 			sfc_err(sa,
1053 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1054 				mb_pool->name,
1055 				rte_pktmbuf_data_room_size(mb_pool),
1056 				RTE_PKTMBUF_HEADROOM, start_alignment);
1057 			return 0;
1058 		}
1059 		buf_aligned = nic_align_start;
1060 		buf_size -= start_alignment;
1061 	} else {
1062 		start_alignment = 0;
1063 	}
1064 
1065 	/* Make sure that end padding does not write beyond the buffer */
1066 	if (buf_aligned < nic_align_end) {
1067 		/*
1068 		 * Estimate space which can be lost. If guaranteed buffer
1069 		 * size is odd, lost space is (nic_align_end - 1). More
1070 		 * accurate formula is below.
1071 		 */
1072 		end_padding_alignment = nic_align_end -
1073 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1074 		if (buf_size <= end_padding_alignment) {
1075 			sfc_err(sa,
1076 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1077 				mb_pool->name,
1078 				rte_pktmbuf_data_room_size(mb_pool),
1079 				RTE_PKTMBUF_HEADROOM, start_alignment,
1080 				end_padding_alignment);
1081 			return 0;
1082 		}
1083 		buf_size -= end_padding_alignment;
1084 	} else {
1085 		/*
1086 		 * Start is aligned the same or better than end,
1087 		 * just align length.
1088 		 */
1089 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1090 	}
1091 
1092 	/*
1093 	 * Buffer length field of a Rx descriptor may not be wide
1094 	 * enough to store a 16-bit data count taken from an mbuf.
1095 	 */
1096 	return MIN(buf_size, encp->enc_rx_dma_desc_size_max);
1097 }
1098 
1099 int
sfc_rx_qinit(struct sfc_adapter * sa,sfc_sw_index_t sw_index,uint16_t nb_rx_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mb_pool)1100 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1101 	     uint16_t nb_rx_desc, unsigned int socket_id,
1102 	     const struct rte_eth_rxconf *rx_conf,
1103 	     struct rte_mempool *mb_pool)
1104 {
1105 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1106 	sfc_ethdev_qid_t ethdev_qid;
1107 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1108 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1109 	int rc;
1110 	unsigned int rxq_entries;
1111 	unsigned int evq_entries;
1112 	unsigned int rxq_max_fill_level;
1113 	uint64_t offloads;
1114 	uint16_t buf_size;
1115 	struct sfc_rxq_info *rxq_info;
1116 	struct sfc_evq *evq;
1117 	struct sfc_rxq *rxq;
1118 	struct sfc_dp_rx_qcreate_info info;
1119 	struct sfc_dp_rx_hw_limits hw_limits;
1120 	struct sfc_port *port = &sa->port;
1121 	uint16_t rx_free_thresh;
1122 	const char *error;
1123 
1124 	memset(&hw_limits, 0, sizeof(hw_limits));
1125 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1126 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1127 	hw_limits.evq_max_entries = sa->evq_max_entries;
1128 	hw_limits.evq_min_entries = sa->evq_min_entries;
1129 
1130 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1131 					    &rxq_entries, &evq_entries,
1132 					    &rxq_max_fill_level);
1133 	if (rc != 0)
1134 		goto fail_size_up_rings;
1135 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1136 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1137 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1138 
1139 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1140 
1141 	offloads = rx_conf->offloads;
1142 	/* Add device level Rx offloads if the queue is an ethdev Rx queue */
1143 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1144 		offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1145 
1146 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1147 	if (rc != 0)
1148 		goto fail_bad_conf;
1149 
1150 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1151 	if (buf_size == 0) {
1152 		sfc_err(sa,
1153 			"RxQ %d (internal %u) mbuf pool object size is too small",
1154 			ethdev_qid, sw_index);
1155 		rc = EINVAL;
1156 		goto fail_bad_conf;
1157 	}
1158 
1159 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1160 				  encp->enc_rx_prefix_size,
1161 				  (offloads & RTE_ETH_RX_OFFLOAD_SCATTER),
1162 				  encp->enc_rx_scatter_max,
1163 				  &error)) {
1164 		sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1165 			ethdev_qid, sw_index, error);
1166 		sfc_err(sa,
1167 			"RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1168 			"PDU size %u plus Rx prefix %u bytes",
1169 			ethdev_qid, sw_index, buf_size,
1170 			(unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1171 		rc = EINVAL;
1172 		goto fail_bad_conf;
1173 	}
1174 
1175 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1176 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1177 
1178 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1179 	rxq_info->entries = rxq_entries;
1180 
1181 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1182 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1183 	else
1184 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1185 
1186 	rxq_info->type_flags |=
1187 		(offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ?
1188 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1189 
1190 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1191 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1192 	     RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1193 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1194 
1195 	if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH)
1196 		rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1197 
1198 	if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0)
1199 		rxq_info->type_flags |= EFX_RXQ_FLAG_USER_FLAG;
1200 
1201 	if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 ||
1202 	    sfc_ft_is_active(sa))
1203 		rxq_info->type_flags |= EFX_RXQ_FLAG_USER_MARK;
1204 
1205 	if (port->vlan_strip)
1206 		rxq_info->type_flags |= EFX_RXQ_FLAG_VLAN_STRIPPED_TCI;
1207 
1208 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1209 			  evq_entries, socket_id, &evq);
1210 	if (rc != 0)
1211 		goto fail_ev_qinit;
1212 
1213 	rxq = &sa->rxq_ctrl[sw_index];
1214 	rxq->evq = evq;
1215 	rxq->hw_index = sw_index;
1216 	/*
1217 	 * If Rx refill threshold is specified (its value is non zero) in
1218 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1219 	 * the Rx descriptors number as the default. It allows to keep
1220 	 * Rx ring full-enough and does not refill too aggressive if
1221 	 * packet rate is high.
1222 	 *
1223 	 * Since PMD refills in bulks waiting for full bulk may be
1224 	 * refilled (basically round down), it is better to round up
1225 	 * here to mitigate it a bit.
1226 	 */
1227 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1228 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1229 	/* Rx refill threshold cannot be smaller than refill bulk */
1230 	rxq_info->refill_threshold =
1231 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1232 	rxq_info->refill_mb_pool = mb_pool;
1233 
1234 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1235 	    (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH))
1236 		rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1237 	else
1238 		rxq_info->rxq_flags = 0;
1239 
1240 	if (rxq_info->type_flags & EFX_RXQ_FLAG_INGRESS_MPORT)
1241 		rxq_info->rxq_flags |= SFC_RXQ_FLAG_INGRESS_MPORT;
1242 
1243 	if (rxq_info->type_flags & EFX_RXQ_FLAG_VLAN_STRIPPED_TCI)
1244 		rxq_info->rxq_flags |= SFC_RXQ_FLAG_VLAN_STRIPPED_TCI;
1245 
1246 	rxq->buf_size = buf_size;
1247 
1248 	rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_NIC_DMA_ADDR_RX_RING,
1249 			   efx_rxq_size(sa->nic, rxq_info->entries),
1250 			   socket_id, &rxq->mem);
1251 	if (rc != 0)
1252 		goto fail_dma_alloc;
1253 
1254 	memset(&info, 0, sizeof(info));
1255 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1256 	info.max_fill_level = rxq_max_fill_level;
1257 	info.refill_threshold = rxq_info->refill_threshold;
1258 	info.buf_size = buf_size;
1259 	info.batch_max = encp->enc_rx_batch_max;
1260 	info.prefix_size = encp->enc_rx_prefix_size;
1261 
1262 	if (sfc_ft_is_active(sa))
1263 		info.user_mark_mask = SFC_FT_USER_MARK_MASK;
1264 	else
1265 		info.user_mark_mask = UINT32_MAX;
1266 
1267 	info.flags = rxq_info->rxq_flags;
1268 	info.rxq_entries = rxq_info->entries;
1269 	info.rxq_hw_ring = rxq->mem.esm_base;
1270 	info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1271 	info.evq_entries = evq_entries;
1272 	info.evq_hw_ring = evq->mem.esm_base;
1273 	info.hw_index = rxq->hw_index;
1274 	info.mem_bar = sa->mem_bar.esb_base;
1275 	info.vi_window_shift = encp->enc_vi_window_shift;
1276 	info.fcw_offset = sa->fcw_offset;
1277 
1278 	info.nic_dma_info = &sas->nic_dma_info;
1279 
1280 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1281 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1282 				     socket_id, &info, &rxq_info->dp);
1283 	if (rc != 0)
1284 		goto fail_dp_rx_qcreate;
1285 
1286 	evq->dp_rxq = rxq_info->dp;
1287 
1288 	rxq_info->state = SFC_RXQ_INITIALIZED;
1289 
1290 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1291 
1292 	return 0;
1293 
1294 fail_dp_rx_qcreate:
1295 	sfc_dma_free(sa, &rxq->mem);
1296 
1297 fail_dma_alloc:
1298 	sfc_ev_qfini(evq);
1299 
1300 fail_ev_qinit:
1301 	rxq_info->entries = 0;
1302 
1303 fail_bad_conf:
1304 fail_size_up_rings:
1305 	sfc_log_init(sa, "failed %d", rc);
1306 	return rc;
1307 }
1308 
1309 void
sfc_rx_qfini(struct sfc_adapter * sa,sfc_sw_index_t sw_index)1310 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1311 {
1312 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1313 	sfc_ethdev_qid_t ethdev_qid;
1314 	struct sfc_rxq_info *rxq_info;
1315 	struct sfc_rxq *rxq;
1316 
1317 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1318 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1319 
1320 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1321 		sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1322 
1323 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1324 
1325 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1326 
1327 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1328 	rxq_info->dp = NULL;
1329 
1330 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1331 	rxq_info->entries = 0;
1332 
1333 	rxq = &sa->rxq_ctrl[sw_index];
1334 
1335 	sfc_dma_free(sa, &rxq->mem);
1336 
1337 	sfc_ev_qfini(rxq->evq);
1338 	rxq->evq = NULL;
1339 }
1340 
1341 /*
1342  * Mapping between RTE RSS hash functions and their EFX counterparts.
1343  */
1344 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1345 	{ RTE_ETH_RSS_NONFRAG_IPV4_TCP,
1346 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1347 	{ RTE_ETH_RSS_NONFRAG_IPV4_UDP,
1348 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1349 	{ RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_IPV6_TCP_EX,
1350 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1351 	{ RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_IPV6_UDP_EX,
1352 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1353 	{ RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
1354 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1355 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1356 	{ RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
1357 	  RTE_ETH_RSS_IPV6_EX,
1358 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1359 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1360 };
1361 
1362 static efx_rx_hash_type_t
sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,unsigned int * hash_type_flags_supported,unsigned int nb_hash_type_flags_supported)1363 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1364 			    unsigned int *hash_type_flags_supported,
1365 			    unsigned int nb_hash_type_flags_supported)
1366 {
1367 	efx_rx_hash_type_t hash_type_masked = 0;
1368 	unsigned int i, j;
1369 
1370 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1371 		unsigned int class_tuple_lbn[] = {
1372 			EFX_RX_CLASS_IPV4_TCP_LBN,
1373 			EFX_RX_CLASS_IPV4_UDP_LBN,
1374 			EFX_RX_CLASS_IPV4_LBN,
1375 			EFX_RX_CLASS_IPV6_TCP_LBN,
1376 			EFX_RX_CLASS_IPV6_UDP_LBN,
1377 			EFX_RX_CLASS_IPV6_LBN
1378 		};
1379 
1380 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1381 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1382 			unsigned int flag;
1383 
1384 			tuple_mask <<= class_tuple_lbn[j];
1385 			flag = hash_type & tuple_mask;
1386 
1387 			if (flag == hash_type_flags_supported[i])
1388 				hash_type_masked |= flag;
1389 		}
1390 	}
1391 
1392 	return hash_type_masked;
1393 }
1394 
1395 int
sfc_rx_hash_init(struct sfc_adapter * sa)1396 sfc_rx_hash_init(struct sfc_adapter *sa)
1397 {
1398 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1399 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1400 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1401 	efx_rx_hash_alg_t alg;
1402 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1403 	unsigned int nb_flags_supp;
1404 	struct sfc_rss_hf_rte_to_efx *hf_map;
1405 	struct sfc_rss_hf_rte_to_efx *entry;
1406 	efx_rx_hash_type_t efx_hash_types;
1407 	unsigned int i;
1408 	int rc;
1409 
1410 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1411 		alg = EFX_RX_HASHALG_TOEPLITZ;
1412 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1413 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1414 	else
1415 		return EINVAL;
1416 
1417 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1418 					 RTE_DIM(flags_supp), &nb_flags_supp);
1419 	if (rc != 0)
1420 		return rc;
1421 
1422 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1423 				   RTE_DIM(sfc_rss_hf_map),
1424 				   sizeof(*hf_map), 0, sa->socket_id);
1425 	if (hf_map == NULL)
1426 		return ENOMEM;
1427 
1428 	entry = hf_map;
1429 	efx_hash_types = 0;
1430 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1431 		efx_rx_hash_type_t ht;
1432 
1433 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1434 						 flags_supp, nb_flags_supp);
1435 		if (ht != 0) {
1436 			entry->rte = sfc_rss_hf_map[i].rte;
1437 			entry->efx = ht;
1438 			efx_hash_types |= ht;
1439 			++entry;
1440 		}
1441 	}
1442 
1443 	rss->hash_alg = alg;
1444 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1445 	rss->hf_map = hf_map;
1446 	rss->hash_types = efx_hash_types;
1447 
1448 	return 0;
1449 }
1450 
1451 void
sfc_rx_hash_fini(struct sfc_adapter * sa)1452 sfc_rx_hash_fini(struct sfc_adapter *sa)
1453 {
1454 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1455 
1456 	rte_free(rss->hf_map);
1457 }
1458 
1459 int
sfc_rx_hf_rte_to_efx(struct sfc_adapter * sa,uint64_t rte,efx_rx_hash_type_t * efx)1460 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1461 		     efx_rx_hash_type_t *efx)
1462 {
1463 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1464 	efx_rx_hash_type_t hash_types = 0;
1465 	unsigned int i;
1466 
1467 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1468 		uint64_t rte_mask = rss->hf_map[i].rte;
1469 
1470 		if ((rte & rte_mask) != 0) {
1471 			rte &= ~rte_mask;
1472 			hash_types |= rss->hf_map[i].efx;
1473 		}
1474 	}
1475 
1476 	if (rte != 0) {
1477 		sfc_err(sa, "unsupported hash functions requested");
1478 		return EINVAL;
1479 	}
1480 
1481 	*efx = hash_types;
1482 
1483 	return 0;
1484 }
1485 
1486 uint64_t
sfc_rx_hf_efx_to_rte(struct sfc_rss * rss,efx_rx_hash_type_t efx)1487 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1488 {
1489 	uint64_t rte = 0;
1490 	unsigned int i;
1491 
1492 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1493 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1494 
1495 		if ((efx & hash_type) == hash_type)
1496 			rte |= rss->hf_map[i].rte;
1497 	}
1498 
1499 	return rte;
1500 }
1501 
1502 static int
sfc_rx_process_adv_conf_rss(struct sfc_adapter * sa,struct rte_eth_rss_conf * conf)1503 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1504 			    struct rte_eth_rss_conf *conf)
1505 {
1506 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1507 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1508 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1509 	int rc;
1510 
1511 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1512 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1513 		    conf->rss_key != NULL)
1514 			return EINVAL;
1515 	}
1516 
1517 	if (conf->rss_hf != 0) {
1518 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1519 		if (rc != 0)
1520 			return rc;
1521 	}
1522 
1523 	if (conf->rss_key != NULL) {
1524 		if (conf->rss_key_len != sizeof(rss->key)) {
1525 			sfc_err(sa, "RSS key size is wrong (should be %zu)",
1526 				sizeof(rss->key));
1527 			return EINVAL;
1528 		}
1529 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1530 	}
1531 
1532 	rss->hash_types = efx_hash_types;
1533 
1534 	return 0;
1535 }
1536 
1537 static int
sfc_rx_rss_config(struct sfc_adapter * sa)1538 sfc_rx_rss_config(struct sfc_adapter *sa)
1539 {
1540 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1541 	int rc = 0;
1542 
1543 	if (rss->channels > 0) {
1544 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1545 					   rss->hash_alg, rss->hash_types,
1546 					   B_TRUE);
1547 		if (rc != 0)
1548 			goto finish;
1549 
1550 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1551 					  rss->key, sizeof(rss->key));
1552 		if (rc != 0)
1553 			goto finish;
1554 
1555 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1556 					  rss->tbl, RTE_DIM(rss->tbl));
1557 	}
1558 
1559 finish:
1560 	return rc;
1561 }
1562 
1563 struct sfc_rxq_info *
sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared * sas,sfc_ethdev_qid_t ethdev_qid)1564 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1565 			   sfc_ethdev_qid_t ethdev_qid)
1566 {
1567 	sfc_sw_index_t sw_index;
1568 
1569 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1570 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1571 
1572 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1573 	return &sas->rxq_info[sw_index];
1574 }
1575 
1576 struct sfc_rxq *
sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter * sa,sfc_ethdev_qid_t ethdev_qid)1577 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1578 {
1579 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1580 	sfc_sw_index_t sw_index;
1581 
1582 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1583 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1584 
1585 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1586 	return &sa->rxq_ctrl[sw_index];
1587 }
1588 
1589 int
sfc_rx_start(struct sfc_adapter * sa)1590 sfc_rx_start(struct sfc_adapter *sa)
1591 {
1592 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1593 	sfc_sw_index_t sw_index;
1594 	int rc;
1595 
1596 	sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1597 		     sas->rxq_count);
1598 
1599 	rc = efx_rx_init(sa->nic);
1600 	if (rc != 0)
1601 		goto fail_rx_init;
1602 
1603 	rc = sfc_rx_rss_config(sa);
1604 	if (rc != 0)
1605 		goto fail_rss_config;
1606 
1607 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1608 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1609 		    (!sas->rxq_info[sw_index].deferred_start ||
1610 		     sas->rxq_info[sw_index].deferred_started)) {
1611 			rc = sfc_rx_qstart(sa, sw_index);
1612 			if (rc != 0)
1613 				goto fail_rx_qstart;
1614 		}
1615 	}
1616 
1617 	return 0;
1618 
1619 fail_rx_qstart:
1620 	while (sw_index-- > 0)
1621 		sfc_rx_qstop(sa, sw_index);
1622 
1623 fail_rss_config:
1624 	efx_rx_fini(sa->nic);
1625 
1626 fail_rx_init:
1627 	sfc_log_init(sa, "failed %d", rc);
1628 	return rc;
1629 }
1630 
1631 void
sfc_rx_stop(struct sfc_adapter * sa)1632 sfc_rx_stop(struct sfc_adapter *sa)
1633 {
1634 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1635 	sfc_sw_index_t sw_index;
1636 
1637 	sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1638 		     sas->rxq_count);
1639 
1640 	sw_index = sas->rxq_count;
1641 	while (sw_index-- > 0) {
1642 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1643 			sfc_rx_qstop(sa, sw_index);
1644 	}
1645 
1646 	efx_rx_fini(sa->nic);
1647 }
1648 
1649 int
sfc_rx_qinit_info(struct sfc_adapter * sa,sfc_sw_index_t sw_index,unsigned int extra_efx_type_flags)1650 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1651 		  unsigned int extra_efx_type_flags)
1652 {
1653 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1654 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1655 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1656 	unsigned int max_entries;
1657 
1658 	max_entries = encp->enc_rxq_max_ndescs;
1659 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1660 
1661 	rxq_info->max_entries = max_entries;
1662 	rxq_info->type_flags = extra_efx_type_flags;
1663 
1664 	return 0;
1665 }
1666 
1667 static int
sfc_rx_check_mode(struct sfc_adapter * sa,struct rte_eth_rxmode * rxmode)1668 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1669 {
1670 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1671 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1672 				      sfc_rx_get_queue_offload_caps(sa);
1673 	struct sfc_rss *rss = &sas->rss;
1674 	int rc = 0;
1675 
1676 	switch (rxmode->mq_mode) {
1677 	case RTE_ETH_MQ_RX_NONE:
1678 		/* No special checks are required */
1679 		break;
1680 	case RTE_ETH_MQ_RX_RSS:
1681 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1682 			sfc_err(sa, "RSS is not available");
1683 			rc = EINVAL;
1684 		}
1685 		break;
1686 	default:
1687 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1688 			rxmode->mq_mode);
1689 		rc = EINVAL;
1690 	}
1691 
1692 	/*
1693 	 * Requested offloads are validated against supported by ethdev,
1694 	 * so unsupported offloads cannot be added as the result of
1695 	 * below check.
1696 	 */
1697 	if ((rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM) !=
1698 	    (offloads_supported & RTE_ETH_RX_OFFLOAD_CHECKSUM)) {
1699 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1700 		rxmode->offloads |= RTE_ETH_RX_OFFLOAD_CHECKSUM;
1701 	}
1702 
1703 	if ((offloads_supported & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1704 	    (~rxmode->offloads & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1705 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1706 		rxmode->offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1707 	}
1708 
1709 	return rc;
1710 }
1711 
1712 /**
1713  * Destroy excess queues that are no longer needed after reconfiguration
1714  * or complete close.
1715  */
1716 static void
sfc_rx_fini_queues(struct sfc_adapter * sa,unsigned int nb_rx_queues)1717 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1718 {
1719 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1720 	sfc_sw_index_t sw_index;
1721 	sfc_ethdev_qid_t ethdev_qid;
1722 
1723 	SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1724 
1725 	/*
1726 	 * Finalize only ethdev queues since other ones are finalized only
1727 	 * on device close and they may require additional deinitialization.
1728 	 */
1729 	ethdev_qid = sas->ethdev_rxq_count;
1730 	while (--ethdev_qid >= (int)nb_rx_queues) {
1731 		struct sfc_rxq_info *rxq_info;
1732 
1733 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1734 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1735 			sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1736 								ethdev_qid);
1737 			sfc_rx_qfini(sa, sw_index);
1738 		}
1739 
1740 	}
1741 
1742 	sas->ethdev_rxq_count = nb_rx_queues;
1743 }
1744 
1745 /**
1746  * Initialize Rx subsystem.
1747  *
1748  * Called at device (re)configuration stage when number of receive queues is
1749  * specified together with other device level receive configuration.
1750  *
1751  * It should be used to allocate NUMA-unaware resources.
1752  */
1753 int
sfc_rx_configure(struct sfc_adapter * sa)1754 sfc_rx_configure(struct sfc_adapter *sa)
1755 {
1756 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1757 	struct sfc_rss *rss = &sas->rss;
1758 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1759 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1760 	const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas);
1761 	const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues;
1762 	bool reconfigure;
1763 	int rc;
1764 
1765 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1766 		     nb_rx_queues, sas->ethdev_rxq_count);
1767 
1768 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1769 	if (rc != 0)
1770 		goto fail_check_mode;
1771 
1772 	if (nb_rxq_total == sas->rxq_count) {
1773 		reconfigure = true;
1774 		goto configure_rss;
1775 	}
1776 
1777 	if (sas->rxq_info == NULL) {
1778 		reconfigure = false;
1779 		rc = ENOMEM;
1780 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total,
1781 						  sizeof(sas->rxq_info[0]), 0,
1782 						  sa->socket_id);
1783 		if (sas->rxq_info == NULL)
1784 			goto fail_rxqs_alloc;
1785 
1786 		/*
1787 		 * Allocate primary process only RxQ control from heap
1788 		 * since it should not be shared.
1789 		 */
1790 		rc = ENOMEM;
1791 		sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0]));
1792 		if (sa->rxq_ctrl == NULL)
1793 			goto fail_rxqs_ctrl_alloc;
1794 	} else {
1795 		struct sfc_rxq_info *new_rxq_info;
1796 		struct sfc_rxq *new_rxq_ctrl;
1797 
1798 		reconfigure = true;
1799 
1800 		/* Do not uninitialize reserved queues */
1801 		if (nb_rx_queues < sas->ethdev_rxq_count)
1802 			sfc_rx_fini_queues(sa, nb_rx_queues);
1803 
1804 		rc = ENOMEM;
1805 		new_rxq_info =
1806 			rte_realloc(sas->rxq_info,
1807 				    nb_rxq_total * sizeof(sas->rxq_info[0]), 0);
1808 		if (new_rxq_info == NULL && nb_rxq_total > 0)
1809 			goto fail_rxqs_realloc;
1810 
1811 		rc = ENOMEM;
1812 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1813 				       nb_rxq_total * sizeof(sa->rxq_ctrl[0]));
1814 		if (new_rxq_ctrl == NULL && nb_rxq_total > 0)
1815 			goto fail_rxqs_ctrl_realloc;
1816 
1817 		sas->rxq_info = new_rxq_info;
1818 		sa->rxq_ctrl = new_rxq_ctrl;
1819 		if (nb_rxq_total > sas->rxq_count) {
1820 			unsigned int rxq_count = sas->rxq_count;
1821 
1822 			memset(&sas->rxq_info[rxq_count], 0,
1823 			       (nb_rxq_total - rxq_count) *
1824 			       sizeof(sas->rxq_info[0]));
1825 			memset(&sa->rxq_ctrl[rxq_count], 0,
1826 			       (nb_rxq_total - rxq_count) *
1827 			       sizeof(sa->rxq_ctrl[0]));
1828 		}
1829 	}
1830 
1831 	while (sas->ethdev_rxq_count < nb_rx_queues) {
1832 		sfc_sw_index_t sw_index;
1833 
1834 		sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1835 							sas->ethdev_rxq_count);
1836 		rc = sfc_rx_qinit_info(sa, sw_index, 0);
1837 		if (rc != 0)
1838 			goto fail_rx_qinit_info;
1839 
1840 		sas->ethdev_rxq_count++;
1841 	}
1842 
1843 	sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues;
1844 
1845 	if (!reconfigure) {
1846 		rc = sfc_mae_counter_rxq_init(sa);
1847 		if (rc != 0)
1848 			goto fail_count_rxq_init;
1849 	}
1850 
1851 configure_rss:
1852 	rss->channels = (dev_conf->rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) ?
1853 			 MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1854 
1855 	if (rss->channels > 0) {
1856 		struct rte_eth_rss_conf *adv_conf_rss;
1857 		sfc_sw_index_t sw_index;
1858 
1859 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1860 			rss->tbl[sw_index] = sw_index % rss->channels;
1861 
1862 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1863 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1864 		if (rc != 0)
1865 			goto fail_rx_process_adv_conf_rss;
1866 	}
1867 
1868 	return 0;
1869 
1870 fail_rx_process_adv_conf_rss:
1871 	if (!reconfigure)
1872 		sfc_mae_counter_rxq_fini(sa);
1873 
1874 fail_count_rxq_init:
1875 fail_rx_qinit_info:
1876 fail_rxqs_ctrl_realloc:
1877 fail_rxqs_realloc:
1878 fail_rxqs_ctrl_alloc:
1879 fail_rxqs_alloc:
1880 	sfc_rx_close(sa);
1881 
1882 fail_check_mode:
1883 	sfc_log_init(sa, "failed %d", rc);
1884 	return rc;
1885 }
1886 
1887 /**
1888  * Shutdown Rx subsystem.
1889  *
1890  * Called at device close stage, for example, before device shutdown.
1891  */
1892 void
sfc_rx_close(struct sfc_adapter * sa)1893 sfc_rx_close(struct sfc_adapter *sa)
1894 {
1895 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1896 
1897 	sfc_rx_fini_queues(sa, 0);
1898 	sfc_mae_counter_rxq_fini(sa);
1899 
1900 	rss->channels = 0;
1901 
1902 	free(sa->rxq_ctrl);
1903 	sa->rxq_ctrl = NULL;
1904 
1905 	rte_free(sfc_sa2shared(sa)->rxq_info);
1906 	sfc_sa2shared(sa)->rxq_info = NULL;
1907 }
1908