xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision c7f5dba7d4bb7971fac51755aad09b71b10cef90)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44 	rxq->state |= SFC_RXQ_FLUSHED;
45 	rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51 	rxq->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58 	unsigned int free_space;
59 	unsigned int bulks;
60 	void *objs[SFC_RX_REFILL_BULK];
61 	efsys_dma_addr_t addr[RTE_DIM(objs)];
62 	unsigned int added = rxq->added;
63 	unsigned int id;
64 	unsigned int i;
65 	struct sfc_efx_rx_sw_desc *rxd;
66 	struct rte_mbuf *m;
67 	uint16_t port_id = rxq->dp.dpq.port_id;
68 
69 	free_space = rxq->max_fill_level - (added - rxq->completed);
70 
71 	if (free_space < rxq->refill_threshold)
72 		return;
73 
74 	bulks = free_space / RTE_DIM(objs);
75 	/* refill_threshold guarantees that bulks is positive */
76 	SFC_ASSERT(bulks > 0);
77 
78 	id = added & rxq->ptr_mask;
79 	do {
80 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81 						  RTE_DIM(objs)) < 0)) {
82 			/*
83 			 * It is hardly a safe way to increment counter
84 			 * from different contexts, but all PMDs do it.
85 			 */
86 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87 				RTE_DIM(objs);
88 			/* Return if we have posted nothing yet */
89 			if (added == rxq->added)
90 				return;
91 			/* Push posted */
92 			break;
93 		}
94 
95 		for (i = 0; i < RTE_DIM(objs);
96 		     ++i, id = (id + 1) & rxq->ptr_mask) {
97 			m = objs[i];
98 
99 			rxd = &rxq->sw_desc[id];
100 			rxd->mbuf = m;
101 
102 			SFC_ASSERT(rte_mbuf_refcnt_read(m) == 1);
103 			m->data_off = RTE_PKTMBUF_HEADROOM;
104 			SFC_ASSERT(m->next == NULL);
105 			SFC_ASSERT(m->nb_segs == 1);
106 			m->port = port_id;
107 
108 			addr[i] = rte_pktmbuf_iova(m);
109 		}
110 
111 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
112 			     RTE_DIM(objs), rxq->completed, added);
113 		added += RTE_DIM(objs);
114 	} while (--bulks > 0);
115 
116 	SFC_ASSERT(added != rxq->added);
117 	rxq->added = added;
118 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
119 }
120 
121 static uint64_t
122 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
123 {
124 	uint64_t mbuf_flags = 0;
125 
126 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
127 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
128 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
129 		break;
130 	case EFX_PKT_IPV4:
131 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
132 		break;
133 	default:
134 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
135 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
136 			   PKT_RX_IP_CKSUM_UNKNOWN);
137 		break;
138 	}
139 
140 	switch ((desc_flags &
141 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
142 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
143 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
144 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
145 		break;
146 	case EFX_PKT_TCP:
147 	case EFX_PKT_UDP:
148 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
149 		break;
150 	default:
151 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
152 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
153 			   PKT_RX_L4_CKSUM_UNKNOWN);
154 		break;
155 	}
156 
157 	return mbuf_flags;
158 }
159 
160 static uint32_t
161 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
162 {
163 	return RTE_PTYPE_L2_ETHER |
164 		((desc_flags & EFX_PKT_IPV4) ?
165 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
166 		((desc_flags & EFX_PKT_IPV6) ?
167 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
168 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
169 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
170 }
171 
172 static const uint32_t *
173 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
174 {
175 	static const uint32_t ptypes[] = {
176 		RTE_PTYPE_L2_ETHER,
177 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
178 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
179 		RTE_PTYPE_L4_TCP,
180 		RTE_PTYPE_L4_UDP,
181 		RTE_PTYPE_UNKNOWN
182 	};
183 
184 	return ptypes;
185 }
186 
187 static void
188 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
189 			struct rte_mbuf *m)
190 {
191 	uint8_t *mbuf_data;
192 
193 
194 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
195 		return;
196 
197 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
198 
199 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
200 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
201 						      EFX_RX_HASHALG_TOEPLITZ,
202 						      mbuf_data);
203 
204 		m->ol_flags |= PKT_RX_RSS_HASH;
205 	}
206 }
207 
208 static uint16_t
209 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
210 {
211 	struct sfc_dp_rxq *dp_rxq = rx_queue;
212 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
213 	unsigned int completed;
214 	unsigned int prefix_size = rxq->prefix_size;
215 	unsigned int done_pkts = 0;
216 	boolean_t discard_next = B_FALSE;
217 	struct rte_mbuf *scatter_pkt = NULL;
218 
219 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
220 		return 0;
221 
222 	sfc_ev_qpoll(rxq->evq);
223 
224 	completed = rxq->completed;
225 	while (completed != rxq->pending && done_pkts < nb_pkts) {
226 		unsigned int id;
227 		struct sfc_efx_rx_sw_desc *rxd;
228 		struct rte_mbuf *m;
229 		unsigned int seg_len;
230 		unsigned int desc_flags;
231 
232 		id = completed++ & rxq->ptr_mask;
233 		rxd = &rxq->sw_desc[id];
234 		m = rxd->mbuf;
235 		desc_flags = rxd->flags;
236 
237 		if (discard_next)
238 			goto discard;
239 
240 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
241 			goto discard;
242 
243 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
244 			uint16_t tmp_size;
245 			int rc __rte_unused;
246 
247 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
248 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
249 			SFC_ASSERT(rc == 0);
250 			seg_len = tmp_size;
251 		} else {
252 			seg_len = rxd->size - prefix_size;
253 		}
254 
255 		rte_pktmbuf_data_len(m) = seg_len;
256 		rte_pktmbuf_pkt_len(m) = seg_len;
257 
258 		if (scatter_pkt != NULL) {
259 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
260 				rte_pktmbuf_free(scatter_pkt);
261 				goto discard;
262 			}
263 			/* The packet to deliver */
264 			m = scatter_pkt;
265 		}
266 
267 		if (desc_flags & EFX_PKT_CONT) {
268 			/* The packet is scattered, more fragments to come */
269 			scatter_pkt = m;
270 			/* Further fragments have no prefix */
271 			prefix_size = 0;
272 			continue;
273 		}
274 
275 		/* Scattered packet is done */
276 		scatter_pkt = NULL;
277 		/* The first fragment of the packet has prefix */
278 		prefix_size = rxq->prefix_size;
279 
280 		m->ol_flags =
281 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
282 		m->packet_type =
283 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
284 
285 		/*
286 		 * Extract RSS hash from the packet prefix and
287 		 * set the corresponding field (if needed and possible)
288 		 */
289 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
290 
291 		m->data_off += prefix_size;
292 
293 		*rx_pkts++ = m;
294 		done_pkts++;
295 		continue;
296 
297 discard:
298 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
299 		rte_mempool_put(rxq->refill_mb_pool, m);
300 		rxd->mbuf = NULL;
301 	}
302 
303 	/* pending is only moved when entire packet is received */
304 	SFC_ASSERT(scatter_pkt == NULL);
305 
306 	rxq->completed = completed;
307 
308 	sfc_efx_rx_qrefill(rxq);
309 
310 	return done_pkts;
311 }
312 
313 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
314 static unsigned int
315 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
316 {
317 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
318 
319 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
320 		return 0;
321 
322 	sfc_ev_qpoll(rxq->evq);
323 
324 	return rxq->pending - rxq->completed;
325 }
326 
327 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
328 static int
329 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
330 {
331 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
332 
333 	if (unlikely(offset > rxq->ptr_mask))
334 		return -EINVAL;
335 
336 	/*
337 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
338 	 * it is required for the queue to be running, but the
339 	 * check is omitted because API design assumes that it
340 	 * is the duty of the caller to satisfy all conditions
341 	 */
342 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
343 		   SFC_EFX_RXQ_FLAG_RUNNING);
344 	sfc_ev_qpoll(rxq->evq);
345 
346 	/*
347 	 * There is a handful of reserved entries in the ring,
348 	 * but an explicit check whether the offset points to
349 	 * a reserved entry is neglected since the two checks
350 	 * below rely on the figures which take the HW limits
351 	 * into account and thus if an entry is reserved, the
352 	 * checks will fail and UNAVAIL code will be returned
353 	 */
354 
355 	if (offset < (rxq->pending - rxq->completed))
356 		return RTE_ETH_RX_DESC_DONE;
357 
358 	if (offset < (rxq->added - rxq->completed))
359 		return RTE_ETH_RX_DESC_AVAIL;
360 
361 	return RTE_ETH_RX_DESC_UNAVAIL;
362 }
363 
364 struct sfc_rxq *
365 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
366 {
367 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
368 	struct rte_eth_dev *eth_dev;
369 	struct sfc_adapter *sa;
370 	struct sfc_rxq *rxq;
371 
372 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
373 	eth_dev = &rte_eth_devices[dpq->port_id];
374 
375 	sa = eth_dev->data->dev_private;
376 
377 	SFC_ASSERT(dpq->queue_id < sa->rxq_count);
378 	rxq = sa->rxq_info[dpq->queue_id].rxq;
379 
380 	SFC_ASSERT(rxq != NULL);
381 	return rxq;
382 }
383 
384 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
385 static int
386 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
387 			  __rte_unused struct rte_mempool *mb_pool,
388 			  unsigned int *rxq_entries,
389 			  unsigned int *evq_entries,
390 			  unsigned int *rxq_max_fill_level)
391 {
392 	*rxq_entries = nb_rx_desc;
393 	*evq_entries = nb_rx_desc;
394 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
395 	return 0;
396 }
397 
398 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
399 static int
400 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
401 		   const struct rte_pci_addr *pci_addr, int socket_id,
402 		   const struct sfc_dp_rx_qcreate_info *info,
403 		   struct sfc_dp_rxq **dp_rxqp)
404 {
405 	struct sfc_efx_rxq *rxq;
406 	int rc;
407 
408 	rc = ENOMEM;
409 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
410 				 RTE_CACHE_LINE_SIZE, socket_id);
411 	if (rxq == NULL)
412 		goto fail_rxq_alloc;
413 
414 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
415 
416 	rc = ENOMEM;
417 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
418 					 info->rxq_entries,
419 					 sizeof(*rxq->sw_desc),
420 					 RTE_CACHE_LINE_SIZE, socket_id);
421 	if (rxq->sw_desc == NULL)
422 		goto fail_desc_alloc;
423 
424 	/* efx datapath is bound to efx control path */
425 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
426 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
427 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
428 	rxq->ptr_mask = info->rxq_entries - 1;
429 	rxq->batch_max = info->batch_max;
430 	rxq->prefix_size = info->prefix_size;
431 	rxq->max_fill_level = info->max_fill_level;
432 	rxq->refill_threshold = info->refill_threshold;
433 	rxq->buf_size = info->buf_size;
434 	rxq->refill_mb_pool = info->refill_mb_pool;
435 
436 	*dp_rxqp = &rxq->dp;
437 	return 0;
438 
439 fail_desc_alloc:
440 	rte_free(rxq);
441 
442 fail_rxq_alloc:
443 	return rc;
444 }
445 
446 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
447 static void
448 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
449 {
450 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
451 
452 	rte_free(rxq->sw_desc);
453 	rte_free(rxq);
454 }
455 
456 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
457 static int
458 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
459 		  __rte_unused unsigned int evq_read_ptr)
460 {
461 	/* libefx-based datapath is specific to libefx-based PMD */
462 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
463 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
464 
465 	rxq->common = crxq->common;
466 
467 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
468 
469 	sfc_efx_rx_qrefill(rxq);
470 
471 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
472 
473 	return 0;
474 }
475 
476 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
477 static void
478 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
479 		 __rte_unused unsigned int *evq_read_ptr)
480 {
481 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
482 
483 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
484 
485 	/* libefx-based datapath is bound to libefx-based PMD and uses
486 	 * event queue structure directly. So, there is no necessity to
487 	 * return EvQ read pointer.
488 	 */
489 }
490 
491 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
492 static void
493 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
494 {
495 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
496 	unsigned int i;
497 	struct sfc_efx_rx_sw_desc *rxd;
498 
499 	for (i = rxq->completed; i != rxq->added; ++i) {
500 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
501 		rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
502 		rxd->mbuf = NULL;
503 		/* Packed stream relies on 0 in inactive SW desc.
504 		 * Rx queue stop is not performance critical, so
505 		 * there is no harm to do it always.
506 		 */
507 		rxd->flags = 0;
508 		rxd->size = 0;
509 	}
510 
511 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
512 }
513 
514 struct sfc_dp_rx sfc_efx_rx = {
515 	.dp = {
516 		.name		= SFC_KVARG_DATAPATH_EFX,
517 		.type		= SFC_DP_RX,
518 		.hw_fw_caps	= 0,
519 	},
520 	.features		= SFC_DP_RX_FEAT_SCATTER |
521 				  SFC_DP_RX_FEAT_CHECKSUM,
522 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
523 	.qcreate		= sfc_efx_rx_qcreate,
524 	.qdestroy		= sfc_efx_rx_qdestroy,
525 	.qstart			= sfc_efx_rx_qstart,
526 	.qstop			= sfc_efx_rx_qstop,
527 	.qpurge			= sfc_efx_rx_qpurge,
528 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
529 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
530 	.qdesc_status		= sfc_efx_rx_qdesc_status,
531 	.pkt_burst		= sfc_efx_recv_pkts,
532 };
533 
534 unsigned int
535 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
536 {
537 	struct sfc_rxq *rxq;
538 
539 	SFC_ASSERT(sw_index < sa->rxq_count);
540 	rxq = sa->rxq_info[sw_index].rxq;
541 
542 	if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
543 		return 0;
544 
545 	return sa->dp_rx->qdesc_npending(rxq->dp);
546 }
547 
548 int
549 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
550 {
551 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
552 
553 	return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
554 }
555 
556 static void
557 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
558 {
559 	struct sfc_rxq *rxq;
560 	unsigned int retry_count;
561 	unsigned int wait_count;
562 	int rc;
563 
564 	rxq = sa->rxq_info[sw_index].rxq;
565 	SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
566 
567 	/*
568 	 * Retry Rx queue flushing in the case of flush failed or
569 	 * timeout. In the worst case it can delay for 6 seconds.
570 	 */
571 	for (retry_count = 0;
572 	     ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
573 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
574 	     ++retry_count) {
575 		rc = efx_rx_qflush(rxq->common);
576 		if (rc != 0) {
577 			rxq->state |= (rc == EALREADY) ?
578 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
579 			break;
580 		}
581 		rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
582 		rxq->state |= SFC_RXQ_FLUSHING;
583 
584 		/*
585 		 * Wait for Rx queue flush done or failed event at least
586 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
587 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
588 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
589 		 */
590 		wait_count = 0;
591 		do {
592 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
593 			sfc_ev_qpoll(rxq->evq);
594 		} while ((rxq->state & SFC_RXQ_FLUSHING) &&
595 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
596 
597 		if (rxq->state & SFC_RXQ_FLUSHING)
598 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
599 
600 		if (rxq->state & SFC_RXQ_FLUSH_FAILED)
601 			sfc_err(sa, "RxQ %u flush failed", sw_index);
602 
603 		if (rxq->state & SFC_RXQ_FLUSHED)
604 			sfc_notice(sa, "RxQ %u flushed", sw_index);
605 	}
606 
607 	sa->dp_rx->qpurge(rxq->dp);
608 }
609 
610 static int
611 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
612 {
613 	struct sfc_rss *rss = &sa->rss;
614 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
615 	struct sfc_port *port = &sa->port;
616 	int rc;
617 
618 	/*
619 	 * If promiscuous or all-multicast mode has been requested, setting
620 	 * filter for the default Rx queue might fail, in particular, while
621 	 * running over PCI function which is not a member of corresponding
622 	 * privilege groups; if this occurs, few iterations will be made to
623 	 * repeat this step without promiscuous and all-multicast flags set
624 	 */
625 retry:
626 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
627 	if (rc == 0)
628 		return 0;
629 	else if (rc != EOPNOTSUPP)
630 		return rc;
631 
632 	if (port->promisc) {
633 		sfc_warn(sa, "promiscuous mode has been requested, "
634 			     "but the HW rejects it");
635 		sfc_warn(sa, "promiscuous mode will be disabled");
636 
637 		port->promisc = B_FALSE;
638 		rc = sfc_set_rx_mode(sa);
639 		if (rc != 0)
640 			return rc;
641 
642 		goto retry;
643 	}
644 
645 	if (port->allmulti) {
646 		sfc_warn(sa, "all-multicast mode has been requested, "
647 			     "but the HW rejects it");
648 		sfc_warn(sa, "all-multicast mode will be disabled");
649 
650 		port->allmulti = B_FALSE;
651 		rc = sfc_set_rx_mode(sa);
652 		if (rc != 0)
653 			return rc;
654 
655 		goto retry;
656 	}
657 
658 	return rc;
659 }
660 
661 int
662 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
663 {
664 	struct sfc_port *port = &sa->port;
665 	struct sfc_rxq_info *rxq_info;
666 	struct sfc_rxq *rxq;
667 	struct sfc_evq *evq;
668 	int rc;
669 
670 	sfc_log_init(sa, "sw_index=%u", sw_index);
671 
672 	SFC_ASSERT(sw_index < sa->rxq_count);
673 
674 	rxq_info = &sa->rxq_info[sw_index];
675 	rxq = rxq_info->rxq;
676 	SFC_ASSERT(rxq != NULL);
677 	SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
678 
679 	evq = rxq->evq;
680 
681 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
682 	if (rc != 0)
683 		goto fail_ev_qstart;
684 
685 	switch (rxq_info->type) {
686 	case EFX_RXQ_TYPE_DEFAULT:
687 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
688 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
689 			rxq_info->type_flags, evq->common, &rxq->common);
690 		break;
691 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
692 		struct rte_mempool *mp = rxq->refill_mb_pool;
693 		struct rte_mempool_info mp_info;
694 
695 		rc = rte_mempool_ops_get_info(mp, &mp_info);
696 		if (rc != 0) {
697 			/* Positive errno is used in the driver */
698 			rc = -rc;
699 			goto fail_mp_get_info;
700 		}
701 		if (mp_info.contig_block_size <= 0) {
702 			rc = EINVAL;
703 			goto fail_bad_contig_block_size;
704 		}
705 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
706 			mp_info.contig_block_size, rxq->buf_size,
707 			mp->header_size + mp->elt_size + mp->trailer_size,
708 			sa->rxd_wait_timeout_ns,
709 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
710 			evq->common, &rxq->common);
711 		break;
712 	}
713 	default:
714 		rc = ENOTSUP;
715 	}
716 	if (rc != 0)
717 		goto fail_rx_qcreate;
718 
719 	efx_rx_qenable(rxq->common);
720 
721 	rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
722 	if (rc != 0)
723 		goto fail_dp_qstart;
724 
725 	rxq->state |= SFC_RXQ_STARTED;
726 
727 	if ((sw_index == 0) && !port->isolated) {
728 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
729 		if (rc != 0)
730 			goto fail_mac_filter_default_rxq_set;
731 	}
732 
733 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
734 	sa->eth_dev->data->rx_queue_state[sw_index] =
735 		RTE_ETH_QUEUE_STATE_STARTED;
736 
737 	return 0;
738 
739 fail_mac_filter_default_rxq_set:
740 	sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
741 
742 fail_dp_qstart:
743 	sfc_rx_qflush(sa, sw_index);
744 
745 fail_rx_qcreate:
746 fail_bad_contig_block_size:
747 fail_mp_get_info:
748 	sfc_ev_qstop(evq);
749 
750 fail_ev_qstart:
751 	return rc;
752 }
753 
754 void
755 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
756 {
757 	struct sfc_rxq_info *rxq_info;
758 	struct sfc_rxq *rxq;
759 
760 	sfc_log_init(sa, "sw_index=%u", sw_index);
761 
762 	SFC_ASSERT(sw_index < sa->rxq_count);
763 
764 	rxq_info = &sa->rxq_info[sw_index];
765 	rxq = rxq_info->rxq;
766 
767 	if (rxq == NULL || rxq->state == SFC_RXQ_INITIALIZED)
768 		return;
769 	SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
770 
771 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
772 	sa->eth_dev->data->rx_queue_state[sw_index] =
773 		RTE_ETH_QUEUE_STATE_STOPPED;
774 
775 	sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
776 
777 	if (sw_index == 0)
778 		efx_mac_filter_default_rxq_clear(sa->nic);
779 
780 	sfc_rx_qflush(sa, sw_index);
781 
782 	rxq->state = SFC_RXQ_INITIALIZED;
783 
784 	efx_rx_qdestroy(rxq->common);
785 
786 	sfc_ev_qstop(rxq->evq);
787 }
788 
789 uint64_t
790 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
791 {
792 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
793 	uint64_t caps = 0;
794 
795 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
796 
797 	if (sa->dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
798 		caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
799 		caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
800 		caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
801 	}
802 
803 	if (encp->enc_tunnel_encapsulations_supported &&
804 	    (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
805 		caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
806 
807 	return caps;
808 }
809 
810 uint64_t
811 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
812 {
813 	uint64_t caps = 0;
814 
815 	if (sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
816 		caps |= DEV_RX_OFFLOAD_SCATTER;
817 
818 	return caps;
819 }
820 
821 static int
822 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
823 		   const struct rte_eth_rxconf *rx_conf,
824 		   __rte_unused uint64_t offloads)
825 {
826 	int rc = 0;
827 
828 	if (rx_conf->rx_thresh.pthresh != 0 ||
829 	    rx_conf->rx_thresh.hthresh != 0 ||
830 	    rx_conf->rx_thresh.wthresh != 0) {
831 		sfc_warn(sa,
832 			"RxQ prefetch/host/writeback thresholds are not supported");
833 	}
834 
835 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
836 		sfc_err(sa,
837 			"RxQ free threshold too large: %u vs maximum %u",
838 			rx_conf->rx_free_thresh, rxq_max_fill_level);
839 		rc = EINVAL;
840 	}
841 
842 	if (rx_conf->rx_drop_en == 0) {
843 		sfc_err(sa, "RxQ drop disable is not supported");
844 		rc = EINVAL;
845 	}
846 
847 	return rc;
848 }
849 
850 static unsigned int
851 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
852 {
853 	uint32_t data_off;
854 	uint32_t order;
855 
856 	/* The mbuf object itself is always cache line aligned */
857 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
858 
859 	/* Data offset from mbuf object start */
860 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
861 		RTE_PKTMBUF_HEADROOM;
862 
863 	order = MIN(order, rte_bsf32(data_off));
864 
865 	return 1u << order;
866 }
867 
868 static uint16_t
869 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
870 {
871 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
872 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
873 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
874 	uint16_t buf_size;
875 	unsigned int buf_aligned;
876 	unsigned int start_alignment;
877 	unsigned int end_padding_alignment;
878 
879 	/* Below it is assumed that both alignments are power of 2 */
880 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
881 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
882 
883 	/*
884 	 * mbuf is always cache line aligned, double-check
885 	 * that it meets rx buffer start alignment requirements.
886 	 */
887 
888 	/* Start from mbuf pool data room size */
889 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
890 
891 	/* Remove headroom */
892 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
893 		sfc_err(sa,
894 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
895 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
896 		return 0;
897 	}
898 	buf_size -= RTE_PKTMBUF_HEADROOM;
899 
900 	/* Calculate guaranteed data start alignment */
901 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
902 
903 	/* Reserve space for start alignment */
904 	if (buf_aligned < nic_align_start) {
905 		start_alignment = nic_align_start - buf_aligned;
906 		if (buf_size <= start_alignment) {
907 			sfc_err(sa,
908 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
909 				mb_pool->name,
910 				rte_pktmbuf_data_room_size(mb_pool),
911 				RTE_PKTMBUF_HEADROOM, start_alignment);
912 			return 0;
913 		}
914 		buf_aligned = nic_align_start;
915 		buf_size -= start_alignment;
916 	} else {
917 		start_alignment = 0;
918 	}
919 
920 	/* Make sure that end padding does not write beyond the buffer */
921 	if (buf_aligned < nic_align_end) {
922 		/*
923 		 * Estimate space which can be lost. If guarnteed buffer
924 		 * size is odd, lost space is (nic_align_end - 1). More
925 		 * accurate formula is below.
926 		 */
927 		end_padding_alignment = nic_align_end -
928 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
929 		if (buf_size <= end_padding_alignment) {
930 			sfc_err(sa,
931 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
932 				mb_pool->name,
933 				rte_pktmbuf_data_room_size(mb_pool),
934 				RTE_PKTMBUF_HEADROOM, start_alignment,
935 				end_padding_alignment);
936 			return 0;
937 		}
938 		buf_size -= end_padding_alignment;
939 	} else {
940 		/*
941 		 * Start is aligned the same or better than end,
942 		 * just align length.
943 		 */
944 		buf_size = P2ALIGN(buf_size, nic_align_end);
945 	}
946 
947 	return buf_size;
948 }
949 
950 int
951 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
952 	     uint16_t nb_rx_desc, unsigned int socket_id,
953 	     const struct rte_eth_rxconf *rx_conf,
954 	     struct rte_mempool *mb_pool)
955 {
956 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
957 	struct sfc_rss *rss = &sa->rss;
958 	int rc;
959 	unsigned int rxq_entries;
960 	unsigned int evq_entries;
961 	unsigned int rxq_max_fill_level;
962 	uint64_t offloads;
963 	uint16_t buf_size;
964 	struct sfc_rxq_info *rxq_info;
965 	struct sfc_evq *evq;
966 	struct sfc_rxq *rxq;
967 	struct sfc_dp_rx_qcreate_info info;
968 
969 	rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
970 				       &evq_entries, &rxq_max_fill_level);
971 	if (rc != 0)
972 		goto fail_size_up_rings;
973 	SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
974 	SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
975 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
976 
977 	offloads = rx_conf->offloads |
978 		sa->eth_dev->data->dev_conf.rxmode.offloads;
979 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
980 	if (rc != 0)
981 		goto fail_bad_conf;
982 
983 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
984 	if (buf_size == 0) {
985 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
986 			sw_index);
987 		rc = EINVAL;
988 		goto fail_bad_conf;
989 	}
990 
991 	if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
992 	    (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
993 		sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
994 			"object size is too small", sw_index);
995 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
996 			"PDU size %u plus Rx prefix %u bytes",
997 			sw_index, buf_size, (unsigned int)sa->port.pdu,
998 			encp->enc_rx_prefix_size);
999 		rc = EINVAL;
1000 		goto fail_bad_conf;
1001 	}
1002 
1003 	SFC_ASSERT(sw_index < sa->rxq_count);
1004 	rxq_info = &sa->rxq_info[sw_index];
1005 
1006 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1007 	rxq_info->entries = rxq_entries;
1008 
1009 	if (sa->dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1010 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1011 	else
1012 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1013 
1014 	rxq_info->type_flags =
1015 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1016 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1017 
1018 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1019 	    (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1020 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1021 
1022 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1023 			  evq_entries, socket_id, &evq);
1024 	if (rc != 0)
1025 		goto fail_ev_qinit;
1026 
1027 	rc = ENOMEM;
1028 	rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1029 				 socket_id);
1030 	if (rxq == NULL)
1031 		goto fail_rxq_alloc;
1032 
1033 	rxq_info->rxq = rxq;
1034 
1035 	rxq->evq = evq;
1036 	rxq->hw_index = sw_index;
1037 	rxq->refill_threshold =
1038 		RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1039 	rxq->refill_mb_pool = mb_pool;
1040 	rxq->buf_size = buf_size;
1041 
1042 	rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1043 			   socket_id, &rxq->mem);
1044 	if (rc != 0)
1045 		goto fail_dma_alloc;
1046 
1047 	memset(&info, 0, sizeof(info));
1048 	info.refill_mb_pool = rxq->refill_mb_pool;
1049 	info.max_fill_level = rxq_max_fill_level;
1050 	info.refill_threshold = rxq->refill_threshold;
1051 	info.buf_size = buf_size;
1052 	info.batch_max = encp->enc_rx_batch_max;
1053 	info.prefix_size = encp->enc_rx_prefix_size;
1054 
1055 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1056 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1057 
1058 	info.rxq_entries = rxq_info->entries;
1059 	info.rxq_hw_ring = rxq->mem.esm_base;
1060 	info.evq_entries = evq_entries;
1061 	info.evq_hw_ring = evq->mem.esm_base;
1062 	info.hw_index = rxq->hw_index;
1063 	info.mem_bar = sa->mem_bar.esb_base;
1064 	info.vi_window_shift = encp->enc_vi_window_shift;
1065 
1066 	rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1067 				&RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1068 				socket_id, &info, &rxq->dp);
1069 	if (rc != 0)
1070 		goto fail_dp_rx_qcreate;
1071 
1072 	evq->dp_rxq = rxq->dp;
1073 
1074 	rxq->state = SFC_RXQ_INITIALIZED;
1075 
1076 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1077 
1078 	return 0;
1079 
1080 fail_dp_rx_qcreate:
1081 	sfc_dma_free(sa, &rxq->mem);
1082 
1083 fail_dma_alloc:
1084 	rxq_info->rxq = NULL;
1085 	rte_free(rxq);
1086 
1087 fail_rxq_alloc:
1088 	sfc_ev_qfini(evq);
1089 
1090 fail_ev_qinit:
1091 	rxq_info->entries = 0;
1092 
1093 fail_bad_conf:
1094 fail_size_up_rings:
1095 	sfc_log_init(sa, "failed %d", rc);
1096 	return rc;
1097 }
1098 
1099 void
1100 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1101 {
1102 	struct sfc_rxq_info *rxq_info;
1103 	struct sfc_rxq *rxq;
1104 
1105 	SFC_ASSERT(sw_index < sa->rxq_count);
1106 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1107 
1108 	rxq_info = &sa->rxq_info[sw_index];
1109 
1110 	rxq = rxq_info->rxq;
1111 	SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1112 
1113 	sa->dp_rx->qdestroy(rxq->dp);
1114 	rxq->dp = NULL;
1115 
1116 	rxq_info->rxq = NULL;
1117 	rxq_info->entries = 0;
1118 
1119 	sfc_dma_free(sa, &rxq->mem);
1120 
1121 	sfc_ev_qfini(rxq->evq);
1122 	rxq->evq = NULL;
1123 
1124 	rte_free(rxq);
1125 }
1126 
1127 /*
1128  * Mapping between RTE RSS hash functions and their EFX counterparts.
1129  */
1130 struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1131 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1132 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1133 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1134 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1135 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1136 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1137 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1138 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1139 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1140 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1141 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1142 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1143 	  ETH_RSS_IPV6_EX,
1144 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1145 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1146 };
1147 
1148 static efx_rx_hash_type_t
1149 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1150 			    unsigned int *hash_type_flags_supported,
1151 			    unsigned int nb_hash_type_flags_supported)
1152 {
1153 	efx_rx_hash_type_t hash_type_masked = 0;
1154 	unsigned int i, j;
1155 
1156 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1157 		unsigned int class_tuple_lbn[] = {
1158 			EFX_RX_CLASS_IPV4_TCP_LBN,
1159 			EFX_RX_CLASS_IPV4_UDP_LBN,
1160 			EFX_RX_CLASS_IPV4_LBN,
1161 			EFX_RX_CLASS_IPV6_TCP_LBN,
1162 			EFX_RX_CLASS_IPV6_UDP_LBN,
1163 			EFX_RX_CLASS_IPV6_LBN
1164 		};
1165 
1166 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1167 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1168 			unsigned int flag;
1169 
1170 			tuple_mask <<= class_tuple_lbn[j];
1171 			flag = hash_type & tuple_mask;
1172 
1173 			if (flag == hash_type_flags_supported[i])
1174 				hash_type_masked |= flag;
1175 		}
1176 	}
1177 
1178 	return hash_type_masked;
1179 }
1180 
1181 int
1182 sfc_rx_hash_init(struct sfc_adapter *sa)
1183 {
1184 	struct sfc_rss *rss = &sa->rss;
1185 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1186 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1187 	efx_rx_hash_alg_t alg;
1188 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1189 	unsigned int nb_flags_supp;
1190 	struct sfc_rss_hf_rte_to_efx *hf_map;
1191 	struct sfc_rss_hf_rte_to_efx *entry;
1192 	efx_rx_hash_type_t efx_hash_types;
1193 	unsigned int i;
1194 	int rc;
1195 
1196 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1197 		alg = EFX_RX_HASHALG_TOEPLITZ;
1198 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1199 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1200 	else
1201 		return EINVAL;
1202 
1203 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1204 					 RTE_DIM(flags_supp), &nb_flags_supp);
1205 	if (rc != 0)
1206 		return rc;
1207 
1208 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1209 				   RTE_DIM(sfc_rss_hf_map),
1210 				   sizeof(*hf_map), 0, sa->socket_id);
1211 	if (hf_map == NULL)
1212 		return ENOMEM;
1213 
1214 	entry = hf_map;
1215 	efx_hash_types = 0;
1216 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1217 		efx_rx_hash_type_t ht;
1218 
1219 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1220 						 flags_supp, nb_flags_supp);
1221 		if (ht != 0) {
1222 			entry->rte = sfc_rss_hf_map[i].rte;
1223 			entry->efx = ht;
1224 			efx_hash_types |= ht;
1225 			++entry;
1226 		}
1227 	}
1228 
1229 	rss->hash_alg = alg;
1230 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1231 	rss->hf_map = hf_map;
1232 	rss->hash_types = efx_hash_types;
1233 
1234 	return 0;
1235 }
1236 
1237 void
1238 sfc_rx_hash_fini(struct sfc_adapter *sa)
1239 {
1240 	struct sfc_rss *rss = &sa->rss;
1241 
1242 	rte_free(rss->hf_map);
1243 }
1244 
1245 int
1246 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1247 		     efx_rx_hash_type_t *efx)
1248 {
1249 	struct sfc_rss *rss = &sa->rss;
1250 	efx_rx_hash_type_t hash_types = 0;
1251 	unsigned int i;
1252 
1253 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1254 		uint64_t rte_mask = rss->hf_map[i].rte;
1255 
1256 		if ((rte & rte_mask) != 0) {
1257 			rte &= ~rte_mask;
1258 			hash_types |= rss->hf_map[i].efx;
1259 		}
1260 	}
1261 
1262 	if (rte != 0) {
1263 		sfc_err(sa, "unsupported hash functions requested");
1264 		return EINVAL;
1265 	}
1266 
1267 	*efx = hash_types;
1268 
1269 	return 0;
1270 }
1271 
1272 uint64_t
1273 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1274 {
1275 	struct sfc_rss *rss = &sa->rss;
1276 	uint64_t rte = 0;
1277 	unsigned int i;
1278 
1279 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1280 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1281 
1282 		if ((efx & hash_type) == hash_type)
1283 			rte |= rss->hf_map[i].rte;
1284 	}
1285 
1286 	return rte;
1287 }
1288 
1289 static int
1290 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1291 			    struct rte_eth_rss_conf *conf)
1292 {
1293 	struct sfc_rss *rss = &sa->rss;
1294 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1295 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1296 	int rc;
1297 
1298 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1299 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1300 		    conf->rss_key != NULL)
1301 			return EINVAL;
1302 	}
1303 
1304 	if (conf->rss_hf != 0) {
1305 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1306 		if (rc != 0)
1307 			return rc;
1308 	}
1309 
1310 	if (conf->rss_key != NULL) {
1311 		if (conf->rss_key_len != sizeof(rss->key)) {
1312 			sfc_err(sa, "RSS key size is wrong (should be %lu)",
1313 				sizeof(rss->key));
1314 			return EINVAL;
1315 		}
1316 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1317 	}
1318 
1319 	rss->hash_types = efx_hash_types;
1320 
1321 	return 0;
1322 }
1323 
1324 static int
1325 sfc_rx_rss_config(struct sfc_adapter *sa)
1326 {
1327 	struct sfc_rss *rss = &sa->rss;
1328 	int rc = 0;
1329 
1330 	if (rss->channels > 0) {
1331 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1332 					   rss->hash_alg, rss->hash_types,
1333 					   B_TRUE);
1334 		if (rc != 0)
1335 			goto finish;
1336 
1337 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1338 					  rss->key, sizeof(rss->key));
1339 		if (rc != 0)
1340 			goto finish;
1341 
1342 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1343 					  rss->tbl, RTE_DIM(rss->tbl));
1344 	}
1345 
1346 finish:
1347 	return rc;
1348 }
1349 
1350 int
1351 sfc_rx_start(struct sfc_adapter *sa)
1352 {
1353 	unsigned int sw_index;
1354 	int rc;
1355 
1356 	sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1357 
1358 	rc = efx_rx_init(sa->nic);
1359 	if (rc != 0)
1360 		goto fail_rx_init;
1361 
1362 	rc = sfc_rx_rss_config(sa);
1363 	if (rc != 0)
1364 		goto fail_rss_config;
1365 
1366 	for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1367 		if (sa->rxq_info[sw_index].rxq != NULL &&
1368 		    (!sa->rxq_info[sw_index].deferred_start ||
1369 		     sa->rxq_info[sw_index].deferred_started)) {
1370 			rc = sfc_rx_qstart(sa, sw_index);
1371 			if (rc != 0)
1372 				goto fail_rx_qstart;
1373 		}
1374 	}
1375 
1376 	return 0;
1377 
1378 fail_rx_qstart:
1379 	while (sw_index-- > 0)
1380 		sfc_rx_qstop(sa, sw_index);
1381 
1382 fail_rss_config:
1383 	efx_rx_fini(sa->nic);
1384 
1385 fail_rx_init:
1386 	sfc_log_init(sa, "failed %d", rc);
1387 	return rc;
1388 }
1389 
1390 void
1391 sfc_rx_stop(struct sfc_adapter *sa)
1392 {
1393 	unsigned int sw_index;
1394 
1395 	sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1396 
1397 	sw_index = sa->rxq_count;
1398 	while (sw_index-- > 0) {
1399 		if (sa->rxq_info[sw_index].rxq != NULL)
1400 			sfc_rx_qstop(sa, sw_index);
1401 	}
1402 
1403 	efx_rx_fini(sa->nic);
1404 }
1405 
1406 static int
1407 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1408 {
1409 	struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1410 	unsigned int max_entries;
1411 
1412 	max_entries = EFX_RXQ_MAXNDESCS;
1413 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1414 
1415 	rxq_info->max_entries = max_entries;
1416 
1417 	return 0;
1418 }
1419 
1420 static int
1421 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1422 {
1423 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1424 				      sfc_rx_get_queue_offload_caps(sa);
1425 	struct sfc_rss *rss = &sa->rss;
1426 	int rc = 0;
1427 
1428 	switch (rxmode->mq_mode) {
1429 	case ETH_MQ_RX_NONE:
1430 		/* No special checks are required */
1431 		break;
1432 	case ETH_MQ_RX_RSS:
1433 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1434 			sfc_err(sa, "RSS is not available");
1435 			rc = EINVAL;
1436 		}
1437 		break;
1438 	default:
1439 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1440 			rxmode->mq_mode);
1441 		rc = EINVAL;
1442 	}
1443 
1444 	/*
1445 	 * Requested offloads are validated against supported by ethdev,
1446 	 * so unsupported offloads cannot be added as the result of
1447 	 * below check.
1448 	 */
1449 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1450 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1451 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1452 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1453 	}
1454 
1455 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1456 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1457 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1458 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1459 	}
1460 
1461 	return rc;
1462 }
1463 
1464 /**
1465  * Destroy excess queues that are no longer needed after reconfiguration
1466  * or complete close.
1467  */
1468 static void
1469 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1470 {
1471 	int sw_index;
1472 
1473 	SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1474 
1475 	sw_index = sa->rxq_count;
1476 	while (--sw_index >= (int)nb_rx_queues) {
1477 		if (sa->rxq_info[sw_index].rxq != NULL)
1478 			sfc_rx_qfini(sa, sw_index);
1479 	}
1480 
1481 	sa->rxq_count = nb_rx_queues;
1482 }
1483 
1484 /**
1485  * Initialize Rx subsystem.
1486  *
1487  * Called at device (re)configuration stage when number of receive queues is
1488  * specified together with other device level receive configuration.
1489  *
1490  * It should be used to allocate NUMA-unaware resources.
1491  */
1492 int
1493 sfc_rx_configure(struct sfc_adapter *sa)
1494 {
1495 	struct sfc_rss *rss = &sa->rss;
1496 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1497 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1498 	int rc;
1499 
1500 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1501 		     nb_rx_queues, sa->rxq_count);
1502 
1503 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1504 	if (rc != 0)
1505 		goto fail_check_mode;
1506 
1507 	if (nb_rx_queues == sa->rxq_count)
1508 		goto done;
1509 
1510 	if (sa->rxq_info == NULL) {
1511 		rc = ENOMEM;
1512 		sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1513 						 sizeof(sa->rxq_info[0]), 0,
1514 						 sa->socket_id);
1515 		if (sa->rxq_info == NULL)
1516 			goto fail_rxqs_alloc;
1517 	} else {
1518 		struct sfc_rxq_info *new_rxq_info;
1519 
1520 		if (nb_rx_queues < sa->rxq_count)
1521 			sfc_rx_fini_queues(sa, nb_rx_queues);
1522 
1523 		rc = ENOMEM;
1524 		new_rxq_info =
1525 			rte_realloc(sa->rxq_info,
1526 				    nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1527 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1528 			goto fail_rxqs_realloc;
1529 
1530 		sa->rxq_info = new_rxq_info;
1531 		if (nb_rx_queues > sa->rxq_count)
1532 			memset(&sa->rxq_info[sa->rxq_count], 0,
1533 			       (nb_rx_queues - sa->rxq_count) *
1534 			       sizeof(sa->rxq_info[0]));
1535 	}
1536 
1537 	while (sa->rxq_count < nb_rx_queues) {
1538 		rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1539 		if (rc != 0)
1540 			goto fail_rx_qinit_info;
1541 
1542 		sa->rxq_count++;
1543 	}
1544 
1545 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1546 			 MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1547 
1548 	if (rss->channels > 0) {
1549 		struct rte_eth_rss_conf *adv_conf_rss;
1550 		unsigned int sw_index;
1551 
1552 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1553 			rss->tbl[sw_index] = sw_index % rss->channels;
1554 
1555 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1556 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1557 		if (rc != 0)
1558 			goto fail_rx_process_adv_conf_rss;
1559 	}
1560 
1561 done:
1562 	return 0;
1563 
1564 fail_rx_process_adv_conf_rss:
1565 fail_rx_qinit_info:
1566 fail_rxqs_realloc:
1567 fail_rxqs_alloc:
1568 	sfc_rx_close(sa);
1569 
1570 fail_check_mode:
1571 	sfc_log_init(sa, "failed %d", rc);
1572 	return rc;
1573 }
1574 
1575 /**
1576  * Shutdown Rx subsystem.
1577  *
1578  * Called at device close stage, for example, before device shutdown.
1579  */
1580 void
1581 sfc_rx_close(struct sfc_adapter *sa)
1582 {
1583 	struct sfc_rss *rss = &sa->rss;
1584 
1585 	sfc_rx_fini_queues(sa, 0);
1586 
1587 	rss->channels = 0;
1588 
1589 	rte_free(sa->rxq_info);
1590 	sa->rxq_info = NULL;
1591 }
1592