xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 9e991f217fc8719e38a812dc280dba5f84db9f59)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 	rxq_info->state |= SFC_RXQ_FLUSHED;
45 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58 	int rc = 0;
59 
60 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62 		if (rc == 0)
63 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64 	}
65 	return rc;
66 }
67 
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71 	unsigned int free_space;
72 	unsigned int bulks;
73 	void *objs[SFC_RX_REFILL_BULK];
74 	efsys_dma_addr_t addr[RTE_DIM(objs)];
75 	unsigned int added = rxq->added;
76 	unsigned int id;
77 	unsigned int i;
78 	struct sfc_efx_rx_sw_desc *rxd;
79 	struct rte_mbuf *m;
80 	uint16_t port_id = rxq->dp.dpq.port_id;
81 
82 	free_space = rxq->max_fill_level - (added - rxq->completed);
83 
84 	if (free_space < rxq->refill_threshold)
85 		return;
86 
87 	bulks = free_space / RTE_DIM(objs);
88 	/* refill_threshold guarantees that bulks is positive */
89 	SFC_ASSERT(bulks > 0);
90 
91 	id = added & rxq->ptr_mask;
92 	do {
93 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94 						  RTE_DIM(objs)) < 0)) {
95 			/*
96 			 * It is hardly a safe way to increment counter
97 			 * from different contexts, but all PMDs do it.
98 			 */
99 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100 				RTE_DIM(objs);
101 			/* Return if we have posted nothing yet */
102 			if (added == rxq->added)
103 				return;
104 			/* Push posted */
105 			break;
106 		}
107 
108 		for (i = 0; i < RTE_DIM(objs);
109 		     ++i, id = (id + 1) & rxq->ptr_mask) {
110 			m = objs[i];
111 
112 			MBUF_RAW_ALLOC_CHECK(m);
113 
114 			rxd = &rxq->sw_desc[id];
115 			rxd->mbuf = m;
116 
117 			m->data_off = RTE_PKTMBUF_HEADROOM;
118 			m->port = port_id;
119 
120 			addr[i] = rte_pktmbuf_iova(m);
121 		}
122 
123 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124 			     RTE_DIM(objs), rxq->completed, added);
125 		added += RTE_DIM(objs);
126 	} while (--bulks > 0);
127 
128 	SFC_ASSERT(added != rxq->added);
129 	rxq->added = added;
130 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132 
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136 	uint64_t mbuf_flags = 0;
137 
138 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141 		break;
142 	case EFX_PKT_IPV4:
143 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144 		break;
145 	default:
146 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148 			   PKT_RX_IP_CKSUM_UNKNOWN);
149 		break;
150 	}
151 
152 	switch ((desc_flags &
153 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157 		break;
158 	case EFX_PKT_TCP:
159 	case EFX_PKT_UDP:
160 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161 		break;
162 	default:
163 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165 			   PKT_RX_L4_CKSUM_UNKNOWN);
166 		break;
167 	}
168 
169 	return mbuf_flags;
170 }
171 
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175 	return RTE_PTYPE_L2_ETHER |
176 		((desc_flags & EFX_PKT_IPV4) ?
177 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178 		((desc_flags & EFX_PKT_IPV6) ?
179 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183 
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187 	static const uint32_t ptypes[] = {
188 		RTE_PTYPE_L2_ETHER,
189 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191 		RTE_PTYPE_L4_TCP,
192 		RTE_PTYPE_L4_UDP,
193 		RTE_PTYPE_UNKNOWN
194 	};
195 
196 	return ptypes;
197 }
198 
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201 			struct rte_mbuf *m)
202 {
203 	uint8_t *mbuf_data;
204 
205 
206 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207 		return;
208 
209 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210 
211 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213 						      EFX_RX_HASHALG_TOEPLITZ,
214 						      mbuf_data);
215 
216 		m->ol_flags |= PKT_RX_RSS_HASH;
217 	}
218 }
219 
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223 	struct sfc_dp_rxq *dp_rxq = rx_queue;
224 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225 	unsigned int completed;
226 	unsigned int prefix_size = rxq->prefix_size;
227 	unsigned int done_pkts = 0;
228 	boolean_t discard_next = B_FALSE;
229 	struct rte_mbuf *scatter_pkt = NULL;
230 
231 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232 		return 0;
233 
234 	sfc_ev_qpoll(rxq->evq);
235 
236 	completed = rxq->completed;
237 	while (completed != rxq->pending && done_pkts < nb_pkts) {
238 		unsigned int id;
239 		struct sfc_efx_rx_sw_desc *rxd;
240 		struct rte_mbuf *m;
241 		unsigned int seg_len;
242 		unsigned int desc_flags;
243 
244 		id = completed++ & rxq->ptr_mask;
245 		rxd = &rxq->sw_desc[id];
246 		m = rxd->mbuf;
247 		desc_flags = rxd->flags;
248 
249 		if (discard_next)
250 			goto discard;
251 
252 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253 			goto discard;
254 
255 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
256 			uint16_t tmp_size;
257 			int rc __rte_unused;
258 
259 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261 			SFC_ASSERT(rc == 0);
262 			seg_len = tmp_size;
263 		} else {
264 			seg_len = rxd->size - prefix_size;
265 		}
266 
267 		rte_pktmbuf_data_len(m) = seg_len;
268 		rte_pktmbuf_pkt_len(m) = seg_len;
269 
270 		if (scatter_pkt != NULL) {
271 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272 				rte_pktmbuf_free(scatter_pkt);
273 				goto discard;
274 			}
275 			/* The packet to deliver */
276 			m = scatter_pkt;
277 		}
278 
279 		if (desc_flags & EFX_PKT_CONT) {
280 			/* The packet is scattered, more fragments to come */
281 			scatter_pkt = m;
282 			/* Further fragments have no prefix */
283 			prefix_size = 0;
284 			continue;
285 		}
286 
287 		/* Scattered packet is done */
288 		scatter_pkt = NULL;
289 		/* The first fragment of the packet has prefix */
290 		prefix_size = rxq->prefix_size;
291 
292 		m->ol_flags =
293 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294 		m->packet_type =
295 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296 
297 		/*
298 		 * Extract RSS hash from the packet prefix and
299 		 * set the corresponding field (if needed and possible)
300 		 */
301 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302 
303 		m->data_off += prefix_size;
304 
305 		*rx_pkts++ = m;
306 		done_pkts++;
307 		continue;
308 
309 discard:
310 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311 		rte_mbuf_raw_free(m);
312 		rxd->mbuf = NULL;
313 	}
314 
315 	/* pending is only moved when entire packet is received */
316 	SFC_ASSERT(scatter_pkt == NULL);
317 
318 	rxq->completed = completed;
319 
320 	sfc_efx_rx_qrefill(rxq);
321 
322 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323 		sfc_efx_rx_qprime(rxq);
324 
325 	return done_pkts;
326 }
327 
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333 
334 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335 		return 0;
336 
337 	sfc_ev_qpoll(rxq->evq);
338 
339 	return rxq->pending - rxq->completed;
340 }
341 
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347 
348 	if (unlikely(offset > rxq->ptr_mask))
349 		return -EINVAL;
350 
351 	/*
352 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353 	 * it is required for the queue to be running, but the
354 	 * check is omitted because API design assumes that it
355 	 * is the duty of the caller to satisfy all conditions
356 	 */
357 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358 		   SFC_EFX_RXQ_FLAG_RUNNING);
359 	sfc_ev_qpoll(rxq->evq);
360 
361 	/*
362 	 * There is a handful of reserved entries in the ring,
363 	 * but an explicit check whether the offset points to
364 	 * a reserved entry is neglected since the two checks
365 	 * below rely on the figures which take the HW limits
366 	 * into account and thus if an entry is reserved, the
367 	 * checks will fail and UNAVAIL code will be returned
368 	 */
369 
370 	if (offset < (rxq->pending - rxq->completed))
371 		return RTE_ETH_RX_DESC_DONE;
372 
373 	if (offset < (rxq->added - rxq->completed))
374 		return RTE_ETH_RX_DESC_AVAIL;
375 
376 	return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378 
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381 		     boolean_t rx_scatter_enabled, const char **error)
382 {
383 	if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
384 		*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
385 		return B_FALSE;
386 	}
387 
388 	return B_TRUE;
389 }
390 
391 /** Get Rx datapath ops by the datapath RxQ handle */
392 const struct sfc_dp_rx *
393 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
394 {
395 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
396 	struct rte_eth_dev *eth_dev;
397 	struct sfc_adapter_priv *sap;
398 
399 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
400 	eth_dev = &rte_eth_devices[dpq->port_id];
401 
402 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
403 
404 	return sap->dp_rx;
405 }
406 
407 struct sfc_rxq_info *
408 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411 	struct rte_eth_dev *eth_dev;
412 	struct sfc_adapter_shared *sas;
413 
414 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415 	eth_dev = &rte_eth_devices[dpq->port_id];
416 
417 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
418 
419 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
420 	return &sas->rxq_info[dpq->queue_id];
421 }
422 
423 struct sfc_rxq *
424 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
425 {
426 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
427 	struct rte_eth_dev *eth_dev;
428 	struct sfc_adapter *sa;
429 
430 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
431 	eth_dev = &rte_eth_devices[dpq->port_id];
432 
433 	sa = sfc_adapter_by_eth_dev(eth_dev);
434 
435 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
436 	return &sa->rxq_ctrl[dpq->queue_id];
437 }
438 
439 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
440 static int
441 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
442 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
443 			  __rte_unused struct rte_mempool *mb_pool,
444 			  unsigned int *rxq_entries,
445 			  unsigned int *evq_entries,
446 			  unsigned int *rxq_max_fill_level)
447 {
448 	*rxq_entries = nb_rx_desc;
449 	*evq_entries = nb_rx_desc;
450 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
451 	return 0;
452 }
453 
454 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
455 static int
456 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
457 		   const struct rte_pci_addr *pci_addr, int socket_id,
458 		   const struct sfc_dp_rx_qcreate_info *info,
459 		   struct sfc_dp_rxq **dp_rxqp)
460 {
461 	struct sfc_efx_rxq *rxq;
462 	int rc;
463 
464 	rc = ENOMEM;
465 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
466 				 RTE_CACHE_LINE_SIZE, socket_id);
467 	if (rxq == NULL)
468 		goto fail_rxq_alloc;
469 
470 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
471 
472 	rc = ENOMEM;
473 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
474 					 info->rxq_entries,
475 					 sizeof(*rxq->sw_desc),
476 					 RTE_CACHE_LINE_SIZE, socket_id);
477 	if (rxq->sw_desc == NULL)
478 		goto fail_desc_alloc;
479 
480 	/* efx datapath is bound to efx control path */
481 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
482 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
483 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
484 	rxq->ptr_mask = info->rxq_entries - 1;
485 	rxq->batch_max = info->batch_max;
486 	rxq->prefix_size = info->prefix_size;
487 	rxq->max_fill_level = info->max_fill_level;
488 	rxq->refill_threshold = info->refill_threshold;
489 	rxq->buf_size = info->buf_size;
490 	rxq->refill_mb_pool = info->refill_mb_pool;
491 
492 	*dp_rxqp = &rxq->dp;
493 	return 0;
494 
495 fail_desc_alloc:
496 	rte_free(rxq);
497 
498 fail_rxq_alloc:
499 	return rc;
500 }
501 
502 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
503 static void
504 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
505 {
506 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
507 
508 	rte_free(rxq->sw_desc);
509 	rte_free(rxq);
510 }
511 
512 
513 /* Use qstop and qstart functions in the case of qstart failure */
514 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
515 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
516 
517 
518 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
519 static int
520 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
521 		  __rte_unused unsigned int evq_read_ptr)
522 {
523 	/* libefx-based datapath is specific to libefx-based PMD */
524 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
525 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
526 	int rc;
527 
528 	rxq->common = crxq->common;
529 
530 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
531 
532 	sfc_efx_rx_qrefill(rxq);
533 
534 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
535 
536 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
537 		rc = sfc_efx_rx_qprime(rxq);
538 		if (rc != 0)
539 			goto fail_rx_qprime;
540 	}
541 
542 	return 0;
543 
544 fail_rx_qprime:
545 	sfc_efx_rx_qstop(dp_rxq, NULL);
546 	sfc_efx_rx_qpurge(dp_rxq);
547 	return rc;
548 }
549 
550 static void
551 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
552 		 __rte_unused unsigned int *evq_read_ptr)
553 {
554 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
555 
556 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
557 
558 	/* libefx-based datapath is bound to libefx-based PMD and uses
559 	 * event queue structure directly. So, there is no necessity to
560 	 * return EvQ read pointer.
561 	 */
562 }
563 
564 static void
565 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
566 {
567 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
568 	unsigned int i;
569 	struct sfc_efx_rx_sw_desc *rxd;
570 
571 	for (i = rxq->completed; i != rxq->added; ++i) {
572 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
573 		rte_mbuf_raw_free(rxd->mbuf);
574 		rxd->mbuf = NULL;
575 		/* Packed stream relies on 0 in inactive SW desc.
576 		 * Rx queue stop is not performance critical, so
577 		 * there is no harm to do it always.
578 		 */
579 		rxd->flags = 0;
580 		rxd->size = 0;
581 	}
582 
583 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
584 }
585 
586 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
587 static int
588 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
589 {
590 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591 	int rc = 0;
592 
593 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
594 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
595 		rc = sfc_efx_rx_qprime(rxq);
596 		if (rc != 0)
597 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
598 	}
599 	return rc;
600 }
601 
602 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
603 static int
604 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
605 {
606 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
607 
608 	/* Cannot disarm, just disable rearm */
609 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
610 	return 0;
611 }
612 
613 struct sfc_dp_rx sfc_efx_rx = {
614 	.dp = {
615 		.name		= SFC_KVARG_DATAPATH_EFX,
616 		.type		= SFC_DP_RX,
617 		.hw_fw_caps	= 0,
618 	},
619 	.features		= SFC_DP_RX_FEAT_INTR,
620 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
621 				  DEV_RX_OFFLOAD_RSS_HASH,
622 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
623 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
624 	.qcreate		= sfc_efx_rx_qcreate,
625 	.qdestroy		= sfc_efx_rx_qdestroy,
626 	.qstart			= sfc_efx_rx_qstart,
627 	.qstop			= sfc_efx_rx_qstop,
628 	.qpurge			= sfc_efx_rx_qpurge,
629 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
630 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
631 	.qdesc_status		= sfc_efx_rx_qdesc_status,
632 	.intr_enable		= sfc_efx_rx_intr_enable,
633 	.intr_disable		= sfc_efx_rx_intr_disable,
634 	.pkt_burst		= sfc_efx_recv_pkts,
635 };
636 
637 static void
638 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
639 {
640 	struct sfc_rxq_info *rxq_info;
641 	struct sfc_rxq *rxq;
642 	unsigned int retry_count;
643 	unsigned int wait_count;
644 	int rc;
645 
646 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
647 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
648 
649 	rxq = &sa->rxq_ctrl[sw_index];
650 
651 	/*
652 	 * Retry Rx queue flushing in the case of flush failed or
653 	 * timeout. In the worst case it can delay for 6 seconds.
654 	 */
655 	for (retry_count = 0;
656 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
657 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
658 	     ++retry_count) {
659 		rc = efx_rx_qflush(rxq->common);
660 		if (rc != 0) {
661 			rxq_info->state |= (rc == EALREADY) ?
662 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
663 			break;
664 		}
665 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
666 		rxq_info->state |= SFC_RXQ_FLUSHING;
667 
668 		/*
669 		 * Wait for Rx queue flush done or failed event at least
670 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
671 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
672 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
673 		 */
674 		wait_count = 0;
675 		do {
676 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
677 			sfc_ev_qpoll(rxq->evq);
678 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
679 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
680 
681 		if (rxq_info->state & SFC_RXQ_FLUSHING)
682 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
683 
684 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
685 			sfc_err(sa, "RxQ %u flush failed", sw_index);
686 
687 		if (rxq_info->state & SFC_RXQ_FLUSHED)
688 			sfc_notice(sa, "RxQ %u flushed", sw_index);
689 	}
690 
691 	sa->priv.dp_rx->qpurge(rxq_info->dp);
692 }
693 
694 static int
695 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
696 {
697 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
698 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
699 	struct sfc_port *port = &sa->port;
700 	int rc;
701 
702 	/*
703 	 * If promiscuous or all-multicast mode has been requested, setting
704 	 * filter for the default Rx queue might fail, in particular, while
705 	 * running over PCI function which is not a member of corresponding
706 	 * privilege groups; if this occurs, few iterations will be made to
707 	 * repeat this step without promiscuous and all-multicast flags set
708 	 */
709 retry:
710 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
711 	if (rc == 0)
712 		return 0;
713 	else if (rc != EOPNOTSUPP)
714 		return rc;
715 
716 	if (port->promisc) {
717 		sfc_warn(sa, "promiscuous mode has been requested, "
718 			     "but the HW rejects it");
719 		sfc_warn(sa, "promiscuous mode will be disabled");
720 
721 		port->promisc = B_FALSE;
722 		rc = sfc_set_rx_mode(sa);
723 		if (rc != 0)
724 			return rc;
725 
726 		goto retry;
727 	}
728 
729 	if (port->allmulti) {
730 		sfc_warn(sa, "all-multicast mode has been requested, "
731 			     "but the HW rejects it");
732 		sfc_warn(sa, "all-multicast mode will be disabled");
733 
734 		port->allmulti = B_FALSE;
735 		rc = sfc_set_rx_mode(sa);
736 		if (rc != 0)
737 			return rc;
738 
739 		goto retry;
740 	}
741 
742 	return rc;
743 }
744 
745 int
746 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
747 {
748 	struct sfc_rxq_info *rxq_info;
749 	struct sfc_rxq *rxq;
750 	struct sfc_evq *evq;
751 	int rc;
752 
753 	sfc_log_init(sa, "sw_index=%u", sw_index);
754 
755 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
756 
757 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
758 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
759 
760 	rxq = &sa->rxq_ctrl[sw_index];
761 	evq = rxq->evq;
762 
763 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
764 	if (rc != 0)
765 		goto fail_ev_qstart;
766 
767 	switch (rxq_info->type) {
768 	case EFX_RXQ_TYPE_DEFAULT:
769 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
770 			rxq->buf_size,
771 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
772 			rxq_info->type_flags, evq->common, &rxq->common);
773 		break;
774 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
775 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
776 		struct rte_mempool_info mp_info;
777 
778 		rc = rte_mempool_ops_get_info(mp, &mp_info);
779 		if (rc != 0) {
780 			/* Positive errno is used in the driver */
781 			rc = -rc;
782 			goto fail_mp_get_info;
783 		}
784 		if (mp_info.contig_block_size <= 0) {
785 			rc = EINVAL;
786 			goto fail_bad_contig_block_size;
787 		}
788 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
789 			mp_info.contig_block_size, rxq->buf_size,
790 			mp->header_size + mp->elt_size + mp->trailer_size,
791 			sa->rxd_wait_timeout_ns,
792 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
793 			evq->common, &rxq->common);
794 		break;
795 	}
796 	default:
797 		rc = ENOTSUP;
798 	}
799 	if (rc != 0)
800 		goto fail_rx_qcreate;
801 
802 	efx_rx_qenable(rxq->common);
803 
804 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
805 	if (rc != 0)
806 		goto fail_dp_qstart;
807 
808 	rxq_info->state |= SFC_RXQ_STARTED;
809 
810 	if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
811 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
812 		if (rc != 0)
813 			goto fail_mac_filter_default_rxq_set;
814 	}
815 
816 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
817 	sa->eth_dev->data->rx_queue_state[sw_index] =
818 		RTE_ETH_QUEUE_STATE_STARTED;
819 
820 	return 0;
821 
822 fail_mac_filter_default_rxq_set:
823 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
824 
825 fail_dp_qstart:
826 	sfc_rx_qflush(sa, sw_index);
827 
828 fail_rx_qcreate:
829 fail_bad_contig_block_size:
830 fail_mp_get_info:
831 	sfc_ev_qstop(evq);
832 
833 fail_ev_qstart:
834 	return rc;
835 }
836 
837 void
838 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
839 {
840 	struct sfc_rxq_info *rxq_info;
841 	struct sfc_rxq *rxq;
842 
843 	sfc_log_init(sa, "sw_index=%u", sw_index);
844 
845 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
846 
847 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
848 
849 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
850 		return;
851 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
852 
853 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
854 	sa->eth_dev->data->rx_queue_state[sw_index] =
855 		RTE_ETH_QUEUE_STATE_STOPPED;
856 
857 	rxq = &sa->rxq_ctrl[sw_index];
858 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
859 
860 	if (sw_index == 0)
861 		efx_mac_filter_default_rxq_clear(sa->nic);
862 
863 	sfc_rx_qflush(sa, sw_index);
864 
865 	rxq_info->state = SFC_RXQ_INITIALIZED;
866 
867 	efx_rx_qdestroy(rxq->common);
868 
869 	sfc_ev_qstop(rxq->evq);
870 }
871 
872 static uint64_t
873 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
874 {
875 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
876 	uint64_t no_caps = 0;
877 
878 	if (encp->enc_tunnel_encapsulations_supported == 0)
879 		no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
880 
881 	return ~no_caps;
882 }
883 
884 uint64_t
885 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
886 {
887 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
888 
889 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
890 
891 	return caps & sfc_rx_get_offload_mask(sa);
892 }
893 
894 uint64_t
895 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
896 {
897 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
898 }
899 
900 static int
901 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
902 		   const struct rte_eth_rxconf *rx_conf,
903 		   __rte_unused uint64_t offloads)
904 {
905 	int rc = 0;
906 
907 	if (rx_conf->rx_thresh.pthresh != 0 ||
908 	    rx_conf->rx_thresh.hthresh != 0 ||
909 	    rx_conf->rx_thresh.wthresh != 0) {
910 		sfc_warn(sa,
911 			"RxQ prefetch/host/writeback thresholds are not supported");
912 	}
913 
914 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
915 		sfc_err(sa,
916 			"RxQ free threshold too large: %u vs maximum %u",
917 			rx_conf->rx_free_thresh, rxq_max_fill_level);
918 		rc = EINVAL;
919 	}
920 
921 	if (rx_conf->rx_drop_en == 0) {
922 		sfc_err(sa, "RxQ drop disable is not supported");
923 		rc = EINVAL;
924 	}
925 
926 	return rc;
927 }
928 
929 static unsigned int
930 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
931 {
932 	uint32_t data_off;
933 	uint32_t order;
934 
935 	/* The mbuf object itself is always cache line aligned */
936 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
937 
938 	/* Data offset from mbuf object start */
939 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
940 		RTE_PKTMBUF_HEADROOM;
941 
942 	order = MIN(order, rte_bsf32(data_off));
943 
944 	return 1u << order;
945 }
946 
947 static uint16_t
948 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
949 {
950 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
951 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
952 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
953 	uint16_t buf_size;
954 	unsigned int buf_aligned;
955 	unsigned int start_alignment;
956 	unsigned int end_padding_alignment;
957 
958 	/* Below it is assumed that both alignments are power of 2 */
959 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
960 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
961 
962 	/*
963 	 * mbuf is always cache line aligned, double-check
964 	 * that it meets rx buffer start alignment requirements.
965 	 */
966 
967 	/* Start from mbuf pool data room size */
968 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
969 
970 	/* Remove headroom */
971 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
972 		sfc_err(sa,
973 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
974 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
975 		return 0;
976 	}
977 	buf_size -= RTE_PKTMBUF_HEADROOM;
978 
979 	/* Calculate guaranteed data start alignment */
980 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
981 
982 	/* Reserve space for start alignment */
983 	if (buf_aligned < nic_align_start) {
984 		start_alignment = nic_align_start - buf_aligned;
985 		if (buf_size <= start_alignment) {
986 			sfc_err(sa,
987 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
988 				mb_pool->name,
989 				rte_pktmbuf_data_room_size(mb_pool),
990 				RTE_PKTMBUF_HEADROOM, start_alignment);
991 			return 0;
992 		}
993 		buf_aligned = nic_align_start;
994 		buf_size -= start_alignment;
995 	} else {
996 		start_alignment = 0;
997 	}
998 
999 	/* Make sure that end padding does not write beyond the buffer */
1000 	if (buf_aligned < nic_align_end) {
1001 		/*
1002 		 * Estimate space which can be lost. If guarnteed buffer
1003 		 * size is odd, lost space is (nic_align_end - 1). More
1004 		 * accurate formula is below.
1005 		 */
1006 		end_padding_alignment = nic_align_end -
1007 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1008 		if (buf_size <= end_padding_alignment) {
1009 			sfc_err(sa,
1010 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1011 				mb_pool->name,
1012 				rte_pktmbuf_data_room_size(mb_pool),
1013 				RTE_PKTMBUF_HEADROOM, start_alignment,
1014 				end_padding_alignment);
1015 			return 0;
1016 		}
1017 		buf_size -= end_padding_alignment;
1018 	} else {
1019 		/*
1020 		 * Start is aligned the same or better than end,
1021 		 * just align length.
1022 		 */
1023 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1024 	}
1025 
1026 	return buf_size;
1027 }
1028 
1029 int
1030 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1031 	     uint16_t nb_rx_desc, unsigned int socket_id,
1032 	     const struct rte_eth_rxconf *rx_conf,
1033 	     struct rte_mempool *mb_pool)
1034 {
1035 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1036 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1037 	int rc;
1038 	unsigned int rxq_entries;
1039 	unsigned int evq_entries;
1040 	unsigned int rxq_max_fill_level;
1041 	uint64_t offloads;
1042 	uint16_t buf_size;
1043 	struct sfc_rxq_info *rxq_info;
1044 	struct sfc_evq *evq;
1045 	struct sfc_rxq *rxq;
1046 	struct sfc_dp_rx_qcreate_info info;
1047 	struct sfc_dp_rx_hw_limits hw_limits;
1048 	uint16_t rx_free_thresh;
1049 	const char *error;
1050 
1051 	memset(&hw_limits, 0, sizeof(hw_limits));
1052 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1053 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1054 	hw_limits.evq_max_entries = sa->evq_max_entries;
1055 	hw_limits.evq_min_entries = sa->evq_min_entries;
1056 
1057 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1058 					    &rxq_entries, &evq_entries,
1059 					    &rxq_max_fill_level);
1060 	if (rc != 0)
1061 		goto fail_size_up_rings;
1062 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1063 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1064 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1065 
1066 	offloads = rx_conf->offloads |
1067 		sa->eth_dev->data->dev_conf.rxmode.offloads;
1068 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1069 	if (rc != 0)
1070 		goto fail_bad_conf;
1071 
1072 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1073 	if (buf_size == 0) {
1074 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1075 			sw_index);
1076 		rc = EINVAL;
1077 		goto fail_bad_conf;
1078 	}
1079 
1080 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1081 				  encp->enc_rx_prefix_size,
1082 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1083 				  &error)) {
1084 		sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1085 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1086 			"PDU size %u plus Rx prefix %u bytes",
1087 			sw_index, buf_size, (unsigned int)sa->port.pdu,
1088 			encp->enc_rx_prefix_size);
1089 		rc = EINVAL;
1090 		goto fail_bad_conf;
1091 	}
1092 
1093 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1094 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1095 
1096 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1097 	rxq_info->entries = rxq_entries;
1098 
1099 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1100 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1101 	else
1102 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1103 
1104 	rxq_info->type_flags =
1105 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1106 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1107 
1108 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1109 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1110 	     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1111 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1112 
1113 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1114 			  evq_entries, socket_id, &evq);
1115 	if (rc != 0)
1116 		goto fail_ev_qinit;
1117 
1118 	rxq = &sa->rxq_ctrl[sw_index];
1119 	rxq->evq = evq;
1120 	rxq->hw_index = sw_index;
1121 	/*
1122 	 * If Rx refill threshold is specified (its value is non zero) in
1123 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1124 	 * the Rx descriptors number as the default. It allows to keep
1125 	 * Rx ring full-enough and does not refill too aggressive if
1126 	 * packet rate is high.
1127 	 *
1128 	 * Since PMD refills in bulks waiting for full bulk may be
1129 	 * refilled (basically round down), it is better to round up
1130 	 * here to mitigate it a bit.
1131 	 */
1132 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1133 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1134 	/* Rx refill threshold cannot be smaller than refill bulk */
1135 	rxq_info->refill_threshold =
1136 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1137 	rxq_info->refill_mb_pool = mb_pool;
1138 	rxq->buf_size = buf_size;
1139 
1140 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1141 			   efx_rxq_size(sa->nic, rxq_info->entries),
1142 			   socket_id, &rxq->mem);
1143 	if (rc != 0)
1144 		goto fail_dma_alloc;
1145 
1146 	memset(&info, 0, sizeof(info));
1147 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1148 	info.max_fill_level = rxq_max_fill_level;
1149 	info.refill_threshold = rxq_info->refill_threshold;
1150 	info.buf_size = buf_size;
1151 	info.batch_max = encp->enc_rx_batch_max;
1152 	info.prefix_size = encp->enc_rx_prefix_size;
1153 
1154 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1155 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1156 
1157 	info.rxq_entries = rxq_info->entries;
1158 	info.rxq_hw_ring = rxq->mem.esm_base;
1159 	info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1160 	info.evq_entries = evq_entries;
1161 	info.evq_hw_ring = evq->mem.esm_base;
1162 	info.hw_index = rxq->hw_index;
1163 	info.mem_bar = sa->mem_bar.esb_base;
1164 	info.vi_window_shift = encp->enc_vi_window_shift;
1165 
1166 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1167 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1168 				     socket_id, &info, &rxq_info->dp);
1169 	if (rc != 0)
1170 		goto fail_dp_rx_qcreate;
1171 
1172 	evq->dp_rxq = rxq_info->dp;
1173 
1174 	rxq_info->state = SFC_RXQ_INITIALIZED;
1175 
1176 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1177 
1178 	return 0;
1179 
1180 fail_dp_rx_qcreate:
1181 	sfc_dma_free(sa, &rxq->mem);
1182 
1183 fail_dma_alloc:
1184 	sfc_ev_qfini(evq);
1185 
1186 fail_ev_qinit:
1187 	rxq_info->entries = 0;
1188 
1189 fail_bad_conf:
1190 fail_size_up_rings:
1191 	sfc_log_init(sa, "failed %d", rc);
1192 	return rc;
1193 }
1194 
1195 void
1196 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1197 {
1198 	struct sfc_rxq_info *rxq_info;
1199 	struct sfc_rxq *rxq;
1200 
1201 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1202 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1203 
1204 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1205 
1206 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1207 
1208 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1209 	rxq_info->dp = NULL;
1210 
1211 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1212 	rxq_info->entries = 0;
1213 
1214 	rxq = &sa->rxq_ctrl[sw_index];
1215 
1216 	sfc_dma_free(sa, &rxq->mem);
1217 
1218 	sfc_ev_qfini(rxq->evq);
1219 	rxq->evq = NULL;
1220 }
1221 
1222 /*
1223  * Mapping between RTE RSS hash functions and their EFX counterparts.
1224  */
1225 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1226 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1227 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1228 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1229 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1230 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1231 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1232 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1233 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1234 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1235 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1236 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1237 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1238 	  ETH_RSS_IPV6_EX,
1239 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1240 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1241 };
1242 
1243 static efx_rx_hash_type_t
1244 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1245 			    unsigned int *hash_type_flags_supported,
1246 			    unsigned int nb_hash_type_flags_supported)
1247 {
1248 	efx_rx_hash_type_t hash_type_masked = 0;
1249 	unsigned int i, j;
1250 
1251 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1252 		unsigned int class_tuple_lbn[] = {
1253 			EFX_RX_CLASS_IPV4_TCP_LBN,
1254 			EFX_RX_CLASS_IPV4_UDP_LBN,
1255 			EFX_RX_CLASS_IPV4_LBN,
1256 			EFX_RX_CLASS_IPV6_TCP_LBN,
1257 			EFX_RX_CLASS_IPV6_UDP_LBN,
1258 			EFX_RX_CLASS_IPV6_LBN
1259 		};
1260 
1261 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1262 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1263 			unsigned int flag;
1264 
1265 			tuple_mask <<= class_tuple_lbn[j];
1266 			flag = hash_type & tuple_mask;
1267 
1268 			if (flag == hash_type_flags_supported[i])
1269 				hash_type_masked |= flag;
1270 		}
1271 	}
1272 
1273 	return hash_type_masked;
1274 }
1275 
1276 int
1277 sfc_rx_hash_init(struct sfc_adapter *sa)
1278 {
1279 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1280 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1281 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1282 	efx_rx_hash_alg_t alg;
1283 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1284 	unsigned int nb_flags_supp;
1285 	struct sfc_rss_hf_rte_to_efx *hf_map;
1286 	struct sfc_rss_hf_rte_to_efx *entry;
1287 	efx_rx_hash_type_t efx_hash_types;
1288 	unsigned int i;
1289 	int rc;
1290 
1291 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1292 		alg = EFX_RX_HASHALG_TOEPLITZ;
1293 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1294 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1295 	else
1296 		return EINVAL;
1297 
1298 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1299 					 RTE_DIM(flags_supp), &nb_flags_supp);
1300 	if (rc != 0)
1301 		return rc;
1302 
1303 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1304 				   RTE_DIM(sfc_rss_hf_map),
1305 				   sizeof(*hf_map), 0, sa->socket_id);
1306 	if (hf_map == NULL)
1307 		return ENOMEM;
1308 
1309 	entry = hf_map;
1310 	efx_hash_types = 0;
1311 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1312 		efx_rx_hash_type_t ht;
1313 
1314 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1315 						 flags_supp, nb_flags_supp);
1316 		if (ht != 0) {
1317 			entry->rte = sfc_rss_hf_map[i].rte;
1318 			entry->efx = ht;
1319 			efx_hash_types |= ht;
1320 			++entry;
1321 		}
1322 	}
1323 
1324 	rss->hash_alg = alg;
1325 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1326 	rss->hf_map = hf_map;
1327 	rss->hash_types = efx_hash_types;
1328 
1329 	return 0;
1330 }
1331 
1332 void
1333 sfc_rx_hash_fini(struct sfc_adapter *sa)
1334 {
1335 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1336 
1337 	rte_free(rss->hf_map);
1338 }
1339 
1340 int
1341 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1342 		     efx_rx_hash_type_t *efx)
1343 {
1344 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1345 	efx_rx_hash_type_t hash_types = 0;
1346 	unsigned int i;
1347 
1348 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1349 		uint64_t rte_mask = rss->hf_map[i].rte;
1350 
1351 		if ((rte & rte_mask) != 0) {
1352 			rte &= ~rte_mask;
1353 			hash_types |= rss->hf_map[i].efx;
1354 		}
1355 	}
1356 
1357 	if (rte != 0) {
1358 		sfc_err(sa, "unsupported hash functions requested");
1359 		return EINVAL;
1360 	}
1361 
1362 	*efx = hash_types;
1363 
1364 	return 0;
1365 }
1366 
1367 uint64_t
1368 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1369 {
1370 	uint64_t rte = 0;
1371 	unsigned int i;
1372 
1373 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1374 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1375 
1376 		if ((efx & hash_type) == hash_type)
1377 			rte |= rss->hf_map[i].rte;
1378 	}
1379 
1380 	return rte;
1381 }
1382 
1383 static int
1384 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1385 			    struct rte_eth_rss_conf *conf)
1386 {
1387 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1388 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1389 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1390 	int rc;
1391 
1392 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1393 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1394 		    conf->rss_key != NULL)
1395 			return EINVAL;
1396 	}
1397 
1398 	if (conf->rss_hf != 0) {
1399 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1400 		if (rc != 0)
1401 			return rc;
1402 	}
1403 
1404 	if (conf->rss_key != NULL) {
1405 		if (conf->rss_key_len != sizeof(rss->key)) {
1406 			sfc_err(sa, "RSS key size is wrong (should be %zu)",
1407 				sizeof(rss->key));
1408 			return EINVAL;
1409 		}
1410 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1411 	}
1412 
1413 	rss->hash_types = efx_hash_types;
1414 
1415 	return 0;
1416 }
1417 
1418 static int
1419 sfc_rx_rss_config(struct sfc_adapter *sa)
1420 {
1421 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1422 	int rc = 0;
1423 
1424 	if (rss->channels > 0) {
1425 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1426 					   rss->hash_alg, rss->hash_types,
1427 					   B_TRUE);
1428 		if (rc != 0)
1429 			goto finish;
1430 
1431 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1432 					  rss->key, sizeof(rss->key));
1433 		if (rc != 0)
1434 			goto finish;
1435 
1436 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1437 					  rss->tbl, RTE_DIM(rss->tbl));
1438 	}
1439 
1440 finish:
1441 	return rc;
1442 }
1443 
1444 int
1445 sfc_rx_start(struct sfc_adapter *sa)
1446 {
1447 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1448 	unsigned int sw_index;
1449 	int rc;
1450 
1451 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1452 
1453 	rc = efx_rx_init(sa->nic);
1454 	if (rc != 0)
1455 		goto fail_rx_init;
1456 
1457 	rc = sfc_rx_rss_config(sa);
1458 	if (rc != 0)
1459 		goto fail_rss_config;
1460 
1461 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1462 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1463 		    (!sas->rxq_info[sw_index].deferred_start ||
1464 		     sas->rxq_info[sw_index].deferred_started)) {
1465 			rc = sfc_rx_qstart(sa, sw_index);
1466 			if (rc != 0)
1467 				goto fail_rx_qstart;
1468 		}
1469 	}
1470 
1471 	return 0;
1472 
1473 fail_rx_qstart:
1474 	while (sw_index-- > 0)
1475 		sfc_rx_qstop(sa, sw_index);
1476 
1477 fail_rss_config:
1478 	efx_rx_fini(sa->nic);
1479 
1480 fail_rx_init:
1481 	sfc_log_init(sa, "failed %d", rc);
1482 	return rc;
1483 }
1484 
1485 void
1486 sfc_rx_stop(struct sfc_adapter *sa)
1487 {
1488 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1489 	unsigned int sw_index;
1490 
1491 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1492 
1493 	sw_index = sas->rxq_count;
1494 	while (sw_index-- > 0) {
1495 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1496 			sfc_rx_qstop(sa, sw_index);
1497 	}
1498 
1499 	efx_rx_fini(sa->nic);
1500 }
1501 
1502 static int
1503 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1504 {
1505 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1506 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1507 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1508 	unsigned int max_entries;
1509 
1510 	max_entries = encp->enc_rxq_max_ndescs;
1511 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1512 
1513 	rxq_info->max_entries = max_entries;
1514 
1515 	return 0;
1516 }
1517 
1518 static int
1519 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1520 {
1521 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1522 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1523 				      sfc_rx_get_queue_offload_caps(sa);
1524 	struct sfc_rss *rss = &sas->rss;
1525 	int rc = 0;
1526 
1527 	switch (rxmode->mq_mode) {
1528 	case ETH_MQ_RX_NONE:
1529 		/* No special checks are required */
1530 		break;
1531 	case ETH_MQ_RX_RSS:
1532 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1533 			sfc_err(sa, "RSS is not available");
1534 			rc = EINVAL;
1535 		}
1536 		break;
1537 	default:
1538 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1539 			rxmode->mq_mode);
1540 		rc = EINVAL;
1541 	}
1542 
1543 	/*
1544 	 * Requested offloads are validated against supported by ethdev,
1545 	 * so unsupported offloads cannot be added as the result of
1546 	 * below check.
1547 	 */
1548 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1549 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1550 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1551 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1552 	}
1553 
1554 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1555 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1556 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1557 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1558 	}
1559 
1560 	if ((offloads_supported & DEV_RX_OFFLOAD_RSS_HASH) &&
1561 	    (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG))
1562 		rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1563 
1564 	return rc;
1565 }
1566 
1567 /**
1568  * Destroy excess queues that are no longer needed after reconfiguration
1569  * or complete close.
1570  */
1571 static void
1572 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1573 {
1574 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1575 	int sw_index;
1576 
1577 	SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1578 
1579 	sw_index = sas->rxq_count;
1580 	while (--sw_index >= (int)nb_rx_queues) {
1581 		if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1582 			sfc_rx_qfini(sa, sw_index);
1583 	}
1584 
1585 	sas->rxq_count = nb_rx_queues;
1586 }
1587 
1588 /**
1589  * Initialize Rx subsystem.
1590  *
1591  * Called at device (re)configuration stage when number of receive queues is
1592  * specified together with other device level receive configuration.
1593  *
1594  * It should be used to allocate NUMA-unaware resources.
1595  */
1596 int
1597 sfc_rx_configure(struct sfc_adapter *sa)
1598 {
1599 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1600 	struct sfc_rss *rss = &sas->rss;
1601 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1602 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1603 	int rc;
1604 
1605 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1606 		     nb_rx_queues, sas->rxq_count);
1607 
1608 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1609 	if (rc != 0)
1610 		goto fail_check_mode;
1611 
1612 	if (nb_rx_queues == sas->rxq_count)
1613 		goto configure_rss;
1614 
1615 	if (sas->rxq_info == NULL) {
1616 		rc = ENOMEM;
1617 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1618 						  sizeof(sas->rxq_info[0]), 0,
1619 						  sa->socket_id);
1620 		if (sas->rxq_info == NULL)
1621 			goto fail_rxqs_alloc;
1622 
1623 		/*
1624 		 * Allocate primary process only RxQ control from heap
1625 		 * since it should not be shared.
1626 		 */
1627 		rc = ENOMEM;
1628 		sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1629 		if (sa->rxq_ctrl == NULL)
1630 			goto fail_rxqs_ctrl_alloc;
1631 	} else {
1632 		struct sfc_rxq_info *new_rxq_info;
1633 		struct sfc_rxq *new_rxq_ctrl;
1634 
1635 		if (nb_rx_queues < sas->rxq_count)
1636 			sfc_rx_fini_queues(sa, nb_rx_queues);
1637 
1638 		rc = ENOMEM;
1639 		new_rxq_info =
1640 			rte_realloc(sas->rxq_info,
1641 				    nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1642 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1643 			goto fail_rxqs_realloc;
1644 
1645 		rc = ENOMEM;
1646 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1647 				       nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1648 		if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1649 			goto fail_rxqs_ctrl_realloc;
1650 
1651 		sas->rxq_info = new_rxq_info;
1652 		sa->rxq_ctrl = new_rxq_ctrl;
1653 		if (nb_rx_queues > sas->rxq_count) {
1654 			memset(&sas->rxq_info[sas->rxq_count], 0,
1655 			       (nb_rx_queues - sas->rxq_count) *
1656 			       sizeof(sas->rxq_info[0]));
1657 			memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1658 			       (nb_rx_queues - sas->rxq_count) *
1659 			       sizeof(sa->rxq_ctrl[0]));
1660 		}
1661 	}
1662 
1663 	while (sas->rxq_count < nb_rx_queues) {
1664 		rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1665 		if (rc != 0)
1666 			goto fail_rx_qinit_info;
1667 
1668 		sas->rxq_count++;
1669 	}
1670 
1671 configure_rss:
1672 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1673 			 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1674 
1675 	if (rss->channels > 0) {
1676 		struct rte_eth_rss_conf *adv_conf_rss;
1677 		unsigned int sw_index;
1678 
1679 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1680 			rss->tbl[sw_index] = sw_index % rss->channels;
1681 
1682 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1683 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1684 		if (rc != 0)
1685 			goto fail_rx_process_adv_conf_rss;
1686 	}
1687 
1688 	return 0;
1689 
1690 fail_rx_process_adv_conf_rss:
1691 fail_rx_qinit_info:
1692 fail_rxqs_ctrl_realloc:
1693 fail_rxqs_realloc:
1694 fail_rxqs_ctrl_alloc:
1695 fail_rxqs_alloc:
1696 	sfc_rx_close(sa);
1697 
1698 fail_check_mode:
1699 	sfc_log_init(sa, "failed %d", rc);
1700 	return rc;
1701 }
1702 
1703 /**
1704  * Shutdown Rx subsystem.
1705  *
1706  * Called at device close stage, for example, before device shutdown.
1707  */
1708 void
1709 sfc_rx_close(struct sfc_adapter *sa)
1710 {
1711 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1712 
1713 	sfc_rx_fini_queues(sa, 0);
1714 
1715 	rss->channels = 0;
1716 
1717 	free(sa->rxq_ctrl);
1718 	sa->rxq_ctrl = NULL;
1719 
1720 	rte_free(sfc_sa2shared(sa)->rxq_info);
1721 	sfc_sa2shared(sa)->rxq_info = NULL;
1722 }
1723