xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 9cd9d3e702fba4700539c1a2eddac13dd14ecf70)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 	rxq_info->state |= SFC_RXQ_FLUSHED;
45 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58 	int rc = 0;
59 
60 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62 		if (rc == 0)
63 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64 	}
65 	return rc;
66 }
67 
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71 	unsigned int free_space;
72 	unsigned int bulks;
73 	void *objs[SFC_RX_REFILL_BULK];
74 	efsys_dma_addr_t addr[RTE_DIM(objs)];
75 	unsigned int added = rxq->added;
76 	unsigned int id;
77 	unsigned int i;
78 	struct sfc_efx_rx_sw_desc *rxd;
79 	struct rte_mbuf *m;
80 	uint16_t port_id = rxq->dp.dpq.port_id;
81 
82 	free_space = rxq->max_fill_level - (added - rxq->completed);
83 
84 	if (free_space < rxq->refill_threshold)
85 		return;
86 
87 	bulks = free_space / RTE_DIM(objs);
88 	/* refill_threshold guarantees that bulks is positive */
89 	SFC_ASSERT(bulks > 0);
90 
91 	id = added & rxq->ptr_mask;
92 	do {
93 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94 						  RTE_DIM(objs)) < 0)) {
95 			/*
96 			 * It is hardly a safe way to increment counter
97 			 * from different contexts, but all PMDs do it.
98 			 */
99 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100 				RTE_DIM(objs);
101 			/* Return if we have posted nothing yet */
102 			if (added == rxq->added)
103 				return;
104 			/* Push posted */
105 			break;
106 		}
107 
108 		for (i = 0; i < RTE_DIM(objs);
109 		     ++i, id = (id + 1) & rxq->ptr_mask) {
110 			m = objs[i];
111 
112 			MBUF_RAW_ALLOC_CHECK(m);
113 
114 			rxd = &rxq->sw_desc[id];
115 			rxd->mbuf = m;
116 
117 			m->data_off = RTE_PKTMBUF_HEADROOM;
118 			m->port = port_id;
119 
120 			addr[i] = rte_pktmbuf_iova(m);
121 		}
122 
123 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124 			     RTE_DIM(objs), rxq->completed, added);
125 		added += RTE_DIM(objs);
126 	} while (--bulks > 0);
127 
128 	SFC_ASSERT(added != rxq->added);
129 	rxq->added = added;
130 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132 
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136 	uint64_t mbuf_flags = 0;
137 
138 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141 		break;
142 	case EFX_PKT_IPV4:
143 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144 		break;
145 	default:
146 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148 			   PKT_RX_IP_CKSUM_UNKNOWN);
149 		break;
150 	}
151 
152 	switch ((desc_flags &
153 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157 		break;
158 	case EFX_PKT_TCP:
159 	case EFX_PKT_UDP:
160 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161 		break;
162 	default:
163 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165 			   PKT_RX_L4_CKSUM_UNKNOWN);
166 		break;
167 	}
168 
169 	return mbuf_flags;
170 }
171 
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175 	return RTE_PTYPE_L2_ETHER |
176 		((desc_flags & EFX_PKT_IPV4) ?
177 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178 		((desc_flags & EFX_PKT_IPV6) ?
179 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183 
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187 	static const uint32_t ptypes[] = {
188 		RTE_PTYPE_L2_ETHER,
189 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191 		RTE_PTYPE_L4_TCP,
192 		RTE_PTYPE_L4_UDP,
193 		RTE_PTYPE_UNKNOWN
194 	};
195 
196 	return ptypes;
197 }
198 
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201 			struct rte_mbuf *m)
202 {
203 	uint8_t *mbuf_data;
204 
205 
206 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207 		return;
208 
209 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210 
211 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213 						      EFX_RX_HASHALG_TOEPLITZ,
214 						      mbuf_data);
215 
216 		m->ol_flags |= PKT_RX_RSS_HASH;
217 	}
218 }
219 
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223 	struct sfc_dp_rxq *dp_rxq = rx_queue;
224 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225 	unsigned int completed;
226 	unsigned int prefix_size = rxq->prefix_size;
227 	unsigned int done_pkts = 0;
228 	boolean_t discard_next = B_FALSE;
229 	struct rte_mbuf *scatter_pkt = NULL;
230 
231 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232 		return 0;
233 
234 	sfc_ev_qpoll(rxq->evq);
235 
236 	completed = rxq->completed;
237 	while (completed != rxq->pending && done_pkts < nb_pkts) {
238 		unsigned int id;
239 		struct sfc_efx_rx_sw_desc *rxd;
240 		struct rte_mbuf *m;
241 		unsigned int seg_len;
242 		unsigned int desc_flags;
243 
244 		id = completed++ & rxq->ptr_mask;
245 		rxd = &rxq->sw_desc[id];
246 		m = rxd->mbuf;
247 		desc_flags = rxd->flags;
248 
249 		if (discard_next)
250 			goto discard;
251 
252 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253 			goto discard;
254 
255 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
256 			uint16_t tmp_size;
257 			int rc __rte_unused;
258 
259 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261 			SFC_ASSERT(rc == 0);
262 			seg_len = tmp_size;
263 		} else {
264 			seg_len = rxd->size - prefix_size;
265 		}
266 
267 		rte_pktmbuf_data_len(m) = seg_len;
268 		rte_pktmbuf_pkt_len(m) = seg_len;
269 
270 		if (scatter_pkt != NULL) {
271 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272 				rte_pktmbuf_free(scatter_pkt);
273 				goto discard;
274 			}
275 			/* The packet to deliver */
276 			m = scatter_pkt;
277 		}
278 
279 		if (desc_flags & EFX_PKT_CONT) {
280 			/* The packet is scattered, more fragments to come */
281 			scatter_pkt = m;
282 			/* Further fragments have no prefix */
283 			prefix_size = 0;
284 			continue;
285 		}
286 
287 		/* Scattered packet is done */
288 		scatter_pkt = NULL;
289 		/* The first fragment of the packet has prefix */
290 		prefix_size = rxq->prefix_size;
291 
292 		m->ol_flags =
293 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294 		m->packet_type =
295 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296 
297 		/*
298 		 * Extract RSS hash from the packet prefix and
299 		 * set the corresponding field (if needed and possible)
300 		 */
301 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302 
303 		m->data_off += prefix_size;
304 
305 		*rx_pkts++ = m;
306 		done_pkts++;
307 		continue;
308 
309 discard:
310 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311 		rte_mbuf_raw_free(m);
312 		rxd->mbuf = NULL;
313 	}
314 
315 	/* pending is only moved when entire packet is received */
316 	SFC_ASSERT(scatter_pkt == NULL);
317 
318 	rxq->completed = completed;
319 
320 	sfc_efx_rx_qrefill(rxq);
321 
322 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323 		sfc_efx_rx_qprime(rxq);
324 
325 	return done_pkts;
326 }
327 
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333 
334 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335 		return 0;
336 
337 	sfc_ev_qpoll(rxq->evq);
338 
339 	return rxq->pending - rxq->completed;
340 }
341 
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347 
348 	if (unlikely(offset > rxq->ptr_mask))
349 		return -EINVAL;
350 
351 	/*
352 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353 	 * it is required for the queue to be running, but the
354 	 * check is omitted because API design assumes that it
355 	 * is the duty of the caller to satisfy all conditions
356 	 */
357 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358 		   SFC_EFX_RXQ_FLAG_RUNNING);
359 	sfc_ev_qpoll(rxq->evq);
360 
361 	/*
362 	 * There is a handful of reserved entries in the ring,
363 	 * but an explicit check whether the offset points to
364 	 * a reserved entry is neglected since the two checks
365 	 * below rely on the figures which take the HW limits
366 	 * into account and thus if an entry is reserved, the
367 	 * checks will fail and UNAVAIL code will be returned
368 	 */
369 
370 	if (offset < (rxq->pending - rxq->completed))
371 		return RTE_ETH_RX_DESC_DONE;
372 
373 	if (offset < (rxq->added - rxq->completed))
374 		return RTE_ETH_RX_DESC_AVAIL;
375 
376 	return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378 
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381 		     boolean_t rx_scatter_enabled, const char **error)
382 {
383 	if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
384 		*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
385 		return B_FALSE;
386 	}
387 
388 	return B_TRUE;
389 }
390 
391 /** Get Rx datapath ops by the datapath RxQ handle */
392 const struct sfc_dp_rx *
393 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
394 {
395 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
396 	struct rte_eth_dev *eth_dev;
397 	struct sfc_adapter_priv *sap;
398 
399 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
400 	eth_dev = &rte_eth_devices[dpq->port_id];
401 
402 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
403 
404 	return sap->dp_rx;
405 }
406 
407 struct sfc_rxq_info *
408 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411 	struct rte_eth_dev *eth_dev;
412 	struct sfc_adapter_shared *sas;
413 
414 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415 	eth_dev = &rte_eth_devices[dpq->port_id];
416 
417 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
418 
419 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
420 	return &sas->rxq_info[dpq->queue_id];
421 }
422 
423 struct sfc_rxq *
424 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
425 {
426 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
427 	struct rte_eth_dev *eth_dev;
428 	struct sfc_adapter *sa;
429 
430 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
431 	eth_dev = &rte_eth_devices[dpq->port_id];
432 
433 	sa = sfc_adapter_by_eth_dev(eth_dev);
434 
435 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
436 	return &sa->rxq_ctrl[dpq->queue_id];
437 }
438 
439 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
440 static int
441 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
442 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
443 			  __rte_unused struct rte_mempool *mb_pool,
444 			  unsigned int *rxq_entries,
445 			  unsigned int *evq_entries,
446 			  unsigned int *rxq_max_fill_level)
447 {
448 	*rxq_entries = nb_rx_desc;
449 	*evq_entries = nb_rx_desc;
450 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
451 	return 0;
452 }
453 
454 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
455 static int
456 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
457 		   const struct rte_pci_addr *pci_addr, int socket_id,
458 		   const struct sfc_dp_rx_qcreate_info *info,
459 		   struct sfc_dp_rxq **dp_rxqp)
460 {
461 	struct sfc_efx_rxq *rxq;
462 	int rc;
463 
464 	rc = ENOMEM;
465 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
466 				 RTE_CACHE_LINE_SIZE, socket_id);
467 	if (rxq == NULL)
468 		goto fail_rxq_alloc;
469 
470 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
471 
472 	rc = ENOMEM;
473 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
474 					 info->rxq_entries,
475 					 sizeof(*rxq->sw_desc),
476 					 RTE_CACHE_LINE_SIZE, socket_id);
477 	if (rxq->sw_desc == NULL)
478 		goto fail_desc_alloc;
479 
480 	/* efx datapath is bound to efx control path */
481 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
482 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
483 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
484 	rxq->ptr_mask = info->rxq_entries - 1;
485 	rxq->batch_max = info->batch_max;
486 	rxq->prefix_size = info->prefix_size;
487 	rxq->max_fill_level = info->max_fill_level;
488 	rxq->refill_threshold = info->refill_threshold;
489 	rxq->buf_size = info->buf_size;
490 	rxq->refill_mb_pool = info->refill_mb_pool;
491 
492 	*dp_rxqp = &rxq->dp;
493 	return 0;
494 
495 fail_desc_alloc:
496 	rte_free(rxq);
497 
498 fail_rxq_alloc:
499 	return rc;
500 }
501 
502 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
503 static void
504 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
505 {
506 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
507 
508 	rte_free(rxq->sw_desc);
509 	rte_free(rxq);
510 }
511 
512 
513 /* Use qstop and qstart functions in the case of qstart failure */
514 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
515 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
516 
517 
518 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
519 static int
520 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
521 		  __rte_unused unsigned int evq_read_ptr)
522 {
523 	/* libefx-based datapath is specific to libefx-based PMD */
524 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
525 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
526 	int rc;
527 
528 	rxq->common = crxq->common;
529 
530 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
531 
532 	sfc_efx_rx_qrefill(rxq);
533 
534 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
535 
536 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
537 		rc = sfc_efx_rx_qprime(rxq);
538 		if (rc != 0)
539 			goto fail_rx_qprime;
540 	}
541 
542 	return 0;
543 
544 fail_rx_qprime:
545 	sfc_efx_rx_qstop(dp_rxq, NULL);
546 	sfc_efx_rx_qpurge(dp_rxq);
547 	return rc;
548 }
549 
550 static void
551 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
552 		 __rte_unused unsigned int *evq_read_ptr)
553 {
554 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
555 
556 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
557 
558 	/* libefx-based datapath is bound to libefx-based PMD and uses
559 	 * event queue structure directly. So, there is no necessity to
560 	 * return EvQ read pointer.
561 	 */
562 }
563 
564 static void
565 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
566 {
567 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
568 	unsigned int i;
569 	struct sfc_efx_rx_sw_desc *rxd;
570 
571 	for (i = rxq->completed; i != rxq->added; ++i) {
572 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
573 		rte_mbuf_raw_free(rxd->mbuf);
574 		rxd->mbuf = NULL;
575 		/* Packed stream relies on 0 in inactive SW desc.
576 		 * Rx queue stop is not performance critical, so
577 		 * there is no harm to do it always.
578 		 */
579 		rxd->flags = 0;
580 		rxd->size = 0;
581 	}
582 
583 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
584 }
585 
586 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
587 static int
588 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
589 {
590 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591 	int rc = 0;
592 
593 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
594 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
595 		rc = sfc_efx_rx_qprime(rxq);
596 		if (rc != 0)
597 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
598 	}
599 	return rc;
600 }
601 
602 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
603 static int
604 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
605 {
606 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
607 
608 	/* Cannot disarm, just disable rearm */
609 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
610 	return 0;
611 }
612 
613 struct sfc_dp_rx sfc_efx_rx = {
614 	.dp = {
615 		.name		= SFC_KVARG_DATAPATH_EFX,
616 		.type		= SFC_DP_RX,
617 		.hw_fw_caps	= 0,
618 	},
619 	.features		= SFC_DP_RX_FEAT_INTR,
620 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
621 				  DEV_RX_OFFLOAD_RSS_HASH,
622 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
623 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
624 	.qcreate		= sfc_efx_rx_qcreate,
625 	.qdestroy		= sfc_efx_rx_qdestroy,
626 	.qstart			= sfc_efx_rx_qstart,
627 	.qstop			= sfc_efx_rx_qstop,
628 	.qpurge			= sfc_efx_rx_qpurge,
629 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
630 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
631 	.qdesc_status		= sfc_efx_rx_qdesc_status,
632 	.intr_enable		= sfc_efx_rx_intr_enable,
633 	.intr_disable		= sfc_efx_rx_intr_disable,
634 	.pkt_burst		= sfc_efx_recv_pkts,
635 };
636 
637 static void
638 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
639 {
640 	struct sfc_rxq_info *rxq_info;
641 	struct sfc_rxq *rxq;
642 	unsigned int retry_count;
643 	unsigned int wait_count;
644 	int rc;
645 
646 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
647 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
648 
649 	rxq = &sa->rxq_ctrl[sw_index];
650 
651 	/*
652 	 * Retry Rx queue flushing in the case of flush failed or
653 	 * timeout. In the worst case it can delay for 6 seconds.
654 	 */
655 	for (retry_count = 0;
656 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
657 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
658 	     ++retry_count) {
659 		rc = efx_rx_qflush(rxq->common);
660 		if (rc != 0) {
661 			rxq_info->state |= (rc == EALREADY) ?
662 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
663 			break;
664 		}
665 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
666 		rxq_info->state |= SFC_RXQ_FLUSHING;
667 
668 		/*
669 		 * Wait for Rx queue flush done or failed event at least
670 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
671 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
672 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
673 		 */
674 		wait_count = 0;
675 		do {
676 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
677 			sfc_ev_qpoll(rxq->evq);
678 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
679 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
680 
681 		if (rxq_info->state & SFC_RXQ_FLUSHING)
682 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
683 
684 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
685 			sfc_err(sa, "RxQ %u flush failed", sw_index);
686 
687 		if (rxq_info->state & SFC_RXQ_FLUSHED)
688 			sfc_notice(sa, "RxQ %u flushed", sw_index);
689 	}
690 
691 	sa->priv.dp_rx->qpurge(rxq_info->dp);
692 }
693 
694 static int
695 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
696 {
697 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
698 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
699 	struct sfc_port *port = &sa->port;
700 	int rc;
701 
702 	/*
703 	 * If promiscuous or all-multicast mode has been requested, setting
704 	 * filter for the default Rx queue might fail, in particular, while
705 	 * running over PCI function which is not a member of corresponding
706 	 * privilege groups; if this occurs, few iterations will be made to
707 	 * repeat this step without promiscuous and all-multicast flags set
708 	 */
709 retry:
710 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
711 	if (rc == 0)
712 		return 0;
713 	else if (rc != EOPNOTSUPP)
714 		return rc;
715 
716 	if (port->promisc) {
717 		sfc_warn(sa, "promiscuous mode has been requested, "
718 			     "but the HW rejects it");
719 		sfc_warn(sa, "promiscuous mode will be disabled");
720 
721 		port->promisc = B_FALSE;
722 		sa->eth_dev->data->promiscuous = 0;
723 		rc = sfc_set_rx_mode(sa);
724 		if (rc != 0)
725 			return rc;
726 
727 		goto retry;
728 	}
729 
730 	if (port->allmulti) {
731 		sfc_warn(sa, "all-multicast mode has been requested, "
732 			     "but the HW rejects it");
733 		sfc_warn(sa, "all-multicast mode will be disabled");
734 
735 		port->allmulti = B_FALSE;
736 		sa->eth_dev->data->all_multicast = 0;
737 		rc = sfc_set_rx_mode(sa);
738 		if (rc != 0)
739 			return rc;
740 
741 		goto retry;
742 	}
743 
744 	return rc;
745 }
746 
747 int
748 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
749 {
750 	struct sfc_rxq_info *rxq_info;
751 	struct sfc_rxq *rxq;
752 	struct sfc_evq *evq;
753 	int rc;
754 
755 	sfc_log_init(sa, "sw_index=%u", sw_index);
756 
757 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
758 
759 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
760 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
761 
762 	rxq = &sa->rxq_ctrl[sw_index];
763 	evq = rxq->evq;
764 
765 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
766 	if (rc != 0)
767 		goto fail_ev_qstart;
768 
769 	switch (rxq_info->type) {
770 	case EFX_RXQ_TYPE_DEFAULT:
771 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
772 			rxq->buf_size,
773 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
774 			rxq_info->type_flags, evq->common, &rxq->common);
775 		break;
776 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
777 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
778 		struct rte_mempool_info mp_info;
779 
780 		rc = rte_mempool_ops_get_info(mp, &mp_info);
781 		if (rc != 0) {
782 			/* Positive errno is used in the driver */
783 			rc = -rc;
784 			goto fail_mp_get_info;
785 		}
786 		if (mp_info.contig_block_size <= 0) {
787 			rc = EINVAL;
788 			goto fail_bad_contig_block_size;
789 		}
790 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
791 			mp_info.contig_block_size, rxq->buf_size,
792 			mp->header_size + mp->elt_size + mp->trailer_size,
793 			sa->rxd_wait_timeout_ns,
794 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
795 			evq->common, &rxq->common);
796 		break;
797 	}
798 	default:
799 		rc = ENOTSUP;
800 	}
801 	if (rc != 0)
802 		goto fail_rx_qcreate;
803 
804 	efx_rx_qenable(rxq->common);
805 
806 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
807 	if (rc != 0)
808 		goto fail_dp_qstart;
809 
810 	rxq_info->state |= SFC_RXQ_STARTED;
811 
812 	if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
813 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
814 		if (rc != 0)
815 			goto fail_mac_filter_default_rxq_set;
816 	}
817 
818 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
819 	sa->eth_dev->data->rx_queue_state[sw_index] =
820 		RTE_ETH_QUEUE_STATE_STARTED;
821 
822 	return 0;
823 
824 fail_mac_filter_default_rxq_set:
825 	sfc_rx_qflush(sa, sw_index);
826 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
827 	rxq_info->state = SFC_RXQ_INITIALIZED;
828 
829 fail_dp_qstart:
830 	efx_rx_qdestroy(rxq->common);
831 
832 fail_rx_qcreate:
833 fail_bad_contig_block_size:
834 fail_mp_get_info:
835 	sfc_ev_qstop(evq);
836 
837 fail_ev_qstart:
838 	return rc;
839 }
840 
841 void
842 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
843 {
844 	struct sfc_rxq_info *rxq_info;
845 	struct sfc_rxq *rxq;
846 
847 	sfc_log_init(sa, "sw_index=%u", sw_index);
848 
849 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
850 
851 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
852 
853 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
854 		return;
855 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
856 
857 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
858 	sa->eth_dev->data->rx_queue_state[sw_index] =
859 		RTE_ETH_QUEUE_STATE_STOPPED;
860 
861 	rxq = &sa->rxq_ctrl[sw_index];
862 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
863 
864 	if (sw_index == 0)
865 		efx_mac_filter_default_rxq_clear(sa->nic);
866 
867 	sfc_rx_qflush(sa, sw_index);
868 
869 	rxq_info->state = SFC_RXQ_INITIALIZED;
870 
871 	efx_rx_qdestroy(rxq->common);
872 
873 	sfc_ev_qstop(rxq->evq);
874 }
875 
876 static uint64_t
877 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
878 {
879 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
880 	uint64_t no_caps = 0;
881 
882 	if (encp->enc_tunnel_encapsulations_supported == 0)
883 		no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
884 
885 	return ~no_caps;
886 }
887 
888 uint64_t
889 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
890 {
891 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
892 
893 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
894 
895 	return caps & sfc_rx_get_offload_mask(sa);
896 }
897 
898 uint64_t
899 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
900 {
901 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
902 }
903 
904 static int
905 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
906 		   const struct rte_eth_rxconf *rx_conf,
907 		   __rte_unused uint64_t offloads)
908 {
909 	int rc = 0;
910 
911 	if (rx_conf->rx_thresh.pthresh != 0 ||
912 	    rx_conf->rx_thresh.hthresh != 0 ||
913 	    rx_conf->rx_thresh.wthresh != 0) {
914 		sfc_warn(sa,
915 			"RxQ prefetch/host/writeback thresholds are not supported");
916 	}
917 
918 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
919 		sfc_err(sa,
920 			"RxQ free threshold too large: %u vs maximum %u",
921 			rx_conf->rx_free_thresh, rxq_max_fill_level);
922 		rc = EINVAL;
923 	}
924 
925 	if (rx_conf->rx_drop_en == 0) {
926 		sfc_err(sa, "RxQ drop disable is not supported");
927 		rc = EINVAL;
928 	}
929 
930 	return rc;
931 }
932 
933 static unsigned int
934 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
935 {
936 	uint32_t data_off;
937 	uint32_t order;
938 
939 	/* The mbuf object itself is always cache line aligned */
940 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
941 
942 	/* Data offset from mbuf object start */
943 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
944 		RTE_PKTMBUF_HEADROOM;
945 
946 	order = MIN(order, rte_bsf32(data_off));
947 
948 	return 1u << order;
949 }
950 
951 static uint16_t
952 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
953 {
954 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
955 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
956 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
957 	uint16_t buf_size;
958 	unsigned int buf_aligned;
959 	unsigned int start_alignment;
960 	unsigned int end_padding_alignment;
961 
962 	/* Below it is assumed that both alignments are power of 2 */
963 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
964 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
965 
966 	/*
967 	 * mbuf is always cache line aligned, double-check
968 	 * that it meets rx buffer start alignment requirements.
969 	 */
970 
971 	/* Start from mbuf pool data room size */
972 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
973 
974 	/* Remove headroom */
975 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
976 		sfc_err(sa,
977 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
978 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
979 		return 0;
980 	}
981 	buf_size -= RTE_PKTMBUF_HEADROOM;
982 
983 	/* Calculate guaranteed data start alignment */
984 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
985 
986 	/* Reserve space for start alignment */
987 	if (buf_aligned < nic_align_start) {
988 		start_alignment = nic_align_start - buf_aligned;
989 		if (buf_size <= start_alignment) {
990 			sfc_err(sa,
991 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
992 				mb_pool->name,
993 				rte_pktmbuf_data_room_size(mb_pool),
994 				RTE_PKTMBUF_HEADROOM, start_alignment);
995 			return 0;
996 		}
997 		buf_aligned = nic_align_start;
998 		buf_size -= start_alignment;
999 	} else {
1000 		start_alignment = 0;
1001 	}
1002 
1003 	/* Make sure that end padding does not write beyond the buffer */
1004 	if (buf_aligned < nic_align_end) {
1005 		/*
1006 		 * Estimate space which can be lost. If guarnteed buffer
1007 		 * size is odd, lost space is (nic_align_end - 1). More
1008 		 * accurate formula is below.
1009 		 */
1010 		end_padding_alignment = nic_align_end -
1011 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1012 		if (buf_size <= end_padding_alignment) {
1013 			sfc_err(sa,
1014 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1015 				mb_pool->name,
1016 				rte_pktmbuf_data_room_size(mb_pool),
1017 				RTE_PKTMBUF_HEADROOM, start_alignment,
1018 				end_padding_alignment);
1019 			return 0;
1020 		}
1021 		buf_size -= end_padding_alignment;
1022 	} else {
1023 		/*
1024 		 * Start is aligned the same or better than end,
1025 		 * just align length.
1026 		 */
1027 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1028 	}
1029 
1030 	return buf_size;
1031 }
1032 
1033 int
1034 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1035 	     uint16_t nb_rx_desc, unsigned int socket_id,
1036 	     const struct rte_eth_rxconf *rx_conf,
1037 	     struct rte_mempool *mb_pool)
1038 {
1039 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1040 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1041 	int rc;
1042 	unsigned int rxq_entries;
1043 	unsigned int evq_entries;
1044 	unsigned int rxq_max_fill_level;
1045 	uint64_t offloads;
1046 	uint16_t buf_size;
1047 	struct sfc_rxq_info *rxq_info;
1048 	struct sfc_evq *evq;
1049 	struct sfc_rxq *rxq;
1050 	struct sfc_dp_rx_qcreate_info info;
1051 	struct sfc_dp_rx_hw_limits hw_limits;
1052 	uint16_t rx_free_thresh;
1053 	const char *error;
1054 
1055 	memset(&hw_limits, 0, sizeof(hw_limits));
1056 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1057 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1058 	hw_limits.evq_max_entries = sa->evq_max_entries;
1059 	hw_limits.evq_min_entries = sa->evq_min_entries;
1060 
1061 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1062 					    &rxq_entries, &evq_entries,
1063 					    &rxq_max_fill_level);
1064 	if (rc != 0)
1065 		goto fail_size_up_rings;
1066 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1067 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1068 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1069 
1070 	offloads = rx_conf->offloads |
1071 		sa->eth_dev->data->dev_conf.rxmode.offloads;
1072 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1073 	if (rc != 0)
1074 		goto fail_bad_conf;
1075 
1076 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1077 	if (buf_size == 0) {
1078 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1079 			sw_index);
1080 		rc = EINVAL;
1081 		goto fail_bad_conf;
1082 	}
1083 
1084 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1085 				  encp->enc_rx_prefix_size,
1086 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1087 				  &error)) {
1088 		sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1089 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1090 			"PDU size %u plus Rx prefix %u bytes",
1091 			sw_index, buf_size, (unsigned int)sa->port.pdu,
1092 			encp->enc_rx_prefix_size);
1093 		rc = EINVAL;
1094 		goto fail_bad_conf;
1095 	}
1096 
1097 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1098 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1099 
1100 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1101 	rxq_info->entries = rxq_entries;
1102 
1103 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1104 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1105 	else
1106 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1107 
1108 	rxq_info->type_flags =
1109 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1110 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1111 
1112 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1113 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1114 	     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1115 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1116 
1117 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1118 			  evq_entries, socket_id, &evq);
1119 	if (rc != 0)
1120 		goto fail_ev_qinit;
1121 
1122 	rxq = &sa->rxq_ctrl[sw_index];
1123 	rxq->evq = evq;
1124 	rxq->hw_index = sw_index;
1125 	/*
1126 	 * If Rx refill threshold is specified (its value is non zero) in
1127 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1128 	 * the Rx descriptors number as the default. It allows to keep
1129 	 * Rx ring full-enough and does not refill too aggressive if
1130 	 * packet rate is high.
1131 	 *
1132 	 * Since PMD refills in bulks waiting for full bulk may be
1133 	 * refilled (basically round down), it is better to round up
1134 	 * here to mitigate it a bit.
1135 	 */
1136 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1137 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1138 	/* Rx refill threshold cannot be smaller than refill bulk */
1139 	rxq_info->refill_threshold =
1140 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1141 	rxq_info->refill_mb_pool = mb_pool;
1142 	rxq->buf_size = buf_size;
1143 
1144 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1145 			   efx_rxq_size(sa->nic, rxq_info->entries),
1146 			   socket_id, &rxq->mem);
1147 	if (rc != 0)
1148 		goto fail_dma_alloc;
1149 
1150 	memset(&info, 0, sizeof(info));
1151 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1152 	info.max_fill_level = rxq_max_fill_level;
1153 	info.refill_threshold = rxq_info->refill_threshold;
1154 	info.buf_size = buf_size;
1155 	info.batch_max = encp->enc_rx_batch_max;
1156 	info.prefix_size = encp->enc_rx_prefix_size;
1157 
1158 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1159 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1160 
1161 	info.rxq_entries = rxq_info->entries;
1162 	info.rxq_hw_ring = rxq->mem.esm_base;
1163 	info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1164 	info.evq_entries = evq_entries;
1165 	info.evq_hw_ring = evq->mem.esm_base;
1166 	info.hw_index = rxq->hw_index;
1167 	info.mem_bar = sa->mem_bar.esb_base;
1168 	info.vi_window_shift = encp->enc_vi_window_shift;
1169 
1170 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1171 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1172 				     socket_id, &info, &rxq_info->dp);
1173 	if (rc != 0)
1174 		goto fail_dp_rx_qcreate;
1175 
1176 	evq->dp_rxq = rxq_info->dp;
1177 
1178 	rxq_info->state = SFC_RXQ_INITIALIZED;
1179 
1180 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1181 
1182 	return 0;
1183 
1184 fail_dp_rx_qcreate:
1185 	sfc_dma_free(sa, &rxq->mem);
1186 
1187 fail_dma_alloc:
1188 	sfc_ev_qfini(evq);
1189 
1190 fail_ev_qinit:
1191 	rxq_info->entries = 0;
1192 
1193 fail_bad_conf:
1194 fail_size_up_rings:
1195 	sfc_log_init(sa, "failed %d", rc);
1196 	return rc;
1197 }
1198 
1199 void
1200 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1201 {
1202 	struct sfc_rxq_info *rxq_info;
1203 	struct sfc_rxq *rxq;
1204 
1205 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1206 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1207 
1208 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1209 
1210 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1211 
1212 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1213 	rxq_info->dp = NULL;
1214 
1215 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1216 	rxq_info->entries = 0;
1217 
1218 	rxq = &sa->rxq_ctrl[sw_index];
1219 
1220 	sfc_dma_free(sa, &rxq->mem);
1221 
1222 	sfc_ev_qfini(rxq->evq);
1223 	rxq->evq = NULL;
1224 }
1225 
1226 /*
1227  * Mapping between RTE RSS hash functions and their EFX counterparts.
1228  */
1229 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1230 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1231 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1232 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1233 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1234 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1235 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1236 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1237 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1238 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1239 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1240 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1241 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1242 	  ETH_RSS_IPV6_EX,
1243 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1244 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1245 };
1246 
1247 static efx_rx_hash_type_t
1248 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1249 			    unsigned int *hash_type_flags_supported,
1250 			    unsigned int nb_hash_type_flags_supported)
1251 {
1252 	efx_rx_hash_type_t hash_type_masked = 0;
1253 	unsigned int i, j;
1254 
1255 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1256 		unsigned int class_tuple_lbn[] = {
1257 			EFX_RX_CLASS_IPV4_TCP_LBN,
1258 			EFX_RX_CLASS_IPV4_UDP_LBN,
1259 			EFX_RX_CLASS_IPV4_LBN,
1260 			EFX_RX_CLASS_IPV6_TCP_LBN,
1261 			EFX_RX_CLASS_IPV6_UDP_LBN,
1262 			EFX_RX_CLASS_IPV6_LBN
1263 		};
1264 
1265 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1266 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1267 			unsigned int flag;
1268 
1269 			tuple_mask <<= class_tuple_lbn[j];
1270 			flag = hash_type & tuple_mask;
1271 
1272 			if (flag == hash_type_flags_supported[i])
1273 				hash_type_masked |= flag;
1274 		}
1275 	}
1276 
1277 	return hash_type_masked;
1278 }
1279 
1280 int
1281 sfc_rx_hash_init(struct sfc_adapter *sa)
1282 {
1283 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1284 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1285 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1286 	efx_rx_hash_alg_t alg;
1287 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1288 	unsigned int nb_flags_supp;
1289 	struct sfc_rss_hf_rte_to_efx *hf_map;
1290 	struct sfc_rss_hf_rte_to_efx *entry;
1291 	efx_rx_hash_type_t efx_hash_types;
1292 	unsigned int i;
1293 	int rc;
1294 
1295 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1296 		alg = EFX_RX_HASHALG_TOEPLITZ;
1297 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1298 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1299 	else
1300 		return EINVAL;
1301 
1302 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1303 					 RTE_DIM(flags_supp), &nb_flags_supp);
1304 	if (rc != 0)
1305 		return rc;
1306 
1307 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1308 				   RTE_DIM(sfc_rss_hf_map),
1309 				   sizeof(*hf_map), 0, sa->socket_id);
1310 	if (hf_map == NULL)
1311 		return ENOMEM;
1312 
1313 	entry = hf_map;
1314 	efx_hash_types = 0;
1315 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1316 		efx_rx_hash_type_t ht;
1317 
1318 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1319 						 flags_supp, nb_flags_supp);
1320 		if (ht != 0) {
1321 			entry->rte = sfc_rss_hf_map[i].rte;
1322 			entry->efx = ht;
1323 			efx_hash_types |= ht;
1324 			++entry;
1325 		}
1326 	}
1327 
1328 	rss->hash_alg = alg;
1329 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1330 	rss->hf_map = hf_map;
1331 	rss->hash_types = efx_hash_types;
1332 
1333 	return 0;
1334 }
1335 
1336 void
1337 sfc_rx_hash_fini(struct sfc_adapter *sa)
1338 {
1339 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1340 
1341 	rte_free(rss->hf_map);
1342 }
1343 
1344 int
1345 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1346 		     efx_rx_hash_type_t *efx)
1347 {
1348 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1349 	efx_rx_hash_type_t hash_types = 0;
1350 	unsigned int i;
1351 
1352 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1353 		uint64_t rte_mask = rss->hf_map[i].rte;
1354 
1355 		if ((rte & rte_mask) != 0) {
1356 			rte &= ~rte_mask;
1357 			hash_types |= rss->hf_map[i].efx;
1358 		}
1359 	}
1360 
1361 	if (rte != 0) {
1362 		sfc_err(sa, "unsupported hash functions requested");
1363 		return EINVAL;
1364 	}
1365 
1366 	*efx = hash_types;
1367 
1368 	return 0;
1369 }
1370 
1371 uint64_t
1372 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1373 {
1374 	uint64_t rte = 0;
1375 	unsigned int i;
1376 
1377 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1378 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1379 
1380 		if ((efx & hash_type) == hash_type)
1381 			rte |= rss->hf_map[i].rte;
1382 	}
1383 
1384 	return rte;
1385 }
1386 
1387 static int
1388 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1389 			    struct rte_eth_rss_conf *conf)
1390 {
1391 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1392 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1393 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1394 	int rc;
1395 
1396 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1397 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1398 		    conf->rss_key != NULL)
1399 			return EINVAL;
1400 	}
1401 
1402 	if (conf->rss_hf != 0) {
1403 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1404 		if (rc != 0)
1405 			return rc;
1406 	}
1407 
1408 	if (conf->rss_key != NULL) {
1409 		if (conf->rss_key_len != sizeof(rss->key)) {
1410 			sfc_err(sa, "RSS key size is wrong (should be %zu)",
1411 				sizeof(rss->key));
1412 			return EINVAL;
1413 		}
1414 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1415 	}
1416 
1417 	rss->hash_types = efx_hash_types;
1418 
1419 	return 0;
1420 }
1421 
1422 static int
1423 sfc_rx_rss_config(struct sfc_adapter *sa)
1424 {
1425 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1426 	int rc = 0;
1427 
1428 	if (rss->channels > 0) {
1429 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1430 					   rss->hash_alg, rss->hash_types,
1431 					   B_TRUE);
1432 		if (rc != 0)
1433 			goto finish;
1434 
1435 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1436 					  rss->key, sizeof(rss->key));
1437 		if (rc != 0)
1438 			goto finish;
1439 
1440 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1441 					  rss->tbl, RTE_DIM(rss->tbl));
1442 	}
1443 
1444 finish:
1445 	return rc;
1446 }
1447 
1448 int
1449 sfc_rx_start(struct sfc_adapter *sa)
1450 {
1451 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1452 	unsigned int sw_index;
1453 	int rc;
1454 
1455 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1456 
1457 	rc = efx_rx_init(sa->nic);
1458 	if (rc != 0)
1459 		goto fail_rx_init;
1460 
1461 	rc = sfc_rx_rss_config(sa);
1462 	if (rc != 0)
1463 		goto fail_rss_config;
1464 
1465 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1466 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1467 		    (!sas->rxq_info[sw_index].deferred_start ||
1468 		     sas->rxq_info[sw_index].deferred_started)) {
1469 			rc = sfc_rx_qstart(sa, sw_index);
1470 			if (rc != 0)
1471 				goto fail_rx_qstart;
1472 		}
1473 	}
1474 
1475 	return 0;
1476 
1477 fail_rx_qstart:
1478 	while (sw_index-- > 0)
1479 		sfc_rx_qstop(sa, sw_index);
1480 
1481 fail_rss_config:
1482 	efx_rx_fini(sa->nic);
1483 
1484 fail_rx_init:
1485 	sfc_log_init(sa, "failed %d", rc);
1486 	return rc;
1487 }
1488 
1489 void
1490 sfc_rx_stop(struct sfc_adapter *sa)
1491 {
1492 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1493 	unsigned int sw_index;
1494 
1495 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1496 
1497 	sw_index = sas->rxq_count;
1498 	while (sw_index-- > 0) {
1499 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1500 			sfc_rx_qstop(sa, sw_index);
1501 	}
1502 
1503 	efx_rx_fini(sa->nic);
1504 }
1505 
1506 static int
1507 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1508 {
1509 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1510 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1511 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1512 	unsigned int max_entries;
1513 
1514 	max_entries = encp->enc_rxq_max_ndescs;
1515 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1516 
1517 	rxq_info->max_entries = max_entries;
1518 
1519 	return 0;
1520 }
1521 
1522 static int
1523 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1524 {
1525 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1526 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1527 				      sfc_rx_get_queue_offload_caps(sa);
1528 	struct sfc_rss *rss = &sas->rss;
1529 	int rc = 0;
1530 
1531 	switch (rxmode->mq_mode) {
1532 	case ETH_MQ_RX_NONE:
1533 		/* No special checks are required */
1534 		break;
1535 	case ETH_MQ_RX_RSS:
1536 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1537 			sfc_err(sa, "RSS is not available");
1538 			rc = EINVAL;
1539 		}
1540 		break;
1541 	default:
1542 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1543 			rxmode->mq_mode);
1544 		rc = EINVAL;
1545 	}
1546 
1547 	/*
1548 	 * Requested offloads are validated against supported by ethdev,
1549 	 * so unsupported offloads cannot be added as the result of
1550 	 * below check.
1551 	 */
1552 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1553 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1554 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1555 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1556 	}
1557 
1558 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1559 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1560 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1561 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1562 	}
1563 
1564 	if ((offloads_supported & DEV_RX_OFFLOAD_RSS_HASH) &&
1565 	    (rxmode->mq_mode & ETH_MQ_RX_RSS_FLAG))
1566 		rxmode->offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1567 
1568 	return rc;
1569 }
1570 
1571 /**
1572  * Destroy excess queues that are no longer needed after reconfiguration
1573  * or complete close.
1574  */
1575 static void
1576 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1577 {
1578 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1579 	int sw_index;
1580 
1581 	SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1582 
1583 	sw_index = sas->rxq_count;
1584 	while (--sw_index >= (int)nb_rx_queues) {
1585 		if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1586 			sfc_rx_qfini(sa, sw_index);
1587 	}
1588 
1589 	sas->rxq_count = nb_rx_queues;
1590 }
1591 
1592 /**
1593  * Initialize Rx subsystem.
1594  *
1595  * Called at device (re)configuration stage when number of receive queues is
1596  * specified together with other device level receive configuration.
1597  *
1598  * It should be used to allocate NUMA-unaware resources.
1599  */
1600 int
1601 sfc_rx_configure(struct sfc_adapter *sa)
1602 {
1603 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1604 	struct sfc_rss *rss = &sas->rss;
1605 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1606 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1607 	int rc;
1608 
1609 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1610 		     nb_rx_queues, sas->rxq_count);
1611 
1612 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1613 	if (rc != 0)
1614 		goto fail_check_mode;
1615 
1616 	if (nb_rx_queues == sas->rxq_count)
1617 		goto configure_rss;
1618 
1619 	if (sas->rxq_info == NULL) {
1620 		rc = ENOMEM;
1621 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1622 						  sizeof(sas->rxq_info[0]), 0,
1623 						  sa->socket_id);
1624 		if (sas->rxq_info == NULL)
1625 			goto fail_rxqs_alloc;
1626 
1627 		/*
1628 		 * Allocate primary process only RxQ control from heap
1629 		 * since it should not be shared.
1630 		 */
1631 		rc = ENOMEM;
1632 		sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1633 		if (sa->rxq_ctrl == NULL)
1634 			goto fail_rxqs_ctrl_alloc;
1635 	} else {
1636 		struct sfc_rxq_info *new_rxq_info;
1637 		struct sfc_rxq *new_rxq_ctrl;
1638 
1639 		if (nb_rx_queues < sas->rxq_count)
1640 			sfc_rx_fini_queues(sa, nb_rx_queues);
1641 
1642 		rc = ENOMEM;
1643 		new_rxq_info =
1644 			rte_realloc(sas->rxq_info,
1645 				    nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1646 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1647 			goto fail_rxqs_realloc;
1648 
1649 		rc = ENOMEM;
1650 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1651 				       nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1652 		if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1653 			goto fail_rxqs_ctrl_realloc;
1654 
1655 		sas->rxq_info = new_rxq_info;
1656 		sa->rxq_ctrl = new_rxq_ctrl;
1657 		if (nb_rx_queues > sas->rxq_count) {
1658 			memset(&sas->rxq_info[sas->rxq_count], 0,
1659 			       (nb_rx_queues - sas->rxq_count) *
1660 			       sizeof(sas->rxq_info[0]));
1661 			memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1662 			       (nb_rx_queues - sas->rxq_count) *
1663 			       sizeof(sa->rxq_ctrl[0]));
1664 		}
1665 	}
1666 
1667 	while (sas->rxq_count < nb_rx_queues) {
1668 		rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1669 		if (rc != 0)
1670 			goto fail_rx_qinit_info;
1671 
1672 		sas->rxq_count++;
1673 	}
1674 
1675 configure_rss:
1676 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1677 			 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1678 
1679 	if (rss->channels > 0) {
1680 		struct rte_eth_rss_conf *adv_conf_rss;
1681 		unsigned int sw_index;
1682 
1683 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1684 			rss->tbl[sw_index] = sw_index % rss->channels;
1685 
1686 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1687 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1688 		if (rc != 0)
1689 			goto fail_rx_process_adv_conf_rss;
1690 	}
1691 
1692 	return 0;
1693 
1694 fail_rx_process_adv_conf_rss:
1695 fail_rx_qinit_info:
1696 fail_rxqs_ctrl_realloc:
1697 fail_rxqs_realloc:
1698 fail_rxqs_ctrl_alloc:
1699 fail_rxqs_alloc:
1700 	sfc_rx_close(sa);
1701 
1702 fail_check_mode:
1703 	sfc_log_init(sa, "failed %d", rc);
1704 	return rc;
1705 }
1706 
1707 /**
1708  * Shutdown Rx subsystem.
1709  *
1710  * Called at device close stage, for example, before device shutdown.
1711  */
1712 void
1713 sfc_rx_close(struct sfc_adapter *sa)
1714 {
1715 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1716 
1717 	sfc_rx_fini_queues(sa, 0);
1718 
1719 	rss->channels = 0;
1720 
1721 	free(sa->rxq_ctrl);
1722 	sa->rxq_ctrl = NULL;
1723 
1724 	rte_free(sfc_sa2shared(sa)->rxq_info);
1725 	sfc_sa2shared(sa)->rxq_info = NULL;
1726 }
1727