xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 	rxq_info->state |= SFC_RXQ_FLUSHED;
45 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58 	int rc = 0;
59 
60 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62 		if (rc == 0)
63 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64 	}
65 	return rc;
66 }
67 
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71 	unsigned int free_space;
72 	unsigned int bulks;
73 	void *objs[SFC_RX_REFILL_BULK];
74 	efsys_dma_addr_t addr[RTE_DIM(objs)];
75 	unsigned int added = rxq->added;
76 	unsigned int id;
77 	unsigned int i;
78 	struct sfc_efx_rx_sw_desc *rxd;
79 	struct rte_mbuf *m;
80 	uint16_t port_id = rxq->dp.dpq.port_id;
81 
82 	free_space = rxq->max_fill_level - (added - rxq->completed);
83 
84 	if (free_space < rxq->refill_threshold)
85 		return;
86 
87 	bulks = free_space / RTE_DIM(objs);
88 	/* refill_threshold guarantees that bulks is positive */
89 	SFC_ASSERT(bulks > 0);
90 
91 	id = added & rxq->ptr_mask;
92 	do {
93 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94 						  RTE_DIM(objs)) < 0)) {
95 			/*
96 			 * It is hardly a safe way to increment counter
97 			 * from different contexts, but all PMDs do it.
98 			 */
99 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100 				RTE_DIM(objs);
101 			/* Return if we have posted nothing yet */
102 			if (added == rxq->added)
103 				return;
104 			/* Push posted */
105 			break;
106 		}
107 
108 		for (i = 0; i < RTE_DIM(objs);
109 		     ++i, id = (id + 1) & rxq->ptr_mask) {
110 			m = objs[i];
111 
112 			__rte_mbuf_raw_sanity_check(m);
113 
114 			rxd = &rxq->sw_desc[id];
115 			rxd->mbuf = m;
116 
117 			m->data_off = RTE_PKTMBUF_HEADROOM;
118 			m->port = port_id;
119 
120 			addr[i] = rte_pktmbuf_iova(m);
121 		}
122 
123 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124 			     RTE_DIM(objs), rxq->completed, added);
125 		added += RTE_DIM(objs);
126 	} while (--bulks > 0);
127 
128 	SFC_ASSERT(added != rxq->added);
129 	rxq->added = added;
130 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132 
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136 	uint64_t mbuf_flags = 0;
137 
138 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141 		break;
142 	case EFX_PKT_IPV4:
143 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144 		break;
145 	default:
146 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148 			   PKT_RX_IP_CKSUM_UNKNOWN);
149 		break;
150 	}
151 
152 	switch ((desc_flags &
153 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157 		break;
158 	case EFX_PKT_TCP:
159 	case EFX_PKT_UDP:
160 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161 		break;
162 	default:
163 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165 			   PKT_RX_L4_CKSUM_UNKNOWN);
166 		break;
167 	}
168 
169 	return mbuf_flags;
170 }
171 
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175 	return RTE_PTYPE_L2_ETHER |
176 		((desc_flags & EFX_PKT_IPV4) ?
177 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178 		((desc_flags & EFX_PKT_IPV6) ?
179 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183 
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187 	static const uint32_t ptypes[] = {
188 		RTE_PTYPE_L2_ETHER,
189 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191 		RTE_PTYPE_L4_TCP,
192 		RTE_PTYPE_L4_UDP,
193 		RTE_PTYPE_UNKNOWN
194 	};
195 
196 	return ptypes;
197 }
198 
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201 			struct rte_mbuf *m)
202 {
203 	uint8_t *mbuf_data;
204 
205 
206 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207 		return;
208 
209 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210 
211 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213 						      EFX_RX_HASHALG_TOEPLITZ,
214 						      mbuf_data);
215 
216 		m->ol_flags |= PKT_RX_RSS_HASH;
217 	}
218 }
219 
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223 	struct sfc_dp_rxq *dp_rxq = rx_queue;
224 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225 	unsigned int completed;
226 	unsigned int prefix_size = rxq->prefix_size;
227 	unsigned int done_pkts = 0;
228 	boolean_t discard_next = B_FALSE;
229 	struct rte_mbuf *scatter_pkt = NULL;
230 
231 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232 		return 0;
233 
234 	sfc_ev_qpoll(rxq->evq);
235 
236 	completed = rxq->completed;
237 	while (completed != rxq->pending && done_pkts < nb_pkts) {
238 		unsigned int id;
239 		struct sfc_efx_rx_sw_desc *rxd;
240 		struct rte_mbuf *m;
241 		unsigned int seg_len;
242 		unsigned int desc_flags;
243 
244 		id = completed++ & rxq->ptr_mask;
245 		rxd = &rxq->sw_desc[id];
246 		m = rxd->mbuf;
247 		desc_flags = rxd->flags;
248 
249 		if (discard_next)
250 			goto discard;
251 
252 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253 			goto discard;
254 
255 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
256 			uint16_t tmp_size;
257 			int rc __rte_unused;
258 
259 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261 			SFC_ASSERT(rc == 0);
262 			seg_len = tmp_size;
263 		} else {
264 			seg_len = rxd->size - prefix_size;
265 		}
266 
267 		rte_pktmbuf_data_len(m) = seg_len;
268 		rte_pktmbuf_pkt_len(m) = seg_len;
269 
270 		if (scatter_pkt != NULL) {
271 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272 				rte_pktmbuf_free(scatter_pkt);
273 				goto discard;
274 			}
275 			/* The packet to deliver */
276 			m = scatter_pkt;
277 		}
278 
279 		if (desc_flags & EFX_PKT_CONT) {
280 			/* The packet is scattered, more fragments to come */
281 			scatter_pkt = m;
282 			/* Further fragments have no prefix */
283 			prefix_size = 0;
284 			continue;
285 		}
286 
287 		/* Scattered packet is done */
288 		scatter_pkt = NULL;
289 		/* The first fragment of the packet has prefix */
290 		prefix_size = rxq->prefix_size;
291 
292 		m->ol_flags =
293 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294 		m->packet_type =
295 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296 
297 		/*
298 		 * Extract RSS hash from the packet prefix and
299 		 * set the corresponding field (if needed and possible)
300 		 */
301 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302 
303 		m->data_off += prefix_size;
304 
305 		*rx_pkts++ = m;
306 		done_pkts++;
307 		continue;
308 
309 discard:
310 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311 		rte_mbuf_raw_free(m);
312 		rxd->mbuf = NULL;
313 	}
314 
315 	/* pending is only moved when entire packet is received */
316 	SFC_ASSERT(scatter_pkt == NULL);
317 
318 	rxq->completed = completed;
319 
320 	sfc_efx_rx_qrefill(rxq);
321 
322 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323 		sfc_efx_rx_qprime(rxq);
324 
325 	return done_pkts;
326 }
327 
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333 
334 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335 		return 0;
336 
337 	sfc_ev_qpoll(rxq->evq);
338 
339 	return rxq->pending - rxq->completed;
340 }
341 
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347 
348 	if (unlikely(offset > rxq->ptr_mask))
349 		return -EINVAL;
350 
351 	/*
352 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353 	 * it is required for the queue to be running, but the
354 	 * check is omitted because API design assumes that it
355 	 * is the duty of the caller to satisfy all conditions
356 	 */
357 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358 		   SFC_EFX_RXQ_FLAG_RUNNING);
359 	sfc_ev_qpoll(rxq->evq);
360 
361 	/*
362 	 * There is a handful of reserved entries in the ring,
363 	 * but an explicit check whether the offset points to
364 	 * a reserved entry is neglected since the two checks
365 	 * below rely on the figures which take the HW limits
366 	 * into account and thus if an entry is reserved, the
367 	 * checks will fail and UNAVAIL code will be returned
368 	 */
369 
370 	if (offset < (rxq->pending - rxq->completed))
371 		return RTE_ETH_RX_DESC_DONE;
372 
373 	if (offset < (rxq->added - rxq->completed))
374 		return RTE_ETH_RX_DESC_AVAIL;
375 
376 	return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378 
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381 		     boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
382 		     const char **error)
383 {
384 	uint32_t effective_rx_scatter_max;
385 	uint32_t rx_scatter_bufs;
386 
387 	effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
388 	rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
389 
390 	if (rx_scatter_bufs > effective_rx_scatter_max) {
391 		if (rx_scatter_enabled)
392 			*error = "Possible number of Rx scatter buffers exceeds maximum number";
393 		else
394 			*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
395 		return B_FALSE;
396 	}
397 
398 	return B_TRUE;
399 }
400 
401 /** Get Rx datapath ops by the datapath RxQ handle */
402 const struct sfc_dp_rx *
403 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
404 {
405 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
406 	struct rte_eth_dev *eth_dev;
407 	struct sfc_adapter_priv *sap;
408 
409 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
410 	eth_dev = &rte_eth_devices[dpq->port_id];
411 
412 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
413 
414 	return sap->dp_rx;
415 }
416 
417 struct sfc_rxq_info *
418 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
419 {
420 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
421 	struct rte_eth_dev *eth_dev;
422 	struct sfc_adapter_shared *sas;
423 
424 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
425 	eth_dev = &rte_eth_devices[dpq->port_id];
426 
427 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
428 
429 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
430 	return &sas->rxq_info[dpq->queue_id];
431 }
432 
433 struct sfc_rxq *
434 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
435 {
436 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
437 	struct rte_eth_dev *eth_dev;
438 	struct sfc_adapter *sa;
439 
440 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
441 	eth_dev = &rte_eth_devices[dpq->port_id];
442 
443 	sa = sfc_adapter_by_eth_dev(eth_dev);
444 
445 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
446 	return &sa->rxq_ctrl[dpq->queue_id];
447 }
448 
449 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
450 static int
451 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
452 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
453 			  __rte_unused struct rte_mempool *mb_pool,
454 			  unsigned int *rxq_entries,
455 			  unsigned int *evq_entries,
456 			  unsigned int *rxq_max_fill_level)
457 {
458 	*rxq_entries = nb_rx_desc;
459 	*evq_entries = nb_rx_desc;
460 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
461 	return 0;
462 }
463 
464 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
465 static int
466 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
467 		   const struct rte_pci_addr *pci_addr, int socket_id,
468 		   const struct sfc_dp_rx_qcreate_info *info,
469 		   struct sfc_dp_rxq **dp_rxqp)
470 {
471 	struct sfc_efx_rxq *rxq;
472 	int rc;
473 
474 	rc = ENOMEM;
475 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
476 				 RTE_CACHE_LINE_SIZE, socket_id);
477 	if (rxq == NULL)
478 		goto fail_rxq_alloc;
479 
480 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
481 
482 	rc = ENOMEM;
483 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
484 					 info->rxq_entries,
485 					 sizeof(*rxq->sw_desc),
486 					 RTE_CACHE_LINE_SIZE, socket_id);
487 	if (rxq->sw_desc == NULL)
488 		goto fail_desc_alloc;
489 
490 	/* efx datapath is bound to efx control path */
491 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
492 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
493 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
494 	rxq->ptr_mask = info->rxq_entries - 1;
495 	rxq->batch_max = info->batch_max;
496 	rxq->prefix_size = info->prefix_size;
497 	rxq->max_fill_level = info->max_fill_level;
498 	rxq->refill_threshold = info->refill_threshold;
499 	rxq->buf_size = info->buf_size;
500 	rxq->refill_mb_pool = info->refill_mb_pool;
501 
502 	*dp_rxqp = &rxq->dp;
503 	return 0;
504 
505 fail_desc_alloc:
506 	rte_free(rxq);
507 
508 fail_rxq_alloc:
509 	return rc;
510 }
511 
512 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
513 static void
514 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
515 {
516 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
517 
518 	rte_free(rxq->sw_desc);
519 	rte_free(rxq);
520 }
521 
522 
523 /* Use qstop and qstart functions in the case of qstart failure */
524 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
525 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
526 
527 
528 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
529 static int
530 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
531 		  __rte_unused unsigned int evq_read_ptr,
532 		  const efx_rx_prefix_layout_t *pinfo)
533 {
534 	/* libefx-based datapath is specific to libefx-based PMD */
535 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
536 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
537 	int rc;
538 
539 	/*
540 	 * libefx API is used to extract information from Rx prefix and
541 	 * it guarantees consistency. Just do length check to ensure
542 	 * that we reserved space in Rx buffers correctly.
543 	 */
544 	if (rxq->prefix_size != pinfo->erpl_length)
545 		return ENOTSUP;
546 
547 	rxq->common = crxq->common;
548 
549 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
550 
551 	sfc_efx_rx_qrefill(rxq);
552 
553 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
554 
555 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
556 		rc = sfc_efx_rx_qprime(rxq);
557 		if (rc != 0)
558 			goto fail_rx_qprime;
559 	}
560 
561 	return 0;
562 
563 fail_rx_qprime:
564 	sfc_efx_rx_qstop(dp_rxq, NULL);
565 	sfc_efx_rx_qpurge(dp_rxq);
566 	return rc;
567 }
568 
569 static void
570 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
571 		 __rte_unused unsigned int *evq_read_ptr)
572 {
573 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
574 
575 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
576 
577 	/* libefx-based datapath is bound to libefx-based PMD and uses
578 	 * event queue structure directly. So, there is no necessity to
579 	 * return EvQ read pointer.
580 	 */
581 }
582 
583 static void
584 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
585 {
586 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
587 	unsigned int i;
588 	struct sfc_efx_rx_sw_desc *rxd;
589 
590 	for (i = rxq->completed; i != rxq->added; ++i) {
591 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
592 		rte_mbuf_raw_free(rxd->mbuf);
593 		rxd->mbuf = NULL;
594 		/* Packed stream relies on 0 in inactive SW desc.
595 		 * Rx queue stop is not performance critical, so
596 		 * there is no harm to do it always.
597 		 */
598 		rxd->flags = 0;
599 		rxd->size = 0;
600 	}
601 
602 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
603 }
604 
605 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
606 static int
607 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
608 {
609 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
610 	int rc = 0;
611 
612 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
613 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
614 		rc = sfc_efx_rx_qprime(rxq);
615 		if (rc != 0)
616 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
617 	}
618 	return rc;
619 }
620 
621 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
622 static int
623 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
624 {
625 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
626 
627 	/* Cannot disarm, just disable rearm */
628 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
629 	return 0;
630 }
631 
632 struct sfc_dp_rx sfc_efx_rx = {
633 	.dp = {
634 		.name		= SFC_KVARG_DATAPATH_EFX,
635 		.type		= SFC_DP_RX,
636 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_RX_EFX,
637 	},
638 	.features		= SFC_DP_RX_FEAT_INTR,
639 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
640 				  DEV_RX_OFFLOAD_RSS_HASH,
641 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
642 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
643 	.qcreate		= sfc_efx_rx_qcreate,
644 	.qdestroy		= sfc_efx_rx_qdestroy,
645 	.qstart			= sfc_efx_rx_qstart,
646 	.qstop			= sfc_efx_rx_qstop,
647 	.qpurge			= sfc_efx_rx_qpurge,
648 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
649 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
650 	.qdesc_status		= sfc_efx_rx_qdesc_status,
651 	.intr_enable		= sfc_efx_rx_intr_enable,
652 	.intr_disable		= sfc_efx_rx_intr_disable,
653 	.pkt_burst		= sfc_efx_recv_pkts,
654 };
655 
656 static void
657 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
658 {
659 	struct sfc_rxq_info *rxq_info;
660 	struct sfc_rxq *rxq;
661 	unsigned int retry_count;
662 	unsigned int wait_count;
663 	int rc;
664 
665 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
666 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
667 
668 	rxq = &sa->rxq_ctrl[sw_index];
669 
670 	/*
671 	 * Retry Rx queue flushing in the case of flush failed or
672 	 * timeout. In the worst case it can delay for 6 seconds.
673 	 */
674 	for (retry_count = 0;
675 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
676 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
677 	     ++retry_count) {
678 		rc = efx_rx_qflush(rxq->common);
679 		if (rc != 0) {
680 			rxq_info->state |= (rc == EALREADY) ?
681 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
682 			break;
683 		}
684 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
685 		rxq_info->state |= SFC_RXQ_FLUSHING;
686 
687 		/*
688 		 * Wait for Rx queue flush done or failed event at least
689 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
690 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
691 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
692 		 */
693 		wait_count = 0;
694 		do {
695 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
696 			sfc_ev_qpoll(rxq->evq);
697 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
698 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
699 
700 		if (rxq_info->state & SFC_RXQ_FLUSHING)
701 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
702 
703 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
704 			sfc_err(sa, "RxQ %u flush failed", sw_index);
705 
706 		if (rxq_info->state & SFC_RXQ_FLUSHED)
707 			sfc_notice(sa, "RxQ %u flushed", sw_index);
708 	}
709 
710 	sa->priv.dp_rx->qpurge(rxq_info->dp);
711 }
712 
713 static int
714 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
715 {
716 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
717 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
718 	struct sfc_port *port = &sa->port;
719 	int rc;
720 
721 	/*
722 	 * If promiscuous or all-multicast mode has been requested, setting
723 	 * filter for the default Rx queue might fail, in particular, while
724 	 * running over PCI function which is not a member of corresponding
725 	 * privilege groups; if this occurs, few iterations will be made to
726 	 * repeat this step without promiscuous and all-multicast flags set
727 	 */
728 retry:
729 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
730 	if (rc == 0)
731 		return 0;
732 	else if (rc != EOPNOTSUPP)
733 		return rc;
734 
735 	if (port->promisc) {
736 		sfc_warn(sa, "promiscuous mode has been requested, "
737 			     "but the HW rejects it");
738 		sfc_warn(sa, "promiscuous mode will be disabled");
739 
740 		port->promisc = B_FALSE;
741 		sa->eth_dev->data->promiscuous = 0;
742 		rc = sfc_set_rx_mode_unchecked(sa);
743 		if (rc != 0)
744 			return rc;
745 
746 		goto retry;
747 	}
748 
749 	if (port->allmulti) {
750 		sfc_warn(sa, "all-multicast mode has been requested, "
751 			     "but the HW rejects it");
752 		sfc_warn(sa, "all-multicast mode will be disabled");
753 
754 		port->allmulti = B_FALSE;
755 		sa->eth_dev->data->all_multicast = 0;
756 		rc = sfc_set_rx_mode_unchecked(sa);
757 		if (rc != 0)
758 			return rc;
759 
760 		goto retry;
761 	}
762 
763 	return rc;
764 }
765 
766 int
767 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
768 {
769 	struct sfc_rxq_info *rxq_info;
770 	struct sfc_rxq *rxq;
771 	struct sfc_evq *evq;
772 	efx_rx_prefix_layout_t pinfo;
773 	int rc;
774 
775 	sfc_log_init(sa, "sw_index=%u", sw_index);
776 
777 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
778 
779 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
780 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
781 
782 	rxq = &sa->rxq_ctrl[sw_index];
783 	evq = rxq->evq;
784 
785 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
786 	if (rc != 0)
787 		goto fail_ev_qstart;
788 
789 	switch (rxq_info->type) {
790 	case EFX_RXQ_TYPE_DEFAULT:
791 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
792 			rxq->buf_size,
793 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
794 			rxq_info->type_flags, evq->common, &rxq->common);
795 		break;
796 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
797 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
798 		struct rte_mempool_info mp_info;
799 
800 		rc = rte_mempool_ops_get_info(mp, &mp_info);
801 		if (rc != 0) {
802 			/* Positive errno is used in the driver */
803 			rc = -rc;
804 			goto fail_mp_get_info;
805 		}
806 		if (mp_info.contig_block_size <= 0) {
807 			rc = EINVAL;
808 			goto fail_bad_contig_block_size;
809 		}
810 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
811 			mp_info.contig_block_size, rxq->buf_size,
812 			mp->header_size + mp->elt_size + mp->trailer_size,
813 			sa->rxd_wait_timeout_ns,
814 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
815 			evq->common, &rxq->common);
816 		break;
817 	}
818 	default:
819 		rc = ENOTSUP;
820 	}
821 	if (rc != 0)
822 		goto fail_rx_qcreate;
823 
824 	rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
825 	if (rc != 0)
826 		goto fail_prefix_get_layout;
827 
828 	efx_rx_qenable(rxq->common);
829 
830 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
831 	if (rc != 0)
832 		goto fail_dp_qstart;
833 
834 	rxq_info->state |= SFC_RXQ_STARTED;
835 
836 	if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
837 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
838 		if (rc != 0)
839 			goto fail_mac_filter_default_rxq_set;
840 	}
841 
842 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
843 	sa->eth_dev->data->rx_queue_state[sw_index] =
844 		RTE_ETH_QUEUE_STATE_STARTED;
845 
846 	return 0;
847 
848 fail_mac_filter_default_rxq_set:
849 	sfc_rx_qflush(sa, sw_index);
850 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
851 	rxq_info->state = SFC_RXQ_INITIALIZED;
852 
853 fail_dp_qstart:
854 	efx_rx_qdestroy(rxq->common);
855 
856 fail_prefix_get_layout:
857 fail_rx_qcreate:
858 fail_bad_contig_block_size:
859 fail_mp_get_info:
860 	sfc_ev_qstop(evq);
861 
862 fail_ev_qstart:
863 	return rc;
864 }
865 
866 void
867 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
868 {
869 	struct sfc_rxq_info *rxq_info;
870 	struct sfc_rxq *rxq;
871 
872 	sfc_log_init(sa, "sw_index=%u", sw_index);
873 
874 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
875 
876 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
877 
878 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
879 		return;
880 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
881 
882 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
883 	sa->eth_dev->data->rx_queue_state[sw_index] =
884 		RTE_ETH_QUEUE_STATE_STOPPED;
885 
886 	rxq = &sa->rxq_ctrl[sw_index];
887 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
888 
889 	if (sw_index == 0)
890 		efx_mac_filter_default_rxq_clear(sa->nic);
891 
892 	sfc_rx_qflush(sa, sw_index);
893 
894 	rxq_info->state = SFC_RXQ_INITIALIZED;
895 
896 	efx_rx_qdestroy(rxq->common);
897 
898 	sfc_ev_qstop(rxq->evq);
899 }
900 
901 static uint64_t
902 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
903 {
904 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
905 	uint64_t no_caps = 0;
906 
907 	if (encp->enc_tunnel_encapsulations_supported == 0)
908 		no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
909 
910 	return ~no_caps;
911 }
912 
913 uint64_t
914 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
915 {
916 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
917 
918 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
919 
920 	return caps & sfc_rx_get_offload_mask(sa);
921 }
922 
923 uint64_t
924 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
925 {
926 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
927 }
928 
929 static int
930 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
931 		   const struct rte_eth_rxconf *rx_conf,
932 		   __rte_unused uint64_t offloads)
933 {
934 	int rc = 0;
935 
936 	if (rx_conf->rx_thresh.pthresh != 0 ||
937 	    rx_conf->rx_thresh.hthresh != 0 ||
938 	    rx_conf->rx_thresh.wthresh != 0) {
939 		sfc_warn(sa,
940 			"RxQ prefetch/host/writeback thresholds are not supported");
941 	}
942 
943 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
944 		sfc_err(sa,
945 			"RxQ free threshold too large: %u vs maximum %u",
946 			rx_conf->rx_free_thresh, rxq_max_fill_level);
947 		rc = EINVAL;
948 	}
949 
950 	if (rx_conf->rx_drop_en == 0) {
951 		sfc_err(sa, "RxQ drop disable is not supported");
952 		rc = EINVAL;
953 	}
954 
955 	return rc;
956 }
957 
958 static unsigned int
959 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
960 {
961 	uint32_t data_off;
962 	uint32_t order;
963 
964 	/* The mbuf object itself is always cache line aligned */
965 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
966 
967 	/* Data offset from mbuf object start */
968 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
969 		RTE_PKTMBUF_HEADROOM;
970 
971 	order = MIN(order, rte_bsf32(data_off));
972 
973 	return 1u << order;
974 }
975 
976 static uint16_t
977 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
978 {
979 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
980 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
981 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
982 	uint16_t buf_size;
983 	unsigned int buf_aligned;
984 	unsigned int start_alignment;
985 	unsigned int end_padding_alignment;
986 
987 	/* Below it is assumed that both alignments are power of 2 */
988 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
989 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
990 
991 	/*
992 	 * mbuf is always cache line aligned, double-check
993 	 * that it meets rx buffer start alignment requirements.
994 	 */
995 
996 	/* Start from mbuf pool data room size */
997 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
998 
999 	/* Remove headroom */
1000 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1001 		sfc_err(sa,
1002 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1003 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1004 		return 0;
1005 	}
1006 	buf_size -= RTE_PKTMBUF_HEADROOM;
1007 
1008 	/* Calculate guaranteed data start alignment */
1009 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1010 
1011 	/* Reserve space for start alignment */
1012 	if (buf_aligned < nic_align_start) {
1013 		start_alignment = nic_align_start - buf_aligned;
1014 		if (buf_size <= start_alignment) {
1015 			sfc_err(sa,
1016 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1017 				mb_pool->name,
1018 				rte_pktmbuf_data_room_size(mb_pool),
1019 				RTE_PKTMBUF_HEADROOM, start_alignment);
1020 			return 0;
1021 		}
1022 		buf_aligned = nic_align_start;
1023 		buf_size -= start_alignment;
1024 	} else {
1025 		start_alignment = 0;
1026 	}
1027 
1028 	/* Make sure that end padding does not write beyond the buffer */
1029 	if (buf_aligned < nic_align_end) {
1030 		/*
1031 		 * Estimate space which can be lost. If guarnteed buffer
1032 		 * size is odd, lost space is (nic_align_end - 1). More
1033 		 * accurate formula is below.
1034 		 */
1035 		end_padding_alignment = nic_align_end -
1036 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1037 		if (buf_size <= end_padding_alignment) {
1038 			sfc_err(sa,
1039 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1040 				mb_pool->name,
1041 				rte_pktmbuf_data_room_size(mb_pool),
1042 				RTE_PKTMBUF_HEADROOM, start_alignment,
1043 				end_padding_alignment);
1044 			return 0;
1045 		}
1046 		buf_size -= end_padding_alignment;
1047 	} else {
1048 		/*
1049 		 * Start is aligned the same or better than end,
1050 		 * just align length.
1051 		 */
1052 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1053 	}
1054 
1055 	return buf_size;
1056 }
1057 
1058 int
1059 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1060 	     uint16_t nb_rx_desc, unsigned int socket_id,
1061 	     const struct rte_eth_rxconf *rx_conf,
1062 	     struct rte_mempool *mb_pool)
1063 {
1064 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1065 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1066 	int rc;
1067 	unsigned int rxq_entries;
1068 	unsigned int evq_entries;
1069 	unsigned int rxq_max_fill_level;
1070 	uint64_t offloads;
1071 	uint16_t buf_size;
1072 	struct sfc_rxq_info *rxq_info;
1073 	struct sfc_evq *evq;
1074 	struct sfc_rxq *rxq;
1075 	struct sfc_dp_rx_qcreate_info info;
1076 	struct sfc_dp_rx_hw_limits hw_limits;
1077 	uint16_t rx_free_thresh;
1078 	const char *error;
1079 
1080 	memset(&hw_limits, 0, sizeof(hw_limits));
1081 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1082 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1083 	hw_limits.evq_max_entries = sa->evq_max_entries;
1084 	hw_limits.evq_min_entries = sa->evq_min_entries;
1085 
1086 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1087 					    &rxq_entries, &evq_entries,
1088 					    &rxq_max_fill_level);
1089 	if (rc != 0)
1090 		goto fail_size_up_rings;
1091 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1092 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1093 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1094 
1095 	offloads = rx_conf->offloads |
1096 		sa->eth_dev->data->dev_conf.rxmode.offloads;
1097 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1098 	if (rc != 0)
1099 		goto fail_bad_conf;
1100 
1101 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1102 	if (buf_size == 0) {
1103 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1104 			sw_index);
1105 		rc = EINVAL;
1106 		goto fail_bad_conf;
1107 	}
1108 
1109 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1110 				  encp->enc_rx_prefix_size,
1111 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1112 				  encp->enc_rx_scatter_max,
1113 				  &error)) {
1114 		sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1115 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1116 			"PDU size %u plus Rx prefix %u bytes",
1117 			sw_index, buf_size, (unsigned int)sa->port.pdu,
1118 			encp->enc_rx_prefix_size);
1119 		rc = EINVAL;
1120 		goto fail_bad_conf;
1121 	}
1122 
1123 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1124 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1125 
1126 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1127 	rxq_info->entries = rxq_entries;
1128 
1129 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1130 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1131 	else
1132 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1133 
1134 	rxq_info->type_flags =
1135 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1136 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1137 
1138 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1139 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1140 	     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1141 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1142 
1143 	if (offloads & DEV_RX_OFFLOAD_RSS_HASH)
1144 		rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1145 
1146 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1147 			  evq_entries, socket_id, &evq);
1148 	if (rc != 0)
1149 		goto fail_ev_qinit;
1150 
1151 	rxq = &sa->rxq_ctrl[sw_index];
1152 	rxq->evq = evq;
1153 	rxq->hw_index = sw_index;
1154 	/*
1155 	 * If Rx refill threshold is specified (its value is non zero) in
1156 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1157 	 * the Rx descriptors number as the default. It allows to keep
1158 	 * Rx ring full-enough and does not refill too aggressive if
1159 	 * packet rate is high.
1160 	 *
1161 	 * Since PMD refills in bulks waiting for full bulk may be
1162 	 * refilled (basically round down), it is better to round up
1163 	 * here to mitigate it a bit.
1164 	 */
1165 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1166 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1167 	/* Rx refill threshold cannot be smaller than refill bulk */
1168 	rxq_info->refill_threshold =
1169 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1170 	rxq_info->refill_mb_pool = mb_pool;
1171 
1172 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1173 	    (offloads & DEV_RX_OFFLOAD_RSS_HASH))
1174 		rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1175 	else
1176 		rxq_info->rxq_flags = 0;
1177 
1178 	rxq->buf_size = buf_size;
1179 
1180 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1181 			   efx_rxq_size(sa->nic, rxq_info->entries),
1182 			   socket_id, &rxq->mem);
1183 	if (rc != 0)
1184 		goto fail_dma_alloc;
1185 
1186 	memset(&info, 0, sizeof(info));
1187 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1188 	info.max_fill_level = rxq_max_fill_level;
1189 	info.refill_threshold = rxq_info->refill_threshold;
1190 	info.buf_size = buf_size;
1191 	info.batch_max = encp->enc_rx_batch_max;
1192 	info.prefix_size = encp->enc_rx_prefix_size;
1193 	info.flags = rxq_info->rxq_flags;
1194 	info.rxq_entries = rxq_info->entries;
1195 	info.rxq_hw_ring = rxq->mem.esm_base;
1196 	info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1197 	info.evq_entries = evq_entries;
1198 	info.evq_hw_ring = evq->mem.esm_base;
1199 	info.hw_index = rxq->hw_index;
1200 	info.mem_bar = sa->mem_bar.esb_base;
1201 	info.vi_window_shift = encp->enc_vi_window_shift;
1202 	info.fcw_offset = sa->fcw_offset;
1203 
1204 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1205 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1206 				     socket_id, &info, &rxq_info->dp);
1207 	if (rc != 0)
1208 		goto fail_dp_rx_qcreate;
1209 
1210 	evq->dp_rxq = rxq_info->dp;
1211 
1212 	rxq_info->state = SFC_RXQ_INITIALIZED;
1213 
1214 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1215 
1216 	return 0;
1217 
1218 fail_dp_rx_qcreate:
1219 	sfc_dma_free(sa, &rxq->mem);
1220 
1221 fail_dma_alloc:
1222 	sfc_ev_qfini(evq);
1223 
1224 fail_ev_qinit:
1225 	rxq_info->entries = 0;
1226 
1227 fail_bad_conf:
1228 fail_size_up_rings:
1229 	sfc_log_init(sa, "failed %d", rc);
1230 	return rc;
1231 }
1232 
1233 void
1234 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1235 {
1236 	struct sfc_rxq_info *rxq_info;
1237 	struct sfc_rxq *rxq;
1238 
1239 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1240 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1241 
1242 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1243 
1244 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1245 
1246 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1247 	rxq_info->dp = NULL;
1248 
1249 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1250 	rxq_info->entries = 0;
1251 
1252 	rxq = &sa->rxq_ctrl[sw_index];
1253 
1254 	sfc_dma_free(sa, &rxq->mem);
1255 
1256 	sfc_ev_qfini(rxq->evq);
1257 	rxq->evq = NULL;
1258 }
1259 
1260 /*
1261  * Mapping between RTE RSS hash functions and their EFX counterparts.
1262  */
1263 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1264 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1265 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1266 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1267 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1268 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1269 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1270 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1271 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1272 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1273 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1274 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1275 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1276 	  ETH_RSS_IPV6_EX,
1277 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1278 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1279 };
1280 
1281 static efx_rx_hash_type_t
1282 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1283 			    unsigned int *hash_type_flags_supported,
1284 			    unsigned int nb_hash_type_flags_supported)
1285 {
1286 	efx_rx_hash_type_t hash_type_masked = 0;
1287 	unsigned int i, j;
1288 
1289 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1290 		unsigned int class_tuple_lbn[] = {
1291 			EFX_RX_CLASS_IPV4_TCP_LBN,
1292 			EFX_RX_CLASS_IPV4_UDP_LBN,
1293 			EFX_RX_CLASS_IPV4_LBN,
1294 			EFX_RX_CLASS_IPV6_TCP_LBN,
1295 			EFX_RX_CLASS_IPV6_UDP_LBN,
1296 			EFX_RX_CLASS_IPV6_LBN
1297 		};
1298 
1299 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1300 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1301 			unsigned int flag;
1302 
1303 			tuple_mask <<= class_tuple_lbn[j];
1304 			flag = hash_type & tuple_mask;
1305 
1306 			if (flag == hash_type_flags_supported[i])
1307 				hash_type_masked |= flag;
1308 		}
1309 	}
1310 
1311 	return hash_type_masked;
1312 }
1313 
1314 int
1315 sfc_rx_hash_init(struct sfc_adapter *sa)
1316 {
1317 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1318 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1319 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1320 	efx_rx_hash_alg_t alg;
1321 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1322 	unsigned int nb_flags_supp;
1323 	struct sfc_rss_hf_rte_to_efx *hf_map;
1324 	struct sfc_rss_hf_rte_to_efx *entry;
1325 	efx_rx_hash_type_t efx_hash_types;
1326 	unsigned int i;
1327 	int rc;
1328 
1329 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1330 		alg = EFX_RX_HASHALG_TOEPLITZ;
1331 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1332 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1333 	else
1334 		return EINVAL;
1335 
1336 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1337 					 RTE_DIM(flags_supp), &nb_flags_supp);
1338 	if (rc != 0)
1339 		return rc;
1340 
1341 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1342 				   RTE_DIM(sfc_rss_hf_map),
1343 				   sizeof(*hf_map), 0, sa->socket_id);
1344 	if (hf_map == NULL)
1345 		return ENOMEM;
1346 
1347 	entry = hf_map;
1348 	efx_hash_types = 0;
1349 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1350 		efx_rx_hash_type_t ht;
1351 
1352 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1353 						 flags_supp, nb_flags_supp);
1354 		if (ht != 0) {
1355 			entry->rte = sfc_rss_hf_map[i].rte;
1356 			entry->efx = ht;
1357 			efx_hash_types |= ht;
1358 			++entry;
1359 		}
1360 	}
1361 
1362 	rss->hash_alg = alg;
1363 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1364 	rss->hf_map = hf_map;
1365 	rss->hash_types = efx_hash_types;
1366 
1367 	return 0;
1368 }
1369 
1370 void
1371 sfc_rx_hash_fini(struct sfc_adapter *sa)
1372 {
1373 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1374 
1375 	rte_free(rss->hf_map);
1376 }
1377 
1378 int
1379 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1380 		     efx_rx_hash_type_t *efx)
1381 {
1382 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1383 	efx_rx_hash_type_t hash_types = 0;
1384 	unsigned int i;
1385 
1386 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1387 		uint64_t rte_mask = rss->hf_map[i].rte;
1388 
1389 		if ((rte & rte_mask) != 0) {
1390 			rte &= ~rte_mask;
1391 			hash_types |= rss->hf_map[i].efx;
1392 		}
1393 	}
1394 
1395 	if (rte != 0) {
1396 		sfc_err(sa, "unsupported hash functions requested");
1397 		return EINVAL;
1398 	}
1399 
1400 	*efx = hash_types;
1401 
1402 	return 0;
1403 }
1404 
1405 uint64_t
1406 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1407 {
1408 	uint64_t rte = 0;
1409 	unsigned int i;
1410 
1411 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1412 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1413 
1414 		if ((efx & hash_type) == hash_type)
1415 			rte |= rss->hf_map[i].rte;
1416 	}
1417 
1418 	return rte;
1419 }
1420 
1421 static int
1422 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1423 			    struct rte_eth_rss_conf *conf)
1424 {
1425 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1426 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1427 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1428 	int rc;
1429 
1430 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1431 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1432 		    conf->rss_key != NULL)
1433 			return EINVAL;
1434 	}
1435 
1436 	if (conf->rss_hf != 0) {
1437 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1438 		if (rc != 0)
1439 			return rc;
1440 	}
1441 
1442 	if (conf->rss_key != NULL) {
1443 		if (conf->rss_key_len != sizeof(rss->key)) {
1444 			sfc_err(sa, "RSS key size is wrong (should be %zu)",
1445 				sizeof(rss->key));
1446 			return EINVAL;
1447 		}
1448 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1449 	}
1450 
1451 	rss->hash_types = efx_hash_types;
1452 
1453 	return 0;
1454 }
1455 
1456 static int
1457 sfc_rx_rss_config(struct sfc_adapter *sa)
1458 {
1459 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1460 	int rc = 0;
1461 
1462 	if (rss->channels > 0) {
1463 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1464 					   rss->hash_alg, rss->hash_types,
1465 					   B_TRUE);
1466 		if (rc != 0)
1467 			goto finish;
1468 
1469 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1470 					  rss->key, sizeof(rss->key));
1471 		if (rc != 0)
1472 			goto finish;
1473 
1474 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1475 					  rss->tbl, RTE_DIM(rss->tbl));
1476 	}
1477 
1478 finish:
1479 	return rc;
1480 }
1481 
1482 int
1483 sfc_rx_start(struct sfc_adapter *sa)
1484 {
1485 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1486 	unsigned int sw_index;
1487 	int rc;
1488 
1489 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1490 
1491 	rc = efx_rx_init(sa->nic);
1492 	if (rc != 0)
1493 		goto fail_rx_init;
1494 
1495 	rc = sfc_rx_rss_config(sa);
1496 	if (rc != 0)
1497 		goto fail_rss_config;
1498 
1499 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1500 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1501 		    (!sas->rxq_info[sw_index].deferred_start ||
1502 		     sas->rxq_info[sw_index].deferred_started)) {
1503 			rc = sfc_rx_qstart(sa, sw_index);
1504 			if (rc != 0)
1505 				goto fail_rx_qstart;
1506 		}
1507 	}
1508 
1509 	return 0;
1510 
1511 fail_rx_qstart:
1512 	while (sw_index-- > 0)
1513 		sfc_rx_qstop(sa, sw_index);
1514 
1515 fail_rss_config:
1516 	efx_rx_fini(sa->nic);
1517 
1518 fail_rx_init:
1519 	sfc_log_init(sa, "failed %d", rc);
1520 	return rc;
1521 }
1522 
1523 void
1524 sfc_rx_stop(struct sfc_adapter *sa)
1525 {
1526 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1527 	unsigned int sw_index;
1528 
1529 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1530 
1531 	sw_index = sas->rxq_count;
1532 	while (sw_index-- > 0) {
1533 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1534 			sfc_rx_qstop(sa, sw_index);
1535 	}
1536 
1537 	efx_rx_fini(sa->nic);
1538 }
1539 
1540 static int
1541 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1542 {
1543 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1544 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1545 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1546 	unsigned int max_entries;
1547 
1548 	max_entries = encp->enc_rxq_max_ndescs;
1549 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1550 
1551 	rxq_info->max_entries = max_entries;
1552 
1553 	return 0;
1554 }
1555 
1556 static int
1557 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1558 {
1559 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1560 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1561 				      sfc_rx_get_queue_offload_caps(sa);
1562 	struct sfc_rss *rss = &sas->rss;
1563 	int rc = 0;
1564 
1565 	switch (rxmode->mq_mode) {
1566 	case ETH_MQ_RX_NONE:
1567 		/* No special checks are required */
1568 		break;
1569 	case ETH_MQ_RX_RSS:
1570 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1571 			sfc_err(sa, "RSS is not available");
1572 			rc = EINVAL;
1573 		}
1574 		break;
1575 	default:
1576 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1577 			rxmode->mq_mode);
1578 		rc = EINVAL;
1579 	}
1580 
1581 	/*
1582 	 * Requested offloads are validated against supported by ethdev,
1583 	 * so unsupported offloads cannot be added as the result of
1584 	 * below check.
1585 	 */
1586 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1587 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1588 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1589 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1590 	}
1591 
1592 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1593 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1594 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1595 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1596 	}
1597 
1598 	return rc;
1599 }
1600 
1601 /**
1602  * Destroy excess queues that are no longer needed after reconfiguration
1603  * or complete close.
1604  */
1605 static void
1606 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1607 {
1608 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1609 	int sw_index;
1610 
1611 	SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1612 
1613 	sw_index = sas->rxq_count;
1614 	while (--sw_index >= (int)nb_rx_queues) {
1615 		if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1616 			sfc_rx_qfini(sa, sw_index);
1617 	}
1618 
1619 	sas->rxq_count = nb_rx_queues;
1620 }
1621 
1622 /**
1623  * Initialize Rx subsystem.
1624  *
1625  * Called at device (re)configuration stage when number of receive queues is
1626  * specified together with other device level receive configuration.
1627  *
1628  * It should be used to allocate NUMA-unaware resources.
1629  */
1630 int
1631 sfc_rx_configure(struct sfc_adapter *sa)
1632 {
1633 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1634 	struct sfc_rss *rss = &sas->rss;
1635 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1636 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1637 	int rc;
1638 
1639 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1640 		     nb_rx_queues, sas->rxq_count);
1641 
1642 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1643 	if (rc != 0)
1644 		goto fail_check_mode;
1645 
1646 	if (nb_rx_queues == sas->rxq_count)
1647 		goto configure_rss;
1648 
1649 	if (sas->rxq_info == NULL) {
1650 		rc = ENOMEM;
1651 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1652 						  sizeof(sas->rxq_info[0]), 0,
1653 						  sa->socket_id);
1654 		if (sas->rxq_info == NULL)
1655 			goto fail_rxqs_alloc;
1656 
1657 		/*
1658 		 * Allocate primary process only RxQ control from heap
1659 		 * since it should not be shared.
1660 		 */
1661 		rc = ENOMEM;
1662 		sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1663 		if (sa->rxq_ctrl == NULL)
1664 			goto fail_rxqs_ctrl_alloc;
1665 	} else {
1666 		struct sfc_rxq_info *new_rxq_info;
1667 		struct sfc_rxq *new_rxq_ctrl;
1668 
1669 		if (nb_rx_queues < sas->rxq_count)
1670 			sfc_rx_fini_queues(sa, nb_rx_queues);
1671 
1672 		rc = ENOMEM;
1673 		new_rxq_info =
1674 			rte_realloc(sas->rxq_info,
1675 				    nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1676 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1677 			goto fail_rxqs_realloc;
1678 
1679 		rc = ENOMEM;
1680 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1681 				       nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1682 		if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1683 			goto fail_rxqs_ctrl_realloc;
1684 
1685 		sas->rxq_info = new_rxq_info;
1686 		sa->rxq_ctrl = new_rxq_ctrl;
1687 		if (nb_rx_queues > sas->rxq_count) {
1688 			memset(&sas->rxq_info[sas->rxq_count], 0,
1689 			       (nb_rx_queues - sas->rxq_count) *
1690 			       sizeof(sas->rxq_info[0]));
1691 			memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1692 			       (nb_rx_queues - sas->rxq_count) *
1693 			       sizeof(sa->rxq_ctrl[0]));
1694 		}
1695 	}
1696 
1697 	while (sas->rxq_count < nb_rx_queues) {
1698 		rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1699 		if (rc != 0)
1700 			goto fail_rx_qinit_info;
1701 
1702 		sas->rxq_count++;
1703 	}
1704 
1705 configure_rss:
1706 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1707 			 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1708 
1709 	if (rss->channels > 0) {
1710 		struct rte_eth_rss_conf *adv_conf_rss;
1711 		unsigned int sw_index;
1712 
1713 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1714 			rss->tbl[sw_index] = sw_index % rss->channels;
1715 
1716 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1717 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1718 		if (rc != 0)
1719 			goto fail_rx_process_adv_conf_rss;
1720 	}
1721 
1722 	return 0;
1723 
1724 fail_rx_process_adv_conf_rss:
1725 fail_rx_qinit_info:
1726 fail_rxqs_ctrl_realloc:
1727 fail_rxqs_realloc:
1728 fail_rxqs_ctrl_alloc:
1729 fail_rxqs_alloc:
1730 	sfc_rx_close(sa);
1731 
1732 fail_check_mode:
1733 	sfc_log_init(sa, "failed %d", rc);
1734 	return rc;
1735 }
1736 
1737 /**
1738  * Shutdown Rx subsystem.
1739  *
1740  * Called at device close stage, for example, before device shutdown.
1741  */
1742 void
1743 sfc_rx_close(struct sfc_adapter *sa)
1744 {
1745 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1746 
1747 	sfc_rx_fini_queues(sa, 0);
1748 
1749 	rss->channels = 0;
1750 
1751 	free(sa->rxq_ctrl);
1752 	sa->rxq_ctrl = NULL;
1753 
1754 	rte_free(sfc_sa2shared(sa)->rxq_info);
1755 	sfc_sa2shared(sa)->rxq_info = NULL;
1756 }
1757