1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_mempool.h> 11 12 #include "efx.h" 13 14 #include "sfc.h" 15 #include "sfc_debug.h" 16 #include "sfc_flow_tunnel.h" 17 #include "sfc_log.h" 18 #include "sfc_ev.h" 19 #include "sfc_rx.h" 20 #include "sfc_mae_counter.h" 21 #include "sfc_kvargs.h" 22 #include "sfc_tweak.h" 23 24 /* 25 * Maximum number of Rx queue flush attempt in the case of failure or 26 * flush timeout 27 */ 28 #define SFC_RX_QFLUSH_ATTEMPTS (3) 29 30 /* 31 * Time to wait between event queue polling attempts when waiting for Rx 32 * queue flush done or failed events. 33 */ 34 #define SFC_RX_QFLUSH_POLL_WAIT_MS (1) 35 36 /* 37 * Maximum number of event queue polling attempts when waiting for Rx queue 38 * flush done or failed events. It defines Rx queue flush attempt timeout 39 * together with SFC_RX_QFLUSH_POLL_WAIT_MS. 40 */ 41 #define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000) 42 43 void 44 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info) 45 { 46 rxq_info->state |= SFC_RXQ_FLUSHED; 47 rxq_info->state &= ~SFC_RXQ_FLUSHING; 48 } 49 50 void 51 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info) 52 { 53 rxq_info->state |= SFC_RXQ_FLUSH_FAILED; 54 rxq_info->state &= ~SFC_RXQ_FLUSHING; 55 } 56 57 /* This returns the running counter, which is not bounded by ring size */ 58 unsigned int 59 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq) 60 { 61 SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL); 62 63 return sa->priv.dp_rx->get_pushed(dp_rxq); 64 } 65 66 static int 67 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq) 68 { 69 int rc = 0; 70 71 if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) { 72 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr); 73 if (rc == 0) 74 rxq->evq->read_ptr_primed = rxq->evq->read_ptr; 75 } 76 return rc; 77 } 78 79 static void 80 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq) 81 { 82 unsigned int free_space; 83 unsigned int bulks; 84 void *objs[SFC_RX_REFILL_BULK]; 85 efsys_dma_addr_t addr[RTE_DIM(objs)]; 86 unsigned int added = rxq->added; 87 unsigned int id; 88 unsigned int i; 89 struct sfc_efx_rx_sw_desc *rxd; 90 struct rte_mbuf *m; 91 uint16_t port_id = rxq->dp.dpq.port_id; 92 93 free_space = rxq->max_fill_level - (added - rxq->completed); 94 95 if (free_space < rxq->refill_threshold) 96 return; 97 98 bulks = free_space / RTE_DIM(objs); 99 /* refill_threshold guarantees that bulks is positive */ 100 SFC_ASSERT(bulks > 0); 101 102 id = added & rxq->ptr_mask; 103 do { 104 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs, 105 RTE_DIM(objs)) < 0)) { 106 /* 107 * It is hardly a safe way to increment counter 108 * from different contexts, but all PMDs do it. 109 */ 110 rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed += 111 RTE_DIM(objs); 112 /* Return if we have posted nothing yet */ 113 if (added == rxq->added) 114 return; 115 /* Push posted */ 116 break; 117 } 118 119 for (i = 0; i < RTE_DIM(objs); 120 ++i, id = (id + 1) & rxq->ptr_mask) { 121 m = objs[i]; 122 123 __rte_mbuf_raw_sanity_check(m); 124 125 rxd = &rxq->sw_desc[id]; 126 rxd->mbuf = m; 127 128 m->data_off = RTE_PKTMBUF_HEADROOM; 129 m->port = port_id; 130 131 addr[i] = rte_pktmbuf_iova(m); 132 } 133 134 efx_rx_qpost(rxq->common, addr, rxq->buf_size, 135 RTE_DIM(objs), rxq->completed, added); 136 added += RTE_DIM(objs); 137 } while (--bulks > 0); 138 139 SFC_ASSERT(added != rxq->added); 140 rxq->added = added; 141 efx_rx_qpush(rxq->common, added, &rxq->pushed); 142 rxq->dp.dpq.dbells++; 143 } 144 145 static uint64_t 146 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags) 147 { 148 uint64_t mbuf_flags = 0; 149 150 switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) { 151 case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4): 152 mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD; 153 break; 154 case EFX_PKT_IPV4: 155 mbuf_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD; 156 break; 157 default: 158 RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN != 0); 159 SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == 160 RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN); 161 break; 162 } 163 164 switch ((desc_flags & 165 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) { 166 case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP): 167 case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP): 168 mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD; 169 break; 170 case EFX_PKT_TCP: 171 case EFX_PKT_UDP: 172 mbuf_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD; 173 break; 174 default: 175 RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN != 0); 176 SFC_ASSERT((mbuf_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == 177 RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN); 178 break; 179 } 180 181 return mbuf_flags; 182 } 183 184 static uint32_t 185 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags) 186 { 187 return RTE_PTYPE_L2_ETHER | 188 ((desc_flags & EFX_PKT_IPV4) ? 189 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) | 190 ((desc_flags & EFX_PKT_IPV6) ? 191 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) | 192 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) | 193 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0); 194 } 195 196 static const uint32_t * 197 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps) 198 { 199 static const uint32_t ptypes[] = { 200 RTE_PTYPE_L2_ETHER, 201 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN, 202 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN, 203 RTE_PTYPE_L4_TCP, 204 RTE_PTYPE_L4_UDP, 205 RTE_PTYPE_UNKNOWN 206 }; 207 208 return ptypes; 209 } 210 211 static void 212 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags, 213 struct rte_mbuf *m) 214 { 215 uint8_t *mbuf_data; 216 217 218 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0) 219 return; 220 221 mbuf_data = rte_pktmbuf_mtod(m, uint8_t *); 222 223 if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) { 224 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common, 225 EFX_RX_HASHALG_TOEPLITZ, 226 mbuf_data); 227 228 m->ol_flags |= RTE_MBUF_F_RX_RSS_HASH; 229 } 230 } 231 232 static uint16_t 233 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 234 { 235 struct sfc_dp_rxq *dp_rxq = rx_queue; 236 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 237 unsigned int completed; 238 unsigned int prefix_size = rxq->prefix_size; 239 unsigned int done_pkts = 0; 240 boolean_t discard_next = B_FALSE; 241 struct rte_mbuf *scatter_pkt = NULL; 242 243 if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)) 244 return 0; 245 246 sfc_ev_qpoll(rxq->evq); 247 248 completed = rxq->completed; 249 while (completed != rxq->pending && done_pkts < nb_pkts) { 250 unsigned int id; 251 struct sfc_efx_rx_sw_desc *rxd; 252 struct rte_mbuf *m; 253 unsigned int seg_len; 254 unsigned int desc_flags; 255 256 id = completed++ & rxq->ptr_mask; 257 rxd = &rxq->sw_desc[id]; 258 m = rxd->mbuf; 259 desc_flags = rxd->flags; 260 261 if (discard_next) 262 goto discard; 263 264 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD)) 265 goto discard; 266 267 if (desc_flags & EFX_PKT_PREFIX_LEN) { 268 uint16_t tmp_size; 269 int rc __rte_unused; 270 271 rc = efx_pseudo_hdr_pkt_length_get(rxq->common, 272 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size); 273 SFC_ASSERT(rc == 0); 274 seg_len = tmp_size; 275 } else { 276 seg_len = rxd->size - prefix_size; 277 } 278 279 rte_pktmbuf_data_len(m) = seg_len; 280 rte_pktmbuf_pkt_len(m) = seg_len; 281 282 if (scatter_pkt != NULL) { 283 if (rte_pktmbuf_chain(scatter_pkt, m) != 0) { 284 rte_pktmbuf_free(scatter_pkt); 285 goto discard; 286 } 287 /* The packet to deliver */ 288 m = scatter_pkt; 289 } 290 291 if (desc_flags & EFX_PKT_CONT) { 292 /* The packet is scattered, more fragments to come */ 293 scatter_pkt = m; 294 /* Further fragments have no prefix */ 295 prefix_size = 0; 296 continue; 297 } 298 299 /* Scattered packet is done */ 300 scatter_pkt = NULL; 301 /* The first fragment of the packet has prefix */ 302 prefix_size = rxq->prefix_size; 303 304 m->ol_flags = 305 sfc_efx_rx_desc_flags_to_offload_flags(desc_flags); 306 m->packet_type = 307 sfc_efx_rx_desc_flags_to_packet_type(desc_flags); 308 309 /* 310 * Extract RSS hash from the packet prefix and 311 * set the corresponding field (if needed and possible) 312 */ 313 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m); 314 315 m->data_off += prefix_size; 316 317 *rx_pkts++ = m; 318 done_pkts++; 319 continue; 320 321 discard: 322 discard_next = ((desc_flags & EFX_PKT_CONT) != 0); 323 rte_mbuf_raw_free(m); 324 rxd->mbuf = NULL; 325 } 326 327 /* pending is only moved when entire packet is received */ 328 SFC_ASSERT(scatter_pkt == NULL); 329 330 rxq->completed = completed; 331 332 sfc_efx_rx_qrefill(rxq); 333 334 if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) 335 sfc_efx_rx_qprime(rxq); 336 337 return done_pkts; 338 } 339 340 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending; 341 static unsigned int 342 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq) 343 { 344 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 345 346 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0) 347 return 0; 348 349 sfc_ev_qpoll(rxq->evq); 350 351 return rxq->pending - rxq->completed; 352 } 353 354 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status; 355 static int 356 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset) 357 { 358 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 359 360 if (unlikely(offset > rxq->ptr_mask)) 361 return -EINVAL; 362 363 /* 364 * Poll EvQ to derive up-to-date 'rxq->pending' figure; 365 * it is required for the queue to be running, but the 366 * check is omitted because API design assumes that it 367 * is the duty of the caller to satisfy all conditions 368 */ 369 SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 370 SFC_EFX_RXQ_FLAG_RUNNING); 371 sfc_ev_qpoll(rxq->evq); 372 373 /* 374 * There is a handful of reserved entries in the ring, 375 * but an explicit check whether the offset points to 376 * a reserved entry is neglected since the two checks 377 * below rely on the figures which take the HW limits 378 * into account and thus if an entry is reserved, the 379 * checks will fail and UNAVAIL code will be returned 380 */ 381 382 if (offset < (rxq->pending - rxq->completed)) 383 return RTE_ETH_RX_DESC_DONE; 384 385 if (offset < (rxq->added - rxq->completed)) 386 return RTE_ETH_RX_DESC_AVAIL; 387 388 return RTE_ETH_RX_DESC_UNAVAIL; 389 } 390 391 boolean_t 392 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size, 393 boolean_t rx_scatter_enabled, uint32_t rx_scatter_max, 394 const char **error) 395 { 396 uint32_t effective_rx_scatter_max; 397 uint32_t rx_scatter_bufs; 398 399 effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1; 400 rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size); 401 402 if (rx_scatter_bufs > effective_rx_scatter_max) { 403 if (rx_scatter_enabled) 404 *error = "Possible number of Rx scatter buffers exceeds maximum number"; 405 else 406 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small"; 407 return B_FALSE; 408 } 409 410 return B_TRUE; 411 } 412 413 /** Get Rx datapath ops by the datapath RxQ handle */ 414 const struct sfc_dp_rx * 415 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq) 416 { 417 const struct sfc_dp_queue *dpq = &dp_rxq->dpq; 418 struct rte_eth_dev *eth_dev; 419 struct sfc_adapter_priv *sap; 420 421 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); 422 eth_dev = &rte_eth_devices[dpq->port_id]; 423 424 sap = sfc_adapter_priv_by_eth_dev(eth_dev); 425 426 return sap->dp_rx; 427 } 428 429 struct sfc_rxq_info * 430 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq) 431 { 432 const struct sfc_dp_queue *dpq = &dp_rxq->dpq; 433 struct rte_eth_dev *eth_dev; 434 struct sfc_adapter_shared *sas; 435 436 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); 437 eth_dev = &rte_eth_devices[dpq->port_id]; 438 439 sas = sfc_adapter_shared_by_eth_dev(eth_dev); 440 441 SFC_ASSERT(dpq->queue_id < sas->rxq_count); 442 return &sas->rxq_info[dpq->queue_id]; 443 } 444 445 struct sfc_rxq * 446 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq) 447 { 448 const struct sfc_dp_queue *dpq = &dp_rxq->dpq; 449 struct rte_eth_dev *eth_dev; 450 struct sfc_adapter *sa; 451 452 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id)); 453 eth_dev = &rte_eth_devices[dpq->port_id]; 454 455 sa = sfc_adapter_by_eth_dev(eth_dev); 456 457 SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count); 458 return &sa->rxq_ctrl[dpq->queue_id]; 459 } 460 461 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings; 462 static int 463 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc, 464 __rte_unused struct sfc_dp_rx_hw_limits *limits, 465 __rte_unused struct rte_mempool *mb_pool, 466 unsigned int *rxq_entries, 467 unsigned int *evq_entries, 468 unsigned int *rxq_max_fill_level) 469 { 470 *rxq_entries = nb_rx_desc; 471 *evq_entries = nb_rx_desc; 472 *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries); 473 return 0; 474 } 475 476 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate; 477 static int 478 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id, 479 const struct rte_pci_addr *pci_addr, int socket_id, 480 const struct sfc_dp_rx_qcreate_info *info, 481 struct sfc_dp_rxq **dp_rxqp) 482 { 483 struct sfc_efx_rxq *rxq; 484 int rc; 485 486 rc = ENOTSUP; 487 if (info->nic_dma_info->nb_regions > 0) 488 goto fail_nic_dma; 489 490 rc = ENOMEM; 491 rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq), 492 RTE_CACHE_LINE_SIZE, socket_id); 493 if (rxq == NULL) 494 goto fail_rxq_alloc; 495 496 sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr); 497 498 rc = ENOMEM; 499 rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc", 500 info->rxq_entries, 501 sizeof(*rxq->sw_desc), 502 RTE_CACHE_LINE_SIZE, socket_id); 503 if (rxq->sw_desc == NULL) 504 goto fail_desc_alloc; 505 506 /* efx datapath is bound to efx control path */ 507 rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq; 508 if (info->flags & SFC_RXQ_FLAG_RSS_HASH) 509 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH; 510 rxq->ptr_mask = info->rxq_entries - 1; 511 rxq->batch_max = info->batch_max; 512 rxq->prefix_size = info->prefix_size; 513 rxq->max_fill_level = info->max_fill_level; 514 rxq->refill_threshold = info->refill_threshold; 515 rxq->buf_size = info->buf_size; 516 rxq->refill_mb_pool = info->refill_mb_pool; 517 518 *dp_rxqp = &rxq->dp; 519 return 0; 520 521 fail_desc_alloc: 522 rte_free(rxq); 523 524 fail_rxq_alloc: 525 fail_nic_dma: 526 return rc; 527 } 528 529 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy; 530 static void 531 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq) 532 { 533 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 534 535 rte_free(rxq->sw_desc); 536 rte_free(rxq); 537 } 538 539 540 /* Use qstop and qstart functions in the case of qstart failure */ 541 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop; 542 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge; 543 544 545 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart; 546 static int 547 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq, 548 __rte_unused unsigned int evq_read_ptr, 549 const efx_rx_prefix_layout_t *pinfo) 550 { 551 /* libefx-based datapath is specific to libefx-based PMD */ 552 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 553 struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq); 554 int rc; 555 556 /* 557 * libefx API is used to extract information from Rx prefix and 558 * it guarantees consistency. Just do length check to ensure 559 * that we reserved space in Rx buffers correctly. 560 */ 561 if (rxq->prefix_size != pinfo->erpl_length) 562 return ENOTSUP; 563 564 rxq->common = crxq->common; 565 566 rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0; 567 568 sfc_efx_rx_qrefill(rxq); 569 570 rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING); 571 572 if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) { 573 rc = sfc_efx_rx_qprime(rxq); 574 if (rc != 0) 575 goto fail_rx_qprime; 576 } 577 578 return 0; 579 580 fail_rx_qprime: 581 sfc_efx_rx_qstop(dp_rxq, NULL); 582 sfc_efx_rx_qpurge(dp_rxq); 583 return rc; 584 } 585 586 static void 587 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq, 588 __rte_unused unsigned int *evq_read_ptr) 589 { 590 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 591 592 rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING; 593 594 /* libefx-based datapath is bound to libefx-based PMD and uses 595 * event queue structure directly. So, there is no necessity to 596 * return EvQ read pointer. 597 */ 598 } 599 600 static void 601 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq) 602 { 603 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 604 unsigned int i; 605 struct sfc_efx_rx_sw_desc *rxd; 606 607 for (i = rxq->completed; i != rxq->added; ++i) { 608 rxd = &rxq->sw_desc[i & rxq->ptr_mask]; 609 rte_mbuf_raw_free(rxd->mbuf); 610 rxd->mbuf = NULL; 611 /* Packed stream relies on 0 in inactive SW desc. 612 * Rx queue stop is not performance critical, so 613 * there is no harm to do it always. 614 */ 615 rxd->flags = 0; 616 rxd->size = 0; 617 } 618 619 rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED; 620 } 621 622 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable; 623 static int 624 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq) 625 { 626 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 627 int rc = 0; 628 629 rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN; 630 if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) { 631 rc = sfc_efx_rx_qprime(rxq); 632 if (rc != 0) 633 rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN; 634 } 635 return rc; 636 } 637 638 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable; 639 static int 640 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq) 641 { 642 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq); 643 644 /* Cannot disarm, just disable rearm */ 645 rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN; 646 return 0; 647 } 648 649 struct sfc_dp_rx sfc_efx_rx = { 650 .dp = { 651 .name = SFC_KVARG_DATAPATH_EFX, 652 .type = SFC_DP_RX, 653 .hw_fw_caps = SFC_DP_HW_FW_CAP_RX_EFX, 654 }, 655 .features = SFC_DP_RX_FEAT_INTR, 656 .dev_offload_capa = RTE_ETH_RX_OFFLOAD_CHECKSUM | 657 RTE_ETH_RX_OFFLOAD_RSS_HASH, 658 .queue_offload_capa = RTE_ETH_RX_OFFLOAD_SCATTER, 659 .qsize_up_rings = sfc_efx_rx_qsize_up_rings, 660 .qcreate = sfc_efx_rx_qcreate, 661 .qdestroy = sfc_efx_rx_qdestroy, 662 .qstart = sfc_efx_rx_qstart, 663 .qstop = sfc_efx_rx_qstop, 664 .qpurge = sfc_efx_rx_qpurge, 665 .supported_ptypes_get = sfc_efx_supported_ptypes_get, 666 .qdesc_npending = sfc_efx_rx_qdesc_npending, 667 .qdesc_status = sfc_efx_rx_qdesc_status, 668 .intr_enable = sfc_efx_rx_intr_enable, 669 .intr_disable = sfc_efx_rx_intr_disable, 670 .pkt_burst = sfc_efx_recv_pkts, 671 }; 672 673 static void 674 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 675 { 676 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 677 sfc_ethdev_qid_t ethdev_qid; 678 struct sfc_rxq_info *rxq_info; 679 struct sfc_rxq *rxq; 680 unsigned int retry_count; 681 unsigned int wait_count; 682 int rc; 683 684 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index); 685 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; 686 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED); 687 688 rxq = &sa->rxq_ctrl[sw_index]; 689 690 /* 691 * Retry Rx queue flushing in the case of flush failed or 692 * timeout. In the worst case it can delay for 6 seconds. 693 */ 694 for (retry_count = 0; 695 ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) && 696 (retry_count < SFC_RX_QFLUSH_ATTEMPTS); 697 ++retry_count) { 698 rc = efx_rx_qflush(rxq->common); 699 if (rc != 0) { 700 rxq_info->state |= (rc == EALREADY) ? 701 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED; 702 break; 703 } 704 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED; 705 rxq_info->state |= SFC_RXQ_FLUSHING; 706 707 /* 708 * Wait for Rx queue flush done or failed event at least 709 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more 710 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied 711 * by SFC_RX_QFLUSH_POLL_ATTEMPTS). 712 */ 713 wait_count = 0; 714 do { 715 rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS); 716 sfc_ev_qpoll(rxq->evq); 717 } while ((rxq_info->state & SFC_RXQ_FLUSHING) && 718 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS)); 719 720 if (rxq_info->state & SFC_RXQ_FLUSHING) 721 sfc_err(sa, "RxQ %d (internal %u) flush timed out", 722 ethdev_qid, sw_index); 723 724 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED) 725 sfc_err(sa, "RxQ %d (internal %u) flush failed", 726 ethdev_qid, sw_index); 727 728 if (rxq_info->state & SFC_RXQ_FLUSHED) 729 sfc_notice(sa, "RxQ %d (internal %u) flushed", 730 ethdev_qid, sw_index); 731 } 732 733 sa->priv.dp_rx->qpurge(rxq_info->dp); 734 } 735 736 static int 737 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq) 738 { 739 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 740 boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE; 741 struct sfc_port *port = &sa->port; 742 int rc; 743 744 /* 745 * If promiscuous or all-multicast mode has been requested, setting 746 * filter for the default Rx queue might fail, in particular, while 747 * running over PCI function which is not a member of corresponding 748 * privilege groups; if this occurs, few iterations will be made to 749 * repeat this step without promiscuous and all-multicast flags set 750 */ 751 retry: 752 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss); 753 if (rc == 0) 754 return 0; 755 else if (rc != EOPNOTSUPP) 756 return rc; 757 758 if (port->promisc) { 759 sfc_warn(sa, "promiscuous mode has been requested, " 760 "but the HW rejects it"); 761 sfc_warn(sa, "promiscuous mode will be disabled"); 762 763 port->promisc = B_FALSE; 764 sa->eth_dev->data->promiscuous = 0; 765 rc = sfc_set_rx_mode_unchecked(sa); 766 if (rc != 0) 767 return rc; 768 769 goto retry; 770 } 771 772 if (port->allmulti) { 773 sfc_warn(sa, "all-multicast mode has been requested, " 774 "but the HW rejects it"); 775 sfc_warn(sa, "all-multicast mode will be disabled"); 776 777 port->allmulti = B_FALSE; 778 sa->eth_dev->data->all_multicast = 0; 779 rc = sfc_set_rx_mode_unchecked(sa); 780 if (rc != 0) 781 return rc; 782 783 goto retry; 784 } 785 786 return rc; 787 } 788 789 int 790 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 791 { 792 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 793 sfc_ethdev_qid_t ethdev_qid; 794 struct sfc_rxq_info *rxq_info; 795 struct sfc_rxq *rxq; 796 struct sfc_evq *evq; 797 efx_rx_prefix_layout_t pinfo; 798 int rc; 799 800 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); 801 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index); 802 803 sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index); 804 805 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; 806 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED); 807 808 rxq = &sa->rxq_ctrl[sw_index]; 809 evq = rxq->evq; 810 811 rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index)); 812 if (rc != 0) 813 goto fail_ev_qstart; 814 815 switch (rxq_info->type) { 816 case EFX_RXQ_TYPE_DEFAULT: 817 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type, 818 rxq->buf_size, 819 &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */, 820 rxq_info->type_flags, evq->common, &rxq->common); 821 break; 822 case EFX_RXQ_TYPE_ES_SUPER_BUFFER: { 823 struct rte_mempool *mp = rxq_info->refill_mb_pool; 824 struct rte_mempool_info mp_info; 825 826 rc = rte_mempool_ops_get_info(mp, &mp_info); 827 if (rc != 0) { 828 /* Positive errno is used in the driver */ 829 rc = -rc; 830 goto fail_mp_get_info; 831 } 832 if (mp_info.contig_block_size <= 0) { 833 rc = EINVAL; 834 goto fail_bad_contig_block_size; 835 } 836 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0, 837 mp_info.contig_block_size, rxq->buf_size, 838 mp->header_size + mp->elt_size + mp->trailer_size, 839 sa->rxd_wait_timeout_ns, 840 &rxq->mem, rxq_info->entries, rxq_info->type_flags, 841 evq->common, &rxq->common); 842 break; 843 } 844 default: 845 rc = ENOTSUP; 846 } 847 if (rc != 0) 848 goto fail_rx_qcreate; 849 850 rc = efx_rx_prefix_get_layout(rxq->common, &pinfo); 851 if (rc != 0) 852 goto fail_prefix_get_layout; 853 854 efx_rx_qenable(rxq->common); 855 856 rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo); 857 if (rc != 0) 858 goto fail_dp_qstart; 859 860 rxq_info->state |= SFC_RXQ_STARTED; 861 862 if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) { 863 rc = sfc_rx_default_rxq_set_filter(sa, rxq); 864 if (rc != 0) 865 goto fail_mac_filter_default_rxq_set; 866 } 867 868 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */ 869 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) 870 sa->eth_dev->data->rx_queue_state[ethdev_qid] = 871 RTE_ETH_QUEUE_STATE_STARTED; 872 873 return 0; 874 875 fail_mac_filter_default_rxq_set: 876 sfc_rx_qflush(sa, sw_index); 877 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr); 878 rxq_info->state = SFC_RXQ_INITIALIZED; 879 880 fail_dp_qstart: 881 efx_rx_qdestroy(rxq->common); 882 883 fail_prefix_get_layout: 884 fail_rx_qcreate: 885 fail_bad_contig_block_size: 886 fail_mp_get_info: 887 sfc_ev_qstop(evq); 888 889 fail_ev_qstart: 890 return rc; 891 } 892 893 void 894 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 895 { 896 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 897 sfc_ethdev_qid_t ethdev_qid; 898 struct sfc_rxq_info *rxq_info; 899 struct sfc_rxq *rxq; 900 901 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); 902 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index); 903 904 sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index); 905 906 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; 907 908 if (rxq_info->state == SFC_RXQ_INITIALIZED) 909 return; 910 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED); 911 912 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */ 913 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) 914 sa->eth_dev->data->rx_queue_state[ethdev_qid] = 915 RTE_ETH_QUEUE_STATE_STOPPED; 916 917 rxq = &sa->rxq_ctrl[sw_index]; 918 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr); 919 920 if (ethdev_qid == 0) 921 efx_mac_filter_default_rxq_clear(sa->nic); 922 923 sfc_rx_qflush(sa, sw_index); 924 925 rxq_info->state = SFC_RXQ_INITIALIZED; 926 927 efx_rx_qdestroy(rxq->common); 928 929 sfc_ev_qstop(rxq->evq); 930 } 931 932 static uint64_t 933 sfc_rx_get_offload_mask(struct sfc_adapter *sa) 934 { 935 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 936 uint64_t no_caps = 0; 937 938 if (encp->enc_tunnel_encapsulations_supported == 0) 939 no_caps |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM; 940 941 return ~no_caps; 942 } 943 944 uint64_t 945 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa) 946 { 947 uint64_t caps = sa->priv.dp_rx->dev_offload_capa; 948 949 return caps & sfc_rx_get_offload_mask(sa); 950 } 951 952 uint64_t 953 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa) 954 { 955 return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa); 956 } 957 958 static int 959 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level, 960 const struct rte_eth_rxconf *rx_conf, 961 __rte_unused uint64_t offloads) 962 { 963 int rc = 0; 964 965 if (rx_conf->rx_thresh.pthresh != 0 || 966 rx_conf->rx_thresh.hthresh != 0 || 967 rx_conf->rx_thresh.wthresh != 0) { 968 sfc_warn(sa, 969 "RxQ prefetch/host/writeback thresholds are not supported"); 970 } 971 972 if (rx_conf->rx_free_thresh > rxq_max_fill_level) { 973 sfc_err(sa, 974 "RxQ free threshold too large: %u vs maximum %u", 975 rx_conf->rx_free_thresh, rxq_max_fill_level); 976 rc = EINVAL; 977 } 978 979 if (rx_conf->rx_drop_en == 0) { 980 sfc_err(sa, "RxQ drop disable is not supported"); 981 rc = EINVAL; 982 } 983 984 return rc; 985 } 986 987 static unsigned int 988 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool) 989 { 990 uint32_t data_off; 991 uint32_t order; 992 993 /* The mbuf object itself is always cache line aligned */ 994 order = rte_bsf32(RTE_CACHE_LINE_SIZE); 995 996 /* Data offset from mbuf object start */ 997 data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) + 998 RTE_PKTMBUF_HEADROOM; 999 1000 order = MIN(order, rte_bsf32(data_off)); 1001 1002 return 1u << order; 1003 } 1004 1005 static uint16_t 1006 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool) 1007 { 1008 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1009 const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start); 1010 const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end); 1011 uint16_t buf_size; 1012 unsigned int buf_aligned; 1013 unsigned int start_alignment; 1014 unsigned int end_padding_alignment; 1015 1016 /* Below it is assumed that both alignments are power of 2 */ 1017 SFC_ASSERT(rte_is_power_of_2(nic_align_start)); 1018 SFC_ASSERT(rte_is_power_of_2(nic_align_end)); 1019 1020 /* 1021 * mbuf is always cache line aligned, double-check 1022 * that it meets rx buffer start alignment requirements. 1023 */ 1024 1025 /* Start from mbuf pool data room size */ 1026 buf_size = rte_pktmbuf_data_room_size(mb_pool); 1027 1028 /* Remove headroom */ 1029 if (buf_size <= RTE_PKTMBUF_HEADROOM) { 1030 sfc_err(sa, 1031 "RxQ mbuf pool %s object data room size %u is smaller than headroom %u", 1032 mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM); 1033 return 0; 1034 } 1035 buf_size -= RTE_PKTMBUF_HEADROOM; 1036 1037 /* Calculate guaranteed data start alignment */ 1038 buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool); 1039 1040 /* Reserve space for start alignment */ 1041 if (buf_aligned < nic_align_start) { 1042 start_alignment = nic_align_start - buf_aligned; 1043 if (buf_size <= start_alignment) { 1044 sfc_err(sa, 1045 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC", 1046 mb_pool->name, 1047 rte_pktmbuf_data_room_size(mb_pool), 1048 RTE_PKTMBUF_HEADROOM, start_alignment); 1049 return 0; 1050 } 1051 buf_aligned = nic_align_start; 1052 buf_size -= start_alignment; 1053 } else { 1054 start_alignment = 0; 1055 } 1056 1057 /* Make sure that end padding does not write beyond the buffer */ 1058 if (buf_aligned < nic_align_end) { 1059 /* 1060 * Estimate space which can be lost. If guaranteed buffer 1061 * size is odd, lost space is (nic_align_end - 1). More 1062 * accurate formula is below. 1063 */ 1064 end_padding_alignment = nic_align_end - 1065 MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1)); 1066 if (buf_size <= end_padding_alignment) { 1067 sfc_err(sa, 1068 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC", 1069 mb_pool->name, 1070 rte_pktmbuf_data_room_size(mb_pool), 1071 RTE_PKTMBUF_HEADROOM, start_alignment, 1072 end_padding_alignment); 1073 return 0; 1074 } 1075 buf_size -= end_padding_alignment; 1076 } else { 1077 /* 1078 * Start is aligned the same or better than end, 1079 * just align length. 1080 */ 1081 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end); 1082 } 1083 1084 /* 1085 * Buffer length field of a Rx descriptor may not be wide 1086 * enough to store a 16-bit data count taken from an mbuf. 1087 */ 1088 return MIN(buf_size, encp->enc_rx_dma_desc_size_max); 1089 } 1090 1091 int 1092 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index, 1093 uint16_t nb_rx_desc, unsigned int socket_id, 1094 const struct rte_eth_rxconf *rx_conf, 1095 struct rte_mempool *mb_pool) 1096 { 1097 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 1098 sfc_ethdev_qid_t ethdev_qid; 1099 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1100 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1101 int rc; 1102 unsigned int rxq_entries; 1103 unsigned int evq_entries; 1104 unsigned int rxq_max_fill_level; 1105 uint64_t offloads; 1106 uint16_t buf_size; 1107 struct sfc_rxq_info *rxq_info; 1108 struct sfc_evq *evq; 1109 struct sfc_rxq *rxq; 1110 struct sfc_dp_rx_qcreate_info info; 1111 struct sfc_dp_rx_hw_limits hw_limits; 1112 uint16_t rx_free_thresh; 1113 const char *error; 1114 1115 memset(&hw_limits, 0, sizeof(hw_limits)); 1116 hw_limits.rxq_max_entries = sa->rxq_max_entries; 1117 hw_limits.rxq_min_entries = sa->rxq_min_entries; 1118 hw_limits.evq_max_entries = sa->evq_max_entries; 1119 hw_limits.evq_min_entries = sa->evq_min_entries; 1120 1121 rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool, 1122 &rxq_entries, &evq_entries, 1123 &rxq_max_fill_level); 1124 if (rc != 0) 1125 goto fail_size_up_rings; 1126 SFC_ASSERT(rxq_entries >= sa->rxq_min_entries); 1127 SFC_ASSERT(rxq_entries <= sa->rxq_max_entries); 1128 SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc); 1129 1130 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index); 1131 1132 offloads = rx_conf->offloads; 1133 /* Add device level Rx offloads if the queue is an ethdev Rx queue */ 1134 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) 1135 offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads; 1136 1137 rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads); 1138 if (rc != 0) 1139 goto fail_bad_conf; 1140 1141 buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool); 1142 if (buf_size == 0) { 1143 sfc_err(sa, 1144 "RxQ %d (internal %u) mbuf pool object size is too small", 1145 ethdev_qid, sw_index); 1146 rc = EINVAL; 1147 goto fail_bad_conf; 1148 } 1149 1150 if (!sfc_rx_check_scatter(sa->port.pdu, buf_size, 1151 encp->enc_rx_prefix_size, 1152 (offloads & RTE_ETH_RX_OFFLOAD_SCATTER), 1153 encp->enc_rx_scatter_max, 1154 &error)) { 1155 sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s", 1156 ethdev_qid, sw_index, error); 1157 sfc_err(sa, 1158 "RxQ %d (internal %u) calculated Rx buffer size is %u vs " 1159 "PDU size %u plus Rx prefix %u bytes", 1160 ethdev_qid, sw_index, buf_size, 1161 (unsigned int)sa->port.pdu, encp->enc_rx_prefix_size); 1162 rc = EINVAL; 1163 goto fail_bad_conf; 1164 } 1165 1166 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); 1167 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; 1168 1169 SFC_ASSERT(rxq_entries <= rxq_info->max_entries); 1170 rxq_info->entries = rxq_entries; 1171 1172 if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER) 1173 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER; 1174 else 1175 rxq_info->type = EFX_RXQ_TYPE_DEFAULT; 1176 1177 rxq_info->type_flags |= 1178 (offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ? 1179 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE; 1180 1181 if ((encp->enc_tunnel_encapsulations_supported != 0) && 1182 (sfc_dp_rx_offload_capa(sa->priv.dp_rx) & 1183 RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0) 1184 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES; 1185 1186 if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) 1187 rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH; 1188 1189 if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0) 1190 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_FLAG; 1191 1192 if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 || 1193 sfc_ft_is_active(sa)) 1194 rxq_info->type_flags |= EFX_RXQ_FLAG_USER_MARK; 1195 1196 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index, 1197 evq_entries, socket_id, &evq); 1198 if (rc != 0) 1199 goto fail_ev_qinit; 1200 1201 rxq = &sa->rxq_ctrl[sw_index]; 1202 rxq->evq = evq; 1203 rxq->hw_index = sw_index; 1204 /* 1205 * If Rx refill threshold is specified (its value is non zero) in 1206 * Rx configuration, use specified value. Otherwise use 1/8 of 1207 * the Rx descriptors number as the default. It allows to keep 1208 * Rx ring full-enough and does not refill too aggressive if 1209 * packet rate is high. 1210 * 1211 * Since PMD refills in bulks waiting for full bulk may be 1212 * refilled (basically round down), it is better to round up 1213 * here to mitigate it a bit. 1214 */ 1215 rx_free_thresh = (rx_conf->rx_free_thresh != 0) ? 1216 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8); 1217 /* Rx refill threshold cannot be smaller than refill bulk */ 1218 rxq_info->refill_threshold = 1219 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK); 1220 rxq_info->refill_mb_pool = mb_pool; 1221 1222 if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 && 1223 (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH)) 1224 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH; 1225 else 1226 rxq_info->rxq_flags = 0; 1227 1228 rxq->buf_size = buf_size; 1229 1230 rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_NIC_DMA_ADDR_RX_RING, 1231 efx_rxq_size(sa->nic, rxq_info->entries), 1232 socket_id, &rxq->mem); 1233 if (rc != 0) 1234 goto fail_dma_alloc; 1235 1236 memset(&info, 0, sizeof(info)); 1237 info.refill_mb_pool = rxq_info->refill_mb_pool; 1238 info.max_fill_level = rxq_max_fill_level; 1239 info.refill_threshold = rxq_info->refill_threshold; 1240 info.buf_size = buf_size; 1241 info.batch_max = encp->enc_rx_batch_max; 1242 info.prefix_size = encp->enc_rx_prefix_size; 1243 1244 if (sfc_ft_is_active(sa)) 1245 info.user_mark_mask = SFC_FT_USER_MARK_MASK; 1246 else 1247 info.user_mark_mask = UINT32_MAX; 1248 1249 info.flags = rxq_info->rxq_flags; 1250 info.rxq_entries = rxq_info->entries; 1251 info.rxq_hw_ring = rxq->mem.esm_base; 1252 info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index); 1253 info.evq_entries = evq_entries; 1254 info.evq_hw_ring = evq->mem.esm_base; 1255 info.hw_index = rxq->hw_index; 1256 info.mem_bar = sa->mem_bar.esb_base; 1257 info.vi_window_shift = encp->enc_vi_window_shift; 1258 info.fcw_offset = sa->fcw_offset; 1259 1260 info.nic_dma_info = &sas->nic_dma_info; 1261 1262 rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index, 1263 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr, 1264 socket_id, &info, &rxq_info->dp); 1265 if (rc != 0) 1266 goto fail_dp_rx_qcreate; 1267 1268 evq->dp_rxq = rxq_info->dp; 1269 1270 rxq_info->state = SFC_RXQ_INITIALIZED; 1271 1272 rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0); 1273 1274 return 0; 1275 1276 fail_dp_rx_qcreate: 1277 sfc_dma_free(sa, &rxq->mem); 1278 1279 fail_dma_alloc: 1280 sfc_ev_qfini(evq); 1281 1282 fail_ev_qinit: 1283 rxq_info->entries = 0; 1284 1285 fail_bad_conf: 1286 fail_size_up_rings: 1287 sfc_log_init(sa, "failed %d", rc); 1288 return rc; 1289 } 1290 1291 void 1292 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index) 1293 { 1294 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 1295 sfc_ethdev_qid_t ethdev_qid; 1296 struct sfc_rxq_info *rxq_info; 1297 struct sfc_rxq *rxq; 1298 1299 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count); 1300 ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index); 1301 1302 if (ethdev_qid != SFC_ETHDEV_QID_INVALID) 1303 sa->eth_dev->data->rx_queues[ethdev_qid] = NULL; 1304 1305 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index]; 1306 1307 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED); 1308 1309 sa->priv.dp_rx->qdestroy(rxq_info->dp); 1310 rxq_info->dp = NULL; 1311 1312 rxq_info->state &= ~SFC_RXQ_INITIALIZED; 1313 rxq_info->entries = 0; 1314 1315 rxq = &sa->rxq_ctrl[sw_index]; 1316 1317 sfc_dma_free(sa, &rxq->mem); 1318 1319 sfc_ev_qfini(rxq->evq); 1320 rxq->evq = NULL; 1321 } 1322 1323 /* 1324 * Mapping between RTE RSS hash functions and their EFX counterparts. 1325 */ 1326 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = { 1327 { RTE_ETH_RSS_NONFRAG_IPV4_TCP, 1328 EFX_RX_HASH(IPV4_TCP, 4TUPLE) }, 1329 { RTE_ETH_RSS_NONFRAG_IPV4_UDP, 1330 EFX_RX_HASH(IPV4_UDP, 4TUPLE) }, 1331 { RTE_ETH_RSS_NONFRAG_IPV6_TCP | RTE_ETH_RSS_IPV6_TCP_EX, 1332 EFX_RX_HASH(IPV6_TCP, 4TUPLE) }, 1333 { RTE_ETH_RSS_NONFRAG_IPV6_UDP | RTE_ETH_RSS_IPV6_UDP_EX, 1334 EFX_RX_HASH(IPV6_UDP, 4TUPLE) }, 1335 { RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | RTE_ETH_RSS_NONFRAG_IPV4_OTHER, 1336 EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) | 1337 EFX_RX_HASH(IPV4, 2TUPLE) }, 1338 { RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | RTE_ETH_RSS_NONFRAG_IPV6_OTHER | 1339 RTE_ETH_RSS_IPV6_EX, 1340 EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) | 1341 EFX_RX_HASH(IPV6, 2TUPLE) } 1342 }; 1343 1344 static efx_rx_hash_type_t 1345 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type, 1346 unsigned int *hash_type_flags_supported, 1347 unsigned int nb_hash_type_flags_supported) 1348 { 1349 efx_rx_hash_type_t hash_type_masked = 0; 1350 unsigned int i, j; 1351 1352 for (i = 0; i < nb_hash_type_flags_supported; ++i) { 1353 unsigned int class_tuple_lbn[] = { 1354 EFX_RX_CLASS_IPV4_TCP_LBN, 1355 EFX_RX_CLASS_IPV4_UDP_LBN, 1356 EFX_RX_CLASS_IPV4_LBN, 1357 EFX_RX_CLASS_IPV6_TCP_LBN, 1358 EFX_RX_CLASS_IPV6_UDP_LBN, 1359 EFX_RX_CLASS_IPV6_LBN 1360 }; 1361 1362 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) { 1363 unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE; 1364 unsigned int flag; 1365 1366 tuple_mask <<= class_tuple_lbn[j]; 1367 flag = hash_type & tuple_mask; 1368 1369 if (flag == hash_type_flags_supported[i]) 1370 hash_type_masked |= flag; 1371 } 1372 } 1373 1374 return hash_type_masked; 1375 } 1376 1377 int 1378 sfc_rx_hash_init(struct sfc_adapter *sa) 1379 { 1380 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1381 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1382 uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask; 1383 efx_rx_hash_alg_t alg; 1384 unsigned int flags_supp[EFX_RX_HASH_NFLAGS]; 1385 unsigned int nb_flags_supp; 1386 struct sfc_rss_hf_rte_to_efx *hf_map; 1387 struct sfc_rss_hf_rte_to_efx *entry; 1388 efx_rx_hash_type_t efx_hash_types; 1389 unsigned int i; 1390 int rc; 1391 1392 if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ)) 1393 alg = EFX_RX_HASHALG_TOEPLITZ; 1394 else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM)) 1395 alg = EFX_RX_HASHALG_PACKED_STREAM; 1396 else 1397 return EINVAL; 1398 1399 rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp, 1400 RTE_DIM(flags_supp), &nb_flags_supp); 1401 if (rc != 0) 1402 return rc; 1403 1404 hf_map = rte_calloc_socket("sfc-rss-hf-map", 1405 RTE_DIM(sfc_rss_hf_map), 1406 sizeof(*hf_map), 0, sa->socket_id); 1407 if (hf_map == NULL) 1408 return ENOMEM; 1409 1410 entry = hf_map; 1411 efx_hash_types = 0; 1412 for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) { 1413 efx_rx_hash_type_t ht; 1414 1415 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx, 1416 flags_supp, nb_flags_supp); 1417 if (ht != 0) { 1418 entry->rte = sfc_rss_hf_map[i].rte; 1419 entry->efx = ht; 1420 efx_hash_types |= ht; 1421 ++entry; 1422 } 1423 } 1424 1425 rss->hash_alg = alg; 1426 rss->hf_map_nb_entries = (unsigned int)(entry - hf_map); 1427 rss->hf_map = hf_map; 1428 rss->hash_types = efx_hash_types; 1429 1430 return 0; 1431 } 1432 1433 void 1434 sfc_rx_hash_fini(struct sfc_adapter *sa) 1435 { 1436 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1437 1438 rte_free(rss->hf_map); 1439 } 1440 1441 int 1442 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte, 1443 efx_rx_hash_type_t *efx) 1444 { 1445 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1446 efx_rx_hash_type_t hash_types = 0; 1447 unsigned int i; 1448 1449 for (i = 0; i < rss->hf_map_nb_entries; ++i) { 1450 uint64_t rte_mask = rss->hf_map[i].rte; 1451 1452 if ((rte & rte_mask) != 0) { 1453 rte &= ~rte_mask; 1454 hash_types |= rss->hf_map[i].efx; 1455 } 1456 } 1457 1458 if (rte != 0) { 1459 sfc_err(sa, "unsupported hash functions requested"); 1460 return EINVAL; 1461 } 1462 1463 *efx = hash_types; 1464 1465 return 0; 1466 } 1467 1468 uint64_t 1469 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx) 1470 { 1471 uint64_t rte = 0; 1472 unsigned int i; 1473 1474 for (i = 0; i < rss->hf_map_nb_entries; ++i) { 1475 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx; 1476 1477 if ((efx & hash_type) == hash_type) 1478 rte |= rss->hf_map[i].rte; 1479 } 1480 1481 return rte; 1482 } 1483 1484 static int 1485 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa, 1486 struct rte_eth_rss_conf *conf) 1487 { 1488 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1489 efx_rx_hash_type_t efx_hash_types = rss->hash_types; 1490 uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types); 1491 int rc; 1492 1493 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1494 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) || 1495 conf->rss_key != NULL) 1496 return EINVAL; 1497 } 1498 1499 if (conf->rss_hf != 0) { 1500 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types); 1501 if (rc != 0) 1502 return rc; 1503 } 1504 1505 if (conf->rss_key != NULL) { 1506 if (conf->rss_key_len != sizeof(rss->key)) { 1507 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1508 sizeof(rss->key)); 1509 return EINVAL; 1510 } 1511 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key)); 1512 } 1513 1514 rss->hash_types = efx_hash_types; 1515 1516 return 0; 1517 } 1518 1519 static int 1520 sfc_rx_rss_config(struct sfc_adapter *sa) 1521 { 1522 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1523 int rc = 0; 1524 1525 if (rss->channels > 0) { 1526 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1527 rss->hash_alg, rss->hash_types, 1528 B_TRUE); 1529 if (rc != 0) 1530 goto finish; 1531 1532 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1533 rss->key, sizeof(rss->key)); 1534 if (rc != 0) 1535 goto finish; 1536 1537 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1538 rss->tbl, RTE_DIM(rss->tbl)); 1539 } 1540 1541 finish: 1542 return rc; 1543 } 1544 1545 struct sfc_rxq_info * 1546 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas, 1547 sfc_ethdev_qid_t ethdev_qid) 1548 { 1549 sfc_sw_index_t sw_index; 1550 1551 SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count); 1552 SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID); 1553 1554 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid); 1555 return &sas->rxq_info[sw_index]; 1556 } 1557 1558 struct sfc_rxq * 1559 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid) 1560 { 1561 struct sfc_adapter_shared *sas = sfc_sa2shared(sa); 1562 sfc_sw_index_t sw_index; 1563 1564 SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count); 1565 SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID); 1566 1567 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid); 1568 return &sa->rxq_ctrl[sw_index]; 1569 } 1570 1571 int 1572 sfc_rx_start(struct sfc_adapter *sa) 1573 { 1574 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1575 sfc_sw_index_t sw_index; 1576 int rc; 1577 1578 sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count, 1579 sas->rxq_count); 1580 1581 rc = efx_rx_init(sa->nic); 1582 if (rc != 0) 1583 goto fail_rx_init; 1584 1585 rc = sfc_rx_rss_config(sa); 1586 if (rc != 0) 1587 goto fail_rss_config; 1588 1589 for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) { 1590 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED && 1591 (!sas->rxq_info[sw_index].deferred_start || 1592 sas->rxq_info[sw_index].deferred_started)) { 1593 rc = sfc_rx_qstart(sa, sw_index); 1594 if (rc != 0) 1595 goto fail_rx_qstart; 1596 } 1597 } 1598 1599 return 0; 1600 1601 fail_rx_qstart: 1602 while (sw_index-- > 0) 1603 sfc_rx_qstop(sa, sw_index); 1604 1605 fail_rss_config: 1606 efx_rx_fini(sa->nic); 1607 1608 fail_rx_init: 1609 sfc_log_init(sa, "failed %d", rc); 1610 return rc; 1611 } 1612 1613 void 1614 sfc_rx_stop(struct sfc_adapter *sa) 1615 { 1616 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1617 sfc_sw_index_t sw_index; 1618 1619 sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count, 1620 sas->rxq_count); 1621 1622 sw_index = sas->rxq_count; 1623 while (sw_index-- > 0) { 1624 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED) 1625 sfc_rx_qstop(sa, sw_index); 1626 } 1627 1628 efx_rx_fini(sa->nic); 1629 } 1630 1631 int 1632 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index, 1633 unsigned int extra_efx_type_flags) 1634 { 1635 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1636 struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index]; 1637 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1638 unsigned int max_entries; 1639 1640 max_entries = encp->enc_rxq_max_ndescs; 1641 SFC_ASSERT(rte_is_power_of_2(max_entries)); 1642 1643 rxq_info->max_entries = max_entries; 1644 rxq_info->type_flags = extra_efx_type_flags; 1645 1646 return 0; 1647 } 1648 1649 static int 1650 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode) 1651 { 1652 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1653 uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) | 1654 sfc_rx_get_queue_offload_caps(sa); 1655 struct sfc_rss *rss = &sas->rss; 1656 int rc = 0; 1657 1658 switch (rxmode->mq_mode) { 1659 case RTE_ETH_MQ_RX_NONE: 1660 /* No special checks are required */ 1661 break; 1662 case RTE_ETH_MQ_RX_RSS: 1663 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) { 1664 sfc_err(sa, "RSS is not available"); 1665 rc = EINVAL; 1666 } 1667 break; 1668 default: 1669 sfc_err(sa, "Rx multi-queue mode %u not supported", 1670 rxmode->mq_mode); 1671 rc = EINVAL; 1672 } 1673 1674 /* 1675 * Requested offloads are validated against supported by ethdev, 1676 * so unsupported offloads cannot be added as the result of 1677 * below check. 1678 */ 1679 if ((rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM) != 1680 (offloads_supported & RTE_ETH_RX_OFFLOAD_CHECKSUM)) { 1681 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)"); 1682 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_CHECKSUM; 1683 } 1684 1685 if ((offloads_supported & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM) && 1686 (~rxmode->offloads & RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM)) { 1687 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on"); 1688 rxmode->offloads |= RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM; 1689 } 1690 1691 return rc; 1692 } 1693 1694 /** 1695 * Destroy excess queues that are no longer needed after reconfiguration 1696 * or complete close. 1697 */ 1698 static void 1699 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues) 1700 { 1701 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1702 sfc_sw_index_t sw_index; 1703 sfc_ethdev_qid_t ethdev_qid; 1704 1705 SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count); 1706 1707 /* 1708 * Finalize only ethdev queues since other ones are finalized only 1709 * on device close and they may require additional deinitialization. 1710 */ 1711 ethdev_qid = sas->ethdev_rxq_count; 1712 while (--ethdev_qid >= (int)nb_rx_queues) { 1713 struct sfc_rxq_info *rxq_info; 1714 1715 rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid); 1716 if (rxq_info->state & SFC_RXQ_INITIALIZED) { 1717 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, 1718 ethdev_qid); 1719 sfc_rx_qfini(sa, sw_index); 1720 } 1721 1722 } 1723 1724 sas->ethdev_rxq_count = nb_rx_queues; 1725 } 1726 1727 /** 1728 * Initialize Rx subsystem. 1729 * 1730 * Called at device (re)configuration stage when number of receive queues is 1731 * specified together with other device level receive configuration. 1732 * 1733 * It should be used to allocate NUMA-unaware resources. 1734 */ 1735 int 1736 sfc_rx_configure(struct sfc_adapter *sa) 1737 { 1738 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1739 struct sfc_rss *rss = &sas->rss; 1740 struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf; 1741 const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues; 1742 const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas); 1743 const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues; 1744 bool reconfigure; 1745 int rc; 1746 1747 sfc_log_init(sa, "nb_rx_queues=%u (old %u)", 1748 nb_rx_queues, sas->ethdev_rxq_count); 1749 1750 rc = sfc_rx_check_mode(sa, &dev_conf->rxmode); 1751 if (rc != 0) 1752 goto fail_check_mode; 1753 1754 if (nb_rxq_total == sas->rxq_count) { 1755 reconfigure = true; 1756 goto configure_rss; 1757 } 1758 1759 if (sas->rxq_info == NULL) { 1760 reconfigure = false; 1761 rc = ENOMEM; 1762 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total, 1763 sizeof(sas->rxq_info[0]), 0, 1764 sa->socket_id); 1765 if (sas->rxq_info == NULL) 1766 goto fail_rxqs_alloc; 1767 1768 /* 1769 * Allocate primary process only RxQ control from heap 1770 * since it should not be shared. 1771 */ 1772 rc = ENOMEM; 1773 sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0])); 1774 if (sa->rxq_ctrl == NULL) 1775 goto fail_rxqs_ctrl_alloc; 1776 } else { 1777 struct sfc_rxq_info *new_rxq_info; 1778 struct sfc_rxq *new_rxq_ctrl; 1779 1780 reconfigure = true; 1781 1782 /* Do not uninitialize reserved queues */ 1783 if (nb_rx_queues < sas->ethdev_rxq_count) 1784 sfc_rx_fini_queues(sa, nb_rx_queues); 1785 1786 rc = ENOMEM; 1787 new_rxq_info = 1788 rte_realloc(sas->rxq_info, 1789 nb_rxq_total * sizeof(sas->rxq_info[0]), 0); 1790 if (new_rxq_info == NULL && nb_rxq_total > 0) 1791 goto fail_rxqs_realloc; 1792 1793 rc = ENOMEM; 1794 new_rxq_ctrl = realloc(sa->rxq_ctrl, 1795 nb_rxq_total * sizeof(sa->rxq_ctrl[0])); 1796 if (new_rxq_ctrl == NULL && nb_rxq_total > 0) 1797 goto fail_rxqs_ctrl_realloc; 1798 1799 sas->rxq_info = new_rxq_info; 1800 sa->rxq_ctrl = new_rxq_ctrl; 1801 if (nb_rxq_total > sas->rxq_count) { 1802 unsigned int rxq_count = sas->rxq_count; 1803 1804 memset(&sas->rxq_info[rxq_count], 0, 1805 (nb_rxq_total - rxq_count) * 1806 sizeof(sas->rxq_info[0])); 1807 memset(&sa->rxq_ctrl[rxq_count], 0, 1808 (nb_rxq_total - rxq_count) * 1809 sizeof(sa->rxq_ctrl[0])); 1810 } 1811 } 1812 1813 while (sas->ethdev_rxq_count < nb_rx_queues) { 1814 sfc_sw_index_t sw_index; 1815 1816 sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, 1817 sas->ethdev_rxq_count); 1818 rc = sfc_rx_qinit_info(sa, sw_index, 0); 1819 if (rc != 0) 1820 goto fail_rx_qinit_info; 1821 1822 sas->ethdev_rxq_count++; 1823 } 1824 1825 sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues; 1826 1827 if (!reconfigure) { 1828 rc = sfc_mae_counter_rxq_init(sa); 1829 if (rc != 0) 1830 goto fail_count_rxq_init; 1831 } 1832 1833 configure_rss: 1834 rss->channels = (dev_conf->rxmode.mq_mode == RTE_ETH_MQ_RX_RSS) ? 1835 MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0; 1836 1837 if (rss->channels > 0) { 1838 struct rte_eth_rss_conf *adv_conf_rss; 1839 sfc_sw_index_t sw_index; 1840 1841 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index) 1842 rss->tbl[sw_index] = sw_index % rss->channels; 1843 1844 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf; 1845 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss); 1846 if (rc != 0) 1847 goto fail_rx_process_adv_conf_rss; 1848 } 1849 1850 return 0; 1851 1852 fail_rx_process_adv_conf_rss: 1853 if (!reconfigure) 1854 sfc_mae_counter_rxq_fini(sa); 1855 1856 fail_count_rxq_init: 1857 fail_rx_qinit_info: 1858 fail_rxqs_ctrl_realloc: 1859 fail_rxqs_realloc: 1860 fail_rxqs_ctrl_alloc: 1861 fail_rxqs_alloc: 1862 sfc_rx_close(sa); 1863 1864 fail_check_mode: 1865 sfc_log_init(sa, "failed %d", rc); 1866 return rc; 1867 } 1868 1869 /** 1870 * Shutdown Rx subsystem. 1871 * 1872 * Called at device close stage, for example, before device shutdown. 1873 */ 1874 void 1875 sfc_rx_close(struct sfc_adapter *sa) 1876 { 1877 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1878 1879 sfc_rx_fini_queues(sa, 0); 1880 sfc_mae_counter_rxq_fini(sa); 1881 1882 rss->channels = 0; 1883 1884 free(sa->rxq_ctrl); 1885 sa->rxq_ctrl = NULL; 1886 1887 rte_free(sfc_sa2shared(sa)->rxq_info); 1888 sfc_sa2shared(sa)->rxq_info = NULL; 1889 } 1890