xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 200bc52e5aa0d72e70464c9cd22b55cf536ed13c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 	rxq_info->state |= SFC_RXQ_FLUSHED;
45 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58 	unsigned int free_space;
59 	unsigned int bulks;
60 	void *objs[SFC_RX_REFILL_BULK];
61 	efsys_dma_addr_t addr[RTE_DIM(objs)];
62 	unsigned int added = rxq->added;
63 	unsigned int id;
64 	unsigned int i;
65 	struct sfc_efx_rx_sw_desc *rxd;
66 	struct rte_mbuf *m;
67 	uint16_t port_id = rxq->dp.dpq.port_id;
68 
69 	free_space = rxq->max_fill_level - (added - rxq->completed);
70 
71 	if (free_space < rxq->refill_threshold)
72 		return;
73 
74 	bulks = free_space / RTE_DIM(objs);
75 	/* refill_threshold guarantees that bulks is positive */
76 	SFC_ASSERT(bulks > 0);
77 
78 	id = added & rxq->ptr_mask;
79 	do {
80 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81 						  RTE_DIM(objs)) < 0)) {
82 			/*
83 			 * It is hardly a safe way to increment counter
84 			 * from different contexts, but all PMDs do it.
85 			 */
86 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87 				RTE_DIM(objs);
88 			/* Return if we have posted nothing yet */
89 			if (added == rxq->added)
90 				return;
91 			/* Push posted */
92 			break;
93 		}
94 
95 		for (i = 0; i < RTE_DIM(objs);
96 		     ++i, id = (id + 1) & rxq->ptr_mask) {
97 			m = objs[i];
98 
99 			MBUF_RAW_ALLOC_CHECK(m);
100 
101 			rxd = &rxq->sw_desc[id];
102 			rxd->mbuf = m;
103 
104 			m->data_off = RTE_PKTMBUF_HEADROOM;
105 			m->port = port_id;
106 
107 			addr[i] = rte_pktmbuf_iova(m);
108 		}
109 
110 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111 			     RTE_DIM(objs), rxq->completed, added);
112 		added += RTE_DIM(objs);
113 	} while (--bulks > 0);
114 
115 	SFC_ASSERT(added != rxq->added);
116 	rxq->added = added;
117 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119 
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123 	uint64_t mbuf_flags = 0;
124 
125 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128 		break;
129 	case EFX_PKT_IPV4:
130 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131 		break;
132 	default:
133 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135 			   PKT_RX_IP_CKSUM_UNKNOWN);
136 		break;
137 	}
138 
139 	switch ((desc_flags &
140 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144 		break;
145 	case EFX_PKT_TCP:
146 	case EFX_PKT_UDP:
147 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148 		break;
149 	default:
150 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152 			   PKT_RX_L4_CKSUM_UNKNOWN);
153 		break;
154 	}
155 
156 	return mbuf_flags;
157 }
158 
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162 	return RTE_PTYPE_L2_ETHER |
163 		((desc_flags & EFX_PKT_IPV4) ?
164 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165 		((desc_flags & EFX_PKT_IPV6) ?
166 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170 
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174 	static const uint32_t ptypes[] = {
175 		RTE_PTYPE_L2_ETHER,
176 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178 		RTE_PTYPE_L4_TCP,
179 		RTE_PTYPE_L4_UDP,
180 		RTE_PTYPE_UNKNOWN
181 	};
182 
183 	return ptypes;
184 }
185 
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188 			struct rte_mbuf *m)
189 {
190 	uint8_t *mbuf_data;
191 
192 
193 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194 		return;
195 
196 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197 
198 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200 						      EFX_RX_HASHALG_TOEPLITZ,
201 						      mbuf_data);
202 
203 		m->ol_flags |= PKT_RX_RSS_HASH;
204 	}
205 }
206 
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210 	struct sfc_dp_rxq *dp_rxq = rx_queue;
211 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212 	unsigned int completed;
213 	unsigned int prefix_size = rxq->prefix_size;
214 	unsigned int done_pkts = 0;
215 	boolean_t discard_next = B_FALSE;
216 	struct rte_mbuf *scatter_pkt = NULL;
217 
218 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219 		return 0;
220 
221 	sfc_ev_qpoll(rxq->evq);
222 
223 	completed = rxq->completed;
224 	while (completed != rxq->pending && done_pkts < nb_pkts) {
225 		unsigned int id;
226 		struct sfc_efx_rx_sw_desc *rxd;
227 		struct rte_mbuf *m;
228 		unsigned int seg_len;
229 		unsigned int desc_flags;
230 
231 		id = completed++ & rxq->ptr_mask;
232 		rxd = &rxq->sw_desc[id];
233 		m = rxd->mbuf;
234 		desc_flags = rxd->flags;
235 
236 		if (discard_next)
237 			goto discard;
238 
239 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240 			goto discard;
241 
242 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
243 			uint16_t tmp_size;
244 			int rc __rte_unused;
245 
246 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248 			SFC_ASSERT(rc == 0);
249 			seg_len = tmp_size;
250 		} else {
251 			seg_len = rxd->size - prefix_size;
252 		}
253 
254 		rte_pktmbuf_data_len(m) = seg_len;
255 		rte_pktmbuf_pkt_len(m) = seg_len;
256 
257 		if (scatter_pkt != NULL) {
258 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259 				rte_pktmbuf_free(scatter_pkt);
260 				goto discard;
261 			}
262 			/* The packet to deliver */
263 			m = scatter_pkt;
264 		}
265 
266 		if (desc_flags & EFX_PKT_CONT) {
267 			/* The packet is scattered, more fragments to come */
268 			scatter_pkt = m;
269 			/* Further fragments have no prefix */
270 			prefix_size = 0;
271 			continue;
272 		}
273 
274 		/* Scattered packet is done */
275 		scatter_pkt = NULL;
276 		/* The first fragment of the packet has prefix */
277 		prefix_size = rxq->prefix_size;
278 
279 		m->ol_flags =
280 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281 		m->packet_type =
282 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283 
284 		/*
285 		 * Extract RSS hash from the packet prefix and
286 		 * set the corresponding field (if needed and possible)
287 		 */
288 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289 
290 		m->data_off += prefix_size;
291 
292 		*rx_pkts++ = m;
293 		done_pkts++;
294 		continue;
295 
296 discard:
297 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298 		rte_mbuf_raw_free(m);
299 		rxd->mbuf = NULL;
300 	}
301 
302 	/* pending is only moved when entire packet is received */
303 	SFC_ASSERT(scatter_pkt == NULL);
304 
305 	rxq->completed = completed;
306 
307 	sfc_efx_rx_qrefill(rxq);
308 
309 	return done_pkts;
310 }
311 
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317 
318 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319 		return 0;
320 
321 	sfc_ev_qpoll(rxq->evq);
322 
323 	return rxq->pending - rxq->completed;
324 }
325 
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331 
332 	if (unlikely(offset > rxq->ptr_mask))
333 		return -EINVAL;
334 
335 	/*
336 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337 	 * it is required for the queue to be running, but the
338 	 * check is omitted because API design assumes that it
339 	 * is the duty of the caller to satisfy all conditions
340 	 */
341 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342 		   SFC_EFX_RXQ_FLAG_RUNNING);
343 	sfc_ev_qpoll(rxq->evq);
344 
345 	/*
346 	 * There is a handful of reserved entries in the ring,
347 	 * but an explicit check whether the offset points to
348 	 * a reserved entry is neglected since the two checks
349 	 * below rely on the figures which take the HW limits
350 	 * into account and thus if an entry is reserved, the
351 	 * checks will fail and UNAVAIL code will be returned
352 	 */
353 
354 	if (offset < (rxq->pending - rxq->completed))
355 		return RTE_ETH_RX_DESC_DONE;
356 
357 	if (offset < (rxq->added - rxq->completed))
358 		return RTE_ETH_RX_DESC_AVAIL;
359 
360 	return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362 
363 boolean_t
364 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
365 		     boolean_t rx_scatter_enabled, const char **error)
366 {
367 	if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
368 		*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
369 		return B_FALSE;
370 	}
371 
372 	return B_TRUE;
373 }
374 
375 /** Get Rx datapath ops by the datapath RxQ handle */
376 const struct sfc_dp_rx *
377 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
378 {
379 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
380 	struct rte_eth_dev *eth_dev;
381 	struct sfc_adapter_priv *sap;
382 
383 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
384 	eth_dev = &rte_eth_devices[dpq->port_id];
385 
386 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
387 
388 	return sap->dp_rx;
389 }
390 
391 struct sfc_rxq_info *
392 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
393 {
394 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
395 	struct rte_eth_dev *eth_dev;
396 	struct sfc_adapter_shared *sas;
397 
398 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
399 	eth_dev = &rte_eth_devices[dpq->port_id];
400 
401 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
402 
403 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
404 	return &sas->rxq_info[dpq->queue_id];
405 }
406 
407 struct sfc_rxq *
408 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411 	struct rte_eth_dev *eth_dev;
412 	struct sfc_adapter *sa;
413 
414 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415 	eth_dev = &rte_eth_devices[dpq->port_id];
416 
417 	sa = sfc_adapter_by_eth_dev(eth_dev);
418 
419 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
420 	return &sa->rxq_ctrl[dpq->queue_id];
421 }
422 
423 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
424 static int
425 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
426 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
427 			  __rte_unused struct rte_mempool *mb_pool,
428 			  unsigned int *rxq_entries,
429 			  unsigned int *evq_entries,
430 			  unsigned int *rxq_max_fill_level)
431 {
432 	*rxq_entries = nb_rx_desc;
433 	*evq_entries = nb_rx_desc;
434 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
435 	return 0;
436 }
437 
438 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
439 static int
440 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
441 		   const struct rte_pci_addr *pci_addr, int socket_id,
442 		   const struct sfc_dp_rx_qcreate_info *info,
443 		   struct sfc_dp_rxq **dp_rxqp)
444 {
445 	struct sfc_efx_rxq *rxq;
446 	int rc;
447 
448 	rc = ENOMEM;
449 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
450 				 RTE_CACHE_LINE_SIZE, socket_id);
451 	if (rxq == NULL)
452 		goto fail_rxq_alloc;
453 
454 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
455 
456 	rc = ENOMEM;
457 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
458 					 info->rxq_entries,
459 					 sizeof(*rxq->sw_desc),
460 					 RTE_CACHE_LINE_SIZE, socket_id);
461 	if (rxq->sw_desc == NULL)
462 		goto fail_desc_alloc;
463 
464 	/* efx datapath is bound to efx control path */
465 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
466 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
467 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
468 	rxq->ptr_mask = info->rxq_entries - 1;
469 	rxq->batch_max = info->batch_max;
470 	rxq->prefix_size = info->prefix_size;
471 	rxq->max_fill_level = info->max_fill_level;
472 	rxq->refill_threshold = info->refill_threshold;
473 	rxq->buf_size = info->buf_size;
474 	rxq->refill_mb_pool = info->refill_mb_pool;
475 
476 	*dp_rxqp = &rxq->dp;
477 	return 0;
478 
479 fail_desc_alloc:
480 	rte_free(rxq);
481 
482 fail_rxq_alloc:
483 	return rc;
484 }
485 
486 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
487 static void
488 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
489 {
490 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
491 
492 	rte_free(rxq->sw_desc);
493 	rte_free(rxq);
494 }
495 
496 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
497 static int
498 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
499 		  __rte_unused unsigned int evq_read_ptr)
500 {
501 	/* libefx-based datapath is specific to libefx-based PMD */
502 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
503 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
504 
505 	rxq->common = crxq->common;
506 
507 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
508 
509 	sfc_efx_rx_qrefill(rxq);
510 
511 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
512 
513 	return 0;
514 }
515 
516 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
517 static void
518 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
519 		 __rte_unused unsigned int *evq_read_ptr)
520 {
521 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
522 
523 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
524 
525 	/* libefx-based datapath is bound to libefx-based PMD and uses
526 	 * event queue structure directly. So, there is no necessity to
527 	 * return EvQ read pointer.
528 	 */
529 }
530 
531 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
532 static void
533 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
534 {
535 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
536 	unsigned int i;
537 	struct sfc_efx_rx_sw_desc *rxd;
538 
539 	for (i = rxq->completed; i != rxq->added; ++i) {
540 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
541 		rte_mbuf_raw_free(rxd->mbuf);
542 		rxd->mbuf = NULL;
543 		/* Packed stream relies on 0 in inactive SW desc.
544 		 * Rx queue stop is not performance critical, so
545 		 * there is no harm to do it always.
546 		 */
547 		rxd->flags = 0;
548 		rxd->size = 0;
549 	}
550 
551 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
552 }
553 
554 struct sfc_dp_rx sfc_efx_rx = {
555 	.dp = {
556 		.name		= SFC_KVARG_DATAPATH_EFX,
557 		.type		= SFC_DP_RX,
558 		.hw_fw_caps	= 0,
559 	},
560 	.features		= SFC_DP_RX_FEAT_SCATTER |
561 				  SFC_DP_RX_FEAT_CHECKSUM,
562 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
563 	.qcreate		= sfc_efx_rx_qcreate,
564 	.qdestroy		= sfc_efx_rx_qdestroy,
565 	.qstart			= sfc_efx_rx_qstart,
566 	.qstop			= sfc_efx_rx_qstop,
567 	.qpurge			= sfc_efx_rx_qpurge,
568 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
569 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
570 	.qdesc_status		= sfc_efx_rx_qdesc_status,
571 	.pkt_burst		= sfc_efx_recv_pkts,
572 };
573 
574 static void
575 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
576 {
577 	struct sfc_rxq_info *rxq_info;
578 	struct sfc_rxq *rxq;
579 	unsigned int retry_count;
580 	unsigned int wait_count;
581 	int rc;
582 
583 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
584 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
585 
586 	rxq = &sa->rxq_ctrl[sw_index];
587 
588 	/*
589 	 * Retry Rx queue flushing in the case of flush failed or
590 	 * timeout. In the worst case it can delay for 6 seconds.
591 	 */
592 	for (retry_count = 0;
593 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
594 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
595 	     ++retry_count) {
596 		rc = efx_rx_qflush(rxq->common);
597 		if (rc != 0) {
598 			rxq_info->state |= (rc == EALREADY) ?
599 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
600 			break;
601 		}
602 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
603 		rxq_info->state |= SFC_RXQ_FLUSHING;
604 
605 		/*
606 		 * Wait for Rx queue flush done or failed event at least
607 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
608 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
609 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
610 		 */
611 		wait_count = 0;
612 		do {
613 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
614 			sfc_ev_qpoll(rxq->evq);
615 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
616 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
617 
618 		if (rxq_info->state & SFC_RXQ_FLUSHING)
619 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
620 
621 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
622 			sfc_err(sa, "RxQ %u flush failed", sw_index);
623 
624 		if (rxq_info->state & SFC_RXQ_FLUSHED)
625 			sfc_notice(sa, "RxQ %u flushed", sw_index);
626 	}
627 
628 	sa->priv.dp_rx->qpurge(rxq_info->dp);
629 }
630 
631 static int
632 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
633 {
634 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
635 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
636 	struct sfc_port *port = &sa->port;
637 	int rc;
638 
639 	/*
640 	 * If promiscuous or all-multicast mode has been requested, setting
641 	 * filter for the default Rx queue might fail, in particular, while
642 	 * running over PCI function which is not a member of corresponding
643 	 * privilege groups; if this occurs, few iterations will be made to
644 	 * repeat this step without promiscuous and all-multicast flags set
645 	 */
646 retry:
647 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
648 	if (rc == 0)
649 		return 0;
650 	else if (rc != EOPNOTSUPP)
651 		return rc;
652 
653 	if (port->promisc) {
654 		sfc_warn(sa, "promiscuous mode has been requested, "
655 			     "but the HW rejects it");
656 		sfc_warn(sa, "promiscuous mode will be disabled");
657 
658 		port->promisc = B_FALSE;
659 		rc = sfc_set_rx_mode(sa);
660 		if (rc != 0)
661 			return rc;
662 
663 		goto retry;
664 	}
665 
666 	if (port->allmulti) {
667 		sfc_warn(sa, "all-multicast mode has been requested, "
668 			     "but the HW rejects it");
669 		sfc_warn(sa, "all-multicast mode will be disabled");
670 
671 		port->allmulti = B_FALSE;
672 		rc = sfc_set_rx_mode(sa);
673 		if (rc != 0)
674 			return rc;
675 
676 		goto retry;
677 	}
678 
679 	return rc;
680 }
681 
682 int
683 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
684 {
685 	struct sfc_rxq_info *rxq_info;
686 	struct sfc_rxq *rxq;
687 	struct sfc_evq *evq;
688 	int rc;
689 
690 	sfc_log_init(sa, "sw_index=%u", sw_index);
691 
692 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
693 
694 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
695 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
696 
697 	rxq = &sa->rxq_ctrl[sw_index];
698 	evq = rxq->evq;
699 
700 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
701 	if (rc != 0)
702 		goto fail_ev_qstart;
703 
704 	switch (rxq_info->type) {
705 	case EFX_RXQ_TYPE_DEFAULT:
706 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
707 			rxq->buf_size,
708 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
709 			rxq_info->type_flags, evq->common, &rxq->common);
710 		break;
711 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
712 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
713 		struct rte_mempool_info mp_info;
714 
715 		rc = rte_mempool_ops_get_info(mp, &mp_info);
716 		if (rc != 0) {
717 			/* Positive errno is used in the driver */
718 			rc = -rc;
719 			goto fail_mp_get_info;
720 		}
721 		if (mp_info.contig_block_size <= 0) {
722 			rc = EINVAL;
723 			goto fail_bad_contig_block_size;
724 		}
725 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
726 			mp_info.contig_block_size, rxq->buf_size,
727 			mp->header_size + mp->elt_size + mp->trailer_size,
728 			sa->rxd_wait_timeout_ns,
729 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
730 			evq->common, &rxq->common);
731 		break;
732 	}
733 	default:
734 		rc = ENOTSUP;
735 	}
736 	if (rc != 0)
737 		goto fail_rx_qcreate;
738 
739 	efx_rx_qenable(rxq->common);
740 
741 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
742 	if (rc != 0)
743 		goto fail_dp_qstart;
744 
745 	rxq_info->state |= SFC_RXQ_STARTED;
746 
747 	if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
748 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
749 		if (rc != 0)
750 			goto fail_mac_filter_default_rxq_set;
751 	}
752 
753 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
754 	sa->eth_dev->data->rx_queue_state[sw_index] =
755 		RTE_ETH_QUEUE_STATE_STARTED;
756 
757 	return 0;
758 
759 fail_mac_filter_default_rxq_set:
760 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
761 
762 fail_dp_qstart:
763 	sfc_rx_qflush(sa, sw_index);
764 
765 fail_rx_qcreate:
766 fail_bad_contig_block_size:
767 fail_mp_get_info:
768 	sfc_ev_qstop(evq);
769 
770 fail_ev_qstart:
771 	return rc;
772 }
773 
774 void
775 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
776 {
777 	struct sfc_rxq_info *rxq_info;
778 	struct sfc_rxq *rxq;
779 
780 	sfc_log_init(sa, "sw_index=%u", sw_index);
781 
782 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
783 
784 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
785 
786 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
787 		return;
788 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
789 
790 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
791 	sa->eth_dev->data->rx_queue_state[sw_index] =
792 		RTE_ETH_QUEUE_STATE_STOPPED;
793 
794 	rxq = &sa->rxq_ctrl[sw_index];
795 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
796 
797 	if (sw_index == 0)
798 		efx_mac_filter_default_rxq_clear(sa->nic);
799 
800 	sfc_rx_qflush(sa, sw_index);
801 
802 	rxq_info->state = SFC_RXQ_INITIALIZED;
803 
804 	efx_rx_qdestroy(rxq->common);
805 
806 	sfc_ev_qstop(rxq->evq);
807 }
808 
809 uint64_t
810 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
811 {
812 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
813 	uint64_t caps = 0;
814 
815 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
816 
817 	if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
818 		caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
819 		caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
820 		caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
821 	}
822 
823 	if (encp->enc_tunnel_encapsulations_supported &&
824 	    (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
825 		caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
826 
827 	return caps;
828 }
829 
830 uint64_t
831 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
832 {
833 	uint64_t caps = 0;
834 
835 	if (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
836 		caps |= DEV_RX_OFFLOAD_SCATTER;
837 
838 	return caps;
839 }
840 
841 static int
842 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
843 		   const struct rte_eth_rxconf *rx_conf,
844 		   __rte_unused uint64_t offloads)
845 {
846 	int rc = 0;
847 
848 	if (rx_conf->rx_thresh.pthresh != 0 ||
849 	    rx_conf->rx_thresh.hthresh != 0 ||
850 	    rx_conf->rx_thresh.wthresh != 0) {
851 		sfc_warn(sa,
852 			"RxQ prefetch/host/writeback thresholds are not supported");
853 	}
854 
855 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
856 		sfc_err(sa,
857 			"RxQ free threshold too large: %u vs maximum %u",
858 			rx_conf->rx_free_thresh, rxq_max_fill_level);
859 		rc = EINVAL;
860 	}
861 
862 	if (rx_conf->rx_drop_en == 0) {
863 		sfc_err(sa, "RxQ drop disable is not supported");
864 		rc = EINVAL;
865 	}
866 
867 	return rc;
868 }
869 
870 static unsigned int
871 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
872 {
873 	uint32_t data_off;
874 	uint32_t order;
875 
876 	/* The mbuf object itself is always cache line aligned */
877 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
878 
879 	/* Data offset from mbuf object start */
880 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
881 		RTE_PKTMBUF_HEADROOM;
882 
883 	order = MIN(order, rte_bsf32(data_off));
884 
885 	return 1u << order;
886 }
887 
888 static uint16_t
889 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
890 {
891 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
892 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
893 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
894 	uint16_t buf_size;
895 	unsigned int buf_aligned;
896 	unsigned int start_alignment;
897 	unsigned int end_padding_alignment;
898 
899 	/* Below it is assumed that both alignments are power of 2 */
900 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
901 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
902 
903 	/*
904 	 * mbuf is always cache line aligned, double-check
905 	 * that it meets rx buffer start alignment requirements.
906 	 */
907 
908 	/* Start from mbuf pool data room size */
909 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
910 
911 	/* Remove headroom */
912 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
913 		sfc_err(sa,
914 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
915 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
916 		return 0;
917 	}
918 	buf_size -= RTE_PKTMBUF_HEADROOM;
919 
920 	/* Calculate guaranteed data start alignment */
921 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
922 
923 	/* Reserve space for start alignment */
924 	if (buf_aligned < nic_align_start) {
925 		start_alignment = nic_align_start - buf_aligned;
926 		if (buf_size <= start_alignment) {
927 			sfc_err(sa,
928 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
929 				mb_pool->name,
930 				rte_pktmbuf_data_room_size(mb_pool),
931 				RTE_PKTMBUF_HEADROOM, start_alignment);
932 			return 0;
933 		}
934 		buf_aligned = nic_align_start;
935 		buf_size -= start_alignment;
936 	} else {
937 		start_alignment = 0;
938 	}
939 
940 	/* Make sure that end padding does not write beyond the buffer */
941 	if (buf_aligned < nic_align_end) {
942 		/*
943 		 * Estimate space which can be lost. If guarnteed buffer
944 		 * size is odd, lost space is (nic_align_end - 1). More
945 		 * accurate formula is below.
946 		 */
947 		end_padding_alignment = nic_align_end -
948 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
949 		if (buf_size <= end_padding_alignment) {
950 			sfc_err(sa,
951 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
952 				mb_pool->name,
953 				rte_pktmbuf_data_room_size(mb_pool),
954 				RTE_PKTMBUF_HEADROOM, start_alignment,
955 				end_padding_alignment);
956 			return 0;
957 		}
958 		buf_size -= end_padding_alignment;
959 	} else {
960 		/*
961 		 * Start is aligned the same or better than end,
962 		 * just align length.
963 		 */
964 		buf_size = P2ALIGN(buf_size, nic_align_end);
965 	}
966 
967 	return buf_size;
968 }
969 
970 int
971 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
972 	     uint16_t nb_rx_desc, unsigned int socket_id,
973 	     const struct rte_eth_rxconf *rx_conf,
974 	     struct rte_mempool *mb_pool)
975 {
976 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
977 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
978 	int rc;
979 	unsigned int rxq_entries;
980 	unsigned int evq_entries;
981 	unsigned int rxq_max_fill_level;
982 	uint64_t offloads;
983 	uint16_t buf_size;
984 	struct sfc_rxq_info *rxq_info;
985 	struct sfc_evq *evq;
986 	struct sfc_rxq *rxq;
987 	struct sfc_dp_rx_qcreate_info info;
988 	struct sfc_dp_rx_hw_limits hw_limits;
989 	uint16_t rx_free_thresh;
990 	const char *error;
991 
992 	memset(&hw_limits, 0, sizeof(hw_limits));
993 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
994 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
995 	hw_limits.evq_max_entries = sa->evq_max_entries;
996 	hw_limits.evq_min_entries = sa->evq_min_entries;
997 
998 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
999 					    &rxq_entries, &evq_entries,
1000 					    &rxq_max_fill_level);
1001 	if (rc != 0)
1002 		goto fail_size_up_rings;
1003 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1004 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1005 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1006 
1007 	offloads = rx_conf->offloads |
1008 		sa->eth_dev->data->dev_conf.rxmode.offloads;
1009 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1010 	if (rc != 0)
1011 		goto fail_bad_conf;
1012 
1013 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1014 	if (buf_size == 0) {
1015 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1016 			sw_index);
1017 		rc = EINVAL;
1018 		goto fail_bad_conf;
1019 	}
1020 
1021 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1022 				  encp->enc_rx_prefix_size,
1023 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1024 				  &error)) {
1025 		sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1026 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1027 			"PDU size %u plus Rx prefix %u bytes",
1028 			sw_index, buf_size, (unsigned int)sa->port.pdu,
1029 			encp->enc_rx_prefix_size);
1030 		rc = EINVAL;
1031 		goto fail_bad_conf;
1032 	}
1033 
1034 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1035 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1036 
1037 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1038 	rxq_info->entries = rxq_entries;
1039 
1040 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1041 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1042 	else
1043 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1044 
1045 	rxq_info->type_flags =
1046 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1047 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1048 
1049 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1050 	    (sa->priv.dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1051 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1052 
1053 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1054 			  evq_entries, socket_id, &evq);
1055 	if (rc != 0)
1056 		goto fail_ev_qinit;
1057 
1058 	rxq = &sa->rxq_ctrl[sw_index];
1059 	rxq->evq = evq;
1060 	rxq->hw_index = sw_index;
1061 	/*
1062 	 * If Rx refill threshold is specified (its value is non zero) in
1063 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1064 	 * the Rx descriptors number as the default. It allows to keep
1065 	 * Rx ring full-enough and does not refill too aggressive if
1066 	 * packet rate is high.
1067 	 *
1068 	 * Since PMD refills in bulks waiting for full bulk may be
1069 	 * refilled (basically round down), it is better to round up
1070 	 * here to mitigate it a bit.
1071 	 */
1072 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1073 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1074 	/* Rx refill threshold cannot be smaller than refill bulk */
1075 	rxq_info->refill_threshold =
1076 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1077 	rxq_info->refill_mb_pool = mb_pool;
1078 	rxq->buf_size = buf_size;
1079 
1080 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1081 			   efx_rxq_size(sa->nic, rxq_info->entries),
1082 			   socket_id, &rxq->mem);
1083 	if (rc != 0)
1084 		goto fail_dma_alloc;
1085 
1086 	memset(&info, 0, sizeof(info));
1087 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1088 	info.max_fill_level = rxq_max_fill_level;
1089 	info.refill_threshold = rxq_info->refill_threshold;
1090 	info.buf_size = buf_size;
1091 	info.batch_max = encp->enc_rx_batch_max;
1092 	info.prefix_size = encp->enc_rx_prefix_size;
1093 
1094 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1095 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1096 
1097 	info.rxq_entries = rxq_info->entries;
1098 	info.rxq_hw_ring = rxq->mem.esm_base;
1099 	info.evq_entries = evq_entries;
1100 	info.evq_hw_ring = evq->mem.esm_base;
1101 	info.hw_index = rxq->hw_index;
1102 	info.mem_bar = sa->mem_bar.esb_base;
1103 	info.vi_window_shift = encp->enc_vi_window_shift;
1104 
1105 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1106 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1107 				     socket_id, &info, &rxq_info->dp);
1108 	if (rc != 0)
1109 		goto fail_dp_rx_qcreate;
1110 
1111 	evq->dp_rxq = rxq_info->dp;
1112 
1113 	rxq_info->state = SFC_RXQ_INITIALIZED;
1114 
1115 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1116 
1117 	return 0;
1118 
1119 fail_dp_rx_qcreate:
1120 	sfc_dma_free(sa, &rxq->mem);
1121 
1122 fail_dma_alloc:
1123 	sfc_ev_qfini(evq);
1124 
1125 fail_ev_qinit:
1126 	rxq_info->entries = 0;
1127 
1128 fail_bad_conf:
1129 fail_size_up_rings:
1130 	sfc_log_init(sa, "failed %d", rc);
1131 	return rc;
1132 }
1133 
1134 void
1135 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1136 {
1137 	struct sfc_rxq_info *rxq_info;
1138 	struct sfc_rxq *rxq;
1139 
1140 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1141 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1142 
1143 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1144 
1145 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1146 
1147 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1148 	rxq_info->dp = NULL;
1149 
1150 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1151 	rxq_info->entries = 0;
1152 
1153 	rxq = &sa->rxq_ctrl[sw_index];
1154 
1155 	sfc_dma_free(sa, &rxq->mem);
1156 
1157 	sfc_ev_qfini(rxq->evq);
1158 	rxq->evq = NULL;
1159 }
1160 
1161 /*
1162  * Mapping between RTE RSS hash functions and their EFX counterparts.
1163  */
1164 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1165 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1166 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1167 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1168 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1169 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1170 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1171 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1172 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1173 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1174 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1175 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1176 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1177 	  ETH_RSS_IPV6_EX,
1178 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1179 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1180 };
1181 
1182 static efx_rx_hash_type_t
1183 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1184 			    unsigned int *hash_type_flags_supported,
1185 			    unsigned int nb_hash_type_flags_supported)
1186 {
1187 	efx_rx_hash_type_t hash_type_masked = 0;
1188 	unsigned int i, j;
1189 
1190 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1191 		unsigned int class_tuple_lbn[] = {
1192 			EFX_RX_CLASS_IPV4_TCP_LBN,
1193 			EFX_RX_CLASS_IPV4_UDP_LBN,
1194 			EFX_RX_CLASS_IPV4_LBN,
1195 			EFX_RX_CLASS_IPV6_TCP_LBN,
1196 			EFX_RX_CLASS_IPV6_UDP_LBN,
1197 			EFX_RX_CLASS_IPV6_LBN
1198 		};
1199 
1200 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1201 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1202 			unsigned int flag;
1203 
1204 			tuple_mask <<= class_tuple_lbn[j];
1205 			flag = hash_type & tuple_mask;
1206 
1207 			if (flag == hash_type_flags_supported[i])
1208 				hash_type_masked |= flag;
1209 		}
1210 	}
1211 
1212 	return hash_type_masked;
1213 }
1214 
1215 int
1216 sfc_rx_hash_init(struct sfc_adapter *sa)
1217 {
1218 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1219 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1220 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1221 	efx_rx_hash_alg_t alg;
1222 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1223 	unsigned int nb_flags_supp;
1224 	struct sfc_rss_hf_rte_to_efx *hf_map;
1225 	struct sfc_rss_hf_rte_to_efx *entry;
1226 	efx_rx_hash_type_t efx_hash_types;
1227 	unsigned int i;
1228 	int rc;
1229 
1230 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1231 		alg = EFX_RX_HASHALG_TOEPLITZ;
1232 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1233 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1234 	else
1235 		return EINVAL;
1236 
1237 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1238 					 RTE_DIM(flags_supp), &nb_flags_supp);
1239 	if (rc != 0)
1240 		return rc;
1241 
1242 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1243 				   RTE_DIM(sfc_rss_hf_map),
1244 				   sizeof(*hf_map), 0, sa->socket_id);
1245 	if (hf_map == NULL)
1246 		return ENOMEM;
1247 
1248 	entry = hf_map;
1249 	efx_hash_types = 0;
1250 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1251 		efx_rx_hash_type_t ht;
1252 
1253 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1254 						 flags_supp, nb_flags_supp);
1255 		if (ht != 0) {
1256 			entry->rte = sfc_rss_hf_map[i].rte;
1257 			entry->efx = ht;
1258 			efx_hash_types |= ht;
1259 			++entry;
1260 		}
1261 	}
1262 
1263 	rss->hash_alg = alg;
1264 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1265 	rss->hf_map = hf_map;
1266 	rss->hash_types = efx_hash_types;
1267 
1268 	return 0;
1269 }
1270 
1271 void
1272 sfc_rx_hash_fini(struct sfc_adapter *sa)
1273 {
1274 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1275 
1276 	rte_free(rss->hf_map);
1277 }
1278 
1279 int
1280 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1281 		     efx_rx_hash_type_t *efx)
1282 {
1283 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1284 	efx_rx_hash_type_t hash_types = 0;
1285 	unsigned int i;
1286 
1287 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1288 		uint64_t rte_mask = rss->hf_map[i].rte;
1289 
1290 		if ((rte & rte_mask) != 0) {
1291 			rte &= ~rte_mask;
1292 			hash_types |= rss->hf_map[i].efx;
1293 		}
1294 	}
1295 
1296 	if (rte != 0) {
1297 		sfc_err(sa, "unsupported hash functions requested");
1298 		return EINVAL;
1299 	}
1300 
1301 	*efx = hash_types;
1302 
1303 	return 0;
1304 }
1305 
1306 uint64_t
1307 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1308 {
1309 	uint64_t rte = 0;
1310 	unsigned int i;
1311 
1312 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1313 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1314 
1315 		if ((efx & hash_type) == hash_type)
1316 			rte |= rss->hf_map[i].rte;
1317 	}
1318 
1319 	return rte;
1320 }
1321 
1322 static int
1323 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1324 			    struct rte_eth_rss_conf *conf)
1325 {
1326 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1327 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1328 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1329 	int rc;
1330 
1331 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1332 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1333 		    conf->rss_key != NULL)
1334 			return EINVAL;
1335 	}
1336 
1337 	if (conf->rss_hf != 0) {
1338 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1339 		if (rc != 0)
1340 			return rc;
1341 	}
1342 
1343 	if (conf->rss_key != NULL) {
1344 		if (conf->rss_key_len != sizeof(rss->key)) {
1345 			sfc_err(sa, "RSS key size is wrong (should be %lu)",
1346 				sizeof(rss->key));
1347 			return EINVAL;
1348 		}
1349 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1350 	}
1351 
1352 	rss->hash_types = efx_hash_types;
1353 
1354 	return 0;
1355 }
1356 
1357 static int
1358 sfc_rx_rss_config(struct sfc_adapter *sa)
1359 {
1360 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1361 	int rc = 0;
1362 
1363 	if (rss->channels > 0) {
1364 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1365 					   rss->hash_alg, rss->hash_types,
1366 					   B_TRUE);
1367 		if (rc != 0)
1368 			goto finish;
1369 
1370 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1371 					  rss->key, sizeof(rss->key));
1372 		if (rc != 0)
1373 			goto finish;
1374 
1375 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1376 					  rss->tbl, RTE_DIM(rss->tbl));
1377 	}
1378 
1379 finish:
1380 	return rc;
1381 }
1382 
1383 int
1384 sfc_rx_start(struct sfc_adapter *sa)
1385 {
1386 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1387 	unsigned int sw_index;
1388 	int rc;
1389 
1390 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1391 
1392 	rc = efx_rx_init(sa->nic);
1393 	if (rc != 0)
1394 		goto fail_rx_init;
1395 
1396 	rc = sfc_rx_rss_config(sa);
1397 	if (rc != 0)
1398 		goto fail_rss_config;
1399 
1400 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1401 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1402 		    (!sas->rxq_info[sw_index].deferred_start ||
1403 		     sas->rxq_info[sw_index].deferred_started)) {
1404 			rc = sfc_rx_qstart(sa, sw_index);
1405 			if (rc != 0)
1406 				goto fail_rx_qstart;
1407 		}
1408 	}
1409 
1410 	return 0;
1411 
1412 fail_rx_qstart:
1413 	while (sw_index-- > 0)
1414 		sfc_rx_qstop(sa, sw_index);
1415 
1416 fail_rss_config:
1417 	efx_rx_fini(sa->nic);
1418 
1419 fail_rx_init:
1420 	sfc_log_init(sa, "failed %d", rc);
1421 	return rc;
1422 }
1423 
1424 void
1425 sfc_rx_stop(struct sfc_adapter *sa)
1426 {
1427 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1428 	unsigned int sw_index;
1429 
1430 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1431 
1432 	sw_index = sas->rxq_count;
1433 	while (sw_index-- > 0) {
1434 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1435 			sfc_rx_qstop(sa, sw_index);
1436 	}
1437 
1438 	efx_rx_fini(sa->nic);
1439 }
1440 
1441 static int
1442 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1443 {
1444 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1445 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1446 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1447 	unsigned int max_entries;
1448 
1449 	max_entries = encp->enc_rxq_max_ndescs;
1450 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1451 
1452 	rxq_info->max_entries = max_entries;
1453 
1454 	return 0;
1455 }
1456 
1457 static int
1458 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1459 {
1460 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1461 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1462 				      sfc_rx_get_queue_offload_caps(sa);
1463 	struct sfc_rss *rss = &sas->rss;
1464 	int rc = 0;
1465 
1466 	switch (rxmode->mq_mode) {
1467 	case ETH_MQ_RX_NONE:
1468 		/* No special checks are required */
1469 		break;
1470 	case ETH_MQ_RX_RSS:
1471 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1472 			sfc_err(sa, "RSS is not available");
1473 			rc = EINVAL;
1474 		}
1475 		break;
1476 	default:
1477 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1478 			rxmode->mq_mode);
1479 		rc = EINVAL;
1480 	}
1481 
1482 	/*
1483 	 * Requested offloads are validated against supported by ethdev,
1484 	 * so unsupported offloads cannot be added as the result of
1485 	 * below check.
1486 	 */
1487 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1488 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1489 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1490 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1491 	}
1492 
1493 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1494 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1495 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1496 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1497 	}
1498 
1499 	return rc;
1500 }
1501 
1502 /**
1503  * Destroy excess queues that are no longer needed after reconfiguration
1504  * or complete close.
1505  */
1506 static void
1507 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1508 {
1509 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1510 	int sw_index;
1511 
1512 	SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1513 
1514 	sw_index = sas->rxq_count;
1515 	while (--sw_index >= (int)nb_rx_queues) {
1516 		if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1517 			sfc_rx_qfini(sa, sw_index);
1518 	}
1519 
1520 	sas->rxq_count = nb_rx_queues;
1521 }
1522 
1523 /**
1524  * Initialize Rx subsystem.
1525  *
1526  * Called at device (re)configuration stage when number of receive queues is
1527  * specified together with other device level receive configuration.
1528  *
1529  * It should be used to allocate NUMA-unaware resources.
1530  */
1531 int
1532 sfc_rx_configure(struct sfc_adapter *sa)
1533 {
1534 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1535 	struct sfc_rss *rss = &sas->rss;
1536 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1537 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1538 	int rc;
1539 
1540 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1541 		     nb_rx_queues, sas->rxq_count);
1542 
1543 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1544 	if (rc != 0)
1545 		goto fail_check_mode;
1546 
1547 	if (nb_rx_queues == sas->rxq_count)
1548 		goto configure_rss;
1549 
1550 	if (sas->rxq_info == NULL) {
1551 		rc = ENOMEM;
1552 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1553 						  sizeof(sas->rxq_info[0]), 0,
1554 						  sa->socket_id);
1555 		if (sas->rxq_info == NULL)
1556 			goto fail_rxqs_alloc;
1557 
1558 		/*
1559 		 * Allocate primary process only RxQ control from heap
1560 		 * since it should not be shared.
1561 		 */
1562 		rc = ENOMEM;
1563 		sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1564 		if (sa->rxq_ctrl == NULL)
1565 			goto fail_rxqs_ctrl_alloc;
1566 	} else {
1567 		struct sfc_rxq_info *new_rxq_info;
1568 		struct sfc_rxq *new_rxq_ctrl;
1569 
1570 		if (nb_rx_queues < sas->rxq_count)
1571 			sfc_rx_fini_queues(sa, nb_rx_queues);
1572 
1573 		rc = ENOMEM;
1574 		new_rxq_info =
1575 			rte_realloc(sas->rxq_info,
1576 				    nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1577 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1578 			goto fail_rxqs_realloc;
1579 
1580 		rc = ENOMEM;
1581 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1582 				       nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1583 		if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1584 			goto fail_rxqs_ctrl_realloc;
1585 
1586 		sas->rxq_info = new_rxq_info;
1587 		sa->rxq_ctrl = new_rxq_ctrl;
1588 		if (nb_rx_queues > sas->rxq_count) {
1589 			memset(&sas->rxq_info[sas->rxq_count], 0,
1590 			       (nb_rx_queues - sas->rxq_count) *
1591 			       sizeof(sas->rxq_info[0]));
1592 			memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1593 			       (nb_rx_queues - sas->rxq_count) *
1594 			       sizeof(sa->rxq_ctrl[0]));
1595 		}
1596 	}
1597 
1598 	while (sas->rxq_count < nb_rx_queues) {
1599 		rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1600 		if (rc != 0)
1601 			goto fail_rx_qinit_info;
1602 
1603 		sas->rxq_count++;
1604 	}
1605 
1606 configure_rss:
1607 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1608 			 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1609 
1610 	if (rss->channels > 0) {
1611 		struct rte_eth_rss_conf *adv_conf_rss;
1612 		unsigned int sw_index;
1613 
1614 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1615 			rss->tbl[sw_index] = sw_index % rss->channels;
1616 
1617 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1618 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1619 		if (rc != 0)
1620 			goto fail_rx_process_adv_conf_rss;
1621 	}
1622 
1623 	return 0;
1624 
1625 fail_rx_process_adv_conf_rss:
1626 fail_rx_qinit_info:
1627 fail_rxqs_ctrl_realloc:
1628 fail_rxqs_realloc:
1629 fail_rxqs_ctrl_alloc:
1630 fail_rxqs_alloc:
1631 	sfc_rx_close(sa);
1632 
1633 fail_check_mode:
1634 	sfc_log_init(sa, "failed %d", rc);
1635 	return rc;
1636 }
1637 
1638 /**
1639  * Shutdown Rx subsystem.
1640  *
1641  * Called at device close stage, for example, before device shutdown.
1642  */
1643 void
1644 sfc_rx_close(struct sfc_adapter *sa)
1645 {
1646 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1647 
1648 	sfc_rx_fini_queues(sa, 0);
1649 
1650 	rss->channels = 0;
1651 
1652 	free(sa->rxq_ctrl);
1653 	sa->rxq_ctrl = NULL;
1654 
1655 	rte_free(sfc_sa2shared(sa)->rxq_info);
1656 	sfc_sa2shared(sa)->rxq_info = NULL;
1657 }
1658