xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 1edccebcccdbe600dc0a3a418fae68336648a87e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq *rxq)
43 {
44 	rxq->state |= SFC_RXQ_FLUSHED;
45 	rxq->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
50 {
51 	rxq->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static void
56 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
57 {
58 	unsigned int free_space;
59 	unsigned int bulks;
60 	void *objs[SFC_RX_REFILL_BULK];
61 	efsys_dma_addr_t addr[RTE_DIM(objs)];
62 	unsigned int added = rxq->added;
63 	unsigned int id;
64 	unsigned int i;
65 	struct sfc_efx_rx_sw_desc *rxd;
66 	struct rte_mbuf *m;
67 	uint16_t port_id = rxq->dp.dpq.port_id;
68 
69 	free_space = rxq->max_fill_level - (added - rxq->completed);
70 
71 	if (free_space < rxq->refill_threshold)
72 		return;
73 
74 	bulks = free_space / RTE_DIM(objs);
75 	/* refill_threshold guarantees that bulks is positive */
76 	SFC_ASSERT(bulks > 0);
77 
78 	id = added & rxq->ptr_mask;
79 	do {
80 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
81 						  RTE_DIM(objs)) < 0)) {
82 			/*
83 			 * It is hardly a safe way to increment counter
84 			 * from different contexts, but all PMDs do it.
85 			 */
86 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
87 				RTE_DIM(objs);
88 			/* Return if we have posted nothing yet */
89 			if (added == rxq->added)
90 				return;
91 			/* Push posted */
92 			break;
93 		}
94 
95 		for (i = 0; i < RTE_DIM(objs);
96 		     ++i, id = (id + 1) & rxq->ptr_mask) {
97 			m = objs[i];
98 
99 			MBUF_RAW_ALLOC_CHECK(m);
100 
101 			rxd = &rxq->sw_desc[id];
102 			rxd->mbuf = m;
103 
104 			m->data_off = RTE_PKTMBUF_HEADROOM;
105 			m->port = port_id;
106 
107 			addr[i] = rte_pktmbuf_iova(m);
108 		}
109 
110 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
111 			     RTE_DIM(objs), rxq->completed, added);
112 		added += RTE_DIM(objs);
113 	} while (--bulks > 0);
114 
115 	SFC_ASSERT(added != rxq->added);
116 	rxq->added = added;
117 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
118 }
119 
120 static uint64_t
121 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
122 {
123 	uint64_t mbuf_flags = 0;
124 
125 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
126 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
127 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
128 		break;
129 	case EFX_PKT_IPV4:
130 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
131 		break;
132 	default:
133 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
134 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
135 			   PKT_RX_IP_CKSUM_UNKNOWN);
136 		break;
137 	}
138 
139 	switch ((desc_flags &
140 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
141 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
142 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
143 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
144 		break;
145 	case EFX_PKT_TCP:
146 	case EFX_PKT_UDP:
147 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
148 		break;
149 	default:
150 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
151 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
152 			   PKT_RX_L4_CKSUM_UNKNOWN);
153 		break;
154 	}
155 
156 	return mbuf_flags;
157 }
158 
159 static uint32_t
160 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
161 {
162 	return RTE_PTYPE_L2_ETHER |
163 		((desc_flags & EFX_PKT_IPV4) ?
164 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
165 		((desc_flags & EFX_PKT_IPV6) ?
166 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
167 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
168 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
169 }
170 
171 static const uint32_t *
172 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
173 {
174 	static const uint32_t ptypes[] = {
175 		RTE_PTYPE_L2_ETHER,
176 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
177 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
178 		RTE_PTYPE_L4_TCP,
179 		RTE_PTYPE_L4_UDP,
180 		RTE_PTYPE_UNKNOWN
181 	};
182 
183 	return ptypes;
184 }
185 
186 static void
187 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
188 			struct rte_mbuf *m)
189 {
190 	uint8_t *mbuf_data;
191 
192 
193 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
194 		return;
195 
196 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
197 
198 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
199 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
200 						      EFX_RX_HASHALG_TOEPLITZ,
201 						      mbuf_data);
202 
203 		m->ol_flags |= PKT_RX_RSS_HASH;
204 	}
205 }
206 
207 static uint16_t
208 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
209 {
210 	struct sfc_dp_rxq *dp_rxq = rx_queue;
211 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
212 	unsigned int completed;
213 	unsigned int prefix_size = rxq->prefix_size;
214 	unsigned int done_pkts = 0;
215 	boolean_t discard_next = B_FALSE;
216 	struct rte_mbuf *scatter_pkt = NULL;
217 
218 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
219 		return 0;
220 
221 	sfc_ev_qpoll(rxq->evq);
222 
223 	completed = rxq->completed;
224 	while (completed != rxq->pending && done_pkts < nb_pkts) {
225 		unsigned int id;
226 		struct sfc_efx_rx_sw_desc *rxd;
227 		struct rte_mbuf *m;
228 		unsigned int seg_len;
229 		unsigned int desc_flags;
230 
231 		id = completed++ & rxq->ptr_mask;
232 		rxd = &rxq->sw_desc[id];
233 		m = rxd->mbuf;
234 		desc_flags = rxd->flags;
235 
236 		if (discard_next)
237 			goto discard;
238 
239 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
240 			goto discard;
241 
242 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
243 			uint16_t tmp_size;
244 			int rc __rte_unused;
245 
246 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
247 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
248 			SFC_ASSERT(rc == 0);
249 			seg_len = tmp_size;
250 		} else {
251 			seg_len = rxd->size - prefix_size;
252 		}
253 
254 		rte_pktmbuf_data_len(m) = seg_len;
255 		rte_pktmbuf_pkt_len(m) = seg_len;
256 
257 		if (scatter_pkt != NULL) {
258 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
259 				rte_pktmbuf_free(scatter_pkt);
260 				goto discard;
261 			}
262 			/* The packet to deliver */
263 			m = scatter_pkt;
264 		}
265 
266 		if (desc_flags & EFX_PKT_CONT) {
267 			/* The packet is scattered, more fragments to come */
268 			scatter_pkt = m;
269 			/* Further fragments have no prefix */
270 			prefix_size = 0;
271 			continue;
272 		}
273 
274 		/* Scattered packet is done */
275 		scatter_pkt = NULL;
276 		/* The first fragment of the packet has prefix */
277 		prefix_size = rxq->prefix_size;
278 
279 		m->ol_flags =
280 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
281 		m->packet_type =
282 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
283 
284 		/*
285 		 * Extract RSS hash from the packet prefix and
286 		 * set the corresponding field (if needed and possible)
287 		 */
288 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
289 
290 		m->data_off += prefix_size;
291 
292 		*rx_pkts++ = m;
293 		done_pkts++;
294 		continue;
295 
296 discard:
297 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
298 		rte_mbuf_raw_free(m);
299 		rxd->mbuf = NULL;
300 	}
301 
302 	/* pending is only moved when entire packet is received */
303 	SFC_ASSERT(scatter_pkt == NULL);
304 
305 	rxq->completed = completed;
306 
307 	sfc_efx_rx_qrefill(rxq);
308 
309 	return done_pkts;
310 }
311 
312 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
313 static unsigned int
314 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
315 {
316 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
317 
318 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
319 		return 0;
320 
321 	sfc_ev_qpoll(rxq->evq);
322 
323 	return rxq->pending - rxq->completed;
324 }
325 
326 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
327 static int
328 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
329 {
330 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
331 
332 	if (unlikely(offset > rxq->ptr_mask))
333 		return -EINVAL;
334 
335 	/*
336 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
337 	 * it is required for the queue to be running, but the
338 	 * check is omitted because API design assumes that it
339 	 * is the duty of the caller to satisfy all conditions
340 	 */
341 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
342 		   SFC_EFX_RXQ_FLAG_RUNNING);
343 	sfc_ev_qpoll(rxq->evq);
344 
345 	/*
346 	 * There is a handful of reserved entries in the ring,
347 	 * but an explicit check whether the offset points to
348 	 * a reserved entry is neglected since the two checks
349 	 * below rely on the figures which take the HW limits
350 	 * into account and thus if an entry is reserved, the
351 	 * checks will fail and UNAVAIL code will be returned
352 	 */
353 
354 	if (offset < (rxq->pending - rxq->completed))
355 		return RTE_ETH_RX_DESC_DONE;
356 
357 	if (offset < (rxq->added - rxq->completed))
358 		return RTE_ETH_RX_DESC_AVAIL;
359 
360 	return RTE_ETH_RX_DESC_UNAVAIL;
361 }
362 
363 struct sfc_rxq *
364 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
365 {
366 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
367 	struct rte_eth_dev *eth_dev;
368 	struct sfc_adapter *sa;
369 	struct sfc_rxq *rxq;
370 
371 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
372 	eth_dev = &rte_eth_devices[dpq->port_id];
373 
374 	sa = eth_dev->data->dev_private;
375 
376 	SFC_ASSERT(dpq->queue_id < sa->rxq_count);
377 	rxq = sa->rxq_info[dpq->queue_id].rxq;
378 
379 	SFC_ASSERT(rxq != NULL);
380 	return rxq;
381 }
382 
383 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
384 static int
385 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
386 			  __rte_unused struct rte_mempool *mb_pool,
387 			  unsigned int *rxq_entries,
388 			  unsigned int *evq_entries,
389 			  unsigned int *rxq_max_fill_level)
390 {
391 	*rxq_entries = nb_rx_desc;
392 	*evq_entries = nb_rx_desc;
393 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
394 	return 0;
395 }
396 
397 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
398 static int
399 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
400 		   const struct rte_pci_addr *pci_addr, int socket_id,
401 		   const struct sfc_dp_rx_qcreate_info *info,
402 		   struct sfc_dp_rxq **dp_rxqp)
403 {
404 	struct sfc_efx_rxq *rxq;
405 	int rc;
406 
407 	rc = ENOMEM;
408 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
409 				 RTE_CACHE_LINE_SIZE, socket_id);
410 	if (rxq == NULL)
411 		goto fail_rxq_alloc;
412 
413 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
414 
415 	rc = ENOMEM;
416 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
417 					 info->rxq_entries,
418 					 sizeof(*rxq->sw_desc),
419 					 RTE_CACHE_LINE_SIZE, socket_id);
420 	if (rxq->sw_desc == NULL)
421 		goto fail_desc_alloc;
422 
423 	/* efx datapath is bound to efx control path */
424 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
425 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
426 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
427 	rxq->ptr_mask = info->rxq_entries - 1;
428 	rxq->batch_max = info->batch_max;
429 	rxq->prefix_size = info->prefix_size;
430 	rxq->max_fill_level = info->max_fill_level;
431 	rxq->refill_threshold = info->refill_threshold;
432 	rxq->buf_size = info->buf_size;
433 	rxq->refill_mb_pool = info->refill_mb_pool;
434 
435 	*dp_rxqp = &rxq->dp;
436 	return 0;
437 
438 fail_desc_alloc:
439 	rte_free(rxq);
440 
441 fail_rxq_alloc:
442 	return rc;
443 }
444 
445 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
446 static void
447 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
448 {
449 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
450 
451 	rte_free(rxq->sw_desc);
452 	rte_free(rxq);
453 }
454 
455 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
456 static int
457 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
458 		  __rte_unused unsigned int evq_read_ptr)
459 {
460 	/* libefx-based datapath is specific to libefx-based PMD */
461 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
462 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
463 
464 	rxq->common = crxq->common;
465 
466 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
467 
468 	sfc_efx_rx_qrefill(rxq);
469 
470 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
471 
472 	return 0;
473 }
474 
475 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
476 static void
477 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
478 		 __rte_unused unsigned int *evq_read_ptr)
479 {
480 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
481 
482 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
483 
484 	/* libefx-based datapath is bound to libefx-based PMD and uses
485 	 * event queue structure directly. So, there is no necessity to
486 	 * return EvQ read pointer.
487 	 */
488 }
489 
490 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
491 static void
492 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
493 {
494 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
495 	unsigned int i;
496 	struct sfc_efx_rx_sw_desc *rxd;
497 
498 	for (i = rxq->completed; i != rxq->added; ++i) {
499 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
500 		rte_mbuf_raw_free(rxd->mbuf);
501 		rxd->mbuf = NULL;
502 		/* Packed stream relies on 0 in inactive SW desc.
503 		 * Rx queue stop is not performance critical, so
504 		 * there is no harm to do it always.
505 		 */
506 		rxd->flags = 0;
507 		rxd->size = 0;
508 	}
509 
510 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
511 }
512 
513 struct sfc_dp_rx sfc_efx_rx = {
514 	.dp = {
515 		.name		= SFC_KVARG_DATAPATH_EFX,
516 		.type		= SFC_DP_RX,
517 		.hw_fw_caps	= 0,
518 	},
519 	.features		= SFC_DP_RX_FEAT_SCATTER |
520 				  SFC_DP_RX_FEAT_CHECKSUM,
521 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
522 	.qcreate		= sfc_efx_rx_qcreate,
523 	.qdestroy		= sfc_efx_rx_qdestroy,
524 	.qstart			= sfc_efx_rx_qstart,
525 	.qstop			= sfc_efx_rx_qstop,
526 	.qpurge			= sfc_efx_rx_qpurge,
527 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
528 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
529 	.qdesc_status		= sfc_efx_rx_qdesc_status,
530 	.pkt_burst		= sfc_efx_recv_pkts,
531 };
532 
533 unsigned int
534 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
535 {
536 	struct sfc_rxq *rxq;
537 
538 	SFC_ASSERT(sw_index < sa->rxq_count);
539 	rxq = sa->rxq_info[sw_index].rxq;
540 
541 	if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
542 		return 0;
543 
544 	return sa->dp_rx->qdesc_npending(rxq->dp);
545 }
546 
547 int
548 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
549 {
550 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
551 
552 	return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
553 }
554 
555 static void
556 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
557 {
558 	struct sfc_rxq *rxq;
559 	unsigned int retry_count;
560 	unsigned int wait_count;
561 	int rc;
562 
563 	rxq = sa->rxq_info[sw_index].rxq;
564 	SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
565 
566 	/*
567 	 * Retry Rx queue flushing in the case of flush failed or
568 	 * timeout. In the worst case it can delay for 6 seconds.
569 	 */
570 	for (retry_count = 0;
571 	     ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
572 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
573 	     ++retry_count) {
574 		rc = efx_rx_qflush(rxq->common);
575 		if (rc != 0) {
576 			rxq->state |= (rc == EALREADY) ?
577 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
578 			break;
579 		}
580 		rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
581 		rxq->state |= SFC_RXQ_FLUSHING;
582 
583 		/*
584 		 * Wait for Rx queue flush done or failed event at least
585 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
586 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
587 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
588 		 */
589 		wait_count = 0;
590 		do {
591 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
592 			sfc_ev_qpoll(rxq->evq);
593 		} while ((rxq->state & SFC_RXQ_FLUSHING) &&
594 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
595 
596 		if (rxq->state & SFC_RXQ_FLUSHING)
597 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
598 
599 		if (rxq->state & SFC_RXQ_FLUSH_FAILED)
600 			sfc_err(sa, "RxQ %u flush failed", sw_index);
601 
602 		if (rxq->state & SFC_RXQ_FLUSHED)
603 			sfc_notice(sa, "RxQ %u flushed", sw_index);
604 	}
605 
606 	sa->dp_rx->qpurge(rxq->dp);
607 }
608 
609 static int
610 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
611 {
612 	struct sfc_rss *rss = &sa->rss;
613 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
614 	struct sfc_port *port = &sa->port;
615 	int rc;
616 
617 	/*
618 	 * If promiscuous or all-multicast mode has been requested, setting
619 	 * filter for the default Rx queue might fail, in particular, while
620 	 * running over PCI function which is not a member of corresponding
621 	 * privilege groups; if this occurs, few iterations will be made to
622 	 * repeat this step without promiscuous and all-multicast flags set
623 	 */
624 retry:
625 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
626 	if (rc == 0)
627 		return 0;
628 	else if (rc != EOPNOTSUPP)
629 		return rc;
630 
631 	if (port->promisc) {
632 		sfc_warn(sa, "promiscuous mode has been requested, "
633 			     "but the HW rejects it");
634 		sfc_warn(sa, "promiscuous mode will be disabled");
635 
636 		port->promisc = B_FALSE;
637 		rc = sfc_set_rx_mode(sa);
638 		if (rc != 0)
639 			return rc;
640 
641 		goto retry;
642 	}
643 
644 	if (port->allmulti) {
645 		sfc_warn(sa, "all-multicast mode has been requested, "
646 			     "but the HW rejects it");
647 		sfc_warn(sa, "all-multicast mode will be disabled");
648 
649 		port->allmulti = B_FALSE;
650 		rc = sfc_set_rx_mode(sa);
651 		if (rc != 0)
652 			return rc;
653 
654 		goto retry;
655 	}
656 
657 	return rc;
658 }
659 
660 int
661 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
662 {
663 	struct sfc_port *port = &sa->port;
664 	struct sfc_rxq_info *rxq_info;
665 	struct sfc_rxq *rxq;
666 	struct sfc_evq *evq;
667 	int rc;
668 
669 	sfc_log_init(sa, "sw_index=%u", sw_index);
670 
671 	SFC_ASSERT(sw_index < sa->rxq_count);
672 
673 	rxq_info = &sa->rxq_info[sw_index];
674 	rxq = rxq_info->rxq;
675 	SFC_ASSERT(rxq != NULL);
676 	SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
677 
678 	evq = rxq->evq;
679 
680 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
681 	if (rc != 0)
682 		goto fail_ev_qstart;
683 
684 	switch (rxq_info->type) {
685 	case EFX_RXQ_TYPE_DEFAULT:
686 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
687 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
688 			rxq_info->type_flags, evq->common, &rxq->common);
689 		break;
690 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
691 		struct rte_mempool *mp = rxq->refill_mb_pool;
692 		struct rte_mempool_info mp_info;
693 
694 		rc = rte_mempool_ops_get_info(mp, &mp_info);
695 		if (rc != 0) {
696 			/* Positive errno is used in the driver */
697 			rc = -rc;
698 			goto fail_mp_get_info;
699 		}
700 		if (mp_info.contig_block_size <= 0) {
701 			rc = EINVAL;
702 			goto fail_bad_contig_block_size;
703 		}
704 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
705 			mp_info.contig_block_size, rxq->buf_size,
706 			mp->header_size + mp->elt_size + mp->trailer_size,
707 			sa->rxd_wait_timeout_ns,
708 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
709 			evq->common, &rxq->common);
710 		break;
711 	}
712 	default:
713 		rc = ENOTSUP;
714 	}
715 	if (rc != 0)
716 		goto fail_rx_qcreate;
717 
718 	efx_rx_qenable(rxq->common);
719 
720 	rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
721 	if (rc != 0)
722 		goto fail_dp_qstart;
723 
724 	rxq->state |= SFC_RXQ_STARTED;
725 
726 	if ((sw_index == 0) && !port->isolated) {
727 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
728 		if (rc != 0)
729 			goto fail_mac_filter_default_rxq_set;
730 	}
731 
732 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
733 	sa->eth_dev->data->rx_queue_state[sw_index] =
734 		RTE_ETH_QUEUE_STATE_STARTED;
735 
736 	return 0;
737 
738 fail_mac_filter_default_rxq_set:
739 	sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
740 
741 fail_dp_qstart:
742 	sfc_rx_qflush(sa, sw_index);
743 
744 fail_rx_qcreate:
745 fail_bad_contig_block_size:
746 fail_mp_get_info:
747 	sfc_ev_qstop(evq);
748 
749 fail_ev_qstart:
750 	return rc;
751 }
752 
753 void
754 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
755 {
756 	struct sfc_rxq_info *rxq_info;
757 	struct sfc_rxq *rxq;
758 
759 	sfc_log_init(sa, "sw_index=%u", sw_index);
760 
761 	SFC_ASSERT(sw_index < sa->rxq_count);
762 
763 	rxq_info = &sa->rxq_info[sw_index];
764 	rxq = rxq_info->rxq;
765 
766 	if (rxq == NULL || rxq->state == SFC_RXQ_INITIALIZED)
767 		return;
768 	SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
769 
770 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
771 	sa->eth_dev->data->rx_queue_state[sw_index] =
772 		RTE_ETH_QUEUE_STATE_STOPPED;
773 
774 	sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
775 
776 	if (sw_index == 0)
777 		efx_mac_filter_default_rxq_clear(sa->nic);
778 
779 	sfc_rx_qflush(sa, sw_index);
780 
781 	rxq->state = SFC_RXQ_INITIALIZED;
782 
783 	efx_rx_qdestroy(rxq->common);
784 
785 	sfc_ev_qstop(rxq->evq);
786 }
787 
788 uint64_t
789 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
790 {
791 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
792 	uint64_t caps = 0;
793 
794 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
795 
796 	if (sa->dp_rx->features & SFC_DP_RX_FEAT_CHECKSUM) {
797 		caps |= DEV_RX_OFFLOAD_IPV4_CKSUM;
798 		caps |= DEV_RX_OFFLOAD_UDP_CKSUM;
799 		caps |= DEV_RX_OFFLOAD_TCP_CKSUM;
800 	}
801 
802 	if (encp->enc_tunnel_encapsulations_supported &&
803 	    (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
804 		caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
805 
806 	return caps;
807 }
808 
809 uint64_t
810 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
811 {
812 	uint64_t caps = 0;
813 
814 	if (sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)
815 		caps |= DEV_RX_OFFLOAD_SCATTER;
816 
817 	return caps;
818 }
819 
820 static int
821 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
822 		   const struct rte_eth_rxconf *rx_conf,
823 		   __rte_unused uint64_t offloads)
824 {
825 	int rc = 0;
826 
827 	if (rx_conf->rx_thresh.pthresh != 0 ||
828 	    rx_conf->rx_thresh.hthresh != 0 ||
829 	    rx_conf->rx_thresh.wthresh != 0) {
830 		sfc_warn(sa,
831 			"RxQ prefetch/host/writeback thresholds are not supported");
832 	}
833 
834 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
835 		sfc_err(sa,
836 			"RxQ free threshold too large: %u vs maximum %u",
837 			rx_conf->rx_free_thresh, rxq_max_fill_level);
838 		rc = EINVAL;
839 	}
840 
841 	if (rx_conf->rx_drop_en == 0) {
842 		sfc_err(sa, "RxQ drop disable is not supported");
843 		rc = EINVAL;
844 	}
845 
846 	return rc;
847 }
848 
849 static unsigned int
850 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
851 {
852 	uint32_t data_off;
853 	uint32_t order;
854 
855 	/* The mbuf object itself is always cache line aligned */
856 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
857 
858 	/* Data offset from mbuf object start */
859 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
860 		RTE_PKTMBUF_HEADROOM;
861 
862 	order = MIN(order, rte_bsf32(data_off));
863 
864 	return 1u << order;
865 }
866 
867 static uint16_t
868 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
869 {
870 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
871 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
872 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
873 	uint16_t buf_size;
874 	unsigned int buf_aligned;
875 	unsigned int start_alignment;
876 	unsigned int end_padding_alignment;
877 
878 	/* Below it is assumed that both alignments are power of 2 */
879 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
880 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
881 
882 	/*
883 	 * mbuf is always cache line aligned, double-check
884 	 * that it meets rx buffer start alignment requirements.
885 	 */
886 
887 	/* Start from mbuf pool data room size */
888 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
889 
890 	/* Remove headroom */
891 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
892 		sfc_err(sa,
893 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
894 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
895 		return 0;
896 	}
897 	buf_size -= RTE_PKTMBUF_HEADROOM;
898 
899 	/* Calculate guaranteed data start alignment */
900 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
901 
902 	/* Reserve space for start alignment */
903 	if (buf_aligned < nic_align_start) {
904 		start_alignment = nic_align_start - buf_aligned;
905 		if (buf_size <= start_alignment) {
906 			sfc_err(sa,
907 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
908 				mb_pool->name,
909 				rte_pktmbuf_data_room_size(mb_pool),
910 				RTE_PKTMBUF_HEADROOM, start_alignment);
911 			return 0;
912 		}
913 		buf_aligned = nic_align_start;
914 		buf_size -= start_alignment;
915 	} else {
916 		start_alignment = 0;
917 	}
918 
919 	/* Make sure that end padding does not write beyond the buffer */
920 	if (buf_aligned < nic_align_end) {
921 		/*
922 		 * Estimate space which can be lost. If guarnteed buffer
923 		 * size is odd, lost space is (nic_align_end - 1). More
924 		 * accurate formula is below.
925 		 */
926 		end_padding_alignment = nic_align_end -
927 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
928 		if (buf_size <= end_padding_alignment) {
929 			sfc_err(sa,
930 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
931 				mb_pool->name,
932 				rte_pktmbuf_data_room_size(mb_pool),
933 				RTE_PKTMBUF_HEADROOM, start_alignment,
934 				end_padding_alignment);
935 			return 0;
936 		}
937 		buf_size -= end_padding_alignment;
938 	} else {
939 		/*
940 		 * Start is aligned the same or better than end,
941 		 * just align length.
942 		 */
943 		buf_size = P2ALIGN(buf_size, nic_align_end);
944 	}
945 
946 	return buf_size;
947 }
948 
949 int
950 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
951 	     uint16_t nb_rx_desc, unsigned int socket_id,
952 	     const struct rte_eth_rxconf *rx_conf,
953 	     struct rte_mempool *mb_pool)
954 {
955 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
956 	struct sfc_rss *rss = &sa->rss;
957 	int rc;
958 	unsigned int rxq_entries;
959 	unsigned int evq_entries;
960 	unsigned int rxq_max_fill_level;
961 	uint64_t offloads;
962 	uint16_t buf_size;
963 	struct sfc_rxq_info *rxq_info;
964 	struct sfc_evq *evq;
965 	struct sfc_rxq *rxq;
966 	struct sfc_dp_rx_qcreate_info info;
967 
968 	rc = sa->dp_rx->qsize_up_rings(nb_rx_desc, mb_pool, &rxq_entries,
969 				       &evq_entries, &rxq_max_fill_level);
970 	if (rc != 0)
971 		goto fail_size_up_rings;
972 	SFC_ASSERT(rxq_entries >= EFX_RXQ_MINNDESCS);
973 	SFC_ASSERT(rxq_entries <= EFX_RXQ_MAXNDESCS);
974 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
975 
976 	offloads = rx_conf->offloads |
977 		sa->eth_dev->data->dev_conf.rxmode.offloads;
978 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
979 	if (rc != 0)
980 		goto fail_bad_conf;
981 
982 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
983 	if (buf_size == 0) {
984 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
985 			sw_index);
986 		rc = EINVAL;
987 		goto fail_bad_conf;
988 	}
989 
990 	if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
991 	    (~offloads & DEV_RX_OFFLOAD_SCATTER)) {
992 		sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
993 			"object size is too small", sw_index);
994 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
995 			"PDU size %u plus Rx prefix %u bytes",
996 			sw_index, buf_size, (unsigned int)sa->port.pdu,
997 			encp->enc_rx_prefix_size);
998 		rc = EINVAL;
999 		goto fail_bad_conf;
1000 	}
1001 
1002 	SFC_ASSERT(sw_index < sa->rxq_count);
1003 	rxq_info = &sa->rxq_info[sw_index];
1004 
1005 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1006 	rxq_info->entries = rxq_entries;
1007 
1008 	if (sa->dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1009 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1010 	else
1011 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1012 
1013 	rxq_info->type_flags =
1014 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1015 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1016 
1017 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1018 	    (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS))
1019 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1020 
1021 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1022 			  evq_entries, socket_id, &evq);
1023 	if (rc != 0)
1024 		goto fail_ev_qinit;
1025 
1026 	rc = ENOMEM;
1027 	rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
1028 				 socket_id);
1029 	if (rxq == NULL)
1030 		goto fail_rxq_alloc;
1031 
1032 	rxq_info->rxq = rxq;
1033 
1034 	rxq->evq = evq;
1035 	rxq->hw_index = sw_index;
1036 	rxq->refill_threshold =
1037 		RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
1038 	rxq->refill_mb_pool = mb_pool;
1039 	rxq->buf_size = buf_size;
1040 
1041 	rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
1042 			   socket_id, &rxq->mem);
1043 	if (rc != 0)
1044 		goto fail_dma_alloc;
1045 
1046 	memset(&info, 0, sizeof(info));
1047 	info.refill_mb_pool = rxq->refill_mb_pool;
1048 	info.max_fill_level = rxq_max_fill_level;
1049 	info.refill_threshold = rxq->refill_threshold;
1050 	info.buf_size = buf_size;
1051 	info.batch_max = encp->enc_rx_batch_max;
1052 	info.prefix_size = encp->enc_rx_prefix_size;
1053 
1054 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1055 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1056 
1057 	info.rxq_entries = rxq_info->entries;
1058 	info.rxq_hw_ring = rxq->mem.esm_base;
1059 	info.evq_entries = evq_entries;
1060 	info.evq_hw_ring = evq->mem.esm_base;
1061 	info.hw_index = rxq->hw_index;
1062 	info.mem_bar = sa->mem_bar.esb_base;
1063 	info.vi_window_shift = encp->enc_vi_window_shift;
1064 
1065 	rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1066 				&RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1067 				socket_id, &info, &rxq->dp);
1068 	if (rc != 0)
1069 		goto fail_dp_rx_qcreate;
1070 
1071 	evq->dp_rxq = rxq->dp;
1072 
1073 	rxq->state = SFC_RXQ_INITIALIZED;
1074 
1075 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1076 
1077 	return 0;
1078 
1079 fail_dp_rx_qcreate:
1080 	sfc_dma_free(sa, &rxq->mem);
1081 
1082 fail_dma_alloc:
1083 	rxq_info->rxq = NULL;
1084 	rte_free(rxq);
1085 
1086 fail_rxq_alloc:
1087 	sfc_ev_qfini(evq);
1088 
1089 fail_ev_qinit:
1090 	rxq_info->entries = 0;
1091 
1092 fail_bad_conf:
1093 fail_size_up_rings:
1094 	sfc_log_init(sa, "failed %d", rc);
1095 	return rc;
1096 }
1097 
1098 void
1099 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1100 {
1101 	struct sfc_rxq_info *rxq_info;
1102 	struct sfc_rxq *rxq;
1103 
1104 	SFC_ASSERT(sw_index < sa->rxq_count);
1105 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1106 
1107 	rxq_info = &sa->rxq_info[sw_index];
1108 
1109 	rxq = rxq_info->rxq;
1110 	SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
1111 
1112 	sa->dp_rx->qdestroy(rxq->dp);
1113 	rxq->dp = NULL;
1114 
1115 	rxq_info->rxq = NULL;
1116 	rxq_info->entries = 0;
1117 
1118 	sfc_dma_free(sa, &rxq->mem);
1119 
1120 	sfc_ev_qfini(rxq->evq);
1121 	rxq->evq = NULL;
1122 
1123 	rte_free(rxq);
1124 }
1125 
1126 /*
1127  * Mapping between RTE RSS hash functions and their EFX counterparts.
1128  */
1129 struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1130 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1131 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1132 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1133 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1134 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1135 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1136 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1137 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1138 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1139 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1140 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1141 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1142 	  ETH_RSS_IPV6_EX,
1143 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1144 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1145 };
1146 
1147 static efx_rx_hash_type_t
1148 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1149 			    unsigned int *hash_type_flags_supported,
1150 			    unsigned int nb_hash_type_flags_supported)
1151 {
1152 	efx_rx_hash_type_t hash_type_masked = 0;
1153 	unsigned int i, j;
1154 
1155 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1156 		unsigned int class_tuple_lbn[] = {
1157 			EFX_RX_CLASS_IPV4_TCP_LBN,
1158 			EFX_RX_CLASS_IPV4_UDP_LBN,
1159 			EFX_RX_CLASS_IPV4_LBN,
1160 			EFX_RX_CLASS_IPV6_TCP_LBN,
1161 			EFX_RX_CLASS_IPV6_UDP_LBN,
1162 			EFX_RX_CLASS_IPV6_LBN
1163 		};
1164 
1165 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1166 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1167 			unsigned int flag;
1168 
1169 			tuple_mask <<= class_tuple_lbn[j];
1170 			flag = hash_type & tuple_mask;
1171 
1172 			if (flag == hash_type_flags_supported[i])
1173 				hash_type_masked |= flag;
1174 		}
1175 	}
1176 
1177 	return hash_type_masked;
1178 }
1179 
1180 int
1181 sfc_rx_hash_init(struct sfc_adapter *sa)
1182 {
1183 	struct sfc_rss *rss = &sa->rss;
1184 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1185 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1186 	efx_rx_hash_alg_t alg;
1187 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1188 	unsigned int nb_flags_supp;
1189 	struct sfc_rss_hf_rte_to_efx *hf_map;
1190 	struct sfc_rss_hf_rte_to_efx *entry;
1191 	efx_rx_hash_type_t efx_hash_types;
1192 	unsigned int i;
1193 	int rc;
1194 
1195 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1196 		alg = EFX_RX_HASHALG_TOEPLITZ;
1197 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1198 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1199 	else
1200 		return EINVAL;
1201 
1202 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1203 					 RTE_DIM(flags_supp), &nb_flags_supp);
1204 	if (rc != 0)
1205 		return rc;
1206 
1207 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1208 				   RTE_DIM(sfc_rss_hf_map),
1209 				   sizeof(*hf_map), 0, sa->socket_id);
1210 	if (hf_map == NULL)
1211 		return ENOMEM;
1212 
1213 	entry = hf_map;
1214 	efx_hash_types = 0;
1215 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1216 		efx_rx_hash_type_t ht;
1217 
1218 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1219 						 flags_supp, nb_flags_supp);
1220 		if (ht != 0) {
1221 			entry->rte = sfc_rss_hf_map[i].rte;
1222 			entry->efx = ht;
1223 			efx_hash_types |= ht;
1224 			++entry;
1225 		}
1226 	}
1227 
1228 	rss->hash_alg = alg;
1229 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1230 	rss->hf_map = hf_map;
1231 	rss->hash_types = efx_hash_types;
1232 
1233 	return 0;
1234 }
1235 
1236 void
1237 sfc_rx_hash_fini(struct sfc_adapter *sa)
1238 {
1239 	struct sfc_rss *rss = &sa->rss;
1240 
1241 	rte_free(rss->hf_map);
1242 }
1243 
1244 int
1245 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1246 		     efx_rx_hash_type_t *efx)
1247 {
1248 	struct sfc_rss *rss = &sa->rss;
1249 	efx_rx_hash_type_t hash_types = 0;
1250 	unsigned int i;
1251 
1252 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1253 		uint64_t rte_mask = rss->hf_map[i].rte;
1254 
1255 		if ((rte & rte_mask) != 0) {
1256 			rte &= ~rte_mask;
1257 			hash_types |= rss->hf_map[i].efx;
1258 		}
1259 	}
1260 
1261 	if (rte != 0) {
1262 		sfc_err(sa, "unsupported hash functions requested");
1263 		return EINVAL;
1264 	}
1265 
1266 	*efx = hash_types;
1267 
1268 	return 0;
1269 }
1270 
1271 uint64_t
1272 sfc_rx_hf_efx_to_rte(struct sfc_adapter *sa, efx_rx_hash_type_t efx)
1273 {
1274 	struct sfc_rss *rss = &sa->rss;
1275 	uint64_t rte = 0;
1276 	unsigned int i;
1277 
1278 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1279 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1280 
1281 		if ((efx & hash_type) == hash_type)
1282 			rte |= rss->hf_map[i].rte;
1283 	}
1284 
1285 	return rte;
1286 }
1287 
1288 static int
1289 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1290 			    struct rte_eth_rss_conf *conf)
1291 {
1292 	struct sfc_rss *rss = &sa->rss;
1293 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1294 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(sa, efx_hash_types);
1295 	int rc;
1296 
1297 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1298 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1299 		    conf->rss_key != NULL)
1300 			return EINVAL;
1301 	}
1302 
1303 	if (conf->rss_hf != 0) {
1304 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1305 		if (rc != 0)
1306 			return rc;
1307 	}
1308 
1309 	if (conf->rss_key != NULL) {
1310 		if (conf->rss_key_len != sizeof(rss->key)) {
1311 			sfc_err(sa, "RSS key size is wrong (should be %lu)",
1312 				sizeof(rss->key));
1313 			return EINVAL;
1314 		}
1315 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1316 	}
1317 
1318 	rss->hash_types = efx_hash_types;
1319 
1320 	return 0;
1321 }
1322 
1323 static int
1324 sfc_rx_rss_config(struct sfc_adapter *sa)
1325 {
1326 	struct sfc_rss *rss = &sa->rss;
1327 	int rc = 0;
1328 
1329 	if (rss->channels > 0) {
1330 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1331 					   rss->hash_alg, rss->hash_types,
1332 					   B_TRUE);
1333 		if (rc != 0)
1334 			goto finish;
1335 
1336 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1337 					  rss->key, sizeof(rss->key));
1338 		if (rc != 0)
1339 			goto finish;
1340 
1341 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1342 					  rss->tbl, RTE_DIM(rss->tbl));
1343 	}
1344 
1345 finish:
1346 	return rc;
1347 }
1348 
1349 int
1350 sfc_rx_start(struct sfc_adapter *sa)
1351 {
1352 	unsigned int sw_index;
1353 	int rc;
1354 
1355 	sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1356 
1357 	rc = efx_rx_init(sa->nic);
1358 	if (rc != 0)
1359 		goto fail_rx_init;
1360 
1361 	rc = sfc_rx_rss_config(sa);
1362 	if (rc != 0)
1363 		goto fail_rss_config;
1364 
1365 	for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1366 		if (sa->rxq_info[sw_index].rxq != NULL &&
1367 		    (!sa->rxq_info[sw_index].deferred_start ||
1368 		     sa->rxq_info[sw_index].deferred_started)) {
1369 			rc = sfc_rx_qstart(sa, sw_index);
1370 			if (rc != 0)
1371 				goto fail_rx_qstart;
1372 		}
1373 	}
1374 
1375 	return 0;
1376 
1377 fail_rx_qstart:
1378 	while (sw_index-- > 0)
1379 		sfc_rx_qstop(sa, sw_index);
1380 
1381 fail_rss_config:
1382 	efx_rx_fini(sa->nic);
1383 
1384 fail_rx_init:
1385 	sfc_log_init(sa, "failed %d", rc);
1386 	return rc;
1387 }
1388 
1389 void
1390 sfc_rx_stop(struct sfc_adapter *sa)
1391 {
1392 	unsigned int sw_index;
1393 
1394 	sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1395 
1396 	sw_index = sa->rxq_count;
1397 	while (sw_index-- > 0) {
1398 		if (sa->rxq_info[sw_index].rxq != NULL)
1399 			sfc_rx_qstop(sa, sw_index);
1400 	}
1401 
1402 	efx_rx_fini(sa->nic);
1403 }
1404 
1405 static int
1406 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1407 {
1408 	struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1409 	unsigned int max_entries;
1410 
1411 	max_entries = EFX_RXQ_MAXNDESCS;
1412 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1413 
1414 	rxq_info->max_entries = max_entries;
1415 
1416 	return 0;
1417 }
1418 
1419 static int
1420 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1421 {
1422 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1423 				      sfc_rx_get_queue_offload_caps(sa);
1424 	struct sfc_rss *rss = &sa->rss;
1425 	int rc = 0;
1426 
1427 	switch (rxmode->mq_mode) {
1428 	case ETH_MQ_RX_NONE:
1429 		/* No special checks are required */
1430 		break;
1431 	case ETH_MQ_RX_RSS:
1432 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1433 			sfc_err(sa, "RSS is not available");
1434 			rc = EINVAL;
1435 		}
1436 		break;
1437 	default:
1438 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1439 			rxmode->mq_mode);
1440 		rc = EINVAL;
1441 	}
1442 
1443 	/*
1444 	 * Requested offloads are validated against supported by ethdev,
1445 	 * so unsupported offloads cannot be added as the result of
1446 	 * below check.
1447 	 */
1448 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1449 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1450 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1451 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1452 	}
1453 
1454 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1455 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1456 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1457 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1458 	}
1459 
1460 	return rc;
1461 }
1462 
1463 /**
1464  * Destroy excess queues that are no longer needed after reconfiguration
1465  * or complete close.
1466  */
1467 static void
1468 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1469 {
1470 	int sw_index;
1471 
1472 	SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1473 
1474 	sw_index = sa->rxq_count;
1475 	while (--sw_index >= (int)nb_rx_queues) {
1476 		if (sa->rxq_info[sw_index].rxq != NULL)
1477 			sfc_rx_qfini(sa, sw_index);
1478 	}
1479 
1480 	sa->rxq_count = nb_rx_queues;
1481 }
1482 
1483 /**
1484  * Initialize Rx subsystem.
1485  *
1486  * Called at device (re)configuration stage when number of receive queues is
1487  * specified together with other device level receive configuration.
1488  *
1489  * It should be used to allocate NUMA-unaware resources.
1490  */
1491 int
1492 sfc_rx_configure(struct sfc_adapter *sa)
1493 {
1494 	struct sfc_rss *rss = &sa->rss;
1495 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1496 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1497 	int rc;
1498 
1499 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1500 		     nb_rx_queues, sa->rxq_count);
1501 
1502 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1503 	if (rc != 0)
1504 		goto fail_check_mode;
1505 
1506 	if (nb_rx_queues == sa->rxq_count)
1507 		goto configure_rss;
1508 
1509 	if (sa->rxq_info == NULL) {
1510 		rc = ENOMEM;
1511 		sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1512 						 sizeof(sa->rxq_info[0]), 0,
1513 						 sa->socket_id);
1514 		if (sa->rxq_info == NULL)
1515 			goto fail_rxqs_alloc;
1516 	} else {
1517 		struct sfc_rxq_info *new_rxq_info;
1518 
1519 		if (nb_rx_queues < sa->rxq_count)
1520 			sfc_rx_fini_queues(sa, nb_rx_queues);
1521 
1522 		rc = ENOMEM;
1523 		new_rxq_info =
1524 			rte_realloc(sa->rxq_info,
1525 				    nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1526 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1527 			goto fail_rxqs_realloc;
1528 
1529 		sa->rxq_info = new_rxq_info;
1530 		if (nb_rx_queues > sa->rxq_count)
1531 			memset(&sa->rxq_info[sa->rxq_count], 0,
1532 			       (nb_rx_queues - sa->rxq_count) *
1533 			       sizeof(sa->rxq_info[0]));
1534 	}
1535 
1536 	while (sa->rxq_count < nb_rx_queues) {
1537 		rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1538 		if (rc != 0)
1539 			goto fail_rx_qinit_info;
1540 
1541 		sa->rxq_count++;
1542 	}
1543 
1544 configure_rss:
1545 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1546 			 MIN(sa->rxq_count, EFX_MAXRSS) : 0;
1547 
1548 	if (rss->channels > 0) {
1549 		struct rte_eth_rss_conf *adv_conf_rss;
1550 		unsigned int sw_index;
1551 
1552 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1553 			rss->tbl[sw_index] = sw_index % rss->channels;
1554 
1555 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1556 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1557 		if (rc != 0)
1558 			goto fail_rx_process_adv_conf_rss;
1559 	}
1560 
1561 	return 0;
1562 
1563 fail_rx_process_adv_conf_rss:
1564 fail_rx_qinit_info:
1565 fail_rxqs_realloc:
1566 fail_rxqs_alloc:
1567 	sfc_rx_close(sa);
1568 
1569 fail_check_mode:
1570 	sfc_log_init(sa, "failed %d", rc);
1571 	return rc;
1572 }
1573 
1574 /**
1575  * Shutdown Rx subsystem.
1576  *
1577  * Called at device close stage, for example, before device shutdown.
1578  */
1579 void
1580 sfc_rx_close(struct sfc_adapter *sa)
1581 {
1582 	struct sfc_rss *rss = &sa->rss;
1583 
1584 	sfc_rx_fini_queues(sa, 0);
1585 
1586 	rss->channels = 0;
1587 
1588 	rte_free(sa->rxq_info);
1589 	sa->rxq_info = NULL;
1590 }
1591