xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21 
22 /*
23  * Maximum number of Rx queue flush attempt in the case of failure or
24  * flush timeout
25  */
26 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
27 
28 /*
29  * Time to wait between event queue polling attempts when waiting for Rx
30  * queue flush done or failed events.
31  */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
33 
34 /*
35  * Maximum number of event queue polling attempts when waiting for Rx queue
36  * flush done or failed events. It defines Rx queue flush attempt timeout
37  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38  */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
40 
41 void
42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 	rxq_info->state |= SFC_RXQ_FLUSHED;
45 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47 
48 void
49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54 
55 static int
56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58 	int rc = 0;
59 
60 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62 		if (rc == 0)
63 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64 	}
65 	return rc;
66 }
67 
68 static void
69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71 	unsigned int free_space;
72 	unsigned int bulks;
73 	void *objs[SFC_RX_REFILL_BULK];
74 	efsys_dma_addr_t addr[RTE_DIM(objs)];
75 	unsigned int added = rxq->added;
76 	unsigned int id;
77 	unsigned int i;
78 	struct sfc_efx_rx_sw_desc *rxd;
79 	struct rte_mbuf *m;
80 	uint16_t port_id = rxq->dp.dpq.port_id;
81 
82 	free_space = rxq->max_fill_level - (added - rxq->completed);
83 
84 	if (free_space < rxq->refill_threshold)
85 		return;
86 
87 	bulks = free_space / RTE_DIM(objs);
88 	/* refill_threshold guarantees that bulks is positive */
89 	SFC_ASSERT(bulks > 0);
90 
91 	id = added & rxq->ptr_mask;
92 	do {
93 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94 						  RTE_DIM(objs)) < 0)) {
95 			/*
96 			 * It is hardly a safe way to increment counter
97 			 * from different contexts, but all PMDs do it.
98 			 */
99 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100 				RTE_DIM(objs);
101 			/* Return if we have posted nothing yet */
102 			if (added == rxq->added)
103 				return;
104 			/* Push posted */
105 			break;
106 		}
107 
108 		for (i = 0; i < RTE_DIM(objs);
109 		     ++i, id = (id + 1) & rxq->ptr_mask) {
110 			m = objs[i];
111 
112 			MBUF_RAW_ALLOC_CHECK(m);
113 
114 			rxd = &rxq->sw_desc[id];
115 			rxd->mbuf = m;
116 
117 			m->data_off = RTE_PKTMBUF_HEADROOM;
118 			m->port = port_id;
119 
120 			addr[i] = rte_pktmbuf_iova(m);
121 		}
122 
123 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124 			     RTE_DIM(objs), rxq->completed, added);
125 		added += RTE_DIM(objs);
126 	} while (--bulks > 0);
127 
128 	SFC_ASSERT(added != rxq->added);
129 	rxq->added = added;
130 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132 
133 static uint64_t
134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136 	uint64_t mbuf_flags = 0;
137 
138 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141 		break;
142 	case EFX_PKT_IPV4:
143 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144 		break;
145 	default:
146 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148 			   PKT_RX_IP_CKSUM_UNKNOWN);
149 		break;
150 	}
151 
152 	switch ((desc_flags &
153 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157 		break;
158 	case EFX_PKT_TCP:
159 	case EFX_PKT_UDP:
160 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161 		break;
162 	default:
163 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165 			   PKT_RX_L4_CKSUM_UNKNOWN);
166 		break;
167 	}
168 
169 	return mbuf_flags;
170 }
171 
172 static uint32_t
173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175 	return RTE_PTYPE_L2_ETHER |
176 		((desc_flags & EFX_PKT_IPV4) ?
177 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178 		((desc_flags & EFX_PKT_IPV6) ?
179 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183 
184 static const uint32_t *
185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187 	static const uint32_t ptypes[] = {
188 		RTE_PTYPE_L2_ETHER,
189 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191 		RTE_PTYPE_L4_TCP,
192 		RTE_PTYPE_L4_UDP,
193 		RTE_PTYPE_UNKNOWN
194 	};
195 
196 	return ptypes;
197 }
198 
199 static void
200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201 			struct rte_mbuf *m)
202 {
203 	uint8_t *mbuf_data;
204 
205 
206 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207 		return;
208 
209 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210 
211 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213 						      EFX_RX_HASHALG_TOEPLITZ,
214 						      mbuf_data);
215 
216 		m->ol_flags |= PKT_RX_RSS_HASH;
217 	}
218 }
219 
220 static uint16_t
221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223 	struct sfc_dp_rxq *dp_rxq = rx_queue;
224 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225 	unsigned int completed;
226 	unsigned int prefix_size = rxq->prefix_size;
227 	unsigned int done_pkts = 0;
228 	boolean_t discard_next = B_FALSE;
229 	struct rte_mbuf *scatter_pkt = NULL;
230 
231 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232 		return 0;
233 
234 	sfc_ev_qpoll(rxq->evq);
235 
236 	completed = rxq->completed;
237 	while (completed != rxq->pending && done_pkts < nb_pkts) {
238 		unsigned int id;
239 		struct sfc_efx_rx_sw_desc *rxd;
240 		struct rte_mbuf *m;
241 		unsigned int seg_len;
242 		unsigned int desc_flags;
243 
244 		id = completed++ & rxq->ptr_mask;
245 		rxd = &rxq->sw_desc[id];
246 		m = rxd->mbuf;
247 		desc_flags = rxd->flags;
248 
249 		if (discard_next)
250 			goto discard;
251 
252 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253 			goto discard;
254 
255 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
256 			uint16_t tmp_size;
257 			int rc __rte_unused;
258 
259 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261 			SFC_ASSERT(rc == 0);
262 			seg_len = tmp_size;
263 		} else {
264 			seg_len = rxd->size - prefix_size;
265 		}
266 
267 		rte_pktmbuf_data_len(m) = seg_len;
268 		rte_pktmbuf_pkt_len(m) = seg_len;
269 
270 		if (scatter_pkt != NULL) {
271 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272 				rte_pktmbuf_free(scatter_pkt);
273 				goto discard;
274 			}
275 			/* The packet to deliver */
276 			m = scatter_pkt;
277 		}
278 
279 		if (desc_flags & EFX_PKT_CONT) {
280 			/* The packet is scattered, more fragments to come */
281 			scatter_pkt = m;
282 			/* Further fragments have no prefix */
283 			prefix_size = 0;
284 			continue;
285 		}
286 
287 		/* Scattered packet is done */
288 		scatter_pkt = NULL;
289 		/* The first fragment of the packet has prefix */
290 		prefix_size = rxq->prefix_size;
291 
292 		m->ol_flags =
293 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294 		m->packet_type =
295 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296 
297 		/*
298 		 * Extract RSS hash from the packet prefix and
299 		 * set the corresponding field (if needed and possible)
300 		 */
301 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302 
303 		m->data_off += prefix_size;
304 
305 		*rx_pkts++ = m;
306 		done_pkts++;
307 		continue;
308 
309 discard:
310 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311 		rte_mbuf_raw_free(m);
312 		rxd->mbuf = NULL;
313 	}
314 
315 	/* pending is only moved when entire packet is received */
316 	SFC_ASSERT(scatter_pkt == NULL);
317 
318 	rxq->completed = completed;
319 
320 	sfc_efx_rx_qrefill(rxq);
321 
322 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323 		sfc_efx_rx_qprime(rxq);
324 
325 	return done_pkts;
326 }
327 
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333 
334 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335 		return 0;
336 
337 	sfc_ev_qpoll(rxq->evq);
338 
339 	return rxq->pending - rxq->completed;
340 }
341 
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347 
348 	if (unlikely(offset > rxq->ptr_mask))
349 		return -EINVAL;
350 
351 	/*
352 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353 	 * it is required for the queue to be running, but the
354 	 * check is omitted because API design assumes that it
355 	 * is the duty of the caller to satisfy all conditions
356 	 */
357 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358 		   SFC_EFX_RXQ_FLAG_RUNNING);
359 	sfc_ev_qpoll(rxq->evq);
360 
361 	/*
362 	 * There is a handful of reserved entries in the ring,
363 	 * but an explicit check whether the offset points to
364 	 * a reserved entry is neglected since the two checks
365 	 * below rely on the figures which take the HW limits
366 	 * into account and thus if an entry is reserved, the
367 	 * checks will fail and UNAVAIL code will be returned
368 	 */
369 
370 	if (offset < (rxq->pending - rxq->completed))
371 		return RTE_ETH_RX_DESC_DONE;
372 
373 	if (offset < (rxq->added - rxq->completed))
374 		return RTE_ETH_RX_DESC_AVAIL;
375 
376 	return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378 
379 boolean_t
380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381 		     boolean_t rx_scatter_enabled, const char **error)
382 {
383 	if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
384 		*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
385 		return B_FALSE;
386 	}
387 
388 	return B_TRUE;
389 }
390 
391 /** Get Rx datapath ops by the datapath RxQ handle */
392 const struct sfc_dp_rx *
393 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
394 {
395 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
396 	struct rte_eth_dev *eth_dev;
397 	struct sfc_adapter_priv *sap;
398 
399 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
400 	eth_dev = &rte_eth_devices[dpq->port_id];
401 
402 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
403 
404 	return sap->dp_rx;
405 }
406 
407 struct sfc_rxq_info *
408 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
409 {
410 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
411 	struct rte_eth_dev *eth_dev;
412 	struct sfc_adapter_shared *sas;
413 
414 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
415 	eth_dev = &rte_eth_devices[dpq->port_id];
416 
417 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
418 
419 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
420 	return &sas->rxq_info[dpq->queue_id];
421 }
422 
423 struct sfc_rxq *
424 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
425 {
426 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
427 	struct rte_eth_dev *eth_dev;
428 	struct sfc_adapter *sa;
429 
430 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
431 	eth_dev = &rte_eth_devices[dpq->port_id];
432 
433 	sa = sfc_adapter_by_eth_dev(eth_dev);
434 
435 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
436 	return &sa->rxq_ctrl[dpq->queue_id];
437 }
438 
439 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
440 static int
441 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
442 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
443 			  __rte_unused struct rte_mempool *mb_pool,
444 			  unsigned int *rxq_entries,
445 			  unsigned int *evq_entries,
446 			  unsigned int *rxq_max_fill_level)
447 {
448 	*rxq_entries = nb_rx_desc;
449 	*evq_entries = nb_rx_desc;
450 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
451 	return 0;
452 }
453 
454 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
455 static int
456 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
457 		   const struct rte_pci_addr *pci_addr, int socket_id,
458 		   const struct sfc_dp_rx_qcreate_info *info,
459 		   struct sfc_dp_rxq **dp_rxqp)
460 {
461 	struct sfc_efx_rxq *rxq;
462 	int rc;
463 
464 	rc = ENOMEM;
465 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
466 				 RTE_CACHE_LINE_SIZE, socket_id);
467 	if (rxq == NULL)
468 		goto fail_rxq_alloc;
469 
470 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
471 
472 	rc = ENOMEM;
473 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
474 					 info->rxq_entries,
475 					 sizeof(*rxq->sw_desc),
476 					 RTE_CACHE_LINE_SIZE, socket_id);
477 	if (rxq->sw_desc == NULL)
478 		goto fail_desc_alloc;
479 
480 	/* efx datapath is bound to efx control path */
481 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
482 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
483 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
484 	rxq->ptr_mask = info->rxq_entries - 1;
485 	rxq->batch_max = info->batch_max;
486 	rxq->prefix_size = info->prefix_size;
487 	rxq->max_fill_level = info->max_fill_level;
488 	rxq->refill_threshold = info->refill_threshold;
489 	rxq->buf_size = info->buf_size;
490 	rxq->refill_mb_pool = info->refill_mb_pool;
491 
492 	*dp_rxqp = &rxq->dp;
493 	return 0;
494 
495 fail_desc_alloc:
496 	rte_free(rxq);
497 
498 fail_rxq_alloc:
499 	return rc;
500 }
501 
502 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
503 static void
504 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
505 {
506 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
507 
508 	rte_free(rxq->sw_desc);
509 	rte_free(rxq);
510 }
511 
512 
513 /* Use qstop and qstart functions in the case of qstart failure */
514 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
515 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
516 
517 
518 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
519 static int
520 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
521 		  __rte_unused unsigned int evq_read_ptr)
522 {
523 	/* libefx-based datapath is specific to libefx-based PMD */
524 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
525 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
526 	int rc;
527 
528 	rxq->common = crxq->common;
529 
530 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
531 
532 	sfc_efx_rx_qrefill(rxq);
533 
534 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
535 
536 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
537 		rc = sfc_efx_rx_qprime(rxq);
538 		if (rc != 0)
539 			goto fail_rx_qprime;
540 	}
541 
542 	return 0;
543 
544 fail_rx_qprime:
545 	sfc_efx_rx_qstop(dp_rxq, NULL);
546 	sfc_efx_rx_qpurge(dp_rxq);
547 	return rc;
548 }
549 
550 static void
551 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
552 		 __rte_unused unsigned int *evq_read_ptr)
553 {
554 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
555 
556 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
557 
558 	/* libefx-based datapath is bound to libefx-based PMD and uses
559 	 * event queue structure directly. So, there is no necessity to
560 	 * return EvQ read pointer.
561 	 */
562 }
563 
564 static void
565 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
566 {
567 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
568 	unsigned int i;
569 	struct sfc_efx_rx_sw_desc *rxd;
570 
571 	for (i = rxq->completed; i != rxq->added; ++i) {
572 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
573 		rte_mbuf_raw_free(rxd->mbuf);
574 		rxd->mbuf = NULL;
575 		/* Packed stream relies on 0 in inactive SW desc.
576 		 * Rx queue stop is not performance critical, so
577 		 * there is no harm to do it always.
578 		 */
579 		rxd->flags = 0;
580 		rxd->size = 0;
581 	}
582 
583 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
584 }
585 
586 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
587 static int
588 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
589 {
590 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
591 	int rc = 0;
592 
593 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
594 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
595 		rc = sfc_efx_rx_qprime(rxq);
596 		if (rc != 0)
597 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
598 	}
599 	return rc;
600 }
601 
602 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
603 static int
604 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
605 {
606 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
607 
608 	/* Cannot disarm, just disable rearm */
609 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
610 	return 0;
611 }
612 
613 struct sfc_dp_rx sfc_efx_rx = {
614 	.dp = {
615 		.name		= SFC_KVARG_DATAPATH_EFX,
616 		.type		= SFC_DP_RX,
617 		.hw_fw_caps	= 0,
618 	},
619 	.features		= SFC_DP_RX_FEAT_INTR,
620 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM,
621 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
622 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
623 	.qcreate		= sfc_efx_rx_qcreate,
624 	.qdestroy		= sfc_efx_rx_qdestroy,
625 	.qstart			= sfc_efx_rx_qstart,
626 	.qstop			= sfc_efx_rx_qstop,
627 	.qpurge			= sfc_efx_rx_qpurge,
628 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
629 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
630 	.qdesc_status		= sfc_efx_rx_qdesc_status,
631 	.intr_enable		= sfc_efx_rx_intr_enable,
632 	.intr_disable		= sfc_efx_rx_intr_disable,
633 	.pkt_burst		= sfc_efx_recv_pkts,
634 };
635 
636 static void
637 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
638 {
639 	struct sfc_rxq_info *rxq_info;
640 	struct sfc_rxq *rxq;
641 	unsigned int retry_count;
642 	unsigned int wait_count;
643 	int rc;
644 
645 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
646 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
647 
648 	rxq = &sa->rxq_ctrl[sw_index];
649 
650 	/*
651 	 * Retry Rx queue flushing in the case of flush failed or
652 	 * timeout. In the worst case it can delay for 6 seconds.
653 	 */
654 	for (retry_count = 0;
655 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
656 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
657 	     ++retry_count) {
658 		rc = efx_rx_qflush(rxq->common);
659 		if (rc != 0) {
660 			rxq_info->state |= (rc == EALREADY) ?
661 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
662 			break;
663 		}
664 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
665 		rxq_info->state |= SFC_RXQ_FLUSHING;
666 
667 		/*
668 		 * Wait for Rx queue flush done or failed event at least
669 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
670 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
671 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
672 		 */
673 		wait_count = 0;
674 		do {
675 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
676 			sfc_ev_qpoll(rxq->evq);
677 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
678 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
679 
680 		if (rxq_info->state & SFC_RXQ_FLUSHING)
681 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
682 
683 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
684 			sfc_err(sa, "RxQ %u flush failed", sw_index);
685 
686 		if (rxq_info->state & SFC_RXQ_FLUSHED)
687 			sfc_notice(sa, "RxQ %u flushed", sw_index);
688 	}
689 
690 	sa->priv.dp_rx->qpurge(rxq_info->dp);
691 }
692 
693 static int
694 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
695 {
696 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
697 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
698 	struct sfc_port *port = &sa->port;
699 	int rc;
700 
701 	/*
702 	 * If promiscuous or all-multicast mode has been requested, setting
703 	 * filter for the default Rx queue might fail, in particular, while
704 	 * running over PCI function which is not a member of corresponding
705 	 * privilege groups; if this occurs, few iterations will be made to
706 	 * repeat this step without promiscuous and all-multicast flags set
707 	 */
708 retry:
709 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
710 	if (rc == 0)
711 		return 0;
712 	else if (rc != EOPNOTSUPP)
713 		return rc;
714 
715 	if (port->promisc) {
716 		sfc_warn(sa, "promiscuous mode has been requested, "
717 			     "but the HW rejects it");
718 		sfc_warn(sa, "promiscuous mode will be disabled");
719 
720 		port->promisc = B_FALSE;
721 		rc = sfc_set_rx_mode(sa);
722 		if (rc != 0)
723 			return rc;
724 
725 		goto retry;
726 	}
727 
728 	if (port->allmulti) {
729 		sfc_warn(sa, "all-multicast mode has been requested, "
730 			     "but the HW rejects it");
731 		sfc_warn(sa, "all-multicast mode will be disabled");
732 
733 		port->allmulti = B_FALSE;
734 		rc = sfc_set_rx_mode(sa);
735 		if (rc != 0)
736 			return rc;
737 
738 		goto retry;
739 	}
740 
741 	return rc;
742 }
743 
744 int
745 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
746 {
747 	struct sfc_rxq_info *rxq_info;
748 	struct sfc_rxq *rxq;
749 	struct sfc_evq *evq;
750 	int rc;
751 
752 	sfc_log_init(sa, "sw_index=%u", sw_index);
753 
754 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
755 
756 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
757 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
758 
759 	rxq = &sa->rxq_ctrl[sw_index];
760 	evq = rxq->evq;
761 
762 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
763 	if (rc != 0)
764 		goto fail_ev_qstart;
765 
766 	switch (rxq_info->type) {
767 	case EFX_RXQ_TYPE_DEFAULT:
768 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
769 			rxq->buf_size,
770 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
771 			rxq_info->type_flags, evq->common, &rxq->common);
772 		break;
773 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
774 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
775 		struct rte_mempool_info mp_info;
776 
777 		rc = rte_mempool_ops_get_info(mp, &mp_info);
778 		if (rc != 0) {
779 			/* Positive errno is used in the driver */
780 			rc = -rc;
781 			goto fail_mp_get_info;
782 		}
783 		if (mp_info.contig_block_size <= 0) {
784 			rc = EINVAL;
785 			goto fail_bad_contig_block_size;
786 		}
787 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
788 			mp_info.contig_block_size, rxq->buf_size,
789 			mp->header_size + mp->elt_size + mp->trailer_size,
790 			sa->rxd_wait_timeout_ns,
791 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
792 			evq->common, &rxq->common);
793 		break;
794 	}
795 	default:
796 		rc = ENOTSUP;
797 	}
798 	if (rc != 0)
799 		goto fail_rx_qcreate;
800 
801 	efx_rx_qenable(rxq->common);
802 
803 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
804 	if (rc != 0)
805 		goto fail_dp_qstart;
806 
807 	rxq_info->state |= SFC_RXQ_STARTED;
808 
809 	if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
810 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
811 		if (rc != 0)
812 			goto fail_mac_filter_default_rxq_set;
813 	}
814 
815 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
816 	sa->eth_dev->data->rx_queue_state[sw_index] =
817 		RTE_ETH_QUEUE_STATE_STARTED;
818 
819 	return 0;
820 
821 fail_mac_filter_default_rxq_set:
822 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
823 
824 fail_dp_qstart:
825 	sfc_rx_qflush(sa, sw_index);
826 
827 fail_rx_qcreate:
828 fail_bad_contig_block_size:
829 fail_mp_get_info:
830 	sfc_ev_qstop(evq);
831 
832 fail_ev_qstart:
833 	return rc;
834 }
835 
836 void
837 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
838 {
839 	struct sfc_rxq_info *rxq_info;
840 	struct sfc_rxq *rxq;
841 
842 	sfc_log_init(sa, "sw_index=%u", sw_index);
843 
844 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
845 
846 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
847 
848 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
849 		return;
850 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
851 
852 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
853 	sa->eth_dev->data->rx_queue_state[sw_index] =
854 		RTE_ETH_QUEUE_STATE_STOPPED;
855 
856 	rxq = &sa->rxq_ctrl[sw_index];
857 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
858 
859 	if (sw_index == 0)
860 		efx_mac_filter_default_rxq_clear(sa->nic);
861 
862 	sfc_rx_qflush(sa, sw_index);
863 
864 	rxq_info->state = SFC_RXQ_INITIALIZED;
865 
866 	efx_rx_qdestroy(rxq->common);
867 
868 	sfc_ev_qstop(rxq->evq);
869 }
870 
871 static uint64_t
872 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
873 {
874 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
875 	uint64_t no_caps = 0;
876 
877 	if (encp->enc_tunnel_encapsulations_supported == 0)
878 		no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
879 
880 	return ~no_caps;
881 }
882 
883 uint64_t
884 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
885 {
886 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
887 
888 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
889 
890 	return caps & sfc_rx_get_offload_mask(sa);
891 }
892 
893 uint64_t
894 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
895 {
896 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
897 }
898 
899 static int
900 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
901 		   const struct rte_eth_rxconf *rx_conf,
902 		   __rte_unused uint64_t offloads)
903 {
904 	int rc = 0;
905 
906 	if (rx_conf->rx_thresh.pthresh != 0 ||
907 	    rx_conf->rx_thresh.hthresh != 0 ||
908 	    rx_conf->rx_thresh.wthresh != 0) {
909 		sfc_warn(sa,
910 			"RxQ prefetch/host/writeback thresholds are not supported");
911 	}
912 
913 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
914 		sfc_err(sa,
915 			"RxQ free threshold too large: %u vs maximum %u",
916 			rx_conf->rx_free_thresh, rxq_max_fill_level);
917 		rc = EINVAL;
918 	}
919 
920 	if (rx_conf->rx_drop_en == 0) {
921 		sfc_err(sa, "RxQ drop disable is not supported");
922 		rc = EINVAL;
923 	}
924 
925 	return rc;
926 }
927 
928 static unsigned int
929 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
930 {
931 	uint32_t data_off;
932 	uint32_t order;
933 
934 	/* The mbuf object itself is always cache line aligned */
935 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
936 
937 	/* Data offset from mbuf object start */
938 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
939 		RTE_PKTMBUF_HEADROOM;
940 
941 	order = MIN(order, rte_bsf32(data_off));
942 
943 	return 1u << order;
944 }
945 
946 static uint16_t
947 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
948 {
949 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
950 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
951 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
952 	uint16_t buf_size;
953 	unsigned int buf_aligned;
954 	unsigned int start_alignment;
955 	unsigned int end_padding_alignment;
956 
957 	/* Below it is assumed that both alignments are power of 2 */
958 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
959 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
960 
961 	/*
962 	 * mbuf is always cache line aligned, double-check
963 	 * that it meets rx buffer start alignment requirements.
964 	 */
965 
966 	/* Start from mbuf pool data room size */
967 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
968 
969 	/* Remove headroom */
970 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
971 		sfc_err(sa,
972 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
973 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
974 		return 0;
975 	}
976 	buf_size -= RTE_PKTMBUF_HEADROOM;
977 
978 	/* Calculate guaranteed data start alignment */
979 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
980 
981 	/* Reserve space for start alignment */
982 	if (buf_aligned < nic_align_start) {
983 		start_alignment = nic_align_start - buf_aligned;
984 		if (buf_size <= start_alignment) {
985 			sfc_err(sa,
986 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
987 				mb_pool->name,
988 				rte_pktmbuf_data_room_size(mb_pool),
989 				RTE_PKTMBUF_HEADROOM, start_alignment);
990 			return 0;
991 		}
992 		buf_aligned = nic_align_start;
993 		buf_size -= start_alignment;
994 	} else {
995 		start_alignment = 0;
996 	}
997 
998 	/* Make sure that end padding does not write beyond the buffer */
999 	if (buf_aligned < nic_align_end) {
1000 		/*
1001 		 * Estimate space which can be lost. If guarnteed buffer
1002 		 * size is odd, lost space is (nic_align_end - 1). More
1003 		 * accurate formula is below.
1004 		 */
1005 		end_padding_alignment = nic_align_end -
1006 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1007 		if (buf_size <= end_padding_alignment) {
1008 			sfc_err(sa,
1009 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1010 				mb_pool->name,
1011 				rte_pktmbuf_data_room_size(mb_pool),
1012 				RTE_PKTMBUF_HEADROOM, start_alignment,
1013 				end_padding_alignment);
1014 			return 0;
1015 		}
1016 		buf_size -= end_padding_alignment;
1017 	} else {
1018 		/*
1019 		 * Start is aligned the same or better than end,
1020 		 * just align length.
1021 		 */
1022 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1023 	}
1024 
1025 	return buf_size;
1026 }
1027 
1028 int
1029 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1030 	     uint16_t nb_rx_desc, unsigned int socket_id,
1031 	     const struct rte_eth_rxconf *rx_conf,
1032 	     struct rte_mempool *mb_pool)
1033 {
1034 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1035 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1036 	int rc;
1037 	unsigned int rxq_entries;
1038 	unsigned int evq_entries;
1039 	unsigned int rxq_max_fill_level;
1040 	uint64_t offloads;
1041 	uint16_t buf_size;
1042 	struct sfc_rxq_info *rxq_info;
1043 	struct sfc_evq *evq;
1044 	struct sfc_rxq *rxq;
1045 	struct sfc_dp_rx_qcreate_info info;
1046 	struct sfc_dp_rx_hw_limits hw_limits;
1047 	uint16_t rx_free_thresh;
1048 	const char *error;
1049 
1050 	memset(&hw_limits, 0, sizeof(hw_limits));
1051 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1052 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1053 	hw_limits.evq_max_entries = sa->evq_max_entries;
1054 	hw_limits.evq_min_entries = sa->evq_min_entries;
1055 
1056 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1057 					    &rxq_entries, &evq_entries,
1058 					    &rxq_max_fill_level);
1059 	if (rc != 0)
1060 		goto fail_size_up_rings;
1061 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1062 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1063 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1064 
1065 	offloads = rx_conf->offloads |
1066 		sa->eth_dev->data->dev_conf.rxmode.offloads;
1067 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1068 	if (rc != 0)
1069 		goto fail_bad_conf;
1070 
1071 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1072 	if (buf_size == 0) {
1073 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1074 			sw_index);
1075 		rc = EINVAL;
1076 		goto fail_bad_conf;
1077 	}
1078 
1079 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1080 				  encp->enc_rx_prefix_size,
1081 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1082 				  &error)) {
1083 		sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1084 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1085 			"PDU size %u plus Rx prefix %u bytes",
1086 			sw_index, buf_size, (unsigned int)sa->port.pdu,
1087 			encp->enc_rx_prefix_size);
1088 		rc = EINVAL;
1089 		goto fail_bad_conf;
1090 	}
1091 
1092 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1093 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1094 
1095 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1096 	rxq_info->entries = rxq_entries;
1097 
1098 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1099 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1100 	else
1101 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1102 
1103 	rxq_info->type_flags =
1104 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1105 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1106 
1107 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1108 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1109 	     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1110 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1111 
1112 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1113 			  evq_entries, socket_id, &evq);
1114 	if (rc != 0)
1115 		goto fail_ev_qinit;
1116 
1117 	rxq = &sa->rxq_ctrl[sw_index];
1118 	rxq->evq = evq;
1119 	rxq->hw_index = sw_index;
1120 	/*
1121 	 * If Rx refill threshold is specified (its value is non zero) in
1122 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1123 	 * the Rx descriptors number as the default. It allows to keep
1124 	 * Rx ring full-enough and does not refill too aggressive if
1125 	 * packet rate is high.
1126 	 *
1127 	 * Since PMD refills in bulks waiting for full bulk may be
1128 	 * refilled (basically round down), it is better to round up
1129 	 * here to mitigate it a bit.
1130 	 */
1131 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1132 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1133 	/* Rx refill threshold cannot be smaller than refill bulk */
1134 	rxq_info->refill_threshold =
1135 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1136 	rxq_info->refill_mb_pool = mb_pool;
1137 	rxq->buf_size = buf_size;
1138 
1139 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1140 			   efx_rxq_size(sa->nic, rxq_info->entries),
1141 			   socket_id, &rxq->mem);
1142 	if (rc != 0)
1143 		goto fail_dma_alloc;
1144 
1145 	memset(&info, 0, sizeof(info));
1146 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1147 	info.max_fill_level = rxq_max_fill_level;
1148 	info.refill_threshold = rxq_info->refill_threshold;
1149 	info.buf_size = buf_size;
1150 	info.batch_max = encp->enc_rx_batch_max;
1151 	info.prefix_size = encp->enc_rx_prefix_size;
1152 
1153 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
1154 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
1155 
1156 	info.rxq_entries = rxq_info->entries;
1157 	info.rxq_hw_ring = rxq->mem.esm_base;
1158 	info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1159 	info.evq_entries = evq_entries;
1160 	info.evq_hw_ring = evq->mem.esm_base;
1161 	info.hw_index = rxq->hw_index;
1162 	info.mem_bar = sa->mem_bar.esb_base;
1163 	info.vi_window_shift = encp->enc_vi_window_shift;
1164 
1165 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1166 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1167 				     socket_id, &info, &rxq_info->dp);
1168 	if (rc != 0)
1169 		goto fail_dp_rx_qcreate;
1170 
1171 	evq->dp_rxq = rxq_info->dp;
1172 
1173 	rxq_info->state = SFC_RXQ_INITIALIZED;
1174 
1175 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1176 
1177 	return 0;
1178 
1179 fail_dp_rx_qcreate:
1180 	sfc_dma_free(sa, &rxq->mem);
1181 
1182 fail_dma_alloc:
1183 	sfc_ev_qfini(evq);
1184 
1185 fail_ev_qinit:
1186 	rxq_info->entries = 0;
1187 
1188 fail_bad_conf:
1189 fail_size_up_rings:
1190 	sfc_log_init(sa, "failed %d", rc);
1191 	return rc;
1192 }
1193 
1194 void
1195 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1196 {
1197 	struct sfc_rxq_info *rxq_info;
1198 	struct sfc_rxq *rxq;
1199 
1200 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1201 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
1202 
1203 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1204 
1205 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1206 
1207 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1208 	rxq_info->dp = NULL;
1209 
1210 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1211 	rxq_info->entries = 0;
1212 
1213 	rxq = &sa->rxq_ctrl[sw_index];
1214 
1215 	sfc_dma_free(sa, &rxq->mem);
1216 
1217 	sfc_ev_qfini(rxq->evq);
1218 	rxq->evq = NULL;
1219 }
1220 
1221 /*
1222  * Mapping between RTE RSS hash functions and their EFX counterparts.
1223  */
1224 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1225 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1226 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1227 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1228 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1229 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1230 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1231 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1232 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1233 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1234 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1235 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1236 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1237 	  ETH_RSS_IPV6_EX,
1238 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1239 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1240 };
1241 
1242 static efx_rx_hash_type_t
1243 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1244 			    unsigned int *hash_type_flags_supported,
1245 			    unsigned int nb_hash_type_flags_supported)
1246 {
1247 	efx_rx_hash_type_t hash_type_masked = 0;
1248 	unsigned int i, j;
1249 
1250 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1251 		unsigned int class_tuple_lbn[] = {
1252 			EFX_RX_CLASS_IPV4_TCP_LBN,
1253 			EFX_RX_CLASS_IPV4_UDP_LBN,
1254 			EFX_RX_CLASS_IPV4_LBN,
1255 			EFX_RX_CLASS_IPV6_TCP_LBN,
1256 			EFX_RX_CLASS_IPV6_UDP_LBN,
1257 			EFX_RX_CLASS_IPV6_LBN
1258 		};
1259 
1260 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1261 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1262 			unsigned int flag;
1263 
1264 			tuple_mask <<= class_tuple_lbn[j];
1265 			flag = hash_type & tuple_mask;
1266 
1267 			if (flag == hash_type_flags_supported[i])
1268 				hash_type_masked |= flag;
1269 		}
1270 	}
1271 
1272 	return hash_type_masked;
1273 }
1274 
1275 int
1276 sfc_rx_hash_init(struct sfc_adapter *sa)
1277 {
1278 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1279 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1280 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1281 	efx_rx_hash_alg_t alg;
1282 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1283 	unsigned int nb_flags_supp;
1284 	struct sfc_rss_hf_rte_to_efx *hf_map;
1285 	struct sfc_rss_hf_rte_to_efx *entry;
1286 	efx_rx_hash_type_t efx_hash_types;
1287 	unsigned int i;
1288 	int rc;
1289 
1290 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1291 		alg = EFX_RX_HASHALG_TOEPLITZ;
1292 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1293 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1294 	else
1295 		return EINVAL;
1296 
1297 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1298 					 RTE_DIM(flags_supp), &nb_flags_supp);
1299 	if (rc != 0)
1300 		return rc;
1301 
1302 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1303 				   RTE_DIM(sfc_rss_hf_map),
1304 				   sizeof(*hf_map), 0, sa->socket_id);
1305 	if (hf_map == NULL)
1306 		return ENOMEM;
1307 
1308 	entry = hf_map;
1309 	efx_hash_types = 0;
1310 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1311 		efx_rx_hash_type_t ht;
1312 
1313 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1314 						 flags_supp, nb_flags_supp);
1315 		if (ht != 0) {
1316 			entry->rte = sfc_rss_hf_map[i].rte;
1317 			entry->efx = ht;
1318 			efx_hash_types |= ht;
1319 			++entry;
1320 		}
1321 	}
1322 
1323 	rss->hash_alg = alg;
1324 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1325 	rss->hf_map = hf_map;
1326 	rss->hash_types = efx_hash_types;
1327 
1328 	return 0;
1329 }
1330 
1331 void
1332 sfc_rx_hash_fini(struct sfc_adapter *sa)
1333 {
1334 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1335 
1336 	rte_free(rss->hf_map);
1337 }
1338 
1339 int
1340 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1341 		     efx_rx_hash_type_t *efx)
1342 {
1343 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1344 	efx_rx_hash_type_t hash_types = 0;
1345 	unsigned int i;
1346 
1347 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1348 		uint64_t rte_mask = rss->hf_map[i].rte;
1349 
1350 		if ((rte & rte_mask) != 0) {
1351 			rte &= ~rte_mask;
1352 			hash_types |= rss->hf_map[i].efx;
1353 		}
1354 	}
1355 
1356 	if (rte != 0) {
1357 		sfc_err(sa, "unsupported hash functions requested");
1358 		return EINVAL;
1359 	}
1360 
1361 	*efx = hash_types;
1362 
1363 	return 0;
1364 }
1365 
1366 uint64_t
1367 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1368 {
1369 	uint64_t rte = 0;
1370 	unsigned int i;
1371 
1372 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1373 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1374 
1375 		if ((efx & hash_type) == hash_type)
1376 			rte |= rss->hf_map[i].rte;
1377 	}
1378 
1379 	return rte;
1380 }
1381 
1382 static int
1383 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1384 			    struct rte_eth_rss_conf *conf)
1385 {
1386 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1387 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1388 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1389 	int rc;
1390 
1391 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1392 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1393 		    conf->rss_key != NULL)
1394 			return EINVAL;
1395 	}
1396 
1397 	if (conf->rss_hf != 0) {
1398 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1399 		if (rc != 0)
1400 			return rc;
1401 	}
1402 
1403 	if (conf->rss_key != NULL) {
1404 		if (conf->rss_key_len != sizeof(rss->key)) {
1405 			sfc_err(sa, "RSS key size is wrong (should be %lu)",
1406 				sizeof(rss->key));
1407 			return EINVAL;
1408 		}
1409 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1410 	}
1411 
1412 	rss->hash_types = efx_hash_types;
1413 
1414 	return 0;
1415 }
1416 
1417 static int
1418 sfc_rx_rss_config(struct sfc_adapter *sa)
1419 {
1420 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1421 	int rc = 0;
1422 
1423 	if (rss->channels > 0) {
1424 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1425 					   rss->hash_alg, rss->hash_types,
1426 					   B_TRUE);
1427 		if (rc != 0)
1428 			goto finish;
1429 
1430 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1431 					  rss->key, sizeof(rss->key));
1432 		if (rc != 0)
1433 			goto finish;
1434 
1435 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1436 					  rss->tbl, RTE_DIM(rss->tbl));
1437 	}
1438 
1439 finish:
1440 	return rc;
1441 }
1442 
1443 int
1444 sfc_rx_start(struct sfc_adapter *sa)
1445 {
1446 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1447 	unsigned int sw_index;
1448 	int rc;
1449 
1450 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1451 
1452 	rc = efx_rx_init(sa->nic);
1453 	if (rc != 0)
1454 		goto fail_rx_init;
1455 
1456 	rc = sfc_rx_rss_config(sa);
1457 	if (rc != 0)
1458 		goto fail_rss_config;
1459 
1460 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1461 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1462 		    (!sas->rxq_info[sw_index].deferred_start ||
1463 		     sas->rxq_info[sw_index].deferred_started)) {
1464 			rc = sfc_rx_qstart(sa, sw_index);
1465 			if (rc != 0)
1466 				goto fail_rx_qstart;
1467 		}
1468 	}
1469 
1470 	return 0;
1471 
1472 fail_rx_qstart:
1473 	while (sw_index-- > 0)
1474 		sfc_rx_qstop(sa, sw_index);
1475 
1476 fail_rss_config:
1477 	efx_rx_fini(sa->nic);
1478 
1479 fail_rx_init:
1480 	sfc_log_init(sa, "failed %d", rc);
1481 	return rc;
1482 }
1483 
1484 void
1485 sfc_rx_stop(struct sfc_adapter *sa)
1486 {
1487 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1488 	unsigned int sw_index;
1489 
1490 	sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1491 
1492 	sw_index = sas->rxq_count;
1493 	while (sw_index-- > 0) {
1494 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1495 			sfc_rx_qstop(sa, sw_index);
1496 	}
1497 
1498 	efx_rx_fini(sa->nic);
1499 }
1500 
1501 static int
1502 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1503 {
1504 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1505 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1506 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1507 	unsigned int max_entries;
1508 
1509 	max_entries = encp->enc_rxq_max_ndescs;
1510 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1511 
1512 	rxq_info->max_entries = max_entries;
1513 
1514 	return 0;
1515 }
1516 
1517 static int
1518 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1519 {
1520 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1521 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1522 				      sfc_rx_get_queue_offload_caps(sa);
1523 	struct sfc_rss *rss = &sas->rss;
1524 	int rc = 0;
1525 
1526 	switch (rxmode->mq_mode) {
1527 	case ETH_MQ_RX_NONE:
1528 		/* No special checks are required */
1529 		break;
1530 	case ETH_MQ_RX_RSS:
1531 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1532 			sfc_err(sa, "RSS is not available");
1533 			rc = EINVAL;
1534 		}
1535 		break;
1536 	default:
1537 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1538 			rxmode->mq_mode);
1539 		rc = EINVAL;
1540 	}
1541 
1542 	/*
1543 	 * Requested offloads are validated against supported by ethdev,
1544 	 * so unsupported offloads cannot be added as the result of
1545 	 * below check.
1546 	 */
1547 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1548 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1549 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1550 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1551 	}
1552 
1553 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1554 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1555 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1556 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1557 	}
1558 
1559 	return rc;
1560 }
1561 
1562 /**
1563  * Destroy excess queues that are no longer needed after reconfiguration
1564  * or complete close.
1565  */
1566 static void
1567 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1568 {
1569 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1570 	int sw_index;
1571 
1572 	SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1573 
1574 	sw_index = sas->rxq_count;
1575 	while (--sw_index >= (int)nb_rx_queues) {
1576 		if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1577 			sfc_rx_qfini(sa, sw_index);
1578 	}
1579 
1580 	sas->rxq_count = nb_rx_queues;
1581 }
1582 
1583 /**
1584  * Initialize Rx subsystem.
1585  *
1586  * Called at device (re)configuration stage when number of receive queues is
1587  * specified together with other device level receive configuration.
1588  *
1589  * It should be used to allocate NUMA-unaware resources.
1590  */
1591 int
1592 sfc_rx_configure(struct sfc_adapter *sa)
1593 {
1594 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1595 	struct sfc_rss *rss = &sas->rss;
1596 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1597 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1598 	int rc;
1599 
1600 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1601 		     nb_rx_queues, sas->rxq_count);
1602 
1603 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1604 	if (rc != 0)
1605 		goto fail_check_mode;
1606 
1607 	if (nb_rx_queues == sas->rxq_count)
1608 		goto configure_rss;
1609 
1610 	if (sas->rxq_info == NULL) {
1611 		rc = ENOMEM;
1612 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1613 						  sizeof(sas->rxq_info[0]), 0,
1614 						  sa->socket_id);
1615 		if (sas->rxq_info == NULL)
1616 			goto fail_rxqs_alloc;
1617 
1618 		/*
1619 		 * Allocate primary process only RxQ control from heap
1620 		 * since it should not be shared.
1621 		 */
1622 		rc = ENOMEM;
1623 		sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1624 		if (sa->rxq_ctrl == NULL)
1625 			goto fail_rxqs_ctrl_alloc;
1626 	} else {
1627 		struct sfc_rxq_info *new_rxq_info;
1628 		struct sfc_rxq *new_rxq_ctrl;
1629 
1630 		if (nb_rx_queues < sas->rxq_count)
1631 			sfc_rx_fini_queues(sa, nb_rx_queues);
1632 
1633 		rc = ENOMEM;
1634 		new_rxq_info =
1635 			rte_realloc(sas->rxq_info,
1636 				    nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1637 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1638 			goto fail_rxqs_realloc;
1639 
1640 		rc = ENOMEM;
1641 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1642 				       nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1643 		if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1644 			goto fail_rxqs_ctrl_realloc;
1645 
1646 		sas->rxq_info = new_rxq_info;
1647 		sa->rxq_ctrl = new_rxq_ctrl;
1648 		if (nb_rx_queues > sas->rxq_count) {
1649 			memset(&sas->rxq_info[sas->rxq_count], 0,
1650 			       (nb_rx_queues - sas->rxq_count) *
1651 			       sizeof(sas->rxq_info[0]));
1652 			memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1653 			       (nb_rx_queues - sas->rxq_count) *
1654 			       sizeof(sa->rxq_ctrl[0]));
1655 		}
1656 	}
1657 
1658 	while (sas->rxq_count < nb_rx_queues) {
1659 		rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1660 		if (rc != 0)
1661 			goto fail_rx_qinit_info;
1662 
1663 		sas->rxq_count++;
1664 	}
1665 
1666 configure_rss:
1667 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1668 			 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1669 
1670 	if (rss->channels > 0) {
1671 		struct rte_eth_rss_conf *adv_conf_rss;
1672 		unsigned int sw_index;
1673 
1674 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1675 			rss->tbl[sw_index] = sw_index % rss->channels;
1676 
1677 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1678 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1679 		if (rc != 0)
1680 			goto fail_rx_process_adv_conf_rss;
1681 	}
1682 
1683 	return 0;
1684 
1685 fail_rx_process_adv_conf_rss:
1686 fail_rx_qinit_info:
1687 fail_rxqs_ctrl_realloc:
1688 fail_rxqs_realloc:
1689 fail_rxqs_ctrl_alloc:
1690 fail_rxqs_alloc:
1691 	sfc_rx_close(sa);
1692 
1693 fail_check_mode:
1694 	sfc_log_init(sa, "failed %d", rc);
1695 	return rc;
1696 }
1697 
1698 /**
1699  * Shutdown Rx subsystem.
1700  *
1701  * Called at device close stage, for example, before device shutdown.
1702  */
1703 void
1704 sfc_rx_close(struct sfc_adapter *sa)
1705 {
1706 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1707 
1708 	sfc_rx_fini_queues(sa, 0);
1709 
1710 	rss->channels = 0;
1711 
1712 	free(sa->rxq_ctrl);
1713 	sa->rxq_ctrl = NULL;
1714 
1715 	rte_free(sfc_sa2shared(sa)->rxq_info);
1716 	sfc_sa2shared(sa)->rxq_info = NULL;
1717 }
1718