xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 0857b942113874c69dc3db5df11a828ee3cc9b6b)
1 /*-
2  *   BSD LICENSE
3  *
4  * Copyright (c) 2016-2017 Solarflare Communications Inc.
5  * All rights reserved.
6  *
7  * This software was jointly developed between OKTET Labs (under contract
8  * for Solarflare) and Solarflare Communications, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright notice,
14  *    this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright notice,
16  *    this list of conditions and the following disclaimer in the documentation
17  *    and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <rte_mempool.h>
33 
34 #include "efx.h"
35 
36 #include "sfc.h"
37 #include "sfc_debug.h"
38 #include "sfc_log.h"
39 #include "sfc_ev.h"
40 #include "sfc_rx.h"
41 #include "sfc_kvargs.h"
42 #include "sfc_tweak.h"
43 
44 /*
45  * Maximum number of Rx queue flush attempt in the case of failure or
46  * flush timeout
47  */
48 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
49 
50 /*
51  * Time to wait between event queue polling attempts when waiting for Rx
52  * queue flush done or failed events.
53  */
54 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
55 
56 /*
57  * Maximum number of event queue polling attempts when waiting for Rx queue
58  * flush done or failed events. It defines Rx queue flush attempt timeout
59  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
60  */
61 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
62 
63 void
64 sfc_rx_qflush_done(struct sfc_rxq *rxq)
65 {
66 	rxq->state |= SFC_RXQ_FLUSHED;
67 	rxq->state &= ~SFC_RXQ_FLUSHING;
68 }
69 
70 void
71 sfc_rx_qflush_failed(struct sfc_rxq *rxq)
72 {
73 	rxq->state |= SFC_RXQ_FLUSH_FAILED;
74 	rxq->state &= ~SFC_RXQ_FLUSHING;
75 }
76 
77 static void
78 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
79 {
80 	unsigned int free_space;
81 	unsigned int bulks;
82 	void *objs[SFC_RX_REFILL_BULK];
83 	efsys_dma_addr_t addr[RTE_DIM(objs)];
84 	unsigned int added = rxq->added;
85 	unsigned int id;
86 	unsigned int i;
87 	struct sfc_efx_rx_sw_desc *rxd;
88 	struct rte_mbuf *m;
89 	uint16_t port_id = rxq->dp.dpq.port_id;
90 
91 	free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
92 		(added - rxq->completed);
93 
94 	if (free_space < rxq->refill_threshold)
95 		return;
96 
97 	bulks = free_space / RTE_DIM(objs);
98 	/* refill_threshold guarantees that bulks is positive */
99 	SFC_ASSERT(bulks > 0);
100 
101 	id = added & rxq->ptr_mask;
102 	do {
103 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
104 						  RTE_DIM(objs)) < 0)) {
105 			/*
106 			 * It is hardly a safe way to increment counter
107 			 * from different contexts, but all PMDs do it.
108 			 */
109 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
110 				RTE_DIM(objs);
111 			/* Return if we have posted nothing yet */
112 			if (added == rxq->added)
113 				return;
114 			/* Push posted */
115 			break;
116 		}
117 
118 		for (i = 0; i < RTE_DIM(objs);
119 		     ++i, id = (id + 1) & rxq->ptr_mask) {
120 			m = objs[i];
121 
122 			rxd = &rxq->sw_desc[id];
123 			rxd->mbuf = m;
124 
125 			rte_mbuf_refcnt_set(m, 1);
126 			m->data_off = RTE_PKTMBUF_HEADROOM;
127 			m->next = NULL;
128 			m->nb_segs = 1;
129 			m->port = port_id;
130 
131 			addr[i] = rte_pktmbuf_mtophys(m);
132 		}
133 
134 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135 			     RTE_DIM(objs), rxq->completed, added);
136 		added += RTE_DIM(objs);
137 	} while (--bulks > 0);
138 
139 	SFC_ASSERT(added != rxq->added);
140 	rxq->added = added;
141 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
142 }
143 
144 static uint64_t
145 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
146 {
147 	uint64_t mbuf_flags = 0;
148 
149 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
150 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
151 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
152 		break;
153 	case EFX_PKT_IPV4:
154 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
155 		break;
156 	default:
157 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
158 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
159 			   PKT_RX_IP_CKSUM_UNKNOWN);
160 		break;
161 	}
162 
163 	switch ((desc_flags &
164 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
165 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
166 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
167 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
168 		break;
169 	case EFX_PKT_TCP:
170 	case EFX_PKT_UDP:
171 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
172 		break;
173 	default:
174 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
175 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
176 			   PKT_RX_L4_CKSUM_UNKNOWN);
177 		break;
178 	}
179 
180 	return mbuf_flags;
181 }
182 
183 static uint32_t
184 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
185 {
186 	return RTE_PTYPE_L2_ETHER |
187 		((desc_flags & EFX_PKT_IPV4) ?
188 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
189 		((desc_flags & EFX_PKT_IPV6) ?
190 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
191 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
192 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
193 }
194 
195 static const uint32_t *
196 sfc_efx_supported_ptypes_get(void)
197 {
198 	static const uint32_t ptypes[] = {
199 		RTE_PTYPE_L2_ETHER,
200 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
201 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
202 		RTE_PTYPE_L4_TCP,
203 		RTE_PTYPE_L4_UDP,
204 		RTE_PTYPE_UNKNOWN
205 	};
206 
207 	return ptypes;
208 }
209 
210 static void
211 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
212 			struct rte_mbuf *m)
213 {
214 #if EFSYS_OPT_RX_SCALE
215 	uint8_t *mbuf_data;
216 
217 
218 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
219 		return;
220 
221 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
222 
223 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
224 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
225 						      EFX_RX_HASHALG_TOEPLITZ,
226 						      mbuf_data);
227 
228 		m->ol_flags |= PKT_RX_RSS_HASH;
229 	}
230 #endif
231 }
232 
233 static uint16_t
234 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
235 {
236 	struct sfc_dp_rxq *dp_rxq = rx_queue;
237 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
238 	unsigned int completed;
239 	unsigned int prefix_size = rxq->prefix_size;
240 	unsigned int done_pkts = 0;
241 	boolean_t discard_next = B_FALSE;
242 	struct rte_mbuf *scatter_pkt = NULL;
243 
244 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
245 		return 0;
246 
247 	sfc_ev_qpoll(rxq->evq);
248 
249 	completed = rxq->completed;
250 	while (completed != rxq->pending && done_pkts < nb_pkts) {
251 		unsigned int id;
252 		struct sfc_efx_rx_sw_desc *rxd;
253 		struct rte_mbuf *m;
254 		unsigned int seg_len;
255 		unsigned int desc_flags;
256 
257 		id = completed++ & rxq->ptr_mask;
258 		rxd = &rxq->sw_desc[id];
259 		m = rxd->mbuf;
260 		desc_flags = rxd->flags;
261 
262 		if (discard_next)
263 			goto discard;
264 
265 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
266 			goto discard;
267 
268 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
269 			uint16_t tmp_size;
270 			int rc __rte_unused;
271 
272 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
273 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
274 			SFC_ASSERT(rc == 0);
275 			seg_len = tmp_size;
276 		} else {
277 			seg_len = rxd->size - prefix_size;
278 		}
279 
280 		rte_pktmbuf_data_len(m) = seg_len;
281 		rte_pktmbuf_pkt_len(m) = seg_len;
282 
283 		if (scatter_pkt != NULL) {
284 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
285 				rte_pktmbuf_free(scatter_pkt);
286 				goto discard;
287 			}
288 			/* The packet to deliver */
289 			m = scatter_pkt;
290 		}
291 
292 		if (desc_flags & EFX_PKT_CONT) {
293 			/* The packet is scattered, more fragments to come */
294 			scatter_pkt = m;
295 			/* Futher fragments have no prefix */
296 			prefix_size = 0;
297 			continue;
298 		}
299 
300 		/* Scattered packet is done */
301 		scatter_pkt = NULL;
302 		/* The first fragment of the packet has prefix */
303 		prefix_size = rxq->prefix_size;
304 
305 		m->ol_flags =
306 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
307 		m->packet_type =
308 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
309 
310 		/*
311 		 * Extract RSS hash from the packet prefix and
312 		 * set the corresponding field (if needed and possible)
313 		 */
314 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
315 
316 		m->data_off += prefix_size;
317 
318 		*rx_pkts++ = m;
319 		done_pkts++;
320 		continue;
321 
322 discard:
323 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
324 		rte_mempool_put(rxq->refill_mb_pool, m);
325 		rxd->mbuf = NULL;
326 	}
327 
328 	/* pending is only moved when entire packet is received */
329 	SFC_ASSERT(scatter_pkt == NULL);
330 
331 	rxq->completed = completed;
332 
333 	sfc_efx_rx_qrefill(rxq);
334 
335 	return done_pkts;
336 }
337 
338 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
339 static unsigned int
340 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
341 {
342 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
343 
344 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
345 		return 0;
346 
347 	sfc_ev_qpoll(rxq->evq);
348 
349 	return rxq->pending - rxq->completed;
350 }
351 
352 struct sfc_rxq *
353 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
354 {
355 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
356 	struct rte_eth_dev *eth_dev;
357 	struct sfc_adapter *sa;
358 	struct sfc_rxq *rxq;
359 
360 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
361 	eth_dev = &rte_eth_devices[dpq->port_id];
362 
363 	sa = eth_dev->data->dev_private;
364 
365 	SFC_ASSERT(dpq->queue_id < sa->rxq_count);
366 	rxq = sa->rxq_info[dpq->queue_id].rxq;
367 
368 	SFC_ASSERT(rxq != NULL);
369 	return rxq;
370 }
371 
372 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
373 static int
374 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
375 		   const struct rte_pci_addr *pci_addr, int socket_id,
376 		   const struct sfc_dp_rx_qcreate_info *info,
377 		   struct sfc_dp_rxq **dp_rxqp)
378 {
379 	struct sfc_efx_rxq *rxq;
380 	int rc;
381 
382 	rc = ENOMEM;
383 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
384 				 RTE_CACHE_LINE_SIZE, socket_id);
385 	if (rxq == NULL)
386 		goto fail_rxq_alloc;
387 
388 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
389 
390 	rc = ENOMEM;
391 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
392 					 info->rxq_entries,
393 					 sizeof(*rxq->sw_desc),
394 					 RTE_CACHE_LINE_SIZE, socket_id);
395 	if (rxq->sw_desc == NULL)
396 		goto fail_desc_alloc;
397 
398 	/* efx datapath is bound to efx control path */
399 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
400 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
401 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
402 	rxq->ptr_mask = info->rxq_entries - 1;
403 	rxq->batch_max = info->batch_max;
404 	rxq->prefix_size = info->prefix_size;
405 	rxq->refill_threshold = info->refill_threshold;
406 	rxq->buf_size = info->buf_size;
407 	rxq->refill_mb_pool = info->refill_mb_pool;
408 
409 	*dp_rxqp = &rxq->dp;
410 	return 0;
411 
412 fail_desc_alloc:
413 	rte_free(rxq);
414 
415 fail_rxq_alloc:
416 	return rc;
417 }
418 
419 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
420 static void
421 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
422 {
423 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
424 
425 	rte_free(rxq->sw_desc);
426 	rte_free(rxq);
427 }
428 
429 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
430 static int
431 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
432 		  __rte_unused unsigned int evq_read_ptr)
433 {
434 	/* libefx-based datapath is specific to libefx-based PMD */
435 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
436 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
437 
438 	rxq->common = crxq->common;
439 
440 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
441 
442 	sfc_efx_rx_qrefill(rxq);
443 
444 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
445 
446 	return 0;
447 }
448 
449 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
450 static void
451 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
452 		 __rte_unused unsigned int *evq_read_ptr)
453 {
454 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
455 
456 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
457 
458 	/* libefx-based datapath is bound to libefx-based PMD and uses
459 	 * event queue structure directly. So, there is no necessity to
460 	 * return EvQ read pointer.
461 	 */
462 }
463 
464 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
465 static void
466 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
467 {
468 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
469 	unsigned int i;
470 	struct sfc_efx_rx_sw_desc *rxd;
471 
472 	for (i = rxq->completed; i != rxq->added; ++i) {
473 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
474 		rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
475 		rxd->mbuf = NULL;
476 		/* Packed stream relies on 0 in inactive SW desc.
477 		 * Rx queue stop is not performance critical, so
478 		 * there is no harm to do it always.
479 		 */
480 		rxd->flags = 0;
481 		rxd->size = 0;
482 	}
483 
484 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
485 }
486 
487 struct sfc_dp_rx sfc_efx_rx = {
488 	.dp = {
489 		.name		= SFC_KVARG_DATAPATH_EFX,
490 		.type		= SFC_DP_RX,
491 		.hw_fw_caps	= 0,
492 	},
493 	.features		= SFC_DP_RX_FEAT_SCATTER,
494 	.qcreate		= sfc_efx_rx_qcreate,
495 	.qdestroy		= sfc_efx_rx_qdestroy,
496 	.qstart			= sfc_efx_rx_qstart,
497 	.qstop			= sfc_efx_rx_qstop,
498 	.qpurge			= sfc_efx_rx_qpurge,
499 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
500 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
501 	.pkt_burst		= sfc_efx_recv_pkts,
502 };
503 
504 unsigned int
505 sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
506 {
507 	struct sfc_rxq *rxq;
508 
509 	SFC_ASSERT(sw_index < sa->rxq_count);
510 	rxq = sa->rxq_info[sw_index].rxq;
511 
512 	if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
513 		return 0;
514 
515 	return sa->dp_rx->qdesc_npending(rxq->dp);
516 }
517 
518 int
519 sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
520 {
521 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
522 
523 	return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
524 }
525 
526 static void
527 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
528 {
529 	struct sfc_rxq *rxq;
530 	unsigned int retry_count;
531 	unsigned int wait_count;
532 
533 	rxq = sa->rxq_info[sw_index].rxq;
534 	SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
535 
536 	/*
537 	 * Retry Rx queue flushing in the case of flush failed or
538 	 * timeout. In the worst case it can delay for 6 seconds.
539 	 */
540 	for (retry_count = 0;
541 	     ((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
542 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
543 	     ++retry_count) {
544 		if (efx_rx_qflush(rxq->common) != 0) {
545 			rxq->state |= SFC_RXQ_FLUSH_FAILED;
546 			break;
547 		}
548 		rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
549 		rxq->state |= SFC_RXQ_FLUSHING;
550 
551 		/*
552 		 * Wait for Rx queue flush done or failed event at least
553 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
554 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
555 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
556 		 */
557 		wait_count = 0;
558 		do {
559 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
560 			sfc_ev_qpoll(rxq->evq);
561 		} while ((rxq->state & SFC_RXQ_FLUSHING) &&
562 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
563 
564 		if (rxq->state & SFC_RXQ_FLUSHING)
565 			sfc_err(sa, "RxQ %u flush timed out", sw_index);
566 
567 		if (rxq->state & SFC_RXQ_FLUSH_FAILED)
568 			sfc_err(sa, "RxQ %u flush failed", sw_index);
569 
570 		if (rxq->state & SFC_RXQ_FLUSHED)
571 			sfc_info(sa, "RxQ %u flushed", sw_index);
572 	}
573 
574 	sa->dp_rx->qpurge(rxq->dp);
575 }
576 
577 static int
578 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
579 {
580 	boolean_t rss = (sa->rss_channels > 1) ? B_TRUE : B_FALSE;
581 	struct sfc_port *port = &sa->port;
582 	int rc;
583 
584 	/*
585 	 * If promiscuous or all-multicast mode has been requested, setting
586 	 * filter for the default Rx queue might fail, in particular, while
587 	 * running over PCI function which is not a member of corresponding
588 	 * privilege groups; if this occurs, few iterations will be made to
589 	 * repeat this step without promiscuous and all-multicast flags set
590 	 */
591 retry:
592 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, rss);
593 	if (rc == 0)
594 		return 0;
595 	else if (rc != EOPNOTSUPP)
596 		return rc;
597 
598 	if (port->promisc) {
599 		sfc_warn(sa, "promiscuous mode has been requested, "
600 			     "but the HW rejects it");
601 		sfc_warn(sa, "promiscuous mode will be disabled");
602 
603 		port->promisc = B_FALSE;
604 		rc = sfc_set_rx_mode(sa);
605 		if (rc != 0)
606 			return rc;
607 
608 		goto retry;
609 	}
610 
611 	if (port->allmulti) {
612 		sfc_warn(sa, "all-multicast mode has been requested, "
613 			     "but the HW rejects it");
614 		sfc_warn(sa, "all-multicast mode will be disabled");
615 
616 		port->allmulti = B_FALSE;
617 		rc = sfc_set_rx_mode(sa);
618 		if (rc != 0)
619 			return rc;
620 
621 		goto retry;
622 	}
623 
624 	return rc;
625 }
626 
627 int
628 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
629 {
630 	struct sfc_rxq_info *rxq_info;
631 	struct sfc_rxq *rxq;
632 	struct sfc_evq *evq;
633 	int rc;
634 
635 	sfc_log_init(sa, "sw_index=%u", sw_index);
636 
637 	SFC_ASSERT(sw_index < sa->rxq_count);
638 
639 	rxq_info = &sa->rxq_info[sw_index];
640 	rxq = rxq_info->rxq;
641 	SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
642 
643 	evq = rxq->evq;
644 
645 	rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
646 	if (rc != 0)
647 		goto fail_ev_qstart;
648 
649 	rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
650 			    &rxq->mem, rxq_info->entries,
651 			    0 /* not used on EF10 */, evq->common,
652 			    &rxq->common);
653 	if (rc != 0)
654 		goto fail_rx_qcreate;
655 
656 	efx_rx_qenable(rxq->common);
657 
658 	rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
659 	if (rc != 0)
660 		goto fail_dp_qstart;
661 
662 	rxq->state |= SFC_RXQ_STARTED;
663 
664 	if (sw_index == 0) {
665 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
666 		if (rc != 0)
667 			goto fail_mac_filter_default_rxq_set;
668 	}
669 
670 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
671 	sa->eth_dev->data->rx_queue_state[sw_index] =
672 		RTE_ETH_QUEUE_STATE_STARTED;
673 
674 	return 0;
675 
676 fail_mac_filter_default_rxq_set:
677 	sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
678 
679 fail_dp_qstart:
680 	sfc_rx_qflush(sa, sw_index);
681 
682 fail_rx_qcreate:
683 	sfc_ev_qstop(evq);
684 
685 fail_ev_qstart:
686 	return rc;
687 }
688 
689 void
690 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
691 {
692 	struct sfc_rxq_info *rxq_info;
693 	struct sfc_rxq *rxq;
694 
695 	sfc_log_init(sa, "sw_index=%u", sw_index);
696 
697 	SFC_ASSERT(sw_index < sa->rxq_count);
698 
699 	rxq_info = &sa->rxq_info[sw_index];
700 	rxq = rxq_info->rxq;
701 
702 	if (rxq->state == SFC_RXQ_INITIALIZED)
703 		return;
704 	SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
705 
706 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
707 	sa->eth_dev->data->rx_queue_state[sw_index] =
708 		RTE_ETH_QUEUE_STATE_STOPPED;
709 
710 	sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
711 
712 	if (sw_index == 0)
713 		efx_mac_filter_default_rxq_clear(sa->nic);
714 
715 	sfc_rx_qflush(sa, sw_index);
716 
717 	rxq->state = SFC_RXQ_INITIALIZED;
718 
719 	efx_rx_qdestroy(rxq->common);
720 
721 	sfc_ev_qstop(rxq->evq);
722 }
723 
724 static int
725 sfc_rx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_rx_desc,
726 		   const struct rte_eth_rxconf *rx_conf)
727 {
728 	const uint16_t rx_free_thresh_max = EFX_RXQ_LIMIT(nb_rx_desc);
729 	int rc = 0;
730 
731 	if (rx_conf->rx_thresh.pthresh != 0 ||
732 	    rx_conf->rx_thresh.hthresh != 0 ||
733 	    rx_conf->rx_thresh.wthresh != 0) {
734 		sfc_err(sa,
735 			"RxQ prefetch/host/writeback thresholds are not supported");
736 		rc = EINVAL;
737 	}
738 
739 	if (rx_conf->rx_free_thresh > rx_free_thresh_max) {
740 		sfc_err(sa,
741 			"RxQ free threshold too large: %u vs maximum %u",
742 			rx_conf->rx_free_thresh, rx_free_thresh_max);
743 		rc = EINVAL;
744 	}
745 
746 	if (rx_conf->rx_drop_en == 0) {
747 		sfc_err(sa, "RxQ drop disable is not supported");
748 		rc = EINVAL;
749 	}
750 
751 	return rc;
752 }
753 
754 static unsigned int
755 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
756 {
757 	uint32_t data_off;
758 	uint32_t order;
759 
760 	/* The mbuf object itself is always cache line aligned */
761 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
762 
763 	/* Data offset from mbuf object start */
764 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
765 		RTE_PKTMBUF_HEADROOM;
766 
767 	order = MIN(order, rte_bsf32(data_off));
768 
769 	return 1u << (order - 1);
770 }
771 
772 static uint16_t
773 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
774 {
775 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
776 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
777 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
778 	uint16_t buf_size;
779 	unsigned int buf_aligned;
780 	unsigned int start_alignment;
781 	unsigned int end_padding_alignment;
782 
783 	/* Below it is assumed that both alignments are power of 2 */
784 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
785 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
786 
787 	/*
788 	 * mbuf is always cache line aligned, double-check
789 	 * that it meets rx buffer start alignment requirements.
790 	 */
791 
792 	/* Start from mbuf pool data room size */
793 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
794 
795 	/* Remove headroom */
796 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
797 		sfc_err(sa,
798 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
799 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
800 		return 0;
801 	}
802 	buf_size -= RTE_PKTMBUF_HEADROOM;
803 
804 	/* Calculate guaranteed data start alignment */
805 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
806 
807 	/* Reserve space for start alignment */
808 	if (buf_aligned < nic_align_start) {
809 		start_alignment = nic_align_start - buf_aligned;
810 		if (buf_size <= start_alignment) {
811 			sfc_err(sa,
812 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
813 				mb_pool->name,
814 				rte_pktmbuf_data_room_size(mb_pool),
815 				RTE_PKTMBUF_HEADROOM, start_alignment);
816 			return 0;
817 		}
818 		buf_aligned = nic_align_start;
819 		buf_size -= start_alignment;
820 	} else {
821 		start_alignment = 0;
822 	}
823 
824 	/* Make sure that end padding does not write beyond the buffer */
825 	if (buf_aligned < nic_align_end) {
826 		/*
827 		 * Estimate space which can be lost. If guarnteed buffer
828 		 * size is odd, lost space is (nic_align_end - 1). More
829 		 * accurate formula is below.
830 		 */
831 		end_padding_alignment = nic_align_end -
832 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
833 		if (buf_size <= end_padding_alignment) {
834 			sfc_err(sa,
835 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
836 				mb_pool->name,
837 				rte_pktmbuf_data_room_size(mb_pool),
838 				RTE_PKTMBUF_HEADROOM, start_alignment,
839 				end_padding_alignment);
840 			return 0;
841 		}
842 		buf_size -= end_padding_alignment;
843 	} else {
844 		/*
845 		 * Start is aligned the same or better than end,
846 		 * just align length.
847 		 */
848 		buf_size = P2ALIGN(buf_size, nic_align_end);
849 	}
850 
851 	return buf_size;
852 }
853 
854 int
855 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
856 	     uint16_t nb_rx_desc, unsigned int socket_id,
857 	     const struct rte_eth_rxconf *rx_conf,
858 	     struct rte_mempool *mb_pool)
859 {
860 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
861 	int rc;
862 	uint16_t buf_size;
863 	struct sfc_rxq_info *rxq_info;
864 	struct sfc_evq *evq;
865 	struct sfc_rxq *rxq;
866 	struct sfc_dp_rx_qcreate_info info;
867 
868 	rc = sfc_rx_qcheck_conf(sa, nb_rx_desc, rx_conf);
869 	if (rc != 0)
870 		goto fail_bad_conf;
871 
872 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
873 	if (buf_size == 0) {
874 		sfc_err(sa, "RxQ %u mbuf pool object size is too small",
875 			sw_index);
876 		rc = EINVAL;
877 		goto fail_bad_conf;
878 	}
879 
880 	if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
881 	    !sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
882 		sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
883 			"object size is too small", sw_index);
884 		sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
885 			"PDU size %u plus Rx prefix %u bytes",
886 			sw_index, buf_size, (unsigned int)sa->port.pdu,
887 			encp->enc_rx_prefix_size);
888 		rc = EINVAL;
889 		goto fail_bad_conf;
890 	}
891 
892 	SFC_ASSERT(sw_index < sa->rxq_count);
893 	rxq_info = &sa->rxq_info[sw_index];
894 
895 	SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
896 	rxq_info->entries = nb_rx_desc;
897 	rxq_info->type =
898 		sa->eth_dev->data->dev_conf.rxmode.enable_scatter ?
899 		EFX_RXQ_TYPE_SCATTER : EFX_RXQ_TYPE_DEFAULT;
900 
901 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
902 			  rxq_info->entries, socket_id, &evq);
903 	if (rc != 0)
904 		goto fail_ev_qinit;
905 
906 	rc = ENOMEM;
907 	rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
908 				 socket_id);
909 	if (rxq == NULL)
910 		goto fail_rxq_alloc;
911 
912 	rxq_info->rxq = rxq;
913 
914 	rxq->evq = evq;
915 	rxq->hw_index = sw_index;
916 	rxq->refill_threshold =
917 		RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
918 	rxq->refill_mb_pool = mb_pool;
919 
920 	rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
921 			   socket_id, &rxq->mem);
922 	if (rc != 0)
923 		goto fail_dma_alloc;
924 
925 	memset(&info, 0, sizeof(info));
926 	info.refill_mb_pool = rxq->refill_mb_pool;
927 	info.refill_threshold = rxq->refill_threshold;
928 	info.buf_size = buf_size;
929 	info.batch_max = encp->enc_rx_batch_max;
930 	info.prefix_size = encp->enc_rx_prefix_size;
931 
932 #if EFSYS_OPT_RX_SCALE
933 	if (sa->hash_support == EFX_RX_HASH_AVAILABLE)
934 		info.flags |= SFC_RXQ_FLAG_RSS_HASH;
935 #endif
936 
937 	info.rxq_entries = rxq_info->entries;
938 	info.rxq_hw_ring = rxq->mem.esm_base;
939 	info.evq_entries = rxq_info->entries;
940 	info.evq_hw_ring = evq->mem.esm_base;
941 	info.hw_index = rxq->hw_index;
942 	info.mem_bar = sa->mem_bar.esb_base;
943 
944 	rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
945 				&SFC_DEV_TO_PCI(sa->eth_dev)->addr,
946 				socket_id, &info, &rxq->dp);
947 	if (rc != 0)
948 		goto fail_dp_rx_qcreate;
949 
950 	evq->dp_rxq = rxq->dp;
951 
952 	rxq->state = SFC_RXQ_INITIALIZED;
953 
954 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
955 
956 	return 0;
957 
958 fail_dp_rx_qcreate:
959 	sfc_dma_free(sa, &rxq->mem);
960 
961 fail_dma_alloc:
962 	rxq_info->rxq = NULL;
963 	rte_free(rxq);
964 
965 fail_rxq_alloc:
966 	sfc_ev_qfini(evq);
967 
968 fail_ev_qinit:
969 	rxq_info->entries = 0;
970 
971 fail_bad_conf:
972 	sfc_log_init(sa, "failed %d", rc);
973 	return rc;
974 }
975 
976 void
977 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
978 {
979 	struct sfc_rxq_info *rxq_info;
980 	struct sfc_rxq *rxq;
981 
982 	SFC_ASSERT(sw_index < sa->rxq_count);
983 
984 	rxq_info = &sa->rxq_info[sw_index];
985 
986 	rxq = rxq_info->rxq;
987 	SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
988 
989 	sa->dp_rx->qdestroy(rxq->dp);
990 	rxq->dp = NULL;
991 
992 	rxq_info->rxq = NULL;
993 	rxq_info->entries = 0;
994 
995 	sfc_dma_free(sa, &rxq->mem);
996 
997 	sfc_ev_qfini(rxq->evq);
998 	rxq->evq = NULL;
999 
1000 	rte_free(rxq);
1001 }
1002 
1003 #if EFSYS_OPT_RX_SCALE
1004 efx_rx_hash_type_t
1005 sfc_rte_to_efx_hash_type(uint64_t rss_hf)
1006 {
1007 	efx_rx_hash_type_t efx_hash_types = 0;
1008 
1009 	if ((rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1010 		       ETH_RSS_NONFRAG_IPV4_OTHER)) != 0)
1011 		efx_hash_types |= EFX_RX_HASH_IPV4;
1012 
1013 	if ((rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) != 0)
1014 		efx_hash_types |= EFX_RX_HASH_TCPIPV4;
1015 
1016 	if ((rss_hf & (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1017 			ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX)) != 0)
1018 		efx_hash_types |= EFX_RX_HASH_IPV6;
1019 
1020 	if ((rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX)) != 0)
1021 		efx_hash_types |= EFX_RX_HASH_TCPIPV6;
1022 
1023 	return efx_hash_types;
1024 }
1025 
1026 uint64_t
1027 sfc_efx_to_rte_hash_type(efx_rx_hash_type_t efx_hash_types)
1028 {
1029 	uint64_t rss_hf = 0;
1030 
1031 	if ((efx_hash_types & EFX_RX_HASH_IPV4) != 0)
1032 		rss_hf |= (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1033 			   ETH_RSS_NONFRAG_IPV4_OTHER);
1034 
1035 	if ((efx_hash_types & EFX_RX_HASH_TCPIPV4) != 0)
1036 		rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1037 
1038 	if ((efx_hash_types & EFX_RX_HASH_IPV6) != 0)
1039 		rss_hf |= (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
1040 			   ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX);
1041 
1042 	if ((efx_hash_types & EFX_RX_HASH_TCPIPV6) != 0)
1043 		rss_hf |= (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX);
1044 
1045 	return rss_hf;
1046 }
1047 #endif
1048 
1049 static int
1050 sfc_rx_rss_config(struct sfc_adapter *sa)
1051 {
1052 	int rc = 0;
1053 
1054 #if EFSYS_OPT_RX_SCALE
1055 	if (sa->rss_channels > 1) {
1056 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RX_HASHALG_TOEPLITZ,
1057 					   sa->rss_hash_types, B_TRUE);
1058 		if (rc != 0)
1059 			goto finish;
1060 
1061 		rc = efx_rx_scale_key_set(sa->nic, sa->rss_key,
1062 					  sizeof(sa->rss_key));
1063 		if (rc != 0)
1064 			goto finish;
1065 
1066 		rc = efx_rx_scale_tbl_set(sa->nic, sa->rss_tbl,
1067 					  sizeof(sa->rss_tbl));
1068 	}
1069 
1070 finish:
1071 #endif
1072 	return rc;
1073 }
1074 
1075 int
1076 sfc_rx_start(struct sfc_adapter *sa)
1077 {
1078 	unsigned int sw_index;
1079 	int rc;
1080 
1081 	sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1082 
1083 	rc = efx_rx_init(sa->nic);
1084 	if (rc != 0)
1085 		goto fail_rx_init;
1086 
1087 	rc = sfc_rx_rss_config(sa);
1088 	if (rc != 0)
1089 		goto fail_rss_config;
1090 
1091 	for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
1092 		if ((!sa->rxq_info[sw_index].deferred_start ||
1093 		     sa->rxq_info[sw_index].deferred_started)) {
1094 			rc = sfc_rx_qstart(sa, sw_index);
1095 			if (rc != 0)
1096 				goto fail_rx_qstart;
1097 		}
1098 	}
1099 
1100 	return 0;
1101 
1102 fail_rx_qstart:
1103 	while (sw_index-- > 0)
1104 		sfc_rx_qstop(sa, sw_index);
1105 
1106 fail_rss_config:
1107 	efx_rx_fini(sa->nic);
1108 
1109 fail_rx_init:
1110 	sfc_log_init(sa, "failed %d", rc);
1111 	return rc;
1112 }
1113 
1114 void
1115 sfc_rx_stop(struct sfc_adapter *sa)
1116 {
1117 	unsigned int sw_index;
1118 
1119 	sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
1120 
1121 	sw_index = sa->rxq_count;
1122 	while (sw_index-- > 0) {
1123 		if (sa->rxq_info[sw_index].rxq != NULL)
1124 			sfc_rx_qstop(sa, sw_index);
1125 	}
1126 
1127 	efx_rx_fini(sa->nic);
1128 }
1129 
1130 static int
1131 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1132 {
1133 	struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
1134 	unsigned int max_entries;
1135 
1136 	max_entries = EFX_RXQ_MAXNDESCS;
1137 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1138 
1139 	rxq_info->max_entries = max_entries;
1140 
1141 	return 0;
1142 }
1143 
1144 static int
1145 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1146 {
1147 	int rc = 0;
1148 
1149 	switch (rxmode->mq_mode) {
1150 	case ETH_MQ_RX_NONE:
1151 		/* No special checks are required */
1152 		break;
1153 #if EFSYS_OPT_RX_SCALE
1154 	case ETH_MQ_RX_RSS:
1155 		if (sa->rss_support == EFX_RX_SCALE_UNAVAILABLE) {
1156 			sfc_err(sa, "RSS is not available");
1157 			rc = EINVAL;
1158 		}
1159 		break;
1160 #endif
1161 	default:
1162 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1163 			rxmode->mq_mode);
1164 		rc = EINVAL;
1165 	}
1166 
1167 	if (rxmode->header_split) {
1168 		sfc_err(sa, "Header split on Rx not supported");
1169 		rc = EINVAL;
1170 	}
1171 
1172 	if (rxmode->hw_vlan_filter) {
1173 		sfc_err(sa, "HW VLAN filtering not supported");
1174 		rc = EINVAL;
1175 	}
1176 
1177 	if (rxmode->hw_vlan_strip) {
1178 		sfc_err(sa, "HW VLAN stripping not supported");
1179 		rc = EINVAL;
1180 	}
1181 
1182 	if (rxmode->hw_vlan_extend) {
1183 		sfc_err(sa,
1184 			"Q-in-Q HW VLAN stripping not supported");
1185 		rc = EINVAL;
1186 	}
1187 
1188 	if (!rxmode->hw_strip_crc) {
1189 		sfc_warn(sa,
1190 			 "FCS stripping control not supported - always stripped");
1191 		rxmode->hw_strip_crc = 1;
1192 	}
1193 
1194 	if (rxmode->enable_scatter &&
1195 	    (~sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)) {
1196 		sfc_err(sa, "Rx scatter not supported by %s datapath",
1197 			sa->dp_rx->dp.name);
1198 		rc = EINVAL;
1199 	}
1200 
1201 	if (rxmode->enable_lro) {
1202 		sfc_err(sa, "LRO not supported");
1203 		rc = EINVAL;
1204 	}
1205 
1206 	return rc;
1207 }
1208 
1209 /**
1210  * Destroy excess queues that are no longer needed after reconfiguration
1211  * or complete close.
1212  */
1213 static void
1214 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1215 {
1216 	int sw_index;
1217 
1218 	SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
1219 
1220 	sw_index = sa->rxq_count;
1221 	while (--sw_index >= (int)nb_rx_queues) {
1222 		if (sa->rxq_info[sw_index].rxq != NULL)
1223 			sfc_rx_qfini(sa, sw_index);
1224 	}
1225 
1226 	sa->rxq_count = nb_rx_queues;
1227 }
1228 
1229 /**
1230  * Initialize Rx subsystem.
1231  *
1232  * Called at device (re)configuration stage when number of receive queues is
1233  * specified together with other device level receive configuration.
1234  *
1235  * It should be used to allocate NUMA-unaware resources.
1236  */
1237 int
1238 sfc_rx_configure(struct sfc_adapter *sa)
1239 {
1240 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1241 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1242 	unsigned int sw_index;
1243 	int rc;
1244 
1245 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1246 		     nb_rx_queues, sa->rxq_count);
1247 
1248 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1249 	if (rc != 0)
1250 		goto fail_check_mode;
1251 
1252 	if (nb_rx_queues == sa->rxq_count)
1253 		goto done;
1254 
1255 	if (sa->rxq_info == NULL) {
1256 		rc = ENOMEM;
1257 		sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1258 						 sizeof(sa->rxq_info[0]), 0,
1259 						 sa->socket_id);
1260 		if (sa->rxq_info == NULL)
1261 			goto fail_rxqs_alloc;
1262 	} else {
1263 		struct sfc_rxq_info *new_rxq_info;
1264 
1265 		if (nb_rx_queues < sa->rxq_count)
1266 			sfc_rx_fini_queues(sa, nb_rx_queues);
1267 
1268 		rc = ENOMEM;
1269 		new_rxq_info =
1270 			rte_realloc(sa->rxq_info,
1271 				    nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
1272 		if (new_rxq_info == NULL && nb_rx_queues > 0)
1273 			goto fail_rxqs_realloc;
1274 
1275 		sa->rxq_info = new_rxq_info;
1276 		if (nb_rx_queues > sa->rxq_count)
1277 			memset(&sa->rxq_info[sa->rxq_count], 0,
1278 			       (nb_rx_queues - sa->rxq_count) *
1279 			       sizeof(sa->rxq_info[0]));
1280 	}
1281 
1282 	while (sa->rxq_count < nb_rx_queues) {
1283 		rc = sfc_rx_qinit_info(sa, sa->rxq_count);
1284 		if (rc != 0)
1285 			goto fail_rx_qinit_info;
1286 
1287 		sa->rxq_count++;
1288 	}
1289 
1290 #if EFSYS_OPT_RX_SCALE
1291 	sa->rss_channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1292 			   MIN(sa->rxq_count, EFX_MAXRSS) : 1;
1293 
1294 	if (sa->rss_channels > 1) {
1295 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1296 			sa->rss_tbl[sw_index] = sw_index % sa->rss_channels;
1297 	}
1298 #endif
1299 
1300 done:
1301 	return 0;
1302 
1303 fail_rx_qinit_info:
1304 fail_rxqs_realloc:
1305 fail_rxqs_alloc:
1306 	sfc_rx_close(sa);
1307 
1308 fail_check_mode:
1309 	sfc_log_init(sa, "failed %d", rc);
1310 	return rc;
1311 }
1312 
1313 /**
1314  * Shutdown Rx subsystem.
1315  *
1316  * Called at device close stage, for example, before device shutdown.
1317  */
1318 void
1319 sfc_rx_close(struct sfc_adapter *sa)
1320 {
1321 	sfc_rx_fini_queues(sa, 0);
1322 
1323 	rte_free(sa->rxq_info);
1324 	sa->rxq_info = NULL;
1325 }
1326