xref: /dpdk/drivers/net/sfc/sfc_rx.c (revision 081e42dab11d1add2d038fdf2bd4c86b20043d08)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_mempool.h>
11 
12 #include "efx.h"
13 
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_flow_tunnel.h"
17 #include "sfc_log.h"
18 #include "sfc_ev.h"
19 #include "sfc_rx.h"
20 #include "sfc_mae_counter.h"
21 #include "sfc_kvargs.h"
22 #include "sfc_tweak.h"
23 
24 /*
25  * Maximum number of Rx queue flush attempt in the case of failure or
26  * flush timeout
27  */
28 #define SFC_RX_QFLUSH_ATTEMPTS		(3)
29 
30 /*
31  * Time to wait between event queue polling attempts when waiting for Rx
32  * queue flush done or failed events.
33  */
34 #define SFC_RX_QFLUSH_POLL_WAIT_MS	(1)
35 
36 /*
37  * Maximum number of event queue polling attempts when waiting for Rx queue
38  * flush done or failed events. It defines Rx queue flush attempt timeout
39  * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
40  */
41 #define SFC_RX_QFLUSH_POLL_ATTEMPTS	(2000)
42 
43 void
44 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
45 {
46 	rxq_info->state |= SFC_RXQ_FLUSHED;
47 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
48 }
49 
50 void
51 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
52 {
53 	rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
54 	rxq_info->state &= ~SFC_RXQ_FLUSHING;
55 }
56 
57 /* This returns the running counter, which is not bounded by ring size */
58 unsigned int
59 sfc_rx_get_pushed(struct sfc_adapter *sa, struct sfc_dp_rxq *dp_rxq)
60 {
61 	SFC_ASSERT(sa->priv.dp_rx->get_pushed != NULL);
62 
63 	return sa->priv.dp_rx->get_pushed(dp_rxq);
64 }
65 
66 static int
67 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
68 {
69 	int rc = 0;
70 
71 	if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
72 		rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
73 		if (rc == 0)
74 			rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
75 	}
76 	return rc;
77 }
78 
79 static void
80 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
81 {
82 	unsigned int free_space;
83 	unsigned int bulks;
84 	void *objs[SFC_RX_REFILL_BULK];
85 	efsys_dma_addr_t addr[RTE_DIM(objs)];
86 	unsigned int added = rxq->added;
87 	unsigned int id;
88 	unsigned int i;
89 	struct sfc_efx_rx_sw_desc *rxd;
90 	struct rte_mbuf *m;
91 	uint16_t port_id = rxq->dp.dpq.port_id;
92 
93 	free_space = rxq->max_fill_level - (added - rxq->completed);
94 
95 	if (free_space < rxq->refill_threshold)
96 		return;
97 
98 	bulks = free_space / RTE_DIM(objs);
99 	/* refill_threshold guarantees that bulks is positive */
100 	SFC_ASSERT(bulks > 0);
101 
102 	id = added & rxq->ptr_mask;
103 	do {
104 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
105 						  RTE_DIM(objs)) < 0)) {
106 			/*
107 			 * It is hardly a safe way to increment counter
108 			 * from different contexts, but all PMDs do it.
109 			 */
110 			rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
111 				RTE_DIM(objs);
112 			/* Return if we have posted nothing yet */
113 			if (added == rxq->added)
114 				return;
115 			/* Push posted */
116 			break;
117 		}
118 
119 		for (i = 0; i < RTE_DIM(objs);
120 		     ++i, id = (id + 1) & rxq->ptr_mask) {
121 			m = objs[i];
122 
123 			__rte_mbuf_raw_sanity_check(m);
124 
125 			rxd = &rxq->sw_desc[id];
126 			rxd->mbuf = m;
127 
128 			m->data_off = RTE_PKTMBUF_HEADROOM;
129 			m->port = port_id;
130 
131 			addr[i] = rte_pktmbuf_iova(m);
132 		}
133 
134 		efx_rx_qpost(rxq->common, addr, rxq->buf_size,
135 			     RTE_DIM(objs), rxq->completed, added);
136 		added += RTE_DIM(objs);
137 	} while (--bulks > 0);
138 
139 	SFC_ASSERT(added != rxq->added);
140 	rxq->added = added;
141 	efx_rx_qpush(rxq->common, added, &rxq->pushed);
142 	rxq->dp.dpq.rx_dbells++;
143 }
144 
145 static uint64_t
146 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
147 {
148 	uint64_t mbuf_flags = 0;
149 
150 	switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
151 	case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
152 		mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
153 		break;
154 	case EFX_PKT_IPV4:
155 		mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
156 		break;
157 	default:
158 		RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
159 		SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
160 			   PKT_RX_IP_CKSUM_UNKNOWN);
161 		break;
162 	}
163 
164 	switch ((desc_flags &
165 		 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
166 	case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
167 	case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
168 		mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
169 		break;
170 	case EFX_PKT_TCP:
171 	case EFX_PKT_UDP:
172 		mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
173 		break;
174 	default:
175 		RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
176 		SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
177 			   PKT_RX_L4_CKSUM_UNKNOWN);
178 		break;
179 	}
180 
181 	return mbuf_flags;
182 }
183 
184 static uint32_t
185 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
186 {
187 	return RTE_PTYPE_L2_ETHER |
188 		((desc_flags & EFX_PKT_IPV4) ?
189 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
190 		((desc_flags & EFX_PKT_IPV6) ?
191 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
192 		((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
193 		((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
194 }
195 
196 static const uint32_t *
197 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
198 {
199 	static const uint32_t ptypes[] = {
200 		RTE_PTYPE_L2_ETHER,
201 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
202 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
203 		RTE_PTYPE_L4_TCP,
204 		RTE_PTYPE_L4_UDP,
205 		RTE_PTYPE_UNKNOWN
206 	};
207 
208 	return ptypes;
209 }
210 
211 static void
212 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
213 			struct rte_mbuf *m)
214 {
215 	uint8_t *mbuf_data;
216 
217 
218 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
219 		return;
220 
221 	mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
222 
223 	if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
224 		m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
225 						      EFX_RX_HASHALG_TOEPLITZ,
226 						      mbuf_data);
227 
228 		m->ol_flags |= PKT_RX_RSS_HASH;
229 	}
230 }
231 
232 static uint16_t
233 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
234 {
235 	struct sfc_dp_rxq *dp_rxq = rx_queue;
236 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
237 	unsigned int completed;
238 	unsigned int prefix_size = rxq->prefix_size;
239 	unsigned int done_pkts = 0;
240 	boolean_t discard_next = B_FALSE;
241 	struct rte_mbuf *scatter_pkt = NULL;
242 
243 	if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
244 		return 0;
245 
246 	sfc_ev_qpoll(rxq->evq);
247 
248 	completed = rxq->completed;
249 	while (completed != rxq->pending && done_pkts < nb_pkts) {
250 		unsigned int id;
251 		struct sfc_efx_rx_sw_desc *rxd;
252 		struct rte_mbuf *m;
253 		unsigned int seg_len;
254 		unsigned int desc_flags;
255 
256 		id = completed++ & rxq->ptr_mask;
257 		rxd = &rxq->sw_desc[id];
258 		m = rxd->mbuf;
259 		desc_flags = rxd->flags;
260 
261 		if (discard_next)
262 			goto discard;
263 
264 		if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
265 			goto discard;
266 
267 		if (desc_flags & EFX_PKT_PREFIX_LEN) {
268 			uint16_t tmp_size;
269 			int rc __rte_unused;
270 
271 			rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
272 				rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
273 			SFC_ASSERT(rc == 0);
274 			seg_len = tmp_size;
275 		} else {
276 			seg_len = rxd->size - prefix_size;
277 		}
278 
279 		rte_pktmbuf_data_len(m) = seg_len;
280 		rte_pktmbuf_pkt_len(m) = seg_len;
281 
282 		if (scatter_pkt != NULL) {
283 			if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
284 				rte_pktmbuf_free(scatter_pkt);
285 				goto discard;
286 			}
287 			/* The packet to deliver */
288 			m = scatter_pkt;
289 		}
290 
291 		if (desc_flags & EFX_PKT_CONT) {
292 			/* The packet is scattered, more fragments to come */
293 			scatter_pkt = m;
294 			/* Further fragments have no prefix */
295 			prefix_size = 0;
296 			continue;
297 		}
298 
299 		/* Scattered packet is done */
300 		scatter_pkt = NULL;
301 		/* The first fragment of the packet has prefix */
302 		prefix_size = rxq->prefix_size;
303 
304 		m->ol_flags =
305 			sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
306 		m->packet_type =
307 			sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
308 
309 		/*
310 		 * Extract RSS hash from the packet prefix and
311 		 * set the corresponding field (if needed and possible)
312 		 */
313 		sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
314 
315 		m->data_off += prefix_size;
316 
317 		*rx_pkts++ = m;
318 		done_pkts++;
319 		continue;
320 
321 discard:
322 		discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
323 		rte_mbuf_raw_free(m);
324 		rxd->mbuf = NULL;
325 	}
326 
327 	/* pending is only moved when entire packet is received */
328 	SFC_ASSERT(scatter_pkt == NULL);
329 
330 	rxq->completed = completed;
331 
332 	sfc_efx_rx_qrefill(rxq);
333 
334 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
335 		sfc_efx_rx_qprime(rxq);
336 
337 	return done_pkts;
338 }
339 
340 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
341 static unsigned int
342 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
343 {
344 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
345 
346 	if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
347 		return 0;
348 
349 	sfc_ev_qpoll(rxq->evq);
350 
351 	return rxq->pending - rxq->completed;
352 }
353 
354 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
355 static int
356 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
357 {
358 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
359 
360 	if (unlikely(offset > rxq->ptr_mask))
361 		return -EINVAL;
362 
363 	/*
364 	 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
365 	 * it is required for the queue to be running, but the
366 	 * check is omitted because API design assumes that it
367 	 * is the duty of the caller to satisfy all conditions
368 	 */
369 	SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
370 		   SFC_EFX_RXQ_FLAG_RUNNING);
371 	sfc_ev_qpoll(rxq->evq);
372 
373 	/*
374 	 * There is a handful of reserved entries in the ring,
375 	 * but an explicit check whether the offset points to
376 	 * a reserved entry is neglected since the two checks
377 	 * below rely on the figures which take the HW limits
378 	 * into account and thus if an entry is reserved, the
379 	 * checks will fail and UNAVAIL code will be returned
380 	 */
381 
382 	if (offset < (rxq->pending - rxq->completed))
383 		return RTE_ETH_RX_DESC_DONE;
384 
385 	if (offset < (rxq->added - rxq->completed))
386 		return RTE_ETH_RX_DESC_AVAIL;
387 
388 	return RTE_ETH_RX_DESC_UNAVAIL;
389 }
390 
391 boolean_t
392 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
393 		     boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
394 		     const char **error)
395 {
396 	uint32_t effective_rx_scatter_max;
397 	uint32_t rx_scatter_bufs;
398 
399 	effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
400 	rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
401 
402 	if (rx_scatter_bufs > effective_rx_scatter_max) {
403 		if (rx_scatter_enabled)
404 			*error = "Possible number of Rx scatter buffers exceeds maximum number";
405 		else
406 			*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
407 		return B_FALSE;
408 	}
409 
410 	return B_TRUE;
411 }
412 
413 /** Get Rx datapath ops by the datapath RxQ handle */
414 const struct sfc_dp_rx *
415 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
416 {
417 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
418 	struct rte_eth_dev *eth_dev;
419 	struct sfc_adapter_priv *sap;
420 
421 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
422 	eth_dev = &rte_eth_devices[dpq->port_id];
423 
424 	sap = sfc_adapter_priv_by_eth_dev(eth_dev);
425 
426 	return sap->dp_rx;
427 }
428 
429 struct sfc_rxq_info *
430 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
431 {
432 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
433 	struct rte_eth_dev *eth_dev;
434 	struct sfc_adapter_shared *sas;
435 
436 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
437 	eth_dev = &rte_eth_devices[dpq->port_id];
438 
439 	sas = sfc_adapter_shared_by_eth_dev(eth_dev);
440 
441 	SFC_ASSERT(dpq->queue_id < sas->rxq_count);
442 	return &sas->rxq_info[dpq->queue_id];
443 }
444 
445 struct sfc_rxq *
446 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
447 {
448 	const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
449 	struct rte_eth_dev *eth_dev;
450 	struct sfc_adapter *sa;
451 
452 	SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
453 	eth_dev = &rte_eth_devices[dpq->port_id];
454 
455 	sa = sfc_adapter_by_eth_dev(eth_dev);
456 
457 	SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
458 	return &sa->rxq_ctrl[dpq->queue_id];
459 }
460 
461 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
462 static int
463 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
464 			  __rte_unused struct sfc_dp_rx_hw_limits *limits,
465 			  __rte_unused struct rte_mempool *mb_pool,
466 			  unsigned int *rxq_entries,
467 			  unsigned int *evq_entries,
468 			  unsigned int *rxq_max_fill_level)
469 {
470 	*rxq_entries = nb_rx_desc;
471 	*evq_entries = nb_rx_desc;
472 	*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
473 	return 0;
474 }
475 
476 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
477 static int
478 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
479 		   const struct rte_pci_addr *pci_addr, int socket_id,
480 		   const struct sfc_dp_rx_qcreate_info *info,
481 		   struct sfc_dp_rxq **dp_rxqp)
482 {
483 	struct sfc_efx_rxq *rxq;
484 	int rc;
485 
486 	rc = ENOMEM;
487 	rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
488 				 RTE_CACHE_LINE_SIZE, socket_id);
489 	if (rxq == NULL)
490 		goto fail_rxq_alloc;
491 
492 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
493 
494 	rc = ENOMEM;
495 	rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
496 					 info->rxq_entries,
497 					 sizeof(*rxq->sw_desc),
498 					 RTE_CACHE_LINE_SIZE, socket_id);
499 	if (rxq->sw_desc == NULL)
500 		goto fail_desc_alloc;
501 
502 	/* efx datapath is bound to efx control path */
503 	rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
504 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
505 		rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
506 	rxq->ptr_mask = info->rxq_entries - 1;
507 	rxq->batch_max = info->batch_max;
508 	rxq->prefix_size = info->prefix_size;
509 	rxq->max_fill_level = info->max_fill_level;
510 	rxq->refill_threshold = info->refill_threshold;
511 	rxq->buf_size = info->buf_size;
512 	rxq->refill_mb_pool = info->refill_mb_pool;
513 
514 	*dp_rxqp = &rxq->dp;
515 	return 0;
516 
517 fail_desc_alloc:
518 	rte_free(rxq);
519 
520 fail_rxq_alloc:
521 	return rc;
522 }
523 
524 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
525 static void
526 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
527 {
528 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
529 
530 	rte_free(rxq->sw_desc);
531 	rte_free(rxq);
532 }
533 
534 
535 /* Use qstop and qstart functions in the case of qstart failure */
536 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
537 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
538 
539 
540 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
541 static int
542 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
543 		  __rte_unused unsigned int evq_read_ptr,
544 		  const efx_rx_prefix_layout_t *pinfo)
545 {
546 	/* libefx-based datapath is specific to libefx-based PMD */
547 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
548 	struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
549 	int rc;
550 
551 	/*
552 	 * libefx API is used to extract information from Rx prefix and
553 	 * it guarantees consistency. Just do length check to ensure
554 	 * that we reserved space in Rx buffers correctly.
555 	 */
556 	if (rxq->prefix_size != pinfo->erpl_length)
557 		return ENOTSUP;
558 
559 	rxq->common = crxq->common;
560 
561 	rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
562 
563 	sfc_efx_rx_qrefill(rxq);
564 
565 	rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
566 
567 	if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
568 		rc = sfc_efx_rx_qprime(rxq);
569 		if (rc != 0)
570 			goto fail_rx_qprime;
571 	}
572 
573 	return 0;
574 
575 fail_rx_qprime:
576 	sfc_efx_rx_qstop(dp_rxq, NULL);
577 	sfc_efx_rx_qpurge(dp_rxq);
578 	return rc;
579 }
580 
581 static void
582 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
583 		 __rte_unused unsigned int *evq_read_ptr)
584 {
585 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
586 
587 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
588 
589 	/* libefx-based datapath is bound to libefx-based PMD and uses
590 	 * event queue structure directly. So, there is no necessity to
591 	 * return EvQ read pointer.
592 	 */
593 }
594 
595 static void
596 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
597 {
598 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
599 	unsigned int i;
600 	struct sfc_efx_rx_sw_desc *rxd;
601 
602 	for (i = rxq->completed; i != rxq->added; ++i) {
603 		rxd = &rxq->sw_desc[i & rxq->ptr_mask];
604 		rte_mbuf_raw_free(rxd->mbuf);
605 		rxd->mbuf = NULL;
606 		/* Packed stream relies on 0 in inactive SW desc.
607 		 * Rx queue stop is not performance critical, so
608 		 * there is no harm to do it always.
609 		 */
610 		rxd->flags = 0;
611 		rxd->size = 0;
612 	}
613 
614 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
615 }
616 
617 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
618 static int
619 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
620 {
621 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
622 	int rc = 0;
623 
624 	rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
625 	if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
626 		rc = sfc_efx_rx_qprime(rxq);
627 		if (rc != 0)
628 			rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
629 	}
630 	return rc;
631 }
632 
633 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
634 static int
635 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
636 {
637 	struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
638 
639 	/* Cannot disarm, just disable rearm */
640 	rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
641 	return 0;
642 }
643 
644 struct sfc_dp_rx sfc_efx_rx = {
645 	.dp = {
646 		.name		= SFC_KVARG_DATAPATH_EFX,
647 		.type		= SFC_DP_RX,
648 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_RX_EFX,
649 	},
650 	.features		= SFC_DP_RX_FEAT_INTR,
651 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
652 				  DEV_RX_OFFLOAD_RSS_HASH,
653 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
654 	.qsize_up_rings		= sfc_efx_rx_qsize_up_rings,
655 	.qcreate		= sfc_efx_rx_qcreate,
656 	.qdestroy		= sfc_efx_rx_qdestroy,
657 	.qstart			= sfc_efx_rx_qstart,
658 	.qstop			= sfc_efx_rx_qstop,
659 	.qpurge			= sfc_efx_rx_qpurge,
660 	.supported_ptypes_get	= sfc_efx_supported_ptypes_get,
661 	.qdesc_npending		= sfc_efx_rx_qdesc_npending,
662 	.qdesc_status		= sfc_efx_rx_qdesc_status,
663 	.intr_enable		= sfc_efx_rx_intr_enable,
664 	.intr_disable		= sfc_efx_rx_intr_disable,
665 	.pkt_burst		= sfc_efx_recv_pkts,
666 };
667 
668 static void
669 sfc_rx_qflush(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
670 {
671 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
672 	sfc_ethdev_qid_t ethdev_qid;
673 	struct sfc_rxq_info *rxq_info;
674 	struct sfc_rxq *rxq;
675 	unsigned int retry_count;
676 	unsigned int wait_count;
677 	int rc;
678 
679 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
680 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
681 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
682 
683 	rxq = &sa->rxq_ctrl[sw_index];
684 
685 	/*
686 	 * Retry Rx queue flushing in the case of flush failed or
687 	 * timeout. In the worst case it can delay for 6 seconds.
688 	 */
689 	for (retry_count = 0;
690 	     ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
691 	     (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
692 	     ++retry_count) {
693 		rc = efx_rx_qflush(rxq->common);
694 		if (rc != 0) {
695 			rxq_info->state |= (rc == EALREADY) ?
696 				SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
697 			break;
698 		}
699 		rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
700 		rxq_info->state |= SFC_RXQ_FLUSHING;
701 
702 		/*
703 		 * Wait for Rx queue flush done or failed event at least
704 		 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
705 		 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
706 		 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
707 		 */
708 		wait_count = 0;
709 		do {
710 			rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
711 			sfc_ev_qpoll(rxq->evq);
712 		} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
713 			 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
714 
715 		if (rxq_info->state & SFC_RXQ_FLUSHING)
716 			sfc_err(sa, "RxQ %d (internal %u) flush timed out",
717 				ethdev_qid, sw_index);
718 
719 		if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
720 			sfc_err(sa, "RxQ %d (internal %u) flush failed",
721 				ethdev_qid, sw_index);
722 
723 		if (rxq_info->state & SFC_RXQ_FLUSHED)
724 			sfc_notice(sa, "RxQ %d (internal %u) flushed",
725 				   ethdev_qid, sw_index);
726 	}
727 
728 	sa->priv.dp_rx->qpurge(rxq_info->dp);
729 }
730 
731 static int
732 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
733 {
734 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
735 	boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
736 	struct sfc_port *port = &sa->port;
737 	int rc;
738 
739 	/*
740 	 * If promiscuous or all-multicast mode has been requested, setting
741 	 * filter for the default Rx queue might fail, in particular, while
742 	 * running over PCI function which is not a member of corresponding
743 	 * privilege groups; if this occurs, few iterations will be made to
744 	 * repeat this step without promiscuous and all-multicast flags set
745 	 */
746 retry:
747 	rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
748 	if (rc == 0)
749 		return 0;
750 	else if (rc != EOPNOTSUPP)
751 		return rc;
752 
753 	if (port->promisc) {
754 		sfc_warn(sa, "promiscuous mode has been requested, "
755 			     "but the HW rejects it");
756 		sfc_warn(sa, "promiscuous mode will be disabled");
757 
758 		port->promisc = B_FALSE;
759 		sa->eth_dev->data->promiscuous = 0;
760 		rc = sfc_set_rx_mode_unchecked(sa);
761 		if (rc != 0)
762 			return rc;
763 
764 		goto retry;
765 	}
766 
767 	if (port->allmulti) {
768 		sfc_warn(sa, "all-multicast mode has been requested, "
769 			     "but the HW rejects it");
770 		sfc_warn(sa, "all-multicast mode will be disabled");
771 
772 		port->allmulti = B_FALSE;
773 		sa->eth_dev->data->all_multicast = 0;
774 		rc = sfc_set_rx_mode_unchecked(sa);
775 		if (rc != 0)
776 			return rc;
777 
778 		goto retry;
779 	}
780 
781 	return rc;
782 }
783 
784 int
785 sfc_rx_qstart(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
786 {
787 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
788 	sfc_ethdev_qid_t ethdev_qid;
789 	struct sfc_rxq_info *rxq_info;
790 	struct sfc_rxq *rxq;
791 	struct sfc_evq *evq;
792 	efx_rx_prefix_layout_t pinfo;
793 	int rc;
794 
795 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
796 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
797 
798 	sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
799 
800 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
801 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
802 
803 	rxq = &sa->rxq_ctrl[sw_index];
804 	evq = rxq->evq;
805 
806 	rc = sfc_ev_qstart(evq, sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index));
807 	if (rc != 0)
808 		goto fail_ev_qstart;
809 
810 	switch (rxq_info->type) {
811 	case EFX_RXQ_TYPE_DEFAULT:
812 		rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
813 			rxq->buf_size,
814 			&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
815 			rxq_info->type_flags, evq->common, &rxq->common);
816 		break;
817 	case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
818 		struct rte_mempool *mp = rxq_info->refill_mb_pool;
819 		struct rte_mempool_info mp_info;
820 
821 		rc = rte_mempool_ops_get_info(mp, &mp_info);
822 		if (rc != 0) {
823 			/* Positive errno is used in the driver */
824 			rc = -rc;
825 			goto fail_mp_get_info;
826 		}
827 		if (mp_info.contig_block_size <= 0) {
828 			rc = EINVAL;
829 			goto fail_bad_contig_block_size;
830 		}
831 		rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
832 			mp_info.contig_block_size, rxq->buf_size,
833 			mp->header_size + mp->elt_size + mp->trailer_size,
834 			sa->rxd_wait_timeout_ns,
835 			&rxq->mem, rxq_info->entries, rxq_info->type_flags,
836 			evq->common, &rxq->common);
837 		break;
838 	}
839 	default:
840 		rc = ENOTSUP;
841 	}
842 	if (rc != 0)
843 		goto fail_rx_qcreate;
844 
845 	rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
846 	if (rc != 0)
847 		goto fail_prefix_get_layout;
848 
849 	efx_rx_qenable(rxq->common);
850 
851 	rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
852 	if (rc != 0)
853 		goto fail_dp_qstart;
854 
855 	rxq_info->state |= SFC_RXQ_STARTED;
856 
857 	if (ethdev_qid == 0 && !sfc_sa2shared(sa)->isolated) {
858 		rc = sfc_rx_default_rxq_set_filter(sa, rxq);
859 		if (rc != 0)
860 			goto fail_mac_filter_default_rxq_set;
861 	}
862 
863 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
864 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
865 		sa->eth_dev->data->rx_queue_state[ethdev_qid] =
866 			RTE_ETH_QUEUE_STATE_STARTED;
867 
868 	return 0;
869 
870 fail_mac_filter_default_rxq_set:
871 	sfc_rx_qflush(sa, sw_index);
872 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
873 	rxq_info->state = SFC_RXQ_INITIALIZED;
874 
875 fail_dp_qstart:
876 	efx_rx_qdestroy(rxq->common);
877 
878 fail_prefix_get_layout:
879 fail_rx_qcreate:
880 fail_bad_contig_block_size:
881 fail_mp_get_info:
882 	sfc_ev_qstop(evq);
883 
884 fail_ev_qstart:
885 	return rc;
886 }
887 
888 void
889 sfc_rx_qstop(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
890 {
891 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
892 	sfc_ethdev_qid_t ethdev_qid;
893 	struct sfc_rxq_info *rxq_info;
894 	struct sfc_rxq *rxq;
895 
896 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
897 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
898 
899 	sfc_log_init(sa, "RxQ %d (internal %u)", ethdev_qid, sw_index);
900 
901 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
902 
903 	if (rxq_info->state == SFC_RXQ_INITIALIZED)
904 		return;
905 	SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
906 
907 	/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
908 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
909 		sa->eth_dev->data->rx_queue_state[ethdev_qid] =
910 			RTE_ETH_QUEUE_STATE_STOPPED;
911 
912 	rxq = &sa->rxq_ctrl[sw_index];
913 	sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
914 
915 	if (ethdev_qid == 0)
916 		efx_mac_filter_default_rxq_clear(sa->nic);
917 
918 	sfc_rx_qflush(sa, sw_index);
919 
920 	rxq_info->state = SFC_RXQ_INITIALIZED;
921 
922 	efx_rx_qdestroy(rxq->common);
923 
924 	sfc_ev_qstop(rxq->evq);
925 }
926 
927 static uint64_t
928 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
929 {
930 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
931 	uint64_t no_caps = 0;
932 
933 	if (encp->enc_tunnel_encapsulations_supported == 0)
934 		no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
935 
936 	return ~no_caps;
937 }
938 
939 uint64_t
940 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
941 {
942 	uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
943 
944 	caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
945 
946 	return caps & sfc_rx_get_offload_mask(sa);
947 }
948 
949 uint64_t
950 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
951 {
952 	return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
953 }
954 
955 static int
956 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
957 		   const struct rte_eth_rxconf *rx_conf,
958 		   __rte_unused uint64_t offloads)
959 {
960 	int rc = 0;
961 
962 	if (rx_conf->rx_thresh.pthresh != 0 ||
963 	    rx_conf->rx_thresh.hthresh != 0 ||
964 	    rx_conf->rx_thresh.wthresh != 0) {
965 		sfc_warn(sa,
966 			"RxQ prefetch/host/writeback thresholds are not supported");
967 	}
968 
969 	if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
970 		sfc_err(sa,
971 			"RxQ free threshold too large: %u vs maximum %u",
972 			rx_conf->rx_free_thresh, rxq_max_fill_level);
973 		rc = EINVAL;
974 	}
975 
976 	if (rx_conf->rx_drop_en == 0) {
977 		sfc_err(sa, "RxQ drop disable is not supported");
978 		rc = EINVAL;
979 	}
980 
981 	return rc;
982 }
983 
984 static unsigned int
985 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
986 {
987 	uint32_t data_off;
988 	uint32_t order;
989 
990 	/* The mbuf object itself is always cache line aligned */
991 	order = rte_bsf32(RTE_CACHE_LINE_SIZE);
992 
993 	/* Data offset from mbuf object start */
994 	data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
995 		RTE_PKTMBUF_HEADROOM;
996 
997 	order = MIN(order, rte_bsf32(data_off));
998 
999 	return 1u << order;
1000 }
1001 
1002 static uint16_t
1003 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
1004 {
1005 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1006 	const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
1007 	const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
1008 	uint16_t buf_size;
1009 	unsigned int buf_aligned;
1010 	unsigned int start_alignment;
1011 	unsigned int end_padding_alignment;
1012 
1013 	/* Below it is assumed that both alignments are power of 2 */
1014 	SFC_ASSERT(rte_is_power_of_2(nic_align_start));
1015 	SFC_ASSERT(rte_is_power_of_2(nic_align_end));
1016 
1017 	/*
1018 	 * mbuf is always cache line aligned, double-check
1019 	 * that it meets rx buffer start alignment requirements.
1020 	 */
1021 
1022 	/* Start from mbuf pool data room size */
1023 	buf_size = rte_pktmbuf_data_room_size(mb_pool);
1024 
1025 	/* Remove headroom */
1026 	if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1027 		sfc_err(sa,
1028 			"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1029 			mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1030 		return 0;
1031 	}
1032 	buf_size -= RTE_PKTMBUF_HEADROOM;
1033 
1034 	/* Calculate guaranteed data start alignment */
1035 	buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1036 
1037 	/* Reserve space for start alignment */
1038 	if (buf_aligned < nic_align_start) {
1039 		start_alignment = nic_align_start - buf_aligned;
1040 		if (buf_size <= start_alignment) {
1041 			sfc_err(sa,
1042 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1043 				mb_pool->name,
1044 				rte_pktmbuf_data_room_size(mb_pool),
1045 				RTE_PKTMBUF_HEADROOM, start_alignment);
1046 			return 0;
1047 		}
1048 		buf_aligned = nic_align_start;
1049 		buf_size -= start_alignment;
1050 	} else {
1051 		start_alignment = 0;
1052 	}
1053 
1054 	/* Make sure that end padding does not write beyond the buffer */
1055 	if (buf_aligned < nic_align_end) {
1056 		/*
1057 		 * Estimate space which can be lost. If guarnteed buffer
1058 		 * size is odd, lost space is (nic_align_end - 1). More
1059 		 * accurate formula is below.
1060 		 */
1061 		end_padding_alignment = nic_align_end -
1062 			MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1063 		if (buf_size <= end_padding_alignment) {
1064 			sfc_err(sa,
1065 				"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1066 				mb_pool->name,
1067 				rte_pktmbuf_data_room_size(mb_pool),
1068 				RTE_PKTMBUF_HEADROOM, start_alignment,
1069 				end_padding_alignment);
1070 			return 0;
1071 		}
1072 		buf_size -= end_padding_alignment;
1073 	} else {
1074 		/*
1075 		 * Start is aligned the same or better than end,
1076 		 * just align length.
1077 		 */
1078 		buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1079 	}
1080 
1081 	return buf_size;
1082 }
1083 
1084 int
1085 sfc_rx_qinit(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1086 	     uint16_t nb_rx_desc, unsigned int socket_id,
1087 	     const struct rte_eth_rxconf *rx_conf,
1088 	     struct rte_mempool *mb_pool)
1089 {
1090 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1091 	sfc_ethdev_qid_t ethdev_qid;
1092 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1093 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1094 	int rc;
1095 	unsigned int rxq_entries;
1096 	unsigned int evq_entries;
1097 	unsigned int rxq_max_fill_level;
1098 	uint64_t offloads;
1099 	uint16_t buf_size;
1100 	struct sfc_rxq_info *rxq_info;
1101 	struct sfc_evq *evq;
1102 	struct sfc_rxq *rxq;
1103 	struct sfc_dp_rx_qcreate_info info;
1104 	struct sfc_dp_rx_hw_limits hw_limits;
1105 	uint16_t rx_free_thresh;
1106 	const char *error;
1107 
1108 	memset(&hw_limits, 0, sizeof(hw_limits));
1109 	hw_limits.rxq_max_entries = sa->rxq_max_entries;
1110 	hw_limits.rxq_min_entries = sa->rxq_min_entries;
1111 	hw_limits.evq_max_entries = sa->evq_max_entries;
1112 	hw_limits.evq_min_entries = sa->evq_min_entries;
1113 
1114 	rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1115 					    &rxq_entries, &evq_entries,
1116 					    &rxq_max_fill_level);
1117 	if (rc != 0)
1118 		goto fail_size_up_rings;
1119 	SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1120 	SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1121 	SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1122 
1123 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1124 
1125 	offloads = rx_conf->offloads;
1126 	/* Add device level Rx offloads if the queue is an ethdev Rx queue */
1127 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1128 		offloads |= sa->eth_dev->data->dev_conf.rxmode.offloads;
1129 
1130 	rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1131 	if (rc != 0)
1132 		goto fail_bad_conf;
1133 
1134 	buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1135 	if (buf_size == 0) {
1136 		sfc_err(sa,
1137 			"RxQ %d (internal %u) mbuf pool object size is too small",
1138 			ethdev_qid, sw_index);
1139 		rc = EINVAL;
1140 		goto fail_bad_conf;
1141 	}
1142 
1143 	if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1144 				  encp->enc_rx_prefix_size,
1145 				  (offloads & DEV_RX_OFFLOAD_SCATTER),
1146 				  encp->enc_rx_scatter_max,
1147 				  &error)) {
1148 		sfc_err(sa, "RxQ %d (internal %u) MTU check failed: %s",
1149 			ethdev_qid, sw_index, error);
1150 		sfc_err(sa,
1151 			"RxQ %d (internal %u) calculated Rx buffer size is %u vs "
1152 			"PDU size %u plus Rx prefix %u bytes",
1153 			ethdev_qid, sw_index, buf_size,
1154 			(unsigned int)sa->port.pdu, encp->enc_rx_prefix_size);
1155 		rc = EINVAL;
1156 		goto fail_bad_conf;
1157 	}
1158 
1159 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1160 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1161 
1162 	SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1163 	rxq_info->entries = rxq_entries;
1164 
1165 	if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1166 		rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1167 	else
1168 		rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1169 
1170 	rxq_info->type_flags |=
1171 		(offloads & DEV_RX_OFFLOAD_SCATTER) ?
1172 		EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1173 
1174 	if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1175 	    (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1176 	     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1177 		rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1178 
1179 	if (offloads & DEV_RX_OFFLOAD_RSS_HASH)
1180 		rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1181 
1182 	if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG) != 0)
1183 		rxq_info->type_flags |= EFX_RXQ_FLAG_USER_FLAG;
1184 
1185 	if ((sa->negotiated_rx_metadata & RTE_ETH_RX_METADATA_USER_MARK) != 0 ||
1186 	    sfc_flow_tunnel_is_active(sa))
1187 		rxq_info->type_flags |= EFX_RXQ_FLAG_USER_MARK;
1188 
1189 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1190 			  evq_entries, socket_id, &evq);
1191 	if (rc != 0)
1192 		goto fail_ev_qinit;
1193 
1194 	rxq = &sa->rxq_ctrl[sw_index];
1195 	rxq->evq = evq;
1196 	rxq->hw_index = sw_index;
1197 	/*
1198 	 * If Rx refill threshold is specified (its value is non zero) in
1199 	 * Rx configuration, use specified value. Otherwise use 1/8 of
1200 	 * the Rx descriptors number as the default. It allows to keep
1201 	 * Rx ring full-enough and does not refill too aggressive if
1202 	 * packet rate is high.
1203 	 *
1204 	 * Since PMD refills in bulks waiting for full bulk may be
1205 	 * refilled (basically round down), it is better to round up
1206 	 * here to mitigate it a bit.
1207 	 */
1208 	rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1209 		rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1210 	/* Rx refill threshold cannot be smaller than refill bulk */
1211 	rxq_info->refill_threshold =
1212 		RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1213 	rxq_info->refill_mb_pool = mb_pool;
1214 
1215 	if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1216 	    (offloads & DEV_RX_OFFLOAD_RSS_HASH))
1217 		rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1218 	else
1219 		rxq_info->rxq_flags = 0;
1220 
1221 	rxq->buf_size = buf_size;
1222 
1223 	rc = sfc_dma_alloc(sa, "rxq", sw_index,
1224 			   efx_rxq_size(sa->nic, rxq_info->entries),
1225 			   socket_id, &rxq->mem);
1226 	if (rc != 0)
1227 		goto fail_dma_alloc;
1228 
1229 	memset(&info, 0, sizeof(info));
1230 	info.refill_mb_pool = rxq_info->refill_mb_pool;
1231 	info.max_fill_level = rxq_max_fill_level;
1232 	info.refill_threshold = rxq_info->refill_threshold;
1233 	info.buf_size = buf_size;
1234 	info.batch_max = encp->enc_rx_batch_max;
1235 	info.prefix_size = encp->enc_rx_prefix_size;
1236 
1237 	if (sfc_flow_tunnel_is_active(sa))
1238 		info.user_mark_mask = SFC_FT_USER_MARK_MASK;
1239 	else
1240 		info.user_mark_mask = UINT32_MAX;
1241 
1242 	info.flags = rxq_info->rxq_flags;
1243 	info.rxq_entries = rxq_info->entries;
1244 	info.rxq_hw_ring = rxq->mem.esm_base;
1245 	info.evq_hw_index = sfc_evq_sw_index_by_rxq_sw_index(sa, sw_index);
1246 	info.evq_entries = evq_entries;
1247 	info.evq_hw_ring = evq->mem.esm_base;
1248 	info.hw_index = rxq->hw_index;
1249 	info.mem_bar = sa->mem_bar.esb_base;
1250 	info.vi_window_shift = encp->enc_vi_window_shift;
1251 	info.fcw_offset = sa->fcw_offset;
1252 
1253 	rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1254 				     &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1255 				     socket_id, &info, &rxq_info->dp);
1256 	if (rc != 0)
1257 		goto fail_dp_rx_qcreate;
1258 
1259 	evq->dp_rxq = rxq_info->dp;
1260 
1261 	rxq_info->state = SFC_RXQ_INITIALIZED;
1262 
1263 	rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1264 
1265 	return 0;
1266 
1267 fail_dp_rx_qcreate:
1268 	sfc_dma_free(sa, &rxq->mem);
1269 
1270 fail_dma_alloc:
1271 	sfc_ev_qfini(evq);
1272 
1273 fail_ev_qinit:
1274 	rxq_info->entries = 0;
1275 
1276 fail_bad_conf:
1277 fail_size_up_rings:
1278 	sfc_log_init(sa, "failed %d", rc);
1279 	return rc;
1280 }
1281 
1282 void
1283 sfc_rx_qfini(struct sfc_adapter *sa, sfc_sw_index_t sw_index)
1284 {
1285 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1286 	sfc_ethdev_qid_t ethdev_qid;
1287 	struct sfc_rxq_info *rxq_info;
1288 	struct sfc_rxq *rxq;
1289 
1290 	SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1291 	ethdev_qid = sfc_ethdev_rx_qid_by_rxq_sw_index(sas, sw_index);
1292 
1293 	if (ethdev_qid != SFC_ETHDEV_QID_INVALID)
1294 		sa->eth_dev->data->rx_queues[ethdev_qid] = NULL;
1295 
1296 	rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1297 
1298 	SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1299 
1300 	sa->priv.dp_rx->qdestroy(rxq_info->dp);
1301 	rxq_info->dp = NULL;
1302 
1303 	rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1304 	rxq_info->entries = 0;
1305 
1306 	rxq = &sa->rxq_ctrl[sw_index];
1307 
1308 	sfc_dma_free(sa, &rxq->mem);
1309 
1310 	sfc_ev_qfini(rxq->evq);
1311 	rxq->evq = NULL;
1312 }
1313 
1314 /*
1315  * Mapping between RTE RSS hash functions and their EFX counterparts.
1316  */
1317 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1318 	{ ETH_RSS_NONFRAG_IPV4_TCP,
1319 	  EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1320 	{ ETH_RSS_NONFRAG_IPV4_UDP,
1321 	  EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1322 	{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1323 	  EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1324 	{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1325 	  EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1326 	{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1327 	  EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1328 	  EFX_RX_HASH(IPV4, 2TUPLE) },
1329 	{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1330 	  ETH_RSS_IPV6_EX,
1331 	  EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1332 	  EFX_RX_HASH(IPV6, 2TUPLE) }
1333 };
1334 
1335 static efx_rx_hash_type_t
1336 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1337 			    unsigned int *hash_type_flags_supported,
1338 			    unsigned int nb_hash_type_flags_supported)
1339 {
1340 	efx_rx_hash_type_t hash_type_masked = 0;
1341 	unsigned int i, j;
1342 
1343 	for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1344 		unsigned int class_tuple_lbn[] = {
1345 			EFX_RX_CLASS_IPV4_TCP_LBN,
1346 			EFX_RX_CLASS_IPV4_UDP_LBN,
1347 			EFX_RX_CLASS_IPV4_LBN,
1348 			EFX_RX_CLASS_IPV6_TCP_LBN,
1349 			EFX_RX_CLASS_IPV6_UDP_LBN,
1350 			EFX_RX_CLASS_IPV6_LBN
1351 		};
1352 
1353 		for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1354 			unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1355 			unsigned int flag;
1356 
1357 			tuple_mask <<= class_tuple_lbn[j];
1358 			flag = hash_type & tuple_mask;
1359 
1360 			if (flag == hash_type_flags_supported[i])
1361 				hash_type_masked |= flag;
1362 		}
1363 	}
1364 
1365 	return hash_type_masked;
1366 }
1367 
1368 int
1369 sfc_rx_hash_init(struct sfc_adapter *sa)
1370 {
1371 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1372 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1373 	uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1374 	efx_rx_hash_alg_t alg;
1375 	unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1376 	unsigned int nb_flags_supp;
1377 	struct sfc_rss_hf_rte_to_efx *hf_map;
1378 	struct sfc_rss_hf_rte_to_efx *entry;
1379 	efx_rx_hash_type_t efx_hash_types;
1380 	unsigned int i;
1381 	int rc;
1382 
1383 	if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1384 		alg = EFX_RX_HASHALG_TOEPLITZ;
1385 	else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1386 		alg = EFX_RX_HASHALG_PACKED_STREAM;
1387 	else
1388 		return EINVAL;
1389 
1390 	rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1391 					 RTE_DIM(flags_supp), &nb_flags_supp);
1392 	if (rc != 0)
1393 		return rc;
1394 
1395 	hf_map = rte_calloc_socket("sfc-rss-hf-map",
1396 				   RTE_DIM(sfc_rss_hf_map),
1397 				   sizeof(*hf_map), 0, sa->socket_id);
1398 	if (hf_map == NULL)
1399 		return ENOMEM;
1400 
1401 	entry = hf_map;
1402 	efx_hash_types = 0;
1403 	for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1404 		efx_rx_hash_type_t ht;
1405 
1406 		ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1407 						 flags_supp, nb_flags_supp);
1408 		if (ht != 0) {
1409 			entry->rte = sfc_rss_hf_map[i].rte;
1410 			entry->efx = ht;
1411 			efx_hash_types |= ht;
1412 			++entry;
1413 		}
1414 	}
1415 
1416 	rss->hash_alg = alg;
1417 	rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1418 	rss->hf_map = hf_map;
1419 	rss->hash_types = efx_hash_types;
1420 
1421 	return 0;
1422 }
1423 
1424 void
1425 sfc_rx_hash_fini(struct sfc_adapter *sa)
1426 {
1427 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1428 
1429 	rte_free(rss->hf_map);
1430 }
1431 
1432 int
1433 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1434 		     efx_rx_hash_type_t *efx)
1435 {
1436 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1437 	efx_rx_hash_type_t hash_types = 0;
1438 	unsigned int i;
1439 
1440 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1441 		uint64_t rte_mask = rss->hf_map[i].rte;
1442 
1443 		if ((rte & rte_mask) != 0) {
1444 			rte &= ~rte_mask;
1445 			hash_types |= rss->hf_map[i].efx;
1446 		}
1447 	}
1448 
1449 	if (rte != 0) {
1450 		sfc_err(sa, "unsupported hash functions requested");
1451 		return EINVAL;
1452 	}
1453 
1454 	*efx = hash_types;
1455 
1456 	return 0;
1457 }
1458 
1459 uint64_t
1460 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1461 {
1462 	uint64_t rte = 0;
1463 	unsigned int i;
1464 
1465 	for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1466 		efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1467 
1468 		if ((efx & hash_type) == hash_type)
1469 			rte |= rss->hf_map[i].rte;
1470 	}
1471 
1472 	return rte;
1473 }
1474 
1475 static int
1476 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1477 			    struct rte_eth_rss_conf *conf)
1478 {
1479 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1480 	efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1481 	uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1482 	int rc;
1483 
1484 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1485 		if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1486 		    conf->rss_key != NULL)
1487 			return EINVAL;
1488 	}
1489 
1490 	if (conf->rss_hf != 0) {
1491 		rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1492 		if (rc != 0)
1493 			return rc;
1494 	}
1495 
1496 	if (conf->rss_key != NULL) {
1497 		if (conf->rss_key_len != sizeof(rss->key)) {
1498 			sfc_err(sa, "RSS key size is wrong (should be %zu)",
1499 				sizeof(rss->key));
1500 			return EINVAL;
1501 		}
1502 		rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1503 	}
1504 
1505 	rss->hash_types = efx_hash_types;
1506 
1507 	return 0;
1508 }
1509 
1510 static int
1511 sfc_rx_rss_config(struct sfc_adapter *sa)
1512 {
1513 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1514 	int rc = 0;
1515 
1516 	if (rss->channels > 0) {
1517 		rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1518 					   rss->hash_alg, rss->hash_types,
1519 					   B_TRUE);
1520 		if (rc != 0)
1521 			goto finish;
1522 
1523 		rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1524 					  rss->key, sizeof(rss->key));
1525 		if (rc != 0)
1526 			goto finish;
1527 
1528 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1529 					  rss->tbl, RTE_DIM(rss->tbl));
1530 	}
1531 
1532 finish:
1533 	return rc;
1534 }
1535 
1536 struct sfc_rxq_info *
1537 sfc_rxq_info_by_ethdev_qid(struct sfc_adapter_shared *sas,
1538 			   sfc_ethdev_qid_t ethdev_qid)
1539 {
1540 	sfc_sw_index_t sw_index;
1541 
1542 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1543 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1544 
1545 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1546 	return &sas->rxq_info[sw_index];
1547 }
1548 
1549 struct sfc_rxq *
1550 sfc_rxq_ctrl_by_ethdev_qid(struct sfc_adapter *sa, sfc_ethdev_qid_t ethdev_qid)
1551 {
1552 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
1553 	sfc_sw_index_t sw_index;
1554 
1555 	SFC_ASSERT((unsigned int)ethdev_qid < sas->ethdev_rxq_count);
1556 	SFC_ASSERT(ethdev_qid != SFC_ETHDEV_QID_INVALID);
1557 
1558 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, ethdev_qid);
1559 	return &sa->rxq_ctrl[sw_index];
1560 }
1561 
1562 int
1563 sfc_rx_start(struct sfc_adapter *sa)
1564 {
1565 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1566 	sfc_sw_index_t sw_index;
1567 	int rc;
1568 
1569 	sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1570 		     sas->rxq_count);
1571 
1572 	rc = efx_rx_init(sa->nic);
1573 	if (rc != 0)
1574 		goto fail_rx_init;
1575 
1576 	rc = sfc_rx_rss_config(sa);
1577 	if (rc != 0)
1578 		goto fail_rss_config;
1579 
1580 	for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1581 		if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1582 		    (!sas->rxq_info[sw_index].deferred_start ||
1583 		     sas->rxq_info[sw_index].deferred_started)) {
1584 			rc = sfc_rx_qstart(sa, sw_index);
1585 			if (rc != 0)
1586 				goto fail_rx_qstart;
1587 		}
1588 	}
1589 
1590 	return 0;
1591 
1592 fail_rx_qstart:
1593 	while (sw_index-- > 0)
1594 		sfc_rx_qstop(sa, sw_index);
1595 
1596 fail_rss_config:
1597 	efx_rx_fini(sa->nic);
1598 
1599 fail_rx_init:
1600 	sfc_log_init(sa, "failed %d", rc);
1601 	return rc;
1602 }
1603 
1604 void
1605 sfc_rx_stop(struct sfc_adapter *sa)
1606 {
1607 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1608 	sfc_sw_index_t sw_index;
1609 
1610 	sfc_log_init(sa, "rxq_count=%u (internal %u)", sas->ethdev_rxq_count,
1611 		     sas->rxq_count);
1612 
1613 	sw_index = sas->rxq_count;
1614 	while (sw_index-- > 0) {
1615 		if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1616 			sfc_rx_qstop(sa, sw_index);
1617 	}
1618 
1619 	efx_rx_fini(sa->nic);
1620 }
1621 
1622 int
1623 sfc_rx_qinit_info(struct sfc_adapter *sa, sfc_sw_index_t sw_index,
1624 		  unsigned int extra_efx_type_flags)
1625 {
1626 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1627 	struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1628 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1629 	unsigned int max_entries;
1630 
1631 	max_entries = encp->enc_rxq_max_ndescs;
1632 	SFC_ASSERT(rte_is_power_of_2(max_entries));
1633 
1634 	rxq_info->max_entries = max_entries;
1635 	rxq_info->type_flags = extra_efx_type_flags;
1636 
1637 	return 0;
1638 }
1639 
1640 static int
1641 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1642 {
1643 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1644 	uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1645 				      sfc_rx_get_queue_offload_caps(sa);
1646 	struct sfc_rss *rss = &sas->rss;
1647 	int rc = 0;
1648 
1649 	switch (rxmode->mq_mode) {
1650 	case ETH_MQ_RX_NONE:
1651 		/* No special checks are required */
1652 		break;
1653 	case ETH_MQ_RX_RSS:
1654 		if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1655 			sfc_err(sa, "RSS is not available");
1656 			rc = EINVAL;
1657 		}
1658 		break;
1659 	default:
1660 		sfc_err(sa, "Rx multi-queue mode %u not supported",
1661 			rxmode->mq_mode);
1662 		rc = EINVAL;
1663 	}
1664 
1665 	/*
1666 	 * Requested offloads are validated against supported by ethdev,
1667 	 * so unsupported offloads cannot be added as the result of
1668 	 * below check.
1669 	 */
1670 	if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1671 	    (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1672 		sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1673 		rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1674 	}
1675 
1676 	if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1677 	    (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1678 		sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1679 		rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1680 	}
1681 
1682 	return rc;
1683 }
1684 
1685 /**
1686  * Destroy excess queues that are no longer needed after reconfiguration
1687  * or complete close.
1688  */
1689 static void
1690 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1691 {
1692 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1693 	sfc_sw_index_t sw_index;
1694 	sfc_ethdev_qid_t ethdev_qid;
1695 
1696 	SFC_ASSERT(nb_rx_queues <= sas->ethdev_rxq_count);
1697 
1698 	/*
1699 	 * Finalize only ethdev queues since other ones are finalized only
1700 	 * on device close and they may require additional deinitializaton.
1701 	 */
1702 	ethdev_qid = sas->ethdev_rxq_count;
1703 	while (--ethdev_qid >= (int)nb_rx_queues) {
1704 		struct sfc_rxq_info *rxq_info;
1705 
1706 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, ethdev_qid);
1707 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
1708 			sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1709 								ethdev_qid);
1710 			sfc_rx_qfini(sa, sw_index);
1711 		}
1712 
1713 	}
1714 
1715 	sas->ethdev_rxq_count = nb_rx_queues;
1716 }
1717 
1718 /**
1719  * Initialize Rx subsystem.
1720  *
1721  * Called at device (re)configuration stage when number of receive queues is
1722  * specified together with other device level receive configuration.
1723  *
1724  * It should be used to allocate NUMA-unaware resources.
1725  */
1726 int
1727 sfc_rx_configure(struct sfc_adapter *sa)
1728 {
1729 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1730 	struct sfc_rss *rss = &sas->rss;
1731 	struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1732 	const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1733 	const unsigned int nb_rsrv_rx_queues = sfc_nb_reserved_rxq(sas);
1734 	const unsigned int nb_rxq_total = nb_rx_queues + nb_rsrv_rx_queues;
1735 	bool reconfigure;
1736 	int rc;
1737 
1738 	sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1739 		     nb_rx_queues, sas->ethdev_rxq_count);
1740 
1741 	rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1742 	if (rc != 0)
1743 		goto fail_check_mode;
1744 
1745 	if (nb_rxq_total == sas->rxq_count) {
1746 		reconfigure = true;
1747 		goto configure_rss;
1748 	}
1749 
1750 	if (sas->rxq_info == NULL) {
1751 		reconfigure = false;
1752 		rc = ENOMEM;
1753 		sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rxq_total,
1754 						  sizeof(sas->rxq_info[0]), 0,
1755 						  sa->socket_id);
1756 		if (sas->rxq_info == NULL)
1757 			goto fail_rxqs_alloc;
1758 
1759 		/*
1760 		 * Allocate primary process only RxQ control from heap
1761 		 * since it should not be shared.
1762 		 */
1763 		rc = ENOMEM;
1764 		sa->rxq_ctrl = calloc(nb_rxq_total, sizeof(sa->rxq_ctrl[0]));
1765 		if (sa->rxq_ctrl == NULL)
1766 			goto fail_rxqs_ctrl_alloc;
1767 	} else {
1768 		struct sfc_rxq_info *new_rxq_info;
1769 		struct sfc_rxq *new_rxq_ctrl;
1770 
1771 		reconfigure = true;
1772 
1773 		/* Do not ununitialize reserved queues */
1774 		if (nb_rx_queues < sas->ethdev_rxq_count)
1775 			sfc_rx_fini_queues(sa, nb_rx_queues);
1776 
1777 		rc = ENOMEM;
1778 		new_rxq_info =
1779 			rte_realloc(sas->rxq_info,
1780 				    nb_rxq_total * sizeof(sas->rxq_info[0]), 0);
1781 		if (new_rxq_info == NULL && nb_rxq_total > 0)
1782 			goto fail_rxqs_realloc;
1783 
1784 		rc = ENOMEM;
1785 		new_rxq_ctrl = realloc(sa->rxq_ctrl,
1786 				       nb_rxq_total * sizeof(sa->rxq_ctrl[0]));
1787 		if (new_rxq_ctrl == NULL && nb_rxq_total > 0)
1788 			goto fail_rxqs_ctrl_realloc;
1789 
1790 		sas->rxq_info = new_rxq_info;
1791 		sa->rxq_ctrl = new_rxq_ctrl;
1792 		if (nb_rxq_total > sas->rxq_count) {
1793 			unsigned int rxq_count = sas->rxq_count;
1794 
1795 			memset(&sas->rxq_info[rxq_count], 0,
1796 			       (nb_rxq_total - rxq_count) *
1797 			       sizeof(sas->rxq_info[0]));
1798 			memset(&sa->rxq_ctrl[rxq_count], 0,
1799 			       (nb_rxq_total - rxq_count) *
1800 			       sizeof(sa->rxq_ctrl[0]));
1801 		}
1802 	}
1803 
1804 	while (sas->ethdev_rxq_count < nb_rx_queues) {
1805 		sfc_sw_index_t sw_index;
1806 
1807 		sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas,
1808 							sas->ethdev_rxq_count);
1809 		rc = sfc_rx_qinit_info(sa, sw_index, 0);
1810 		if (rc != 0)
1811 			goto fail_rx_qinit_info;
1812 
1813 		sas->ethdev_rxq_count++;
1814 	}
1815 
1816 	sas->rxq_count = sas->ethdev_rxq_count + nb_rsrv_rx_queues;
1817 
1818 	if (!reconfigure) {
1819 		rc = sfc_mae_counter_rxq_init(sa);
1820 		if (rc != 0)
1821 			goto fail_count_rxq_init;
1822 	}
1823 
1824 configure_rss:
1825 	rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1826 			 MIN(sas->ethdev_rxq_count, EFX_MAXRSS) : 0;
1827 
1828 	if (rss->channels > 0) {
1829 		struct rte_eth_rss_conf *adv_conf_rss;
1830 		sfc_sw_index_t sw_index;
1831 
1832 		for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1833 			rss->tbl[sw_index] = sw_index % rss->channels;
1834 
1835 		adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1836 		rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1837 		if (rc != 0)
1838 			goto fail_rx_process_adv_conf_rss;
1839 	}
1840 
1841 	return 0;
1842 
1843 fail_rx_process_adv_conf_rss:
1844 	if (!reconfigure)
1845 		sfc_mae_counter_rxq_fini(sa);
1846 
1847 fail_count_rxq_init:
1848 fail_rx_qinit_info:
1849 fail_rxqs_ctrl_realloc:
1850 fail_rxqs_realloc:
1851 fail_rxqs_ctrl_alloc:
1852 fail_rxqs_alloc:
1853 	sfc_rx_close(sa);
1854 
1855 fail_check_mode:
1856 	sfc_log_init(sa, "failed %d", rc);
1857 	return rc;
1858 }
1859 
1860 /**
1861  * Shutdown Rx subsystem.
1862  *
1863  * Called at device close stage, for example, before device shutdown.
1864  */
1865 void
1866 sfc_rx_close(struct sfc_adapter *sa)
1867 {
1868 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1869 
1870 	sfc_rx_fini_queues(sa, 0);
1871 	sfc_mae_counter_rxq_fini(sa);
1872 
1873 	rss->channels = 0;
1874 
1875 	free(sa->rxq_ctrl);
1876 	sa->rxq_ctrl = NULL;
1877 
1878 	rte_free(sfc_sa2shared(sa)->rxq_info);
1879 	sfc_sa2shared(sa)->rxq_info = NULL;
1880 }
1881