xref: /dpdk/drivers/net/sfc/sfc_ef10_tx.c (revision 23f3dac43237d5de18f9544c6e3f932c70c39e27)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <stdbool.h>
11 
12 #include <rte_mbuf.h>
13 #include <rte_io.h>
14 #include <rte_ip.h>
15 #include <rte_tcp.h>
16 
17 #include "efx.h"
18 #include "efx_types.h"
19 #include "efx_regs.h"
20 #include "efx_regs_ef10.h"
21 
22 #include "sfc_debug.h"
23 #include "sfc_dp_tx.h"
24 #include "sfc_tweak.h"
25 #include "sfc_kvargs.h"
26 #include "sfc_ef10.h"
27 #include "sfc_tso.h"
28 
29 #define sfc_ef10_tx_err(dpq, ...) \
30 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
31 
32 #define sfc_ef10_tx_info(dpq, ...) \
33 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
34 
35 /** Maximum length of the DMA descriptor data */
36 #define SFC_EF10_TX_DMA_DESC_LEN_MAX \
37 	((1u << ESF_DZ_TX_KER_BYTE_CNT_WIDTH) - 1)
38 
39 /**
40  * Maximum number of descriptors/buffers in the Tx ring.
41  * It should guarantee that corresponding event queue never overfill.
42  * EF10 native datapath uses event queue of the same size as Tx queue.
43  * Maximum number of events on datapath can be estimated as number of
44  * Tx queue entries (one event per Tx buffer in the worst case) plus
45  * Tx error and flush events.
46  */
47 #define SFC_EF10_TXQ_LIMIT(_ndesc) \
48 	((_ndesc) - 1 /* head must not step on tail */ - \
49 	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
50 	 1 /* Rx error */ - 1 /* flush */)
51 
52 struct sfc_ef10_tx_sw_desc {
53 	struct rte_mbuf			*mbuf;
54 };
55 
56 struct sfc_ef10_txq {
57 	unsigned int			flags;
58 #define SFC_EF10_TXQ_STARTED		0x1
59 #define SFC_EF10_TXQ_NOT_RUNNING	0x2
60 #define SFC_EF10_TXQ_EXCEPTION		0x4
61 
62 	unsigned int			ptr_mask;
63 	unsigned int			added;
64 	unsigned int			completed;
65 	unsigned int			max_fill_level;
66 	unsigned int			free_thresh;
67 	unsigned int			evq_read_ptr;
68 	struct sfc_ef10_tx_sw_desc	*sw_ring;
69 	efx_qword_t			*txq_hw_ring;
70 	volatile void			*doorbell;
71 	efx_qword_t			*evq_hw_ring;
72 	uint8_t				*tsoh;
73 	rte_iova_t			tsoh_iova;
74 	uint16_t			tso_tcp_header_offset_limit;
75 
76 	/* Datapath transmit queue anchor */
77 	struct sfc_dp_txq		dp;
78 };
79 
80 static inline struct sfc_ef10_txq *
sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq * dp_txq)81 sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
82 {
83 	return container_of(dp_txq, struct sfc_ef10_txq, dp);
84 }
85 
86 static bool
sfc_ef10_tx_get_event(struct sfc_ef10_txq * txq,efx_qword_t * tx_ev)87 sfc_ef10_tx_get_event(struct sfc_ef10_txq *txq, efx_qword_t *tx_ev)
88 {
89 	volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;
90 
91 	/*
92 	 * Exception flag is set when reap is done.
93 	 * It is never done twice per packet burst get and absence of
94 	 * the flag is checked on burst get entry.
95 	 */
96 	SFC_ASSERT((txq->flags & SFC_EF10_TXQ_EXCEPTION) == 0);
97 
98 	*tx_ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];
99 
100 	if (!sfc_ef10_ev_present(*tx_ev))
101 		return false;
102 
103 	if (unlikely(EFX_QWORD_FIELD(*tx_ev, FSF_AZ_EV_CODE) !=
104 		     FSE_AZ_EV_CODE_TX_EV)) {
105 		/*
106 		 * Do not move read_ptr to keep the event for exception
107 		 * handling by the control path.
108 		 */
109 		txq->flags |= SFC_EF10_TXQ_EXCEPTION;
110 		sfc_ef10_tx_err(&txq->dp.dpq,
111 				"TxQ exception at EvQ read ptr %#x",
112 				txq->evq_read_ptr);
113 		return false;
114 	}
115 
116 	txq->evq_read_ptr++;
117 	return true;
118 }
119 
120 static unsigned int
sfc_ef10_tx_process_events(struct sfc_ef10_txq * txq)121 sfc_ef10_tx_process_events(struct sfc_ef10_txq *txq)
122 {
123 	const unsigned int curr_done = txq->completed - 1;
124 	unsigned int anew_done = curr_done;
125 	efx_qword_t tx_ev;
126 
127 	while (sfc_ef10_tx_get_event(txq, &tx_ev)) {
128 		/*
129 		 * DROP_EVENT is an internal to the NIC, software should
130 		 * never see it and, therefore, may ignore it.
131 		 */
132 
133 		/* Update the latest done descriptor */
134 		anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
135 	}
136 	return (anew_done - curr_done) & txq->ptr_mask;
137 }
138 
139 static void
sfc_ef10_tx_reap(struct sfc_ef10_txq * txq)140 sfc_ef10_tx_reap(struct sfc_ef10_txq *txq)
141 {
142 	const unsigned int old_read_ptr = txq->evq_read_ptr;
143 	const unsigned int ptr_mask = txq->ptr_mask;
144 	unsigned int completed = txq->completed;
145 	unsigned int pending = completed;
146 
147 	pending += sfc_ef10_tx_process_events(txq);
148 
149 	if (pending != completed) {
150 		struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
151 		unsigned int nb = 0;
152 
153 		do {
154 			struct sfc_ef10_tx_sw_desc *txd;
155 			struct rte_mbuf *m;
156 
157 			txd = &txq->sw_ring[completed & ptr_mask];
158 			if (txd->mbuf == NULL)
159 				continue;
160 
161 			m = rte_pktmbuf_prefree_seg(txd->mbuf);
162 			txd->mbuf = NULL;
163 			if (m == NULL)
164 				continue;
165 
166 			if ((nb == RTE_DIM(bulk)) ||
167 			    ((nb != 0) && (m->pool != bulk[0]->pool))) {
168 				rte_mempool_put_bulk(bulk[0]->pool,
169 						     (void *)bulk, nb);
170 				nb = 0;
171 			}
172 
173 			bulk[nb++] = m;
174 		} while (++completed != pending);
175 
176 		if (nb != 0)
177 			rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
178 
179 		txq->completed = completed;
180 	}
181 
182 	sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
183 			   txq->evq_read_ptr);
184 }
185 
186 static void
sfc_ef10_tx_qdesc_dma_create(rte_iova_t addr,uint16_t size,bool eop,efx_qword_t * edp)187 sfc_ef10_tx_qdesc_dma_create(rte_iova_t addr, uint16_t size, bool eop,
188 			     efx_qword_t *edp)
189 {
190 	EFX_POPULATE_QWORD_4(*edp,
191 			     ESF_DZ_TX_KER_TYPE, 0,
192 			     ESF_DZ_TX_KER_CONT, !eop,
193 			     ESF_DZ_TX_KER_BYTE_CNT, size,
194 			     ESF_DZ_TX_KER_BUF_ADDR, addr);
195 }
196 
197 static void
sfc_ef10_tx_qdesc_tso2_create(struct sfc_ef10_txq * const txq,unsigned int added,uint16_t ipv4_id,uint16_t outer_ipv4_id,uint32_t tcp_seq,uint16_t tcp_mss)198 sfc_ef10_tx_qdesc_tso2_create(struct sfc_ef10_txq * const txq,
199 			      unsigned int added, uint16_t ipv4_id,
200 			      uint16_t outer_ipv4_id, uint32_t tcp_seq,
201 			      uint16_t tcp_mss)
202 {
203 	EFX_POPULATE_QWORD_5(txq->txq_hw_ring[added & txq->ptr_mask],
204 			    ESF_DZ_TX_DESC_IS_OPT, 1,
205 			    ESF_DZ_TX_OPTION_TYPE,
206 			    ESE_DZ_TX_OPTION_DESC_TSO,
207 			    ESF_DZ_TX_TSO_OPTION_TYPE,
208 			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
209 			    ESF_DZ_TX_TSO_IP_ID, ipv4_id,
210 			    ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
211 	EFX_POPULATE_QWORD_5(txq->txq_hw_ring[(added + 1) & txq->ptr_mask],
212 			    ESF_DZ_TX_DESC_IS_OPT, 1,
213 			    ESF_DZ_TX_OPTION_TYPE,
214 			    ESE_DZ_TX_OPTION_DESC_TSO,
215 			    ESF_DZ_TX_TSO_OPTION_TYPE,
216 			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
217 			    ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
218 			    ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
219 }
220 
221 static inline void
sfc_ef10_tx_qpush(struct sfc_ef10_txq * txq,unsigned int added,unsigned int pushed)222 sfc_ef10_tx_qpush(struct sfc_ef10_txq *txq, unsigned int added,
223 		  unsigned int pushed)
224 {
225 	efx_qword_t desc;
226 	efx_oword_t oword;
227 
228 	/*
229 	 * This improves performance by pushing a TX descriptor at the same
230 	 * time as the doorbell. The descriptor must be added to the TXQ,
231 	 * so that can be used if the hardware decides not to use the pushed
232 	 * descriptor.
233 	 */
234 	desc.eq_u64[0] = txq->txq_hw_ring[pushed & txq->ptr_mask].eq_u64[0];
235 	EFX_POPULATE_OWORD_3(oword,
236 		ERF_DZ_TX_DESC_WPTR, added & txq->ptr_mask,
237 		ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
238 		ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
239 
240 	/* DMA sync to device is not required */
241 
242 	/*
243 	 * rte_io_wmb() which guarantees that the STORE operations
244 	 * (i.e. Tx and event descriptor updates) that precede
245 	 * the rte_io_wmb() call are visible to NIC before the STORE
246 	 * operations that follow it (i.e. doorbell write).
247 	 */
248 	rte_io_wmb();
249 
250 	*(volatile efsys_uint128_t *)txq->doorbell = oword.eo_u128[0];
251 	txq->dp.dpq.dbells++;
252 }
253 
254 static unsigned int
sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf * m)255 sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf *m)
256 {
257 	unsigned int extra_descs_per_seg;
258 	unsigned int extra_descs_per_pkt;
259 
260 	/*
261 	 * VLAN offload is not supported yet, so no extra descriptors
262 	 * are required for VLAN option descriptor.
263 	 */
264 
265 /** Maximum length of the mbuf segment data */
266 #define SFC_MBUF_SEG_LEN_MAX		UINT16_MAX
267 	RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);
268 
269 	/*
270 	 * Each segment is already counted once below.  So, calculate
271 	 * how many extra DMA descriptors may be required per segment in
272 	 * the worst case because of maximum DMA descriptor length limit.
273 	 * If maximum segment length is less or equal to maximum DMA
274 	 * descriptor length, no extra DMA descriptors are required.
275 	 */
276 	extra_descs_per_seg =
277 		(SFC_MBUF_SEG_LEN_MAX - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX;
278 
279 /** Maximum length of the packet */
280 #define SFC_MBUF_PKT_LEN_MAX		UINT32_MAX
281 	RTE_BUILD_BUG_ON(sizeof(m->pkt_len) != 4);
282 
283 	/*
284 	 * One more limitation on maximum number of extra DMA descriptors
285 	 * comes from slicing entire packet because of DMA descriptor length
286 	 * limit taking into account that there is at least one segment
287 	 * which is already counted below (so division of the maximum
288 	 * packet length minus one with round down).
289 	 * TSO is not supported yet, so packet length is limited by
290 	 * maximum PDU size.
291 	 */
292 	extra_descs_per_pkt =
293 		(RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
294 			 SFC_MBUF_PKT_LEN_MAX) - 1) /
295 		SFC_EF10_TX_DMA_DESC_LEN_MAX;
296 
297 	return m->nb_segs + RTE_MIN(m->nb_segs * extra_descs_per_seg,
298 				    extra_descs_per_pkt);
299 }
300 
301 static bool
sfc_ef10_try_reap(struct sfc_ef10_txq * const txq,unsigned int added,unsigned int needed_desc,unsigned int * dma_desc_space,bool * reap_done)302 sfc_ef10_try_reap(struct sfc_ef10_txq * const txq, unsigned int added,
303 		  unsigned int needed_desc, unsigned int *dma_desc_space,
304 		  bool *reap_done)
305 {
306 	if (*reap_done)
307 		return false;
308 
309 	if (added != txq->added) {
310 		sfc_ef10_tx_qpush(txq, added, txq->added);
311 		txq->added = added;
312 	}
313 
314 	sfc_ef10_tx_reap(txq);
315 	*reap_done = true;
316 
317 	/*
318 	 * Recalculate DMA descriptor space since Tx reap may change
319 	 * the number of completed descriptors
320 	 */
321 	*dma_desc_space = txq->max_fill_level -
322 		(added - txq->completed);
323 
324 	return (needed_desc <= *dma_desc_space);
325 }
326 
327 static uint16_t
sfc_ef10_prepare_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)328 sfc_ef10_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
329 		      uint16_t nb_pkts)
330 {
331 	struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
332 	uint16_t i;
333 
334 	for (i = 0; i < nb_pkts; i++) {
335 		struct rte_mbuf *m = tx_pkts[i];
336 		int ret;
337 
338 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
339 		/*
340 		 * In non-TSO case, check that a packet segments do not exceed
341 		 * the size limit. Perform the check in debug mode since MTU
342 		 * more than 9k is not supported, but the limit here is 16k-1.
343 		 */
344 		if (!(m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
345 			struct rte_mbuf *m_seg;
346 
347 			for (m_seg = m; m_seg != NULL; m_seg = m_seg->next) {
348 				if (m_seg->data_len >
349 				    SFC_EF10_TX_DMA_DESC_LEN_MAX) {
350 					rte_errno = EINVAL;
351 					break;
352 				}
353 			}
354 		}
355 #endif
356 		ret = sfc_dp_tx_prepare_pkt(m, 0, SFC_TSOH_STD_LEN,
357 				txq->tso_tcp_header_offset_limit,
358 				txq->max_fill_level,
359 				SFC_EF10_TSO_OPT_DESCS_NUM, 0);
360 		if (unlikely(ret != 0)) {
361 			rte_errno = ret;
362 			break;
363 		}
364 	}
365 
366 	return i;
367 }
368 
369 static int
sfc_ef10_xmit_tso_pkt(struct sfc_ef10_txq * const txq,struct rte_mbuf * m_seg,unsigned int * added,unsigned int * dma_desc_space,bool * reap_done)370 sfc_ef10_xmit_tso_pkt(struct sfc_ef10_txq * const txq, struct rte_mbuf *m_seg,
371 		      unsigned int *added, unsigned int *dma_desc_space,
372 		      bool *reap_done)
373 {
374 	size_t iph_off = ((m_seg->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
375 			  m_seg->outer_l2_len + m_seg->outer_l3_len : 0) +
376 			 m_seg->l2_len;
377 	size_t tcph_off = iph_off + m_seg->l3_len;
378 	size_t header_len = tcph_off + m_seg->l4_len;
379 	/* Offset of the payload in the last segment that contains the header */
380 	size_t in_off = 0;
381 	const struct rte_tcp_hdr *th;
382 	uint16_t packet_id = 0;
383 	uint16_t outer_packet_id = 0;
384 	uint32_t sent_seq;
385 	uint8_t *hdr_addr;
386 	rte_iova_t hdr_iova;
387 	struct rte_mbuf *first_m_seg = m_seg;
388 	unsigned int pkt_start = *added;
389 	unsigned int needed_desc;
390 	struct rte_mbuf *m_seg_to_free_up_to = first_m_seg;
391 	bool eop;
392 
393 	/*
394 	 * Preliminary estimation of required DMA descriptors, including extra
395 	 * descriptor for TSO header that is needed when the header is
396 	 * separated from payload in one segment. It does not include
397 	 * extra descriptors that may appear when a big segment is split across
398 	 * several descriptors.
399 	 */
400 	needed_desc = m_seg->nb_segs +
401 			(unsigned int)SFC_EF10_TSO_OPT_DESCS_NUM +
402 			(unsigned int)SFC_EF10_TSO_HDR_DESCS_NUM;
403 
404 	if (needed_desc > *dma_desc_space &&
405 	    !sfc_ef10_try_reap(txq, pkt_start, needed_desc,
406 			       dma_desc_space, reap_done)) {
407 		/*
408 		 * If a future Tx reap may increase available DMA descriptor
409 		 * space, do not try to send the packet.
410 		 */
411 		if (txq->completed != pkt_start)
412 			return ENOSPC;
413 		/*
414 		 * Do not allow to send packet if the maximum DMA
415 		 * descriptor space is not sufficient to hold TSO
416 		 * descriptors, header descriptor and at least 1
417 		 * segment descriptor.
418 		 */
419 		if (*dma_desc_space < SFC_EF10_TSO_OPT_DESCS_NUM +
420 				SFC_EF10_TSO_HDR_DESCS_NUM + 1)
421 			return EMSGSIZE;
422 	}
423 
424 	/* Check if the header is not fragmented */
425 	if (rte_pktmbuf_data_len(m_seg) >= header_len) {
426 		hdr_addr = rte_pktmbuf_mtod(m_seg, uint8_t *);
427 		hdr_iova = rte_mbuf_data_iova(m_seg);
428 		if (rte_pktmbuf_data_len(m_seg) == header_len) {
429 			/* Cannot send a packet that consists only of header */
430 			if (unlikely(m_seg->next == NULL))
431 				return EMSGSIZE;
432 			/*
433 			 * Associate header mbuf with header descriptor
434 			 * which is located after TSO descriptors.
435 			 */
436 			txq->sw_ring[(pkt_start + SFC_EF10_TSO_OPT_DESCS_NUM) &
437 				     txq->ptr_mask].mbuf = m_seg;
438 			m_seg = m_seg->next;
439 			in_off = 0;
440 
441 			/*
442 			 * If there is no payload offset (payload starts at the
443 			 * beginning of a segment) then an extra descriptor for
444 			 * separated header is not needed.
445 			 */
446 			needed_desc--;
447 		} else {
448 			in_off = header_len;
449 		}
450 	} else {
451 		unsigned int copied_segs;
452 		unsigned int hdr_addr_off = (*added & txq->ptr_mask) *
453 				SFC_TSOH_STD_LEN;
454 
455 		/*
456 		 * Discard a packet if header linearization is needed but
457 		 * the header is too big.
458 		 * Duplicate Tx prepare check here to avoid spoil of
459 		 * memory if Tx prepare is skipped.
460 		 */
461 		if (unlikely(header_len > SFC_TSOH_STD_LEN))
462 			return EMSGSIZE;
463 
464 		hdr_addr = txq->tsoh + hdr_addr_off;
465 		hdr_iova = txq->tsoh_iova + hdr_addr_off;
466 		copied_segs = sfc_tso_prepare_header(hdr_addr, header_len,
467 						     &m_seg, &in_off);
468 
469 		/* Cannot send a packet that consists only of header */
470 		if (unlikely(m_seg == NULL))
471 			return EMSGSIZE;
472 
473 		m_seg_to_free_up_to = m_seg;
474 		/*
475 		 * Reduce the number of needed descriptors by the number of
476 		 * segments that entirely consist of header data.
477 		 */
478 		needed_desc -= copied_segs;
479 
480 		/* Extra descriptor for separated header is not needed */
481 		if (in_off == 0)
482 			needed_desc--;
483 	}
484 
485 	/*
486 	 * 8000-series EF10 hardware requires that innermost IP length
487 	 * be greater than or equal to the value which each segment is
488 	 * supposed to have; otherwise, TCP checksum will be incorrect.
489 	 *
490 	 * The same concern applies to outer UDP datagram length field.
491 	 */
492 	switch (m_seg->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
493 	case RTE_MBUF_F_TX_TUNNEL_VXLAN:
494 		/* FALLTHROUGH */
495 	case RTE_MBUF_F_TX_TUNNEL_GENEVE:
496 		sfc_tso_outer_udp_fix_len(first_m_seg, hdr_addr);
497 		break;
498 	default:
499 		break;
500 	}
501 
502 	sfc_tso_innermost_ip_fix_len(first_m_seg, hdr_addr, iph_off);
503 
504 	/*
505 	 * Tx prepare has debug-only checks that offload flags are correctly
506 	 * filled in TSO mbuf. Use zero IPID if there is no IPv4 flag.
507 	 * If the packet is still IPv4, HW will simply start from zero IPID.
508 	 */
509 	if (first_m_seg->ol_flags & RTE_MBUF_F_TX_IPV4)
510 		packet_id = sfc_tso_ip4_get_ipid(hdr_addr, iph_off);
511 
512 	if (first_m_seg->ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
513 		outer_packet_id = sfc_tso_ip4_get_ipid(hdr_addr,
514 						first_m_seg->outer_l2_len);
515 
516 	th = (const struct rte_tcp_hdr *)(hdr_addr + tcph_off);
517 	rte_memcpy(&sent_seq, &th->sent_seq, sizeof(uint32_t));
518 	sent_seq = rte_be_to_cpu_32(sent_seq);
519 
520 	sfc_ef10_tx_qdesc_tso2_create(txq, *added, packet_id, outer_packet_id,
521 			sent_seq, first_m_seg->tso_segsz);
522 	(*added) += SFC_EF10_TSO_OPT_DESCS_NUM;
523 
524 	sfc_ef10_tx_qdesc_dma_create(hdr_iova, header_len, false,
525 			&txq->txq_hw_ring[(*added) & txq->ptr_mask]);
526 	(*added)++;
527 
528 	do {
529 		rte_iova_t next_frag = rte_mbuf_data_iova(m_seg);
530 		unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
531 		unsigned int id;
532 
533 		next_frag += in_off;
534 		seg_len -= in_off;
535 		in_off = 0;
536 
537 		do {
538 			rte_iova_t frag_addr = next_frag;
539 			size_t frag_len;
540 
541 			frag_len = RTE_MIN(seg_len,
542 					   SFC_EF10_TX_DMA_DESC_LEN_MAX);
543 
544 			next_frag += frag_len;
545 			seg_len -= frag_len;
546 
547 			eop = (seg_len == 0 && m_seg->next == NULL);
548 
549 			id = (*added) & txq->ptr_mask;
550 			(*added)++;
551 
552 			/*
553 			 * Initially we assume that one DMA descriptor is needed
554 			 * for every segment. When the segment is split across
555 			 * several DMA descriptors, increase the estimation.
556 			 */
557 			needed_desc += (seg_len != 0);
558 
559 			/*
560 			 * When no more descriptors can be added, but not all
561 			 * segments are processed.
562 			 */
563 			if (*added - pkt_start == *dma_desc_space &&
564 			    !eop &&
565 			    !sfc_ef10_try_reap(txq, pkt_start, needed_desc,
566 						dma_desc_space, reap_done)) {
567 				struct rte_mbuf *m;
568 				struct rte_mbuf *m_next;
569 
570 				if (txq->completed != pkt_start) {
571 					unsigned int i;
572 
573 					/*
574 					 * Reset mbuf associations with added
575 					 * descriptors.
576 					 */
577 					for (i = pkt_start; i != *added; i++) {
578 						id = i & txq->ptr_mask;
579 						txq->sw_ring[id].mbuf = NULL;
580 					}
581 					return ENOSPC;
582 				}
583 
584 				/* Free the segments that cannot be sent */
585 				for (m = m_seg->next; m != NULL; m = m_next) {
586 					m_next = m->next;
587 					rte_pktmbuf_free_seg(m);
588 				}
589 				eop = true;
590 				/* Ignore the rest of the segment */
591 				seg_len = 0;
592 			}
593 
594 			sfc_ef10_tx_qdesc_dma_create(frag_addr, frag_len,
595 					eop, &txq->txq_hw_ring[id]);
596 
597 		} while (seg_len != 0);
598 
599 		txq->sw_ring[id].mbuf = m_seg;
600 
601 		m_seg = m_seg->next;
602 	} while (!eop);
603 
604 	/*
605 	 * Free segments which content was entirely copied to the TSO header
606 	 * memory space of Tx queue
607 	 */
608 	for (m_seg = first_m_seg; m_seg != m_seg_to_free_up_to;) {
609 		struct rte_mbuf *seg_to_free = m_seg;
610 
611 		m_seg = m_seg->next;
612 		rte_pktmbuf_free_seg(seg_to_free);
613 	}
614 
615 	return 0;
616 }
617 
618 static uint16_t
sfc_ef10_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)619 sfc_ef10_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
620 {
621 	struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
622 	unsigned int added;
623 	unsigned int dma_desc_space;
624 	bool reap_done;
625 	struct rte_mbuf **pktp;
626 	struct rte_mbuf **pktp_end;
627 
628 	if (unlikely(txq->flags &
629 		     (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
630 		return 0;
631 
632 	added = txq->added;
633 	dma_desc_space = txq->max_fill_level - (added - txq->completed);
634 
635 	reap_done = (dma_desc_space < txq->free_thresh);
636 	if (reap_done) {
637 		sfc_ef10_tx_reap(txq);
638 		dma_desc_space = txq->max_fill_level - (added - txq->completed);
639 	}
640 
641 	for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
642 	     pktp != pktp_end;
643 	     ++pktp) {
644 		struct rte_mbuf *m_seg = *pktp;
645 		unsigned int pkt_start = added;
646 		uint32_t pkt_len;
647 
648 		if (likely(pktp + 1 != pktp_end))
649 			rte_mbuf_prefetch_part1(pktp[1]);
650 
651 		if (m_seg->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
652 			int rc;
653 
654 			rc = sfc_ef10_xmit_tso_pkt(txq, m_seg, &added,
655 					&dma_desc_space, &reap_done);
656 			if (rc != 0) {
657 				added = pkt_start;
658 
659 				/* Packet can be sent in following xmit calls */
660 				if (likely(rc == ENOSPC))
661 					break;
662 
663 				/*
664 				 * Packet cannot be sent, tell RTE that
665 				 * it is sent, but actually drop it and
666 				 * continue with another packet
667 				 */
668 				rte_pktmbuf_free(*pktp);
669 				continue;
670 			}
671 
672 			goto dma_desc_space_update;
673 		}
674 
675 		if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) {
676 			if (reap_done)
677 				break;
678 
679 			/* Push already prepared descriptors before polling */
680 			if (added != txq->added) {
681 				sfc_ef10_tx_qpush(txq, added, txq->added);
682 				txq->added = added;
683 			}
684 
685 			sfc_ef10_tx_reap(txq);
686 			reap_done = true;
687 			dma_desc_space = txq->max_fill_level -
688 				(added - txq->completed);
689 			if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space)
690 				break;
691 		}
692 
693 		pkt_len = m_seg->pkt_len;
694 		do {
695 			rte_iova_t seg_addr = rte_mbuf_data_iova(m_seg);
696 			unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
697 			unsigned int id = added & txq->ptr_mask;
698 
699 			SFC_ASSERT(seg_len <= SFC_EF10_TX_DMA_DESC_LEN_MAX);
700 
701 			pkt_len -= seg_len;
702 
703 			sfc_ef10_tx_qdesc_dma_create(seg_addr,
704 				seg_len, (pkt_len == 0),
705 				&txq->txq_hw_ring[id]);
706 
707 			/*
708 			 * rte_pktmbuf_free() is commonly used in DPDK for
709 			 * recycling packets - the function checks every
710 			 * segment's reference counter and returns the
711 			 * buffer to its pool whenever possible;
712 			 * nevertheless, freeing mbuf segments one by one
713 			 * may entail some performance decline;
714 			 * from this point, sfc_efx_tx_reap() does the same job
715 			 * on its own and frees buffers in bulks (all mbufs
716 			 * within a bulk belong to the same pool);
717 			 * from this perspective, individual segment pointers
718 			 * must be associated with the corresponding SW
719 			 * descriptors independently so that only one loop
720 			 * is sufficient on reap to inspect all the buffers
721 			 */
722 			txq->sw_ring[id].mbuf = m_seg;
723 
724 			++added;
725 
726 		} while ((m_seg = m_seg->next) != 0);
727 
728 dma_desc_space_update:
729 		dma_desc_space -= (added - pkt_start);
730 	}
731 
732 	if (likely(added != txq->added)) {
733 		sfc_ef10_tx_qpush(txq, added, txq->added);
734 		txq->added = added;
735 	}
736 
737 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
738 	if (!reap_done)
739 		sfc_ef10_tx_reap(txq);
740 #endif
741 
742 	return pktp - &tx_pkts[0];
743 }
744 
745 static void
sfc_ef10_simple_tx_reap(struct sfc_ef10_txq * txq)746 sfc_ef10_simple_tx_reap(struct sfc_ef10_txq *txq)
747 {
748 	const unsigned int old_read_ptr = txq->evq_read_ptr;
749 	const unsigned int ptr_mask = txq->ptr_mask;
750 	unsigned int completed = txq->completed;
751 	unsigned int pending = completed;
752 
753 	pending += sfc_ef10_tx_process_events(txq);
754 
755 	if (pending != completed) {
756 		struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
757 		unsigned int nb = 0;
758 
759 		do {
760 			struct sfc_ef10_tx_sw_desc *txd;
761 
762 			txd = &txq->sw_ring[completed & ptr_mask];
763 
764 			if (nb == RTE_DIM(bulk)) {
765 				rte_mempool_put_bulk(bulk[0]->pool,
766 						     (void *)bulk, nb);
767 				nb = 0;
768 			}
769 
770 			bulk[nb++] = txd->mbuf;
771 		} while (++completed != pending);
772 
773 		rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
774 
775 		txq->completed = completed;
776 	}
777 
778 	sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
779 			   txq->evq_read_ptr);
780 }
781 
782 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
783 static uint16_t
sfc_ef10_simple_prepare_pkts(__rte_unused void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)784 sfc_ef10_simple_prepare_pkts(__rte_unused void *tx_queue,
785 			     struct rte_mbuf **tx_pkts,
786 			     uint16_t nb_pkts)
787 {
788 	uint16_t i;
789 
790 	for (i = 0; i < nb_pkts; i++) {
791 		struct rte_mbuf *m = tx_pkts[i];
792 		int ret;
793 
794 		ret = rte_validate_tx_offload(m);
795 		if (unlikely(ret != 0)) {
796 			/*
797 			 * Negative error code is returned by
798 			 * rte_validate_tx_offload(), but positive are used
799 			 * inside net/sfc PMD.
800 			 */
801 			SFC_ASSERT(ret < 0);
802 			rte_errno = -ret;
803 			break;
804 		}
805 
806 		/* ef10_simple does not support TSO and VLAN insertion */
807 		if (unlikely(m->ol_flags &
808 			     (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_VLAN))) {
809 			rte_errno = ENOTSUP;
810 			break;
811 		}
812 
813 		/* ef10_simple does not support scattered packets */
814 		if (unlikely(m->nb_segs != 1)) {
815 			rte_errno = ENOTSUP;
816 			break;
817 		}
818 
819 		/*
820 		 * ef10_simple requires fast-free which ignores reference
821 		 * counters
822 		 */
823 		if (unlikely(rte_mbuf_refcnt_read(m) != 1)) {
824 			rte_errno = ENOTSUP;
825 			break;
826 		}
827 
828 		/* ef10_simple requires single pool for all packets */
829 		if (unlikely(m->pool != tx_pkts[0]->pool)) {
830 			rte_errno = ENOTSUP;
831 			break;
832 		}
833 	}
834 
835 	return i;
836 }
837 #endif
838 
839 static uint16_t
sfc_ef10_simple_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)840 sfc_ef10_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
841 			  uint16_t nb_pkts)
842 {
843 	struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
844 	unsigned int ptr_mask;
845 	unsigned int added;
846 	unsigned int dma_desc_space;
847 	bool reap_done;
848 	struct rte_mbuf **pktp;
849 	struct rte_mbuf **pktp_end;
850 
851 	if (unlikely(txq->flags &
852 		     (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
853 		return 0;
854 
855 	ptr_mask = txq->ptr_mask;
856 	added = txq->added;
857 	dma_desc_space = txq->max_fill_level - (added - txq->completed);
858 
859 	reap_done = (dma_desc_space < RTE_MAX(txq->free_thresh, nb_pkts));
860 	if (reap_done) {
861 		sfc_ef10_simple_tx_reap(txq);
862 		dma_desc_space = txq->max_fill_level - (added - txq->completed);
863 	}
864 
865 	pktp_end = &tx_pkts[MIN(nb_pkts, dma_desc_space)];
866 	for (pktp = &tx_pkts[0]; pktp != pktp_end; ++pktp) {
867 		struct rte_mbuf *pkt = *pktp;
868 		unsigned int id = added & ptr_mask;
869 
870 		SFC_ASSERT(rte_pktmbuf_data_len(pkt) <=
871 			   SFC_EF10_TX_DMA_DESC_LEN_MAX);
872 
873 		sfc_ef10_tx_qdesc_dma_create(rte_mbuf_data_iova(pkt),
874 					     rte_pktmbuf_data_len(pkt),
875 					     true, &txq->txq_hw_ring[id]);
876 
877 		txq->sw_ring[id].mbuf = pkt;
878 
879 		++added;
880 	}
881 
882 	if (likely(added != txq->added)) {
883 		sfc_ef10_tx_qpush(txq, added, txq->added);
884 		txq->added = added;
885 	}
886 
887 #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
888 	if (!reap_done)
889 		sfc_ef10_simple_tx_reap(txq);
890 #endif
891 
892 	return pktp - &tx_pkts[0];
893 }
894 
895 static sfc_dp_tx_get_dev_info_t sfc_ef10_get_dev_info;
896 static void
sfc_ef10_get_dev_info(struct rte_eth_dev_info * dev_info)897 sfc_ef10_get_dev_info(struct rte_eth_dev_info *dev_info)
898 {
899 	/*
900 	 * Number of descriptors just defines maximum number of pushed
901 	 * descriptors (fill level).
902 	 */
903 	dev_info->tx_desc_lim.nb_min = 1;
904 	dev_info->tx_desc_lim.nb_align = 1;
905 }
906 
907 static sfc_dp_tx_qsize_up_rings_t sfc_ef10_tx_qsize_up_rings;
908 static int
sfc_ef10_tx_qsize_up_rings(uint16_t nb_tx_desc,struct sfc_dp_tx_hw_limits * limits,unsigned int * txq_entries,unsigned int * evq_entries,unsigned int * txq_max_fill_level)909 sfc_ef10_tx_qsize_up_rings(uint16_t nb_tx_desc,
910 			   struct sfc_dp_tx_hw_limits *limits,
911 			   unsigned int *txq_entries,
912 			   unsigned int *evq_entries,
913 			   unsigned int *txq_max_fill_level)
914 {
915 	/*
916 	 * rte_ethdev API guarantees that the number meets min, max and
917 	 * alignment requirements.
918 	 */
919 	if (nb_tx_desc <= limits->txq_min_entries)
920 		*txq_entries = limits->txq_min_entries;
921 	else
922 		*txq_entries = rte_align32pow2(nb_tx_desc);
923 
924 	*evq_entries = *txq_entries;
925 
926 	*txq_max_fill_level = RTE_MIN(nb_tx_desc,
927 				      SFC_EF10_TXQ_LIMIT(*evq_entries));
928 	return 0;
929 }
930 
931 static sfc_dp_tx_qcreate_t sfc_ef10_tx_qcreate;
932 static int
sfc_ef10_tx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_tx_qcreate_info * info,struct sfc_dp_txq ** dp_txqp)933 sfc_ef10_tx_qcreate(uint16_t port_id, uint16_t queue_id,
934 		    const struct rte_pci_addr *pci_addr, int socket_id,
935 		    const struct sfc_dp_tx_qcreate_info *info,
936 		    struct sfc_dp_txq **dp_txqp)
937 {
938 	struct sfc_ef10_txq *txq;
939 	int rc;
940 
941 	rc = EINVAL;
942 	if (info->txq_entries != info->evq_entries)
943 		goto fail_bad_args;
944 
945 	rc = ENOTSUP;
946 	if (info->nic_dma_info->nb_regions > 0)
947 		goto fail_nic_dma;
948 
949 	rc = ENOMEM;
950 	txq = rte_zmalloc_socket("sfc-ef10-txq", sizeof(*txq),
951 				 RTE_CACHE_LINE_SIZE, socket_id);
952 	if (txq == NULL)
953 		goto fail_txq_alloc;
954 
955 	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
956 
957 	rc = ENOMEM;
958 	txq->sw_ring = rte_calloc_socket("sfc-ef10-txq-sw_ring",
959 					 info->txq_entries,
960 					 sizeof(*txq->sw_ring),
961 					 RTE_CACHE_LINE_SIZE, socket_id);
962 	if (txq->sw_ring == NULL)
963 		goto fail_sw_ring_alloc;
964 
965 	if (info->offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO |
966 			      RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
967 			      RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO)) {
968 		txq->tsoh = rte_calloc_socket("sfc-ef10-txq-tsoh",
969 					      info->txq_entries,
970 					      SFC_TSOH_STD_LEN,
971 					      RTE_CACHE_LINE_SIZE,
972 					      socket_id);
973 		if (txq->tsoh == NULL)
974 			goto fail_tsoh_alloc;
975 
976 		txq->tsoh_iova = rte_malloc_virt2iova(txq->tsoh);
977 	}
978 
979 	txq->flags = SFC_EF10_TXQ_NOT_RUNNING;
980 	txq->ptr_mask = info->txq_entries - 1;
981 	txq->max_fill_level = info->max_fill_level;
982 	txq->free_thresh = info->free_thresh;
983 	txq->txq_hw_ring = info->txq_hw_ring;
984 	txq->doorbell = (volatile uint8_t *)info->mem_bar +
985 			ER_DZ_TX_DESC_UPD_REG_OFST +
986 			(info->hw_index << info->vi_window_shift);
987 	txq->evq_hw_ring = info->evq_hw_ring;
988 	txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
989 
990 	sfc_ef10_tx_info(&txq->dp.dpq, "TxQ doorbell is %p", txq->doorbell);
991 
992 	*dp_txqp = &txq->dp;
993 	return 0;
994 
995 fail_tsoh_alloc:
996 	rte_free(txq->sw_ring);
997 
998 fail_sw_ring_alloc:
999 	rte_free(txq);
1000 
1001 fail_txq_alloc:
1002 fail_nic_dma:
1003 fail_bad_args:
1004 	return rc;
1005 }
1006 
1007 static sfc_dp_tx_qdestroy_t sfc_ef10_tx_qdestroy;
1008 static void
sfc_ef10_tx_qdestroy(struct sfc_dp_txq * dp_txq)1009 sfc_ef10_tx_qdestroy(struct sfc_dp_txq *dp_txq)
1010 {
1011 	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
1012 
1013 	rte_free(txq->tsoh);
1014 	rte_free(txq->sw_ring);
1015 	rte_free(txq);
1016 }
1017 
1018 static sfc_dp_tx_qstart_t sfc_ef10_tx_qstart;
1019 static int
sfc_ef10_tx_qstart(struct sfc_dp_txq * dp_txq,unsigned int evq_read_ptr,unsigned int txq_desc_index)1020 sfc_ef10_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
1021 		   unsigned int txq_desc_index)
1022 {
1023 	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
1024 
1025 	txq->evq_read_ptr = evq_read_ptr;
1026 	txq->added = txq->completed = txq_desc_index;
1027 
1028 	txq->flags |= SFC_EF10_TXQ_STARTED;
1029 	txq->flags &= ~(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION);
1030 
1031 	return 0;
1032 }
1033 
1034 static sfc_dp_tx_qstop_t sfc_ef10_tx_qstop;
1035 static void
sfc_ef10_tx_qstop(struct sfc_dp_txq * dp_txq,unsigned int * evq_read_ptr)1036 sfc_ef10_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
1037 {
1038 	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
1039 
1040 	txq->flags |= SFC_EF10_TXQ_NOT_RUNNING;
1041 
1042 	*evq_read_ptr = txq->evq_read_ptr;
1043 }
1044 
1045 static sfc_dp_tx_qtx_ev_t sfc_ef10_tx_qtx_ev;
1046 static bool
sfc_ef10_tx_qtx_ev(struct sfc_dp_txq * dp_txq,__rte_unused unsigned int id)1047 sfc_ef10_tx_qtx_ev(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int id)
1048 {
1049 	__rte_unused struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
1050 
1051 	SFC_ASSERT(txq->flags & SFC_EF10_TXQ_NOT_RUNNING);
1052 
1053 	/*
1054 	 * It is safe to ignore Tx event since we reap all mbufs on
1055 	 * queue purge anyway.
1056 	 */
1057 
1058 	return false;
1059 }
1060 
1061 static sfc_dp_tx_qreap_t sfc_ef10_tx_qreap;
1062 static void
sfc_ef10_tx_qreap(struct sfc_dp_txq * dp_txq)1063 sfc_ef10_tx_qreap(struct sfc_dp_txq *dp_txq)
1064 {
1065 	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
1066 	unsigned int completed;
1067 
1068 	for (completed = txq->completed; completed != txq->added; ++completed) {
1069 		struct sfc_ef10_tx_sw_desc *txd;
1070 
1071 		txd = &txq->sw_ring[completed & txq->ptr_mask];
1072 		if (txd->mbuf != NULL) {
1073 			rte_pktmbuf_free_seg(txd->mbuf);
1074 			txd->mbuf = NULL;
1075 		}
1076 	}
1077 
1078 	txq->flags &= ~SFC_EF10_TXQ_STARTED;
1079 }
1080 
1081 static unsigned int
sfc_ef10_tx_qdesc_npending(struct sfc_ef10_txq * txq)1082 sfc_ef10_tx_qdesc_npending(struct sfc_ef10_txq *txq)
1083 {
1084 	const unsigned int curr_done = txq->completed - 1;
1085 	unsigned int anew_done = curr_done;
1086 	efx_qword_t tx_ev;
1087 	const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
1088 
1089 	if (unlikely(txq->flags &
1090 		     (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
1091 		return 0;
1092 
1093 	while (sfc_ef10_tx_get_event(txq, &tx_ev))
1094 		anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
1095 
1096 	/*
1097 	 * The function does not process events, so return event queue read
1098 	 * pointer to the original position to allow the events that were
1099 	 * read to be processed later
1100 	 */
1101 	txq->evq_read_ptr = evq_old_read_ptr;
1102 
1103 	return (anew_done - curr_done) & txq->ptr_mask;
1104 }
1105 
1106 static sfc_dp_tx_qdesc_status_t sfc_ef10_tx_qdesc_status;
1107 static int
sfc_ef10_tx_qdesc_status(struct sfc_dp_txq * dp_txq,uint16_t offset)1108 sfc_ef10_tx_qdesc_status(struct sfc_dp_txq *dp_txq,
1109 			 uint16_t offset)
1110 {
1111 	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
1112 	unsigned int npending = sfc_ef10_tx_qdesc_npending(txq);
1113 
1114 	if (unlikely(offset > txq->ptr_mask))
1115 		return -EINVAL;
1116 
1117 	if (unlikely(offset >= txq->max_fill_level))
1118 		return RTE_ETH_TX_DESC_UNAVAIL;
1119 
1120 	if (unlikely(offset < npending))
1121 		return RTE_ETH_TX_DESC_FULL;
1122 
1123 	return RTE_ETH_TX_DESC_DONE;
1124 }
1125 
1126 struct sfc_dp_tx sfc_ef10_tx = {
1127 	.dp = {
1128 		.name		= SFC_KVARG_DATAPATH_EF10,
1129 		.type		= SFC_DP_TX,
1130 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
1131 	},
1132 	.features		= SFC_DP_TX_FEAT_MULTI_PROCESS,
1133 	.dev_offload_capa	= RTE_ETH_TX_OFFLOAD_MULTI_SEGS,
1134 	.queue_offload_capa	= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1135 				  RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1136 				  RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1137 				  RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1138 				  RTE_ETH_TX_OFFLOAD_TCP_TSO |
1139 				  RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
1140 				  RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO,
1141 	.get_dev_info		= sfc_ef10_get_dev_info,
1142 	.qsize_up_rings		= sfc_ef10_tx_qsize_up_rings,
1143 	.qcreate		= sfc_ef10_tx_qcreate,
1144 	.qdestroy		= sfc_ef10_tx_qdestroy,
1145 	.qstart			= sfc_ef10_tx_qstart,
1146 	.qtx_ev			= sfc_ef10_tx_qtx_ev,
1147 	.qstop			= sfc_ef10_tx_qstop,
1148 	.qreap			= sfc_ef10_tx_qreap,
1149 	.qdesc_status		= sfc_ef10_tx_qdesc_status,
1150 	.pkt_prepare		= sfc_ef10_prepare_pkts,
1151 	.pkt_burst		= sfc_ef10_xmit_pkts,
1152 };
1153 
1154 struct sfc_dp_tx sfc_ef10_simple_tx = {
1155 	.dp = {
1156 		.name		= SFC_KVARG_DATAPATH_EF10_SIMPLE,
1157 		.type		= SFC_DP_TX,
1158 	},
1159 	.features		= SFC_DP_TX_FEAT_MULTI_PROCESS,
1160 	.dev_offload_capa	= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE,
1161 	.queue_offload_capa	= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1162 				  RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1163 				  RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1164 				  RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM,
1165 	.get_dev_info		= sfc_ef10_get_dev_info,
1166 	.qsize_up_rings		= sfc_ef10_tx_qsize_up_rings,
1167 	.qcreate		= sfc_ef10_tx_qcreate,
1168 	.qdestroy		= sfc_ef10_tx_qdestroy,
1169 	.qstart			= sfc_ef10_tx_qstart,
1170 	.qtx_ev			= sfc_ef10_tx_qtx_ev,
1171 	.qstop			= sfc_ef10_tx_qstop,
1172 	.qreap			= sfc_ef10_tx_qreap,
1173 	.qdesc_status		= sfc_ef10_tx_qdesc_status,
1174 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
1175 	.pkt_prepare		= sfc_ef10_simple_prepare_pkts,
1176 #endif
1177 	.pkt_burst		= sfc_ef10_simple_xmit_pkts,
1178 };
1179