xref: /dpdk/drivers/net/sfc/sfc_ef10_rx.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF10 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23 
24 #include "sfc_debug.h"
25 #include "sfc_tweak.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_kvargs.h"
28 #include "sfc_ef10.h"
29 
30 #define SFC_EF10_RX_EV_ENCAP_SUPPORT	1
31 #include "sfc_ef10_rx_ev.h"
32 
33 #define sfc_ef10_rx_err(dpq, ...) \
34 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
35 
36 /**
37  * Maximum number of descriptors/buffers in the Rx ring.
38  * It should guarantee that corresponding event queue never overfill.
39  * EF10 native datapath uses event queue of the same size as Rx queue.
40  * Maximum number of events on datapath can be estimated as number of
41  * Rx queue entries (one event per Rx buffer in the worst case) plus
42  * Rx error and flush events.
43  */
44 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
45 	((_ndesc) - 1 /* head must not step on tail */ - \
46 	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
47 	 1 /* Rx error */ - 1 /* flush */)
48 
49 struct sfc_ef10_rx_sw_desc {
50 	struct rte_mbuf			*mbuf;
51 };
52 
53 struct sfc_ef10_rxq {
54 	/* Used on data path */
55 	unsigned int			flags;
56 #define SFC_EF10_RXQ_STARTED		0x1
57 #define SFC_EF10_RXQ_NOT_RUNNING	0x2
58 #define SFC_EF10_RXQ_EXCEPTION		0x4
59 #define SFC_EF10_RXQ_RSS_HASH		0x8
60 #define SFC_EF10_RXQ_FLAG_INTR_EN	0x10
61 	unsigned int			ptr_mask;
62 	unsigned int			pending;
63 	unsigned int			completed;
64 	unsigned int			evq_read_ptr;
65 	unsigned int			evq_read_ptr_primed;
66 	efx_qword_t			*evq_hw_ring;
67 	struct sfc_ef10_rx_sw_desc	*sw_ring;
68 	uint64_t			rearm_data;
69 	struct rte_mbuf			*scatter_pkt;
70 	volatile void			*evq_prime;
71 	uint16_t			prefix_size;
72 
73 	/* Used on refill */
74 	uint16_t			buf_size;
75 	unsigned int			added;
76 	unsigned int			max_fill_level;
77 	unsigned int			refill_threshold;
78 	struct rte_mempool		*refill_mb_pool;
79 	efx_qword_t			*rxq_hw_ring;
80 	volatile void			*doorbell;
81 
82 	/* Datapath receive queue anchor */
83 	struct sfc_dp_rxq		dp;
84 };
85 
86 static inline struct sfc_ef10_rxq *
87 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
88 {
89 	return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
90 }
91 
92 static void
93 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
94 {
95 	sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
96 	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
97 }
98 
99 static void
100 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
101 {
102 	const unsigned int ptr_mask = rxq->ptr_mask;
103 	const uint32_t buf_size = rxq->buf_size;
104 	unsigned int free_space;
105 	unsigned int bulks;
106 	void *objs[SFC_RX_REFILL_BULK];
107 	unsigned int added = rxq->added;
108 
109 	RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
110 
111 	free_space = rxq->max_fill_level - (added - rxq->completed);
112 
113 	if (free_space < rxq->refill_threshold)
114 		return;
115 
116 	bulks = free_space / RTE_DIM(objs);
117 	/* refill_threshold guarantees that bulks is positive */
118 	SFC_ASSERT(bulks > 0);
119 
120 	do {
121 		unsigned int id;
122 		unsigned int i;
123 
124 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
125 						  RTE_DIM(objs)) < 0)) {
126 			struct rte_eth_dev_data *dev_data =
127 				rte_eth_devices[rxq->dp.dpq.port_id].data;
128 
129 			/*
130 			 * It is hardly a safe way to increment counter
131 			 * from different contexts, but all PMDs do it.
132 			 */
133 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
134 			/* Return if we have posted nothing yet */
135 			if (added == rxq->added)
136 				return;
137 			/* Push posted */
138 			break;
139 		}
140 
141 		for (i = 0, id = added & ptr_mask;
142 		     i < RTE_DIM(objs);
143 		     ++i, ++id) {
144 			struct rte_mbuf *m = objs[i];
145 			struct sfc_ef10_rx_sw_desc *rxd;
146 			rte_iova_t phys_addr;
147 
148 			MBUF_RAW_ALLOC_CHECK(m);
149 
150 			SFC_ASSERT((id & ~ptr_mask) == 0);
151 			rxd = &rxq->sw_ring[id];
152 			rxd->mbuf = m;
153 
154 			/*
155 			 * Avoid writing to mbuf. It is cheaper to do it
156 			 * when we receive packet and fill in nearby
157 			 * structure members.
158 			 */
159 
160 			phys_addr = rte_mbuf_data_iova_default(m);
161 			EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
162 			    ESF_DZ_RX_KER_BYTE_CNT, buf_size,
163 			    ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
164 		}
165 
166 		added += RTE_DIM(objs);
167 	} while (--bulks > 0);
168 
169 	SFC_ASSERT(rxq->added != added);
170 	rxq->added = added;
171 	sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
172 }
173 
174 static void
175 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
176 {
177 	struct rte_mbuf *next_mbuf;
178 
179 	/* Prefetch next bunch of software descriptors */
180 	if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
181 		rte_prefetch0(&rxq->sw_ring[next_id]);
182 
183 	/*
184 	 * It looks strange to prefetch depending on previous prefetch
185 	 * data, but measurements show that it is really efficient and
186 	 * increases packet rate.
187 	 */
188 	next_mbuf = rxq->sw_ring[next_id].mbuf;
189 	if (likely(next_mbuf != NULL)) {
190 		/* Prefetch the next mbuf structure */
191 		rte_mbuf_prefetch_part1(next_mbuf);
192 
193 		/* Prefetch pseudo header of the next packet */
194 		/* data_off is not filled in yet */
195 		/* Yes, data could be not ready yet, but we hope */
196 		rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
197 			      RTE_PKTMBUF_HEADROOM);
198 	}
199 }
200 
201 static struct rte_mbuf **
202 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
203 		    uint16_t nb_pkts)
204 {
205 	uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
206 
207 	SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
208 
209 	if (n_rx_pkts != 0) {
210 		unsigned int completed = rxq->completed;
211 
212 		rxq->completed = completed + n_rx_pkts;
213 
214 		do {
215 			*rx_pkts++ =
216 				rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
217 		} while (completed != rxq->completed);
218 	}
219 
220 	return rx_pkts;
221 }
222 
223 static uint16_t
224 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
225 {
226 	return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
227 }
228 
229 static uint32_t
230 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
231 {
232 	return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
233 }
234 
235 static struct rte_mbuf **
236 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
237 			  struct rte_mbuf **rx_pkts,
238 			  struct rte_mbuf ** const rx_pkts_end)
239 {
240 	const unsigned int ptr_mask = rxq->ptr_mask;
241 	unsigned int pending = rxq->pending;
242 	unsigned int ready;
243 	struct sfc_ef10_rx_sw_desc *rxd;
244 	struct rte_mbuf *m;
245 	struct rte_mbuf *m0;
246 	const uint8_t *pseudo_hdr;
247 	uint16_t seg_len;
248 
249 	ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
250 		EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
251 
252 	if (ready == 0) {
253 		/* Rx abort - it was no enough descriptors for Rx packet */
254 		rte_pktmbuf_free(rxq->scatter_pkt);
255 		rxq->scatter_pkt = NULL;
256 		return rx_pkts;
257 	}
258 
259 	rxq->pending = pending + ready;
260 
261 	if (rx_ev.eq_u64[0] &
262 	    rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
263 			     (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
264 		SFC_ASSERT(rxq->completed == pending);
265 		do {
266 			rxd = &rxq->sw_ring[pending++ & ptr_mask];
267 			rte_mbuf_raw_free(rxd->mbuf);
268 		} while (pending != rxq->pending);
269 		rxq->completed = pending;
270 		return rx_pkts;
271 	}
272 
273 	/* If scattered packet is in progress */
274 	if (rxq->scatter_pkt != NULL) {
275 		/* Events for scattered packet frags are not merged */
276 		SFC_ASSERT(ready == 1);
277 		SFC_ASSERT(rxq->completed == pending);
278 
279 		/* There is no pseudo-header in scatter segments. */
280 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
281 
282 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
283 		m = rxd->mbuf;
284 
285 		MBUF_RAW_ALLOC_CHECK(m);
286 
287 		m->data_off = RTE_PKTMBUF_HEADROOM;
288 		rte_pktmbuf_data_len(m) = seg_len;
289 		rte_pktmbuf_pkt_len(m) = seg_len;
290 
291 		rxq->scatter_pkt->nb_segs++;
292 		rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
293 		rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
294 
295 		if (~rx_ev.eq_u64[0] &
296 		    rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
297 			*rx_pkts++ = rxq->scatter_pkt;
298 			rxq->scatter_pkt = NULL;
299 		}
300 		rxq->completed = pending;
301 		return rx_pkts;
302 	}
303 
304 	rxd = &rxq->sw_ring[pending++ & ptr_mask];
305 
306 	sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
307 
308 	m = rxd->mbuf;
309 
310 	RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
311 	m->rearm_data[0] = rxq->rearm_data;
312 
313 	/* Classify packet based on Rx event */
314 	/* Mask RSS hash offload flag if RSS is not enabled */
315 	sfc_ef10_rx_ev_to_offloads(rx_ev, m,
316 				   (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
317 				   ~0ull : ~PKT_RX_RSS_HASH);
318 
319 	/* data_off already moved past pseudo header */
320 	pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
321 
322 	/*
323 	 * Always get RSS hash from pseudo header to avoid
324 	 * condition/branching. If it is valid or not depends on
325 	 * PKT_RX_RSS_HASH in m->ol_flags.
326 	 */
327 	m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
328 
329 	if (ready == 1)
330 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
331 			rxq->prefix_size;
332 	else
333 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
334 	SFC_ASSERT(seg_len > 0);
335 	rte_pktmbuf_data_len(m) = seg_len;
336 	rte_pktmbuf_pkt_len(m) = seg_len;
337 
338 	SFC_ASSERT(m->next == NULL);
339 
340 	if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
341 		*rx_pkts++ = m;
342 		rxq->completed = pending;
343 	} else {
344 		/* Events with CONT bit are not merged */
345 		SFC_ASSERT(ready == 1);
346 		rxq->scatter_pkt = m;
347 		rxq->completed = pending;
348 		return rx_pkts;
349 	}
350 
351 	/* Remember mbuf to copy offload flags and packet type from */
352 	m0 = m;
353 	while (pending != rxq->pending) {
354 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
355 
356 		sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
357 
358 		m = rxd->mbuf;
359 
360 		if (rx_pkts != rx_pkts_end) {
361 			*rx_pkts++ = m;
362 			rxq->completed = pending;
363 		}
364 
365 		RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
366 				 sizeof(rxq->rearm_data));
367 		m->rearm_data[0] = rxq->rearm_data;
368 
369 		/* Event-dependent information is the same */
370 		m->ol_flags = m0->ol_flags;
371 		m->packet_type = m0->packet_type;
372 
373 		/* data_off already moved past pseudo header */
374 		pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
375 
376 		/*
377 		 * Always get RSS hash from pseudo header to avoid
378 		 * condition/branching. If it is valid or not depends on
379 		 * PKT_RX_RSS_HASH in m->ol_flags.
380 		 */
381 		m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
382 
383 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
384 		SFC_ASSERT(seg_len > 0);
385 		rte_pktmbuf_data_len(m) = seg_len;
386 		rte_pktmbuf_pkt_len(m) = seg_len;
387 
388 		SFC_ASSERT(m->next == NULL);
389 	}
390 
391 	return rx_pkts;
392 }
393 
394 static bool
395 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
396 {
397 	*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
398 
399 	if (!sfc_ef10_ev_present(*rx_ev))
400 		return false;
401 
402 	if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
403 		     FSE_AZ_EV_CODE_RX_EV)) {
404 		/*
405 		 * Do not move read_ptr to keep the event for exception
406 		 * handling by the control path.
407 		 */
408 		rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
409 		sfc_ef10_rx_err(&rxq->dp.dpq,
410 				"RxQ exception at EvQ read ptr %#x",
411 				rxq->evq_read_ptr);
412 		return false;
413 	}
414 
415 	rxq->evq_read_ptr++;
416 	return true;
417 }
418 
419 static uint16_t
420 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
421 {
422 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
423 	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
424 	unsigned int evq_old_read_ptr;
425 	efx_qword_t rx_ev;
426 
427 	rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
428 
429 	if (unlikely(rxq->flags &
430 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
431 		goto done;
432 
433 	evq_old_read_ptr = rxq->evq_read_ptr;
434 	while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
435 		/*
436 		 * DROP_EVENT is an internal to the NIC, software should
437 		 * never see it and, therefore, may ignore it.
438 		 */
439 
440 		rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
441 						    rx_pkts, rx_pkts_end);
442 	}
443 
444 	sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
445 			   rxq->evq_read_ptr);
446 
447 	/* It is not a problem if we refill in the case of exception */
448 	sfc_ef10_rx_qrefill(rxq);
449 
450 	if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
451 	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
452 		sfc_ef10_rx_qprime(rxq);
453 
454 done:
455 	return nb_pkts - (rx_pkts_end - rx_pkts);
456 }
457 
458 const uint32_t *
459 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
460 {
461 	static const uint32_t ef10_native_ptypes[] = {
462 		RTE_PTYPE_L2_ETHER,
463 		RTE_PTYPE_L2_ETHER_ARP,
464 		RTE_PTYPE_L2_ETHER_VLAN,
465 		RTE_PTYPE_L2_ETHER_QINQ,
466 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
467 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
468 		RTE_PTYPE_L4_FRAG,
469 		RTE_PTYPE_L4_TCP,
470 		RTE_PTYPE_L4_UDP,
471 		RTE_PTYPE_UNKNOWN
472 	};
473 	static const uint32_t ef10_overlay_ptypes[] = {
474 		RTE_PTYPE_L2_ETHER,
475 		RTE_PTYPE_L2_ETHER_ARP,
476 		RTE_PTYPE_L2_ETHER_VLAN,
477 		RTE_PTYPE_L2_ETHER_QINQ,
478 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
479 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
480 		RTE_PTYPE_L4_FRAG,
481 		RTE_PTYPE_L4_TCP,
482 		RTE_PTYPE_L4_UDP,
483 		RTE_PTYPE_TUNNEL_VXLAN,
484 		RTE_PTYPE_TUNNEL_NVGRE,
485 		RTE_PTYPE_INNER_L2_ETHER,
486 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
487 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
488 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
489 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
490 		RTE_PTYPE_INNER_L4_FRAG,
491 		RTE_PTYPE_INNER_L4_TCP,
492 		RTE_PTYPE_INNER_L4_UDP,
493 		RTE_PTYPE_UNKNOWN
494 	};
495 
496 	/*
497 	 * The function returns static set of supported packet types,
498 	 * so we can't build it dynamically based on supported tunnel
499 	 * encapsulations and should limit to known sets.
500 	 */
501 	switch (tunnel_encaps) {
502 	case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
503 	      1u << EFX_TUNNEL_PROTOCOL_GENEVE |
504 	      1u << EFX_TUNNEL_PROTOCOL_NVGRE):
505 		return ef10_overlay_ptypes;
506 	default:
507 		SFC_GENERIC_LOG(ERR,
508 			"Unexpected set of supported tunnel encapsulations: %#x",
509 			tunnel_encaps);
510 		/* FALLTHROUGH */
511 	case 0:
512 		return ef10_native_ptypes;
513 	}
514 }
515 
516 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
517 static unsigned int
518 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
519 {
520 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
521 	efx_qword_t rx_ev;
522 	const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
523 	unsigned int pending = rxq->pending;
524 	unsigned int ready;
525 
526 	if (unlikely(rxq->flags &
527 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
528 		goto done;
529 
530 	while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
531 		ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
532 			 pending) &
533 			EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
534 		pending += ready;
535 	}
536 
537 	/*
538 	 * The function does not process events, so return event queue read
539 	 * pointer to the original position to allow the events that were
540 	 * read to be processed later
541 	 */
542 	rxq->evq_read_ptr = evq_old_read_ptr;
543 
544 done:
545 	return pending - rxq->completed;
546 }
547 
548 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
549 static int
550 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
551 {
552 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
553 	unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
554 
555 	if (unlikely(offset > rxq->ptr_mask))
556 		return -EINVAL;
557 
558 	if (offset < npending)
559 		return RTE_ETH_RX_DESC_DONE;
560 
561 	if (offset < (rxq->added - rxq->completed))
562 		return RTE_ETH_RX_DESC_AVAIL;
563 
564 	return RTE_ETH_RX_DESC_UNAVAIL;
565 }
566 
567 
568 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
569 static void
570 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
571 {
572 	/*
573 	 * Number of descriptors just defines maximum number of pushed
574 	 * descriptors (fill level).
575 	 */
576 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
577 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
578 }
579 
580 
581 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
582 static int
583 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
584 			   struct sfc_dp_rx_hw_limits *limits,
585 			   __rte_unused struct rte_mempool *mb_pool,
586 			   unsigned int *rxq_entries,
587 			   unsigned int *evq_entries,
588 			   unsigned int *rxq_max_fill_level)
589 {
590 	/*
591 	 * rte_ethdev API guarantees that the number meets min, max and
592 	 * alignment requirements.
593 	 */
594 	if (nb_rx_desc <= limits->rxq_min_entries)
595 		*rxq_entries = limits->rxq_min_entries;
596 	else
597 		*rxq_entries = rte_align32pow2(nb_rx_desc);
598 
599 	*evq_entries = *rxq_entries;
600 
601 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
602 				      SFC_EF10_RXQ_LIMIT(*evq_entries));
603 	return 0;
604 }
605 
606 
607 static uint64_t
608 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
609 {
610 	struct rte_mbuf m;
611 
612 	memset(&m, 0, sizeof(m));
613 
614 	rte_mbuf_refcnt_set(&m, 1);
615 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
616 	m.nb_segs = 1;
617 	m.port = port_id;
618 
619 	/* rearm_data covers structure members filled in above */
620 	rte_compiler_barrier();
621 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
622 	return m.rearm_data[0];
623 }
624 
625 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
626 static int
627 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
628 		    const struct rte_pci_addr *pci_addr, int socket_id,
629 		    const struct sfc_dp_rx_qcreate_info *info,
630 		    struct sfc_dp_rxq **dp_rxqp)
631 {
632 	struct sfc_ef10_rxq *rxq;
633 	int rc;
634 
635 	rc = EINVAL;
636 	if (info->rxq_entries != info->evq_entries)
637 		goto fail_rxq_args;
638 
639 	rc = ENOMEM;
640 	rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
641 				 RTE_CACHE_LINE_SIZE, socket_id);
642 	if (rxq == NULL)
643 		goto fail_rxq_alloc;
644 
645 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
646 
647 	rc = ENOMEM;
648 	rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
649 					 info->rxq_entries,
650 					 sizeof(*rxq->sw_ring),
651 					 RTE_CACHE_LINE_SIZE, socket_id);
652 	if (rxq->sw_ring == NULL)
653 		goto fail_desc_alloc;
654 
655 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
656 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
657 		rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
658 	rxq->ptr_mask = info->rxq_entries - 1;
659 	rxq->evq_hw_ring = info->evq_hw_ring;
660 	rxq->max_fill_level = info->max_fill_level;
661 	rxq->refill_threshold = info->refill_threshold;
662 	rxq->rearm_data =
663 		sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
664 	rxq->prefix_size = info->prefix_size;
665 	rxq->buf_size = info->buf_size;
666 	rxq->refill_mb_pool = info->refill_mb_pool;
667 	rxq->rxq_hw_ring = info->rxq_hw_ring;
668 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
669 			ER_DZ_RX_DESC_UPD_REG_OFST +
670 			(info->hw_index << info->vi_window_shift);
671 	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
672 		      ER_DZ_EVQ_RPTR_REG_OFST +
673 		      (info->evq_hw_index << info->vi_window_shift);
674 
675 	*dp_rxqp = &rxq->dp;
676 	return 0;
677 
678 fail_desc_alloc:
679 	rte_free(rxq);
680 
681 fail_rxq_alloc:
682 fail_rxq_args:
683 	return rc;
684 }
685 
686 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
687 static void
688 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
689 {
690 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
691 
692 	rte_free(rxq->sw_ring);
693 	rte_free(rxq);
694 }
695 
696 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
697 static int
698 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
699 {
700 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
701 
702 	SFC_ASSERT(rxq->completed == 0);
703 	SFC_ASSERT(rxq->pending == 0);
704 	SFC_ASSERT(rxq->added == 0);
705 
706 	sfc_ef10_rx_qrefill(rxq);
707 
708 	rxq->evq_read_ptr = evq_read_ptr;
709 
710 	rxq->flags |= SFC_EF10_RXQ_STARTED;
711 	rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
712 
713 	if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
714 		sfc_ef10_rx_qprime(rxq);
715 
716 	return 0;
717 }
718 
719 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
720 static void
721 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
722 {
723 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
724 
725 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
726 
727 	*evq_read_ptr = rxq->evq_read_ptr;
728 }
729 
730 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
731 static bool
732 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
733 {
734 	__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
735 
736 	SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
737 
738 	/*
739 	 * It is safe to ignore Rx event since we free all mbufs on
740 	 * queue purge anyway.
741 	 */
742 
743 	return false;
744 }
745 
746 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
747 static void
748 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
749 {
750 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
751 	unsigned int i;
752 	struct sfc_ef10_rx_sw_desc *rxd;
753 
754 	rte_pktmbuf_free(rxq->scatter_pkt);
755 	rxq->scatter_pkt = NULL;
756 
757 	for (i = rxq->completed; i != rxq->added; ++i) {
758 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
759 		rte_mbuf_raw_free(rxd->mbuf);
760 		rxd->mbuf = NULL;
761 	}
762 
763 	rxq->completed = rxq->pending = rxq->added = 0;
764 
765 	rxq->flags &= ~SFC_EF10_RXQ_STARTED;
766 }
767 
768 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
769 static int
770 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
771 {
772 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
773 
774 	rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
775 	if (rxq->flags & SFC_EF10_RXQ_STARTED)
776 		sfc_ef10_rx_qprime(rxq);
777 	return 0;
778 }
779 
780 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
781 static int
782 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
783 {
784 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
785 
786 	/* Cannot disarm, just disable rearm */
787 	rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
788 	return 0;
789 }
790 
791 struct sfc_dp_rx sfc_ef10_rx = {
792 	.dp = {
793 		.name		= SFC_KVARG_DATAPATH_EF10,
794 		.type		= SFC_DP_RX,
795 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
796 	},
797 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
798 				  SFC_DP_RX_FEAT_INTR,
799 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
800 				  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
801 				  DEV_RX_OFFLOAD_RSS_HASH,
802 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
803 	.get_dev_info		= sfc_ef10_rx_get_dev_info,
804 	.qsize_up_rings		= sfc_ef10_rx_qsize_up_rings,
805 	.qcreate		= sfc_ef10_rx_qcreate,
806 	.qdestroy		= sfc_ef10_rx_qdestroy,
807 	.qstart			= sfc_ef10_rx_qstart,
808 	.qstop			= sfc_ef10_rx_qstop,
809 	.qrx_ev			= sfc_ef10_rx_qrx_ev,
810 	.qpurge			= sfc_ef10_rx_qpurge,
811 	.supported_ptypes_get	= sfc_ef10_supported_ptypes_get,
812 	.qdesc_npending		= sfc_ef10_rx_qdesc_npending,
813 	.qdesc_status		= sfc_ef10_rx_qdesc_status,
814 	.intr_enable		= sfc_ef10_rx_intr_enable,
815 	.intr_disable		= sfc_ef10_rx_intr_disable,
816 	.pkt_burst		= sfc_ef10_recv_pkts,
817 };
818