xref: /dpdk/drivers/net/sfc/sfc_ef10_rx.c (revision ba6a168a06581b5b3d523f984722a3e5f65bbb82)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF10 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23 
24 #include "sfc_debug.h"
25 #include "sfc_tweak.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_kvargs.h"
28 #include "sfc_ef10.h"
29 
30 #define SFC_EF10_RX_EV_ENCAP_SUPPORT	1
31 #include "sfc_ef10_rx_ev.h"
32 
33 #define sfc_ef10_rx_err(dpq, ...) \
34 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
35 
36 #define sfc_ef10_rx_info(dpq, ...) \
37 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
38 
39 /**
40  * Maximum number of descriptors/buffers in the Rx ring.
41  * It should guarantee that corresponding event queue never overfill.
42  * EF10 native datapath uses event queue of the same size as Rx queue.
43  * Maximum number of events on datapath can be estimated as number of
44  * Rx queue entries (one event per Rx buffer in the worst case) plus
45  * Rx error and flush events.
46  */
47 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
48 	((_ndesc) - 1 /* head must not step on tail */ - \
49 	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
50 	 1 /* Rx error */ - 1 /* flush */)
51 
52 struct sfc_ef10_rx_sw_desc {
53 	struct rte_mbuf			*mbuf;
54 };
55 
56 struct sfc_ef10_rxq {
57 	/* Used on data path */
58 	unsigned int			flags;
59 #define SFC_EF10_RXQ_STARTED		0x1
60 #define SFC_EF10_RXQ_NOT_RUNNING	0x2
61 #define SFC_EF10_RXQ_EXCEPTION		0x4
62 #define SFC_EF10_RXQ_RSS_HASH		0x8
63 #define SFC_EF10_RXQ_FLAG_INTR_EN	0x10
64 	unsigned int			ptr_mask;
65 	unsigned int			pending;
66 	unsigned int			completed;
67 	unsigned int			evq_read_ptr;
68 	unsigned int			evq_read_ptr_primed;
69 	efx_qword_t			*evq_hw_ring;
70 	struct sfc_ef10_rx_sw_desc	*sw_ring;
71 	uint64_t			rearm_data;
72 	struct rte_mbuf			*scatter_pkt;
73 	volatile void			*evq_prime;
74 	uint16_t			prefix_size;
75 
76 	/* Used on refill */
77 	uint16_t			buf_size;
78 	unsigned int			added;
79 	unsigned int			max_fill_level;
80 	unsigned int			refill_threshold;
81 	struct rte_mempool		*refill_mb_pool;
82 	efx_qword_t			*rxq_hw_ring;
83 	volatile void			*doorbell;
84 
85 	/* Datapath receive queue anchor */
86 	struct sfc_dp_rxq		dp;
87 };
88 
89 static inline struct sfc_ef10_rxq *
sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq * dp_rxq)90 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
91 {
92 	return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
93 }
94 
95 static void
sfc_ef10_rx_qprime(struct sfc_ef10_rxq * rxq)96 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
97 {
98 	sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
99 	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
100 }
101 
102 static void
sfc_ef10_rx_qrefill(struct sfc_ef10_rxq * rxq)103 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
104 {
105 	const unsigned int ptr_mask = rxq->ptr_mask;
106 	const uint32_t buf_size = rxq->buf_size;
107 	unsigned int free_space;
108 	unsigned int bulks;
109 	void *objs[SFC_RX_REFILL_BULK];
110 	unsigned int added = rxq->added;
111 
112 	RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
113 
114 	free_space = rxq->max_fill_level - (added - rxq->completed);
115 
116 	if (free_space < rxq->refill_threshold)
117 		return;
118 
119 	bulks = free_space / RTE_DIM(objs);
120 	/* refill_threshold guarantees that bulks is positive */
121 	SFC_ASSERT(bulks > 0);
122 
123 	do {
124 		unsigned int id;
125 		unsigned int i;
126 
127 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
128 						  RTE_DIM(objs)) < 0)) {
129 			struct rte_eth_dev_data *dev_data =
130 				rte_eth_devices[rxq->dp.dpq.port_id].data;
131 
132 			/*
133 			 * It is hardly a safe way to increment counter
134 			 * from different contexts, but all PMDs do it.
135 			 */
136 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
137 			/* Return if we have posted nothing yet */
138 			if (added == rxq->added)
139 				return;
140 			/* Push posted */
141 			break;
142 		}
143 
144 		for (i = 0, id = added & ptr_mask;
145 		     i < RTE_DIM(objs);
146 		     ++i, ++id) {
147 			struct rte_mbuf *m = objs[i];
148 			struct sfc_ef10_rx_sw_desc *rxd;
149 			rte_iova_t phys_addr;
150 
151 			__rte_mbuf_raw_sanity_check(m);
152 
153 			SFC_ASSERT((id & ~ptr_mask) == 0);
154 			rxd = &rxq->sw_ring[id];
155 			rxd->mbuf = m;
156 
157 			/*
158 			 * Avoid writing to mbuf. It is cheaper to do it
159 			 * when we receive packet and fill in nearby
160 			 * structure members.
161 			 */
162 
163 			phys_addr = rte_mbuf_data_iova_default(m);
164 			EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
165 			    ESF_DZ_RX_KER_BYTE_CNT, buf_size,
166 			    ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
167 		}
168 
169 		added += RTE_DIM(objs);
170 	} while (--bulks > 0);
171 
172 	SFC_ASSERT(rxq->added != added);
173 	rxq->added = added;
174 	sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask, &rxq->dp.dpq.dbells);
175 }
176 
177 static void
sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq * rxq,unsigned int next_id)178 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
179 {
180 	struct rte_mbuf *next_mbuf;
181 
182 	/* Prefetch next bunch of software descriptors */
183 	if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
184 		rte_prefetch0(&rxq->sw_ring[next_id]);
185 
186 	/*
187 	 * It looks strange to prefetch depending on previous prefetch
188 	 * data, but measurements show that it is really efficient and
189 	 * increases packet rate.
190 	 */
191 	next_mbuf = rxq->sw_ring[next_id].mbuf;
192 	if (likely(next_mbuf != NULL)) {
193 		/* Prefetch the next mbuf structure */
194 		rte_mbuf_prefetch_part1(next_mbuf);
195 
196 		/* Prefetch pseudo header of the next packet */
197 		/* data_off is not filled in yet */
198 		/* Yes, data could be not ready yet, but we hope */
199 		rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
200 			      RTE_PKTMBUF_HEADROOM);
201 	}
202 }
203 
204 static struct rte_mbuf **
sfc_ef10_rx_pending(struct sfc_ef10_rxq * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)205 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
206 		    uint16_t nb_pkts)
207 {
208 	uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
209 
210 	SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
211 
212 	if (n_rx_pkts != 0) {
213 		unsigned int completed = rxq->completed;
214 
215 		rxq->completed = completed + n_rx_pkts;
216 
217 		do {
218 			*rx_pkts++ =
219 				rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
220 		} while (completed != rxq->completed);
221 	}
222 
223 	return rx_pkts;
224 }
225 
226 /*
227  * Below Rx pseudo-header (aka Rx prefix) accessors rely on the
228  * following fields layout.
229  */
230 static const efx_rx_prefix_layout_t sfc_ef10_rx_prefix_layout = {
231 	.erpl_fields	= {
232 		[EFX_RX_PREFIX_FIELD_RSS_HASH]	=
233 		    { 0, sizeof(uint32_t) * CHAR_BIT, B_FALSE },
234 		[EFX_RX_PREFIX_FIELD_LENGTH]	=
235 		    { 8 * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT, B_FALSE },
236 	}
237 };
238 static uint16_t
sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t * pseudo_hdr)239 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
240 {
241 	return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
242 }
243 
244 static uint32_t
sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t * pseudo_hdr)245 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
246 {
247 	return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
248 }
249 
250 static struct rte_mbuf **
sfc_ef10_rx_process_event(struct sfc_ef10_rxq * rxq,efx_qword_t rx_ev,struct rte_mbuf ** rx_pkts,struct rte_mbuf ** const rx_pkts_end)251 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
252 			  struct rte_mbuf **rx_pkts,
253 			  struct rte_mbuf ** const rx_pkts_end)
254 {
255 	const unsigned int ptr_mask = rxq->ptr_mask;
256 	unsigned int pending = rxq->pending;
257 	unsigned int ready;
258 	struct sfc_ef10_rx_sw_desc *rxd;
259 	struct rte_mbuf *m;
260 	struct rte_mbuf *m0;
261 	const uint8_t *pseudo_hdr;
262 	uint16_t seg_len;
263 
264 	ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
265 		EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
266 
267 	if (ready == 0) {
268 		/* Rx abort - it was no enough descriptors for Rx packet */
269 		rte_pktmbuf_free(rxq->scatter_pkt);
270 		rxq->scatter_pkt = NULL;
271 		return rx_pkts;
272 	}
273 
274 	rxq->pending = pending + ready;
275 
276 	if (rx_ev.eq_u64[0] &
277 	    rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
278 			     (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
279 		SFC_ASSERT(rxq->completed == pending);
280 		do {
281 			rxd = &rxq->sw_ring[pending++ & ptr_mask];
282 			rte_mbuf_raw_free(rxd->mbuf);
283 		} while (pending != rxq->pending);
284 		rxq->completed = pending;
285 		return rx_pkts;
286 	}
287 
288 	/* If scattered packet is in progress */
289 	if (rxq->scatter_pkt != NULL) {
290 		/* Events for scattered packet frags are not merged */
291 		SFC_ASSERT(ready == 1);
292 		SFC_ASSERT(rxq->completed == pending);
293 
294 		/* There is no pseudo-header in scatter segments. */
295 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
296 
297 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
298 		m = rxd->mbuf;
299 
300 		__rte_mbuf_raw_sanity_check(m);
301 
302 		m->data_off = RTE_PKTMBUF_HEADROOM;
303 		rte_pktmbuf_data_len(m) = seg_len;
304 		rte_pktmbuf_pkt_len(m) = seg_len;
305 
306 		rxq->scatter_pkt->nb_segs++;
307 		rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
308 		rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
309 
310 		if (~rx_ev.eq_u64[0] &
311 		    rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
312 			*rx_pkts++ = rxq->scatter_pkt;
313 			rxq->scatter_pkt = NULL;
314 		}
315 		rxq->completed = pending;
316 		return rx_pkts;
317 	}
318 
319 	rxd = &rxq->sw_ring[pending++ & ptr_mask];
320 
321 	sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
322 
323 	m = rxd->mbuf;
324 
325 	RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
326 	m->rearm_data[0] = rxq->rearm_data;
327 
328 	/* Classify packet based on Rx event */
329 	/* Mask RSS hash offload flag if RSS is not enabled */
330 	sfc_ef10_rx_ev_to_offloads(rx_ev, m,
331 				   (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
332 				   ~0ull : ~RTE_MBUF_F_RX_RSS_HASH);
333 
334 	/* data_off already moved past pseudo header */
335 	pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
336 
337 	/*
338 	 * Always get RSS hash from pseudo header to avoid
339 	 * condition/branching. If it is valid or not depends on
340 	 * RTE_MBUF_F_RX_RSS_HASH in m->ol_flags.
341 	 */
342 	m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
343 
344 	if (ready == 1)
345 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
346 			rxq->prefix_size;
347 	else
348 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
349 	SFC_ASSERT(seg_len > 0);
350 	rte_pktmbuf_data_len(m) = seg_len;
351 	rte_pktmbuf_pkt_len(m) = seg_len;
352 
353 	SFC_ASSERT(m->next == NULL);
354 
355 	if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
356 		*rx_pkts++ = m;
357 		rxq->completed = pending;
358 	} else {
359 		/* Events with CONT bit are not merged */
360 		SFC_ASSERT(ready == 1);
361 		rxq->scatter_pkt = m;
362 		rxq->completed = pending;
363 		return rx_pkts;
364 	}
365 
366 	/* Remember mbuf to copy offload flags and packet type from */
367 	m0 = m;
368 	while (pending != rxq->pending) {
369 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
370 
371 		sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
372 
373 		m = rxd->mbuf;
374 
375 		if (rx_pkts != rx_pkts_end) {
376 			*rx_pkts++ = m;
377 			rxq->completed = pending;
378 		}
379 
380 		RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
381 				 sizeof(rxq->rearm_data));
382 		m->rearm_data[0] = rxq->rearm_data;
383 
384 		/* Event-dependent information is the same */
385 		m->ol_flags = m0->ol_flags;
386 		m->packet_type = m0->packet_type;
387 
388 		/* data_off already moved past pseudo header */
389 		pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
390 
391 		/*
392 		 * Always get RSS hash from pseudo header to avoid
393 		 * condition/branching. If it is valid or not depends on
394 		 * RTE_MBUF_F_RX_RSS_HASH in m->ol_flags.
395 		 */
396 		m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
397 
398 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
399 		SFC_ASSERT(seg_len > 0);
400 		rte_pktmbuf_data_len(m) = seg_len;
401 		rte_pktmbuf_pkt_len(m) = seg_len;
402 
403 		SFC_ASSERT(m->next == NULL);
404 	}
405 
406 	return rx_pkts;
407 }
408 
409 static bool
sfc_ef10_rx_get_event(struct sfc_ef10_rxq * rxq,efx_qword_t * rx_ev)410 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
411 {
412 	*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
413 
414 	if (!sfc_ef10_ev_present(*rx_ev))
415 		return false;
416 
417 	if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
418 		     FSE_AZ_EV_CODE_RX_EV)) {
419 		/*
420 		 * Do not move read_ptr to keep the event for exception
421 		 * handling by the control path.
422 		 */
423 		rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
424 		sfc_ef10_rx_err(&rxq->dp.dpq,
425 				"RxQ exception at EvQ read ptr %#x",
426 				rxq->evq_read_ptr);
427 		return false;
428 	}
429 
430 	rxq->evq_read_ptr++;
431 	return true;
432 }
433 
434 static uint16_t
sfc_ef10_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)435 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
436 {
437 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
438 	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
439 	unsigned int evq_old_read_ptr;
440 	efx_qword_t rx_ev;
441 
442 	rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
443 
444 	if (unlikely(rxq->flags &
445 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
446 		goto done;
447 
448 	evq_old_read_ptr = rxq->evq_read_ptr;
449 	while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
450 		/*
451 		 * DROP_EVENT is an internal to the NIC, software should
452 		 * never see it and, therefore, may ignore it.
453 		 */
454 
455 		rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
456 						    rx_pkts, rx_pkts_end);
457 	}
458 
459 	sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
460 			   rxq->evq_read_ptr);
461 
462 	/* It is not a problem if we refill in the case of exception */
463 	sfc_ef10_rx_qrefill(rxq);
464 
465 	if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
466 	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
467 		sfc_ef10_rx_qprime(rxq);
468 
469 done:
470 	return nb_pkts - (rx_pkts_end - rx_pkts);
471 }
472 
473 const uint32_t *
sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps,size_t * no_of_elements)474 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps, size_t *no_of_elements)
475 {
476 	static const uint32_t ef10_native_ptypes[] = {
477 		RTE_PTYPE_L2_ETHER,
478 		RTE_PTYPE_L2_ETHER_ARP,
479 		RTE_PTYPE_L2_ETHER_VLAN,
480 		RTE_PTYPE_L2_ETHER_QINQ,
481 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
482 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
483 		RTE_PTYPE_L4_FRAG,
484 		RTE_PTYPE_L4_TCP,
485 		RTE_PTYPE_L4_UDP,
486 	};
487 	static const uint32_t ef10_overlay_ptypes[] = {
488 		RTE_PTYPE_L2_ETHER,
489 		RTE_PTYPE_L2_ETHER_ARP,
490 		RTE_PTYPE_L2_ETHER_VLAN,
491 		RTE_PTYPE_L2_ETHER_QINQ,
492 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
493 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
494 		RTE_PTYPE_L4_FRAG,
495 		RTE_PTYPE_L4_TCP,
496 		RTE_PTYPE_L4_UDP,
497 		RTE_PTYPE_TUNNEL_VXLAN,
498 		RTE_PTYPE_TUNNEL_NVGRE,
499 		RTE_PTYPE_INNER_L2_ETHER,
500 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
501 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
502 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
503 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
504 		RTE_PTYPE_INNER_L4_FRAG,
505 		RTE_PTYPE_INNER_L4_TCP,
506 		RTE_PTYPE_INNER_L4_UDP,
507 	};
508 
509 	/*
510 	 * The function returns static set of supported packet types,
511 	 * so we can't build it dynamically based on supported tunnel
512 	 * encapsulations and should limit to known sets.
513 	 */
514 	switch (tunnel_encaps) {
515 	case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
516 	      1u << EFX_TUNNEL_PROTOCOL_GENEVE |
517 	      1u << EFX_TUNNEL_PROTOCOL_NVGRE):
518 		*no_of_elements = RTE_DIM(ef10_overlay_ptypes);
519 		return ef10_overlay_ptypes;
520 	default:
521 		SFC_GENERIC_LOG(ERR,
522 			"Unexpected set of supported tunnel encapsulations: %#x",
523 			tunnel_encaps);
524 		/* FALLTHROUGH */
525 	case 0:
526 		*no_of_elements = RTE_DIM(ef10_native_ptypes);
527 		return ef10_native_ptypes;
528 	}
529 }
530 
531 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
532 static unsigned int
sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq * dp_rxq)533 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
534 {
535 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
536 	efx_qword_t rx_ev;
537 	const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
538 	unsigned int pending = rxq->pending;
539 	unsigned int ready;
540 
541 	if (unlikely(rxq->flags &
542 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
543 		goto done;
544 
545 	while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
546 		ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
547 			 pending) &
548 			EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
549 		pending += ready;
550 	}
551 
552 	/*
553 	 * The function does not process events, so return event queue read
554 	 * pointer to the original position to allow the events that were
555 	 * read to be processed later
556 	 */
557 	rxq->evq_read_ptr = evq_old_read_ptr;
558 
559 done:
560 	return pending - rxq->completed;
561 }
562 
563 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
564 static int
sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq * dp_rxq,uint16_t offset)565 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
566 {
567 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
568 	unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
569 
570 	if (unlikely(offset > rxq->ptr_mask))
571 		return -EINVAL;
572 
573 	if (offset < npending)
574 		return RTE_ETH_RX_DESC_DONE;
575 
576 	if (offset < (rxq->added - rxq->completed))
577 		return RTE_ETH_RX_DESC_AVAIL;
578 
579 	return RTE_ETH_RX_DESC_UNAVAIL;
580 }
581 
582 
583 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
584 static void
sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info * dev_info)585 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
586 {
587 	/*
588 	 * Number of descriptors just defines maximum number of pushed
589 	 * descriptors (fill level).
590 	 */
591 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
592 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
593 }
594 
595 
596 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
597 static int
sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,struct sfc_dp_rx_hw_limits * limits,__rte_unused struct rte_mempool * mb_pool,unsigned int * rxq_entries,unsigned int * evq_entries,unsigned int * rxq_max_fill_level)598 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
599 			   struct sfc_dp_rx_hw_limits *limits,
600 			   __rte_unused struct rte_mempool *mb_pool,
601 			   unsigned int *rxq_entries,
602 			   unsigned int *evq_entries,
603 			   unsigned int *rxq_max_fill_level)
604 {
605 	/*
606 	 * rte_ethdev API guarantees that the number meets min, max and
607 	 * alignment requirements.
608 	 */
609 	if (nb_rx_desc <= limits->rxq_min_entries)
610 		*rxq_entries = limits->rxq_min_entries;
611 	else
612 		*rxq_entries = rte_align32pow2(nb_rx_desc);
613 
614 	*evq_entries = *rxq_entries;
615 
616 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
617 				      SFC_EF10_RXQ_LIMIT(*evq_entries));
618 	return 0;
619 }
620 
621 
622 static uint64_t
sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id,uint16_t prefix_size)623 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
624 {
625 	struct rte_mbuf m;
626 
627 	memset(&m, 0, sizeof(m));
628 
629 	rte_mbuf_refcnt_set(&m, 1);
630 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
631 	m.nb_segs = 1;
632 	m.port = port_id;
633 
634 	/* rearm_data covers structure members filled in above */
635 	rte_compiler_barrier();
636 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
637 	return m.rearm_data[0];
638 }
639 
640 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
641 static int
sfc_ef10_rx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_rx_qcreate_info * info,struct sfc_dp_rxq ** dp_rxqp)642 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
643 		    const struct rte_pci_addr *pci_addr, int socket_id,
644 		    const struct sfc_dp_rx_qcreate_info *info,
645 		    struct sfc_dp_rxq **dp_rxqp)
646 {
647 	struct sfc_ef10_rxq *rxq;
648 	int rc;
649 
650 	rc = EINVAL;
651 	if (info->rxq_entries != info->evq_entries)
652 		goto fail_rxq_args;
653 
654 	rc = ENOTSUP;
655 	if (info->nic_dma_info->nb_regions > 0)
656 		goto fail_nic_dma;
657 
658 	rc = ENOMEM;
659 	rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
660 				 RTE_CACHE_LINE_SIZE, socket_id);
661 	if (rxq == NULL)
662 		goto fail_rxq_alloc;
663 
664 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
665 
666 	rc = ENOMEM;
667 	rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
668 					 info->rxq_entries,
669 					 sizeof(*rxq->sw_ring),
670 					 RTE_CACHE_LINE_SIZE, socket_id);
671 	if (rxq->sw_ring == NULL)
672 		goto fail_desc_alloc;
673 
674 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
675 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
676 		rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
677 	rxq->ptr_mask = info->rxq_entries - 1;
678 	rxq->evq_hw_ring = info->evq_hw_ring;
679 	rxq->max_fill_level = info->max_fill_level;
680 	rxq->refill_threshold = info->refill_threshold;
681 	rxq->rearm_data =
682 		sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
683 	rxq->prefix_size = info->prefix_size;
684 	rxq->buf_size = info->buf_size;
685 	rxq->refill_mb_pool = info->refill_mb_pool;
686 	rxq->rxq_hw_ring = info->rxq_hw_ring;
687 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
688 			ER_DZ_RX_DESC_UPD_REG_OFST +
689 			(info->hw_index << info->vi_window_shift);
690 	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
691 		      ER_DZ_EVQ_RPTR_REG_OFST +
692 		      (info->evq_hw_index << info->vi_window_shift);
693 
694 	sfc_ef10_rx_info(&rxq->dp.dpq, "RxQ doorbell is %p", rxq->doorbell);
695 
696 	*dp_rxqp = &rxq->dp;
697 	return 0;
698 
699 fail_desc_alloc:
700 	rte_free(rxq);
701 
702 fail_rxq_alloc:
703 fail_nic_dma:
704 fail_rxq_args:
705 	return rc;
706 }
707 
708 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
709 static void
sfc_ef10_rx_qdestroy(struct sfc_dp_rxq * dp_rxq)710 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
711 {
712 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
713 
714 	rte_free(rxq->sw_ring);
715 	rte_free(rxq);
716 }
717 
718 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
719 static int
sfc_ef10_rx_qstart(struct sfc_dp_rxq * dp_rxq,unsigned int evq_read_ptr,const efx_rx_prefix_layout_t * pinfo)720 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
721 		   const efx_rx_prefix_layout_t *pinfo)
722 {
723 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
724 
725 	SFC_ASSERT(rxq->completed == 0);
726 	SFC_ASSERT(rxq->pending == 0);
727 	SFC_ASSERT(rxq->added == 0);
728 
729 	if (pinfo->erpl_length != rxq->prefix_size ||
730 	    efx_rx_prefix_layout_check(pinfo, &sfc_ef10_rx_prefix_layout) != 0)
731 		return ENOTSUP;
732 
733 	sfc_ef10_rx_qrefill(rxq);
734 
735 	rxq->evq_read_ptr = evq_read_ptr;
736 
737 	rxq->flags |= SFC_EF10_RXQ_STARTED;
738 	rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
739 
740 	if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
741 		sfc_ef10_rx_qprime(rxq);
742 
743 	return 0;
744 }
745 
746 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
747 static void
sfc_ef10_rx_qstop(struct sfc_dp_rxq * dp_rxq,unsigned int * evq_read_ptr)748 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
749 {
750 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
751 
752 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
753 
754 	*evq_read_ptr = rxq->evq_read_ptr;
755 }
756 
757 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
758 static bool
sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int id)759 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
760 {
761 	__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
762 
763 	SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
764 
765 	/*
766 	 * It is safe to ignore Rx event since we free all mbufs on
767 	 * queue purge anyway.
768 	 */
769 
770 	return false;
771 }
772 
773 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
774 static void
sfc_ef10_rx_qpurge(struct sfc_dp_rxq * dp_rxq)775 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
776 {
777 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
778 	unsigned int i;
779 	struct sfc_ef10_rx_sw_desc *rxd;
780 
781 	rte_pktmbuf_free(rxq->scatter_pkt);
782 	rxq->scatter_pkt = NULL;
783 
784 	for (i = rxq->completed; i != rxq->added; ++i) {
785 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
786 		rte_mbuf_raw_free(rxd->mbuf);
787 		rxd->mbuf = NULL;
788 	}
789 
790 	rxq->completed = rxq->pending = rxq->added = 0;
791 
792 	rxq->flags &= ~SFC_EF10_RXQ_STARTED;
793 }
794 
795 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
796 static int
sfc_ef10_rx_intr_enable(struct sfc_dp_rxq * dp_rxq)797 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
798 {
799 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
800 
801 	rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
802 	if (rxq->flags & SFC_EF10_RXQ_STARTED)
803 		sfc_ef10_rx_qprime(rxq);
804 	return 0;
805 }
806 
807 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
808 static int
sfc_ef10_rx_intr_disable(struct sfc_dp_rxq * dp_rxq)809 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
810 {
811 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
812 
813 	/* Cannot disarm, just disable rearm */
814 	rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
815 	return 0;
816 }
817 
818 struct sfc_dp_rx sfc_ef10_rx = {
819 	.dp = {
820 		.name		= SFC_KVARG_DATAPATH_EF10,
821 		.type		= SFC_DP_RX,
822 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
823 	},
824 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
825 				  SFC_DP_RX_FEAT_INTR,
826 	.dev_offload_capa	= RTE_ETH_RX_OFFLOAD_CHECKSUM |
827 				  RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
828 				  RTE_ETH_RX_OFFLOAD_RSS_HASH |
829 				  RTE_ETH_RX_OFFLOAD_KEEP_CRC,
830 	.queue_offload_capa	= RTE_ETH_RX_OFFLOAD_SCATTER,
831 	.get_dev_info		= sfc_ef10_rx_get_dev_info,
832 	.qsize_up_rings		= sfc_ef10_rx_qsize_up_rings,
833 	.qcreate		= sfc_ef10_rx_qcreate,
834 	.qdestroy		= sfc_ef10_rx_qdestroy,
835 	.qstart			= sfc_ef10_rx_qstart,
836 	.qstop			= sfc_ef10_rx_qstop,
837 	.qrx_ev			= sfc_ef10_rx_qrx_ev,
838 	.qpurge			= sfc_ef10_rx_qpurge,
839 	.supported_ptypes_get	= sfc_ef10_supported_ptypes_get,
840 	.qdesc_npending		= sfc_ef10_rx_qdesc_npending,
841 	.qdesc_status		= sfc_ef10_rx_qdesc_status,
842 	.intr_enable		= sfc_ef10_rx_intr_enable,
843 	.intr_disable		= sfc_ef10_rx_intr_disable,
844 	.pkt_burst		= sfc_ef10_recv_pkts,
845 };
846