xref: /dpdk/drivers/net/sfc/sfc_ef10_rx.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF10 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23 
24 #include "sfc_debug.h"
25 #include "sfc_tweak.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_kvargs.h"
28 #include "sfc_ef10.h"
29 
30 #define SFC_EF10_RX_EV_ENCAP_SUPPORT	1
31 #include "sfc_ef10_rx_ev.h"
32 
33 #define sfc_ef10_rx_err(dpq, ...) \
34 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
35 
36 #define sfc_ef10_rx_info(dpq, ...) \
37 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
38 
39 /**
40  * Maximum number of descriptors/buffers in the Rx ring.
41  * It should guarantee that corresponding event queue never overfill.
42  * EF10 native datapath uses event queue of the same size as Rx queue.
43  * Maximum number of events on datapath can be estimated as number of
44  * Rx queue entries (one event per Rx buffer in the worst case) plus
45  * Rx error and flush events.
46  */
47 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
48 	((_ndesc) - 1 /* head must not step on tail */ - \
49 	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
50 	 1 /* Rx error */ - 1 /* flush */)
51 
52 struct sfc_ef10_rx_sw_desc {
53 	struct rte_mbuf			*mbuf;
54 };
55 
56 struct sfc_ef10_rxq {
57 	/* Used on data path */
58 	unsigned int			flags;
59 #define SFC_EF10_RXQ_STARTED		0x1
60 #define SFC_EF10_RXQ_NOT_RUNNING	0x2
61 #define SFC_EF10_RXQ_EXCEPTION		0x4
62 #define SFC_EF10_RXQ_RSS_HASH		0x8
63 #define SFC_EF10_RXQ_FLAG_INTR_EN	0x10
64 	unsigned int			ptr_mask;
65 	unsigned int			pending;
66 	unsigned int			completed;
67 	unsigned int			evq_read_ptr;
68 	unsigned int			evq_read_ptr_primed;
69 	efx_qword_t			*evq_hw_ring;
70 	struct sfc_ef10_rx_sw_desc	*sw_ring;
71 	uint64_t			rearm_data;
72 	struct rte_mbuf			*scatter_pkt;
73 	volatile void			*evq_prime;
74 	uint16_t			prefix_size;
75 
76 	/* Used on refill */
77 	uint16_t			buf_size;
78 	unsigned int			added;
79 	unsigned int			max_fill_level;
80 	unsigned int			refill_threshold;
81 	struct rte_mempool		*refill_mb_pool;
82 	efx_qword_t			*rxq_hw_ring;
83 	volatile void			*doorbell;
84 
85 	/* Datapath receive queue anchor */
86 	struct sfc_dp_rxq		dp;
87 };
88 
89 static inline struct sfc_ef10_rxq *
90 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
91 {
92 	return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
93 }
94 
95 static void
96 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
97 {
98 	sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
99 	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
100 }
101 
102 static void
103 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
104 {
105 	const unsigned int ptr_mask = rxq->ptr_mask;
106 	const uint32_t buf_size = rxq->buf_size;
107 	unsigned int free_space;
108 	unsigned int bulks;
109 	void *objs[SFC_RX_REFILL_BULK];
110 	unsigned int added = rxq->added;
111 
112 	RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
113 
114 	free_space = rxq->max_fill_level - (added - rxq->completed);
115 
116 	if (free_space < rxq->refill_threshold)
117 		return;
118 
119 	bulks = free_space / RTE_DIM(objs);
120 	/* refill_threshold guarantees that bulks is positive */
121 	SFC_ASSERT(bulks > 0);
122 
123 	do {
124 		unsigned int id;
125 		unsigned int i;
126 
127 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
128 						  RTE_DIM(objs)) < 0)) {
129 			struct rte_eth_dev_data *dev_data =
130 				rte_eth_devices[rxq->dp.dpq.port_id].data;
131 
132 			/*
133 			 * It is hardly a safe way to increment counter
134 			 * from different contexts, but all PMDs do it.
135 			 */
136 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
137 			/* Return if we have posted nothing yet */
138 			if (added == rxq->added)
139 				return;
140 			/* Push posted */
141 			break;
142 		}
143 
144 		for (i = 0, id = added & ptr_mask;
145 		     i < RTE_DIM(objs);
146 		     ++i, ++id) {
147 			struct rte_mbuf *m = objs[i];
148 			struct sfc_ef10_rx_sw_desc *rxd;
149 			rte_iova_t phys_addr;
150 
151 			__rte_mbuf_raw_sanity_check(m);
152 
153 			SFC_ASSERT((id & ~ptr_mask) == 0);
154 			rxd = &rxq->sw_ring[id];
155 			rxd->mbuf = m;
156 
157 			/*
158 			 * Avoid writing to mbuf. It is cheaper to do it
159 			 * when we receive packet and fill in nearby
160 			 * structure members.
161 			 */
162 
163 			phys_addr = rte_mbuf_data_iova_default(m);
164 			EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
165 			    ESF_DZ_RX_KER_BYTE_CNT, buf_size,
166 			    ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
167 		}
168 
169 		added += RTE_DIM(objs);
170 	} while (--bulks > 0);
171 
172 	SFC_ASSERT(rxq->added != added);
173 	rxq->added = added;
174 	sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask,
175 			  &rxq->dp.dpq.rx_dbells);
176 }
177 
178 static void
179 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
180 {
181 	struct rte_mbuf *next_mbuf;
182 
183 	/* Prefetch next bunch of software descriptors */
184 	if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
185 		rte_prefetch0(&rxq->sw_ring[next_id]);
186 
187 	/*
188 	 * It looks strange to prefetch depending on previous prefetch
189 	 * data, but measurements show that it is really efficient and
190 	 * increases packet rate.
191 	 */
192 	next_mbuf = rxq->sw_ring[next_id].mbuf;
193 	if (likely(next_mbuf != NULL)) {
194 		/* Prefetch the next mbuf structure */
195 		rte_mbuf_prefetch_part1(next_mbuf);
196 
197 		/* Prefetch pseudo header of the next packet */
198 		/* data_off is not filled in yet */
199 		/* Yes, data could be not ready yet, but we hope */
200 		rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
201 			      RTE_PKTMBUF_HEADROOM);
202 	}
203 }
204 
205 static struct rte_mbuf **
206 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
207 		    uint16_t nb_pkts)
208 {
209 	uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
210 
211 	SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
212 
213 	if (n_rx_pkts != 0) {
214 		unsigned int completed = rxq->completed;
215 
216 		rxq->completed = completed + n_rx_pkts;
217 
218 		do {
219 			*rx_pkts++ =
220 				rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
221 		} while (completed != rxq->completed);
222 	}
223 
224 	return rx_pkts;
225 }
226 
227 /*
228  * Below Rx pseudo-header (aka Rx prefix) accessors rely on the
229  * following fields layout.
230  */
231 static const efx_rx_prefix_layout_t sfc_ef10_rx_prefix_layout = {
232 	.erpl_fields	= {
233 		[EFX_RX_PREFIX_FIELD_RSS_HASH]	=
234 		    { 0, sizeof(uint32_t) * CHAR_BIT, B_FALSE },
235 		[EFX_RX_PREFIX_FIELD_LENGTH]	=
236 		    { 8 * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT, B_FALSE },
237 	}
238 };
239 static uint16_t
240 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
241 {
242 	return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
243 }
244 
245 static uint32_t
246 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
247 {
248 	return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
249 }
250 
251 static struct rte_mbuf **
252 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
253 			  struct rte_mbuf **rx_pkts,
254 			  struct rte_mbuf ** const rx_pkts_end)
255 {
256 	const unsigned int ptr_mask = rxq->ptr_mask;
257 	unsigned int pending = rxq->pending;
258 	unsigned int ready;
259 	struct sfc_ef10_rx_sw_desc *rxd;
260 	struct rte_mbuf *m;
261 	struct rte_mbuf *m0;
262 	const uint8_t *pseudo_hdr;
263 	uint16_t seg_len;
264 
265 	ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
266 		EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
267 
268 	if (ready == 0) {
269 		/* Rx abort - it was no enough descriptors for Rx packet */
270 		rte_pktmbuf_free(rxq->scatter_pkt);
271 		rxq->scatter_pkt = NULL;
272 		return rx_pkts;
273 	}
274 
275 	rxq->pending = pending + ready;
276 
277 	if (rx_ev.eq_u64[0] &
278 	    rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
279 			     (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
280 		SFC_ASSERT(rxq->completed == pending);
281 		do {
282 			rxd = &rxq->sw_ring[pending++ & ptr_mask];
283 			rte_mbuf_raw_free(rxd->mbuf);
284 		} while (pending != rxq->pending);
285 		rxq->completed = pending;
286 		return rx_pkts;
287 	}
288 
289 	/* If scattered packet is in progress */
290 	if (rxq->scatter_pkt != NULL) {
291 		/* Events for scattered packet frags are not merged */
292 		SFC_ASSERT(ready == 1);
293 		SFC_ASSERT(rxq->completed == pending);
294 
295 		/* There is no pseudo-header in scatter segments. */
296 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
297 
298 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
299 		m = rxd->mbuf;
300 
301 		__rte_mbuf_raw_sanity_check(m);
302 
303 		m->data_off = RTE_PKTMBUF_HEADROOM;
304 		rte_pktmbuf_data_len(m) = seg_len;
305 		rte_pktmbuf_pkt_len(m) = seg_len;
306 
307 		rxq->scatter_pkt->nb_segs++;
308 		rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
309 		rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
310 
311 		if (~rx_ev.eq_u64[0] &
312 		    rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
313 			*rx_pkts++ = rxq->scatter_pkt;
314 			rxq->scatter_pkt = NULL;
315 		}
316 		rxq->completed = pending;
317 		return rx_pkts;
318 	}
319 
320 	rxd = &rxq->sw_ring[pending++ & ptr_mask];
321 
322 	sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
323 
324 	m = rxd->mbuf;
325 
326 	RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
327 	m->rearm_data[0] = rxq->rearm_data;
328 
329 	/* Classify packet based on Rx event */
330 	/* Mask RSS hash offload flag if RSS is not enabled */
331 	sfc_ef10_rx_ev_to_offloads(rx_ev, m,
332 				   (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
333 				   ~0ull : ~PKT_RX_RSS_HASH);
334 
335 	/* data_off already moved past pseudo header */
336 	pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
337 
338 	/*
339 	 * Always get RSS hash from pseudo header to avoid
340 	 * condition/branching. If it is valid or not depends on
341 	 * PKT_RX_RSS_HASH in m->ol_flags.
342 	 */
343 	m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
344 
345 	if (ready == 1)
346 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
347 			rxq->prefix_size;
348 	else
349 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
350 	SFC_ASSERT(seg_len > 0);
351 	rte_pktmbuf_data_len(m) = seg_len;
352 	rte_pktmbuf_pkt_len(m) = seg_len;
353 
354 	SFC_ASSERT(m->next == NULL);
355 
356 	if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
357 		*rx_pkts++ = m;
358 		rxq->completed = pending;
359 	} else {
360 		/* Events with CONT bit are not merged */
361 		SFC_ASSERT(ready == 1);
362 		rxq->scatter_pkt = m;
363 		rxq->completed = pending;
364 		return rx_pkts;
365 	}
366 
367 	/* Remember mbuf to copy offload flags and packet type from */
368 	m0 = m;
369 	while (pending != rxq->pending) {
370 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
371 
372 		sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
373 
374 		m = rxd->mbuf;
375 
376 		if (rx_pkts != rx_pkts_end) {
377 			*rx_pkts++ = m;
378 			rxq->completed = pending;
379 		}
380 
381 		RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
382 				 sizeof(rxq->rearm_data));
383 		m->rearm_data[0] = rxq->rearm_data;
384 
385 		/* Event-dependent information is the same */
386 		m->ol_flags = m0->ol_flags;
387 		m->packet_type = m0->packet_type;
388 
389 		/* data_off already moved past pseudo header */
390 		pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
391 
392 		/*
393 		 * Always get RSS hash from pseudo header to avoid
394 		 * condition/branching. If it is valid or not depends on
395 		 * PKT_RX_RSS_HASH in m->ol_flags.
396 		 */
397 		m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
398 
399 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
400 		SFC_ASSERT(seg_len > 0);
401 		rte_pktmbuf_data_len(m) = seg_len;
402 		rte_pktmbuf_pkt_len(m) = seg_len;
403 
404 		SFC_ASSERT(m->next == NULL);
405 	}
406 
407 	return rx_pkts;
408 }
409 
410 static bool
411 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
412 {
413 	*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
414 
415 	if (!sfc_ef10_ev_present(*rx_ev))
416 		return false;
417 
418 	if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
419 		     FSE_AZ_EV_CODE_RX_EV)) {
420 		/*
421 		 * Do not move read_ptr to keep the event for exception
422 		 * handling by the control path.
423 		 */
424 		rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
425 		sfc_ef10_rx_err(&rxq->dp.dpq,
426 				"RxQ exception at EvQ read ptr %#x",
427 				rxq->evq_read_ptr);
428 		return false;
429 	}
430 
431 	rxq->evq_read_ptr++;
432 	return true;
433 }
434 
435 static uint16_t
436 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
437 {
438 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
439 	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
440 	unsigned int evq_old_read_ptr;
441 	efx_qword_t rx_ev;
442 
443 	rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
444 
445 	if (unlikely(rxq->flags &
446 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
447 		goto done;
448 
449 	evq_old_read_ptr = rxq->evq_read_ptr;
450 	while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
451 		/*
452 		 * DROP_EVENT is an internal to the NIC, software should
453 		 * never see it and, therefore, may ignore it.
454 		 */
455 
456 		rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
457 						    rx_pkts, rx_pkts_end);
458 	}
459 
460 	sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
461 			   rxq->evq_read_ptr);
462 
463 	/* It is not a problem if we refill in the case of exception */
464 	sfc_ef10_rx_qrefill(rxq);
465 
466 	if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
467 	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
468 		sfc_ef10_rx_qprime(rxq);
469 
470 done:
471 	return nb_pkts - (rx_pkts_end - rx_pkts);
472 }
473 
474 const uint32_t *
475 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
476 {
477 	static const uint32_t ef10_native_ptypes[] = {
478 		RTE_PTYPE_L2_ETHER,
479 		RTE_PTYPE_L2_ETHER_ARP,
480 		RTE_PTYPE_L2_ETHER_VLAN,
481 		RTE_PTYPE_L2_ETHER_QINQ,
482 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
483 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
484 		RTE_PTYPE_L4_FRAG,
485 		RTE_PTYPE_L4_TCP,
486 		RTE_PTYPE_L4_UDP,
487 		RTE_PTYPE_UNKNOWN
488 	};
489 	static const uint32_t ef10_overlay_ptypes[] = {
490 		RTE_PTYPE_L2_ETHER,
491 		RTE_PTYPE_L2_ETHER_ARP,
492 		RTE_PTYPE_L2_ETHER_VLAN,
493 		RTE_PTYPE_L2_ETHER_QINQ,
494 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
495 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
496 		RTE_PTYPE_L4_FRAG,
497 		RTE_PTYPE_L4_TCP,
498 		RTE_PTYPE_L4_UDP,
499 		RTE_PTYPE_TUNNEL_VXLAN,
500 		RTE_PTYPE_TUNNEL_NVGRE,
501 		RTE_PTYPE_INNER_L2_ETHER,
502 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
503 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
504 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
505 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
506 		RTE_PTYPE_INNER_L4_FRAG,
507 		RTE_PTYPE_INNER_L4_TCP,
508 		RTE_PTYPE_INNER_L4_UDP,
509 		RTE_PTYPE_UNKNOWN
510 	};
511 
512 	/*
513 	 * The function returns static set of supported packet types,
514 	 * so we can't build it dynamically based on supported tunnel
515 	 * encapsulations and should limit to known sets.
516 	 */
517 	switch (tunnel_encaps) {
518 	case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
519 	      1u << EFX_TUNNEL_PROTOCOL_GENEVE |
520 	      1u << EFX_TUNNEL_PROTOCOL_NVGRE):
521 		return ef10_overlay_ptypes;
522 	default:
523 		SFC_GENERIC_LOG(ERR,
524 			"Unexpected set of supported tunnel encapsulations: %#x",
525 			tunnel_encaps);
526 		/* FALLTHROUGH */
527 	case 0:
528 		return ef10_native_ptypes;
529 	}
530 }
531 
532 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
533 static unsigned int
534 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
535 {
536 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
537 	efx_qword_t rx_ev;
538 	const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
539 	unsigned int pending = rxq->pending;
540 	unsigned int ready;
541 
542 	if (unlikely(rxq->flags &
543 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
544 		goto done;
545 
546 	while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
547 		ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
548 			 pending) &
549 			EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
550 		pending += ready;
551 	}
552 
553 	/*
554 	 * The function does not process events, so return event queue read
555 	 * pointer to the original position to allow the events that were
556 	 * read to be processed later
557 	 */
558 	rxq->evq_read_ptr = evq_old_read_ptr;
559 
560 done:
561 	return pending - rxq->completed;
562 }
563 
564 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
565 static int
566 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
567 {
568 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
569 	unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
570 
571 	if (unlikely(offset > rxq->ptr_mask))
572 		return -EINVAL;
573 
574 	if (offset < npending)
575 		return RTE_ETH_RX_DESC_DONE;
576 
577 	if (offset < (rxq->added - rxq->completed))
578 		return RTE_ETH_RX_DESC_AVAIL;
579 
580 	return RTE_ETH_RX_DESC_UNAVAIL;
581 }
582 
583 
584 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
585 static void
586 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
587 {
588 	/*
589 	 * Number of descriptors just defines maximum number of pushed
590 	 * descriptors (fill level).
591 	 */
592 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
593 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
594 }
595 
596 
597 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
598 static int
599 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
600 			   struct sfc_dp_rx_hw_limits *limits,
601 			   __rte_unused struct rte_mempool *mb_pool,
602 			   unsigned int *rxq_entries,
603 			   unsigned int *evq_entries,
604 			   unsigned int *rxq_max_fill_level)
605 {
606 	/*
607 	 * rte_ethdev API guarantees that the number meets min, max and
608 	 * alignment requirements.
609 	 */
610 	if (nb_rx_desc <= limits->rxq_min_entries)
611 		*rxq_entries = limits->rxq_min_entries;
612 	else
613 		*rxq_entries = rte_align32pow2(nb_rx_desc);
614 
615 	*evq_entries = *rxq_entries;
616 
617 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
618 				      SFC_EF10_RXQ_LIMIT(*evq_entries));
619 	return 0;
620 }
621 
622 
623 static uint64_t
624 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
625 {
626 	struct rte_mbuf m;
627 
628 	memset(&m, 0, sizeof(m));
629 
630 	rte_mbuf_refcnt_set(&m, 1);
631 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
632 	m.nb_segs = 1;
633 	m.port = port_id;
634 
635 	/* rearm_data covers structure members filled in above */
636 	rte_compiler_barrier();
637 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
638 	return m.rearm_data[0];
639 }
640 
641 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
642 static int
643 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
644 		    const struct rte_pci_addr *pci_addr, int socket_id,
645 		    const struct sfc_dp_rx_qcreate_info *info,
646 		    struct sfc_dp_rxq **dp_rxqp)
647 {
648 	struct sfc_ef10_rxq *rxq;
649 	int rc;
650 
651 	rc = EINVAL;
652 	if (info->rxq_entries != info->evq_entries)
653 		goto fail_rxq_args;
654 
655 	rc = ENOMEM;
656 	rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
657 				 RTE_CACHE_LINE_SIZE, socket_id);
658 	if (rxq == NULL)
659 		goto fail_rxq_alloc;
660 
661 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
662 
663 	rc = ENOMEM;
664 	rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
665 					 info->rxq_entries,
666 					 sizeof(*rxq->sw_ring),
667 					 RTE_CACHE_LINE_SIZE, socket_id);
668 	if (rxq->sw_ring == NULL)
669 		goto fail_desc_alloc;
670 
671 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
672 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
673 		rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
674 	rxq->ptr_mask = info->rxq_entries - 1;
675 	rxq->evq_hw_ring = info->evq_hw_ring;
676 	rxq->max_fill_level = info->max_fill_level;
677 	rxq->refill_threshold = info->refill_threshold;
678 	rxq->rearm_data =
679 		sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
680 	rxq->prefix_size = info->prefix_size;
681 	rxq->buf_size = info->buf_size;
682 	rxq->refill_mb_pool = info->refill_mb_pool;
683 	rxq->rxq_hw_ring = info->rxq_hw_ring;
684 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
685 			ER_DZ_RX_DESC_UPD_REG_OFST +
686 			(info->hw_index << info->vi_window_shift);
687 	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
688 		      ER_DZ_EVQ_RPTR_REG_OFST +
689 		      (info->evq_hw_index << info->vi_window_shift);
690 
691 	sfc_ef10_rx_info(&rxq->dp.dpq, "RxQ doorbell is %p", rxq->doorbell);
692 
693 	*dp_rxqp = &rxq->dp;
694 	return 0;
695 
696 fail_desc_alloc:
697 	rte_free(rxq);
698 
699 fail_rxq_alloc:
700 fail_rxq_args:
701 	return rc;
702 }
703 
704 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
705 static void
706 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
707 {
708 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
709 
710 	rte_free(rxq->sw_ring);
711 	rte_free(rxq);
712 }
713 
714 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
715 static int
716 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
717 		   const efx_rx_prefix_layout_t *pinfo)
718 {
719 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
720 
721 	SFC_ASSERT(rxq->completed == 0);
722 	SFC_ASSERT(rxq->pending == 0);
723 	SFC_ASSERT(rxq->added == 0);
724 
725 	if (pinfo->erpl_length != rxq->prefix_size ||
726 	    efx_rx_prefix_layout_check(pinfo, &sfc_ef10_rx_prefix_layout) != 0)
727 		return ENOTSUP;
728 
729 	sfc_ef10_rx_qrefill(rxq);
730 
731 	rxq->evq_read_ptr = evq_read_ptr;
732 
733 	rxq->flags |= SFC_EF10_RXQ_STARTED;
734 	rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
735 
736 	if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
737 		sfc_ef10_rx_qprime(rxq);
738 
739 	return 0;
740 }
741 
742 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
743 static void
744 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
745 {
746 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
747 
748 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
749 
750 	*evq_read_ptr = rxq->evq_read_ptr;
751 }
752 
753 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
754 static bool
755 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
756 {
757 	__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
758 
759 	SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
760 
761 	/*
762 	 * It is safe to ignore Rx event since we free all mbufs on
763 	 * queue purge anyway.
764 	 */
765 
766 	return false;
767 }
768 
769 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
770 static void
771 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
772 {
773 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
774 	unsigned int i;
775 	struct sfc_ef10_rx_sw_desc *rxd;
776 
777 	rte_pktmbuf_free(rxq->scatter_pkt);
778 	rxq->scatter_pkt = NULL;
779 
780 	for (i = rxq->completed; i != rxq->added; ++i) {
781 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
782 		rte_mbuf_raw_free(rxd->mbuf);
783 		rxd->mbuf = NULL;
784 	}
785 
786 	rxq->completed = rxq->pending = rxq->added = 0;
787 
788 	rxq->flags &= ~SFC_EF10_RXQ_STARTED;
789 }
790 
791 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
792 static int
793 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
794 {
795 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
796 
797 	rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
798 	if (rxq->flags & SFC_EF10_RXQ_STARTED)
799 		sfc_ef10_rx_qprime(rxq);
800 	return 0;
801 }
802 
803 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
804 static int
805 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
806 {
807 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
808 
809 	/* Cannot disarm, just disable rearm */
810 	rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
811 	return 0;
812 }
813 
814 struct sfc_dp_rx sfc_ef10_rx = {
815 	.dp = {
816 		.name		= SFC_KVARG_DATAPATH_EF10,
817 		.type		= SFC_DP_RX,
818 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
819 	},
820 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
821 				  SFC_DP_RX_FEAT_INTR,
822 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
823 				  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
824 				  DEV_RX_OFFLOAD_RSS_HASH,
825 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
826 	.get_dev_info		= sfc_ef10_rx_get_dev_info,
827 	.qsize_up_rings		= sfc_ef10_rx_qsize_up_rings,
828 	.qcreate		= sfc_ef10_rx_qcreate,
829 	.qdestroy		= sfc_ef10_rx_qdestroy,
830 	.qstart			= sfc_ef10_rx_qstart,
831 	.qstop			= sfc_ef10_rx_qstop,
832 	.qrx_ev			= sfc_ef10_rx_qrx_ev,
833 	.qpurge			= sfc_ef10_rx_qpurge,
834 	.supported_ptypes_get	= sfc_ef10_supported_ptypes_get,
835 	.qdesc_npending		= sfc_ef10_rx_qdesc_npending,
836 	.qdesc_status		= sfc_ef10_rx_qdesc_status,
837 	.intr_enable		= sfc_ef10_rx_intr_enable,
838 	.intr_disable		= sfc_ef10_rx_intr_disable,
839 	.pkt_burst		= sfc_ef10_recv_pkts,
840 };
841