xref: /dpdk/drivers/net/sfc/sfc_ef10_rx.c (revision 89f0711f9ddfb5822da9d34f384b92f72a61c4dc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF10 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23 
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28 
29 #define sfc_ef10_rx_err(dpq, ...) \
30 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
31 
32 /**
33  * Alignment requirement for value written to RX WPTR:
34  * the WPTR must be aligned to an 8 descriptor boundary.
35  */
36 #define SFC_EF10_RX_WPTR_ALIGN	8
37 
38 /**
39  * Maximum number of descriptors/buffers in the Rx ring.
40  * It should guarantee that corresponding event queue never overfill.
41  * EF10 native datapath uses event queue of the same size as Rx queue.
42  * Maximum number of events on datapath can be estimated as number of
43  * Rx queue entries (one event per Rx buffer in the worst case) plus
44  * Rx error and flush events.
45  */
46 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
47 	((_ndesc) - 1 /* head must not step on tail */ - \
48 	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
49 	 1 /* Rx error */ - 1 /* flush */)
50 
51 struct sfc_ef10_rx_sw_desc {
52 	struct rte_mbuf			*mbuf;
53 };
54 
55 struct sfc_ef10_rxq {
56 	/* Used on data path */
57 	unsigned int			flags;
58 #define SFC_EF10_RXQ_STARTED		0x1
59 #define SFC_EF10_RXQ_NOT_RUNNING	0x2
60 #define SFC_EF10_RXQ_EXCEPTION		0x4
61 #define SFC_EF10_RXQ_RSS_HASH		0x8
62 	unsigned int			ptr_mask;
63 	unsigned int			prepared;
64 	unsigned int			completed;
65 	unsigned int			evq_read_ptr;
66 	efx_qword_t			*evq_hw_ring;
67 	struct sfc_ef10_rx_sw_desc	*sw_ring;
68 	uint64_t			rearm_data;
69 	uint16_t			prefix_size;
70 
71 	/* Used on refill */
72 	uint16_t			buf_size;
73 	unsigned int			added;
74 	unsigned int			max_fill_level;
75 	unsigned int			refill_threshold;
76 	struct rte_mempool		*refill_mb_pool;
77 	efx_qword_t			*rxq_hw_ring;
78 	volatile void			*doorbell;
79 
80 	/* Datapath receive queue anchor */
81 	struct sfc_dp_rxq		dp;
82 };
83 
84 static inline struct sfc_ef10_rxq *
85 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
86 {
87 	return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
88 }
89 
90 static void
91 sfc_ef10_rx_qpush(struct sfc_ef10_rxq *rxq)
92 {
93 	efx_dword_t dword;
94 
95 	/* Hardware has alignment restriction for WPTR */
96 	RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
97 	SFC_ASSERT(RTE_ALIGN(rxq->added, SFC_EF10_RX_WPTR_ALIGN) == rxq->added);
98 
99 	EFX_POPULATE_DWORD_1(dword, ERF_DZ_RX_DESC_WPTR,
100 			     rxq->added & rxq->ptr_mask);
101 
102 	/* DMA sync to device is not required */
103 
104 	/*
105 	 * rte_write32() has rte_io_wmb() which guarantees that the STORE
106 	 * operations (i.e. Rx and event descriptor updates) that precede
107 	 * the rte_io_wmb() call are visible to NIC before the STORE
108 	 * operations that follow it (i.e. doorbell write).
109 	 */
110 	rte_write32(dword.ed_u32[0], rxq->doorbell);
111 }
112 
113 static void
114 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
115 {
116 	const unsigned int ptr_mask = rxq->ptr_mask;
117 	const uint32_t buf_size = rxq->buf_size;
118 	unsigned int free_space;
119 	unsigned int bulks;
120 	void *objs[SFC_RX_REFILL_BULK];
121 	unsigned int added = rxq->added;
122 
123 	free_space = rxq->max_fill_level - (added - rxq->completed);
124 
125 	if (free_space < rxq->refill_threshold)
126 		return;
127 
128 	bulks = free_space / RTE_DIM(objs);
129 	/* refill_threshold guarantees that bulks is positive */
130 	SFC_ASSERT(bulks > 0);
131 
132 	do {
133 		unsigned int id;
134 		unsigned int i;
135 
136 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
137 						  RTE_DIM(objs)) < 0)) {
138 			struct rte_eth_dev_data *dev_data =
139 				rte_eth_devices[rxq->dp.dpq.port_id].data;
140 
141 			/*
142 			 * It is hardly a safe way to increment counter
143 			 * from different contexts, but all PMDs do it.
144 			 */
145 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
146 			/* Return if we have posted nothing yet */
147 			if (added == rxq->added)
148 				return;
149 			/* Push posted */
150 			break;
151 		}
152 
153 		for (i = 0, id = added & ptr_mask;
154 		     i < RTE_DIM(objs);
155 		     ++i, ++id) {
156 			struct rte_mbuf *m = objs[i];
157 			struct sfc_ef10_rx_sw_desc *rxd;
158 			rte_iova_t phys_addr;
159 
160 			SFC_ASSERT((id & ~ptr_mask) == 0);
161 			rxd = &rxq->sw_ring[id];
162 			rxd->mbuf = m;
163 
164 			/*
165 			 * Avoid writing to mbuf. It is cheaper to do it
166 			 * when we receive packet and fill in nearby
167 			 * structure members.
168 			 */
169 
170 			phys_addr = rte_mbuf_data_iova_default(m);
171 			EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
172 			    ESF_DZ_RX_KER_BYTE_CNT, buf_size,
173 			    ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
174 		}
175 
176 		added += RTE_DIM(objs);
177 	} while (--bulks > 0);
178 
179 	SFC_ASSERT(rxq->added != added);
180 	rxq->added = added;
181 	sfc_ef10_rx_qpush(rxq);
182 }
183 
184 static void
185 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
186 {
187 	struct rte_mbuf *next_mbuf;
188 
189 	/* Prefetch next bunch of software descriptors */
190 	if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
191 		rte_prefetch0(&rxq->sw_ring[next_id]);
192 
193 	/*
194 	 * It looks strange to prefetch depending on previous prefetch
195 	 * data, but measurements show that it is really efficient and
196 	 * increases packet rate.
197 	 */
198 	next_mbuf = rxq->sw_ring[next_id].mbuf;
199 	if (likely(next_mbuf != NULL)) {
200 		/* Prefetch the next mbuf structure */
201 		rte_mbuf_prefetch_part1(next_mbuf);
202 
203 		/* Prefetch pseudo header of the next packet */
204 		/* data_off is not filled in yet */
205 		/* Yes, data could be not ready yet, but we hope */
206 		rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
207 			      RTE_PKTMBUF_HEADROOM);
208 	}
209 }
210 
211 static uint16_t
212 sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
213 		     uint16_t nb_pkts)
214 {
215 	uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared);
216 	unsigned int completed = rxq->completed;
217 	unsigned int i;
218 
219 	rxq->prepared -= n_rx_pkts;
220 	rxq->completed = completed + n_rx_pkts;
221 
222 	for (i = 0; i < n_rx_pkts; ++i, ++completed)
223 		rx_pkts[i] = rxq->sw_ring[completed & rxq->ptr_mask].mbuf;
224 
225 	return n_rx_pkts;
226 }
227 
228 static void
229 sfc_ef10_rx_ev_to_offloads(struct sfc_ef10_rxq *rxq, const efx_qword_t rx_ev,
230 			   struct rte_mbuf *m)
231 {
232 	uint32_t tun_ptype = 0;
233 	/* Which event bit is mapped to PKT_RX_IP_CKSUM_* */
234 	int8_t ip_csum_err_bit;
235 	/* Which event bit is mapped to PKT_RX_L4_CKSUM_* */
236 	int8_t l4_csum_err_bit;
237 	uint32_t l2_ptype = 0;
238 	uint32_t l3_ptype = 0;
239 	uint32_t l4_ptype = 0;
240 	uint64_t ol_flags = 0;
241 
242 	if (unlikely(EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_PARSE_INCOMPLETE_LBN)))
243 		goto done;
244 
245 	switch (EFX_QWORD_FIELD(rx_ev, ESF_EZ_RX_ENCAP_HDR)) {
246 	default:
247 		/* Unexpected encapsulation tag class */
248 		SFC_ASSERT(false);
249 		/* FALLTHROUGH */
250 	case ESE_EZ_ENCAP_HDR_NONE:
251 		break;
252 	case ESE_EZ_ENCAP_HDR_VXLAN:
253 		/*
254 		 * It is definitely UDP, but we have no information
255 		 * about IPv4 vs IPv6 and VLAN tagging.
256 		 */
257 		tun_ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP;
258 		break;
259 	case ESE_EZ_ENCAP_HDR_GRE:
260 		/*
261 		 * We have no information about IPv4 vs IPv6 and VLAN tagging.
262 		 */
263 		tun_ptype = RTE_PTYPE_TUNNEL_NVGRE;
264 		break;
265 	}
266 
267 	if (tun_ptype == 0) {
268 		ip_csum_err_bit = ESF_DZ_RX_IPCKSUM_ERR_LBN;
269 		l4_csum_err_bit = ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN;
270 	} else {
271 		ip_csum_err_bit = ESF_EZ_RX_IP_INNER_CHKSUM_ERR_LBN;
272 		l4_csum_err_bit = ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR_LBN;
273 		if (unlikely(EFX_TEST_QWORD_BIT(rx_ev,
274 						ESF_DZ_RX_IPCKSUM_ERR_LBN)))
275 			ol_flags |= PKT_RX_EIP_CKSUM_BAD;
276 	}
277 
278 	switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_ETH_TAG_CLASS)) {
279 	case ESE_DZ_ETH_TAG_CLASS_NONE:
280 		l2_ptype = (tun_ptype == 0) ? RTE_PTYPE_L2_ETHER :
281 			RTE_PTYPE_INNER_L2_ETHER;
282 		break;
283 	case ESE_DZ_ETH_TAG_CLASS_VLAN1:
284 		l2_ptype = (tun_ptype == 0) ? RTE_PTYPE_L2_ETHER_VLAN :
285 			RTE_PTYPE_INNER_L2_ETHER_VLAN;
286 		break;
287 	case ESE_DZ_ETH_TAG_CLASS_VLAN2:
288 		l2_ptype = (tun_ptype == 0) ? RTE_PTYPE_L2_ETHER_QINQ :
289 			RTE_PTYPE_INNER_L2_ETHER_QINQ;
290 		break;
291 	default:
292 		/* Unexpected Eth tag class */
293 		SFC_ASSERT(false);
294 	}
295 
296 	switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L3_CLASS)) {
297 	case ESE_DZ_L3_CLASS_IP4_FRAG:
298 		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_FRAG :
299 			RTE_PTYPE_INNER_L4_FRAG;
300 		/* FALLTHROUGH */
301 	case ESE_DZ_L3_CLASS_IP4:
302 		l3_ptype = (tun_ptype == 0) ? RTE_PTYPE_L3_IPV4_EXT_UNKNOWN :
303 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
304 		ol_flags |= PKT_RX_RSS_HASH |
305 			((EFX_TEST_QWORD_BIT(rx_ev, ip_csum_err_bit)) ?
306 			 PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD);
307 		break;
308 	case ESE_DZ_L3_CLASS_IP6_FRAG:
309 		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_FRAG :
310 			RTE_PTYPE_INNER_L4_FRAG;
311 		/* FALLTHROUGH */
312 	case ESE_DZ_L3_CLASS_IP6:
313 		l3_ptype = (tun_ptype == 0) ? RTE_PTYPE_L3_IPV6_EXT_UNKNOWN :
314 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
315 		ol_flags |= PKT_RX_RSS_HASH;
316 		break;
317 	case ESE_DZ_L3_CLASS_ARP:
318 		/* Override Layer 2 packet type */
319 		/* There is no ARP classification for inner packets */
320 		if (tun_ptype == 0)
321 			l2_ptype = RTE_PTYPE_L2_ETHER_ARP;
322 		break;
323 	default:
324 		/* Unexpected Layer 3 class */
325 		SFC_ASSERT(false);
326 	}
327 
328 	switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L4_CLASS)) {
329 	case ESE_DZ_L4_CLASS_TCP:
330 		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_TCP :
331 			RTE_PTYPE_INNER_L4_TCP;
332 		ol_flags |=
333 			(EFX_TEST_QWORD_BIT(rx_ev, l4_csum_err_bit)) ?
334 			PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD;
335 		break;
336 	case ESE_DZ_L4_CLASS_UDP:
337 		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_UDP :
338 			RTE_PTYPE_INNER_L4_UDP;
339 		ol_flags |=
340 			(EFX_TEST_QWORD_BIT(rx_ev, l4_csum_err_bit)) ?
341 			PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD;
342 		break;
343 	case ESE_DZ_L4_CLASS_UNKNOWN:
344 		break;
345 	default:
346 		/* Unexpected Layer 4 class */
347 		SFC_ASSERT(false);
348 	}
349 
350 	/* Remove RSS hash offload flag if RSS is not enabled */
351 	if (~rxq->flags & SFC_EF10_RXQ_RSS_HASH)
352 		ol_flags &= ~PKT_RX_RSS_HASH;
353 
354 done:
355 	m->ol_flags = ol_flags;
356 	m->packet_type = tun_ptype | l2_ptype | l3_ptype | l4_ptype;
357 }
358 
359 static uint16_t
360 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
361 {
362 	return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
363 }
364 
365 static uint32_t
366 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
367 {
368 	return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
369 }
370 
371 static uint16_t
372 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
373 			  struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
374 {
375 	const unsigned int ptr_mask = rxq->ptr_mask;
376 	unsigned int completed = rxq->completed;
377 	unsigned int ready;
378 	struct sfc_ef10_rx_sw_desc *rxd;
379 	struct rte_mbuf *m;
380 	struct rte_mbuf *m0;
381 	uint16_t n_rx_pkts;
382 	const uint8_t *pseudo_hdr;
383 	uint16_t pkt_len;
384 
385 	ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) &
386 		EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
387 	SFC_ASSERT(ready > 0);
388 
389 	if (rx_ev.eq_u64[0] &
390 	    rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
391 			     (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
392 		SFC_ASSERT(rxq->prepared == 0);
393 		rxq->completed += ready;
394 		while (ready-- > 0) {
395 			rxd = &rxq->sw_ring[completed++ & ptr_mask];
396 			rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
397 		}
398 		return 0;
399 	}
400 
401 	n_rx_pkts = RTE_MIN(ready, nb_pkts);
402 	rxq->prepared = ready - n_rx_pkts;
403 	rxq->completed += n_rx_pkts;
404 
405 	rxd = &rxq->sw_ring[completed++ & ptr_mask];
406 
407 	sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
408 
409 	m = rxd->mbuf;
410 
411 	*rx_pkts++ = m;
412 
413 	RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
414 	m->rearm_data[0] = rxq->rearm_data;
415 
416 	/* Classify packet based on Rx event */
417 	sfc_ef10_rx_ev_to_offloads(rxq, rx_ev, m);
418 
419 	/* data_off already moved past pseudo header */
420 	pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
421 
422 	/*
423 	 * Always get RSS hash from pseudo header to avoid
424 	 * condition/branching. If it is valid or not depends on
425 	 * PKT_RX_RSS_HASH in m->ol_flags.
426 	 */
427 	m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
428 
429 	if (ready == 1)
430 		pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
431 			rxq->prefix_size;
432 	else
433 		pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
434 	SFC_ASSERT(pkt_len > 0);
435 	rte_pktmbuf_data_len(m) = pkt_len;
436 	rte_pktmbuf_pkt_len(m) = pkt_len;
437 
438 	SFC_ASSERT(m->next == NULL);
439 
440 	/* Remember mbuf to copy offload flags and packet type from */
441 	m0 = m;
442 	for (--ready; ready > 0; --ready) {
443 		rxd = &rxq->sw_ring[completed++ & ptr_mask];
444 
445 		sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
446 
447 		m = rxd->mbuf;
448 
449 		if (ready > rxq->prepared)
450 			*rx_pkts++ = m;
451 
452 		RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
453 				 sizeof(rxq->rearm_data));
454 		m->rearm_data[0] = rxq->rearm_data;
455 
456 		/* Event-dependent information is the same */
457 		m->ol_flags = m0->ol_flags;
458 		m->packet_type = m0->packet_type;
459 
460 		/* data_off already moved past pseudo header */
461 		pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
462 
463 		/*
464 		 * Always get RSS hash from pseudo header to avoid
465 		 * condition/branching. If it is valid or not depends on
466 		 * PKT_RX_RSS_HASH in m->ol_flags.
467 		 */
468 		m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
469 
470 		pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
471 		SFC_ASSERT(pkt_len > 0);
472 		rte_pktmbuf_data_len(m) = pkt_len;
473 		rte_pktmbuf_pkt_len(m) = pkt_len;
474 
475 		SFC_ASSERT(m->next == NULL);
476 	}
477 
478 	return n_rx_pkts;
479 }
480 
481 static bool
482 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
483 {
484 	*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
485 
486 	if (!sfc_ef10_ev_present(*rx_ev))
487 		return false;
488 
489 	if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
490 		     FSE_AZ_EV_CODE_RX_EV)) {
491 		/*
492 		 * Do not move read_ptr to keep the event for exception
493 		 * handling by the control path.
494 		 */
495 		rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
496 		sfc_ef10_rx_err(&rxq->dp.dpq,
497 				"RxQ exception at EvQ read ptr %#x",
498 				rxq->evq_read_ptr);
499 		return false;
500 	}
501 
502 	rxq->evq_read_ptr++;
503 	return true;
504 }
505 
506 static uint16_t
507 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
508 {
509 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
510 	unsigned int evq_old_read_ptr;
511 	uint16_t n_rx_pkts;
512 	efx_qword_t rx_ev;
513 
514 	if (unlikely(rxq->flags &
515 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
516 		return 0;
517 
518 	n_rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts);
519 
520 	evq_old_read_ptr = rxq->evq_read_ptr;
521 	while (n_rx_pkts != nb_pkts && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
522 		/*
523 		 * DROP_EVENT is an internal to the NIC, software should
524 		 * never see it and, therefore, may ignore it.
525 		 */
526 
527 		n_rx_pkts += sfc_ef10_rx_process_event(rxq, rx_ev,
528 						       rx_pkts + n_rx_pkts,
529 						       nb_pkts - n_rx_pkts);
530 	}
531 
532 	sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
533 			   rxq->evq_read_ptr);
534 
535 	/* It is not a problem if we refill in the case of exception */
536 	sfc_ef10_rx_qrefill(rxq);
537 
538 	return n_rx_pkts;
539 }
540 
541 static const uint32_t *
542 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
543 {
544 	static const uint32_t ef10_native_ptypes[] = {
545 		RTE_PTYPE_L2_ETHER,
546 		RTE_PTYPE_L2_ETHER_ARP,
547 		RTE_PTYPE_L2_ETHER_VLAN,
548 		RTE_PTYPE_L2_ETHER_QINQ,
549 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
550 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
551 		RTE_PTYPE_L4_FRAG,
552 		RTE_PTYPE_L4_TCP,
553 		RTE_PTYPE_L4_UDP,
554 		RTE_PTYPE_UNKNOWN
555 	};
556 	static const uint32_t ef10_overlay_ptypes[] = {
557 		RTE_PTYPE_L2_ETHER,
558 		RTE_PTYPE_L2_ETHER_ARP,
559 		RTE_PTYPE_L2_ETHER_VLAN,
560 		RTE_PTYPE_L2_ETHER_QINQ,
561 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
562 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
563 		RTE_PTYPE_L4_FRAG,
564 		RTE_PTYPE_L4_TCP,
565 		RTE_PTYPE_L4_UDP,
566 		RTE_PTYPE_TUNNEL_VXLAN,
567 		RTE_PTYPE_TUNNEL_NVGRE,
568 		RTE_PTYPE_INNER_L2_ETHER,
569 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
570 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
571 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
572 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
573 		RTE_PTYPE_INNER_L4_FRAG,
574 		RTE_PTYPE_INNER_L4_TCP,
575 		RTE_PTYPE_INNER_L4_UDP,
576 		RTE_PTYPE_UNKNOWN
577 	};
578 
579 	/*
580 	 * The function returns static set of supported packet types,
581 	 * so we can't build it dynamically based on supported tunnel
582 	 * encapsulations and should limit to known sets.
583 	 */
584 	switch (tunnel_encaps) {
585 	case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
586 	      1u << EFX_TUNNEL_PROTOCOL_GENEVE |
587 	      1u << EFX_TUNNEL_PROTOCOL_NVGRE):
588 		return ef10_overlay_ptypes;
589 	default:
590 		RTE_LOG(ERR, PMD,
591 			"Unexpected set of supported tunnel encapsulations: %#x\n",
592 			tunnel_encaps);
593 		/* FALLTHROUGH */
594 	case 0:
595 		return ef10_native_ptypes;
596 	}
597 }
598 
599 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
600 static unsigned int
601 sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
602 {
603 	/*
604 	 * Correct implementation requires EvQ polling and events
605 	 * processing (keeping all ready mbufs in prepared).
606 	 */
607 	return -ENOTSUP;
608 }
609 
610 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
611 static int
612 sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
613 			 __rte_unused uint16_t offset)
614 {
615 	return -ENOTSUP;
616 }
617 
618 
619 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
620 static void
621 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
622 {
623 	/*
624 	 * Number of descriptors just defines maximum number of pushed
625 	 * descriptors (fill level).
626 	 */
627 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
628 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
629 }
630 
631 
632 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
633 static int
634 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
635 			   unsigned int *rxq_entries,
636 			   unsigned int *evq_entries,
637 			   unsigned int *rxq_max_fill_level)
638 {
639 	/*
640 	 * rte_ethdev API guarantees that the number meets min, max and
641 	 * alignment requirements.
642 	 */
643 	if (nb_rx_desc <= EFX_RXQ_MINNDESCS)
644 		*rxq_entries = EFX_RXQ_MINNDESCS;
645 	else
646 		*rxq_entries = rte_align32pow2(nb_rx_desc);
647 
648 	*evq_entries = *rxq_entries;
649 
650 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
651 				      SFC_EF10_RXQ_LIMIT(*evq_entries));
652 	return 0;
653 }
654 
655 
656 static uint64_t
657 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
658 {
659 	struct rte_mbuf m;
660 
661 	memset(&m, 0, sizeof(m));
662 
663 	rte_mbuf_refcnt_set(&m, 1);
664 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
665 	m.nb_segs = 1;
666 	m.port = port_id;
667 
668 	/* rearm_data covers structure members filled in above */
669 	rte_compiler_barrier();
670 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
671 	return m.rearm_data[0];
672 }
673 
674 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
675 static int
676 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
677 		    const struct rte_pci_addr *pci_addr, int socket_id,
678 		    const struct sfc_dp_rx_qcreate_info *info,
679 		    struct sfc_dp_rxq **dp_rxqp)
680 {
681 	struct sfc_ef10_rxq *rxq;
682 	int rc;
683 
684 	rc = EINVAL;
685 	if (info->rxq_entries != info->evq_entries)
686 		goto fail_rxq_args;
687 
688 	rc = ENOMEM;
689 	rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
690 				 RTE_CACHE_LINE_SIZE, socket_id);
691 	if (rxq == NULL)
692 		goto fail_rxq_alloc;
693 
694 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
695 
696 	rc = ENOMEM;
697 	rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
698 					 info->rxq_entries,
699 					 sizeof(*rxq->sw_ring),
700 					 RTE_CACHE_LINE_SIZE, socket_id);
701 	if (rxq->sw_ring == NULL)
702 		goto fail_desc_alloc;
703 
704 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
705 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
706 		rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
707 	rxq->ptr_mask = info->rxq_entries - 1;
708 	rxq->evq_hw_ring = info->evq_hw_ring;
709 	rxq->max_fill_level = info->max_fill_level;
710 	rxq->refill_threshold = info->refill_threshold;
711 	rxq->rearm_data =
712 		sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
713 	rxq->prefix_size = info->prefix_size;
714 	rxq->buf_size = info->buf_size;
715 	rxq->refill_mb_pool = info->refill_mb_pool;
716 	rxq->rxq_hw_ring = info->rxq_hw_ring;
717 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
718 			ER_DZ_RX_DESC_UPD_REG_OFST +
719 			info->hw_index * ER_DZ_RX_DESC_UPD_REG_STEP;
720 
721 	*dp_rxqp = &rxq->dp;
722 	return 0;
723 
724 fail_desc_alloc:
725 	rte_free(rxq);
726 
727 fail_rxq_alloc:
728 fail_rxq_args:
729 	return rc;
730 }
731 
732 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
733 static void
734 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
735 {
736 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
737 
738 	rte_free(rxq->sw_ring);
739 	rte_free(rxq);
740 }
741 
742 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
743 static int
744 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
745 {
746 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
747 
748 	rxq->prepared = 0;
749 	rxq->completed = rxq->added = 0;
750 
751 	sfc_ef10_rx_qrefill(rxq);
752 
753 	rxq->evq_read_ptr = evq_read_ptr;
754 
755 	rxq->flags |= SFC_EF10_RXQ_STARTED;
756 	rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
757 
758 	return 0;
759 }
760 
761 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
762 static void
763 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
764 {
765 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
766 
767 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
768 
769 	*evq_read_ptr = rxq->evq_read_ptr;
770 }
771 
772 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
773 static bool
774 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
775 {
776 	__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
777 
778 	SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
779 
780 	/*
781 	 * It is safe to ignore Rx event since we free all mbufs on
782 	 * queue purge anyway.
783 	 */
784 
785 	return false;
786 }
787 
788 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
789 static void
790 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
791 {
792 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
793 	unsigned int i;
794 	struct sfc_ef10_rx_sw_desc *rxd;
795 
796 	for (i = rxq->completed; i != rxq->added; ++i) {
797 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
798 		rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
799 		rxd->mbuf = NULL;
800 	}
801 
802 	rxq->flags &= ~SFC_EF10_RXQ_STARTED;
803 }
804 
805 struct sfc_dp_rx sfc_ef10_rx = {
806 	.dp = {
807 		.name		= SFC_KVARG_DATAPATH_EF10,
808 		.type		= SFC_DP_RX,
809 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
810 	},
811 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
812 				  SFC_DP_RX_FEAT_TUNNELS,
813 	.get_dev_info		= sfc_ef10_rx_get_dev_info,
814 	.qsize_up_rings		= sfc_ef10_rx_qsize_up_rings,
815 	.qcreate		= sfc_ef10_rx_qcreate,
816 	.qdestroy		= sfc_ef10_rx_qdestroy,
817 	.qstart			= sfc_ef10_rx_qstart,
818 	.qstop			= sfc_ef10_rx_qstop,
819 	.qrx_ev			= sfc_ef10_rx_qrx_ev,
820 	.qpurge			= sfc_ef10_rx_qpurge,
821 	.supported_ptypes_get	= sfc_ef10_supported_ptypes_get,
822 	.qdesc_npending		= sfc_ef10_rx_qdesc_npending,
823 	.qdesc_status		= sfc_ef10_rx_qdesc_status,
824 	.pkt_burst		= sfc_ef10_recv_pkts,
825 };
826