xref: /dpdk/drivers/net/sfc/sfc_ef10_rx.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF10 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx.h"
20 #include "efx_types.h"
21 #include "efx_regs.h"
22 #include "efx_regs_ef10.h"
23 
24 #include "sfc_tweak.h"
25 #include "sfc_dp_rx.h"
26 #include "sfc_kvargs.h"
27 #include "sfc_ef10.h"
28 
29 #define SFC_EF10_RX_EV_ENCAP_SUPPORT	1
30 #include "sfc_ef10_rx_ev.h"
31 
32 #define sfc_ef10_rx_err(dpq, ...) \
33 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
34 
35 /**
36  * Maximum number of descriptors/buffers in the Rx ring.
37  * It should guarantee that corresponding event queue never overfill.
38  * EF10 native datapath uses event queue of the same size as Rx queue.
39  * Maximum number of events on datapath can be estimated as number of
40  * Rx queue entries (one event per Rx buffer in the worst case) plus
41  * Rx error and flush events.
42  */
43 #define SFC_EF10_RXQ_LIMIT(_ndesc) \
44 	((_ndesc) - 1 /* head must not step on tail */ - \
45 	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
46 	 1 /* Rx error */ - 1 /* flush */)
47 
48 struct sfc_ef10_rx_sw_desc {
49 	struct rte_mbuf			*mbuf;
50 };
51 
52 struct sfc_ef10_rxq {
53 	/* Used on data path */
54 	unsigned int			flags;
55 #define SFC_EF10_RXQ_STARTED		0x1
56 #define SFC_EF10_RXQ_NOT_RUNNING	0x2
57 #define SFC_EF10_RXQ_EXCEPTION		0x4
58 #define SFC_EF10_RXQ_RSS_HASH		0x8
59 #define SFC_EF10_RXQ_FLAG_INTR_EN	0x10
60 	unsigned int			ptr_mask;
61 	unsigned int			pending;
62 	unsigned int			completed;
63 	unsigned int			evq_read_ptr;
64 	unsigned int			evq_read_ptr_primed;
65 	efx_qword_t			*evq_hw_ring;
66 	struct sfc_ef10_rx_sw_desc	*sw_ring;
67 	uint64_t			rearm_data;
68 	struct rte_mbuf			*scatter_pkt;
69 	volatile void			*evq_prime;
70 	uint16_t			prefix_size;
71 
72 	/* Used on refill */
73 	uint16_t			buf_size;
74 	unsigned int			added;
75 	unsigned int			max_fill_level;
76 	unsigned int			refill_threshold;
77 	struct rte_mempool		*refill_mb_pool;
78 	efx_qword_t			*rxq_hw_ring;
79 	volatile void			*doorbell;
80 
81 	/* Datapath receive queue anchor */
82 	struct sfc_dp_rxq		dp;
83 };
84 
85 static inline struct sfc_ef10_rxq *
86 sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
87 {
88 	return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
89 }
90 
91 static void
92 sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
93 {
94 	sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
95 	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
96 }
97 
98 static void
99 sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
100 {
101 	const unsigned int ptr_mask = rxq->ptr_mask;
102 	const uint32_t buf_size = rxq->buf_size;
103 	unsigned int free_space;
104 	unsigned int bulks;
105 	void *objs[SFC_RX_REFILL_BULK];
106 	unsigned int added = rxq->added;
107 
108 	RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
109 
110 	free_space = rxq->max_fill_level - (added - rxq->completed);
111 
112 	if (free_space < rxq->refill_threshold)
113 		return;
114 
115 	bulks = free_space / RTE_DIM(objs);
116 	/* refill_threshold guarantees that bulks is positive */
117 	SFC_ASSERT(bulks > 0);
118 
119 	do {
120 		unsigned int id;
121 		unsigned int i;
122 
123 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
124 						  RTE_DIM(objs)) < 0)) {
125 			struct rte_eth_dev_data *dev_data =
126 				rte_eth_devices[rxq->dp.dpq.port_id].data;
127 
128 			/*
129 			 * It is hardly a safe way to increment counter
130 			 * from different contexts, but all PMDs do it.
131 			 */
132 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
133 			/* Return if we have posted nothing yet */
134 			if (added == rxq->added)
135 				return;
136 			/* Push posted */
137 			break;
138 		}
139 
140 		for (i = 0, id = added & ptr_mask;
141 		     i < RTE_DIM(objs);
142 		     ++i, ++id) {
143 			struct rte_mbuf *m = objs[i];
144 			struct sfc_ef10_rx_sw_desc *rxd;
145 			rte_iova_t phys_addr;
146 
147 			MBUF_RAW_ALLOC_CHECK(m);
148 
149 			SFC_ASSERT((id & ~ptr_mask) == 0);
150 			rxd = &rxq->sw_ring[id];
151 			rxd->mbuf = m;
152 
153 			/*
154 			 * Avoid writing to mbuf. It is cheaper to do it
155 			 * when we receive packet and fill in nearby
156 			 * structure members.
157 			 */
158 
159 			phys_addr = rte_mbuf_data_iova_default(m);
160 			EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
161 			    ESF_DZ_RX_KER_BYTE_CNT, buf_size,
162 			    ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
163 		}
164 
165 		added += RTE_DIM(objs);
166 	} while (--bulks > 0);
167 
168 	SFC_ASSERT(rxq->added != added);
169 	rxq->added = added;
170 	sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
171 }
172 
173 static void
174 sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
175 {
176 	struct rte_mbuf *next_mbuf;
177 
178 	/* Prefetch next bunch of software descriptors */
179 	if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
180 		rte_prefetch0(&rxq->sw_ring[next_id]);
181 
182 	/*
183 	 * It looks strange to prefetch depending on previous prefetch
184 	 * data, but measurements show that it is really efficient and
185 	 * increases packet rate.
186 	 */
187 	next_mbuf = rxq->sw_ring[next_id].mbuf;
188 	if (likely(next_mbuf != NULL)) {
189 		/* Prefetch the next mbuf structure */
190 		rte_mbuf_prefetch_part1(next_mbuf);
191 
192 		/* Prefetch pseudo header of the next packet */
193 		/* data_off is not filled in yet */
194 		/* Yes, data could be not ready yet, but we hope */
195 		rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
196 			      RTE_PKTMBUF_HEADROOM);
197 	}
198 }
199 
200 static struct rte_mbuf **
201 sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
202 		    uint16_t nb_pkts)
203 {
204 	uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
205 
206 	SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
207 
208 	if (n_rx_pkts != 0) {
209 		unsigned int completed = rxq->completed;
210 
211 		rxq->completed = completed + n_rx_pkts;
212 
213 		do {
214 			*rx_pkts++ =
215 				rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
216 		} while (completed != rxq->completed);
217 	}
218 
219 	return rx_pkts;
220 }
221 
222 static uint16_t
223 sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
224 {
225 	return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
226 }
227 
228 static uint32_t
229 sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
230 {
231 	return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
232 }
233 
234 static struct rte_mbuf **
235 sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
236 			  struct rte_mbuf **rx_pkts,
237 			  struct rte_mbuf ** const rx_pkts_end)
238 {
239 	const unsigned int ptr_mask = rxq->ptr_mask;
240 	unsigned int pending = rxq->pending;
241 	unsigned int ready;
242 	struct sfc_ef10_rx_sw_desc *rxd;
243 	struct rte_mbuf *m;
244 	struct rte_mbuf *m0;
245 	const uint8_t *pseudo_hdr;
246 	uint16_t seg_len;
247 
248 	ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
249 		EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
250 
251 	if (ready == 0) {
252 		/* Rx abort - it was no enough descriptors for Rx packet */
253 		rte_pktmbuf_free(rxq->scatter_pkt);
254 		rxq->scatter_pkt = NULL;
255 		return rx_pkts;
256 	}
257 
258 	rxq->pending = pending + ready;
259 
260 	if (rx_ev.eq_u64[0] &
261 	    rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
262 			     (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
263 		SFC_ASSERT(rxq->completed == pending);
264 		do {
265 			rxd = &rxq->sw_ring[pending++ & ptr_mask];
266 			rte_mbuf_raw_free(rxd->mbuf);
267 		} while (pending != rxq->pending);
268 		rxq->completed = pending;
269 		return rx_pkts;
270 	}
271 
272 	/* If scattered packet is in progress */
273 	if (rxq->scatter_pkt != NULL) {
274 		/* Events for scattered packet frags are not merged */
275 		SFC_ASSERT(ready == 1);
276 		SFC_ASSERT(rxq->completed == pending);
277 
278 		/* There is no pseudo-header in scatter segments. */
279 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
280 
281 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
282 		m = rxd->mbuf;
283 
284 		MBUF_RAW_ALLOC_CHECK(m);
285 
286 		m->data_off = RTE_PKTMBUF_HEADROOM;
287 		rte_pktmbuf_data_len(m) = seg_len;
288 		rte_pktmbuf_pkt_len(m) = seg_len;
289 
290 		rxq->scatter_pkt->nb_segs++;
291 		rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
292 		rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
293 
294 		if (~rx_ev.eq_u64[0] &
295 		    rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
296 			*rx_pkts++ = rxq->scatter_pkt;
297 			rxq->scatter_pkt = NULL;
298 		}
299 		rxq->completed = pending;
300 		return rx_pkts;
301 	}
302 
303 	rxd = &rxq->sw_ring[pending++ & ptr_mask];
304 
305 	sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
306 
307 	m = rxd->mbuf;
308 
309 	RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
310 	m->rearm_data[0] = rxq->rearm_data;
311 
312 	/* Classify packet based on Rx event */
313 	/* Mask RSS hash offload flag if RSS is not enabled */
314 	sfc_ef10_rx_ev_to_offloads(rx_ev, m,
315 				   (rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
316 				   ~0ull : ~PKT_RX_RSS_HASH);
317 
318 	/* data_off already moved past pseudo header */
319 	pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
320 
321 	/*
322 	 * Always get RSS hash from pseudo header to avoid
323 	 * condition/branching. If it is valid or not depends on
324 	 * PKT_RX_RSS_HASH in m->ol_flags.
325 	 */
326 	m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
327 
328 	if (ready == 1)
329 		seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
330 			rxq->prefix_size;
331 	else
332 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
333 	SFC_ASSERT(seg_len > 0);
334 	rte_pktmbuf_data_len(m) = seg_len;
335 	rte_pktmbuf_pkt_len(m) = seg_len;
336 
337 	SFC_ASSERT(m->next == NULL);
338 
339 	if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
340 		*rx_pkts++ = m;
341 		rxq->completed = pending;
342 	} else {
343 		/* Events with CONT bit are not merged */
344 		SFC_ASSERT(ready == 1);
345 		rxq->scatter_pkt = m;
346 		rxq->completed = pending;
347 		return rx_pkts;
348 	}
349 
350 	/* Remember mbuf to copy offload flags and packet type from */
351 	m0 = m;
352 	while (pending != rxq->pending) {
353 		rxd = &rxq->sw_ring[pending++ & ptr_mask];
354 
355 		sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
356 
357 		m = rxd->mbuf;
358 
359 		if (rx_pkts != rx_pkts_end) {
360 			*rx_pkts++ = m;
361 			rxq->completed = pending;
362 		}
363 
364 		RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
365 				 sizeof(rxq->rearm_data));
366 		m->rearm_data[0] = rxq->rearm_data;
367 
368 		/* Event-dependent information is the same */
369 		m->ol_flags = m0->ol_flags;
370 		m->packet_type = m0->packet_type;
371 
372 		/* data_off already moved past pseudo header */
373 		pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
374 
375 		/*
376 		 * Always get RSS hash from pseudo header to avoid
377 		 * condition/branching. If it is valid or not depends on
378 		 * PKT_RX_RSS_HASH in m->ol_flags.
379 		 */
380 		m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
381 
382 		seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
383 		SFC_ASSERT(seg_len > 0);
384 		rte_pktmbuf_data_len(m) = seg_len;
385 		rte_pktmbuf_pkt_len(m) = seg_len;
386 
387 		SFC_ASSERT(m->next == NULL);
388 	}
389 
390 	return rx_pkts;
391 }
392 
393 static bool
394 sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
395 {
396 	*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
397 
398 	if (!sfc_ef10_ev_present(*rx_ev))
399 		return false;
400 
401 	if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
402 		     FSE_AZ_EV_CODE_RX_EV)) {
403 		/*
404 		 * Do not move read_ptr to keep the event for exception
405 		 * handling by the control path.
406 		 */
407 		rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
408 		sfc_ef10_rx_err(&rxq->dp.dpq,
409 				"RxQ exception at EvQ read ptr %#x",
410 				rxq->evq_read_ptr);
411 		return false;
412 	}
413 
414 	rxq->evq_read_ptr++;
415 	return true;
416 }
417 
418 static uint16_t
419 sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
420 {
421 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
422 	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
423 	unsigned int evq_old_read_ptr;
424 	efx_qword_t rx_ev;
425 
426 	rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
427 
428 	if (unlikely(rxq->flags &
429 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
430 		goto done;
431 
432 	evq_old_read_ptr = rxq->evq_read_ptr;
433 	while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
434 		/*
435 		 * DROP_EVENT is an internal to the NIC, software should
436 		 * never see it and, therefore, may ignore it.
437 		 */
438 
439 		rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
440 						    rx_pkts, rx_pkts_end);
441 	}
442 
443 	sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
444 			   rxq->evq_read_ptr);
445 
446 	/* It is not a problem if we refill in the case of exception */
447 	sfc_ef10_rx_qrefill(rxq);
448 
449 	if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
450 	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
451 		sfc_ef10_rx_qprime(rxq);
452 
453 done:
454 	return nb_pkts - (rx_pkts_end - rx_pkts);
455 }
456 
457 const uint32_t *
458 sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
459 {
460 	static const uint32_t ef10_native_ptypes[] = {
461 		RTE_PTYPE_L2_ETHER,
462 		RTE_PTYPE_L2_ETHER_ARP,
463 		RTE_PTYPE_L2_ETHER_VLAN,
464 		RTE_PTYPE_L2_ETHER_QINQ,
465 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
466 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
467 		RTE_PTYPE_L4_FRAG,
468 		RTE_PTYPE_L4_TCP,
469 		RTE_PTYPE_L4_UDP,
470 		RTE_PTYPE_UNKNOWN
471 	};
472 	static const uint32_t ef10_overlay_ptypes[] = {
473 		RTE_PTYPE_L2_ETHER,
474 		RTE_PTYPE_L2_ETHER_ARP,
475 		RTE_PTYPE_L2_ETHER_VLAN,
476 		RTE_PTYPE_L2_ETHER_QINQ,
477 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
478 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
479 		RTE_PTYPE_L4_FRAG,
480 		RTE_PTYPE_L4_TCP,
481 		RTE_PTYPE_L4_UDP,
482 		RTE_PTYPE_TUNNEL_VXLAN,
483 		RTE_PTYPE_TUNNEL_NVGRE,
484 		RTE_PTYPE_INNER_L2_ETHER,
485 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
486 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
487 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
488 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
489 		RTE_PTYPE_INNER_L4_FRAG,
490 		RTE_PTYPE_INNER_L4_TCP,
491 		RTE_PTYPE_INNER_L4_UDP,
492 		RTE_PTYPE_UNKNOWN
493 	};
494 
495 	/*
496 	 * The function returns static set of supported packet types,
497 	 * so we can't build it dynamically based on supported tunnel
498 	 * encapsulations and should limit to known sets.
499 	 */
500 	switch (tunnel_encaps) {
501 	case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
502 	      1u << EFX_TUNNEL_PROTOCOL_GENEVE |
503 	      1u << EFX_TUNNEL_PROTOCOL_NVGRE):
504 		return ef10_overlay_ptypes;
505 	default:
506 		SFC_GENERIC_LOG(ERR,
507 			"Unexpected set of supported tunnel encapsulations: %#x",
508 			tunnel_encaps);
509 		/* FALLTHROUGH */
510 	case 0:
511 		return ef10_native_ptypes;
512 	}
513 }
514 
515 static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
516 static unsigned int
517 sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
518 {
519 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
520 	efx_qword_t rx_ev;
521 	const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
522 	unsigned int pending = rxq->pending;
523 	unsigned int ready;
524 
525 	if (unlikely(rxq->flags &
526 		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
527 		goto done;
528 
529 	while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
530 		ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
531 			 pending) &
532 			EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
533 		pending += ready;
534 	}
535 
536 	/*
537 	 * The function does not process events, so return event queue read
538 	 * pointer to the original position to allow the events that were
539 	 * read to be processed later
540 	 */
541 	rxq->evq_read_ptr = evq_old_read_ptr;
542 
543 done:
544 	return pending - rxq->completed;
545 }
546 
547 static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
548 static int
549 sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
550 {
551 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
552 	unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
553 
554 	if (unlikely(offset > rxq->ptr_mask))
555 		return -EINVAL;
556 
557 	if (offset < npending)
558 		return RTE_ETH_RX_DESC_DONE;
559 
560 	if (offset < (rxq->added - rxq->completed))
561 		return RTE_ETH_RX_DESC_AVAIL;
562 
563 	return RTE_ETH_RX_DESC_UNAVAIL;
564 }
565 
566 
567 static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
568 static void
569 sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
570 {
571 	/*
572 	 * Number of descriptors just defines maximum number of pushed
573 	 * descriptors (fill level).
574 	 */
575 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
576 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
577 }
578 
579 
580 static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
581 static int
582 sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
583 			   struct sfc_dp_rx_hw_limits *limits,
584 			   __rte_unused struct rte_mempool *mb_pool,
585 			   unsigned int *rxq_entries,
586 			   unsigned int *evq_entries,
587 			   unsigned int *rxq_max_fill_level)
588 {
589 	/*
590 	 * rte_ethdev API guarantees that the number meets min, max and
591 	 * alignment requirements.
592 	 */
593 	if (nb_rx_desc <= limits->rxq_min_entries)
594 		*rxq_entries = limits->rxq_min_entries;
595 	else
596 		*rxq_entries = rte_align32pow2(nb_rx_desc);
597 
598 	*evq_entries = *rxq_entries;
599 
600 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
601 				      SFC_EF10_RXQ_LIMIT(*evq_entries));
602 	return 0;
603 }
604 
605 
606 static uint64_t
607 sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
608 {
609 	struct rte_mbuf m;
610 
611 	memset(&m, 0, sizeof(m));
612 
613 	rte_mbuf_refcnt_set(&m, 1);
614 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
615 	m.nb_segs = 1;
616 	m.port = port_id;
617 
618 	/* rearm_data covers structure members filled in above */
619 	rte_compiler_barrier();
620 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
621 	return m.rearm_data[0];
622 }
623 
624 static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
625 static int
626 sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
627 		    const struct rte_pci_addr *pci_addr, int socket_id,
628 		    const struct sfc_dp_rx_qcreate_info *info,
629 		    struct sfc_dp_rxq **dp_rxqp)
630 {
631 	struct sfc_ef10_rxq *rxq;
632 	int rc;
633 
634 	rc = EINVAL;
635 	if (info->rxq_entries != info->evq_entries)
636 		goto fail_rxq_args;
637 
638 	rc = ENOMEM;
639 	rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
640 				 RTE_CACHE_LINE_SIZE, socket_id);
641 	if (rxq == NULL)
642 		goto fail_rxq_alloc;
643 
644 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
645 
646 	rc = ENOMEM;
647 	rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
648 					 info->rxq_entries,
649 					 sizeof(*rxq->sw_ring),
650 					 RTE_CACHE_LINE_SIZE, socket_id);
651 	if (rxq->sw_ring == NULL)
652 		goto fail_desc_alloc;
653 
654 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
655 	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
656 		rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
657 	rxq->ptr_mask = info->rxq_entries - 1;
658 	rxq->evq_hw_ring = info->evq_hw_ring;
659 	rxq->max_fill_level = info->max_fill_level;
660 	rxq->refill_threshold = info->refill_threshold;
661 	rxq->rearm_data =
662 		sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
663 	rxq->prefix_size = info->prefix_size;
664 	rxq->buf_size = info->buf_size;
665 	rxq->refill_mb_pool = info->refill_mb_pool;
666 	rxq->rxq_hw_ring = info->rxq_hw_ring;
667 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
668 			ER_DZ_RX_DESC_UPD_REG_OFST +
669 			(info->hw_index << info->vi_window_shift);
670 	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
671 		      ER_DZ_EVQ_RPTR_REG_OFST +
672 		      (info->evq_hw_index << info->vi_window_shift);
673 
674 	*dp_rxqp = &rxq->dp;
675 	return 0;
676 
677 fail_desc_alloc:
678 	rte_free(rxq);
679 
680 fail_rxq_alloc:
681 fail_rxq_args:
682 	return rc;
683 }
684 
685 static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
686 static void
687 sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
688 {
689 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
690 
691 	rte_free(rxq->sw_ring);
692 	rte_free(rxq);
693 }
694 
695 static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
696 static int
697 sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
698 {
699 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
700 
701 	SFC_ASSERT(rxq->completed == 0);
702 	SFC_ASSERT(rxq->pending == 0);
703 	SFC_ASSERT(rxq->added == 0);
704 
705 	sfc_ef10_rx_qrefill(rxq);
706 
707 	rxq->evq_read_ptr = evq_read_ptr;
708 
709 	rxq->flags |= SFC_EF10_RXQ_STARTED;
710 	rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
711 
712 	if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
713 		sfc_ef10_rx_qprime(rxq);
714 
715 	return 0;
716 }
717 
718 static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
719 static void
720 sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
721 {
722 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
723 
724 	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
725 
726 	*evq_read_ptr = rxq->evq_read_ptr;
727 }
728 
729 static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
730 static bool
731 sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
732 {
733 	__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
734 
735 	SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
736 
737 	/*
738 	 * It is safe to ignore Rx event since we free all mbufs on
739 	 * queue purge anyway.
740 	 */
741 
742 	return false;
743 }
744 
745 static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
746 static void
747 sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
748 {
749 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
750 	unsigned int i;
751 	struct sfc_ef10_rx_sw_desc *rxd;
752 
753 	rte_pktmbuf_free(rxq->scatter_pkt);
754 	rxq->scatter_pkt = NULL;
755 
756 	for (i = rxq->completed; i != rxq->added; ++i) {
757 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
758 		rte_mbuf_raw_free(rxd->mbuf);
759 		rxd->mbuf = NULL;
760 	}
761 
762 	rxq->completed = rxq->pending = rxq->added = 0;
763 
764 	rxq->flags &= ~SFC_EF10_RXQ_STARTED;
765 }
766 
767 static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
768 static int
769 sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
770 {
771 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
772 
773 	rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
774 	if (rxq->flags & SFC_EF10_RXQ_STARTED)
775 		sfc_ef10_rx_qprime(rxq);
776 	return 0;
777 }
778 
779 static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
780 static int
781 sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
782 {
783 	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
784 
785 	/* Cannot disarm, just disable rearm */
786 	rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
787 	return 0;
788 }
789 
790 struct sfc_dp_rx sfc_ef10_rx = {
791 	.dp = {
792 		.name		= SFC_KVARG_DATAPATH_EF10,
793 		.type		= SFC_DP_RX,
794 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
795 	},
796 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
797 				  SFC_DP_RX_FEAT_INTR,
798 	.dev_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
799 				  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM,
800 	.queue_offload_capa	= DEV_RX_OFFLOAD_SCATTER,
801 	.get_dev_info		= sfc_ef10_rx_get_dev_info,
802 	.qsize_up_rings		= sfc_ef10_rx_qsize_up_rings,
803 	.qcreate		= sfc_ef10_rx_qcreate,
804 	.qdestroy		= sfc_ef10_rx_qdestroy,
805 	.qstart			= sfc_ef10_rx_qstart,
806 	.qstop			= sfc_ef10_rx_qstop,
807 	.qrx_ev			= sfc_ef10_rx_qrx_ev,
808 	.qpurge			= sfc_ef10_rx_qpurge,
809 	.supported_ptypes_get	= sfc_ef10_supported_ptypes_get,
810 	.qdesc_npending		= sfc_ef10_rx_qdesc_npending,
811 	.qdesc_status		= sfc_ef10_rx_qdesc_status,
812 	.intr_enable		= sfc_ef10_rx_intr_enable,
813 	.intr_disable		= sfc_ef10_rx_intr_disable,
814 	.pkt_burst		= sfc_ef10_recv_pkts,
815 };
816