xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision d80e42cce4c7017ed8c99dabb8ae444a492acc1c)
1 /*
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include <rte_string_fns.h>
10 
11 #include "bcm_osal.h"
12 #include "ecore.h"
13 #include "ecore_spq.h"
14 #include "ecore_gtt_reg_addr.h"
15 #include "ecore_init_ops.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_int.h"
18 #include "reg_addr.h"
19 #include "ecore_hw.h"
20 #include "ecore_sriov.h"
21 #include "ecore_vf.h"
22 #include "ecore_hw_defs.h"
23 #include "ecore_hsi_common.h"
24 #include "ecore_mcp.h"
25 
26 struct ecore_pi_info {
27 	ecore_int_comp_cb_t comp_cb;
28 	void *cookie;		/* Will be sent to the compl cb function */
29 };
30 
31 struct ecore_sb_sp_info {
32 	struct ecore_sb_info sb_info;
33 	/* per protocol index data */
34 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
35 };
36 
37 enum ecore_attention_type {
38 	ECORE_ATTN_TYPE_ATTN,
39 	ECORE_ATTN_TYPE_PARITY,
40 };
41 
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44 
45 struct aeu_invert_reg_bit {
46 	char bit_name[30];
47 
48 #define ATTENTION_PARITY		(1 << 0)
49 
50 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
51 #define ATTENTION_LENGTH_SHIFT		(4)
52 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
53 					 ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
55 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
56 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
57 					 ATTENTION_PARITY)
58 
59 /* Multiple bits start with this offset */
60 #define ATTENTION_OFFSET_MASK		(0x000ff000)
61 #define ATTENTION_OFFSET_SHIFT		(12)
62 
63 #define ATTENTION_BB_MASK		(0x00700000)
64 #define ATTENTION_BB_SHIFT		(20)
65 #define ATTENTION_BB(value)		((value) << ATTENTION_BB_SHIFT)
66 #define ATTENTION_BB_DIFFERENT		(1 << 23)
67 
68 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
69 	unsigned int flags;
70 
71 	/* Callback to call if attention will be triggered */
72 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
73 
74 	enum block_id block_index;
75 };
76 
77 struct aeu_invert_reg {
78 	struct aeu_invert_reg_bit bits[32];
79 };
80 
81 #define MAX_ATTN_GRPS		(8)
82 #define NUM_ATTN_REGS		(9)
83 
84 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
85 {
86 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
87 
88 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
89 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
90 
91 	return ECORE_SUCCESS;
92 }
93 
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
102 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
103 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
104 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
117 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
118 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
119 {
120 	u32 tmp =
121 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
122 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
123 
124 	/* Disabled VF access */
125 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
126 		u32 addr, data;
127 
128 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
130 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
131 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
132 		DP_INFO(p_hwfn->p_dev,
133 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
134 			" Write [0x%02x] Addr [0x%08x]\n",
135 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
136 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
137 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
138 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
139 			(u8)((data &
140 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
141 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
142 			(u8)((data &
143 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
144 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
145 			(u8)((data &
146 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
147 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
148 			addr);
149 	}
150 
151 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
153 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
154 		u32 addr, data, length;
155 
156 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
158 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159 				PSWHST_REG_INCORRECT_ACCESS_DATA);
160 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
161 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
162 
163 		DP_INFO(p_hwfn->p_dev,
164 			"Incorrect access to %08x of length %08x - PF [%02x]"
165 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
166 			" Byte-Enable [%04x] [%08x]\n",
167 			addr, length,
168 			(u8)((data &
169 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
170 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
171 			(u8)((data &
172 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
173 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
174 			(u8)((data &
175 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
176 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
177 			(u8)((data &
178 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
179 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
180 			(u8)((data &
181 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
182 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
183 			(u8)((data &
184 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
185 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
186 			data);
187 	}
188 
189 	/* TODO - We know 'some' of these are legal due to virtualization,
190 	 * but is it true for all of them?
191 	 */
192 	return ECORE_SUCCESS;
193 }
194 
195 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
196 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
197 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
198 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
199 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
200 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
201 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
202 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
203 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
204 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
205 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
206 static const char *grc_timeout_attn_master_to_str(u8 master)
207 {
208 	switch (master) {
209 	case 1:
210 		return "PXP";
211 	case 2:
212 		return "MCP";
213 	case 3:
214 		return "MSDM";
215 	case 4:
216 		return "PSDM";
217 	case 5:
218 		return "YSDM";
219 	case 6:
220 		return "USDM";
221 	case 7:
222 		return "TSDM";
223 	case 8:
224 		return "XSDM";
225 	case 9:
226 		return "DBU";
227 	case 10:
228 		return "DMAE";
229 	default:
230 		return "Unknown";
231 	}
232 }
233 
234 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
235 {
236 	u32 tmp, tmp2;
237 
238 	/* We've already cleared the timeout interrupt register, so we learn
239 	 * of interrupts via the validity register
240 	 */
241 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
243 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
244 		goto out;
245 
246 	/* Read the GRC timeout information */
247 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
248 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
249 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
250 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
251 
252 	DP_NOTICE(p_hwfn->p_dev, false,
253 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
254 		  tmp2, tmp,
255 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
256 						       : "Read from",
257 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
258 		  grc_timeout_attn_master_to_str(
259 			(tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
260 			 ECORE_GRC_ATTENTION_MASTER_SHIFT),
261 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
262 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
263 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
264 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
265 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
266 		  ECORE_GRC_ATTENTION_VF_SHIFT);
267 
268 out:
269 	/* Regardles of anything else, clean the validity bit */
270 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
271 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
272 	return ECORE_SUCCESS;
273 }
274 
275 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
276 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
284 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
286 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
287 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
288 
289 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
290 						   struct ecore_ptt *p_ptt,
291 						   bool is_hw_init)
292 {
293 	u32 tmp;
294 	char str[512] = {0};
295 
296 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
297 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
298 		u32 addr_lo, addr_hi, details;
299 
300 		addr_lo = ecore_rd(p_hwfn, p_ptt,
301 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
302 		addr_hi = ecore_rd(p_hwfn, p_ptt,
303 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
304 		details = ecore_rd(p_hwfn, p_ptt,
305 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
306 		OSAL_SNPRINTF(str, 512,
307 			 "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 			  addr_hi, addr_lo, details,
309 			  (u8)((details &
310 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
311 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
312 			  (u8)((details &
313 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
314 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
315 			  (u8)((details &
316 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
317 			  tmp,
318 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
319 				1 : 0),
320 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
321 				1 : 0),
322 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
323 				1 : 0));
324 		if (is_hw_init)
325 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
326 		else
327 			DP_NOTICE(p_hwfn, false, "%s", str);
328 	}
329 
330 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
331 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
332 		u32 addr_lo, addr_hi, details;
333 
334 		addr_lo = ecore_rd(p_hwfn, p_ptt,
335 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
336 		addr_hi = ecore_rd(p_hwfn, p_ptt,
337 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
338 		details = ecore_rd(p_hwfn, p_ptt,
339 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
340 
341 		DP_NOTICE(p_hwfn, false,
342 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
343 			  addr_hi, addr_lo, details,
344 			  (u8)((details &
345 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
346 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
347 			  (u8)((details &
348 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
349 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
350 			  (u8)((details &
351 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
352 			  tmp,
353 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
354 				1 : 0),
355 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
356 				1 : 0),
357 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
358 				1 : 0));
359 	}
360 
361 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
362 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
363 		DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
364 
365 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
366 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
367 		u32 addr_hi, addr_lo;
368 
369 		addr_lo = ecore_rd(p_hwfn, p_ptt,
370 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
371 		addr_hi = ecore_rd(p_hwfn, p_ptt,
372 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
373 
374 		DP_NOTICE(p_hwfn, false,
375 			  "ICPL erorr - %08x [Address %08x:%08x]\n",
376 			  tmp, addr_hi, addr_lo);
377 	}
378 
379 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
380 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
381 		u32 addr_hi, addr_lo, details;
382 
383 		addr_lo = ecore_rd(p_hwfn, p_ptt,
384 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
385 		addr_hi = ecore_rd(p_hwfn, p_ptt,
386 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
387 		details = ecore_rd(p_hwfn, p_ptt,
388 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
389 
390 		DP_NOTICE(p_hwfn, false,
391 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
392 			  details, tmp, addr_hi, addr_lo);
393 	}
394 
395 	/* Clear the indications */
396 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
397 
398 	return ECORE_SUCCESS;
399 }
400 
401 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
402 {
403 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
404 }
405 
406 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
407 {
408 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
409 
410 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
411 
412 	return ECORE_INVAL;
413 }
414 
415 static enum _ecore_status_t
416 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
417 {
418 	DP_INFO(p_hwfn, "General attention 35!\n");
419 
420 	return ECORE_SUCCESS;
421 }
422 
423 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
424 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
425 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
426 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
427 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
428 
429 #define ECORE_DB_REC_COUNT			10
430 #define ECORE_DB_REC_INTERVAL			100
431 
432 /* assumes sticky overflow indication was set for this PF */
433 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
434 					      struct ecore_ptt *p_ptt)
435 {
436 	u8 count = ECORE_DB_REC_COUNT;
437 	u32 usage = 1;
438 
439 	/* wait for usage to zero or count to run out. This is necessary since
440 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
441 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
442 	 * half an EDPM in the queue and other half dropped. Another EDPM
443 	 * doorbell to the same address (from doorbell recovery mechanism or
444 	 * from the doorbelling entity) could have first half dropped and second
445 	 * half interperted as continuation of the first. To prevent such
446 	 * malformed doorbells from reaching the device, flush the queue before
447 	 * releaseing the overflow sticky indication.
448 	 */
449 	while (count-- && usage) {
450 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
451 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
452 	}
453 
454 	/* should have been depleted by now */
455 	if (usage) {
456 		DP_NOTICE(p_hwfn->p_dev, false,
457 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
458 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
459 		return ECORE_TIMEOUT;
460 	}
461 
462 	/* flush any pedning (e)dpm as they may never arrive */
463 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
464 
465 	/* release overflow sticky indication (stop silently dropping
466 	 * everything)
467 	 */
468 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
469 
470 	/* repeat all last doorbells (doorbell drop recovery) */
471 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
472 
473 	return ECORE_SUCCESS;
474 }
475 
476 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
477 {
478 	u32 int_sts, first_drop_reason, details, address, overflow,
479 		all_drops_reason;
480 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
481 	enum _ecore_status_t rc;
482 
483 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
484 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
485 		  int_sts);
486 
487 	/* int_sts may be zero since all PFs were interrupted for doorbell
488 	 * overflow but another one already handled it. Can abort here. If
489 	 * This PF also requires overflow recovery we will be interrupted again
490 	 */
491 	if (!int_sts)
492 		return ECORE_SUCCESS;
493 
494 	/* check if db_drop or overflow happened */
495 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
496 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
497 		/* obtain data about db drop/overflow */
498 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
499 				  DORQ_REG_DB_DROP_REASON) &
500 				  ECORE_DORQ_ATTENTION_REASON_MASK;
501 		details = ecore_rd(p_hwfn, p_ptt,
502 				   DORQ_REG_DB_DROP_DETAILS);
503 		address = ecore_rd(p_hwfn, p_ptt,
504 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
505 		overflow = ecore_rd(p_hwfn, p_ptt,
506 				    DORQ_REG_PF_OVFL_STICKY);
507 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
508 					    DORQ_REG_DB_DROP_DETAILS_REASON);
509 
510 		/* log info */
511 		DP_NOTICE(p_hwfn->p_dev, false,
512 			  "Doorbell drop occurred\n"
513 			  "Address\t\t0x%08x\t(second BAR address)\n"
514 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
515 			  "Size\t\t0x%04x\t\t(in bytes)\n"
516 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
517 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
518 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
519 			  address,
520 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
521 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
522 			  first_drop_reason, all_drops_reason, overflow);
523 
524 		/* if this PF caused overflow, initiate recovery */
525 		if (overflow) {
526 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
527 			if (rc != ECORE_SUCCESS)
528 				return rc;
529 		}
530 
531 		/* clear the doorbell drop details and prepare for next drop */
532 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
533 
534 		/* mark interrupt as handeld (note: even if drop was due to a
535 		 * different reason than overflow we mark as handled)
536 		 */
537 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
538 			 DORQ_REG_INT_STS_DB_DROP |
539 			 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
540 
541 		/* if there are no indications otherthan drop indications,
542 		 * success
543 		 */
544 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
545 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
546 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
547 			return ECORE_SUCCESS;
548 	}
549 
550 	/* some other indication was present - non recoverable */
551 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
552 
553 	return ECORE_INVAL;
554 }
555 
556 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
557 {
558 #ifndef ASIC_ONLY
559 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
560 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
561 				   TM_REG_INT_STS_1);
562 
563 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
564 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
565 			return ECORE_INVAL;
566 
567 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
568 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
569 			DP_INFO(p_hwfn,
570 				"TM attention on emulation - most likely"
571 				" results of clock-ratios\n");
572 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
573 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
574 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
575 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
576 
577 		return ECORE_SUCCESS;
578 	}
579 #endif
580 
581 	return ECORE_INVAL;
582 }
583 
584 /* Instead of major changes to the data-structure, we have a some 'special'
585  * identifiers for sources that changed meaning between adapters.
586  */
587 enum aeu_invert_reg_special_type {
588 	AEU_INVERT_REG_SPECIAL_CNIG_0,
589 	AEU_INVERT_REG_SPECIAL_CNIG_1,
590 	AEU_INVERT_REG_SPECIAL_CNIG_2,
591 	AEU_INVERT_REG_SPECIAL_CNIG_3,
592 	AEU_INVERT_REG_SPECIAL_MAX,
593 };
594 
595 static struct aeu_invert_reg_bit
596 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
597 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
599 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
600 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
601 };
602 
603 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
604 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
605 	{
606 	 {			/* After Invert 1 */
607 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
608 	   MAX_BLOCK_ID},
609 	  }
610 	 },
611 
612 	{
613 	 {			/* After Invert 2 */
614 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
617 	   BLOCK_PGLUE_B},
618 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
619 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
620 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
621 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
622 	  {"SW timers #%d",
623 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
624 	   OSAL_NULL, MAX_BLOCK_ID},
625 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
626 	   BLOCK_PGLCS},
627 	  }
628 	 },
629 
630 	{
631 	 {			/* After Invert 3 */
632 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
633 	   MAX_BLOCK_ID},
634 	  }
635 	 },
636 
637 	{
638 	 {			/* After Invert 4 */
639 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
640 	   ecore_fw_assertion, MAX_BLOCK_ID},
641 	  {"General Attention %d",
642 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
643 	   OSAL_NULL, MAX_BLOCK_ID},
644 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
645 	   ecore_general_attention_35, MAX_BLOCK_ID},
646 	  {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
647 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
648 			 OSAL_NULL, BLOCK_NWS},
649 	  {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
650 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
651 			    OSAL_NULL, BLOCK_NWS},
652 	  {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
653 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
654 			 OSAL_NULL, BLOCK_NWM},
655 	  {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
656 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
657 			    OSAL_NULL, BLOCK_NWM},
658 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
659 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
660 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
661 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
662 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
663 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
664 	  {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
665 	   MAX_BLOCK_ID},
666 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
667 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
668 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
669 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
670 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
671 	  }
672 	 },
673 
674 	{
675 	 {			/* After Invert 5 */
676 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
677 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
678 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
679 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
680 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
681 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
682 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
683 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
684 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
685 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
686 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
687 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
688 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
689 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
690 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
691 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
692 	  }
693 	 },
694 
695 	{
696 	 {			/* After Invert 6 */
697 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
698 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
699 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
700 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
701 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
702 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
703 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
704 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
705 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
706 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
707 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
708 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
709 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
710 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
711 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
712 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
713 	  }
714 	 },
715 
716 	{
717 	 {			/* After Invert 7 */
718 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
719 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
720 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
721 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
722 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
723 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
724 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
725 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
726 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
727 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
728 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
729 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
730 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
731 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
732 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
733 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
734 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
735 	  }
736 	 },
737 
738 	{
739 	 {			/* After Invert 8 */
740 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
741 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
742 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
743 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
744 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
745 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
746 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
747 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
748 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
749 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
750 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
752 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
754 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
755 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
756 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
757 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
758 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
759 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
760 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
761 	   MAX_BLOCK_ID},
762 	  }
763 	 },
764 
765 	{
766 	 {			/* After Invert 9 */
767 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
768 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
769 	   MAX_BLOCK_ID},
770 	  {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
771 	  {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
772 	  {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
773 	   MAX_BLOCK_ID},
774 	  }
775 	 },
776 
777 };
778 
779 static struct aeu_invert_reg_bit *
780 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
781 			struct aeu_invert_reg_bit *p_bit)
782 {
783 	if (!ECORE_IS_BB(p_hwfn->p_dev))
784 		return p_bit;
785 
786 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
787 		return p_bit;
788 
789 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
790 				  ATTENTION_BB_SHIFT];
791 }
792 
793 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
794 				     struct aeu_invert_reg_bit *p_bit)
795 {
796 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
797 		  ATTENTION_PARITY);
798 }
799 
800 #define ATTN_STATE_BITS		(0xfff)
801 #define ATTN_BITS_MASKABLE	(0x3ff)
802 struct ecore_sb_attn_info {
803 	/* Virtual & Physical address of the SB */
804 	struct atten_status_block *sb_attn;
805 	dma_addr_t sb_phys;
806 
807 	/* Last seen running index */
808 	u16 index;
809 
810 	/* A mask of the AEU bits resulting in a parity error */
811 	u32 parity_mask[NUM_ATTN_REGS];
812 
813 	/* A pointer to the attention description structure */
814 	struct aeu_invert_reg *p_aeu_desc;
815 
816 	/* Previously asserted attentions, which are still unasserted */
817 	u16 known_attn;
818 
819 	/* Cleanup address for the link's general hw attention */
820 	u32 mfw_attn_addr;
821 };
822 
823 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
824 				 struct ecore_sb_attn_info *p_sb_desc)
825 {
826 	u16 rc = 0, index;
827 
828 	OSAL_MMIOWB(p_hwfn->p_dev);
829 
830 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
831 	if (p_sb_desc->index != index) {
832 		p_sb_desc->index = index;
833 		rc = ECORE_SB_ATT_IDX;
834 	}
835 
836 	OSAL_MMIOWB(p_hwfn->p_dev);
837 
838 	return rc;
839 }
840 
841 /**
842  * @brief ecore_int_assertion - handles asserted attention bits
843  *
844  * @param p_hwfn
845  * @param asserted_bits newly asserted bits
846  * @return enum _ecore_status_t
847  */
848 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
849 						u16 asserted_bits)
850 {
851 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
852 	u32 igu_mask;
853 
854 	/* Mask the source of the attention in the IGU */
855 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
856 			    IGU_REG_ATTENTION_ENABLE);
857 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
858 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
859 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
860 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
861 
862 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
863 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
864 		   sb_attn_sw->known_attn,
865 		   sb_attn_sw->known_attn | asserted_bits);
866 	sb_attn_sw->known_attn |= asserted_bits;
867 
868 	/* Handle MCP events */
869 	if (asserted_bits & 0x100) {
870 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
871 		/* Clean the MCP attention */
872 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
873 			 sb_attn_sw->mfw_attn_addr, 0);
874 	}
875 
876 	/* FIXME - this will change once we'll have GOOD gtt definitions */
877 	DIRECT_REG_WR(p_hwfn,
878 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
879 		      GTT_BAR0_MAP_REG_IGU_CMD +
880 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
881 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
882 
883 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
884 		   asserted_bits);
885 
886 	return ECORE_SUCCESS;
887 }
888 
889 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
890 				 enum block_id id, enum dbg_attn_type type,
891 				 bool b_clear)
892 {
893 	/* @DPDK */
894 	DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
895 }
896 
897 /**
898  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
899  * cause of the attention
900  *
901  * @param p_hwfn
902  * @param p_aeu - descriptor of an AEU bit which caused the attention
903  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
904  *  this bit to this group.
905  * @param bit_index - index of this bit in the aeu_en_reg
906  *
907  * @return enum _ecore_status_t
908  */
909 static enum _ecore_status_t
910 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
911 			      struct aeu_invert_reg_bit *p_aeu,
912 			      u32 aeu_en_reg,
913 			      const char *p_bit_name,
914 			      u32 bitmask)
915 {
916 	enum _ecore_status_t rc = ECORE_INVAL;
917 	bool b_fatal = false;
918 
919 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
920 		p_bit_name, bitmask);
921 
922 	/* Call callback before clearing the interrupt status */
923 	if (p_aeu->cb) {
924 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
925 			p_bit_name);
926 		rc = p_aeu->cb(p_hwfn);
927 	}
928 
929 	if (rc != ECORE_SUCCESS)
930 		b_fatal = true;
931 
932 	/* Print HW block interrupt registers */
933 	if (p_aeu->block_index != MAX_BLOCK_ID) {
934 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
935 				     ATTN_TYPE_INTERRUPT, !b_fatal);
936 }
937 
938 	/* @DPDK */
939 	/* Reach assertion if attention is fatal */
940 	if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
941 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
942 			  p_bit_name);
943 
944 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
945 	}
946 
947 	/* Prevent this Attention from being asserted in the future */
948 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
949 	    p_hwfn->p_dev->attn_clr_en) {
950 		u32 val;
951 		u32 mask = ~bitmask;
952 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
953 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
954 		DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
955 			p_bit_name);
956 	}
957 
958 	return rc;
959 }
960 
961 /**
962  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
963  *
964  * @param p_hwfn
965  * @param p_aeu - descriptor of an AEU bit which caused the parity
966  * @param aeu_en_reg - address of the AEU enable register
967  * @param bit_index
968  */
969 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
970 					 struct aeu_invert_reg_bit *p_aeu,
971 					 u32 aeu_en_reg, u8 bit_index)
972 {
973 	u32 block_id = p_aeu->block_index, mask, val;
974 
975 	DP_NOTICE(p_hwfn->p_dev, false,
976 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
977 		  p_aeu->bit_name, aeu_en_reg, bit_index);
978 
979 	if (block_id != MAX_BLOCK_ID) {
980 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
981 
982 		/* In A0, there's a single parity bit for several blocks */
983 		if (block_id == BLOCK_BTB) {
984 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
985 					     ATTN_TYPE_PARITY, false);
986 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
987 					     ATTN_TYPE_PARITY, false);
988 		}
989 	}
990 
991 	/* Prevent this parity error from being re-asserted */
992 	mask = ~(0x1 << bit_index);
993 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
994 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
995 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
996 		p_aeu->bit_name);
997 }
998 
999 /**
1000  * @brief - handles deassertion of previously asserted attentions.
1001  *
1002  * @param p_hwfn
1003  * @param deasserted_bits - newly deasserted bits
1004  * @return enum _ecore_status_t
1005  *
1006  */
1007 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1008 						  u16 deasserted_bits)
1009 {
1010 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1011 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1012 	u8 i, j, k, bit_idx;
1013 	enum _ecore_status_t rc = ECORE_SUCCESS;
1014 
1015 	/* Read the attention registers in the AEU */
1016 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1017 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1018 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1019 					  i * 0x4);
1020 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1021 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1022 	}
1023 
1024 	/* Handle parity attentions first */
1025 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1026 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1027 		u32 parities;
1028 
1029 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1030 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1031 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1032 
1033 		/* Skip register in which no parity bit is currently set */
1034 		if (!parities)
1035 			continue;
1036 
1037 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1038 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1039 
1040 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1041 			    !!(parities & (1 << bit_idx)))
1042 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1043 							     aeu_en, bit_idx);
1044 
1045 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1046 		}
1047 	}
1048 
1049 	/* Find non-parity cause for attention and act */
1050 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1051 		struct aeu_invert_reg_bit *p_aeu;
1052 
1053 		/* Handle only groups whose attention is currently deasserted */
1054 		if (!(deasserted_bits & (1 << k)))
1055 			continue;
1056 
1057 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1058 			u32 bits;
1059 
1060 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1061 				 i * sizeof(u32) +
1062 				 k * sizeof(u32) * NUM_ATTN_REGS;
1063 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1064 			bits = aeu_inv_arr[i] & en;
1065 
1066 			/* Skip if no bit from this group is currently set */
1067 			if (!bits)
1068 				continue;
1069 
1070 			/* Find all set bits from current register which belong
1071 			 * to current group, making them responsible for the
1072 			 * previous assertion.
1073 			 */
1074 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1075 				unsigned long int bitmask;
1076 				u8 bit, bit_len;
1077 
1078 				/* Need to account bits with changed meaning */
1079 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1080 
1081 				bit = bit_idx;
1082 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1083 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1084 					/* Skip Parity */
1085 					bit++;
1086 					bit_len--;
1087 				}
1088 
1089 				/* Find the bits relating to HW-block, then
1090 				 * shift so they'll become LSB.
1091 				 */
1092 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1093 				bitmask >>= bit;
1094 
1095 				if (bitmask) {
1096 					u32 flags = p_aeu->flags;
1097 					char bit_name[30];
1098 					u8 num;
1099 
1100 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1101 								bit_len);
1102 
1103 					/* Some bits represent more than a
1104 					 * a single interrupt. Correctly print
1105 					 * their name.
1106 					 */
1107 					if (ATTENTION_LENGTH(flags) > 2 ||
1108 					    ((flags & ATTENTION_PAR_INT) &&
1109 					    ATTENTION_LENGTH(flags) > 1))
1110 						OSAL_SNPRINTF(bit_name, 30,
1111 							      p_aeu->bit_name,
1112 							      num);
1113 					else
1114 						strlcpy(bit_name,
1115 							p_aeu->bit_name,
1116 							sizeof(bit_name));
1117 
1118 					/* We now need to pass bitmask in its
1119 					 * correct position.
1120 					 */
1121 					bitmask <<= bit;
1122 
1123 					/* Handle source of the attention */
1124 					ecore_int_deassertion_aeu_bit(p_hwfn,
1125 								      p_aeu,
1126 								      aeu_en,
1127 								      bit_name,
1128 								      bitmask);
1129 				}
1130 
1131 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1132 			}
1133 		}
1134 	}
1135 
1136 	/* Clear IGU indication for the deasserted bits */
1137 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1138 	DIRECT_REG_WR(p_hwfn,
1139 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
1140 		      GTT_BAR0_MAP_REG_IGU_CMD +
1141 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1142 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1143 
1144 	/* Unmask deasserted attentions in IGU */
1145 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1146 			    IGU_REG_ATTENTION_ENABLE);
1147 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1148 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1149 
1150 	/* Clear deassertion from inner state */
1151 	sb_attn_sw->known_attn &= ~deasserted_bits;
1152 
1153 	return rc;
1154 }
1155 
1156 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1157 {
1158 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1159 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1160 	u16 index = 0, asserted_bits, deasserted_bits;
1161 	u32 attn_bits = 0, attn_acks = 0;
1162 	enum _ecore_status_t rc = ECORE_SUCCESS;
1163 
1164 	/* Read current attention bits/acks - safeguard against attentions
1165 	 * by guaranting work on a synchronized timeframe
1166 	 */
1167 	do {
1168 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1169 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1170 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1171 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1172 	p_sb_attn->sb_index = index;
1173 
1174 	/* Attention / Deassertion are meaningful (and in correct state)
1175 	 * only when they differ and consistent with known state - deassertion
1176 	 * when previous attention & current ack, and assertion when current
1177 	 * attention with no previous attention
1178 	 */
1179 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1180 	    ~p_sb_attn_sw->known_attn;
1181 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1182 	    p_sb_attn_sw->known_attn;
1183 
1184 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1185 		DP_INFO(p_hwfn,
1186 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1187 			index, attn_bits, attn_acks, asserted_bits,
1188 			deasserted_bits, p_sb_attn_sw->known_attn);
1189 	else if (asserted_bits == 0x100)
1190 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1191 	else
1192 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1193 			   "MFW indication [deassertion]\n");
1194 
1195 	if (asserted_bits) {
1196 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1197 		if (rc)
1198 			return rc;
1199 	}
1200 
1201 	if (deasserted_bits)
1202 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1203 
1204 	return rc;
1205 }
1206 
1207 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1208 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1209 {
1210 	struct igu_prod_cons_update igu_ack = { 0 };
1211 
1212 	igu_ack.sb_id_and_flags =
1213 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1214 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1215 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1216 	     (IGU_SEG_ACCESS_ATTN <<
1217 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1218 
1219 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1220 
1221 	/* Both segments (interrupts & acks) are written to same place address;
1222 	 * Need to guarantee all commands will be received (in-order) by HW.
1223 	 */
1224 	OSAL_MMIOWB(p_hwfn->p_dev);
1225 	OSAL_BARRIER(p_hwfn->p_dev);
1226 }
1227 
1228 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1229 {
1230 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1231 	struct ecore_pi_info *pi_info = OSAL_NULL;
1232 	struct ecore_sb_attn_info *sb_attn;
1233 	struct ecore_sb_info *sb_info;
1234 	int arr_size;
1235 	u16 rc = 0;
1236 
1237 	if (!p_hwfn)
1238 		return;
1239 
1240 	if (!p_hwfn->p_sp_sb) {
1241 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1242 		return;
1243 	}
1244 
1245 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1246 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1247 	if (!sb_info) {
1248 		DP_ERR(p_hwfn->p_dev,
1249 		       "Status block is NULL - cannot ack interrupts\n");
1250 		return;
1251 	}
1252 
1253 	if (!p_hwfn->p_sb_attn) {
1254 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1255 		return;
1256 	}
1257 	sb_attn = p_hwfn->p_sb_attn;
1258 
1259 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1260 		   p_hwfn, p_hwfn->my_id);
1261 
1262 	/* Disable ack for def status block. Required both for msix +
1263 	 * inta in non-mask mode, in inta does no harm.
1264 	 */
1265 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1266 
1267 	/* Gather Interrupts/Attentions information */
1268 	if (!sb_info->sb_virt) {
1269 		DP_ERR(p_hwfn->p_dev,
1270 		       "Interrupt Status block is NULL -"
1271 		       " cannot check for new interrupts!\n");
1272 	} else {
1273 		u32 tmp_index = sb_info->sb_ack;
1274 		rc = ecore_sb_update_sb_idx(sb_info);
1275 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1276 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1277 			   tmp_index, sb_info->sb_ack);
1278 	}
1279 
1280 	if (!sb_attn || !sb_attn->sb_attn) {
1281 		DP_ERR(p_hwfn->p_dev,
1282 		       "Attentions Status block is NULL -"
1283 		       " cannot check for new attentions!\n");
1284 	} else {
1285 		u16 tmp_index = sb_attn->index;
1286 
1287 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1288 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1289 			   "Attention indices: 0x%08x --> 0x%08x\n",
1290 			   tmp_index, sb_attn->index);
1291 	}
1292 
1293 	/* Check if we expect interrupts at this time. if not just ack them */
1294 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1295 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1296 		return;
1297 	}
1298 
1299 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1300 
1301 	if (!p_hwfn->p_dpc_ptt) {
1302 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1303 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1304 		return;
1305 	}
1306 
1307 	if (rc & ECORE_SB_ATT_IDX)
1308 		ecore_int_attentions(p_hwfn);
1309 
1310 	if (rc & ECORE_SB_IDX) {
1311 		int pi;
1312 
1313 		/* Since we only looked at the SB index, it's possible more
1314 		 * than a single protocol-index on the SB incremented.
1315 		 * Iterate over all configured protocol indices and check
1316 		 * whether something happened for each.
1317 		 */
1318 		for (pi = 0; pi < arr_size; pi++) {
1319 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1320 			if (pi_info->comp_cb != OSAL_NULL)
1321 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1322 		}
1323 	}
1324 
1325 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1326 		/* This should be done before the interrupts are enabled,
1327 		 * since otherwise a new attention will be generated.
1328 		 */
1329 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1330 	}
1331 
1332 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1333 }
1334 
1335 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1336 {
1337 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1338 
1339 	if (!p_sb)
1340 		return;
1341 
1342 	if (p_sb->sb_attn) {
1343 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1344 				       p_sb->sb_phys,
1345 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1346 	}
1347 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1348 }
1349 
1350 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1351 				    struct ecore_ptt *p_ptt)
1352 {
1353 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1354 
1355 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1356 
1357 	sb_info->index = 0;
1358 	sb_info->known_attn = 0;
1359 
1360 	/* Configure Attention Status Block in IGU */
1361 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1362 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1363 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1364 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1365 }
1366 
1367 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1368 				   struct ecore_ptt *p_ptt,
1369 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1370 {
1371 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1372 	int i, j, k;
1373 
1374 	sb_info->sb_attn = sb_virt_addr;
1375 	sb_info->sb_phys = sb_phy_addr;
1376 
1377 	/* Set the pointer to the AEU descriptors */
1378 	sb_info->p_aeu_desc = aeu_descs;
1379 
1380 	/* Calculate Parity Masks */
1381 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1382 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1383 		/* j is array index, k is bit index */
1384 		for (j = 0, k = 0; k < 32; j++) {
1385 			struct aeu_invert_reg_bit *p_aeu;
1386 
1387 			p_aeu = &aeu_descs[i].bits[j];
1388 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1389 				sb_info->parity_mask[i] |= 1 << k;
1390 
1391 			k += ATTENTION_LENGTH(p_aeu->flags);
1392 		}
1393 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1394 			   "Attn Mask [Reg %d]: 0x%08x\n",
1395 			   i, sb_info->parity_mask[i]);
1396 	}
1397 
1398 	/* Set the address of cleanup for the mcp attention */
1399 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1400 	    MISC_REG_AEU_GENERAL_ATTN_0;
1401 
1402 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1403 }
1404 
1405 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1406 						    struct ecore_ptt *p_ptt)
1407 {
1408 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1409 	struct ecore_sb_attn_info *p_sb;
1410 	dma_addr_t p_phys = 0;
1411 	void *p_virt;
1412 
1413 	/* SB struct */
1414 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1415 	if (!p_sb) {
1416 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1417 		return ECORE_NOMEM;
1418 	}
1419 
1420 	/* SB ring  */
1421 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1422 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1423 	if (!p_virt) {
1424 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1425 		OSAL_FREE(p_dev, p_sb);
1426 		return ECORE_NOMEM;
1427 	}
1428 
1429 	/* Attention setup */
1430 	p_hwfn->p_sb_attn = p_sb;
1431 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1432 
1433 	return ECORE_SUCCESS;
1434 }
1435 
1436 /* coalescing timeout = timeset << (timer_res + 1) */
1437 #define ECORE_CAU_DEF_RX_USECS 24
1438 #define ECORE_CAU_DEF_TX_USECS 48
1439 
1440 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1441 			     struct cau_sb_entry *p_sb_entry,
1442 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1443 {
1444 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1445 	u32 cau_state;
1446 	u8 timer_res;
1447 
1448 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1449 
1450 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1451 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1452 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1453 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1454 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1455 
1456 	cau_state = CAU_HC_DISABLE_STATE;
1457 
1458 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1459 		cau_state = CAU_HC_ENABLE_STATE;
1460 		if (!p_dev->rx_coalesce_usecs)
1461 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1462 		if (!p_dev->tx_coalesce_usecs)
1463 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1464 	}
1465 
1466 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1467 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1468 		timer_res = 0;
1469 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1470 		timer_res = 1;
1471 	else
1472 		timer_res = 2;
1473 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1474 
1475 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1476 		timer_res = 0;
1477 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1478 		timer_res = 1;
1479 	else
1480 		timer_res = 2;
1481 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1482 
1483 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1484 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1485 }
1486 
1487 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1488 				   struct ecore_ptt *p_ptt,
1489 				   u16 igu_sb_id, u32 pi_index,
1490 				   enum ecore_coalescing_fsm coalescing_fsm,
1491 				   u8 timeset)
1492 {
1493 	struct cau_pi_entry pi_entry;
1494 	u32 sb_offset, pi_offset;
1495 
1496 	if (IS_VF(p_hwfn->p_dev))
1497 		return;/* @@@TBD MichalK- VF CAU... */
1498 
1499 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1500 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1501 
1502 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1503 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1504 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1505 	else
1506 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1507 
1508 	pi_offset = sb_offset + pi_index;
1509 	if (p_hwfn->hw_init_done) {
1510 		ecore_wr(p_hwfn, p_ptt,
1511 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1512 			 *((u32 *)&(pi_entry)));
1513 	} else {
1514 		STORE_RT_REG(p_hwfn,
1515 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1516 			     *((u32 *)&(pi_entry)));
1517 	}
1518 }
1519 
1520 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1521 			   struct ecore_ptt *p_ptt,
1522 			   struct ecore_sb_info *p_sb, u32 pi_index,
1523 			   enum ecore_coalescing_fsm coalescing_fsm,
1524 			   u8 timeset)
1525 {
1526 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1527 			       pi_index, coalescing_fsm, timeset);
1528 }
1529 
1530 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1531 			   struct ecore_ptt *p_ptt,
1532 			   dma_addr_t sb_phys, u16 igu_sb_id,
1533 			   u16 vf_number, u8 vf_valid)
1534 {
1535 	struct cau_sb_entry sb_entry;
1536 
1537 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1538 				vf_number, vf_valid);
1539 
1540 	if (p_hwfn->hw_init_done) {
1541 		/* Wide-bus, initialize via DMAE */
1542 		u64 phys_addr = (u64)sb_phys;
1543 
1544 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1545 				    (u64)(osal_uintptr_t)&phys_addr,
1546 				    CAU_REG_SB_ADDR_MEMORY +
1547 				    igu_sb_id * sizeof(u64), 2, 0);
1548 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1549 				    (u64)(osal_uintptr_t)&sb_entry,
1550 				    CAU_REG_SB_VAR_MEMORY +
1551 				    igu_sb_id * sizeof(u64), 2, 0);
1552 	} else {
1553 		/* Initialize Status Block Address */
1554 		STORE_RT_REG_AGG(p_hwfn,
1555 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1556 				 igu_sb_id * 2, sb_phys);
1557 
1558 		STORE_RT_REG_AGG(p_hwfn,
1559 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1560 				 igu_sb_id * 2, sb_entry);
1561 	}
1562 
1563 	/* Configure pi coalescing if set */
1564 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1565 		/* eth will open queues for all tcs, so configure all of them
1566 		 * properly, rather than just the active ones
1567 		 */
1568 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1569 
1570 		u8 timeset, timer_res;
1571 		u8 i;
1572 
1573 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1574 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1575 			timer_res = 0;
1576 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1577 			timer_res = 1;
1578 		else
1579 			timer_res = 2;
1580 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1581 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1582 				       ECORE_COAL_RX_STATE_MACHINE,
1583 				       timeset);
1584 
1585 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1586 			timer_res = 0;
1587 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1588 			timer_res = 1;
1589 		else
1590 			timer_res = 2;
1591 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1592 		for (i = 0; i < num_tc; i++) {
1593 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1594 					       igu_sb_id, TX_PI(i),
1595 					       ECORE_COAL_TX_STATE_MACHINE,
1596 					       timeset);
1597 		}
1598 	}
1599 }
1600 
1601 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1602 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1603 {
1604 	/* zero status block and ack counter */
1605 	sb_info->sb_ack = 0;
1606 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1607 
1608 	if (IS_PF(p_hwfn->p_dev))
1609 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1610 				      sb_info->igu_sb_id, 0, 0);
1611 }
1612 
1613 struct ecore_igu_block *
1614 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1615 {
1616 	struct ecore_igu_block *p_block;
1617 	u16 igu_id;
1618 
1619 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1620 	     igu_id++) {
1621 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1622 
1623 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1624 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1625 			continue;
1626 
1627 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1628 		    b_is_pf)
1629 			return p_block;
1630 	}
1631 
1632 	return OSAL_NULL;
1633 }
1634 
1635 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1636 				  u16 vector_id)
1637 {
1638 	struct ecore_igu_block *p_block;
1639 	u16 igu_id;
1640 
1641 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1642 	     igu_id++) {
1643 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1644 
1645 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1646 		    !p_block->is_pf ||
1647 		    p_block->vector_number != vector_id)
1648 			continue;
1649 
1650 		return igu_id;
1651 	}
1652 
1653 	return ECORE_SB_INVALID_IDX;
1654 }
1655 
1656 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1657 {
1658 	u16 igu_sb_id;
1659 
1660 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1661 	if (sb_id == ECORE_SP_SB_ID)
1662 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1663 	else if (IS_PF(p_hwfn->p_dev))
1664 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1665 	else
1666 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1667 
1668 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1669 		DP_NOTICE(p_hwfn, true,
1670 			  "Slowpath SB vector %04x doesn't exist\n",
1671 			  sb_id);
1672 	else if (sb_id == ECORE_SP_SB_ID)
1673 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1674 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1675 	else
1676 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1678 
1679 	return igu_sb_id;
1680 }
1681 
1682 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1683 				       struct ecore_ptt *p_ptt,
1684 				       struct ecore_sb_info *sb_info,
1685 				       void *sb_virt_addr,
1686 				       dma_addr_t sb_phy_addr, u16 sb_id)
1687 {
1688 	sb_info->sb_virt = sb_virt_addr;
1689 	sb_info->sb_phys = sb_phy_addr;
1690 
1691 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1692 
1693 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1694 		return ECORE_INVAL;
1695 
1696 	/* Let the igu info reference the client's SB info */
1697 	if (sb_id != ECORE_SP_SB_ID) {
1698 		if (IS_PF(p_hwfn->p_dev)) {
1699 			struct ecore_igu_info *p_info;
1700 			struct ecore_igu_block *p_block;
1701 
1702 			p_info = p_hwfn->hw_info.p_igu_info;
1703 			p_block = &p_info->entry[sb_info->igu_sb_id];
1704 
1705 			p_block->sb_info = sb_info;
1706 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1707 			p_info->usage.free_cnt--;
1708 		} else {
1709 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1710 		}
1711 	}
1712 #ifdef ECORE_CONFIG_DIRECT_HWFN
1713 	sb_info->p_hwfn = p_hwfn;
1714 #endif
1715 	sb_info->p_dev = p_hwfn->p_dev;
1716 
1717 	/* The igu address will hold the absolute address that needs to be
1718 	 * written to for a specific status block
1719 	 */
1720 	if (IS_PF(p_hwfn->p_dev)) {
1721 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1722 		    GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1723 
1724 	} else {
1725 		sb_info->igu_addr =
1726 		    (u8 OSAL_IOMEM *)p_hwfn->regview +
1727 		    PXP_VF_BAR0_START_IGU +
1728 		    ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1729 	}
1730 
1731 	sb_info->flags |= ECORE_SB_INFO_INIT;
1732 
1733 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1734 
1735 	return ECORE_SUCCESS;
1736 }
1737 
1738 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1739 					  struct ecore_sb_info *sb_info,
1740 					  u16 sb_id)
1741 {
1742 	struct ecore_igu_info *p_info;
1743 	struct ecore_igu_block *p_block;
1744 
1745 	if (sb_info == OSAL_NULL)
1746 		return ECORE_SUCCESS;
1747 
1748 	/* zero status block and ack counter */
1749 	sb_info->sb_ack = 0;
1750 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1751 
1752 	if (IS_VF(p_hwfn->p_dev)) {
1753 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1754 		return ECORE_SUCCESS;
1755 	}
1756 
1757 	p_info = p_hwfn->hw_info.p_igu_info;
1758 	p_block = &p_info->entry[sb_info->igu_sb_id];
1759 
1760 	/* Vector 0 is reserved to Default SB */
1761 	if (p_block->vector_number == 0) {
1762 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1763 		return ECORE_INVAL;
1764 	}
1765 
1766 	/* Lose reference to client's SB info, and fix counters */
1767 	p_block->sb_info = OSAL_NULL;
1768 	p_block->status |= ECORE_IGU_STATUS_FREE;
1769 	p_info->usage.free_cnt++;
1770 
1771 	return ECORE_SUCCESS;
1772 }
1773 
1774 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1775 {
1776 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1777 
1778 	if (!p_sb)
1779 		return;
1780 
1781 	if (p_sb->sb_info.sb_virt) {
1782 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1783 				       p_sb->sb_info.sb_virt,
1784 				       p_sb->sb_info.sb_phys,
1785 				       SB_ALIGNED_SIZE(p_hwfn));
1786 	}
1787 
1788 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1789 }
1790 
1791 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1792 						  struct ecore_ptt *p_ptt)
1793 {
1794 	struct ecore_sb_sp_info *p_sb;
1795 	dma_addr_t p_phys = 0;
1796 	void *p_virt;
1797 
1798 	/* SB struct */
1799 	p_sb =
1800 	    OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1801 		       sizeof(*p_sb));
1802 	if (!p_sb) {
1803 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1804 		return ECORE_NOMEM;
1805 	}
1806 
1807 	/* SB ring  */
1808 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1809 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1810 	if (!p_virt) {
1811 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1812 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1813 		return ECORE_NOMEM;
1814 	}
1815 
1816 	/* Status Block setup */
1817 	p_hwfn->p_sp_sb = p_sb;
1818 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1819 			  p_virt, p_phys, ECORE_SP_SB_ID);
1820 
1821 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1822 
1823 	return ECORE_SUCCESS;
1824 }
1825 
1826 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1827 					   ecore_int_comp_cb_t comp_cb,
1828 					   void *cookie,
1829 					   u8 *sb_idx, __le16 **p_fw_cons)
1830 {
1831 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1832 	enum _ecore_status_t rc = ECORE_NOMEM;
1833 	u8 pi;
1834 
1835 	/* Look for a free index */
1836 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1837 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1838 			continue;
1839 
1840 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1841 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1842 		*sb_idx = pi;
1843 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1844 		rc = ECORE_SUCCESS;
1845 		break;
1846 	}
1847 
1848 	return rc;
1849 }
1850 
1851 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1852 {
1853 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1854 
1855 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1856 		return ECORE_NOMEM;
1857 
1858 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1859 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1860 	return ECORE_SUCCESS;
1861 }
1862 
1863 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1864 {
1865 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1866 }
1867 
1868 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1869 			      struct ecore_ptt *p_ptt,
1870 			      enum ecore_int_mode int_mode)
1871 {
1872 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1873 
1874 #ifndef ASIC_ONLY
1875 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1876 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1877 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1878 	}
1879 #endif
1880 
1881 	p_hwfn->p_dev->int_mode = int_mode;
1882 	switch (p_hwfn->p_dev->int_mode) {
1883 	case ECORE_INT_MODE_INTA:
1884 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1885 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1886 		break;
1887 
1888 	case ECORE_INT_MODE_MSI:
1889 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1890 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1891 		break;
1892 
1893 	case ECORE_INT_MODE_MSIX:
1894 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1895 		break;
1896 	case ECORE_INT_MODE_POLL:
1897 		break;
1898 	}
1899 
1900 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1901 }
1902 
1903 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1904 				      struct ecore_ptt *p_ptt)
1905 {
1906 #ifndef ASIC_ONLY
1907 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1908 		DP_INFO(p_hwfn,
1909 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1910 		return;
1911 	}
1912 #endif
1913 
1914 	/* Configure AEU signal change to produce attentions */
1915 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1916 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1917 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1918 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1919 
1920 	/* Flush the writes to IGU */
1921 	OSAL_MMIOWB(p_hwfn->p_dev);
1922 
1923 	/* Unmask AEU signals toward IGU */
1924 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1925 }
1926 
1927 enum _ecore_status_t
1928 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1929 			  enum ecore_int_mode int_mode)
1930 {
1931 	enum _ecore_status_t rc = ECORE_SUCCESS;
1932 
1933 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1934 
1935 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1936 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1937 		if (rc != ECORE_SUCCESS) {
1938 			DP_NOTICE(p_hwfn, true,
1939 				  "Slowpath IRQ request failed\n");
1940 			return ECORE_NORESOURCES;
1941 		}
1942 		p_hwfn->b_int_requested = true;
1943 	}
1944 
1945 	/* Enable interrupt Generation */
1946 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1947 
1948 	p_hwfn->b_int_enabled = 1;
1949 
1950 	return rc;
1951 }
1952 
1953 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1954 			       struct ecore_ptt *p_ptt)
1955 {
1956 	p_hwfn->b_int_enabled = 0;
1957 
1958 	if (IS_VF(p_hwfn->p_dev))
1959 		return;
1960 
1961 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1962 }
1963 
1964 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1965 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1966 				     struct ecore_ptt *p_ptt,
1967 				     u32 igu_sb_id,
1968 				     bool cleanup_set,
1969 				     u16 opaque_fid)
1970 {
1971 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1972 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1973 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1974 	u8 type = 0;		/* FIXME MichalS type??? */
1975 
1976 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1977 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1978 
1979 	/* USE Control Command Register to perform cleanup. There is an
1980 	 * option to do this using IGU bar, but then it can't be used for VFs.
1981 	 */
1982 
1983 	/* Set the data field */
1984 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1985 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1986 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1987 
1988 	/* Set the control register */
1989 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1990 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1991 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1992 
1993 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1994 
1995 	OSAL_BARRIER(p_hwfn->p_dev);
1996 
1997 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1998 
1999 	/* Flush the write to IGU */
2000 	OSAL_MMIOWB(p_hwfn->p_dev);
2001 
2002 	/* calculate where to read the status bit from */
2003 	sb_bit = 1 << (igu_sb_id % 32);
2004 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2005 
2006 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2007 
2008 	/* Now wait for the command to complete */
2009 	while (--sleep_cnt) {
2010 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2011 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2012 			break;
2013 		OSAL_MSLEEP(5);
2014 	}
2015 
2016 	if (!sleep_cnt)
2017 		DP_NOTICE(p_hwfn, true,
2018 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2019 			  val, igu_sb_id);
2020 }
2021 
2022 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2023 				       struct ecore_ptt *p_ptt,
2024 				       u16 igu_sb_id, u16 opaque, bool b_set)
2025 {
2026 	struct ecore_igu_block *p_block;
2027 	int pi, i;
2028 
2029 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2030 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2031 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2032 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2033 		   p_block->vector_number);
2034 
2035 	/* Set */
2036 	if (b_set)
2037 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2038 
2039 	/* Clear */
2040 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2041 
2042 	/* Wait for the IGU SB to cleanup */
2043 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2044 		u32 val;
2045 
2046 		val = ecore_rd(p_hwfn, p_ptt,
2047 			       IGU_REG_WRITE_DONE_PENDING +
2048 			       ((igu_sb_id / 32) * 4));
2049 		if (val & (1 << (igu_sb_id % 32)))
2050 			OSAL_UDELAY(10);
2051 		else
2052 			break;
2053 	}
2054 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2055 		DP_NOTICE(p_hwfn, true,
2056 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2057 			  igu_sb_id);
2058 
2059 	/* Clear the CAU for the SB */
2060 	for (pi = 0; pi < 12; pi++)
2061 		ecore_wr(p_hwfn, p_ptt,
2062 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2063 }
2064 
2065 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2066 				struct ecore_ptt *p_ptt,
2067 				bool b_set, bool b_slowpath)
2068 {
2069 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2070 	struct ecore_igu_block *p_block;
2071 	u16 igu_sb_id = 0;
2072 	u32 val = 0;
2073 
2074 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2075 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2076 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2077 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2078 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2079 	/* end temporary */
2080 
2081 	for (igu_sb_id = 0;
2082 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2083 	     igu_sb_id++) {
2084 		p_block = &p_info->entry[igu_sb_id];
2085 
2086 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2087 		    !p_block->is_pf ||
2088 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2089 			continue;
2090 
2091 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2092 						  p_hwfn->hw_info.opaque_fid,
2093 						  b_set);
2094 	}
2095 
2096 	if (b_slowpath)
2097 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2098 						  p_info->igu_dsb_id,
2099 						  p_hwfn->hw_info.opaque_fid,
2100 						  b_set);
2101 }
2102 
2103 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2104 			    struct ecore_ptt *p_ptt)
2105 {
2106 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2107 	struct ecore_igu_block *p_block;
2108 	int pf_sbs, vf_sbs;
2109 	u16 igu_sb_id;
2110 	u32 val, rval;
2111 
2112 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2113 		/* We're using an old MFW - have to prevent any switching
2114 		 * of SBs between PF and VFs as later driver wouldn't be
2115 		 * able to tell which belongs to which.
2116 		 */
2117 		p_info->b_allow_pf_vf_change = false;
2118 	} else {
2119 		/* Use the numbers the MFW have provided -
2120 		 * don't forget MFW accounts for the default SB as well.
2121 		 */
2122 		p_info->b_allow_pf_vf_change = true;
2123 
2124 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2125 			DP_INFO(p_hwfn,
2126 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2127 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2128 				p_info->usage.cnt);
2129 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2130 		}
2131 
2132 		/* TODO - how do we learn about VF SBs from MFW? */
2133 		if (IS_PF_SRIOV(p_hwfn)) {
2134 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2135 
2136 			if (vfs != p_info->usage.iov_cnt)
2137 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2138 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2139 					   p_info->usage.iov_cnt, vfs);
2140 
2141 			/* At this point we know how many SBs we have totally
2142 			 * in IGU + number of PF SBs. So we can validate that
2143 			 * we'd have sufficient for VF.
2144 			 */
2145 			if (vfs > p_info->usage.free_cnt +
2146 				  p_info->usage.free_cnt_iov -
2147 				  p_info->usage.cnt) {
2148 				DP_NOTICE(p_hwfn, true,
2149 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2150 					  p_info->usage.free_cnt +
2151 					  p_info->usage.free_cnt_iov,
2152 					  p_info->usage.cnt, vfs);
2153 				return ECORE_INVAL;
2154 			}
2155 		}
2156 	}
2157 
2158 	/* Cap the number of VFs SBs by the number of VFs */
2159 	if (IS_PF_SRIOV(p_hwfn))
2160 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2161 
2162 	/* Mark all SBs as free, now in the right PF/VFs division */
2163 	p_info->usage.free_cnt = p_info->usage.cnt;
2164 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2165 	p_info->usage.orig = p_info->usage.cnt;
2166 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2167 
2168 	/* We now proceed to re-configure the IGU cam to reflect the initial
2169 	 * configuration. We can start with the Default SB.
2170 	 */
2171 	pf_sbs = p_info->usage.cnt;
2172 	vf_sbs = p_info->usage.iov_cnt;
2173 
2174 	for (igu_sb_id = p_info->igu_dsb_id;
2175 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2176 	     igu_sb_id++) {
2177 		p_block = &p_info->entry[igu_sb_id];
2178 		val = 0;
2179 
2180 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2181 			continue;
2182 
2183 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2184 			p_block->function_id = p_hwfn->rel_pf_id;
2185 			p_block->is_pf = 1;
2186 			p_block->vector_number = 0;
2187 			p_block->status = ECORE_IGU_STATUS_VALID |
2188 					  ECORE_IGU_STATUS_PF |
2189 					  ECORE_IGU_STATUS_DSB;
2190 		} else if (pf_sbs) {
2191 			pf_sbs--;
2192 			p_block->function_id = p_hwfn->rel_pf_id;
2193 			p_block->is_pf = 1;
2194 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2195 			p_block->status = ECORE_IGU_STATUS_VALID |
2196 					  ECORE_IGU_STATUS_PF |
2197 					  ECORE_IGU_STATUS_FREE;
2198 		} else if (vf_sbs) {
2199 			p_block->function_id =
2200 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2201 				p_info->usage.iov_cnt - vf_sbs;
2202 			p_block->is_pf = 0;
2203 			p_block->vector_number = 0;
2204 			p_block->status = ECORE_IGU_STATUS_VALID |
2205 					  ECORE_IGU_STATUS_FREE;
2206 			vf_sbs--;
2207 		} else {
2208 			p_block->function_id = 0;
2209 			p_block->is_pf = 0;
2210 			p_block->vector_number = 0;
2211 		}
2212 
2213 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2214 			  p_block->function_id);
2215 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2216 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2217 			  p_block->vector_number);
2218 
2219 		/* VF entries would be enabled when VF is initializaed */
2220 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2221 
2222 		rval = ecore_rd(p_hwfn, p_ptt,
2223 				IGU_REG_MAPPING_MEMORY +
2224 				sizeof(u32) * igu_sb_id);
2225 
2226 		if (rval != val) {
2227 			ecore_wr(p_hwfn, p_ptt,
2228 				 IGU_REG_MAPPING_MEMORY +
2229 				 sizeof(u32) * igu_sb_id,
2230 				 val);
2231 
2232 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2233 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2234 				   igu_sb_id, p_block->function_id,
2235 				   p_block->is_pf, p_block->vector_number,
2236 				   rval, val);
2237 		}
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2244 				    struct ecore_ptt *p_ptt)
2245 {
2246 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2247 
2248 	/* Return all the usage indications to default prior to the reset;
2249 	 * The reset expects the !orig to reflect the initial status of the
2250 	 * SBs, and would re-calculate the originals based on those.
2251 	 */
2252 	p_cnt->cnt = p_cnt->orig;
2253 	p_cnt->free_cnt = p_cnt->orig;
2254 	p_cnt->iov_cnt = p_cnt->iov_orig;
2255 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2256 	p_cnt->orig = 0;
2257 	p_cnt->iov_orig = 0;
2258 
2259 	/* TODO - we probably need to re-configure the CAU as well... */
2260 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2261 }
2262 
2263 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2264 					 struct ecore_ptt *p_ptt,
2265 					 u16 igu_sb_id)
2266 {
2267 	u32 val = ecore_rd(p_hwfn, p_ptt,
2268 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2269 	struct ecore_igu_block *p_block;
2270 
2271 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2272 
2273 	/* Fill the block information */
2274 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2275 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2276 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2277 
2278 	p_block->igu_sb_id = igu_sb_id;
2279 }
2280 
2281 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2282 					    struct ecore_ptt *p_ptt)
2283 {
2284 	struct ecore_igu_info *p_igu_info;
2285 	struct ecore_igu_block *p_block;
2286 	u32 min_vf = 0, max_vf = 0;
2287 	u16 igu_sb_id;
2288 
2289 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2290 						 GFP_KERNEL,
2291 						 sizeof(*p_igu_info));
2292 	if (!p_hwfn->hw_info.p_igu_info)
2293 		return ECORE_NOMEM;
2294 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2295 
2296 	/* Distinguish between existent and onn-existent default SB */
2297 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2298 
2299 	/* Find the range of VF ids whose SB belong to this PF */
2300 	if (p_hwfn->p_dev->p_iov_info) {
2301 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2302 
2303 		min_vf = p_iov->first_vf_in_pf;
2304 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2305 	}
2306 
2307 	for (igu_sb_id = 0;
2308 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2309 	     igu_sb_id++) {
2310 		/* Read current entry; Notice it might not belong to this PF */
2311 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2312 		p_block = &p_igu_info->entry[igu_sb_id];
2313 
2314 		if ((p_block->is_pf) &&
2315 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2316 			p_block->status = ECORE_IGU_STATUS_PF |
2317 					  ECORE_IGU_STATUS_VALID |
2318 					  ECORE_IGU_STATUS_FREE;
2319 
2320 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2321 				p_igu_info->usage.cnt++;
2322 		} else if (!(p_block->is_pf) &&
2323 			   (p_block->function_id >= min_vf) &&
2324 			   (p_block->function_id < max_vf)) {
2325 			/* Available for VFs of this PF */
2326 			p_block->status = ECORE_IGU_STATUS_VALID |
2327 					  ECORE_IGU_STATUS_FREE;
2328 
2329 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2330 				p_igu_info->usage.iov_cnt++;
2331 		}
2332 
2333 		/* Mark the First entry belonging to the PF or its VFs
2334 		 * as the default SB [we'll reset IGU prior to first usage].
2335 		 */
2336 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2337 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2338 			p_igu_info->igu_dsb_id = igu_sb_id;
2339 			p_block->status |= ECORE_IGU_STATUS_DSB;
2340 		}
2341 
2342 		/* While this isn't suitable for all clients, limit number
2343 		 * of prints by having each PF print only its entries with the
2344 		 * exception of PF0 which would print everything.
2345 		 */
2346 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2347 		    (p_hwfn->abs_pf_id == 0))
2348 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2349 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2350 				   igu_sb_id, p_block->function_id,
2351 				   p_block->is_pf, p_block->vector_number);
2352 	}
2353 
2354 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2355 		DP_NOTICE(p_hwfn, true,
2356 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2357 			  p_igu_info->igu_dsb_id);
2358 		return ECORE_INVAL;
2359 	}
2360 
2361 	/* All non default SB are considered free at this point */
2362 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2363 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2364 
2365 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2366 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2367 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2368 		   p_igu_info->usage.iov_cnt);
2369 
2370 	return ECORE_SUCCESS;
2371 }
2372 
2373 enum _ecore_status_t
2374 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2375 			  u16 sb_id, bool b_to_vf)
2376 {
2377 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2378 	struct ecore_igu_block *p_block = OSAL_NULL;
2379 	u16 igu_sb_id = 0, vf_num = 0;
2380 	u32 val = 0;
2381 
2382 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2383 		return ECORE_INVAL;
2384 
2385 	if (sb_id == ECORE_SP_SB_ID)
2386 		return ECORE_INVAL;
2387 
2388 	if (!p_info->b_allow_pf_vf_change) {
2389 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2390 		return ECORE_INVAL;
2391 	}
2392 
2393 	/* If we're moving a SB from PF to VF, the client had to specify
2394 	 * which vector it wants to move.
2395 	 */
2396 	if (b_to_vf) {
2397 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2398 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2399 			return ECORE_INVAL;
2400 	}
2401 
2402 	/* If we're moving a SB from VF to PF, need to validate there isn't
2403 	 * already a line configured for that vector.
2404 	 */
2405 	if (!b_to_vf) {
2406 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2407 		    ECORE_SB_INVALID_IDX)
2408 			return ECORE_INVAL;
2409 	}
2410 
2411 	/* We need to validate that the SB can actually be relocated.
2412 	 * This would also handle the previous case where we've explicitly
2413 	 * stated which IGU SB needs to move.
2414 	 */
2415 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2416 	     igu_sb_id++) {
2417 		p_block = &p_info->entry[igu_sb_id];
2418 
2419 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2420 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2421 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2422 			if (b_to_vf)
2423 				return ECORE_INVAL;
2424 			else
2425 				continue;
2426 		}
2427 
2428 		break;
2429 	}
2430 
2431 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2432 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2433 			   "Failed to find a free SB to move\n");
2434 		return ECORE_INVAL;
2435 	}
2436 
2437 	/* At this point, p_block points to the SB we want to relocate */
2438 	if (b_to_vf) {
2439 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2440 
2441 		/* It doesn't matter which VF number we choose, since we're
2442 		 * going to disable the line; But let's keep it in range.
2443 		 */
2444 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2445 
2446 		p_block->function_id = (u8)vf_num;
2447 		p_block->is_pf = 0;
2448 		p_block->vector_number = 0;
2449 
2450 		p_info->usage.cnt--;
2451 		p_info->usage.free_cnt--;
2452 		p_info->usage.iov_cnt++;
2453 		p_info->usage.free_cnt_iov++;
2454 
2455 		/* TODO - if SBs aren't really the limiting factor,
2456 		 * then it might not be accurate [in the since that
2457 		 * we might not need decrement the feature].
2458 		 */
2459 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2460 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2461 	} else {
2462 		p_block->status |= ECORE_IGU_STATUS_PF;
2463 		p_block->function_id = p_hwfn->rel_pf_id;
2464 		p_block->is_pf = 1;
2465 		p_block->vector_number = sb_id + 1;
2466 
2467 		p_info->usage.cnt++;
2468 		p_info->usage.free_cnt++;
2469 		p_info->usage.iov_cnt--;
2470 		p_info->usage.free_cnt_iov--;
2471 
2472 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2473 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2474 	}
2475 
2476 	/* Update the IGU and CAU with the new configuration */
2477 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2478 		  p_block->function_id);
2479 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2480 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2481 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2482 		  p_block->vector_number);
2483 
2484 	ecore_wr(p_hwfn, p_ptt,
2485 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2486 		 val);
2487 
2488 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2489 			      igu_sb_id, vf_num,
2490 			      p_block->is_pf ? 0 : 1);
2491 
2492 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2493 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2494 		   igu_sb_id, p_block->function_id,
2495 		   p_block->is_pf, p_block->vector_number);
2496 
2497 	return ECORE_SUCCESS;
2498 }
2499 
2500 /**
2501  * @brief Initialize igu runtime registers
2502  *
2503  * @param p_hwfn
2504  */
2505 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2506 {
2507 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2508 
2509 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2510 }
2511 
2512 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2513 			  IGU_CMD_INT_ACK_BASE)
2514 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2515 			  IGU_CMD_INT_ACK_BASE)
2516 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2517 {
2518 	u32 intr_status_hi = 0, intr_status_lo = 0;
2519 	u64 intr_status = 0;
2520 
2521 	intr_status_lo = REG_RD(p_hwfn,
2522 				GTT_BAR0_MAP_REG_IGU_CMD +
2523 				LSB_IGU_CMD_ADDR * 8);
2524 	intr_status_hi = REG_RD(p_hwfn,
2525 				GTT_BAR0_MAP_REG_IGU_CMD +
2526 				MSB_IGU_CMD_ADDR * 8);
2527 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2528 
2529 	return intr_status;
2530 }
2531 
2532 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2533 {
2534 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2535 	p_hwfn->b_sp_dpc_enabled = true;
2536 }
2537 
2538 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2539 {
2540 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2541 	if (!p_hwfn->sp_dpc)
2542 		return ECORE_NOMEM;
2543 
2544 	return ECORE_SUCCESS;
2545 }
2546 
2547 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2548 {
2549 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2550 }
2551 
2552 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2553 				     struct ecore_ptt *p_ptt)
2554 {
2555 	enum _ecore_status_t rc = ECORE_SUCCESS;
2556 
2557 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2558 	if (rc != ECORE_SUCCESS) {
2559 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2560 		return rc;
2561 	}
2562 
2563 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2564 	if (rc != ECORE_SUCCESS) {
2565 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2566 		return rc;
2567 	}
2568 
2569 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2570 	if (rc != ECORE_SUCCESS)
2571 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2572 
2573 	return rc;
2574 }
2575 
2576 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2577 {
2578 	ecore_int_sp_sb_free(p_hwfn);
2579 	ecore_int_sb_attn_free(p_hwfn);
2580 	ecore_int_sp_dpc_free(p_hwfn);
2581 }
2582 
2583 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2584 {
2585 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2586 		return;
2587 
2588 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2589 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2590 	ecore_int_sp_dpc_setup(p_hwfn);
2591 }
2592 
2593 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2594 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2595 {
2596 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2597 
2598 	if (!p_igu_info || !p_sb_cnt_info)
2599 		return;
2600 
2601 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2602 		    sizeof(*p_sb_cnt_info));
2603 }
2604 
2605 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2606 {
2607 	int i;
2608 
2609 	for_each_hwfn(p_dev, i)
2610 		p_dev->hwfns[i].b_int_requested = false;
2611 }
2612 
2613 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2614 {
2615 	p_dev->attn_clr_en = clr_enable;
2616 }
2617 
2618 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2619 					     struct ecore_ptt *p_ptt,
2620 					     u8 timer_res, u16 sb_id, bool tx)
2621 {
2622 	struct cau_sb_entry sb_entry;
2623 	enum _ecore_status_t rc;
2624 
2625 	if (!p_hwfn->hw_init_done) {
2626 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2627 		return ECORE_INVAL;
2628 	}
2629 
2630 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2631 				 sb_id * sizeof(u64),
2632 				 (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2633 	if (rc != ECORE_SUCCESS) {
2634 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2635 		return rc;
2636 	}
2637 
2638 	if (tx)
2639 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2640 	else
2641 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2642 
2643 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2644 				 (u64)(osal_uintptr_t)&sb_entry,
2645 				 CAU_REG_SB_VAR_MEMORY +
2646 				 sb_id * sizeof(u64), 2, 0);
2647 	if (rc != ECORE_SUCCESS) {
2648 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2649 		return rc;
2650 	}
2651 
2652 	return rc;
2653 }
2654 
2655 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2656 					  struct ecore_ptt *p_ptt,
2657 					  struct ecore_sb_info *p_sb,
2658 					  struct ecore_sb_info_dbg *p_info)
2659 {
2660 	u16 sbid = p_sb->igu_sb_id;
2661 	int i;
2662 
2663 	if (IS_VF(p_hwfn->p_dev))
2664 		return ECORE_INVAL;
2665 
2666 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2667 		return ECORE_INVAL;
2668 
2669 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2670 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2671 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2672 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2673 
2674 	for (i = 0; i < PIS_PER_SB_E4; i++)
2675 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2676 					      CAU_REG_PI_MEMORY +
2677 					      sbid * 4 * PIS_PER_SB_E4 +
2678 					      i * 4);
2679 
2680 	return ECORE_SUCCESS;
2681 }
2682