xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision bdab5309193d8e1ed1a60b604677c86c322364e0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6 
7 #include <rte_string_fns.h>
8 
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_init_ops.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_int.h"
16 #include "reg_addr.h"
17 #include "ecore_hw.h"
18 #include "ecore_sriov.h"
19 #include "ecore_vf.h"
20 #include "ecore_hw_defs.h"
21 #include "ecore_hsi_common.h"
22 #include "ecore_mcp.h"
23 
24 struct ecore_pi_info {
25 	ecore_int_comp_cb_t comp_cb;
26 	void *cookie;		/* Will be sent to the compl cb function */
27 };
28 
29 struct ecore_sb_sp_info {
30 	struct ecore_sb_info sb_info;
31 
32 	/* Per protocol index data */
33 	struct ecore_pi_info pi_info_arr[MAX_PIS_PER_SB];
34 	osal_size_t pi_info_arr_size;
35 };
36 
37 enum ecore_attention_type {
38 	ECORE_ATTN_TYPE_ATTN,
39 	ECORE_ATTN_TYPE_PARITY,
40 };
41 
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44 
45 struct aeu_invert_reg_bit {
46 	char bit_name[30];
47 
48 #define ATTENTION_PARITY		(1 << 0)
49 
50 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
51 #define ATTENTION_LENGTH_SHIFT		(4)
52 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
53 					 ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
55 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
56 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
57 					 ATTENTION_PARITY)
58 
59 /* Multiple bits start with this offset */
60 #define ATTENTION_OFFSET_MASK		(0x000ff000)
61 #define ATTENTION_OFFSET_SHIFT		(12)
62 
63 #define ATTENTION_BB_MASK		(0xf)
64 #define ATTENTION_BB_SHIFT		(20)
65 #define ATTENTION_BB(value)		((value) << ATTENTION_BB_SHIFT)
66 #define ATTENTION_BB_DIFFERENT		(1 << 24)
67 
68 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
69 	unsigned int flags;
70 
71 	/* Callback to call if attention will be triggered */
72 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
73 
74 	enum block_id block_index;
75 };
76 
77 struct aeu_invert_reg {
78 	struct aeu_invert_reg_bit bits[32];
79 };
80 
81 #define MAX_ATTN_GRPS		(8)
82 #define NUM_ATTN_REGS		(9)
83 
ecore_mcp_attn_cb(struct ecore_hwfn * p_hwfn)84 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
85 {
86 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
87 
88 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
89 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
90 
91 	return ECORE_SUCCESS;
92 }
93 
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
102 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
103 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
104 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
117 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
ecore_pswhst_attn_cb(struct ecore_hwfn * p_hwfn)118 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
119 {
120 	u32 tmp =
121 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
122 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
123 
124 	/* Disabled VF access */
125 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
126 		u32 addr, data;
127 
128 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
130 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
131 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
132 		DP_INFO(p_hwfn->p_dev,
133 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
134 			" Write [0x%02x] Addr [0x%08x]\n",
135 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
136 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
137 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
138 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
139 			(u8)((data &
140 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
141 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
142 			(u8)((data &
143 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
144 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
145 			(u8)((data &
146 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
147 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
148 			addr);
149 	}
150 
151 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
153 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
154 		u32 addr, data, length;
155 
156 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
158 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159 				PSWHST_REG_INCORRECT_ACCESS_DATA);
160 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
161 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
162 
163 		DP_INFO(p_hwfn->p_dev,
164 			"Incorrect access to %08x of length %08x - PF [%02x]"
165 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
166 			" Byte-Enable [%04x] [%08x]\n",
167 			addr, length,
168 			(u8)((data &
169 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
170 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
171 			(u8)((data &
172 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
173 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
174 			(u8)((data &
175 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
176 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
177 			(u8)((data &
178 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
179 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
180 			(u8)((data &
181 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
182 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
183 			(u8)((data &
184 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
185 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
186 			data);
187 	}
188 
189 	/* TODO - We know 'some' of these are legal due to virtualization,
190 	 * but is it true for all of them?
191 	 */
192 	return ECORE_SUCCESS;
193 }
194 
195 /* Register GRC_REG_TIMEOUT_ATTN_ACCESS_VALID */
196 #define ECORE_GRC_ATTENTION_VALID_BIT_MASK      (0x1)
197 #define ECORE_GRC_ATTENTION_VALID_BIT_SHIFT     (0)
198 
199 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
200 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
201 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
202 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
203 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
204 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
205 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
206 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
207 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
208 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
grc_timeout_attn_master_to_str(u8 master)209 static const char *grc_timeout_attn_master_to_str(u8 master)
210 {
211 	switch (master) {
212 	case 1:
213 		return "PXP";
214 	case 2:
215 		return "MCP";
216 	case 3:
217 		return "MSDM";
218 	case 4:
219 		return "PSDM";
220 	case 5:
221 		return "YSDM";
222 	case 6:
223 		return "USDM";
224 	case 7:
225 		return "TSDM";
226 	case 8:
227 		return "XSDM";
228 	case 9:
229 		return "DBU";
230 	case 10:
231 		return "DMAE";
232 	default:
233 		return "Unknown";
234 	}
235 }
236 
ecore_grc_attn_cb(struct ecore_hwfn * p_hwfn)237 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
238 {
239 	enum _ecore_status_t rc = ECORE_SUCCESS;
240 	u32 tmp, tmp2;
241 
242 	/* We've already cleared the timeout interrupt register, so we learn
243 	 * of interrupts via the validity register. If it is not a timeout do
244 	 * nothing. It is too late at this stage to differentiate spurious
245 	 * interrupt from fatal grc attention.
246 	 */
247 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
248 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
249 	if (!(GET_FIELD(tmp, ECORE_GRC_ATTENTION_VALID_BIT)))
250 		goto out;
251 
252 	/* Read the GRC timeout information */
253 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
254 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
255 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
256 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
257 
258 	DP_NOTICE(p_hwfn->p_dev, false,
259 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
260 		  tmp2, tmp,
261 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
262 						       : "Read from",
263 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
264 		  grc_timeout_attn_master_to_str(
265 			(tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
266 			 ECORE_GRC_ATTENTION_MASTER_SHIFT),
267 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
268 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
269 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
270 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
271 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
272 		  ECORE_GRC_ATTENTION_VF_SHIFT);
273 
274 	/* Clean the validity bit */
275 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
276 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
277 out:
278 	return rc;
279 }
280 
281 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
282 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
283 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
284 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
285 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
286 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
287 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
288 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
289 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
290 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
291 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
292 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
293 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
294 
ecore_pglueb_rbc_attn_handler(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool is_hw_init)295 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
296 						   struct ecore_ptt *p_ptt,
297 						   bool is_hw_init)
298 {
299 	u32 tmp;
300 	char str[512] = {0};
301 
302 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
303 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
304 		u32 addr_lo, addr_hi, details;
305 
306 		addr_lo = ecore_rd(p_hwfn, p_ptt,
307 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
308 		addr_hi = ecore_rd(p_hwfn, p_ptt,
309 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
310 		details = ecore_rd(p_hwfn, p_ptt,
311 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
312 		OSAL_SNPRINTF(str, 512,
313 			 "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
314 			  addr_hi, addr_lo, details,
315 			  (u8)((details &
316 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
317 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
318 			  (u8)((details &
319 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
320 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
321 			  (u8)((details &
322 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
323 			  tmp,
324 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
325 				1 : 0),
326 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
327 				1 : 0),
328 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
329 				1 : 0));
330 		if (is_hw_init)
331 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
332 		else
333 			DP_NOTICE(p_hwfn, false, "%s", str);
334 	}
335 
336 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
337 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
338 		u32 addr_lo, addr_hi, details;
339 
340 		addr_lo = ecore_rd(p_hwfn, p_ptt,
341 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
342 		addr_hi = ecore_rd(p_hwfn, p_ptt,
343 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
344 		details = ecore_rd(p_hwfn, p_ptt,
345 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
346 
347 		DP_NOTICE(p_hwfn, false,
348 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
349 			  addr_hi, addr_lo, details,
350 			  (u8)((details &
351 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
352 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
353 			  (u8)((details &
354 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
355 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
356 			  (u8)((details &
357 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
358 			  tmp,
359 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
360 				1 : 0),
361 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
362 				1 : 0),
363 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
364 				1 : 0));
365 	}
366 
367 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
368 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
369 		DP_NOTICE(p_hwfn, false, "ICPL error - %08x\n", tmp);
370 
371 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
372 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
373 		u32 addr_hi, addr_lo;
374 
375 		addr_lo = ecore_rd(p_hwfn, p_ptt,
376 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
377 		addr_hi = ecore_rd(p_hwfn, p_ptt,
378 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
379 
380 		DP_NOTICE(p_hwfn, false,
381 			  "ICPL error - %08x [Address %08x:%08x]\n",
382 			  tmp, addr_hi, addr_lo);
383 	}
384 
385 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
386 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
387 		u32 addr_hi, addr_lo, details;
388 
389 		addr_lo = ecore_rd(p_hwfn, p_ptt,
390 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
391 		addr_hi = ecore_rd(p_hwfn, p_ptt,
392 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
393 		details = ecore_rd(p_hwfn, p_ptt,
394 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
395 
396 		DP_NOTICE(p_hwfn, false,
397 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
398 			  details, tmp, addr_hi, addr_lo);
399 	}
400 
401 	/* Clear the indications */
402 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
403 
404 	return ECORE_SUCCESS;
405 }
406 
ecore_pglueb_rbc_attn_cb(struct ecore_hwfn * p_hwfn)407 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
408 {
409 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
410 }
411 
ecore_fw_assertion(struct ecore_hwfn * p_hwfn)412 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
413 {
414 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
415 
416 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
417 
418 	return ECORE_INVAL;
419 }
420 
421 static enum _ecore_status_t
ecore_general_attention_35(struct ecore_hwfn * p_hwfn)422 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
423 {
424 	DP_INFO(p_hwfn, "General attention 35!\n");
425 
426 	return ECORE_SUCCESS;
427 }
428 
429 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
430 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
431 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
432 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
433 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
434 
435 #define ECORE_DB_REC_COUNT			1000
436 #define ECORE_DB_REC_INTERVAL			100
437 
ecore_db_rec_flush_queue(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)438 static enum _ecore_status_t ecore_db_rec_flush_queue(struct ecore_hwfn *p_hwfn,
439 						     struct ecore_ptt *p_ptt)
440 {
441 	u32 count = ECORE_DB_REC_COUNT;
442 	u32 usage = 1;
443 
444 	/* wait for usage to zero or count to run out. This is necessary since
445 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
446 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
447 	 * half an EDPM in the queue and other half dropped. Another EDPM
448 	 * doorbell to the same address (from doorbell recovery mechanism or
449 	 * from the doorbelling entity) could have first half dropped and second
450 	 * half interperted as continuation of the first. To prevent such
451 	 * malformed doorbells from reaching the device, flush the queue before
452 	 * releaseing the overflow sticky indication.
453 	 */
454 	while (count-- && usage) {
455 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
456 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
457 	}
458 
459 	/* should have been depleted by now */
460 	if (usage) {
461 		DP_NOTICE(p_hwfn->p_dev, false,
462 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
463 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
464 		return ECORE_TIMEOUT;
465 	}
466 
467 	return ECORE_SUCCESS;
468 }
469 
ecore_db_rec_handler(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)470 enum _ecore_status_t ecore_db_rec_handler(struct ecore_hwfn *p_hwfn,
471 					  struct ecore_ptt *p_ptt)
472 {
473 	u32 overflow;
474 	enum _ecore_status_t rc;
475 
476 	overflow = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
477 	DP_NOTICE(p_hwfn, false, "PF Overflow sticky 0x%x\n", overflow);
478 	if (!overflow) {
479 		ecore_db_recovery_execute(p_hwfn, DB_REC_ONCE);
480 		return ECORE_SUCCESS;
481 	}
482 
483 	if (ecore_edpm_enabled(p_hwfn)) {
484 		rc = ecore_db_rec_flush_queue(p_hwfn, p_ptt);
485 		if (rc != ECORE_SUCCESS)
486 			return rc;
487 	}
488 
489 	/* flush any pedning (e)dpm as they may never arrive */
490 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
491 
492 	/* release overflow sticky indication (stop silently dropping
493 	 * everything)
494 	 */
495 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
496 
497 	/* repeat all last doorbells (doorbell drop recovery) */
498 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
499 
500 	return ECORE_SUCCESS;
501 }
502 
ecore_dorq_attn_cb(struct ecore_hwfn * p_hwfn)503 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
504 {
505 	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
506 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
507 	enum _ecore_status_t rc;
508 
509 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
510 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
511 		  int_sts);
512 
513 	/* int_sts may be zero since all PFs were interrupted for doorbell
514 	 * overflow but another one already handled it. Can abort here. If
515 	 * This PF also requires overflow recovery we will be interrupted again
516 	 */
517 	if (!int_sts)
518 		return ECORE_SUCCESS;
519 
520 	/* check if db_drop or overflow happened */
521 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
522 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
523 		/* obtain data about db drop/overflow */
524 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
525 				  DORQ_REG_DB_DROP_REASON) &
526 				  ECORE_DORQ_ATTENTION_REASON_MASK;
527 		details = ecore_rd(p_hwfn, p_ptt,
528 				   DORQ_REG_DB_DROP_DETAILS);
529 		address = ecore_rd(p_hwfn, p_ptt,
530 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
531 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
532 					    DORQ_REG_DB_DROP_DETAILS_REASON);
533 
534 		/* log info */
535 		DP_NOTICE(p_hwfn->p_dev, false,
536 			  "Doorbell drop occurred\n"
537 			  "Address\t\t0x%08x\t(second BAR address)\n"
538 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
539 			  "Size\t\t0x%04x\t\t(in bytes)\n"
540 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
541 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
542 			  address,
543 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
544 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
545 			  first_drop_reason, all_drops_reason);
546 
547 		rc = ecore_db_rec_handler(p_hwfn, p_ptt);
548 		OSAL_DB_REC_OCCURRED(p_hwfn);
549 		if (rc != ECORE_SUCCESS)
550 			return rc;
551 
552 		/* clear the doorbell drop details and prepare for next drop */
553 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
554 
555 		/* mark interrupt as handeld (note: even if drop was due to a
556 		 * different reason than overflow we mark as handled)
557 		 */
558 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
559 			 DORQ_REG_INT_STS_DB_DROP |
560 			 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
561 
562 		/* if there are no indications otherthan drop indications,
563 		 * success
564 		 */
565 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
566 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
567 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
568 			return ECORE_SUCCESS;
569 	}
570 
571 	/* some other indication was present - non recoverable */
572 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
573 
574 	return ECORE_INVAL;
575 }
576 
ecore_tm_attn_cb(struct ecore_hwfn * p_hwfn)577 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
578 {
579 #ifndef ASIC_ONLY
580 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
581 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
582 				   TM_REG_INT_STS_1);
583 
584 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
585 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
586 			return ECORE_INVAL;
587 
588 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
589 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
590 			DP_INFO(p_hwfn,
591 				"TM attention on emulation - most likely"
592 				" results of clock-ratios\n");
593 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
594 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
595 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
596 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
597 
598 		return ECORE_SUCCESS;
599 	}
600 #endif
601 
602 	return ECORE_INVAL;
603 }
604 
605 /* Instead of major changes to the data-structure, we have a some 'special'
606  * identifiers for sources that changed meaning between adapters.
607  */
608 enum aeu_invert_reg_special_type {
609 	AEU_INVERT_REG_SPECIAL_CNIG_0,
610 	AEU_INVERT_REG_SPECIAL_CNIG_1,
611 	AEU_INVERT_REG_SPECIAL_CNIG_2,
612 	AEU_INVERT_REG_SPECIAL_CNIG_3,
613 	AEU_INVERT_REG_SPECIAL_MCP_UMP_TX,
614 	AEU_INVERT_REG_SPECIAL_MCP_SCPAD,
615 	AEU_INVERT_REG_SPECIAL_MAX,
616 };
617 
618 static struct aeu_invert_reg_bit
619 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
620 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
621 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
622 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
623 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
624 	{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
625 	{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
626 };
627 
628 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
629 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
630 	{
631 	 {			/* After Invert 1 */
632 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
633 	   MAX_BLOCK_ID},
634 	  }
635 	 },
636 
637 	{
638 	 {			/* After Invert 2 */
639 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
640 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
641 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
642 	   BLOCK_PGLUE_B},
643 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
644 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
645 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
646 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
647 	  {"SW timers #%d",
648 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
649 	   OSAL_NULL, MAX_BLOCK_ID},
650 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
651 	   BLOCK_PGLCS},
652 	  }
653 	 },
654 
655 	{
656 	 {			/* After Invert 3 */
657 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
658 	   MAX_BLOCK_ID},
659 	  }
660 	 },
661 
662 	{
663 	 {			/* After Invert 4 */
664 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
665 	   ecore_fw_assertion, MAX_BLOCK_ID},
666 	  {"General Attention %d",
667 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
668 	   OSAL_NULL, MAX_BLOCK_ID},
669 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
670 	   ecore_general_attention_35, MAX_BLOCK_ID},
671 	  {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
672 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
673 			 OSAL_NULL, BLOCK_NWS},
674 	  {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
675 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
676 			    OSAL_NULL, BLOCK_NWS},
677 	  {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
678 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
679 			 OSAL_NULL, BLOCK_NWM},
680 	  {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
681 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
682 			    OSAL_NULL, BLOCK_NWM},
683 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
684 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
685 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
686 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
687 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
688 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
689 			{"OPTE", ATTENTION_PAR, OSAL_NULL, BLOCK_OPTE},
690 			{"MCP", ATTENTION_PAR, OSAL_NULL, BLOCK_MCP},
691 			{"MS", ATTENTION_SINGLE, OSAL_NULL, BLOCK_MS},
692 			{"UMAC", ATTENTION_SINGLE, OSAL_NULL, BLOCK_UMAC},
693 			{"LED", ATTENTION_SINGLE, OSAL_NULL, BLOCK_LED},
694 			{"BMBN", ATTENTION_SINGLE, OSAL_NULL, BLOCK_BMBN},
695 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
696 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
697 			{"BMB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
698 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
699 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
700 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
701 	  }
702 	 },
703 
704 	{
705 	 {			/* After Invert 5 */
706 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
707 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
708 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
709 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
710 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
711 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
712 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
713 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
714 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
715 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
716 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
717 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
718 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
719 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
720 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
721 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
722 	  }
723 	 },
724 
725 	{
726 	 {			/* After Invert 6 */
727 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
728 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
729 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
730 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
731 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
732 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
733 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
734 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
735 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
736 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
737 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
738 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
739 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
740 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
741 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
742 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
743 	  }
744 	 },
745 
746 	{
747 	 {			/* After Invert 7 */
748 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
749 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
750 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
751 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
752 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
753 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
754 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
755 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
756 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
757 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
758 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
759 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
760 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
761 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
762 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
763 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
764 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
765 	  }
766 	 },
767 
768 	{
769 	 {			/* After Invert 8 */
770 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
771 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
772 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
773 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
774 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
775 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
776 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
777 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
778 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
779 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
780 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
781 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
782 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
783 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
784 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
785 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
786 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
787 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
788 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
789 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
790 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
791 	   MAX_BLOCK_ID},
792 	  }
793 	 },
794 
795 	{
796 	 {			/* After Invert 9 */
797 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
798 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
799 	   MAX_BLOCK_ID},
800 	  {"AVS", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
801 	   ATTENTION_BB(AEU_INVERT_REG_SPECIAL_MCP_UMP_TX), OSAL_NULL,
802 	   BLOCK_AVS_WRAP},
803 	  {"AVS", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
804 	   ATTENTION_BB(AEU_INVERT_REG_SPECIAL_MCP_SCPAD), OSAL_NULL,
805 	   BLOCK_AVS_WRAP},
806 	  {"PCIe core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
807 	  {"PCIe link up", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
808 	  {"PCIe hot reset", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
809 	  {"Reserved %d", (9 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
810 	    MAX_BLOCK_ID},
811 	  }
812 	 },
813 
814 };
815 
816 static struct aeu_invert_reg_bit *
ecore_int_aeu_translate(struct ecore_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)817 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
818 			struct aeu_invert_reg_bit *p_bit)
819 {
820 	if (!ECORE_IS_BB(p_hwfn->p_dev))
821 		return p_bit;
822 
823 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
824 		return p_bit;
825 
826 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
827 				  ATTENTION_BB_SHIFT];
828 }
829 
ecore_int_is_parity_flag(struct ecore_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)830 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
831 				     struct aeu_invert_reg_bit *p_bit)
832 {
833 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
834 		  ATTENTION_PARITY);
835 }
836 
837 #define ATTN_STATE_BITS		(0xfff)
838 #define ATTN_BITS_MASKABLE	(0x3ff)
839 struct ecore_sb_attn_info {
840 	/* Virtual & Physical address of the SB */
841 	struct atten_status_block *sb_attn;
842 	dma_addr_t sb_phys;
843 
844 	/* Last seen running index */
845 	u16 index;
846 
847 	/* A mask of the AEU bits resulting in a parity error */
848 	u32 parity_mask[NUM_ATTN_REGS];
849 
850 	/* A pointer to the attention description structure */
851 	struct aeu_invert_reg *p_aeu_desc;
852 
853 	/* Previously asserted attentions, which are still unasserted */
854 	u16 known_attn;
855 
856 	/* Cleanup address for the link's general hw attention */
857 	u32 mfw_attn_addr;
858 };
859 
ecore_attn_update_idx(struct ecore_hwfn * p_hwfn,struct ecore_sb_attn_info * p_sb_desc)860 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
861 				 struct ecore_sb_attn_info *p_sb_desc)
862 {
863 	u16 rc = 0, index;
864 
865 	OSAL_MMIOWB(p_hwfn->p_dev);
866 
867 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
868 	if (p_sb_desc->index != index) {
869 		p_sb_desc->index = index;
870 		rc = ECORE_SB_ATT_IDX;
871 	}
872 
873 	OSAL_MMIOWB(p_hwfn->p_dev);
874 
875 	return rc;
876 }
877 
878 /**
879  * @brief ecore_int_assertion - handles asserted attention bits
880  *
881  * @param p_hwfn
882  * @param asserted_bits newly asserted bits
883  * @return enum _ecore_status_t
884  */
ecore_int_assertion(struct ecore_hwfn * p_hwfn,u16 asserted_bits)885 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
886 						u16 asserted_bits)
887 {
888 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
889 	u32 igu_mask;
890 
891 	/* Mask the source of the attention in the IGU */
892 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
893 			    IGU_REG_ATTENTION_ENABLE);
894 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
895 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
896 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
897 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
898 
899 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
900 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
901 		   sb_attn_sw->known_attn,
902 		   sb_attn_sw->known_attn | asserted_bits);
903 	sb_attn_sw->known_attn |= asserted_bits;
904 
905 	/* Handle MCP events */
906 	if (asserted_bits & 0x100) {
907 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
908 		/* Clean the MCP attention */
909 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
910 			 sb_attn_sw->mfw_attn_addr, 0);
911 	}
912 
913 	/* FIXME - this will change once we'll have GOOD gtt definitions */
914 	DIRECT_REG_WR(p_hwfn,
915 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
916 		      GTT_BAR0_MAP_REG_IGU_CMD +
917 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
918 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
919 
920 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
921 		   asserted_bits);
922 
923 	return ECORE_SUCCESS;
924 }
925 
ecore_int_attn_print(struct ecore_hwfn * p_hwfn,enum block_id id,enum dbg_attn_type type,bool b_clear)926 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
927 				 enum block_id id, enum dbg_attn_type type,
928 				 bool b_clear)
929 {
930 	/* @DPDK */
931 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "[block_id %d type %d]\n", id, type);
932 }
933 
934 /**
935  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
936  * cause of the attention
937  *
938  * @param p_hwfn
939  * @param p_aeu - descriptor of an AEU bit which caused the attention
940  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
941  *  this bit to this group.
942  * @param bit_index - index of this bit in the aeu_en_reg
943  *
944  * @return enum _ecore_status_t
945  */
946 static enum _ecore_status_t
ecore_int_deassertion_aeu_bit(struct ecore_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,const char * p_bit_name,u32 bitmask)947 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
948 			      struct aeu_invert_reg_bit *p_aeu,
949 			      u32 aeu_en_reg,
950 			      const char *p_bit_name,
951 			      u32 bitmask)
952 {
953 	enum _ecore_status_t rc = ECORE_INVAL;
954 	bool b_fatal = false;
955 
956 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
957 		p_bit_name, bitmask);
958 
959 	/* Call callback before clearing the interrupt status */
960 	if (p_aeu->cb) {
961 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
962 			p_bit_name);
963 		rc = p_aeu->cb(p_hwfn);
964 	}
965 
966 	if (rc != ECORE_SUCCESS)
967 		b_fatal = true;
968 
969 	/* Print HW block interrupt registers */
970 	if (p_aeu->block_index != MAX_BLOCK_ID) {
971 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
972 				     ATTN_TYPE_INTERRUPT, !b_fatal);
973 }
974 
975 	/* @DPDK */
976 	/* Reach assertion if attention is fatal */
977 	if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
978 #ifndef ASIC_ONLY
979 		DP_NOTICE(p_hwfn, !CHIP_REV_IS_EMUL(p_hwfn->p_dev),
980 			  "`%s': Fatal attention\n", p_bit_name);
981 #else
982 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
983 			  p_bit_name);
984 #endif
985 
986 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
987 	}
988 
989 	/* Prevent this Attention from being asserted in the future */
990 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
991 #ifndef ASIC_ONLY
992 	    CHIP_REV_IS_EMUL(p_hwfn->p_dev) ||
993 #endif
994 	    p_hwfn->p_dev->attn_clr_en) {
995 		u32 val;
996 		u32 mask = ~bitmask;
997 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
998 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
999 		DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
1000 			p_bit_name);
1001 	}
1002 
1003 	return rc;
1004 }
1005 
1006 /**
1007  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
1008  *
1009  * @param p_hwfn
1010  * @param p_aeu - descriptor of an AEU bit which caused the parity
1011  * @param aeu_en_reg - address of the AEU enable register
1012  * @param bit_index
1013  */
ecore_int_deassertion_parity(struct ecore_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,u8 bit_index)1014 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
1015 					 struct aeu_invert_reg_bit *p_aeu,
1016 					 u32 aeu_en_reg, u8 bit_index)
1017 {
1018 	u32 block_id = p_aeu->block_index, mask, val;
1019 
1020 	DP_NOTICE(p_hwfn->p_dev, false,
1021 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
1022 		  p_aeu->bit_name, aeu_en_reg, bit_index);
1023 
1024 	if (block_id != MAX_BLOCK_ID) {
1025 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
1026 
1027 		/* In A0, there's a single parity bit for several blocks */
1028 		if (block_id == BLOCK_BTB) {
1029 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
1030 					     ATTN_TYPE_PARITY, false);
1031 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
1032 					     ATTN_TYPE_PARITY, false);
1033 		}
1034 	}
1035 
1036 	/* Prevent this parity error from being re-asserted */
1037 	mask = ~(0x1 << bit_index);
1038 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1039 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1040 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1041 		p_aeu->bit_name);
1042 }
1043 
1044 #define MISC_REG_AEU_AFTER_INVERT_IGU(n) \
1045 	(MISC_REG_AEU_AFTER_INVERT_1_IGU + (n) * 0x4)
1046 
1047 #define MISC_REG_AEU_ENABLE_IGU_OUT(n, group) \
1048 	(MISC_REG_AEU_ENABLE1_IGU_OUT_0 + (n) * 0x4 + \
1049 	 (group) * 0x4 * NUM_ATTN_REGS)
1050 
1051 /**
1052  * @brief - handles deassertion of previously asserted attentions.
1053  *
1054  * @param p_hwfn
1055  * @param deasserted_bits - newly deasserted bits
1056  * @return enum _ecore_status_t
1057  *
1058  */
ecore_int_deassertion(struct ecore_hwfn * p_hwfn,u16 deasserted_bits)1059 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1060 						  u16 deasserted_bits)
1061 {
1062 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1063 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1064 	u8 i, j, k, bit_idx;
1065 	enum _ecore_status_t rc = ECORE_SUCCESS;
1066 
1067 	/* Read the attention registers in the AEU */
1068 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1069 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1070 					  MISC_REG_AEU_AFTER_INVERT_IGU(i));
1071 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1072 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1073 	}
1074 
1075 	/* Handle parity attentions first */
1076 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1077 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1078 		u32 parities;
1079 
1080 		aeu_en = MISC_REG_AEU_ENABLE_IGU_OUT(i, 0);
1081 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1082 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1083 
1084 		/* Skip register in which no parity bit is currently set */
1085 		if (!parities)
1086 			continue;
1087 
1088 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1089 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1090 
1091 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1092 			    !!(parities & (1 << bit_idx)))
1093 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1094 							     aeu_en, bit_idx);
1095 
1096 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1097 		}
1098 	}
1099 
1100 	/* Find non-parity cause for attention and act */
1101 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1102 		struct aeu_invert_reg_bit *p_aeu;
1103 
1104 		/* Handle only groups whose attention is currently deasserted */
1105 		if (!(deasserted_bits & (1 << k)))
1106 			continue;
1107 
1108 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1109 			u32 bits;
1110 
1111 			aeu_en = MISC_REG_AEU_ENABLE_IGU_OUT(i, k);
1112 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1113 			bits = aeu_inv_arr[i] & en;
1114 
1115 			/* Skip if no bit from this group is currently set */
1116 			if (!bits)
1117 				continue;
1118 
1119 			/* Find all set bits from current register which belong
1120 			 * to current group, making them responsible for the
1121 			 * previous assertion.
1122 			 */
1123 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1124 				unsigned long int bitmask;
1125 				u8 bit, bit_len;
1126 
1127 				/* Need to account bits with changed meaning */
1128 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1129 
1130 				bit = bit_idx;
1131 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1132 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1133 					/* Skip Parity */
1134 					bit++;
1135 					bit_len--;
1136 				}
1137 
1138 				/* Find the bits relating to HW-block, then
1139 				 * shift so they'll become LSB.
1140 				 */
1141 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1142 				bitmask >>= bit;
1143 
1144 				if (bitmask) {
1145 					u32 flags = p_aeu->flags;
1146 					char bit_name[30];
1147 					u8 num;
1148 
1149 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1150 								bit_len);
1151 
1152 					/* Some bits represent more than a
1153 					 * a single interrupt. Correctly print
1154 					 * their name.
1155 					 */
1156 					if (ATTENTION_LENGTH(flags) > 2 ||
1157 					    ((flags & ATTENTION_PAR_INT) &&
1158 					    ATTENTION_LENGTH(flags) > 1))
1159 						OSAL_SNPRINTF(bit_name, 30,
1160 							      p_aeu->bit_name,
1161 							      num);
1162 					else
1163 						strlcpy(bit_name,
1164 							p_aeu->bit_name,
1165 							sizeof(bit_name));
1166 
1167 					/* We now need to pass bitmask in its
1168 					 * correct position.
1169 					 */
1170 					bitmask <<= bit;
1171 
1172 					/* Handle source of the attention */
1173 					ecore_int_deassertion_aeu_bit(p_hwfn,
1174 								      p_aeu,
1175 								      aeu_en,
1176 								      bit_name,
1177 								      bitmask);
1178 				}
1179 
1180 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1181 			}
1182 		}
1183 	}
1184 
1185 	/* Clear IGU indication for the deasserted bits */
1186 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1187 	DIRECT_REG_WR(p_hwfn,
1188 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
1189 		      GTT_BAR0_MAP_REG_IGU_CMD +
1190 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1191 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1192 
1193 	/* Unmask deasserted attentions in IGU */
1194 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1195 			    IGU_REG_ATTENTION_ENABLE);
1196 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1197 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1198 
1199 	/* Clear deassertion from inner state */
1200 	sb_attn_sw->known_attn &= ~deasserted_bits;
1201 
1202 	return rc;
1203 }
1204 
ecore_int_attentions(struct ecore_hwfn * p_hwfn)1205 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1206 {
1207 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1208 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1209 	u16 index = 0, asserted_bits, deasserted_bits;
1210 	u32 attn_bits = 0, attn_acks = 0;
1211 	enum _ecore_status_t rc = ECORE_SUCCESS;
1212 
1213 	/* Read current attention bits/acks - safeguard against attentions
1214 	 * by guaranting work on a synchronized timeframe
1215 	 */
1216 	do {
1217 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1218 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1219 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1220 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1221 	p_sb_attn->sb_index = index;
1222 
1223 	/* Attention / Deassertion are meaningful (and in correct state)
1224 	 * only when they differ and consistent with known state - deassertion
1225 	 * when previous attention & current ack, and assertion when current
1226 	 * attention with no previous attention
1227 	 */
1228 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1229 	    ~p_sb_attn_sw->known_attn;
1230 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1231 	    p_sb_attn_sw->known_attn;
1232 
1233 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1234 		DP_INFO(p_hwfn,
1235 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1236 			index, attn_bits, attn_acks, asserted_bits,
1237 			deasserted_bits, p_sb_attn_sw->known_attn);
1238 	else if (asserted_bits == 0x100)
1239 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1240 	else
1241 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1242 			   "MFW indication [deassertion]\n");
1243 
1244 	if (asserted_bits) {
1245 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1246 		if (rc)
1247 			return rc;
1248 	}
1249 
1250 	if (deasserted_bits)
1251 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1252 
1253 	return rc;
1254 }
1255 
ecore_sb_ack_attn(struct ecore_hwfn * p_hwfn,void OSAL_IOMEM * igu_addr,u32 ack_cons)1256 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1257 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1258 {
1259 	struct igu_prod_cons_update igu_ack;
1260 
1261 	OSAL_MEMSET(&igu_ack, 0, sizeof(struct igu_prod_cons_update));
1262 	igu_ack.sb_id_and_flags =
1263 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1264 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1265 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1266 	     (IGU_SEG_ACCESS_ATTN <<
1267 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1268 
1269 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1270 
1271 	/* Both segments (interrupts & acks) are written to same place address;
1272 	 * Need to guarantee all commands will be received (in-order) by HW.
1273 	 */
1274 	OSAL_MMIOWB(p_hwfn->p_dev);
1275 	OSAL_BARRIER(p_hwfn->p_dev);
1276 }
1277 
ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)1278 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1279 {
1280 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1281 	struct ecore_pi_info *pi_info = OSAL_NULL;
1282 	struct ecore_sb_attn_info *sb_attn;
1283 	struct ecore_sb_info *sb_info;
1284 	u16 rc = 0;
1285 
1286 	if (!p_hwfn)
1287 		return;
1288 
1289 	if (!p_hwfn->p_sp_sb) {
1290 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1291 		return;
1292 	}
1293 
1294 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1295 	if (!sb_info) {
1296 		DP_ERR(p_hwfn->p_dev,
1297 		       "Status block is NULL - cannot ack interrupts\n");
1298 		return;
1299 	}
1300 
1301 	if (!p_hwfn->p_sb_attn) {
1302 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1303 		return;
1304 	}
1305 	sb_attn = p_hwfn->p_sb_attn;
1306 
1307 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1308 		   p_hwfn, p_hwfn->my_id);
1309 
1310 	/* Disable ack for def status block. Required both for msix +
1311 	 * inta in non-mask mode, in inta does no harm.
1312 	 */
1313 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1314 
1315 	/* Gather Interrupts/Attentions information */
1316 	if (!sb_info->sb_virt) {
1317 		DP_ERR(p_hwfn->p_dev,
1318 		       "Interrupt Status block is NULL -"
1319 		       " cannot check for new interrupts!\n");
1320 	} else {
1321 		u32 tmp_index = sb_info->sb_ack;
1322 		rc = ecore_sb_update_sb_idx(sb_info);
1323 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1324 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1325 			   tmp_index, sb_info->sb_ack);
1326 	}
1327 
1328 	if (!sb_attn || !sb_attn->sb_attn) {
1329 		DP_ERR(p_hwfn->p_dev,
1330 		       "Attentions Status block is NULL -"
1331 		       " cannot check for new attentions!\n");
1332 	} else {
1333 		u16 tmp_index = sb_attn->index;
1334 
1335 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1336 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1337 			   "Attention indices: 0x%08x --> 0x%08x\n",
1338 			   tmp_index, sb_attn->index);
1339 	}
1340 
1341 	/* Check if we expect interrupts at this time. if not just ack them */
1342 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1343 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1344 		return;
1345 	}
1346 
1347 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1348 
1349 	if (!p_hwfn->p_dpc_ptt) {
1350 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1351 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1352 		return;
1353 	}
1354 
1355 	if (rc & ECORE_SB_ATT_IDX)
1356 		ecore_int_attentions(p_hwfn);
1357 
1358 	if (rc & ECORE_SB_IDX) {
1359 		osal_size_t pi;
1360 
1361 		/* Since we only looked at the SB index, it's possible more
1362 		 * than a single protocol-index on the SB incremented.
1363 		 * Iterate over all configured protocol indices and check
1364 		 * whether something happened for each.
1365 		 */
1366 		for (pi = 0; pi < p_hwfn->p_sp_sb->pi_info_arr_size; pi++) {
1367 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1368 			if (pi_info->comp_cb != OSAL_NULL)
1369 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1370 		}
1371 	}
1372 
1373 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1374 		/* This should be done before the interrupts are enabled,
1375 		 * since otherwise a new attention will be generated.
1376 		 */
1377 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1378 	}
1379 
1380 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1381 }
1382 
ecore_int_sb_attn_free(struct ecore_hwfn * p_hwfn)1383 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1384 {
1385 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1386 
1387 	if (!p_sb)
1388 		return;
1389 
1390 	if (p_sb->sb_attn) {
1391 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1392 				       p_sb->sb_phys,
1393 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1394 	}
1395 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1396 }
1397 
ecore_int_sb_attn_setup(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)1398 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1399 				    struct ecore_ptt *p_ptt)
1400 {
1401 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1402 
1403 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1404 
1405 	sb_info->index = 0;
1406 	sb_info->known_attn = 0;
1407 
1408 	/* Configure Attention Status Block in IGU */
1409 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1410 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1411 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1412 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1413 }
1414 
ecore_int_sb_attn_init(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,void * sb_virt_addr,dma_addr_t sb_phy_addr)1415 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1416 				   struct ecore_ptt *p_ptt,
1417 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1418 {
1419 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1420 	int i, j, k;
1421 
1422 	sb_info->sb_attn = sb_virt_addr;
1423 	sb_info->sb_phys = sb_phy_addr;
1424 
1425 	/* Set the pointer to the AEU descriptors */
1426 	sb_info->p_aeu_desc = aeu_descs;
1427 
1428 	/* Calculate Parity Masks */
1429 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1430 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1431 		/* j is array index, k is bit index */
1432 		for (j = 0, k = 0; k < 32; j++) {
1433 			struct aeu_invert_reg_bit *p_aeu;
1434 
1435 			p_aeu = &aeu_descs[i].bits[j];
1436 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1437 				sb_info->parity_mask[i] |= 1 << k;
1438 
1439 			k += ATTENTION_LENGTH(p_aeu->flags);
1440 		}
1441 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1442 			   "Attn Mask [Reg %d]: 0x%08x\n",
1443 			   i, sb_info->parity_mask[i]);
1444 	}
1445 
1446 	/* Set the address of cleanup for the mcp attention */
1447 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1448 	    MISC_REG_AEU_GENERAL_ATTN_0;
1449 
1450 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1451 }
1452 
ecore_int_sb_attn_alloc(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)1453 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1454 						    struct ecore_ptt *p_ptt)
1455 {
1456 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1457 	struct ecore_sb_attn_info *p_sb;
1458 	dma_addr_t p_phys = 0;
1459 	void *p_virt;
1460 
1461 	/* SB struct */
1462 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1463 	if (!p_sb) {
1464 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1465 		return ECORE_NOMEM;
1466 	}
1467 
1468 	/* SB ring  */
1469 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1470 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1471 	if (!p_virt) {
1472 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1473 		OSAL_FREE(p_dev, p_sb);
1474 		return ECORE_NOMEM;
1475 	}
1476 
1477 	/* Attention setup */
1478 	p_hwfn->p_sb_attn = p_sb;
1479 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1480 
1481 	return ECORE_SUCCESS;
1482 }
1483 
1484 /* coalescing timeout = timeset << (timer_res + 1) */
1485 #define ECORE_CAU_DEF_RX_USECS 24
1486 #define ECORE_CAU_DEF_TX_USECS 48
1487 
ecore_init_cau_sb_entry(struct ecore_hwfn * p_hwfn,struct cau_sb_entry * p_sb_entry,u8 pf_id,u16 vf_number,u8 vf_valid)1488 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1489 			     struct cau_sb_entry *p_sb_entry,
1490 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1491 {
1492 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1493 	u32 cau_state;
1494 	u8 timer_res;
1495 
1496 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1497 
1498 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1499 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1500 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1501 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1502 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1503 
1504 	cau_state = CAU_HC_DISABLE_STATE;
1505 
1506 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1507 		cau_state = CAU_HC_ENABLE_STATE;
1508 		if (!p_dev->rx_coalesce_usecs)
1509 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1510 		if (!p_dev->tx_coalesce_usecs)
1511 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1512 	}
1513 
1514 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1515 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1516 		timer_res = 0;
1517 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1518 		timer_res = 1;
1519 	else
1520 		timer_res = 2;
1521 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1522 
1523 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1524 		timer_res = 0;
1525 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1526 		timer_res = 1;
1527 	else
1528 		timer_res = 2;
1529 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1530 
1531 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1532 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1533 }
1534 
_ecore_int_cau_conf_pi(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 igu_sb_id,u32 pi_index,enum ecore_coalescing_fsm coalescing_fsm,u8 timeset)1535 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1536 				   struct ecore_ptt *p_ptt,
1537 				   u16 igu_sb_id, u32 pi_index,
1538 				   enum ecore_coalescing_fsm coalescing_fsm,
1539 				   u8 timeset)
1540 {
1541 	struct cau_pi_entry pi_entry;
1542 	u32 sb_offset, pi_offset;
1543 
1544 	if (IS_VF(p_hwfn->p_dev))
1545 		return;/* @@@TBD MichalK- VF CAU... */
1546 
1547 	sb_offset = igu_sb_id * PIS_PER_SB;
1548 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1549 
1550 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1551 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1552 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1553 	else
1554 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1555 
1556 	pi_offset = sb_offset + pi_index;
1557 	if (p_hwfn->hw_init_done) {
1558 		ecore_wr(p_hwfn, p_ptt,
1559 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1560 			 *((u32 *)&(pi_entry)));
1561 	} else {
1562 		STORE_RT_REG(p_hwfn,
1563 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1564 			     *((u32 *)&(pi_entry)));
1565 	}
1566 }
1567 
ecore_int_cau_conf_pi(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_sb_info * p_sb,u32 pi_index,enum ecore_coalescing_fsm coalescing_fsm,u8 timeset)1568 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1569 			   struct ecore_ptt *p_ptt,
1570 			   struct ecore_sb_info *p_sb, u32 pi_index,
1571 			   enum ecore_coalescing_fsm coalescing_fsm,
1572 			   u8 timeset)
1573 {
1574 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1575 			       pi_index, coalescing_fsm, timeset);
1576 }
1577 
ecore_int_cau_conf_sb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,dma_addr_t sb_phys,u16 igu_sb_id,u16 vf_number,u8 vf_valid)1578 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1579 			   struct ecore_ptt *p_ptt,
1580 			   dma_addr_t sb_phys, u16 igu_sb_id,
1581 			   u16 vf_number, u8 vf_valid)
1582 {
1583 	struct cau_sb_entry sb_entry;
1584 
1585 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1586 				vf_number, vf_valid);
1587 
1588 	if (p_hwfn->hw_init_done) {
1589 		/* Wide-bus, initialize via DMAE */
1590 		u64 phys_addr = (u64)sb_phys;
1591 
1592 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1593 				    (u64)(osal_uintptr_t)&phys_addr,
1594 				    CAU_REG_SB_ADDR_MEMORY +
1595 				    igu_sb_id * sizeof(u64), 2,
1596 				    OSAL_NULL /* default parameters */);
1597 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1598 				    (u64)(osal_uintptr_t)&sb_entry,
1599 				    CAU_REG_SB_VAR_MEMORY +
1600 				    igu_sb_id * sizeof(u64), 2,
1601 				    OSAL_NULL /* default parameters */);
1602 	} else {
1603 		/* Initialize Status Block Address */
1604 		STORE_RT_REG_AGG(p_hwfn,
1605 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1606 				 igu_sb_id * 2, sb_phys);
1607 
1608 		STORE_RT_REG_AGG(p_hwfn,
1609 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1610 				 igu_sb_id * 2, sb_entry);
1611 	}
1612 
1613 	/* Configure pi coalescing if set */
1614 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1615 		/* eth will open queues for all tcs, so configure all of them
1616 		 * properly, rather than just the active ones
1617 		 */
1618 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1619 
1620 		u8 timeset, timer_res;
1621 		u8 i;
1622 
1623 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1624 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1625 			timer_res = 0;
1626 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1627 			timer_res = 1;
1628 		else
1629 			timer_res = 2;
1630 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1631 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1632 				       ECORE_COAL_RX_STATE_MACHINE,
1633 				       timeset);
1634 
1635 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1636 			timer_res = 0;
1637 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1638 			timer_res = 1;
1639 		else
1640 			timer_res = 2;
1641 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1642 		for (i = 0; i < num_tc; i++) {
1643 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1644 					       igu_sb_id, TX_PI(i),
1645 					       ECORE_COAL_TX_STATE_MACHINE,
1646 					       timeset);
1647 		}
1648 	}
1649 }
1650 
ecore_int_sb_setup(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_sb_info * sb_info)1651 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1652 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1653 {
1654 	/* zero status block and ack counter */
1655 	sb_info->sb_ack = 0;
1656 	OSAL_MEMSET(sb_info->sb_virt, 0, sb_info->sb_size);
1657 
1658 	if (IS_PF(p_hwfn->p_dev))
1659 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1660 				      sb_info->igu_sb_id, 0, 0);
1661 }
1662 
1663 struct ecore_igu_block *
ecore_get_igu_free_sb(struct ecore_hwfn * p_hwfn,bool b_is_pf)1664 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1665 {
1666 	struct ecore_igu_block *p_block;
1667 	u16 igu_id;
1668 
1669 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1670 	     igu_id++) {
1671 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1672 
1673 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1674 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1675 			continue;
1676 
1677 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1678 		    b_is_pf)
1679 			return p_block;
1680 	}
1681 
1682 	return OSAL_NULL;
1683 }
1684 
ecore_get_pf_igu_sb_id(struct ecore_hwfn * p_hwfn,u16 vector_id)1685 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1686 				  u16 vector_id)
1687 {
1688 	struct ecore_igu_block *p_block;
1689 	u16 igu_id;
1690 
1691 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1692 	     igu_id++) {
1693 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1694 
1695 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1696 		    !p_block->is_pf ||
1697 		    p_block->vector_number != vector_id)
1698 			continue;
1699 
1700 		return igu_id;
1701 	}
1702 
1703 	return ECORE_SB_INVALID_IDX;
1704 }
1705 
ecore_get_igu_sb_id(struct ecore_hwfn * p_hwfn,u16 sb_id)1706 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1707 {
1708 	u16 igu_sb_id;
1709 
1710 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1711 	if (sb_id == ECORE_SP_SB_ID)
1712 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1713 	else if (IS_PF(p_hwfn->p_dev))
1714 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1715 	else
1716 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1717 
1718 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1719 		DP_NOTICE(p_hwfn, true,
1720 			  "Slowpath SB vector %04x doesn't exist\n",
1721 			  sb_id);
1722 	else if (sb_id == ECORE_SP_SB_ID)
1723 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1724 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1725 	else
1726 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1727 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1728 
1729 	return igu_sb_id;
1730 }
1731 
ecore_int_sb_init(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_sb_info * sb_info,void * sb_virt_addr,dma_addr_t sb_phy_addr,u16 sb_id)1732 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1733 				       struct ecore_ptt *p_ptt,
1734 				       struct ecore_sb_info *sb_info,
1735 				       void *sb_virt_addr,
1736 				       dma_addr_t sb_phy_addr, u16 sb_id)
1737 {
1738 	sb_info->sb_virt = sb_virt_addr;
1739 	struct status_block *sb_virt;
1740 
1741 	sb_virt = (struct status_block *)sb_info->sb_virt;
1742 
1743 	sb_info->sb_size = sizeof(*sb_virt);
1744 	sb_info->sb_pi_array = sb_virt->pi_array;
1745 	sb_info->sb_prod_index = &sb_virt->prod_index;
1746 
1747 	sb_info->sb_phys = sb_phy_addr;
1748 
1749 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1750 
1751 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1752 		return ECORE_INVAL;
1753 
1754 	/* Let the igu info reference the client's SB info */
1755 	if (sb_id != ECORE_SP_SB_ID) {
1756 		if (IS_PF(p_hwfn->p_dev)) {
1757 			struct ecore_igu_info *p_info;
1758 			struct ecore_igu_block *p_block;
1759 
1760 			p_info = p_hwfn->hw_info.p_igu_info;
1761 			p_block = &p_info->entry[sb_info->igu_sb_id];
1762 
1763 			p_block->sb_info = sb_info;
1764 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1765 			p_info->usage.free_cnt--;
1766 		} else {
1767 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1768 		}
1769 	}
1770 #ifdef ECORE_CONFIG_DIRECT_HWFN
1771 	sb_info->p_hwfn = p_hwfn;
1772 #endif
1773 	sb_info->p_dev = p_hwfn->p_dev;
1774 
1775 	/* The igu address will hold the absolute address that needs to be
1776 	 * written to for a specific status block
1777 	 */
1778 	if (IS_PF(p_hwfn->p_dev))
1779 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1780 				     GTT_BAR0_MAP_REG_IGU_CMD +
1781 				     (sb_info->igu_sb_id << 3);
1782 
1783 	else
1784 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1785 		    PXP_VF_BAR0_START_IGU +
1786 				     ((IGU_CMD_INT_ACK_BASE +
1787 				       sb_info->igu_sb_id) << 3);
1788 
1789 	sb_info->flags |= ECORE_SB_INFO_INIT;
1790 
1791 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1792 
1793 	return ECORE_SUCCESS;
1794 }
1795 
ecore_int_sb_release(struct ecore_hwfn * p_hwfn,struct ecore_sb_info * sb_info,u16 sb_id)1796 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1797 					  struct ecore_sb_info *sb_info,
1798 					  u16 sb_id)
1799 {
1800 	struct ecore_igu_info *p_info;
1801 	struct ecore_igu_block *p_block;
1802 
1803 	if (sb_info == OSAL_NULL)
1804 		return ECORE_SUCCESS;
1805 
1806 	/* zero status block and ack counter */
1807 	sb_info->sb_ack = 0;
1808 	OSAL_MEMSET(sb_info->sb_virt, 0, sb_info->sb_size);
1809 
1810 	if (IS_VF(p_hwfn->p_dev)) {
1811 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1812 		return ECORE_SUCCESS;
1813 	}
1814 
1815 	p_info = p_hwfn->hw_info.p_igu_info;
1816 	p_block = &p_info->entry[sb_info->igu_sb_id];
1817 
1818 	/* Vector 0 is reserved to Default SB */
1819 	if (p_block->vector_number == 0) {
1820 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1821 		return ECORE_INVAL;
1822 	}
1823 
1824 	/* Lose reference to client's SB info, and fix counters */
1825 	p_block->sb_info = OSAL_NULL;
1826 	p_block->status |= ECORE_IGU_STATUS_FREE;
1827 	p_info->usage.free_cnt++;
1828 
1829 	return ECORE_SUCCESS;
1830 }
1831 
ecore_int_sp_sb_free(struct ecore_hwfn * p_hwfn)1832 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1833 {
1834 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1835 
1836 	if (!p_sb)
1837 		return;
1838 
1839 	if (p_sb->sb_info.sb_virt) {
1840 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1841 				       p_sb->sb_info.sb_virt,
1842 				       p_sb->sb_info.sb_phys,
1843 				       SB_ALIGNED_SIZE(p_hwfn));
1844 	}
1845 
1846 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1847 }
1848 
ecore_int_sp_sb_alloc(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)1849 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1850 						  struct ecore_ptt *p_ptt)
1851 {
1852 	struct ecore_sb_sp_info *p_sb;
1853 	dma_addr_t p_phys = 0;
1854 	void *p_virt;
1855 
1856 	/* SB struct */
1857 	p_sb = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1858 	if (!p_sb) {
1859 		DP_NOTICE(p_hwfn, false,
1860 			  "Failed to allocate `struct ecore_sb_info'\n");
1861 		return ECORE_NOMEM;
1862 	}
1863 
1864 	/* SB ring  */
1865 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1866 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1867 	if (!p_virt) {
1868 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1869 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1870 		return ECORE_NOMEM;
1871 	}
1872 
1873 	/* Status Block setup */
1874 	p_hwfn->p_sp_sb = p_sb;
1875 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1876 			  p_virt, p_phys, ECORE_SP_SB_ID);
1877 
1878 	p_sb->pi_info_arr_size = PIS_PER_SB;
1879 
1880 	return ECORE_SUCCESS;
1881 }
1882 
ecore_int_register_cb(struct ecore_hwfn * p_hwfn,ecore_int_comp_cb_t comp_cb,void * cookie,u8 * sb_idx,__le16 ** p_fw_cons)1883 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1884 					   ecore_int_comp_cb_t comp_cb,
1885 					   void *cookie,
1886 					   u8 *sb_idx, __le16 **p_fw_cons)
1887 {
1888 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1889 	enum _ecore_status_t rc = ECORE_NOMEM;
1890 	u8 pi;
1891 
1892 	/* Look for a free index */
1893 	for (pi = 0; pi < p_sp_sb->pi_info_arr_size; pi++) {
1894 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1895 			continue;
1896 
1897 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1898 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1899 		*sb_idx = pi;
1900 		*p_fw_cons = &p_sp_sb->sb_info.sb_pi_array[pi];
1901 		rc = ECORE_SUCCESS;
1902 		break;
1903 	}
1904 
1905 	return rc;
1906 }
1907 
ecore_int_unregister_cb(struct ecore_hwfn * p_hwfn,u8 pi)1908 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1909 {
1910 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1911 
1912 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1913 		return ECORE_NOMEM;
1914 
1915 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1916 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1917 	return ECORE_SUCCESS;
1918 }
1919 
ecore_int_get_sp_sb_id(struct ecore_hwfn * p_hwfn)1920 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1921 {
1922 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1923 }
1924 
ecore_int_igu_enable_int(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum ecore_int_mode int_mode)1925 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1926 			      struct ecore_ptt *p_ptt,
1927 			      enum ecore_int_mode int_mode)
1928 {
1929 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1930 
1931 #ifndef ASIC_ONLY
1932 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1933 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1934 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1935 	}
1936 #endif
1937 
1938 	p_hwfn->p_dev->int_mode = int_mode;
1939 	switch (p_hwfn->p_dev->int_mode) {
1940 	case ECORE_INT_MODE_INTA:
1941 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1942 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1943 		break;
1944 
1945 	case ECORE_INT_MODE_MSI:
1946 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1947 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1948 		break;
1949 
1950 	case ECORE_INT_MODE_MSIX:
1951 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1952 		break;
1953 	case ECORE_INT_MODE_POLL:
1954 		break;
1955 	}
1956 
1957 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1958 }
1959 
ecore_int_igu_enable_attn(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)1960 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1961 				      struct ecore_ptt *p_ptt)
1962 {
1963 #ifndef ASIC_ONLY
1964 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1965 		DP_INFO(p_hwfn,
1966 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1967 		return;
1968 	}
1969 #endif
1970 
1971 	/* Configure AEU signal change to produce attentions */
1972 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1973 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1974 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1975 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1976 
1977 	/* Flush the writes to IGU */
1978 	OSAL_MMIOWB(p_hwfn->p_dev);
1979 
1980 	/* Unmask AEU signals toward IGU */
1981 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1982 }
1983 
1984 enum _ecore_status_t
ecore_int_igu_enable(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum ecore_int_mode int_mode)1985 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1986 			  enum ecore_int_mode int_mode)
1987 {
1988 	enum _ecore_status_t rc = ECORE_SUCCESS;
1989 
1990 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1991 
1992 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1993 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1994 		if (rc != ECORE_SUCCESS) {
1995 			DP_NOTICE(p_hwfn, true,
1996 				  "Slowpath IRQ request failed\n");
1997 			return ECORE_NORESOURCES;
1998 		}
1999 		p_hwfn->b_int_requested = true;
2000 	}
2001 
2002 	/* Enable interrupt Generation */
2003 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
2004 
2005 	p_hwfn->b_int_enabled = 1;
2006 
2007 	return rc;
2008 }
2009 
ecore_int_igu_disable_int(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2010 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
2011 			       struct ecore_ptt *p_ptt)
2012 {
2013 	p_hwfn->b_int_enabled = 0;
2014 
2015 	if (IS_VF(p_hwfn->p_dev))
2016 		return;
2017 
2018 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2019 }
2020 
2021 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
ecore_int_igu_cleanup_sb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 igu_sb_id,bool cleanup_set,u16 opaque_fid)2022 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
2023 				     struct ecore_ptt *p_ptt,
2024 				     u32 igu_sb_id,
2025 				     bool cleanup_set,
2026 				     u16 opaque_fid)
2027 {
2028 	u32 data = 0, cmd_ctrl = 0, sb_bit, sb_bit_addr, pxp_addr;
2029 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH, val;
2030 	u8 type = 0;
2031 
2032 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
2033 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
2034 
2035 	/* USE Control Command Register to perform cleanup. There is an
2036 	 * option to do this using IGU bar, but then it can't be used for VFs.
2037 	 */
2038 
2039 	/* Set the data field */
2040 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
2041 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
2042 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
2043 
2044 	/* Set the control register */
2045 	pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
2046 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
2047 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
2048 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2049 
2050 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2051 
2052 	OSAL_BARRIER(p_hwfn->p_dev);
2053 
2054 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2055 
2056 	/* Flush the write to IGU */
2057 	OSAL_MMIOWB(p_hwfn->p_dev);
2058 
2059 	/* calculate where to read the status bit from */
2060 	sb_bit = 1 << (igu_sb_id % 32);
2061 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2062 
2063 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2064 
2065 	/* Now wait for the command to complete */
2066 	while (--sleep_cnt) {
2067 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2068 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2069 			break;
2070 		OSAL_MSLEEP(5);
2071 	}
2072 
2073 	if (!sleep_cnt)
2074 		DP_NOTICE(p_hwfn, true,
2075 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2076 			  val, igu_sb_id);
2077 }
2078 
ecore_int_igu_init_pure_rt_single(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 igu_sb_id,u16 opaque,bool b_set)2079 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2080 				       struct ecore_ptt *p_ptt,
2081 				       u16 igu_sb_id, u16 opaque, bool b_set)
2082 {
2083 	struct ecore_igu_block *p_block;
2084 	int pi, i;
2085 
2086 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2087 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2088 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2089 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2090 		   p_block->vector_number);
2091 
2092 	/* Set */
2093 	if (b_set)
2094 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2095 
2096 	/* Clear */
2097 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2098 
2099 	/* Wait for the IGU SB to cleanup */
2100 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2101 		u32 val;
2102 
2103 		val = ecore_rd(p_hwfn, p_ptt,
2104 			       IGU_REG_WRITE_DONE_PENDING +
2105 			       ((igu_sb_id / 32) * 4));
2106 		if (val & (1 << (igu_sb_id % 32)))
2107 			OSAL_UDELAY(10);
2108 		else
2109 			break;
2110 	}
2111 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2112 		DP_NOTICE(p_hwfn, true,
2113 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2114 			  igu_sb_id);
2115 
2116 	/* Clear the CAU for the SB */
2117 	for (pi = 0; pi < PIS_PER_SB; pi++)
2118 		ecore_wr(p_hwfn, p_ptt,
2119 			 CAU_REG_PI_MEMORY +
2120 			 (igu_sb_id * PIS_PER_SB + pi) * 4,
2121 			 0);
2122 }
2123 
ecore_int_igu_init_pure_rt(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool b_set,bool b_slowpath)2124 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2125 				struct ecore_ptt *p_ptt,
2126 				bool b_set, bool b_slowpath)
2127 {
2128 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2129 	struct ecore_igu_block *p_block;
2130 	u16 igu_sb_id = 0;
2131 	u32 val = 0;
2132 
2133 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2134 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2135 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2136 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2137 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2138 	/* end temporary */
2139 
2140 	for (igu_sb_id = 0;
2141 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2142 	     igu_sb_id++) {
2143 		p_block = &p_info->entry[igu_sb_id];
2144 
2145 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2146 		    !p_block->is_pf ||
2147 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2148 			continue;
2149 
2150 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2151 						  p_hwfn->hw_info.opaque_fid,
2152 						  b_set);
2153 	}
2154 
2155 	if (b_slowpath)
2156 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2157 						  p_info->igu_dsb_id,
2158 						  p_hwfn->hw_info.opaque_fid,
2159 						  b_set);
2160 }
2161 
ecore_int_igu_reset_cam(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2162 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2163 			    struct ecore_ptt *p_ptt)
2164 {
2165 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2166 	struct ecore_igu_block *p_block;
2167 	int pf_sbs, vf_sbs;
2168 	u16 igu_sb_id;
2169 	u32 val, rval;
2170 
2171 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2172 		/* We're using an old MFW - have to prevent any switching
2173 		 * of SBs between PF and VFs as later driver wouldn't be
2174 		 * able to tell which belongs to which.
2175 		 */
2176 		p_info->b_allow_pf_vf_change = false;
2177 	} else {
2178 		/* Use the numbers the MFW have provided -
2179 		 * don't forget MFW accounts for the default SB as well.
2180 		 */
2181 		p_info->b_allow_pf_vf_change = true;
2182 
2183 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2184 			DP_INFO(p_hwfn,
2185 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2186 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2187 				p_info->usage.cnt);
2188 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2189 		}
2190 
2191 		/* TODO - how do we learn about VF SBs from MFW? */
2192 		if (IS_PF_SRIOV(p_hwfn)) {
2193 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2194 
2195 			if (vfs != p_info->usage.iov_cnt)
2196 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2197 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2198 					   p_info->usage.iov_cnt, vfs);
2199 
2200 			/* At this point we know how many SBs we have totally
2201 			 * in IGU + number of PF SBs. So we can validate that
2202 			 * we'd have sufficient for VF.
2203 			 */
2204 			if (vfs > p_info->usage.free_cnt +
2205 				  p_info->usage.free_cnt_iov -
2206 				  p_info->usage.cnt) {
2207 				DP_NOTICE(p_hwfn, true,
2208 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2209 					  p_info->usage.free_cnt +
2210 					  p_info->usage.free_cnt_iov,
2211 					  p_info->usage.cnt, vfs);
2212 				return ECORE_INVAL;
2213 			}
2214 		}
2215 	}
2216 
2217 	/* Cap the number of VFs SBs by the number of VFs */
2218 	if (IS_PF_SRIOV(p_hwfn))
2219 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2220 
2221 	/* Mark all SBs as free, now in the right PF/VFs division */
2222 	p_info->usage.free_cnt = p_info->usage.cnt;
2223 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2224 	p_info->usage.orig = p_info->usage.cnt;
2225 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2226 
2227 	/* We now proceed to re-configure the IGU cam to reflect the initial
2228 	 * configuration. We can start with the Default SB.
2229 	 */
2230 	pf_sbs = p_info->usage.cnt;
2231 	vf_sbs = p_info->usage.iov_cnt;
2232 
2233 	for (igu_sb_id = p_info->igu_dsb_id;
2234 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2235 	     igu_sb_id++) {
2236 		p_block = &p_info->entry[igu_sb_id];
2237 		val = 0;
2238 
2239 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2240 			continue;
2241 
2242 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2243 			p_block->function_id = p_hwfn->rel_pf_id;
2244 			p_block->is_pf = 1;
2245 			p_block->vector_number = 0;
2246 			p_block->status = ECORE_IGU_STATUS_VALID |
2247 					  ECORE_IGU_STATUS_PF |
2248 					  ECORE_IGU_STATUS_DSB;
2249 		} else if (pf_sbs) {
2250 			pf_sbs--;
2251 			p_block->function_id = p_hwfn->rel_pf_id;
2252 			p_block->is_pf = 1;
2253 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2254 			p_block->status = ECORE_IGU_STATUS_VALID |
2255 					  ECORE_IGU_STATUS_PF |
2256 					  ECORE_IGU_STATUS_FREE;
2257 		} else if (vf_sbs) {
2258 			p_block->function_id =
2259 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2260 				p_info->usage.iov_cnt - vf_sbs;
2261 			p_block->is_pf = 0;
2262 			p_block->vector_number = 0;
2263 			p_block->status = ECORE_IGU_STATUS_VALID |
2264 					  ECORE_IGU_STATUS_FREE;
2265 			vf_sbs--;
2266 		} else {
2267 			p_block->function_id = 0;
2268 			p_block->is_pf = 0;
2269 			p_block->vector_number = 0;
2270 		}
2271 
2272 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2273 			  p_block->function_id);
2274 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2275 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2276 			  p_block->vector_number);
2277 
2278 		/* VF entries would be enabled when VF is initializaed */
2279 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2280 
2281 		rval = ecore_rd(p_hwfn, p_ptt,
2282 				IGU_REG_MAPPING_MEMORY +
2283 				sizeof(u32) * igu_sb_id);
2284 
2285 		if (rval != val) {
2286 			ecore_wr(p_hwfn, p_ptt,
2287 				 IGU_REG_MAPPING_MEMORY +
2288 				 sizeof(u32) * igu_sb_id,
2289 				 val);
2290 
2291 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2292 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2293 				   igu_sb_id, p_block->function_id,
2294 				   p_block->is_pf, p_block->vector_number,
2295 				   rval, val);
2296 		}
2297 	}
2298 
2299 	return 0;
2300 }
2301 
ecore_int_igu_reset_cam_default(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2302 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2303 				    struct ecore_ptt *p_ptt)
2304 {
2305 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2306 
2307 	/* Return all the usage indications to default prior to the reset;
2308 	 * The reset expects the !orig to reflect the initial status of the
2309 	 * SBs, and would re-calculate the originals based on those.
2310 	 */
2311 	p_cnt->cnt = p_cnt->orig;
2312 	p_cnt->free_cnt = p_cnt->orig;
2313 	p_cnt->iov_cnt = p_cnt->iov_orig;
2314 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2315 	p_cnt->orig = 0;
2316 	p_cnt->iov_orig = 0;
2317 
2318 	/* TODO - we probably need to re-configure the CAU as well... */
2319 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2320 }
2321 
ecore_int_igu_read_cam_block(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 igu_sb_id)2322 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2323 					 struct ecore_ptt *p_ptt,
2324 					 u16 igu_sb_id)
2325 {
2326 	u32 val = ecore_rd(p_hwfn, p_ptt,
2327 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2328 	struct ecore_igu_block *p_block;
2329 
2330 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2331 
2332 	/* Fill the block information */
2333 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2334 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2335 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2336 
2337 	p_block->igu_sb_id = igu_sb_id;
2338 }
2339 
ecore_int_igu_read_cam(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2340 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2341 					    struct ecore_ptt *p_ptt)
2342 {
2343 	struct ecore_igu_info *p_igu_info;
2344 	struct ecore_igu_block *p_block;
2345 	u32 min_vf = 0, max_vf = 0;
2346 	u16 igu_sb_id;
2347 
2348 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2349 						 GFP_KERNEL,
2350 						 sizeof(*p_igu_info));
2351 	if (!p_hwfn->hw_info.p_igu_info)
2352 		return ECORE_NOMEM;
2353 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2354 
2355 	/* Distinguish between existent and onn-existent default SB */
2356 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2357 
2358 	/* Find the range of VF ids whose SB belong to this PF */
2359 	if (p_hwfn->p_dev->p_iov_info) {
2360 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2361 
2362 		min_vf = p_iov->first_vf_in_pf;
2363 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2364 	}
2365 
2366 	for (igu_sb_id = 0;
2367 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2368 	     igu_sb_id++) {
2369 		/* Read current entry; Notice it might not belong to this PF */
2370 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2371 		p_block = &p_igu_info->entry[igu_sb_id];
2372 
2373 		if ((p_block->is_pf) &&
2374 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2375 			p_block->status = ECORE_IGU_STATUS_PF |
2376 					  ECORE_IGU_STATUS_VALID |
2377 					  ECORE_IGU_STATUS_FREE;
2378 
2379 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2380 				p_igu_info->usage.cnt++;
2381 		} else if (!(p_block->is_pf) &&
2382 			   (p_block->function_id >= min_vf) &&
2383 			   (p_block->function_id < max_vf)) {
2384 			/* Available for VFs of this PF */
2385 			p_block->status = ECORE_IGU_STATUS_VALID |
2386 					  ECORE_IGU_STATUS_FREE;
2387 
2388 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2389 				p_igu_info->usage.iov_cnt++;
2390 		}
2391 
2392 		/* Mark the First entry belonging to the PF or its VFs
2393 		 * as the default SB [we'll reset IGU prior to first usage].
2394 		 */
2395 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2396 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2397 			p_igu_info->igu_dsb_id = igu_sb_id;
2398 			p_block->status |= ECORE_IGU_STATUS_DSB;
2399 		}
2400 
2401 		/* While this isn't suitable for all clients, limit number
2402 		 * of prints by having each PF print only its entries with the
2403 		 * exception of PF0 which would print everything.
2404 		 */
2405 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2406 		    (p_hwfn->abs_pf_id == 0))
2407 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2408 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2409 				   igu_sb_id, p_block->function_id,
2410 				   p_block->is_pf, p_block->vector_number);
2411 	}
2412 
2413 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2414 		DP_NOTICE(p_hwfn, true,
2415 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2416 			  p_igu_info->igu_dsb_id);
2417 		return ECORE_INVAL;
2418 	}
2419 
2420 	/* All non default SB are considered free at this point */
2421 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2422 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2423 
2424 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2425 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2426 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2427 		   p_igu_info->usage.iov_cnt);
2428 
2429 	return ECORE_SUCCESS;
2430 }
2431 
2432 enum _ecore_status_t
ecore_int_igu_relocate_sb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 sb_id,bool b_to_vf)2433 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2434 			  u16 sb_id, bool b_to_vf)
2435 {
2436 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2437 	struct ecore_igu_block *p_block = OSAL_NULL;
2438 	u16 igu_sb_id = 0, vf_num = 0;
2439 	u32 val = 0;
2440 
2441 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2442 		return ECORE_INVAL;
2443 
2444 	if (sb_id == ECORE_SP_SB_ID)
2445 		return ECORE_INVAL;
2446 
2447 	if (!p_info->b_allow_pf_vf_change) {
2448 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2449 		return ECORE_INVAL;
2450 	}
2451 
2452 	/* If we're moving a SB from PF to VF, the client had to specify
2453 	 * which vector it wants to move.
2454 	 */
2455 	if (b_to_vf) {
2456 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2457 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2458 			return ECORE_INVAL;
2459 	}
2460 
2461 	/* If we're moving a SB from VF to PF, need to validate there isn't
2462 	 * already a line configured for that vector.
2463 	 */
2464 	if (!b_to_vf) {
2465 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2466 		    ECORE_SB_INVALID_IDX)
2467 			return ECORE_INVAL;
2468 	}
2469 
2470 	/* We need to validate that the SB can actually be relocated.
2471 	 * This would also handle the previous case where we've explicitly
2472 	 * stated which IGU SB needs to move.
2473 	 */
2474 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2475 	     igu_sb_id++) {
2476 		p_block = &p_info->entry[igu_sb_id];
2477 
2478 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2479 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2480 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2481 			if (b_to_vf)
2482 				return ECORE_INVAL;
2483 			else
2484 				continue;
2485 		}
2486 
2487 		break;
2488 	}
2489 
2490 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2491 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2492 			   "Failed to find a free SB to move\n");
2493 		return ECORE_INVAL;
2494 	}
2495 
2496 	/* At this point, p_block points to the SB we want to relocate */
2497 	if (b_to_vf) {
2498 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2499 
2500 		/* It doesn't matter which VF number we choose, since we're
2501 		 * going to disable the line; But let's keep it in range.
2502 		 */
2503 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2504 
2505 		p_block->function_id = (u8)vf_num;
2506 		p_block->is_pf = 0;
2507 		p_block->vector_number = 0;
2508 
2509 		p_info->usage.cnt--;
2510 		p_info->usage.free_cnt--;
2511 		p_info->usage.iov_cnt++;
2512 		p_info->usage.free_cnt_iov++;
2513 
2514 		/* TODO - if SBs aren't really the limiting factor,
2515 		 * then it might not be accurate [in the since that
2516 		 * we might not need decrement the feature].
2517 		 */
2518 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2519 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2520 	} else {
2521 		p_block->status |= ECORE_IGU_STATUS_PF;
2522 		p_block->function_id = p_hwfn->rel_pf_id;
2523 		p_block->is_pf = 1;
2524 		p_block->vector_number = sb_id + 1;
2525 
2526 		p_info->usage.cnt++;
2527 		p_info->usage.free_cnt++;
2528 		p_info->usage.iov_cnt--;
2529 		p_info->usage.free_cnt_iov--;
2530 
2531 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2532 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2533 	}
2534 
2535 	/* Update the IGU and CAU with the new configuration */
2536 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2537 		  p_block->function_id);
2538 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2539 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2540 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2541 		  p_block->vector_number);
2542 
2543 	ecore_wr(p_hwfn, p_ptt,
2544 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2545 		 val);
2546 
2547 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2548 			      igu_sb_id, vf_num,
2549 			      p_block->is_pf ? 0 : 1);
2550 
2551 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2552 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2553 		   igu_sb_id, p_block->function_id,
2554 		   p_block->is_pf, p_block->vector_number);
2555 
2556 	return ECORE_SUCCESS;
2557 }
2558 
2559 /**
2560  * @brief Initialize igu runtime registers
2561  *
2562  * @param p_hwfn
2563  */
ecore_int_igu_init_rt(struct ecore_hwfn * p_hwfn)2564 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2565 {
2566 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2567 
2568 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2569 }
2570 
2571 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2572 			  IGU_CMD_INT_ACK_BASE)
2573 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2574 			  IGU_CMD_INT_ACK_BASE)
ecore_int_igu_read_sisr_reg(struct ecore_hwfn * p_hwfn)2575 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2576 {
2577 	u32 intr_status_hi = 0, intr_status_lo = 0;
2578 	u64 intr_status = 0;
2579 
2580 	intr_status_lo = REG_RD(p_hwfn,
2581 				GTT_BAR0_MAP_REG_IGU_CMD +
2582 				LSB_IGU_CMD_ADDR * 8);
2583 	intr_status_hi = REG_RD(p_hwfn,
2584 				GTT_BAR0_MAP_REG_IGU_CMD +
2585 				MSB_IGU_CMD_ADDR * 8);
2586 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2587 
2588 	return intr_status;
2589 }
2590 
ecore_int_sp_dpc_setup(struct ecore_hwfn * p_hwfn)2591 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2592 {
2593 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2594 	p_hwfn->b_sp_dpc_enabled = true;
2595 }
2596 
ecore_int_sp_dpc_alloc(struct ecore_hwfn * p_hwfn)2597 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2598 {
2599 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2600 	if (!p_hwfn->sp_dpc)
2601 		return ECORE_NOMEM;
2602 
2603 	return ECORE_SUCCESS;
2604 }
2605 
ecore_int_sp_dpc_free(struct ecore_hwfn * p_hwfn)2606 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2607 {
2608 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2609 }
2610 
ecore_int_alloc(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2611 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2612 				     struct ecore_ptt *p_ptt)
2613 {
2614 	enum _ecore_status_t rc = ECORE_SUCCESS;
2615 
2616 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2617 	if (rc != ECORE_SUCCESS) {
2618 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2619 		return rc;
2620 	}
2621 
2622 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2623 	if (rc != ECORE_SUCCESS) {
2624 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2625 		return rc;
2626 	}
2627 
2628 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2629 	if (rc != ECORE_SUCCESS)
2630 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2631 
2632 	return rc;
2633 }
2634 
ecore_int_free(struct ecore_hwfn * p_hwfn)2635 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2636 {
2637 	ecore_int_sp_sb_free(p_hwfn);
2638 	ecore_int_sb_attn_free(p_hwfn);
2639 	ecore_int_sp_dpc_free(p_hwfn);
2640 }
2641 
ecore_int_setup(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2642 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2643 {
2644 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2645 		return;
2646 
2647 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2648 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2649 	ecore_int_sp_dpc_setup(p_hwfn);
2650 }
2651 
ecore_int_get_num_sbs(struct ecore_hwfn * p_hwfn,struct ecore_sb_cnt_info * p_sb_cnt_info)2652 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2653 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2654 {
2655 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2656 
2657 	if (!p_igu_info || !p_sb_cnt_info)
2658 		return;
2659 
2660 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2661 		    sizeof(*p_sb_cnt_info));
2662 }
2663 
ecore_int_disable_post_isr_release(struct ecore_dev * p_dev)2664 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2665 {
2666 	int i;
2667 
2668 	for_each_hwfn(p_dev, i)
2669 		p_dev->hwfns[i].b_int_requested = false;
2670 }
2671 
ecore_int_attn_clr_enable(struct ecore_dev * p_dev,bool clr_enable)2672 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2673 {
2674 	p_dev->attn_clr_en = clr_enable;
2675 }
2676 
ecore_int_set_timer_res(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 timer_res,u16 sb_id,bool tx)2677 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2678 					     struct ecore_ptt *p_ptt,
2679 					     u8 timer_res, u16 sb_id, bool tx)
2680 {
2681 	struct cau_sb_entry sb_entry;
2682 	enum _ecore_status_t rc;
2683 
2684 	if (!p_hwfn->hw_init_done) {
2685 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2686 		return ECORE_INVAL;
2687 	}
2688 
2689 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2690 				 sb_id * sizeof(u64),
2691 				 (u64)(osal_uintptr_t)&sb_entry, 2,
2692 				 OSAL_NULL /* default parameters */);
2693 	if (rc != ECORE_SUCCESS) {
2694 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2695 		return rc;
2696 	}
2697 
2698 	if (tx)
2699 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2700 	else
2701 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2702 
2703 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2704 				 (u64)(osal_uintptr_t)&sb_entry,
2705 				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2706 				 OSAL_NULL /* default parameters */);
2707 	if (rc != ECORE_SUCCESS) {
2708 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2709 		return rc;
2710 	}
2711 
2712 	return rc;
2713 }
2714 
ecore_int_get_sb_dbg(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_sb_info * p_sb,struct ecore_sb_info_dbg * p_info)2715 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2716 					  struct ecore_ptt *p_ptt,
2717 					  struct ecore_sb_info *p_sb,
2718 					  struct ecore_sb_info_dbg *p_info)
2719 {
2720 	u16 sbid = p_sb->igu_sb_id;
2721 	u32 i;
2722 
2723 	if (IS_VF(p_hwfn->p_dev))
2724 		return ECORE_INVAL;
2725 
2726 	if (sbid >= NUM_OF_SBS(p_hwfn->p_dev))
2727 		return ECORE_INVAL;
2728 
2729 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2730 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2731 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2732 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2733 
2734 	for (i = 0; i < PIS_PER_SB; i++)
2735 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2736 					      CAU_REG_PI_MEMORY +
2737 					      sbid * 4 * PIS_PER_SB +
2738 					      i * 4);
2739 
2740 	return ECORE_SUCCESS;
2741 }
2742 
ecore_pf_flr_igu_cleanup(struct ecore_hwfn * p_hwfn)2743 void ecore_pf_flr_igu_cleanup(struct ecore_hwfn *p_hwfn)
2744 {
2745 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2746 	struct ecore_ptt *p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2747 							     RESERVED_PTT_DPC);
2748 	int i;
2749 
2750 	/* Do not reorder the following cleanup sequence */
2751 	/* Ack all attentions */
2752 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ACK_BITS, 0xfff);
2753 
2754 	/* Clear driver attention */
2755 	ecore_wr(p_hwfn,  p_dpc_ptt,
2756 		((p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0), 0);
2757 
2758 	/* Clear per-PF IGU registers to restore them as if the IGU
2759 	 * was reset for this PF
2760 	 */
2761 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2762 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2763 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2764 
2765 	/* Execute IGU clean up*/
2766 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_FUNCTIONAL_CLEANUP, 1);
2767 
2768 	/* Clear Stats */
2769 	ecore_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_OF_INTA_ASSERTED, 0);
2770 
2771 	for (i = 0; i < IGU_REG_PBA_STS_PF_SIZE; i++)
2772 		ecore_wr(p_hwfn, p_ptt, IGU_REG_PBA_STS_PF + i * 4, 0);
2773 }
2774