xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision b9ebba32cc3e68f62ce13cee4a7ca364d9ac01b9)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "reg_addr.h"
13 #include "ecore_gtt_reg_addr.h"
14 #include "ecore_init_ops.h"
15 #include "ecore_rt_defs.h"
16 #include "ecore_int.h"
17 #include "reg_addr.h"
18 #include "ecore_hw.h"
19 #include "ecore_sriov.h"
20 #include "ecore_vf.h"
21 #include "ecore_hw_defs.h"
22 #include "ecore_hsi_common.h"
23 #include "ecore_mcp.h"
24 
25 struct ecore_pi_info {
26 	ecore_int_comp_cb_t comp_cb;
27 	void *cookie;		/* Will be sent to the compl cb function */
28 };
29 
30 struct ecore_sb_sp_info {
31 	struct ecore_sb_info sb_info;
32 	/* per protocol index data */
33 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
34 };
35 
36 enum ecore_attention_type {
37 	ECORE_ATTN_TYPE_ATTN,
38 	ECORE_ATTN_TYPE_PARITY,
39 };
40 
41 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
42 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
43 
44 struct aeu_invert_reg_bit {
45 	char bit_name[30];
46 
47 #define ATTENTION_PARITY		(1 << 0)
48 
49 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
50 #define ATTENTION_LENGTH_SHIFT		(4)
51 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
52 					 ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
55 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
56 					 ATTENTION_PARITY)
57 
58 /* Multiple bits start with this offset */
59 #define ATTENTION_OFFSET_MASK		(0x000ff000)
60 #define ATTENTION_OFFSET_SHIFT		(12)
61 
62 #define ATTENTION_BB_MASK		(0x00700000)
63 #define ATTENTION_BB_SHIFT		(20)
64 #define ATTENTION_BB(value)		((value) << ATTENTION_BB_SHIFT)
65 #define ATTENTION_BB_DIFFERENT		(1 << 23)
66 
67 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
68 	unsigned int flags;
69 
70 	/* Callback to call if attention will be triggered */
71 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
72 
73 	enum block_id block_index;
74 };
75 
76 struct aeu_invert_reg {
77 	struct aeu_invert_reg_bit bits[32];
78 };
79 
80 #define MAX_ATTN_GRPS		(8)
81 #define NUM_ATTN_REGS		(9)
82 
83 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
84 {
85 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
86 
87 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
88 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
89 
90 	return ECORE_SUCCESS;
91 }
92 
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
102 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
103 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
117 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
118 {
119 	u32 tmp =
120 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
121 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
122 
123 	/* Disabled VF access */
124 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
125 		u32 addr, data;
126 
127 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
128 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
129 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
130 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
131 		DP_INFO(p_hwfn->p_dev,
132 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
133 			" Write [0x%02x] Addr [0x%08x]\n",
134 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
135 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
136 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
137 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
138 			(u8)((data &
139 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
140 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
141 			(u8)((data &
142 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
143 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
144 			(u8)((data &
145 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
146 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
147 			addr);
148 	}
149 
150 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
151 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
152 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
153 		u32 addr, data, length;
154 
155 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
156 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
157 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
158 				PSWHST_REG_INCORRECT_ACCESS_DATA);
159 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
160 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
161 
162 		DP_INFO(p_hwfn->p_dev,
163 			"Incorrect access to %08x of length %08x - PF [%02x]"
164 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
165 			" Byte-Enable [%04x] [%08x]\n",
166 			addr, length,
167 			(u8)((data &
168 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
169 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
170 			(u8)((data &
171 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
172 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
173 			(u8)((data &
174 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
175 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
176 			(u8)((data &
177 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
178 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
179 			(u8)((data &
180 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
181 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
182 			(u8)((data &
183 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
184 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
185 			data);
186 	}
187 
188 	/* TODO - We know 'some' of these are legal due to virtualization,
189 	 * but is it true for all of them?
190 	 */
191 	return ECORE_SUCCESS;
192 }
193 
194 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
195 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
196 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
197 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
198 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
199 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
200 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
201 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
202 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
203 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
204 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
205 static const char *grc_timeout_attn_master_to_str(u8 master)
206 {
207 	switch (master) {
208 	case 1:
209 		return "PXP";
210 	case 2:
211 		return "MCP";
212 	case 3:
213 		return "MSDM";
214 	case 4:
215 		return "PSDM";
216 	case 5:
217 		return "YSDM";
218 	case 6:
219 		return "USDM";
220 	case 7:
221 		return "TSDM";
222 	case 8:
223 		return "XSDM";
224 	case 9:
225 		return "DBU";
226 	case 10:
227 		return "DMAE";
228 	default:
229 		return "Unknown";
230 	}
231 }
232 
233 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
234 {
235 	u32 tmp, tmp2;
236 
237 	/* We've already cleared the timeout interrupt register, so we learn
238 	 * of interrupts via the validity register
239 	 */
240 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
241 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
242 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
243 		goto out;
244 
245 	/* Read the GRC timeout information */
246 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
247 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
248 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
249 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
250 
251 	DP_NOTICE(p_hwfn->p_dev, false,
252 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
253 		  tmp2, tmp,
254 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
255 						       : "Read from",
256 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
257 		  grc_timeout_attn_master_to_str(
258 			(tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
259 			 ECORE_GRC_ATTENTION_MASTER_SHIFT),
260 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
261 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
262 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
263 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
264 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
265 		  ECORE_GRC_ATTENTION_VF_SHIFT);
266 
267 out:
268 	/* Regardles of anything else, clean the validity bit */
269 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
270 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
271 	return ECORE_SUCCESS;
272 }
273 
274 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
275 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
276 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
284 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
286 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
287 
288 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
289 						   struct ecore_ptt *p_ptt)
290 {
291 	u32 tmp;
292 
293 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
294 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
295 		u32 addr_lo, addr_hi, details;
296 
297 		addr_lo = ecore_rd(p_hwfn, p_ptt,
298 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
299 		addr_hi = ecore_rd(p_hwfn, p_ptt,
300 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
301 		details = ecore_rd(p_hwfn, p_ptt,
302 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
303 
304 		DP_NOTICE(p_hwfn, false,
305 			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
306 			  addr_hi, addr_lo, details,
307 			  (u8)((details &
308 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
309 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
310 			  (u8)((details &
311 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
312 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
313 			  (u8)((details &
314 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
315 			  tmp,
316 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
317 				1 : 0),
318 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
319 				1 : 0),
320 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
321 				1 : 0));
322 	}
323 
324 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
325 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
326 		u32 addr_lo, addr_hi, details;
327 
328 		addr_lo = ecore_rd(p_hwfn, p_ptt,
329 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
330 		addr_hi = ecore_rd(p_hwfn, p_ptt,
331 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
332 		details = ecore_rd(p_hwfn, p_ptt,
333 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
334 
335 		DP_NOTICE(p_hwfn, false,
336 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
337 			  addr_hi, addr_lo, details,
338 			  (u8)((details &
339 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
340 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
341 			  (u8)((details &
342 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
343 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
344 			  (u8)((details &
345 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
346 			  tmp,
347 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
348 				1 : 0),
349 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
350 				1 : 0),
351 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
352 				1 : 0));
353 	}
354 
355 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
356 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
357 		DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
358 
359 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
360 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
361 		u32 addr_hi, addr_lo;
362 
363 		addr_lo = ecore_rd(p_hwfn, p_ptt,
364 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
365 		addr_hi = ecore_rd(p_hwfn, p_ptt,
366 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
367 
368 		DP_NOTICE(p_hwfn, false,
369 			  "ICPL erorr - %08x [Address %08x:%08x]\n",
370 			  tmp, addr_hi, addr_lo);
371 	}
372 
373 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
374 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
375 		u32 addr_hi, addr_lo, details;
376 
377 		addr_lo = ecore_rd(p_hwfn, p_ptt,
378 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
379 		addr_hi = ecore_rd(p_hwfn, p_ptt,
380 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
381 		details = ecore_rd(p_hwfn, p_ptt,
382 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
383 
384 		DP_NOTICE(p_hwfn, false,
385 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
386 			  details, tmp, addr_hi, addr_lo);
387 	}
388 
389 	/* Clear the indications */
390 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
391 
392 	return ECORE_SUCCESS;
393 }
394 
395 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
396 {
397 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
398 }
399 
400 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
401 {
402 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
403 
404 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
405 
406 	return ECORE_INVAL;
407 }
408 
409 static enum _ecore_status_t
410 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
411 {
412 	DP_INFO(p_hwfn, "General attention 35!\n");
413 
414 	return ECORE_SUCCESS;
415 }
416 
417 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
418 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
419 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
420 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
421 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
422 
423 #define ECORE_DB_REC_COUNT			10
424 #define ECORE_DB_REC_INTERVAL			100
425 
426 /* assumes sticky overflow indication was set for this PF */
427 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
428 					      struct ecore_ptt *p_ptt)
429 {
430 	u8 count = ECORE_DB_REC_COUNT;
431 	u32 usage = 1;
432 
433 	/* wait for usage to zero or count to run out. This is necessary since
434 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
435 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
436 	 * half an EDPM in the queue and other half dropped. Another EDPM
437 	 * doorbell to the same address (from doorbell recovery mechanism or
438 	 * from the doorbelling entity) could have first half dropped and second
439 	 * half interperted as continuation of the first. To prevent such
440 	 * malformed doorbells from reaching the device, flush the queue before
441 	 * releaseing the overflow sticky indication.
442 	 */
443 	while (count-- && usage) {
444 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
445 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
446 	}
447 
448 	/* should have been depleted by now */
449 	if (usage) {
450 		DP_NOTICE(p_hwfn->p_dev, false,
451 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
452 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
453 		return ECORE_TIMEOUT;
454 	}
455 
456 	/* flush any pedning (e)dpm as they may never arrive */
457 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
458 
459 	/* release overflow sticky indication (stop silently dropping
460 	 * everything)
461 	 */
462 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
463 
464 	/* repeat all last doorbells (doorbell drop recovery) */
465 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
466 
467 	return ECORE_SUCCESS;
468 }
469 
470 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
471 {
472 	u32 int_sts, first_drop_reason, details, address, overflow,
473 		all_drops_reason;
474 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
475 	enum _ecore_status_t rc;
476 
477 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
478 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
479 		  int_sts);
480 
481 	/* int_sts may be zero since all PFs were interrupted for doorbell
482 	 * overflow but another one already handled it. Can abort here. If
483 	 * This PF also requires overflow recovery we will be interrupted again
484 	 */
485 	if (!int_sts)
486 		return ECORE_SUCCESS;
487 
488 	/* check if db_drop or overflow happened */
489 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
490 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
491 		/* obtain data about db drop/overflow */
492 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
493 				  DORQ_REG_DB_DROP_REASON) &
494 				  ECORE_DORQ_ATTENTION_REASON_MASK;
495 		details = ecore_rd(p_hwfn, p_ptt,
496 				   DORQ_REG_DB_DROP_DETAILS);
497 		address = ecore_rd(p_hwfn, p_ptt,
498 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
499 		overflow = ecore_rd(p_hwfn, p_ptt,
500 				    DORQ_REG_PF_OVFL_STICKY);
501 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
502 					    DORQ_REG_DB_DROP_DETAILS_REASON);
503 
504 		/* log info */
505 		DP_NOTICE(p_hwfn->p_dev, false,
506 			  "Doorbell drop occurred\n"
507 			  "Address\t\t0x%08x\t(second BAR address)\n"
508 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
509 			  "Size\t\t0x%04x\t\t(in bytes)\n"
510 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
511 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
512 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
513 			  address,
514 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
515 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
516 			  first_drop_reason, all_drops_reason, overflow);
517 
518 		/* if this PF caused overflow, initiate recovery */
519 		if (overflow) {
520 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
521 			if (rc != ECORE_SUCCESS)
522 				return rc;
523 		}
524 
525 		/* clear the doorbell drop details and prepare for next drop */
526 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
527 
528 		/* mark interrupt as handeld (note: even if drop was due to a
529 		 * different reason than overflow we mark as handled)
530 		 */
531 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
532 			 DORQ_REG_INT_STS_DB_DROP |
533 			 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
534 
535 		/* if there are no indications otherthan drop indications,
536 		 * success
537 		 */
538 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
539 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
540 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
541 			return ECORE_SUCCESS;
542 	}
543 
544 	/* some other indication was present - non recoverable */
545 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
546 
547 	return ECORE_INVAL;
548 }
549 
550 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
551 {
552 #ifndef ASIC_ONLY
553 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
554 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
555 				   TM_REG_INT_STS_1);
556 
557 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
558 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
559 			return ECORE_INVAL;
560 
561 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
562 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
563 			DP_INFO(p_hwfn,
564 				"TM attention on emulation - most likely"
565 				" results of clock-ratios\n");
566 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
567 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
568 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
569 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
570 
571 		return ECORE_SUCCESS;
572 	}
573 #endif
574 
575 	return ECORE_INVAL;
576 }
577 
578 /* Instead of major changes to the data-structure, we have a some 'special'
579  * identifiers for sources that changed meaning between adapters.
580  */
581 enum aeu_invert_reg_special_type {
582 	AEU_INVERT_REG_SPECIAL_CNIG_0,
583 	AEU_INVERT_REG_SPECIAL_CNIG_1,
584 	AEU_INVERT_REG_SPECIAL_CNIG_2,
585 	AEU_INVERT_REG_SPECIAL_CNIG_3,
586 	AEU_INVERT_REG_SPECIAL_MAX,
587 };
588 
589 static struct aeu_invert_reg_bit
590 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
591 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
592 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
593 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
594 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
595 };
596 
597 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
598 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
599 	{
600 	 {			/* After Invert 1 */
601 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
602 	   MAX_BLOCK_ID},
603 	  }
604 	 },
605 
606 	{
607 	 {			/* After Invert 2 */
608 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
609 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
610 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
611 	   BLOCK_PGLUE_B},
612 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616 	  {"SW timers #%d",
617 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
618 	   OSAL_NULL, MAX_BLOCK_ID},
619 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
620 	   BLOCK_PGLCS},
621 	  }
622 	 },
623 
624 	{
625 	 {			/* After Invert 3 */
626 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
627 	   MAX_BLOCK_ID},
628 	  }
629 	 },
630 
631 	{
632 	 {			/* After Invert 4 */
633 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
634 	   ecore_fw_assertion, MAX_BLOCK_ID},
635 	  {"General Attention %d",
636 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
637 	   OSAL_NULL, MAX_BLOCK_ID},
638 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
639 	   ecore_general_attention_35, MAX_BLOCK_ID},
640 	  {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
641 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
642 			 OSAL_NULL, BLOCK_NWS},
643 	  {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
644 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
645 			    OSAL_NULL, BLOCK_NWS},
646 	  {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
647 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
648 			 OSAL_NULL, BLOCK_NWM},
649 	  {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
650 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
651 			    OSAL_NULL, BLOCK_NWM},
652 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
653 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
654 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
655 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
656 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
657 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
658 	  {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
659 	   MAX_BLOCK_ID},
660 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
661 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
662 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
663 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
664 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
665 	  }
666 	 },
667 
668 	{
669 	 {			/* After Invert 5 */
670 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
671 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
672 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
673 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
674 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
675 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
676 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
677 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
678 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
679 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
680 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
681 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
682 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
683 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
684 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
685 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
686 	  }
687 	 },
688 
689 	{
690 	 {			/* After Invert 6 */
691 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
692 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
693 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
694 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
695 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
696 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
697 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
698 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
699 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
700 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
701 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
702 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
703 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
704 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
705 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
706 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
707 	  }
708 	 },
709 
710 	{
711 	 {			/* After Invert 7 */
712 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
713 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
714 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
715 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
716 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
717 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
718 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
719 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
720 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
721 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
722 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
723 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
724 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
725 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
726 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
727 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
728 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
729 	  }
730 	 },
731 
732 	{
733 	 {			/* After Invert 8 */
734 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
735 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
736 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
737 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
738 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
739 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
740 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
741 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
742 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
743 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
744 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
745 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
746 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
747 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
748 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
749 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
751 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
752 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
753 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
754 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
755 	   MAX_BLOCK_ID},
756 	  }
757 	 },
758 
759 	{
760 	 {			/* After Invert 9 */
761 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
762 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
763 	   MAX_BLOCK_ID},
764 	  {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
765 	  {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
766 	  {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
767 	   MAX_BLOCK_ID},
768 	  }
769 	 },
770 
771 };
772 
773 static struct aeu_invert_reg_bit *
774 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
775 			struct aeu_invert_reg_bit *p_bit)
776 {
777 	if (!ECORE_IS_BB(p_hwfn->p_dev))
778 		return p_bit;
779 
780 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
781 		return p_bit;
782 
783 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
784 				  ATTENTION_BB_SHIFT];
785 }
786 
787 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
788 				     struct aeu_invert_reg_bit *p_bit)
789 {
790 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
791 		  ATTENTION_PARITY);
792 }
793 
794 #define ATTN_STATE_BITS		(0xfff)
795 #define ATTN_BITS_MASKABLE	(0x3ff)
796 struct ecore_sb_attn_info {
797 	/* Virtual & Physical address of the SB */
798 	struct atten_status_block *sb_attn;
799 	dma_addr_t sb_phys;
800 
801 	/* Last seen running index */
802 	u16 index;
803 
804 	/* A mask of the AEU bits resulting in a parity error */
805 	u32 parity_mask[NUM_ATTN_REGS];
806 
807 	/* A pointer to the attention description structure */
808 	struct aeu_invert_reg *p_aeu_desc;
809 
810 	/* Previously asserted attentions, which are still unasserted */
811 	u16 known_attn;
812 
813 	/* Cleanup address for the link's general hw attention */
814 	u32 mfw_attn_addr;
815 };
816 
817 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
818 				 struct ecore_sb_attn_info *p_sb_desc)
819 {
820 	u16 rc = 0, index;
821 
822 	OSAL_MMIOWB(p_hwfn->p_dev);
823 
824 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
825 	if (p_sb_desc->index != index) {
826 		p_sb_desc->index = index;
827 		rc = ECORE_SB_ATT_IDX;
828 	}
829 
830 	OSAL_MMIOWB(p_hwfn->p_dev);
831 
832 	return rc;
833 }
834 
835 /**
836  * @brief ecore_int_assertion - handles asserted attention bits
837  *
838  * @param p_hwfn
839  * @param asserted_bits newly asserted bits
840  * @return enum _ecore_status_t
841  */
842 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
843 						u16 asserted_bits)
844 {
845 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
846 	u32 igu_mask;
847 
848 	/* Mask the source of the attention in the IGU */
849 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
850 			    IGU_REG_ATTENTION_ENABLE);
851 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
852 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
853 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
854 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
855 
856 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
857 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
858 		   sb_attn_sw->known_attn,
859 		   sb_attn_sw->known_attn | asserted_bits);
860 	sb_attn_sw->known_attn |= asserted_bits;
861 
862 	/* Handle MCP events */
863 	if (asserted_bits & 0x100) {
864 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
865 		/* Clean the MCP attention */
866 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
867 			 sb_attn_sw->mfw_attn_addr, 0);
868 	}
869 
870 	/* FIXME - this will change once we'll have GOOD gtt definitions */
871 	DIRECT_REG_WR(p_hwfn,
872 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
873 		      GTT_BAR0_MAP_REG_IGU_CMD +
874 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
875 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
876 
877 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
878 		   asserted_bits);
879 
880 	return ECORE_SUCCESS;
881 }
882 
883 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
884 				 enum block_id id, enum dbg_attn_type type,
885 				 bool b_clear)
886 {
887 	/* @DPDK */
888 	DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
889 }
890 
891 /**
892  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
893  * cause of the attention
894  *
895  * @param p_hwfn
896  * @param p_aeu - descriptor of an AEU bit which caused the attention
897  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
898  *  this bit to this group.
899  * @param bit_index - index of this bit in the aeu_en_reg
900  *
901  * @return enum _ecore_status_t
902  */
903 static enum _ecore_status_t
904 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
905 			      struct aeu_invert_reg_bit *p_aeu,
906 			      u32 aeu_en_reg,
907 			      const char *p_bit_name,
908 			      u32 bitmask)
909 {
910 	enum _ecore_status_t rc = ECORE_INVAL;
911 	bool b_fatal = false;
912 
913 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
914 		p_bit_name, bitmask);
915 
916 	/* Call callback before clearing the interrupt status */
917 	if (p_aeu->cb) {
918 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
919 			p_bit_name);
920 		rc = p_aeu->cb(p_hwfn);
921 	}
922 
923 	if (rc != ECORE_SUCCESS)
924 		b_fatal = true;
925 
926 	/* Print HW block interrupt registers */
927 	if (p_aeu->block_index != MAX_BLOCK_ID) {
928 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
929 				     ATTN_TYPE_INTERRUPT, !b_fatal);
930 }
931 
932 	/* @DPDK */
933 	/* Reach assertion if attention is fatal */
934 	if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
935 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
936 			  p_bit_name);
937 
938 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
939 	}
940 
941 	/* Prevent this Attention from being asserted in the future */
942 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
943 	    p_hwfn->p_dev->attn_clr_en) {
944 		u32 val;
945 		u32 mask = ~bitmask;
946 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
947 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
948 		DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
949 			p_bit_name);
950 	}
951 
952 	return rc;
953 }
954 
955 /**
956  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
957  *
958  * @param p_hwfn
959  * @param p_aeu - descriptor of an AEU bit which caused the parity
960  * @param aeu_en_reg - address of the AEU enable register
961  * @param bit_index
962  */
963 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
964 					 struct aeu_invert_reg_bit *p_aeu,
965 					 u32 aeu_en_reg, u8 bit_index)
966 {
967 	u32 block_id = p_aeu->block_index, mask, val;
968 
969 	DP_NOTICE(p_hwfn->p_dev, false,
970 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
971 		  p_aeu->bit_name, aeu_en_reg, bit_index);
972 
973 	if (block_id != MAX_BLOCK_ID) {
974 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
975 
976 		/* In A0, there's a single parity bit for several blocks */
977 		if (block_id == BLOCK_BTB) {
978 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
979 					     ATTN_TYPE_PARITY, false);
980 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
981 					     ATTN_TYPE_PARITY, false);
982 		}
983 	}
984 
985 	/* Prevent this parity error from being re-asserted */
986 	mask = ~(0x1 << bit_index);
987 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
988 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
989 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
990 		p_aeu->bit_name);
991 }
992 
993 /**
994  * @brief - handles deassertion of previously asserted attentions.
995  *
996  * @param p_hwfn
997  * @param deasserted_bits - newly deasserted bits
998  * @return enum _ecore_status_t
999  *
1000  */
1001 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1002 						  u16 deasserted_bits)
1003 {
1004 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1005 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1006 	u8 i, j, k, bit_idx;
1007 	enum _ecore_status_t rc = ECORE_SUCCESS;
1008 
1009 	/* Read the attention registers in the AEU */
1010 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1011 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1012 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1013 					  i * 0x4);
1014 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1015 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1016 	}
1017 
1018 	/* Handle parity attentions first */
1019 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1020 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1021 		u32 parities;
1022 
1023 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1024 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1025 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1026 
1027 		/* Skip register in which no parity bit is currently set */
1028 		if (!parities)
1029 			continue;
1030 
1031 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1032 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1033 
1034 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1035 			    !!(parities & (1 << bit_idx)))
1036 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1037 							     aeu_en, bit_idx);
1038 
1039 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1040 		}
1041 	}
1042 
1043 	/* Find non-parity cause for attention and act */
1044 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1045 		struct aeu_invert_reg_bit *p_aeu;
1046 
1047 		/* Handle only groups whose attention is currently deasserted */
1048 		if (!(deasserted_bits & (1 << k)))
1049 			continue;
1050 
1051 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1052 			u32 bits;
1053 
1054 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1055 				 i * sizeof(u32) +
1056 				 k * sizeof(u32) * NUM_ATTN_REGS;
1057 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1058 			bits = aeu_inv_arr[i] & en;
1059 
1060 			/* Skip if no bit from this group is currently set */
1061 			if (!bits)
1062 				continue;
1063 
1064 			/* Find all set bits from current register which belong
1065 			 * to current group, making them responsible for the
1066 			 * previous assertion.
1067 			 */
1068 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1069 				unsigned long int bitmask;
1070 				u8 bit, bit_len;
1071 
1072 				/* Need to account bits with changed meaning */
1073 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1074 
1075 				bit = bit_idx;
1076 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1077 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1078 					/* Skip Parity */
1079 					bit++;
1080 					bit_len--;
1081 				}
1082 
1083 				/* Find the bits relating to HW-block, then
1084 				 * shift so they'll become LSB.
1085 				 */
1086 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1087 				bitmask >>= bit;
1088 
1089 				if (bitmask) {
1090 					u32 flags = p_aeu->flags;
1091 					char bit_name[30];
1092 					u8 num;
1093 
1094 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1095 								bit_len);
1096 
1097 					/* Some bits represent more than a
1098 					 * a single interrupt. Correctly print
1099 					 * their name.
1100 					 */
1101 					if (ATTENTION_LENGTH(flags) > 2 ||
1102 					    ((flags & ATTENTION_PAR_INT) &&
1103 					    ATTENTION_LENGTH(flags) > 1))
1104 						OSAL_SNPRINTF(bit_name, 30,
1105 							      p_aeu->bit_name,
1106 							      num);
1107 					else
1108 						OSAL_STRNCPY(bit_name,
1109 							     p_aeu->bit_name,
1110 							     30);
1111 
1112 					/* We now need to pass bitmask in its
1113 					 * correct position.
1114 					 */
1115 					bitmask <<= bit;
1116 
1117 					/* Handle source of the attention */
1118 					ecore_int_deassertion_aeu_bit(p_hwfn,
1119 								      p_aeu,
1120 								      aeu_en,
1121 								      bit_name,
1122 								      bitmask);
1123 				}
1124 
1125 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1126 			}
1127 		}
1128 	}
1129 
1130 	/* Clear IGU indication for the deasserted bits */
1131 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1132 	DIRECT_REG_WR(p_hwfn,
1133 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
1134 		      GTT_BAR0_MAP_REG_IGU_CMD +
1135 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1136 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1137 
1138 	/* Unmask deasserted attentions in IGU */
1139 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1140 			    IGU_REG_ATTENTION_ENABLE);
1141 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1142 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1143 
1144 	/* Clear deassertion from inner state */
1145 	sb_attn_sw->known_attn &= ~deasserted_bits;
1146 
1147 	return rc;
1148 }
1149 
1150 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1151 {
1152 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1153 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1154 	u16 index = 0, asserted_bits, deasserted_bits;
1155 	u32 attn_bits = 0, attn_acks = 0;
1156 	enum _ecore_status_t rc = ECORE_SUCCESS;
1157 
1158 	/* Read current attention bits/acks - safeguard against attentions
1159 	 * by guaranting work on a synchronized timeframe
1160 	 */
1161 	do {
1162 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1163 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1164 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1165 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1166 	p_sb_attn->sb_index = index;
1167 
1168 	/* Attention / Deassertion are meaningful (and in correct state)
1169 	 * only when they differ and consistent with known state - deassertion
1170 	 * when previous attention & current ack, and assertion when current
1171 	 * attention with no previous attention
1172 	 */
1173 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1174 	    ~p_sb_attn_sw->known_attn;
1175 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1176 	    p_sb_attn_sw->known_attn;
1177 
1178 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1179 		DP_INFO(p_hwfn,
1180 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1181 			index, attn_bits, attn_acks, asserted_bits,
1182 			deasserted_bits, p_sb_attn_sw->known_attn);
1183 	else if (asserted_bits == 0x100)
1184 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1185 	else
1186 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1187 			   "MFW indication [deassertion]\n");
1188 
1189 	if (asserted_bits) {
1190 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1191 		if (rc)
1192 			return rc;
1193 	}
1194 
1195 	if (deasserted_bits)
1196 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1197 
1198 	return rc;
1199 }
1200 
1201 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1202 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1203 {
1204 	struct igu_prod_cons_update igu_ack = { 0 };
1205 
1206 	igu_ack.sb_id_and_flags =
1207 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1208 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1209 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1210 	     (IGU_SEG_ACCESS_ATTN <<
1211 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1212 
1213 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1214 
1215 	/* Both segments (interrupts & acks) are written to same place address;
1216 	 * Need to guarantee all commands will be received (in-order) by HW.
1217 	 */
1218 	OSAL_MMIOWB(p_hwfn->p_dev);
1219 	OSAL_BARRIER(p_hwfn->p_dev);
1220 }
1221 
1222 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1223 {
1224 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1225 	struct ecore_pi_info *pi_info = OSAL_NULL;
1226 	struct ecore_sb_attn_info *sb_attn;
1227 	struct ecore_sb_info *sb_info;
1228 	int arr_size;
1229 	u16 rc = 0;
1230 
1231 	if (!p_hwfn)
1232 		return;
1233 
1234 	if (!p_hwfn->p_sp_sb) {
1235 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1236 		return;
1237 	}
1238 
1239 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1240 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1241 	if (!sb_info) {
1242 		DP_ERR(p_hwfn->p_dev,
1243 		       "Status block is NULL - cannot ack interrupts\n");
1244 		return;
1245 	}
1246 
1247 	if (!p_hwfn->p_sb_attn) {
1248 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1249 		return;
1250 	}
1251 	sb_attn = p_hwfn->p_sb_attn;
1252 
1253 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1254 		   p_hwfn, p_hwfn->my_id);
1255 
1256 	/* Disable ack for def status block. Required both for msix +
1257 	 * inta in non-mask mode, in inta does no harm.
1258 	 */
1259 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1260 
1261 	/* Gather Interrupts/Attentions information */
1262 	if (!sb_info->sb_virt) {
1263 		DP_ERR(p_hwfn->p_dev,
1264 		       "Interrupt Status block is NULL -"
1265 		       " cannot check for new interrupts!\n");
1266 	} else {
1267 		u32 tmp_index = sb_info->sb_ack;
1268 		rc = ecore_sb_update_sb_idx(sb_info);
1269 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1270 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1271 			   tmp_index, sb_info->sb_ack);
1272 	}
1273 
1274 	if (!sb_attn || !sb_attn->sb_attn) {
1275 		DP_ERR(p_hwfn->p_dev,
1276 		       "Attentions Status block is NULL -"
1277 		       " cannot check for new attentions!\n");
1278 	} else {
1279 		u16 tmp_index = sb_attn->index;
1280 
1281 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1282 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1283 			   "Attention indices: 0x%08x --> 0x%08x\n",
1284 			   tmp_index, sb_attn->index);
1285 	}
1286 
1287 	/* Check if we expect interrupts at this time. if not just ack them */
1288 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1289 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1290 		return;
1291 	}
1292 
1293 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1294 
1295 	if (!p_hwfn->p_dpc_ptt) {
1296 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1297 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1298 		return;
1299 	}
1300 
1301 	if (rc & ECORE_SB_ATT_IDX)
1302 		ecore_int_attentions(p_hwfn);
1303 
1304 	if (rc & ECORE_SB_IDX) {
1305 		int pi;
1306 
1307 		/* Since we only looked at the SB index, it's possible more
1308 		 * than a single protocol-index on the SB incremented.
1309 		 * Iterate over all configured protocol indices and check
1310 		 * whether something happened for each.
1311 		 */
1312 		for (pi = 0; pi < arr_size; pi++) {
1313 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1314 			if (pi_info->comp_cb != OSAL_NULL)
1315 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1316 		}
1317 	}
1318 
1319 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1320 		/* This should be done before the interrupts are enabled,
1321 		 * since otherwise a new attention will be generated.
1322 		 */
1323 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1324 	}
1325 
1326 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1327 }
1328 
1329 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1330 {
1331 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1332 
1333 	if (!p_sb)
1334 		return;
1335 
1336 	if (p_sb->sb_attn) {
1337 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1338 				       p_sb->sb_phys,
1339 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1340 	}
1341 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1342 }
1343 
1344 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1345 				    struct ecore_ptt *p_ptt)
1346 {
1347 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1348 
1349 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1350 
1351 	sb_info->index = 0;
1352 	sb_info->known_attn = 0;
1353 
1354 	/* Configure Attention Status Block in IGU */
1355 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1356 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1357 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1358 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1359 }
1360 
1361 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1362 				   struct ecore_ptt *p_ptt,
1363 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1364 {
1365 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1366 	int i, j, k;
1367 
1368 	sb_info->sb_attn = sb_virt_addr;
1369 	sb_info->sb_phys = sb_phy_addr;
1370 
1371 	/* Set the pointer to the AEU descriptors */
1372 	sb_info->p_aeu_desc = aeu_descs;
1373 
1374 	/* Calculate Parity Masks */
1375 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1376 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1377 		/* j is array index, k is bit index */
1378 		for (j = 0, k = 0; k < 32; j++) {
1379 			struct aeu_invert_reg_bit *p_aeu;
1380 
1381 			p_aeu = &aeu_descs[i].bits[j];
1382 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1383 				sb_info->parity_mask[i] |= 1 << k;
1384 
1385 			k += ATTENTION_LENGTH(p_aeu->flags);
1386 		}
1387 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1388 			   "Attn Mask [Reg %d]: 0x%08x\n",
1389 			   i, sb_info->parity_mask[i]);
1390 	}
1391 
1392 	/* Set the address of cleanup for the mcp attention */
1393 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1394 	    MISC_REG_AEU_GENERAL_ATTN_0;
1395 
1396 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1397 }
1398 
1399 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1400 						    struct ecore_ptt *p_ptt)
1401 {
1402 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1403 	struct ecore_sb_attn_info *p_sb;
1404 	dma_addr_t p_phys = 0;
1405 	void *p_virt;
1406 
1407 	/* SB struct */
1408 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1409 	if (!p_sb) {
1410 		DP_NOTICE(p_dev, true,
1411 			  "Failed to allocate `struct ecore_sb_attn_info'\n");
1412 		return ECORE_NOMEM;
1413 	}
1414 
1415 	/* SB ring  */
1416 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1417 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1418 	if (!p_virt) {
1419 		DP_NOTICE(p_dev, true,
1420 			  "Failed to allocate status block (attentions)\n");
1421 		OSAL_FREE(p_dev, p_sb);
1422 		return ECORE_NOMEM;
1423 	}
1424 
1425 	/* Attention setup */
1426 	p_hwfn->p_sb_attn = p_sb;
1427 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1428 
1429 	return ECORE_SUCCESS;
1430 }
1431 
1432 /* coalescing timeout = timeset << (timer_res + 1) */
1433 #define ECORE_CAU_DEF_RX_USECS 24
1434 #define ECORE_CAU_DEF_TX_USECS 48
1435 
1436 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1437 			     struct cau_sb_entry *p_sb_entry,
1438 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1439 {
1440 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1441 	u32 cau_state;
1442 	u8 timer_res;
1443 
1444 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1445 
1446 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1447 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1448 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1449 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1450 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1451 
1452 	cau_state = CAU_HC_DISABLE_STATE;
1453 
1454 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1455 		cau_state = CAU_HC_ENABLE_STATE;
1456 		if (!p_dev->rx_coalesce_usecs)
1457 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1458 		if (!p_dev->tx_coalesce_usecs)
1459 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1460 	}
1461 
1462 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1463 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1464 		timer_res = 0;
1465 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1466 		timer_res = 1;
1467 	else
1468 		timer_res = 2;
1469 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1470 
1471 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1472 		timer_res = 0;
1473 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1474 		timer_res = 1;
1475 	else
1476 		timer_res = 2;
1477 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1478 
1479 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1480 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1481 }
1482 
1483 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1484 				   struct ecore_ptt *p_ptt,
1485 				   u16 igu_sb_id, u32 pi_index,
1486 				   enum ecore_coalescing_fsm coalescing_fsm,
1487 				   u8 timeset)
1488 {
1489 	struct cau_pi_entry pi_entry;
1490 	u32 sb_offset, pi_offset;
1491 
1492 	if (IS_VF(p_hwfn->p_dev))
1493 		return;/* @@@TBD MichalK- VF CAU... */
1494 
1495 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1496 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1497 
1498 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1499 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1500 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1501 	else
1502 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1503 
1504 	pi_offset = sb_offset + pi_index;
1505 	if (p_hwfn->hw_init_done) {
1506 		ecore_wr(p_hwfn, p_ptt,
1507 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1508 			 *((u32 *)&(pi_entry)));
1509 	} else {
1510 		STORE_RT_REG(p_hwfn,
1511 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1512 			     *((u32 *)&(pi_entry)));
1513 	}
1514 }
1515 
1516 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1517 			   struct ecore_ptt *p_ptt,
1518 			   struct ecore_sb_info *p_sb, u32 pi_index,
1519 			   enum ecore_coalescing_fsm coalescing_fsm,
1520 			   u8 timeset)
1521 {
1522 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1523 			       pi_index, coalescing_fsm, timeset);
1524 }
1525 
1526 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1527 			   struct ecore_ptt *p_ptt,
1528 			   dma_addr_t sb_phys, u16 igu_sb_id,
1529 			   u16 vf_number, u8 vf_valid)
1530 {
1531 	struct cau_sb_entry sb_entry;
1532 
1533 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1534 				vf_number, vf_valid);
1535 
1536 	if (p_hwfn->hw_init_done) {
1537 		/* Wide-bus, initialize via DMAE */
1538 		u64 phys_addr = (u64)sb_phys;
1539 
1540 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1541 				    (u64)(osal_uintptr_t)&phys_addr,
1542 				    CAU_REG_SB_ADDR_MEMORY +
1543 				    igu_sb_id * sizeof(u64), 2, 0);
1544 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1545 				    (u64)(osal_uintptr_t)&sb_entry,
1546 				    CAU_REG_SB_VAR_MEMORY +
1547 				    igu_sb_id * sizeof(u64), 2, 0);
1548 	} else {
1549 		/* Initialize Status Block Address */
1550 		STORE_RT_REG_AGG(p_hwfn,
1551 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1552 				 igu_sb_id * 2, sb_phys);
1553 
1554 		STORE_RT_REG_AGG(p_hwfn,
1555 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1556 				 igu_sb_id * 2, sb_entry);
1557 	}
1558 
1559 	/* Configure pi coalescing if set */
1560 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1561 		/* eth will open queues for all tcs, so configure all of them
1562 		 * properly, rather than just the active ones
1563 		 */
1564 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1565 
1566 		u8 timeset, timer_res;
1567 		u8 i;
1568 
1569 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1570 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1571 			timer_res = 0;
1572 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1573 			timer_res = 1;
1574 		else
1575 			timer_res = 2;
1576 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1577 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1578 				       ECORE_COAL_RX_STATE_MACHINE,
1579 				       timeset);
1580 
1581 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1582 			timer_res = 0;
1583 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1584 			timer_res = 1;
1585 		else
1586 			timer_res = 2;
1587 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1588 		for (i = 0; i < num_tc; i++) {
1589 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1590 					       igu_sb_id, TX_PI(i),
1591 					       ECORE_COAL_TX_STATE_MACHINE,
1592 					       timeset);
1593 		}
1594 	}
1595 }
1596 
1597 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1598 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1599 {
1600 	/* zero status block and ack counter */
1601 	sb_info->sb_ack = 0;
1602 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1603 
1604 	if (IS_PF(p_hwfn->p_dev))
1605 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1606 				      sb_info->igu_sb_id, 0, 0);
1607 }
1608 
1609 struct ecore_igu_block *
1610 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1611 {
1612 	struct ecore_igu_block *p_block;
1613 	u16 igu_id;
1614 
1615 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1616 	     igu_id++) {
1617 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1618 
1619 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1620 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1621 			continue;
1622 
1623 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1624 		    b_is_pf)
1625 			return p_block;
1626 	}
1627 
1628 	return OSAL_NULL;
1629 }
1630 
1631 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1632 				  u16 vector_id)
1633 {
1634 	struct ecore_igu_block *p_block;
1635 	u16 igu_id;
1636 
1637 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1638 	     igu_id++) {
1639 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1640 
1641 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1642 		    !p_block->is_pf ||
1643 		    p_block->vector_number != vector_id)
1644 			continue;
1645 
1646 		return igu_id;
1647 	}
1648 
1649 	return ECORE_SB_INVALID_IDX;
1650 }
1651 
1652 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1653 {
1654 	u16 igu_sb_id;
1655 
1656 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1657 	if (sb_id == ECORE_SP_SB_ID)
1658 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1659 	else if (IS_PF(p_hwfn->p_dev))
1660 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1661 	else
1662 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1663 
1664 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1665 		DP_NOTICE(p_hwfn, true,
1666 			  "Slowpath SB vector %04x doesn't exist\n",
1667 			  sb_id);
1668 	else if (sb_id == ECORE_SP_SB_ID)
1669 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1670 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1671 	else
1672 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1673 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1674 
1675 	return igu_sb_id;
1676 }
1677 
1678 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1679 				       struct ecore_ptt *p_ptt,
1680 				       struct ecore_sb_info *sb_info,
1681 				       void *sb_virt_addr,
1682 				       dma_addr_t sb_phy_addr, u16 sb_id)
1683 {
1684 	sb_info->sb_virt = sb_virt_addr;
1685 	sb_info->sb_phys = sb_phy_addr;
1686 
1687 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1688 
1689 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1690 		return ECORE_INVAL;
1691 
1692 	/* Let the igu info reference the client's SB info */
1693 	if (sb_id != ECORE_SP_SB_ID) {
1694 		if (IS_PF(p_hwfn->p_dev)) {
1695 			struct ecore_igu_info *p_info;
1696 			struct ecore_igu_block *p_block;
1697 
1698 			p_info = p_hwfn->hw_info.p_igu_info;
1699 			p_block = &p_info->entry[sb_info->igu_sb_id];
1700 
1701 			p_block->sb_info = sb_info;
1702 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1703 			p_info->usage.free_cnt--;
1704 		} else {
1705 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1706 		}
1707 	}
1708 #ifdef ECORE_CONFIG_DIRECT_HWFN
1709 	sb_info->p_hwfn = p_hwfn;
1710 #endif
1711 	sb_info->p_dev = p_hwfn->p_dev;
1712 
1713 	/* The igu address will hold the absolute address that needs to be
1714 	 * written to for a specific status block
1715 	 */
1716 	if (IS_PF(p_hwfn->p_dev)) {
1717 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1718 		    GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1719 
1720 	} else {
1721 		sb_info->igu_addr =
1722 		    (u8 OSAL_IOMEM *)p_hwfn->regview +
1723 		    PXP_VF_BAR0_START_IGU +
1724 		    ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1725 	}
1726 
1727 	sb_info->flags |= ECORE_SB_INFO_INIT;
1728 
1729 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1730 
1731 	return ECORE_SUCCESS;
1732 }
1733 
1734 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1735 					  struct ecore_sb_info *sb_info,
1736 					  u16 sb_id)
1737 {
1738 	struct ecore_igu_info *p_info;
1739 	struct ecore_igu_block *p_block;
1740 
1741 	if (sb_info == OSAL_NULL)
1742 		return ECORE_SUCCESS;
1743 
1744 	/* zero status block and ack counter */
1745 	sb_info->sb_ack = 0;
1746 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1747 
1748 	if (IS_VF(p_hwfn->p_dev)) {
1749 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1750 		return ECORE_SUCCESS;
1751 	}
1752 
1753 	p_info = p_hwfn->hw_info.p_igu_info;
1754 	p_block = &p_info->entry[sb_info->igu_sb_id];
1755 
1756 	/* Vector 0 is reserved to Default SB */
1757 	if (p_block->vector_number == 0) {
1758 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1759 		return ECORE_INVAL;
1760 	}
1761 
1762 	/* Lose reference to client's SB info, and fix counters */
1763 	p_block->sb_info = OSAL_NULL;
1764 	p_block->status |= ECORE_IGU_STATUS_FREE;
1765 	p_info->usage.free_cnt++;
1766 
1767 	return ECORE_SUCCESS;
1768 }
1769 
1770 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1771 {
1772 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1773 
1774 	if (!p_sb)
1775 		return;
1776 
1777 	if (p_sb->sb_info.sb_virt) {
1778 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1779 				       p_sb->sb_info.sb_virt,
1780 				       p_sb->sb_info.sb_phys,
1781 				       SB_ALIGNED_SIZE(p_hwfn));
1782 	}
1783 
1784 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1785 }
1786 
1787 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1788 						  struct ecore_ptt *p_ptt)
1789 {
1790 	struct ecore_sb_sp_info *p_sb;
1791 	dma_addr_t p_phys = 0;
1792 	void *p_virt;
1793 
1794 	/* SB struct */
1795 	p_sb =
1796 	    OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1797 		       sizeof(*p_sb));
1798 	if (!p_sb) {
1799 		DP_NOTICE(p_hwfn, true,
1800 			  "Failed to allocate `struct ecore_sb_info'\n");
1801 		return ECORE_NOMEM;
1802 	}
1803 
1804 	/* SB ring  */
1805 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1806 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1807 	if (!p_virt) {
1808 		DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1809 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1810 		return ECORE_NOMEM;
1811 	}
1812 
1813 	/* Status Block setup */
1814 	p_hwfn->p_sp_sb = p_sb;
1815 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1816 			  p_virt, p_phys, ECORE_SP_SB_ID);
1817 
1818 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1819 
1820 	return ECORE_SUCCESS;
1821 }
1822 
1823 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1824 					   ecore_int_comp_cb_t comp_cb,
1825 					   void *cookie,
1826 					   u8 *sb_idx, __le16 **p_fw_cons)
1827 {
1828 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1829 	enum _ecore_status_t rc = ECORE_NOMEM;
1830 	u8 pi;
1831 
1832 	/* Look for a free index */
1833 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1834 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1835 			continue;
1836 
1837 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1838 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1839 		*sb_idx = pi;
1840 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1841 		rc = ECORE_SUCCESS;
1842 		break;
1843 	}
1844 
1845 	return rc;
1846 }
1847 
1848 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1849 {
1850 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1851 
1852 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1853 		return ECORE_NOMEM;
1854 
1855 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1856 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1857 	return ECORE_SUCCESS;
1858 }
1859 
1860 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1861 {
1862 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1863 }
1864 
1865 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1866 			      struct ecore_ptt *p_ptt,
1867 			      enum ecore_int_mode int_mode)
1868 {
1869 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1870 
1871 #ifndef ASIC_ONLY
1872 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1873 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1874 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1875 	}
1876 #endif
1877 
1878 	p_hwfn->p_dev->int_mode = int_mode;
1879 	switch (p_hwfn->p_dev->int_mode) {
1880 	case ECORE_INT_MODE_INTA:
1881 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1882 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1883 		break;
1884 
1885 	case ECORE_INT_MODE_MSI:
1886 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1887 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1888 		break;
1889 
1890 	case ECORE_INT_MODE_MSIX:
1891 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1892 		break;
1893 	case ECORE_INT_MODE_POLL:
1894 		break;
1895 	}
1896 
1897 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1898 }
1899 
1900 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1901 				      struct ecore_ptt *p_ptt)
1902 {
1903 #ifndef ASIC_ONLY
1904 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1905 		DP_INFO(p_hwfn,
1906 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1907 		return;
1908 	}
1909 #endif
1910 
1911 	/* Configure AEU signal change to produce attentions */
1912 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1913 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1914 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1915 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1916 
1917 	/* Flush the writes to IGU */
1918 	OSAL_MMIOWB(p_hwfn->p_dev);
1919 
1920 	/* Unmask AEU signals toward IGU */
1921 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1922 }
1923 
1924 enum _ecore_status_t
1925 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1926 			  enum ecore_int_mode int_mode)
1927 {
1928 	enum _ecore_status_t rc = ECORE_SUCCESS;
1929 
1930 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1931 
1932 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1933 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1934 		if (rc != ECORE_SUCCESS) {
1935 			DP_NOTICE(p_hwfn, true,
1936 				  "Slowpath IRQ request failed\n");
1937 			return ECORE_NORESOURCES;
1938 		}
1939 		p_hwfn->b_int_requested = true;
1940 	}
1941 
1942 	/* Enable interrupt Generation */
1943 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1944 
1945 	p_hwfn->b_int_enabled = 1;
1946 
1947 	return rc;
1948 }
1949 
1950 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1951 			       struct ecore_ptt *p_ptt)
1952 {
1953 	p_hwfn->b_int_enabled = 0;
1954 
1955 	if (IS_VF(p_hwfn->p_dev))
1956 		return;
1957 
1958 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1959 }
1960 
1961 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1962 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1963 				     struct ecore_ptt *p_ptt,
1964 				     u32 igu_sb_id,
1965 				     bool cleanup_set,
1966 				     u16 opaque_fid)
1967 {
1968 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1969 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1970 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1971 	u8 type = 0;		/* FIXME MichalS type??? */
1972 
1973 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1974 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1975 
1976 	/* USE Control Command Register to perform cleanup. There is an
1977 	 * option to do this using IGU bar, but then it can't be used for VFs.
1978 	 */
1979 
1980 	/* Set the data field */
1981 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1982 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1983 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1984 
1985 	/* Set the control register */
1986 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1987 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1988 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1989 
1990 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1991 
1992 	OSAL_BARRIER(p_hwfn->p_dev);
1993 
1994 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1995 
1996 	/* Flush the write to IGU */
1997 	OSAL_MMIOWB(p_hwfn->p_dev);
1998 
1999 	/* calculate where to read the status bit from */
2000 	sb_bit = 1 << (igu_sb_id % 32);
2001 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2002 
2003 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2004 
2005 	/* Now wait for the command to complete */
2006 	while (--sleep_cnt) {
2007 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2008 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2009 			break;
2010 		OSAL_MSLEEP(5);
2011 	}
2012 
2013 	if (!sleep_cnt)
2014 		DP_NOTICE(p_hwfn, true,
2015 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2016 			  val, igu_sb_id);
2017 }
2018 
2019 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2020 				       struct ecore_ptt *p_ptt,
2021 				       u16 igu_sb_id, u16 opaque, bool b_set)
2022 {
2023 	struct ecore_igu_block *p_block;
2024 	int pi, i;
2025 
2026 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2027 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2028 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2029 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2030 		   p_block->vector_number);
2031 
2032 	/* Set */
2033 	if (b_set)
2034 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2035 
2036 	/* Clear */
2037 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2038 
2039 	/* Wait for the IGU SB to cleanup */
2040 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2041 		u32 val;
2042 
2043 		val = ecore_rd(p_hwfn, p_ptt,
2044 			       IGU_REG_WRITE_DONE_PENDING +
2045 			       ((igu_sb_id / 32) * 4));
2046 		if (val & (1 << (igu_sb_id % 32)))
2047 			OSAL_UDELAY(10);
2048 		else
2049 			break;
2050 	}
2051 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2052 		DP_NOTICE(p_hwfn, true,
2053 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2054 			  igu_sb_id);
2055 
2056 	/* Clear the CAU for the SB */
2057 	for (pi = 0; pi < 12; pi++)
2058 		ecore_wr(p_hwfn, p_ptt,
2059 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2060 }
2061 
2062 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2063 				struct ecore_ptt *p_ptt,
2064 				bool b_set, bool b_slowpath)
2065 {
2066 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2067 	struct ecore_igu_block *p_block;
2068 	u16 igu_sb_id = 0;
2069 	u32 val = 0;
2070 
2071 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2072 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2073 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2074 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2075 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2076 	/* end temporary */
2077 
2078 	for (igu_sb_id = 0;
2079 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2080 	     igu_sb_id++) {
2081 		p_block = &p_info->entry[igu_sb_id];
2082 
2083 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2084 		    !p_block->is_pf ||
2085 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2086 			continue;
2087 
2088 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2089 						  p_hwfn->hw_info.opaque_fid,
2090 						  b_set);
2091 	}
2092 
2093 	if (b_slowpath)
2094 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2095 						  p_info->igu_dsb_id,
2096 						  p_hwfn->hw_info.opaque_fid,
2097 						  b_set);
2098 }
2099 
2100 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2101 			    struct ecore_ptt *p_ptt)
2102 {
2103 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2104 	struct ecore_igu_block *p_block;
2105 	int pf_sbs, vf_sbs;
2106 	u16 igu_sb_id;
2107 	u32 val, rval;
2108 
2109 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2110 		/* We're using an old MFW - have to prevent any switching
2111 		 * of SBs between PF and VFs as later driver wouldn't be
2112 		 * able to tell which belongs to which.
2113 		 */
2114 		p_info->b_allow_pf_vf_change = false;
2115 	} else {
2116 		/* Use the numbers the MFW have provided -
2117 		 * don't forget MFW accounts for the default SB as well.
2118 		 */
2119 		p_info->b_allow_pf_vf_change = true;
2120 
2121 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2122 			DP_INFO(p_hwfn,
2123 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2124 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2125 				p_info->usage.cnt);
2126 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2127 		}
2128 
2129 		/* TODO - how do we learn about VF SBs from MFW? */
2130 		if (IS_PF_SRIOV(p_hwfn)) {
2131 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2132 
2133 			if (vfs != p_info->usage.iov_cnt)
2134 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2135 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2136 					   p_info->usage.iov_cnt, vfs);
2137 
2138 			/* At this point we know how many SBs we have totally
2139 			 * in IGU + number of PF SBs. So we can validate that
2140 			 * we'd have sufficient for VF.
2141 			 */
2142 			if (vfs > p_info->usage.free_cnt +
2143 				  p_info->usage.free_cnt_iov -
2144 				  p_info->usage.cnt) {
2145 				DP_NOTICE(p_hwfn, true,
2146 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2147 					  p_info->usage.free_cnt +
2148 					  p_info->usage.free_cnt_iov,
2149 					  p_info->usage.cnt, vfs);
2150 				return ECORE_INVAL;
2151 			}
2152 		}
2153 	}
2154 
2155 	/* Cap the number of VFs SBs by the number of VFs */
2156 	if (IS_PF_SRIOV(p_hwfn))
2157 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2158 
2159 	/* Mark all SBs as free, now in the right PF/VFs division */
2160 	p_info->usage.free_cnt = p_info->usage.cnt;
2161 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2162 	p_info->usage.orig = p_info->usage.cnt;
2163 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2164 
2165 	/* We now proceed to re-configure the IGU cam to reflect the initial
2166 	 * configuration. We can start with the Default SB.
2167 	 */
2168 	pf_sbs = p_info->usage.cnt;
2169 	vf_sbs = p_info->usage.iov_cnt;
2170 
2171 	for (igu_sb_id = p_info->igu_dsb_id;
2172 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2173 	     igu_sb_id++) {
2174 		p_block = &p_info->entry[igu_sb_id];
2175 		val = 0;
2176 
2177 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2178 			continue;
2179 
2180 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2181 			p_block->function_id = p_hwfn->rel_pf_id;
2182 			p_block->is_pf = 1;
2183 			p_block->vector_number = 0;
2184 			p_block->status = ECORE_IGU_STATUS_VALID |
2185 					  ECORE_IGU_STATUS_PF |
2186 					  ECORE_IGU_STATUS_DSB;
2187 		} else if (pf_sbs) {
2188 			pf_sbs--;
2189 			p_block->function_id = p_hwfn->rel_pf_id;
2190 			p_block->is_pf = 1;
2191 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2192 			p_block->status = ECORE_IGU_STATUS_VALID |
2193 					  ECORE_IGU_STATUS_PF |
2194 					  ECORE_IGU_STATUS_FREE;
2195 		} else if (vf_sbs) {
2196 			p_block->function_id =
2197 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2198 				p_info->usage.iov_cnt - vf_sbs;
2199 			p_block->is_pf = 0;
2200 			p_block->vector_number = 0;
2201 			p_block->status = ECORE_IGU_STATUS_VALID |
2202 					  ECORE_IGU_STATUS_FREE;
2203 			vf_sbs--;
2204 		} else {
2205 			p_block->function_id = 0;
2206 			p_block->is_pf = 0;
2207 			p_block->vector_number = 0;
2208 		}
2209 
2210 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2211 			  p_block->function_id);
2212 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2213 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2214 			  p_block->vector_number);
2215 
2216 		/* VF entries would be enabled when VF is initializaed */
2217 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2218 
2219 		rval = ecore_rd(p_hwfn, p_ptt,
2220 				IGU_REG_MAPPING_MEMORY +
2221 				sizeof(u32) * igu_sb_id);
2222 
2223 		if (rval != val) {
2224 			ecore_wr(p_hwfn, p_ptt,
2225 				 IGU_REG_MAPPING_MEMORY +
2226 				 sizeof(u32) * igu_sb_id,
2227 				 val);
2228 
2229 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2230 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2231 				   igu_sb_id, p_block->function_id,
2232 				   p_block->is_pf, p_block->vector_number,
2233 				   rval, val);
2234 		}
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2241 				    struct ecore_ptt *p_ptt)
2242 {
2243 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2244 
2245 	/* Return all the usage indications to default prior to the reset;
2246 	 * The reset expects the !orig to reflect the initial status of the
2247 	 * SBs, and would re-calculate the originals based on those.
2248 	 */
2249 	p_cnt->cnt = p_cnt->orig;
2250 	p_cnt->free_cnt = p_cnt->orig;
2251 	p_cnt->iov_cnt = p_cnt->iov_orig;
2252 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2253 	p_cnt->orig = 0;
2254 	p_cnt->iov_orig = 0;
2255 
2256 	/* TODO - we probably need to re-configure the CAU as well... */
2257 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2258 }
2259 
2260 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2261 					 struct ecore_ptt *p_ptt,
2262 					 u16 igu_sb_id)
2263 {
2264 	u32 val = ecore_rd(p_hwfn, p_ptt,
2265 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2266 	struct ecore_igu_block *p_block;
2267 
2268 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2269 
2270 	/* Fill the block information */
2271 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2272 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2273 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2274 
2275 	p_block->igu_sb_id = igu_sb_id;
2276 }
2277 
2278 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2279 					    struct ecore_ptt *p_ptt)
2280 {
2281 	struct ecore_igu_info *p_igu_info;
2282 	struct ecore_igu_block *p_block;
2283 	u32 min_vf = 0, max_vf = 0;
2284 	u16 igu_sb_id;
2285 
2286 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2287 						 GFP_KERNEL,
2288 						 sizeof(*p_igu_info));
2289 	if (!p_hwfn->hw_info.p_igu_info)
2290 		return ECORE_NOMEM;
2291 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2292 
2293 	/* Distinguish between existent and onn-existent default SB */
2294 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2295 
2296 	/* Find the range of VF ids whose SB belong to this PF */
2297 	if (p_hwfn->p_dev->p_iov_info) {
2298 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2299 
2300 		min_vf = p_iov->first_vf_in_pf;
2301 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2302 	}
2303 
2304 	for (igu_sb_id = 0;
2305 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2306 	     igu_sb_id++) {
2307 		/* Read current entry; Notice it might not belong to this PF */
2308 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2309 		p_block = &p_igu_info->entry[igu_sb_id];
2310 
2311 		if ((p_block->is_pf) &&
2312 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2313 			p_block->status = ECORE_IGU_STATUS_PF |
2314 					  ECORE_IGU_STATUS_VALID |
2315 					  ECORE_IGU_STATUS_FREE;
2316 
2317 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2318 				p_igu_info->usage.cnt++;
2319 		} else if (!(p_block->is_pf) &&
2320 			   (p_block->function_id >= min_vf) &&
2321 			   (p_block->function_id < max_vf)) {
2322 			/* Available for VFs of this PF */
2323 			p_block->status = ECORE_IGU_STATUS_VALID |
2324 					  ECORE_IGU_STATUS_FREE;
2325 
2326 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2327 				p_igu_info->usage.iov_cnt++;
2328 		}
2329 
2330 		/* Mark the First entry belonging to the PF or its VFs
2331 		 * as the default SB [we'll reset IGU prior to first usage].
2332 		 */
2333 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2334 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2335 			p_igu_info->igu_dsb_id = igu_sb_id;
2336 			p_block->status |= ECORE_IGU_STATUS_DSB;
2337 		}
2338 
2339 		/* While this isn't suitable for all clients, limit number
2340 		 * of prints by having each PF print only its entries with the
2341 		 * exception of PF0 which would print everything.
2342 		 */
2343 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2344 		    (p_hwfn->abs_pf_id == 0))
2345 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2346 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2347 				   igu_sb_id, p_block->function_id,
2348 				   p_block->is_pf, p_block->vector_number);
2349 	}
2350 
2351 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2352 		DP_NOTICE(p_hwfn, true,
2353 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2354 			  p_igu_info->igu_dsb_id);
2355 		return ECORE_INVAL;
2356 	}
2357 
2358 	/* All non default SB are considered free at this point */
2359 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2360 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2361 
2362 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2363 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2364 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2365 		   p_igu_info->usage.iov_cnt);
2366 
2367 	return ECORE_SUCCESS;
2368 }
2369 
2370 enum _ecore_status_t
2371 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2372 			  u16 sb_id, bool b_to_vf)
2373 {
2374 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2375 	struct ecore_igu_block *p_block = OSAL_NULL;
2376 	u16 igu_sb_id = 0, vf_num = 0;
2377 	u32 val = 0;
2378 
2379 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2380 		return ECORE_INVAL;
2381 
2382 	if (sb_id == ECORE_SP_SB_ID)
2383 		return ECORE_INVAL;
2384 
2385 	if (!p_info->b_allow_pf_vf_change) {
2386 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2387 		return ECORE_INVAL;
2388 	}
2389 
2390 	/* If we're moving a SB from PF to VF, the client had to specify
2391 	 * which vector it wants to move.
2392 	 */
2393 	if (b_to_vf) {
2394 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2395 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2396 			return ECORE_INVAL;
2397 	}
2398 
2399 	/* If we're moving a SB from VF to PF, need to validate there isn't
2400 	 * already a line configured for that vector.
2401 	 */
2402 	if (!b_to_vf) {
2403 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2404 		    ECORE_SB_INVALID_IDX)
2405 			return ECORE_INVAL;
2406 	}
2407 
2408 	/* We need to validate that the SB can actually be relocated.
2409 	 * This would also handle the previous case where we've explicitly
2410 	 * stated which IGU SB needs to move.
2411 	 */
2412 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2413 	     igu_sb_id++) {
2414 		p_block = &p_info->entry[igu_sb_id];
2415 
2416 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2417 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2418 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2419 			if (b_to_vf)
2420 				return ECORE_INVAL;
2421 			else
2422 				continue;
2423 		}
2424 
2425 		break;
2426 	}
2427 
2428 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2429 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2430 			   "Failed to find a free SB to move\n");
2431 		return ECORE_INVAL;
2432 	}
2433 
2434 	/* At this point, p_block points to the SB we want to relocate */
2435 	if (b_to_vf) {
2436 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2437 
2438 		/* It doesn't matter which VF number we choose, since we're
2439 		 * going to disable the line; But let's keep it in range.
2440 		 */
2441 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2442 
2443 		p_block->function_id = (u8)vf_num;
2444 		p_block->is_pf = 0;
2445 		p_block->vector_number = 0;
2446 
2447 		p_info->usage.cnt--;
2448 		p_info->usage.free_cnt--;
2449 		p_info->usage.iov_cnt++;
2450 		p_info->usage.free_cnt_iov++;
2451 
2452 		/* TODO - if SBs aren't really the limiting factor,
2453 		 * then it might not be accurate [in the since that
2454 		 * we might not need decrement the feature].
2455 		 */
2456 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2457 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2458 	} else {
2459 		p_block->status |= ECORE_IGU_STATUS_PF;
2460 		p_block->function_id = p_hwfn->rel_pf_id;
2461 		p_block->is_pf = 1;
2462 		p_block->vector_number = sb_id + 1;
2463 
2464 		p_info->usage.cnt++;
2465 		p_info->usage.free_cnt++;
2466 		p_info->usage.iov_cnt--;
2467 		p_info->usage.free_cnt_iov--;
2468 
2469 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2470 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2471 	}
2472 
2473 	/* Update the IGU and CAU with the new configuration */
2474 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2475 		  p_block->function_id);
2476 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2477 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2478 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2479 		  p_block->vector_number);
2480 
2481 	ecore_wr(p_hwfn, p_ptt,
2482 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2483 		 val);
2484 
2485 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2486 			      igu_sb_id, vf_num,
2487 			      p_block->is_pf ? 0 : 1);
2488 
2489 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2490 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2491 		   igu_sb_id, p_block->function_id,
2492 		   p_block->is_pf, p_block->vector_number);
2493 
2494 	return ECORE_SUCCESS;
2495 }
2496 
2497 /**
2498  * @brief Initialize igu runtime registers
2499  *
2500  * @param p_hwfn
2501  */
2502 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2503 {
2504 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2505 
2506 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2507 }
2508 
2509 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2510 			  IGU_CMD_INT_ACK_BASE)
2511 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2512 			  IGU_CMD_INT_ACK_BASE)
2513 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2514 {
2515 	u32 intr_status_hi = 0, intr_status_lo = 0;
2516 	u64 intr_status = 0;
2517 
2518 	intr_status_lo = REG_RD(p_hwfn,
2519 				GTT_BAR0_MAP_REG_IGU_CMD +
2520 				LSB_IGU_CMD_ADDR * 8);
2521 	intr_status_hi = REG_RD(p_hwfn,
2522 				GTT_BAR0_MAP_REG_IGU_CMD +
2523 				MSB_IGU_CMD_ADDR * 8);
2524 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2525 
2526 	return intr_status;
2527 }
2528 
2529 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2530 {
2531 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2532 	p_hwfn->b_sp_dpc_enabled = true;
2533 }
2534 
2535 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2536 {
2537 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2538 	if (!p_hwfn->sp_dpc)
2539 		return ECORE_NOMEM;
2540 
2541 	return ECORE_SUCCESS;
2542 }
2543 
2544 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2545 {
2546 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2547 }
2548 
2549 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2550 				     struct ecore_ptt *p_ptt)
2551 {
2552 	enum _ecore_status_t rc = ECORE_SUCCESS;
2553 
2554 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2555 	if (rc != ECORE_SUCCESS) {
2556 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2557 		return rc;
2558 	}
2559 
2560 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2561 	if (rc != ECORE_SUCCESS) {
2562 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2563 		return rc;
2564 	}
2565 
2566 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2567 	if (rc != ECORE_SUCCESS)
2568 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2569 
2570 	return rc;
2571 }
2572 
2573 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2574 {
2575 	ecore_int_sp_sb_free(p_hwfn);
2576 	ecore_int_sb_attn_free(p_hwfn);
2577 	ecore_int_sp_dpc_free(p_hwfn);
2578 }
2579 
2580 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2581 {
2582 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2583 		return;
2584 
2585 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2586 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2587 	ecore_int_sp_dpc_setup(p_hwfn);
2588 }
2589 
2590 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2591 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2592 {
2593 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2594 
2595 	if (!p_igu_info || !p_sb_cnt_info)
2596 		return;
2597 
2598 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2599 		    sizeof(*p_sb_cnt_info));
2600 }
2601 
2602 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2603 {
2604 	int i;
2605 
2606 	for_each_hwfn(p_dev, i)
2607 		p_dev->hwfns[i].b_int_requested = false;
2608 }
2609 
2610 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2611 {
2612 	p_dev->attn_clr_en = clr_enable;
2613 }
2614 
2615 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2616 					     struct ecore_ptt *p_ptt,
2617 					     u8 timer_res, u16 sb_id, bool tx)
2618 {
2619 	struct cau_sb_entry sb_entry;
2620 	enum _ecore_status_t rc;
2621 
2622 	if (!p_hwfn->hw_init_done) {
2623 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2624 		return ECORE_INVAL;
2625 	}
2626 
2627 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2628 				 sb_id * sizeof(u64),
2629 				 (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2630 	if (rc != ECORE_SUCCESS) {
2631 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2632 		return rc;
2633 	}
2634 
2635 	if (tx)
2636 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2637 	else
2638 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2639 
2640 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2641 				 (u64)(osal_uintptr_t)&sb_entry,
2642 				 CAU_REG_SB_VAR_MEMORY +
2643 				 sb_id * sizeof(u64), 2, 0);
2644 	if (rc != ECORE_SUCCESS) {
2645 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2646 		return rc;
2647 	}
2648 
2649 	return rc;
2650 }
2651 
2652 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2653 					  struct ecore_ptt *p_ptt,
2654 					  struct ecore_sb_info *p_sb,
2655 					  struct ecore_sb_info_dbg *p_info)
2656 {
2657 	u16 sbid = p_sb->igu_sb_id;
2658 	int i;
2659 
2660 	if (IS_VF(p_hwfn->p_dev))
2661 		return ECORE_INVAL;
2662 
2663 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2664 		return ECORE_INVAL;
2665 
2666 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2667 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2668 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2669 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2670 
2671 	for (i = 0; i < PIS_PER_SB_E4; i++)
2672 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2673 					      CAU_REG_PI_MEMORY +
2674 					      sbid * 4 * PIS_PER_SB_E4 +
2675 					      i * 4);
2676 
2677 	return ECORE_SUCCESS;
2678 }
2679