xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision aaffc740ec2cfdb304523c67020f09ad343cfacf)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "reg_addr.h"
13 #include "ecore_gtt_reg_addr.h"
14 #include "ecore_init_ops.h"
15 #include "ecore_rt_defs.h"
16 #include "ecore_int.h"
17 #include "reg_addr.h"
18 #include "ecore_hw.h"
19 #include "ecore_sriov.h"
20 #include "ecore_vf.h"
21 #include "ecore_hw_defs.h"
22 #include "ecore_hsi_common.h"
23 #include "ecore_mcp.h"
24 
25 struct ecore_pi_info {
26 	ecore_int_comp_cb_t comp_cb;
27 	void *cookie;		/* Will be sent to the compl cb function */
28 };
29 
30 struct ecore_sb_sp_info {
31 	struct ecore_sb_info sb_info;
32 	/* per protocol index data */
33 	struct ecore_pi_info pi_info_arr[PIS_PER_SB];
34 };
35 
36 enum ecore_attention_type {
37 	ECORE_ATTN_TYPE_ATTN,
38 	ECORE_ATTN_TYPE_PARITY,
39 };
40 
41 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
42 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
43 
44 struct aeu_invert_reg_bit {
45 	char bit_name[30];
46 
47 #define ATTENTION_PARITY		(1 << 0)
48 
49 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
50 #define ATTENTION_LENGTH_SHIFT		(4)
51 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
52 					 ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
55 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
56 					 ATTENTION_PARITY)
57 
58 /* Multiple bits start with this offset */
59 #define ATTENTION_OFFSET_MASK		(0x000ff000)
60 #define ATTENTION_OFFSET_SHIFT		(12)
61 
62 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
63 	unsigned int flags;
64 
65 	/* Callback to call if attention will be triggered */
66 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
67 
68 	enum block_id block_index;
69 };
70 
71 struct aeu_invert_reg {
72 	struct aeu_invert_reg_bit bits[32];
73 };
74 
75 #define MAX_ATTN_GRPS		(8)
76 #define NUM_ATTN_REGS		(9)
77 
78 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
79 {
80 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
81 
82 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
83 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
84 
85 	return ECORE_SUCCESS;
86 }
87 
88 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
89 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
90 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
91 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
92 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
93 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
97 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
98 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
99 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
100 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
101 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
102 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
103 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
112 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
113 {
114 	u32 tmp =
115 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
116 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
117 
118 	/* Disabled VF access */
119 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
120 		u32 addr, data;
121 
122 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
123 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
124 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
126 		DP_INFO(p_hwfn->p_dev,
127 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
128 			" Write [0x%02x] Addr [0x%08x]\n",
129 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
130 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
131 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
132 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
133 			(u8)((data &
134 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
135 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
136 			(u8)((data &
137 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
138 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
139 			(u8)((data &
140 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
141 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
142 			addr);
143 	}
144 
145 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
146 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
147 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
148 		u32 addr, data, length;
149 
150 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
151 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
152 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
153 				PSWHST_REG_INCORRECT_ACCESS_DATA);
154 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
155 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
156 
157 		DP_INFO(p_hwfn->p_dev,
158 			"Incorrect access to %08x of length %08x - PF [%02x]"
159 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
160 			" Byte-Enable [%04x] [%08x]\n",
161 			addr, length,
162 			(u8)((data &
163 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
164 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
165 			(u8)((data &
166 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
167 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
168 			(u8)((data &
169 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
170 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
171 			(u8)((data &
172 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
173 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
174 			(u8)((data &
175 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
176 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
177 			(u8)((data &
178 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
179 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
180 			data);
181 	}
182 
183 	/* TODO - We know 'some' of these are legal due to virtualization,
184 	 * but is it true for all of them?
185 	 */
186 	return ECORE_SUCCESS;
187 }
188 
189 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
190 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
191 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
192 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
193 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
194 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
195 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
196 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
197 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
198 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
199 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
200 static const char *grc_timeout_attn_master_to_str(u8 master)
201 {
202 	switch (master) {
203 	case 1:
204 		return "PXP";
205 	case 2:
206 		return "MCP";
207 	case 3:
208 		return "MSDM";
209 	case 4:
210 		return "PSDM";
211 	case 5:
212 		return "YSDM";
213 	case 6:
214 		return "USDM";
215 	case 7:
216 		return "TSDM";
217 	case 8:
218 		return "XSDM";
219 	case 9:
220 		return "DBU";
221 	case 10:
222 		return "DMAE";
223 	default:
224 		return "Unknown";
225 	}
226 }
227 
228 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
229 {
230 	u32 tmp, tmp2;
231 
232 	/* We've already cleared the timeout interrupt register, so we learn
233 	 * of interrupts via the validity register
234 	 */
235 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
236 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
237 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
238 		goto out;
239 
240 	/* Read the GRC timeout information */
241 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
243 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
244 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
245 
246 	DP_INFO(p_hwfn->p_dev,
247 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s]"
248 		" [PF: %02x %s %02x]\n",
249 		tmp2, tmp,
250 		(tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
251 		(tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
252 		grc_timeout_attn_master_to_str((tmp &
253 					ECORE_GRC_ATTENTION_MASTER_MASK) >>
254 				       ECORE_GRC_ATTENTION_MASTER_SHIFT),
255 		(tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
256 		(((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
257 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
258 		 ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
259 		(tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
260 		ECORE_GRC_ATTENTION_VF_SHIFT);
261 
262 out:
263 	/* Regardles of anything else, clean the validity bit */
264 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
265 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
266 	return ECORE_SUCCESS;
267 }
268 
269 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
270 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
271 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
272 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
273 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
274 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
275 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
276 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
277 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
278 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
279 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
280 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
281 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
282 static enum _ecore_status_t ecore_pglub_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
283 {
284 	u32 tmp;
285 
286 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
287 		       PGLUE_B_REG_TX_ERR_WR_DETAILS2);
288 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
289 		u32 addr_lo, addr_hi, details;
290 
291 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
292 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
293 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
294 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
295 		details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
296 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
297 
298 		DP_INFO(p_hwfn,
299 			"Illegal write by chip to [%08x:%08x] blocked."
300 			"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]"
301 			" Details2 %08x [Was_error %02x BME deassert %02x"
302 			" FID_enable deassert %02x]\n",
303 			addr_hi, addr_lo, details,
304 			(u8)((details &
305 			      ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
306 			     ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
307 			(u8)((details &
308 			      ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
309 			     ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
310 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID)
311 			     ? 1 : 0), tmp,
312 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
313 			     : 0),
314 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 :
315 			     0),
316 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
317 			     : 0));
318 	}
319 
320 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
321 		       PGLUE_B_REG_TX_ERR_RD_DETAILS2);
322 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
323 		u32 addr_lo, addr_hi, details;
324 
325 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
326 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
327 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
328 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
329 		details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
330 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
331 
332 		DP_INFO(p_hwfn,
333 			"Illegal read by chip from [%08x:%08x] blocked."
334 			" Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]"
335 			" Details2 %08x [Was_error %02x BME deassert %02x"
336 			" FID_enable deassert %02x]\n",
337 			addr_hi, addr_lo, details,
338 			(u8)((details &
339 			      ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
340 			     ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
341 			(u8)((details &
342 			      ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
343 			     ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
344 			(u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID)
345 			     ? 1 : 0), tmp,
346 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
347 			     : 0),
348 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 :
349 			     0),
350 			(u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
351 			     : 0));
352 	}
353 
354 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
355 		       PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
356 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
357 		DP_INFO(p_hwfn, "ICPL error - %08x\n", tmp);
358 
359 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
360 		       PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
361 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
362 		u32 addr_hi, addr_lo;
363 
364 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
365 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
366 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
367 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
368 
369 		DP_INFO(p_hwfn, "ICPL error - %08x [Address %08x:%08x]\n",
370 			tmp, addr_hi, addr_lo);
371 	}
372 
373 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
374 		       PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
375 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
376 		u32 addr_hi, addr_lo, details;
377 
378 		addr_lo = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
379 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
380 		addr_hi = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
382 		details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
383 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
384 
385 		DP_INFO(p_hwfn,
386 			"ILT error - Details %08x Details2 %08x"
387 			" [Address %08x:%08x]\n",
388 			details, tmp, addr_hi, addr_lo);
389 	}
390 
391 	/* Clear the indications */
392 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
393 		 PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
394 
395 	return ECORE_SUCCESS;
396 }
397 
398 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
399 {
400 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
401 
402 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
403 
404 	return ECORE_INVAL;
405 }
406 
407 static enum _ecore_status_t
408 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
409 {
410 	DP_INFO(p_hwfn, "General attention 35!\n");
411 
412 	return ECORE_SUCCESS;
413 }
414 
415 #define ECORE_DORQ_ATTENTION_REASON_MASK (0xfffff)
416 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
417 #define ECORE_DORQ_ATTENTION_SIZE_MASK	 (0x7f)
418 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT	 (16)
419 
420 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
421 {
422 	u32 reason;
423 
424 	reason = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
425 	    ECORE_DORQ_ATTENTION_REASON_MASK;
426 	if (reason) {
427 		u32 details = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
428 				       DORQ_REG_DB_DROP_DETAILS);
429 
430 		DP_INFO(p_hwfn->p_dev,
431 			"DORQ db_drop: address 0x%08x Opaque FID 0x%04x"
432 			" Size [bytes] 0x%08x Reason: 0x%08x\n",
433 			ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
434 				 DORQ_REG_DB_DROP_DETAILS_ADDRESS),
435 			(u16)(details & ECORE_DORQ_ATTENTION_OPAQUE_MASK),
436 			((details & ECORE_DORQ_ATTENTION_SIZE_MASK) >>
437 			 ECORE_DORQ_ATTENTION_SIZE_SHIFT) * 4, reason);
438 	}
439 
440 	return ECORE_INVAL;
441 }
442 
443 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
444 {
445 #ifndef ASIC_ONLY
446 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
447 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
448 				   TM_REG_INT_STS_1);
449 
450 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
451 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
452 			return ECORE_INVAL;
453 
454 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
455 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
456 			DP_INFO(p_hwfn,
457 				"TM attention on emulation - most likely"
458 				" results of clock-ratios\n");
459 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
460 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
461 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
462 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
463 
464 		return ECORE_SUCCESS;
465 	}
466 #endif
467 
468 	return ECORE_INVAL;
469 }
470 
471 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
472 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
473 	{
474 	 {			/* After Invert 1 */
475 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
476 	   MAX_BLOCK_ID},
477 	  }
478 	 },
479 
480 	{
481 	 {			/* After Invert 2 */
482 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
483 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
484 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglub_rbc_attn_cb,
485 	   BLOCK_PGLUE_B},
486 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
487 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
488 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
489 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
490 	  {"SW timers #%d",
491 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
492 	   OSAL_NULL, MAX_BLOCK_ID},
493 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
494 	   BLOCK_PGLCS},
495 	  }
496 	 },
497 
498 	{
499 	 {			/* After Invert 3 */
500 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
501 	   MAX_BLOCK_ID},
502 	  }
503 	 },
504 
505 	{
506 	 {			/* After Invert 4 */
507 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
508 	   ecore_fw_assertion, MAX_BLOCK_ID},
509 	  {"General Attention %d",
510 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
511 	   OSAL_NULL, MAX_BLOCK_ID},
512 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
513 	   ecore_general_attention_35, MAX_BLOCK_ID},
514 	  {"CNIG port %d", (4 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
515 	   BLOCK_CNIG},
516 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
517 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
518 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
519 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
520 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
521 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
522 	  {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
523 	   MAX_BLOCK_ID},
524 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
525 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
526 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
527 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
528 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
529 	  }
530 	 },
531 
532 	{
533 	 {			/* After Invert 5 */
534 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
535 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
536 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
537 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
538 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
539 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
540 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
541 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
542 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
543 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
544 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
545 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
546 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
547 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
548 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
549 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
550 	  }
551 	 },
552 
553 	{
554 	 {			/* After Invert 6 */
555 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
556 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
557 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
558 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
559 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
560 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
561 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
562 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
563 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
564 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
565 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
566 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
567 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
568 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
569 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
570 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
571 	  }
572 	 },
573 
574 	{
575 	 {			/* After Invert 7 */
576 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
577 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
578 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
579 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
580 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
581 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
582 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
583 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
584 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
585 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
586 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
587 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
588 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
589 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
590 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
591 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
592 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
593 	  }
594 	 },
595 
596 	{
597 	 {			/* After Invert 8 */
598 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
599 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
600 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
601 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
602 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
603 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
604 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
605 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
606 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
607 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
608 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
609 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
610 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
611 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
612 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
613 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
614 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
615 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
616 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
618 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
619 	   MAX_BLOCK_ID},
620 	  }
621 	 },
622 
623 	{
624 	 {			/* After Invert 9 */
625 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
626 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
627 	   MAX_BLOCK_ID},
628 	  {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
629 	  {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
630 	  {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
631 	   MAX_BLOCK_ID},
632 	  }
633 	 },
634 
635 };
636 
637 #define ATTN_STATE_BITS		(0xfff)
638 #define ATTN_BITS_MASKABLE	(0x3ff)
639 struct ecore_sb_attn_info {
640 	/* Virtual & Physical address of the SB */
641 	struct atten_status_block *sb_attn;
642 	dma_addr_t sb_phys;
643 
644 	/* Last seen running index */
645 	u16 index;
646 
647 	/* A mask of the AEU bits resulting in a parity error */
648 	u32 parity_mask[NUM_ATTN_REGS];
649 
650 	/* A pointer to the attention description structure */
651 	struct aeu_invert_reg *p_aeu_desc;
652 
653 	/* Previously asserted attentions, which are still unasserted */
654 	u16 known_attn;
655 
656 	/* Cleanup address for the link's general hw attention */
657 	u32 mfw_attn_addr;
658 };
659 
660 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
661 				 struct ecore_sb_attn_info *p_sb_desc)
662 {
663 	u16 rc = 0, index;
664 
665 	OSAL_MMIOWB(p_hwfn->p_dev);
666 
667 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
668 	if (p_sb_desc->index != index) {
669 		p_sb_desc->index = index;
670 		rc = ECORE_SB_ATT_IDX;
671 	}
672 
673 	OSAL_MMIOWB(p_hwfn->p_dev);
674 
675 	return rc;
676 }
677 
678 /**
679  * @brief ecore_int_assertion - handles asserted attention bits
680  *
681  * @param p_hwfn
682  * @param asserted_bits newly asserted bits
683  * @return enum _ecore_status_t
684  */
685 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
686 						u16 asserted_bits)
687 {
688 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
689 	u32 igu_mask;
690 
691 	/* Mask the source of the attention in the IGU */
692 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
693 			    IGU_REG_ATTENTION_ENABLE);
694 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
695 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
696 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
697 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
698 
699 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
700 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
701 		   sb_attn_sw->known_attn,
702 		   sb_attn_sw->known_attn | asserted_bits);
703 	sb_attn_sw->known_attn |= asserted_bits;
704 
705 	/* Handle MCP events */
706 	if (asserted_bits & 0x100) {
707 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
708 		/* Clean the MCP attention */
709 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
710 			 sb_attn_sw->mfw_attn_addr, 0);
711 	}
712 
713 	/* FIXME - this will change once we'll have GOOD gtt definitions */
714 	DIRECT_REG_WR(p_hwfn,
715 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
716 		      GTT_BAR0_MAP_REG_IGU_CMD +
717 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
718 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
719 
720 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
721 		   asserted_bits);
722 
723 	return ECORE_SUCCESS;
724 }
725 
726 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
727 				 enum block_id id, enum dbg_attn_type type,
728 				 bool b_clear)
729 {
730 	/* @DPDK */
731 	DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
732 }
733 
734 /**
735  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
736  * cause of the attention
737  *
738  * @param p_hwfn
739  * @param p_aeu - descriptor of an AEU bit which caused the attention
740  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
741  *  this bit to this group.
742  * @param bit_index - index of this bit in the aeu_en_reg
743  *
744  * @return enum _ecore_status_t
745  */
746 static enum _ecore_status_t
747 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
748 			      struct aeu_invert_reg_bit *p_aeu,
749 			      u32 aeu_en_reg,
750 			      const char *p_bit_name,
751 			      u32 bitmask)
752 {
753 	enum _ecore_status_t rc = ECORE_INVAL;
754 	bool b_fatal = false;
755 
756 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
757 		p_bit_name, bitmask);
758 
759 	/* Call callback before clearing the interrupt status */
760 	if (p_aeu->cb) {
761 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
762 			p_bit_name);
763 		rc = p_aeu->cb(p_hwfn);
764 	}
765 
766 	if (rc != ECORE_SUCCESS)
767 		b_fatal = true;
768 
769 	/* Print HW block interrupt registers */
770 	if (p_aeu->block_index != MAX_BLOCK_ID) {
771 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
772 				     ATTN_TYPE_INTERRUPT, !b_fatal);
773 }
774 
775 	/* Reach assertion if attention is fatal */
776 	if (b_fatal) {
777 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
778 			  p_bit_name);
779 
780 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
781 	}
782 
783 	/* Prevent this Attention from being asserted in the future */
784 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
785 	    p_hwfn->p_dev->attn_clr_en) {
786 		u32 val;
787 		u32 mask = ~bitmask;
788 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
789 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
790 		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
791 			p_bit_name);
792 	}
793 
794 	return rc;
795 }
796 
797 /**
798  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
799  *
800  * @param p_hwfn
801  * @param p_aeu - descriptor of an AEU bit which caused the
802  *              parity
803  * @param bit_index
804  */
805 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
806 					 struct aeu_invert_reg_bit *p_aeu,
807 					 u8 bit_index)
808 {
809 	u32 block_id = p_aeu->block_index;
810 
811 	DP_INFO(p_hwfn->p_dev, "%s[%d] parity attention is set\n",
812 		p_aeu->bit_name, bit_index);
813 
814 	if (block_id == MAX_BLOCK_ID)
815 		return;
816 
817 	ecore_int_attn_print(p_hwfn, block_id,
818 			     ATTN_TYPE_PARITY, false);
819 
820 	/* In A0, there's a single parity bit for several blocks */
821 	if (block_id == BLOCK_BTB) {
822 		ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
823 				     ATTN_TYPE_PARITY, false);
824 		ecore_int_attn_print(p_hwfn, BLOCK_MCP,
825 				     ATTN_TYPE_PARITY, false);
826 	}
827 }
828 
829 /**
830  * @brief - handles deassertion of previously asserted attentions.
831  *
832  * @param p_hwfn
833  * @param deasserted_bits - newly deasserted bits
834  * @return enum _ecore_status_t
835  *
836  */
837 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
838 						  u16 deasserted_bits)
839 {
840 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask;
842 	bool b_parity = false;
843 	u8 i, j, k, bit_idx;
844 	enum _ecore_status_t rc = ECORE_SUCCESS;
845 
846 	/* Read the attention registers in the AEU */
847 	for (i = 0; i < NUM_ATTN_REGS; i++) {
848 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
849 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
850 					  i * 0x4);
851 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
852 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
853 	}
854 
855 	/* Handle parity attentions first */
856 	for (i = 0; i < NUM_ATTN_REGS; i++) {
857 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858 		u32 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
859 				  MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
860 				  i * sizeof(u32));
861 
862 		u32 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
863 
864 		/* Skip register in which no parity bit is currently set */
865 		if (!parities)
866 			continue;
867 
868 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870 
871 			if ((p_bit->flags & ATTENTION_PARITY) &&
872 			    !!(parities & (1 << bit_idx))) {
873 				ecore_int_deassertion_parity(p_hwfn, p_bit,
874 							     bit_idx);
875 				b_parity = true;
876 			}
877 
878 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
879 		}
880 	}
881 
882 	/* Find non-parity cause for attention and act */
883 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
884 		struct aeu_invert_reg_bit *p_aeu;
885 
886 		/* Handle only groups whose attention is currently deasserted */
887 		if (!(deasserted_bits & (1 << k)))
888 			continue;
889 
890 		for (i = 0; i < NUM_ATTN_REGS; i++) {
891 			u32 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892 			    i * sizeof(u32) + k * sizeof(u32) * NUM_ATTN_REGS;
893 			u32 en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
894 			u32 bits = aeu_inv_arr[i] & en;
895 
896 			/* Skip if no bit from this group is currently set */
897 			if (!bits)
898 				continue;
899 
900 			/* Find all set bits from current register which belong
901 			 * to current group, making them responsible for the
902 			 * previous assertion.
903 			 */
904 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
905 				unsigned long int bitmask;
906 				u8 bit, bit_len;
907 
908 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
909 
910 				/* No need to handle attention-only bits */
911 				if (p_aeu->flags == ATTENTION_PAR)
912 					continue;
913 
914 				bit = bit_idx;
915 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
916 				if (p_aeu->flags & ATTENTION_PAR_INT) {
917 					/* Skip Parity */
918 					bit++;
919 					bit_len--;
920 				}
921 
922 				bitmask = bits & (((1 << bit_len) - 1) << bit);
923 				if (bitmask) {
924 					u32 flags = p_aeu->flags;
925 					char bit_name[30];
926 
927 					bit = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
928 								bit_len);
929 
930 					/* Some bits represent more than a
931 					 * a single interrupt. Correctly print
932 					 * their name.
933 					 */
934 					if (ATTENTION_LENGTH(flags) > 2 ||
935 					    ((flags & ATTENTION_PAR_INT) &&
936 					    ATTENTION_LENGTH(flags) > 1))
937 						OSAL_SNPRINTF(bit_name, 30,
938 							      p_aeu->bit_name,
939 							      bit);
940 					else
941 						OSAL_STRNCPY(bit_name,
942 							     p_aeu->bit_name,
943 							     30);
944 					/* Handle source of the attention */
945 					ecore_int_deassertion_aeu_bit(p_hwfn,
946 								      p_aeu,
947 								      aeu_en,
948 								      bit_name,
949 								      bitmask);
950 				}
951 
952 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
953 			}
954 		}
955 	}
956 
957 	/* Clear IGU indication for the deasserted bits */
958 	/* FIXME - this will change once we'll have GOOD gtt definitions */
959 	DIRECT_REG_WR(p_hwfn,
960 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
961 		      GTT_BAR0_MAP_REG_IGU_CMD +
962 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
963 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
964 
965 	/* Unmask deasserted attentions in IGU */
966 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
967 			    IGU_REG_ATTENTION_ENABLE);
968 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
969 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
970 
971 	/* Clear deassertion from inner state */
972 	sb_attn_sw->known_attn &= ~deasserted_bits;
973 
974 	return rc;
975 }
976 
977 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
978 {
979 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
980 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
981 	u16 index = 0, asserted_bits, deasserted_bits;
982 	u32 attn_bits = 0, attn_acks = 0;
983 	enum _ecore_status_t rc = ECORE_SUCCESS;
984 
985 	/* Read current attention bits/acks - safeguard against attentions
986 	 * by guaranting work on a synchronized timeframe
987 	 */
988 	do {
989 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
990 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
991 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
992 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
993 	p_sb_attn->sb_index = index;
994 
995 	/* Attention / Deassertion are meaningful (and in correct state)
996 	 * only when they differ and consistent with known state - deassertion
997 	 * when previous attention & current ack, and assertion when current
998 	 * attention with no previous attention
999 	 */
1000 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1001 	    ~p_sb_attn_sw->known_attn;
1002 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1003 	    p_sb_attn_sw->known_attn;
1004 
1005 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1006 		DP_INFO(p_hwfn,
1007 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1008 			index, attn_bits, attn_acks, asserted_bits,
1009 			deasserted_bits, p_sb_attn_sw->known_attn);
1010 	else if (asserted_bits == 0x100)
1011 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1012 	else
1013 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1014 			   "MFW indication [deassertion]\n");
1015 
1016 	if (asserted_bits) {
1017 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1018 		if (rc)
1019 			return rc;
1020 	}
1021 
1022 	if (deasserted_bits)
1023 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1024 
1025 	return rc;
1026 }
1027 
1028 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1029 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1030 {
1031 	struct igu_prod_cons_update igu_ack = { 0 };
1032 
1033 	igu_ack.sb_id_and_flags =
1034 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1035 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1036 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1037 	     (IGU_SEG_ACCESS_ATTN <<
1038 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1039 
1040 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1041 
1042 	/* Both segments (interrupts & acks) are written to same place address;
1043 	 * Need to guarantee all commands will be received (in-order) by HW.
1044 	 */
1045 	OSAL_MMIOWB(p_hwfn->p_dev);
1046 	OSAL_BARRIER(p_hwfn->p_dev);
1047 }
1048 
1049 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1050 {
1051 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1052 	struct ecore_pi_info *pi_info = OSAL_NULL;
1053 	struct ecore_sb_attn_info *sb_attn;
1054 	struct ecore_sb_info *sb_info;
1055 	int arr_size;
1056 	u16 rc = 0;
1057 
1058 	if (!p_hwfn)
1059 		return;
1060 
1061 	if (!p_hwfn->p_sp_sb) {
1062 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1063 		return;
1064 	}
1065 
1066 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1067 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1068 	if (!sb_info) {
1069 		DP_ERR(p_hwfn->p_dev,
1070 		       "Status block is NULL - cannot ack interrupts\n");
1071 		return;
1072 	}
1073 
1074 	if (!p_hwfn->p_sb_attn) {
1075 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1076 		return;
1077 	}
1078 	sb_attn = p_hwfn->p_sb_attn;
1079 
1080 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1081 		   p_hwfn, p_hwfn->my_id);
1082 
1083 	/* Disable ack for def status block. Required both for msix +
1084 	 * inta in non-mask mode, in inta does no harm.
1085 	 */
1086 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1087 
1088 	/* Gather Interrupts/Attentions information */
1089 	if (!sb_info->sb_virt) {
1090 		DP_ERR(p_hwfn->p_dev,
1091 		       "Interrupt Status block is NULL -"
1092 		       " cannot check for new interrupts!\n");
1093 	} else {
1094 		u32 tmp_index = sb_info->sb_ack;
1095 		rc = ecore_sb_update_sb_idx(sb_info);
1096 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1097 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1098 			   tmp_index, sb_info->sb_ack);
1099 	}
1100 
1101 	if (!sb_attn || !sb_attn->sb_attn) {
1102 		DP_ERR(p_hwfn->p_dev,
1103 		       "Attentions Status block is NULL -"
1104 		       " cannot check for new attentions!\n");
1105 	} else {
1106 		u16 tmp_index = sb_attn->index;
1107 
1108 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1109 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1110 			   "Attention indices: 0x%08x --> 0x%08x\n",
1111 			   tmp_index, sb_attn->index);
1112 	}
1113 
1114 	/* Check if we expect interrupts at this time. if not just ack them */
1115 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1116 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1117 		return;
1118 	}
1119 
1120 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1121 
1122 	if (!p_hwfn->p_dpc_ptt) {
1123 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1124 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1125 		return;
1126 	}
1127 
1128 	if (rc & ECORE_SB_ATT_IDX)
1129 		ecore_int_attentions(p_hwfn);
1130 
1131 	if (rc & ECORE_SB_IDX) {
1132 		int pi;
1133 
1134 		/* Since we only looked at the SB index, it's possible more
1135 		 * than a single protocol-index on the SB incremented.
1136 		 * Iterate over all configured protocol indices and check
1137 		 * whether something happened for each.
1138 		 */
1139 		for (pi = 0; pi < arr_size; pi++) {
1140 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1141 			if (pi_info->comp_cb != OSAL_NULL)
1142 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1143 		}
1144 	}
1145 
1146 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1147 		/* This should be done before the interrupts are enabled,
1148 		 * since otherwise a new attention will be generated.
1149 		 */
1150 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1151 	}
1152 
1153 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1154 }
1155 
1156 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1157 {
1158 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1159 
1160 	if (!p_sb)
1161 		return;
1162 
1163 	if (p_sb->sb_attn) {
1164 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1165 				       p_sb->sb_phys,
1166 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1167 	}
1168 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1169 }
1170 
1171 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1172 				    struct ecore_ptt *p_ptt)
1173 {
1174 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1175 
1176 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1177 
1178 	sb_info->index = 0;
1179 	sb_info->known_attn = 0;
1180 
1181 	/* Configure Attention Status Block in IGU */
1182 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1183 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1184 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1185 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1186 }
1187 
1188 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1189 				   struct ecore_ptt *p_ptt,
1190 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1191 {
1192 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1193 	int i, j, k;
1194 
1195 	sb_info->sb_attn = sb_virt_addr;
1196 	sb_info->sb_phys = sb_phy_addr;
1197 
1198 	/* Set the pointer to the AEU descriptors */
1199 	sb_info->p_aeu_desc = aeu_descs;
1200 
1201 	/* Calculate Parity Masks */
1202 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1203 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1204 		/* j is array index, k is bit index */
1205 		for (j = 0, k = 0; k < 32; j++) {
1206 			unsigned int flags = aeu_descs[i].bits[j].flags;
1207 
1208 			if (flags & ATTENTION_PARITY)
1209 				sb_info->parity_mask[i] |= 1 << k;
1210 
1211 			k += ATTENTION_LENGTH(flags);
1212 		}
1213 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1214 			   "Attn Mask [Reg %d]: 0x%08x\n",
1215 			   i, sb_info->parity_mask[i]);
1216 	}
1217 
1218 	/* Set the address of cleanup for the mcp attention */
1219 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1220 	    MISC_REG_AEU_GENERAL_ATTN_0;
1221 
1222 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1223 }
1224 
1225 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1226 						    struct ecore_ptt *p_ptt)
1227 {
1228 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1229 	struct ecore_sb_attn_info *p_sb;
1230 	dma_addr_t p_phys = 0;
1231 	void *p_virt;
1232 
1233 	/* SB struct */
1234 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1235 	if (!p_sb) {
1236 		DP_NOTICE(p_dev, true,
1237 			  "Failed to allocate `struct ecore_sb_attn_info'");
1238 		return ECORE_NOMEM;
1239 	}
1240 
1241 	/* SB ring  */
1242 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1243 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1244 	if (!p_virt) {
1245 		DP_NOTICE(p_dev, true,
1246 			  "Failed to allocate status block (attentions)");
1247 		OSAL_FREE(p_dev, p_sb);
1248 		return ECORE_NOMEM;
1249 	}
1250 
1251 	/* Attention setup */
1252 	p_hwfn->p_sb_attn = p_sb;
1253 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1254 
1255 	return ECORE_SUCCESS;
1256 }
1257 
1258 /* coalescing timeout = timeset << (timer_res + 1) */
1259 #define ECORE_CAU_DEF_RX_USECS 24
1260 #define ECORE_CAU_DEF_TX_USECS 48
1261 
1262 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1263 			     struct cau_sb_entry *p_sb_entry,
1264 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1265 {
1266 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1267 	u32 cau_state;
1268 	u8 timer_res;
1269 
1270 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1271 
1272 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1273 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1274 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1275 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1276 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1277 
1278 	cau_state = CAU_HC_DISABLE_STATE;
1279 
1280 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1281 		cau_state = CAU_HC_ENABLE_STATE;
1282 		if (!p_dev->rx_coalesce_usecs)
1283 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1284 		if (!p_dev->tx_coalesce_usecs)
1285 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1286 	}
1287 
1288 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1289 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1290 		timer_res = 0;
1291 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1292 		timer_res = 1;
1293 	else
1294 		timer_res = 2;
1295 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1296 
1297 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1298 		timer_res = 0;
1299 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1300 		timer_res = 1;
1301 	else
1302 		timer_res = 2;
1303 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1304 
1305 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1306 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1307 }
1308 
1309 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1310 			   struct ecore_ptt *p_ptt,
1311 			   dma_addr_t sb_phys, u16 igu_sb_id,
1312 			   u16 vf_number, u8 vf_valid)
1313 {
1314 	struct cau_sb_entry sb_entry;
1315 
1316 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1317 				vf_number, vf_valid);
1318 
1319 	if (p_hwfn->hw_init_done) {
1320 		/* Wide-bus, initialize via DMAE */
1321 		u64 phys_addr = (u64)sb_phys;
1322 
1323 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1324 				    (u64)(osal_uintptr_t)&phys_addr,
1325 				    CAU_REG_SB_ADDR_MEMORY +
1326 				    igu_sb_id * sizeof(u64), 2, 0);
1327 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1328 				    (u64)(osal_uintptr_t)&sb_entry,
1329 				    CAU_REG_SB_VAR_MEMORY +
1330 				    igu_sb_id * sizeof(u64), 2, 0);
1331 	} else {
1332 		/* Initialize Status Block Address */
1333 		STORE_RT_REG_AGG(p_hwfn,
1334 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1335 				 igu_sb_id * 2, sb_phys);
1336 
1337 		STORE_RT_REG_AGG(p_hwfn,
1338 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1339 				 igu_sb_id * 2, sb_entry);
1340 	}
1341 
1342 	/* Configure pi coalescing if set */
1343 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1344 		/* eth will open queues for all tcs, so configure all of them
1345 		 * properly, rather than just the active ones
1346 		 */
1347 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1348 
1349 		u8 timeset, timer_res;
1350 		u8 i;
1351 
1352 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1353 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1354 			timer_res = 0;
1355 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1356 			timer_res = 1;
1357 		else
1358 			timer_res = 2;
1359 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1360 		ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1361 				      ECORE_COAL_RX_STATE_MACHINE, timeset);
1362 
1363 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1364 			timer_res = 0;
1365 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1366 			timer_res = 1;
1367 		else
1368 			timer_res = 2;
1369 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1370 		for (i = 0; i < num_tc; i++) {
1371 			ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1372 					      igu_sb_id, TX_PI(i),
1373 					      ECORE_COAL_TX_STATE_MACHINE,
1374 					      timeset);
1375 		}
1376 	}
1377 }
1378 
1379 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1380 			   struct ecore_ptt *p_ptt,
1381 			   u16 igu_sb_id, u32 pi_index,
1382 			   enum ecore_coalescing_fsm coalescing_fsm, u8 timeset)
1383 {
1384 	struct cau_pi_entry pi_entry;
1385 	u32 sb_offset, pi_offset;
1386 
1387 	if (IS_VF(p_hwfn->p_dev))
1388 		return;		/* @@@TBD MichalK- VF CAU... */
1389 
1390 	sb_offset = igu_sb_id * PIS_PER_SB;
1391 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1392 
1393 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1394 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1395 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1396 	else
1397 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1398 
1399 	pi_offset = sb_offset + pi_index;
1400 	if (p_hwfn->hw_init_done) {
1401 		ecore_wr(p_hwfn, p_ptt,
1402 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1403 			 *((u32 *)&(pi_entry)));
1404 	} else {
1405 		STORE_RT_REG(p_hwfn,
1406 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1407 			     *((u32 *)&(pi_entry)));
1408 	}
1409 }
1410 
1411 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1412 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1413 {
1414 	/* zero status block and ack counter */
1415 	sb_info->sb_ack = 0;
1416 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1417 
1418 	if (IS_PF(p_hwfn->p_dev))
1419 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1420 				      sb_info->igu_sb_id, 0, 0);
1421 }
1422 
1423 /**
1424  * @brief ecore_get_igu_sb_id - given a sw sb_id return the
1425  *        igu_sb_id
1426  *
1427  * @param p_hwfn
1428  * @param sb_id
1429  *
1430  * @return u16
1431  */
1432 static u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1433 {
1434 	u16 igu_sb_id;
1435 
1436 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1437 	if (sb_id == ECORE_SP_SB_ID)
1438 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1439 	else if (IS_PF(p_hwfn->p_dev))
1440 		igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
1441 	else
1442 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1443 
1444 	if (sb_id == ECORE_SP_SB_ID)
1445 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1446 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1447 	else
1448 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1449 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1450 
1451 	return igu_sb_id;
1452 }
1453 
1454 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1455 				       struct ecore_ptt *p_ptt,
1456 				       struct ecore_sb_info *sb_info,
1457 				       void *sb_virt_addr,
1458 				       dma_addr_t sb_phy_addr, u16 sb_id)
1459 {
1460 	sb_info->sb_virt = sb_virt_addr;
1461 	sb_info->sb_phys = sb_phy_addr;
1462 
1463 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1464 
1465 	if (sb_id != ECORE_SP_SB_ID) {
1466 		p_hwfn->sbs_info[sb_id] = sb_info;
1467 		p_hwfn->num_sbs++;
1468 	}
1469 #ifdef ECORE_CONFIG_DIRECT_HWFN
1470 	sb_info->p_hwfn = p_hwfn;
1471 #endif
1472 	sb_info->p_dev = p_hwfn->p_dev;
1473 
1474 	/* The igu address will hold the absolute address that needs to be
1475 	 * written to for a specific status block
1476 	 */
1477 	if (IS_PF(p_hwfn->p_dev)) {
1478 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1479 		    GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1480 
1481 	} else {
1482 		sb_info->igu_addr =
1483 		    (u8 OSAL_IOMEM *)p_hwfn->regview +
1484 		    PXP_VF_BAR0_START_IGU +
1485 		    ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1486 	}
1487 
1488 	sb_info->flags |= ECORE_SB_INFO_INIT;
1489 
1490 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1491 
1492 	return ECORE_SUCCESS;
1493 }
1494 
1495 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1496 					  struct ecore_sb_info *sb_info,
1497 					  u16 sb_id)
1498 {
1499 	if (sb_id == ECORE_SP_SB_ID) {
1500 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1501 		return ECORE_INVAL;
1502 	}
1503 
1504 	/* zero status block and ack counter */
1505 	sb_info->sb_ack = 0;
1506 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1507 
1508 	if (p_hwfn->sbs_info[sb_id] != OSAL_NULL) {
1509 		p_hwfn->sbs_info[sb_id] = OSAL_NULL;
1510 		p_hwfn->num_sbs--;
1511 	}
1512 
1513 	return ECORE_SUCCESS;
1514 }
1515 
1516 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1517 {
1518 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1519 
1520 	if (!p_sb)
1521 		return;
1522 
1523 	if (p_sb->sb_info.sb_virt) {
1524 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1525 				       p_sb->sb_info.sb_virt,
1526 				       p_sb->sb_info.sb_phys,
1527 				       SB_ALIGNED_SIZE(p_hwfn));
1528 	}
1529 
1530 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1531 }
1532 
1533 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1534 						  struct ecore_ptt *p_ptt)
1535 {
1536 	struct ecore_sb_sp_info *p_sb;
1537 	dma_addr_t p_phys = 0;
1538 	void *p_virt;
1539 
1540 	/* SB struct */
1541 	p_sb =
1542 	    OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1543 		       sizeof(*p_sb));
1544 	if (!p_sb) {
1545 		DP_NOTICE(p_hwfn, true,
1546 			  "Failed to allocate `struct ecore_sb_info'\n");
1547 		return ECORE_NOMEM;
1548 	}
1549 
1550 	/* SB ring  */
1551 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1552 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1553 	if (!p_virt) {
1554 		DP_NOTICE(p_hwfn, true, "Failed to allocate status block\n");
1555 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1556 		return ECORE_NOMEM;
1557 	}
1558 
1559 	/* Status Block setup */
1560 	p_hwfn->p_sp_sb = p_sb;
1561 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1562 			  p_virt, p_phys, ECORE_SP_SB_ID);
1563 
1564 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1565 
1566 	return ECORE_SUCCESS;
1567 }
1568 
1569 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1570 					   ecore_int_comp_cb_t comp_cb,
1571 					   void *cookie,
1572 					   u8 *sb_idx, __le16 **p_fw_cons)
1573 {
1574 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1575 	enum _ecore_status_t rc = ECORE_NOMEM;
1576 	u8 pi;
1577 
1578 	/* Look for a free index */
1579 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1580 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1581 			continue;
1582 
1583 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1584 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1585 		*sb_idx = pi;
1586 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1587 		rc = ECORE_SUCCESS;
1588 		break;
1589 	}
1590 
1591 	return rc;
1592 }
1593 
1594 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1595 {
1596 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1597 
1598 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1599 		return ECORE_NOMEM;
1600 
1601 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1602 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1603 	return ECORE_SUCCESS;
1604 }
1605 
1606 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1607 {
1608 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1609 }
1610 
1611 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1612 			      struct ecore_ptt *p_ptt,
1613 			      enum ecore_int_mode int_mode)
1614 {
1615 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1616 
1617 #ifndef ASIC_ONLY
1618 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1619 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1620 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1621 	}
1622 #endif
1623 
1624 	p_hwfn->p_dev->int_mode = int_mode;
1625 	switch (p_hwfn->p_dev->int_mode) {
1626 	case ECORE_INT_MODE_INTA:
1627 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1628 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1629 		break;
1630 
1631 	case ECORE_INT_MODE_MSI:
1632 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1633 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1634 		break;
1635 
1636 	case ECORE_INT_MODE_MSIX:
1637 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1638 		break;
1639 	case ECORE_INT_MODE_POLL:
1640 		break;
1641 	}
1642 
1643 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1644 }
1645 
1646 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1647 				      struct ecore_ptt *p_ptt)
1648 {
1649 #ifndef ASIC_ONLY
1650 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1651 		DP_INFO(p_hwfn,
1652 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1653 		return;
1654 	}
1655 #endif
1656 
1657 	/* Configure AEU signal change to produce attentions */
1658 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1659 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1660 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1661 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1662 
1663 	/* Flush the writes to IGU */
1664 	OSAL_MMIOWB(p_hwfn->p_dev);
1665 
1666 	/* Unmask AEU signals toward IGU */
1667 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1668 }
1669 
1670 enum _ecore_status_t
1671 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1672 			  enum ecore_int_mode int_mode)
1673 {
1674 	enum _ecore_status_t rc = ECORE_SUCCESS;
1675 	u32 tmp;
1676 
1677 	/* @@@tmp - Starting with MFW 8.2.1.0 we've started hitting AVS stop
1678 	 * attentions. Since we're waiting for BRCM answer regarding this
1679 	 * attention, in the meanwhile we simply mask it.
1680 	 */
1681 	tmp = ecore_rd(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0);
1682 	tmp &= ~0x800;
1683 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_ENABLE4_IGU_OUT_0, tmp);
1684 
1685 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1686 
1687 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1688 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1689 		if (rc != ECORE_SUCCESS) {
1690 			DP_NOTICE(p_hwfn, true,
1691 				  "Slowpath IRQ request failed\n");
1692 			return ECORE_NORESOURCES;
1693 		}
1694 		p_hwfn->b_int_requested = true;
1695 	}
1696 
1697 	/* Enable interrupt Generation */
1698 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1699 
1700 	p_hwfn->b_int_enabled = 1;
1701 
1702 	return rc;
1703 }
1704 
1705 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1706 			       struct ecore_ptt *p_ptt)
1707 {
1708 	p_hwfn->b_int_enabled = 0;
1709 
1710 	if (IS_VF(p_hwfn->p_dev))
1711 		return;
1712 
1713 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1714 }
1715 
1716 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1717 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1718 			      struct ecore_ptt *p_ptt,
1719 			      u32 sb_id, bool cleanup_set, u16 opaque_fid)
1720 {
1721 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1722 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
1723 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1724 	u8 type = 0;		/* FIXME MichalS type??? */
1725 
1726 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1727 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1728 
1729 	/* USE Control Command Register to perform cleanup. There is an
1730 	 * option to do this using IGU bar, but then it can't be used for VFs.
1731 	 */
1732 
1733 	/* Set the data field */
1734 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1735 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1736 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1737 
1738 	/* Set the control register */
1739 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1740 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1741 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1742 
1743 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1744 
1745 	OSAL_BARRIER(p_hwfn->p_dev);
1746 
1747 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1748 
1749 	/* Flush the write to IGU */
1750 	OSAL_MMIOWB(p_hwfn->p_dev);
1751 
1752 	/* calculate where to read the status bit from */
1753 	sb_bit = 1 << (sb_id % 32);
1754 	sb_bit_addr = sb_id / 32 * sizeof(u32);
1755 
1756 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
1757 
1758 	/* Now wait for the command to complete */
1759 	while (--sleep_cnt) {
1760 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
1761 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1762 			break;
1763 		OSAL_MSLEEP(5);
1764 	}
1765 
1766 	if (!sleep_cnt)
1767 		DP_NOTICE(p_hwfn, true,
1768 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1769 			  val, sb_id);
1770 }
1771 
1772 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
1773 				       struct ecore_ptt *p_ptt,
1774 				       u32 sb_id, u16 opaque, bool b_set)
1775 {
1776 	int pi, i;
1777 
1778 	/* Set */
1779 	if (b_set)
1780 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
1781 
1782 	/* Clear */
1783 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
1784 
1785 	/* Wait for the IGU SB to cleanup */
1786 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1787 		u32 val;
1788 
1789 		val = ecore_rd(p_hwfn, p_ptt,
1790 			       IGU_REG_WRITE_DONE_PENDING +
1791 			       ((sb_id / 32) * 4));
1792 		if (val & (1 << (sb_id % 32)))
1793 			OSAL_UDELAY(10);
1794 		else
1795 			break;
1796 	}
1797 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1798 		DP_NOTICE(p_hwfn, true,
1799 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1800 			  sb_id);
1801 
1802 	/* Clear the CAU for the SB */
1803 	for (pi = 0; pi < 12; pi++)
1804 		ecore_wr(p_hwfn, p_ptt,
1805 			 CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
1806 }
1807 
1808 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
1809 				struct ecore_ptt *p_ptt,
1810 				bool b_set, bool b_slowpath)
1811 {
1812 	u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
1813 	u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
1814 	u32 sb_id = 0, val = 0;
1815 
1816 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
1817 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1818 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1819 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1820 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1821 	/* end temporary */
1822 
1823 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1824 		   "IGU cleaning SBs [%d,...,%d]\n",
1825 		   igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
1826 
1827 	for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
1828 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1829 						  p_hwfn->hw_info.opaque_fid,
1830 						  b_set);
1831 
1832 	if (!b_slowpath)
1833 		return;
1834 
1835 	sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1836 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1837 		   "IGU cleaning slowpath SB [%d]\n", sb_id);
1838 	ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1839 					  p_hwfn->hw_info.opaque_fid, b_set);
1840 }
1841 
1842 static u32 ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
1843 					struct ecore_ptt *p_ptt, u16 sb_id)
1844 {
1845 	u32 val = ecore_rd(p_hwfn, p_ptt,
1846 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
1847 	struct ecore_igu_block *p_block;
1848 
1849 	p_block = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
1850 
1851 	/* stop scanning when hit first invalid PF entry */
1852 	if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1853 	    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1854 		goto out;
1855 
1856 	/* Fill the block information */
1857 	p_block->status = ECORE_IGU_STATUS_VALID;
1858 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
1859 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
1860 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
1861 
1862 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1863 		   "IGU_BLOCK: [SB 0x%04x, Value in CAM 0x%08x] func_id = %d"
1864 		   " is_pf = %d vector_num = 0x%x\n",
1865 		   sb_id, val, p_block->function_id, p_block->is_pf,
1866 		   p_block->vector_number);
1867 
1868 out:
1869 	return val;
1870 }
1871 
1872 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
1873 					    struct ecore_ptt *p_ptt)
1874 {
1875 	struct ecore_igu_info *p_igu_info;
1876 	struct ecore_igu_block *p_block;
1877 	u32 min_vf = 0, max_vf = 0, val;
1878 	u16 sb_id, last_iov_sb_id = 0;
1879 	u16 prev_sb_id = 0xFF;
1880 
1881 	p_hwfn->hw_info.p_igu_info = OSAL_ALLOC(p_hwfn->p_dev,
1882 						GFP_KERNEL,
1883 						sizeof(*p_igu_info));
1884 	if (!p_hwfn->hw_info.p_igu_info)
1885 		return ECORE_NOMEM;
1886 
1887 	OSAL_MEMSET(p_hwfn->hw_info.p_igu_info, 0, sizeof(*p_igu_info));
1888 
1889 	p_igu_info = p_hwfn->hw_info.p_igu_info;
1890 
1891 	/* Initialize base sb / sb cnt for PFs and VFs */
1892 	p_igu_info->igu_base_sb = 0xffff;
1893 	p_igu_info->igu_sb_cnt = 0;
1894 	p_igu_info->igu_dsb_id = 0xffff;
1895 	p_igu_info->igu_base_sb_iov = 0xffff;
1896 
1897 	if (p_hwfn->p_dev->p_iov_info) {
1898 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1899 
1900 		min_vf = p_iov->first_vf_in_pf;
1901 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
1902 	}
1903 	for (sb_id = 0;
1904 	     sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1905 	     sb_id++) {
1906 		p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
1907 		val = ecore_int_igu_read_cam_block(p_hwfn, p_ptt, sb_id);
1908 		if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1909 		    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1910 			break;
1911 
1912 		if (p_block->is_pf) {
1913 			if (p_block->function_id == p_hwfn->rel_pf_id) {
1914 				p_block->status |= ECORE_IGU_STATUS_PF;
1915 
1916 				if (p_block->vector_number == 0) {
1917 					if (p_igu_info->igu_dsb_id == 0xffff)
1918 						p_igu_info->igu_dsb_id = sb_id;
1919 				} else {
1920 					if (p_igu_info->igu_base_sb == 0xffff) {
1921 						p_igu_info->igu_base_sb = sb_id;
1922 					} else if (prev_sb_id != sb_id - 1) {
1923 						DP_NOTICE(p_hwfn->p_dev, false,
1924 							  "consecutive igu"
1925 							  " vectors for HWFN"
1926 							  " %x broken",
1927 							  p_hwfn->rel_pf_id);
1928 						break;
1929 					}
1930 					prev_sb_id = sb_id;
1931 					/* we don't count the default */
1932 					(p_igu_info->igu_sb_cnt)++;
1933 				}
1934 			}
1935 		} else {
1936 			if ((p_block->function_id >= min_vf) &&
1937 			    (p_block->function_id < max_vf)) {
1938 				/* Available for VFs of this PF */
1939 				if (p_igu_info->igu_base_sb_iov == 0xffff) {
1940 					p_igu_info->igu_base_sb_iov = sb_id;
1941 				} else if (last_iov_sb_id != sb_id - 1) {
1942 					if (!val)
1943 						DP_VERBOSE(p_hwfn->p_dev,
1944 							   ECORE_MSG_INTR,
1945 							   "First uninited IGU"
1946 							   " CAM entry at"
1947 							   " index 0x%04x\n",
1948 							   sb_id);
1949 					else
1950 						DP_NOTICE(p_hwfn->p_dev, false,
1951 							  "Consecutive igu"
1952 							  " vectors for HWFN"
1953 							  " %x vfs is broken"
1954 							  " [jumps from %04x"
1955 							  " to %04x]\n",
1956 							  p_hwfn->rel_pf_id,
1957 							  last_iov_sb_id,
1958 							  sb_id);
1959 					break;
1960 				}
1961 				p_block->status |= ECORE_IGU_STATUS_FREE;
1962 				p_hwfn->hw_info.p_igu_info->free_blks++;
1963 				last_iov_sb_id = sb_id;
1964 			}
1965 		}
1966 	}
1967 	p_igu_info->igu_sb_cnt_iov = p_igu_info->free_blks;
1968 
1969 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1970 		   "IGU igu_base_sb=0x%x [IOV 0x%x] igu_sb_cnt=%d [IOV 0x%x] "
1971 		   "igu_dsb_id=0x%x\n",
1972 		   p_igu_info->igu_base_sb, p_igu_info->igu_base_sb_iov,
1973 		   p_igu_info->igu_sb_cnt, p_igu_info->igu_sb_cnt_iov,
1974 		   p_igu_info->igu_dsb_id);
1975 
1976 	if (p_igu_info->igu_base_sb == 0xffff ||
1977 	    p_igu_info->igu_dsb_id == 0xffff || p_igu_info->igu_sb_cnt == 0) {
1978 		DP_NOTICE(p_hwfn, true,
1979 			  "IGU CAM returned invalid values igu_base_sb=0x%x "
1980 			  "igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1981 			  p_igu_info->igu_base_sb, p_igu_info->igu_sb_cnt,
1982 			  p_igu_info->igu_dsb_id);
1983 		return ECORE_INVAL;
1984 	}
1985 
1986 	return ECORE_SUCCESS;
1987 }
1988 
1989 /**
1990  * @brief Initialize igu runtime registers
1991  *
1992  * @param p_hwfn
1993  */
1994 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
1995 {
1996 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
1997 
1998 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1999 }
2000 
2001 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2002 			  IGU_CMD_INT_ACK_BASE)
2003 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2004 			  IGU_CMD_INT_ACK_BASE)
2005 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2006 {
2007 	u32 intr_status_hi = 0, intr_status_lo = 0;
2008 	u64 intr_status = 0;
2009 
2010 	intr_status_lo = REG_RD(p_hwfn,
2011 				GTT_BAR0_MAP_REG_IGU_CMD +
2012 				LSB_IGU_CMD_ADDR * 8);
2013 	intr_status_hi = REG_RD(p_hwfn,
2014 				GTT_BAR0_MAP_REG_IGU_CMD +
2015 				MSB_IGU_CMD_ADDR * 8);
2016 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2017 
2018 	return intr_status;
2019 }
2020 
2021 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2022 {
2023 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2024 	p_hwfn->b_sp_dpc_enabled = true;
2025 }
2026 
2027 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2028 {
2029 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2030 	if (!p_hwfn->sp_dpc)
2031 		return ECORE_NOMEM;
2032 
2033 	return ECORE_SUCCESS;
2034 }
2035 
2036 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2037 {
2038 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2039 }
2040 
2041 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2042 				     struct ecore_ptt *p_ptt)
2043 {
2044 	enum _ecore_status_t rc = ECORE_SUCCESS;
2045 
2046 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2047 	if (rc != ECORE_SUCCESS) {
2048 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2049 		return rc;
2050 	}
2051 
2052 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2053 	if (rc != ECORE_SUCCESS) {
2054 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2055 		return rc;
2056 	}
2057 
2058 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2059 	if (rc != ECORE_SUCCESS)
2060 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2061 
2062 	return rc;
2063 }
2064 
2065 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2066 {
2067 	ecore_int_sp_sb_free(p_hwfn);
2068 	ecore_int_sb_attn_free(p_hwfn);
2069 	ecore_int_sp_dpc_free(p_hwfn);
2070 }
2071 
2072 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2073 {
2074 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2075 		return;
2076 
2077 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2078 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2079 	ecore_int_sp_dpc_setup(p_hwfn);
2080 }
2081 
2082 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2083 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2084 {
2085 	struct ecore_igu_info *info = p_hwfn->hw_info.p_igu_info;
2086 
2087 	if (!info || !p_sb_cnt_info)
2088 		return;
2089 
2090 	p_sb_cnt_info->sb_cnt = info->igu_sb_cnt;
2091 	p_sb_cnt_info->sb_iov_cnt = info->igu_sb_cnt_iov;
2092 	p_sb_cnt_info->sb_free_blk = info->free_blks;
2093 }
2094 
2095 u16 ecore_int_queue_id_from_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
2096 {
2097 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2098 
2099 	/* Determine origin of SB id */
2100 	if ((sb_id >= p_info->igu_base_sb) &&
2101 	    (sb_id < p_info->igu_base_sb + p_info->igu_sb_cnt)) {
2102 		return sb_id - p_info->igu_base_sb;
2103 	} else if ((sb_id >= p_info->igu_base_sb_iov) &&
2104 		   (sb_id < p_info->igu_base_sb_iov + p_info->igu_sb_cnt_iov)) {
2105 		return sb_id - p_info->igu_base_sb_iov + p_info->igu_sb_cnt;
2106 	} else {
2107 		DP_NOTICE(p_hwfn, true, "SB %d not in range for function\n",
2108 			  sb_id);
2109 		return 0;
2110 	}
2111 }
2112 
2113 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2114 {
2115 	int i;
2116 
2117 	for_each_hwfn(p_dev, i)
2118 		p_dev->hwfns[i].b_int_requested = false;
2119 }
2120 
2121 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2122 {
2123 	p_dev->attn_clr_en = clr_enable;
2124 }
2125 
2126 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2127 					     struct ecore_ptt *p_ptt,
2128 					     u8 timer_res, u16 sb_id, bool tx)
2129 {
2130 	enum _ecore_status_t rc;
2131 	struct cau_sb_entry sb_entry;
2132 
2133 	if (!p_hwfn->hw_init_done) {
2134 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2135 		return ECORE_INVAL;
2136 	}
2137 
2138 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2139 				 sb_id * sizeof(u64),
2140 				 (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2141 	if (rc != ECORE_SUCCESS) {
2142 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2143 		return rc;
2144 	}
2145 
2146 	if (tx)
2147 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2148 	else
2149 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2150 
2151 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2152 				 (u64)(osal_uintptr_t)&sb_entry,
2153 				 CAU_REG_SB_VAR_MEMORY +
2154 				 sb_id * sizeof(u64), 2, 0);
2155 	if (rc != ECORE_SUCCESS) {
2156 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2157 		return rc;
2158 	}
2159 
2160 	return rc;
2161 }
2162