xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision 3eed444a9621026ae8a28d2d9ca1b0aff4aae8bd)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6 
7 #include <rte_string_fns.h>
8 
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_init_ops.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_int.h"
16 #include "reg_addr.h"
17 #include "ecore_hw.h"
18 #include "ecore_sriov.h"
19 #include "ecore_vf.h"
20 #include "ecore_hw_defs.h"
21 #include "ecore_hsi_common.h"
22 #include "ecore_mcp.h"
23 
24 struct ecore_pi_info {
25 	ecore_int_comp_cb_t comp_cb;
26 	void *cookie;		/* Will be sent to the compl cb function */
27 };
28 
29 struct ecore_sb_sp_info {
30 	struct ecore_sb_info sb_info;
31 	/* per protocol index data */
32 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
33 };
34 
35 enum ecore_attention_type {
36 	ECORE_ATTN_TYPE_ATTN,
37 	ECORE_ATTN_TYPE_PARITY,
38 };
39 
40 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
41 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
42 
43 struct aeu_invert_reg_bit {
44 	char bit_name[30];
45 
46 #define ATTENTION_PARITY		(1 << 0)
47 
48 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
49 #define ATTENTION_LENGTH_SHIFT		(4)
50 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
51 					 ATTENTION_LENGTH_SHIFT)
52 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
54 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
55 					 ATTENTION_PARITY)
56 
57 /* Multiple bits start with this offset */
58 #define ATTENTION_OFFSET_MASK		(0x000ff000)
59 #define ATTENTION_OFFSET_SHIFT		(12)
60 
61 #define ATTENTION_BB_MASK		(0x00700000)
62 #define ATTENTION_BB_SHIFT		(20)
63 #define ATTENTION_BB(value)		((value) << ATTENTION_BB_SHIFT)
64 #define ATTENTION_BB_DIFFERENT		(1 << 23)
65 
66 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
67 	unsigned int flags;
68 
69 	/* Callback to call if attention will be triggered */
70 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
71 
72 	enum block_id block_index;
73 };
74 
75 struct aeu_invert_reg {
76 	struct aeu_invert_reg_bit bits[32];
77 };
78 
79 #define MAX_ATTN_GRPS		(8)
80 #define NUM_ATTN_REGS		(9)
81 
82 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
83 {
84 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
85 
86 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
87 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
88 
89 	return ECORE_SUCCESS;
90 }
91 
92 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
101 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
102 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
103 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
116 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
117 {
118 	u32 tmp =
119 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
120 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
121 
122 	/* Disabled VF access */
123 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
124 		u32 addr, data;
125 
126 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
128 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
130 		DP_INFO(p_hwfn->p_dev,
131 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
132 			" Write [0x%02x] Addr [0x%08x]\n",
133 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
134 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
135 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
136 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
137 			(u8)((data &
138 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
139 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
140 			(u8)((data &
141 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
142 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
143 			(u8)((data &
144 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
145 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
146 			addr);
147 	}
148 
149 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
151 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
152 		u32 addr, data, length;
153 
154 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
155 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
156 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157 				PSWHST_REG_INCORRECT_ACCESS_DATA);
158 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
160 
161 		DP_INFO(p_hwfn->p_dev,
162 			"Incorrect access to %08x of length %08x - PF [%02x]"
163 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
164 			" Byte-Enable [%04x] [%08x]\n",
165 			addr, length,
166 			(u8)((data &
167 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
168 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
169 			(u8)((data &
170 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
171 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
172 			(u8)((data &
173 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
174 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
175 			(u8)((data &
176 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
177 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
178 			(u8)((data &
179 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
180 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
181 			(u8)((data &
182 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
183 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
184 			data);
185 	}
186 
187 	/* TODO - We know 'some' of these are legal due to virtualization,
188 	 * but is it true for all of them?
189 	 */
190 	return ECORE_SUCCESS;
191 }
192 
193 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
194 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
195 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
196 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
197 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
198 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
199 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
200 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
201 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
202 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
203 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
204 static const char *grc_timeout_attn_master_to_str(u8 master)
205 {
206 	switch (master) {
207 	case 1:
208 		return "PXP";
209 	case 2:
210 		return "MCP";
211 	case 3:
212 		return "MSDM";
213 	case 4:
214 		return "PSDM";
215 	case 5:
216 		return "YSDM";
217 	case 6:
218 		return "USDM";
219 	case 7:
220 		return "TSDM";
221 	case 8:
222 		return "XSDM";
223 	case 9:
224 		return "DBU";
225 	case 10:
226 		return "DMAE";
227 	default:
228 		return "Unknown";
229 	}
230 }
231 
232 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
233 {
234 	enum _ecore_status_t rc = ECORE_SUCCESS;
235 	u32 tmp, tmp2;
236 
237 	/* We've already cleared the timeout interrupt register, so we learn
238 	 * of interrupts via the validity register.
239 	 * Any attention which is not for a timeout event is treated as fatal.
240 	 */
241 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
243 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT)) {
244 		rc = ECORE_INVAL;
245 		goto out;
246 	}
247 
248 	/* Read the GRC timeout information */
249 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
250 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
251 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
252 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
253 
254 	DP_NOTICE(p_hwfn->p_dev, false,
255 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
256 		  tmp2, tmp,
257 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
258 						       : "Read from",
259 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
260 		  grc_timeout_attn_master_to_str(
261 			(tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
262 			 ECORE_GRC_ATTENTION_MASTER_SHIFT),
263 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
264 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
265 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
266 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
267 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
268 		  ECORE_GRC_ATTENTION_VF_SHIFT);
269 
270 	/* Clean the validity bit */
271 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
272 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
273 out:
274 	return rc;
275 }
276 
277 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
278 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
281 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
282 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
283 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
284 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
285 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
286 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
287 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
288 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
289 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
290 
291 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
292 						   struct ecore_ptt *p_ptt,
293 						   bool is_hw_init)
294 {
295 	u32 tmp;
296 	char str[512] = {0};
297 
298 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
299 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
300 		u32 addr_lo, addr_hi, details;
301 
302 		addr_lo = ecore_rd(p_hwfn, p_ptt,
303 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
304 		addr_hi = ecore_rd(p_hwfn, p_ptt,
305 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
306 		details = ecore_rd(p_hwfn, p_ptt,
307 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
308 		OSAL_SNPRINTF(str, 512,
309 			 "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
310 			  addr_hi, addr_lo, details,
311 			  (u8)((details &
312 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
313 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
314 			  (u8)((details &
315 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
316 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
317 			  (u8)((details &
318 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
319 			  tmp,
320 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
321 				1 : 0),
322 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
323 				1 : 0),
324 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
325 				1 : 0));
326 		if (is_hw_init)
327 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
328 		else
329 			DP_NOTICE(p_hwfn, false, "%s", str);
330 	}
331 
332 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
333 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
334 		u32 addr_lo, addr_hi, details;
335 
336 		addr_lo = ecore_rd(p_hwfn, p_ptt,
337 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
338 		addr_hi = ecore_rd(p_hwfn, p_ptt,
339 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
340 		details = ecore_rd(p_hwfn, p_ptt,
341 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
342 
343 		DP_NOTICE(p_hwfn, false,
344 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
345 			  addr_hi, addr_lo, details,
346 			  (u8)((details &
347 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
348 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
349 			  (u8)((details &
350 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
351 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
352 			  (u8)((details &
353 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
354 			  tmp,
355 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
356 				1 : 0),
357 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
358 				1 : 0),
359 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
360 				1 : 0));
361 	}
362 
363 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
364 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
365 		DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
366 
367 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
368 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
369 		u32 addr_hi, addr_lo;
370 
371 		addr_lo = ecore_rd(p_hwfn, p_ptt,
372 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
373 		addr_hi = ecore_rd(p_hwfn, p_ptt,
374 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
375 
376 		DP_NOTICE(p_hwfn, false,
377 			  "ICPL erorr - %08x [Address %08x:%08x]\n",
378 			  tmp, addr_hi, addr_lo);
379 	}
380 
381 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
382 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
383 		u32 addr_hi, addr_lo, details;
384 
385 		addr_lo = ecore_rd(p_hwfn, p_ptt,
386 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
387 		addr_hi = ecore_rd(p_hwfn, p_ptt,
388 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
389 		details = ecore_rd(p_hwfn, p_ptt,
390 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
391 
392 		DP_NOTICE(p_hwfn, false,
393 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
394 			  details, tmp, addr_hi, addr_lo);
395 	}
396 
397 	/* Clear the indications */
398 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
399 
400 	return ECORE_SUCCESS;
401 }
402 
403 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
404 {
405 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
406 }
407 
408 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
409 {
410 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
411 
412 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
413 
414 	return ECORE_INVAL;
415 }
416 
417 static enum _ecore_status_t
418 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
419 {
420 	DP_INFO(p_hwfn, "General attention 35!\n");
421 
422 	return ECORE_SUCCESS;
423 }
424 
425 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
426 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
427 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
428 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
429 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
430 
431 #define ECORE_DB_REC_COUNT			1000
432 #define ECORE_DB_REC_INTERVAL			100
433 
434 static enum _ecore_status_t ecore_db_rec_flush_queue(struct ecore_hwfn *p_hwfn,
435 						     struct ecore_ptt *p_ptt)
436 {
437 	u32 count = ECORE_DB_REC_COUNT;
438 	u32 usage = 1;
439 
440 	/* wait for usage to zero or count to run out. This is necessary since
441 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
442 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
443 	 * half an EDPM in the queue and other half dropped. Another EDPM
444 	 * doorbell to the same address (from doorbell recovery mechanism or
445 	 * from the doorbelling entity) could have first half dropped and second
446 	 * half interperted as continuation of the first. To prevent such
447 	 * malformed doorbells from reaching the device, flush the queue before
448 	 * releaseing the overflow sticky indication.
449 	 */
450 	while (count-- && usage) {
451 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
452 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
453 	}
454 
455 	/* should have been depleted by now */
456 	if (usage) {
457 		DP_NOTICE(p_hwfn->p_dev, false,
458 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
459 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
460 		return ECORE_TIMEOUT;
461 	}
462 
463 	return ECORE_SUCCESS;
464 }
465 
466 enum _ecore_status_t ecore_db_rec_handler(struct ecore_hwfn *p_hwfn,
467 					  struct ecore_ptt *p_ptt)
468 {
469 	u32 overflow;
470 	enum _ecore_status_t rc;
471 
472 	overflow = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
473 	DP_NOTICE(p_hwfn, false, "PF Overflow sticky 0x%x\n", overflow);
474 	if (!overflow) {
475 		ecore_db_recovery_execute(p_hwfn, DB_REC_ONCE);
476 		return ECORE_SUCCESS;
477 	}
478 
479 	if (ecore_edpm_enabled(p_hwfn)) {
480 		rc = ecore_db_rec_flush_queue(p_hwfn, p_ptt);
481 		if (rc != ECORE_SUCCESS)
482 			return rc;
483 	}
484 
485 	/* flush any pedning (e)dpm as they may never arrive */
486 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
487 
488 	/* release overflow sticky indication (stop silently dropping
489 	 * everything)
490 	 */
491 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
492 
493 	/* repeat all last doorbells (doorbell drop recovery) */
494 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
495 
496 	return ECORE_SUCCESS;
497 }
498 
499 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
500 {
501 	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
502 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
503 	enum _ecore_status_t rc;
504 
505 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
506 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
507 		  int_sts);
508 
509 	/* int_sts may be zero since all PFs were interrupted for doorbell
510 	 * overflow but another one already handled it. Can abort here. If
511 	 * This PF also requires overflow recovery we will be interrupted again
512 	 */
513 	if (!int_sts)
514 		return ECORE_SUCCESS;
515 
516 	/* check if db_drop or overflow happened */
517 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
518 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
519 		/* obtain data about db drop/overflow */
520 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
521 				  DORQ_REG_DB_DROP_REASON) &
522 				  ECORE_DORQ_ATTENTION_REASON_MASK;
523 		details = ecore_rd(p_hwfn, p_ptt,
524 				   DORQ_REG_DB_DROP_DETAILS);
525 		address = ecore_rd(p_hwfn, p_ptt,
526 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
527 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
528 					    DORQ_REG_DB_DROP_DETAILS_REASON);
529 
530 		/* log info */
531 		DP_NOTICE(p_hwfn->p_dev, false,
532 			  "Doorbell drop occurred\n"
533 			  "Address\t\t0x%08x\t(second BAR address)\n"
534 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
535 			  "Size\t\t0x%04x\t\t(in bytes)\n"
536 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
537 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
538 			  address,
539 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
540 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
541 			  first_drop_reason, all_drops_reason);
542 
543 		rc = ecore_db_rec_handler(p_hwfn, p_ptt);
544 		OSAL_DB_REC_OCCURRED(p_hwfn);
545 		if (rc != ECORE_SUCCESS)
546 			return rc;
547 
548 		/* clear the doorbell drop details and prepare for next drop */
549 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
550 
551 		/* mark interrupt as handeld (note: even if drop was due to a
552 		 * different reason than overflow we mark as handled)
553 		 */
554 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
555 			 DORQ_REG_INT_STS_DB_DROP |
556 			 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
557 
558 		/* if there are no indications otherthan drop indications,
559 		 * success
560 		 */
561 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
562 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
563 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
564 			return ECORE_SUCCESS;
565 	}
566 
567 	/* some other indication was present - non recoverable */
568 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
569 
570 	return ECORE_INVAL;
571 }
572 
573 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
574 {
575 #ifndef ASIC_ONLY
576 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
577 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
578 				   TM_REG_INT_STS_1);
579 
580 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
581 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
582 			return ECORE_INVAL;
583 
584 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
585 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
586 			DP_INFO(p_hwfn,
587 				"TM attention on emulation - most likely"
588 				" results of clock-ratios\n");
589 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
590 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
591 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
592 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
593 
594 		return ECORE_SUCCESS;
595 	}
596 #endif
597 
598 	return ECORE_INVAL;
599 }
600 
601 /* Instead of major changes to the data-structure, we have a some 'special'
602  * identifiers for sources that changed meaning between adapters.
603  */
604 enum aeu_invert_reg_special_type {
605 	AEU_INVERT_REG_SPECIAL_CNIG_0,
606 	AEU_INVERT_REG_SPECIAL_CNIG_1,
607 	AEU_INVERT_REG_SPECIAL_CNIG_2,
608 	AEU_INVERT_REG_SPECIAL_CNIG_3,
609 	AEU_INVERT_REG_SPECIAL_MAX,
610 };
611 
612 static struct aeu_invert_reg_bit
613 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
614 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
615 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
616 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
617 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
618 };
619 
620 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
621 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
622 	{
623 	 {			/* After Invert 1 */
624 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
625 	   MAX_BLOCK_ID},
626 	  }
627 	 },
628 
629 	{
630 	 {			/* After Invert 2 */
631 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
632 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
633 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
634 	   BLOCK_PGLUE_B},
635 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
636 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
637 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
638 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
639 	  {"SW timers #%d",
640 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
641 	   OSAL_NULL, MAX_BLOCK_ID},
642 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
643 	   BLOCK_PGLCS},
644 	  }
645 	 },
646 
647 	{
648 	 {			/* After Invert 3 */
649 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
650 	   MAX_BLOCK_ID},
651 	  }
652 	 },
653 
654 	{
655 	 {			/* After Invert 4 */
656 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
657 	   ecore_fw_assertion, MAX_BLOCK_ID},
658 	  {"General Attention %d",
659 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
660 	   OSAL_NULL, MAX_BLOCK_ID},
661 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
662 	   ecore_general_attention_35, MAX_BLOCK_ID},
663 	  {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
664 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
665 			 OSAL_NULL, BLOCK_NWS},
666 	  {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
667 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
668 			    OSAL_NULL, BLOCK_NWS},
669 	  {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
670 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
671 			 OSAL_NULL, BLOCK_NWM},
672 	  {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
673 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
674 			    OSAL_NULL, BLOCK_NWM},
675 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
676 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
677 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
678 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
679 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
680 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
681 	  {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
682 	   MAX_BLOCK_ID},
683 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
684 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
685 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
686 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
687 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
688 	  }
689 	 },
690 
691 	{
692 	 {			/* After Invert 5 */
693 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
694 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
695 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
696 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
697 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
698 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
699 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
700 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
701 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
702 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
703 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
704 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
705 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
706 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
707 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
708 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
709 	  }
710 	 },
711 
712 	{
713 	 {			/* After Invert 6 */
714 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
715 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
716 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
717 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
718 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
719 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
720 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
721 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
722 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
723 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
724 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
725 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
726 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
727 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
728 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
729 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
730 	  }
731 	 },
732 
733 	{
734 	 {			/* After Invert 7 */
735 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
736 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
737 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
738 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
739 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
740 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
741 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
742 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
743 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
744 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
745 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
746 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
747 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
748 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
749 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
750 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
751 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
752 	  }
753 	 },
754 
755 	{
756 	 {			/* After Invert 8 */
757 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
758 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
759 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
760 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
761 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
762 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
763 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
764 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
765 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
766 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
767 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
768 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
769 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
770 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
771 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
772 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
773 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
774 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
775 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
776 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
777 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
778 	   MAX_BLOCK_ID},
779 	  }
780 	 },
781 
782 	{
783 	 {			/* After Invert 9 */
784 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
785 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
786 	   MAX_BLOCK_ID},
787 	  {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
788 	  {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
789 	  {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
790 	   MAX_BLOCK_ID},
791 	  }
792 	 },
793 
794 };
795 
796 static struct aeu_invert_reg_bit *
797 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
798 			struct aeu_invert_reg_bit *p_bit)
799 {
800 	if (!ECORE_IS_BB(p_hwfn->p_dev))
801 		return p_bit;
802 
803 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
804 		return p_bit;
805 
806 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
807 				  ATTENTION_BB_SHIFT];
808 }
809 
810 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
811 				     struct aeu_invert_reg_bit *p_bit)
812 {
813 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
814 		  ATTENTION_PARITY);
815 }
816 
817 #define ATTN_STATE_BITS		(0xfff)
818 #define ATTN_BITS_MASKABLE	(0x3ff)
819 struct ecore_sb_attn_info {
820 	/* Virtual & Physical address of the SB */
821 	struct atten_status_block *sb_attn;
822 	dma_addr_t sb_phys;
823 
824 	/* Last seen running index */
825 	u16 index;
826 
827 	/* A mask of the AEU bits resulting in a parity error */
828 	u32 parity_mask[NUM_ATTN_REGS];
829 
830 	/* A pointer to the attention description structure */
831 	struct aeu_invert_reg *p_aeu_desc;
832 
833 	/* Previously asserted attentions, which are still unasserted */
834 	u16 known_attn;
835 
836 	/* Cleanup address for the link's general hw attention */
837 	u32 mfw_attn_addr;
838 };
839 
840 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
841 				 struct ecore_sb_attn_info *p_sb_desc)
842 {
843 	u16 rc = 0, index;
844 
845 	OSAL_MMIOWB(p_hwfn->p_dev);
846 
847 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
848 	if (p_sb_desc->index != index) {
849 		p_sb_desc->index = index;
850 		rc = ECORE_SB_ATT_IDX;
851 	}
852 
853 	OSAL_MMIOWB(p_hwfn->p_dev);
854 
855 	return rc;
856 }
857 
858 /**
859  * @brief ecore_int_assertion - handles asserted attention bits
860  *
861  * @param p_hwfn
862  * @param asserted_bits newly asserted bits
863  * @return enum _ecore_status_t
864  */
865 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
866 						u16 asserted_bits)
867 {
868 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
869 	u32 igu_mask;
870 
871 	/* Mask the source of the attention in the IGU */
872 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
873 			    IGU_REG_ATTENTION_ENABLE);
874 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
875 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
876 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
877 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
878 
879 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
880 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
881 		   sb_attn_sw->known_attn,
882 		   sb_attn_sw->known_attn | asserted_bits);
883 	sb_attn_sw->known_attn |= asserted_bits;
884 
885 	/* Handle MCP events */
886 	if (asserted_bits & 0x100) {
887 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
888 		/* Clean the MCP attention */
889 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
890 			 sb_attn_sw->mfw_attn_addr, 0);
891 	}
892 
893 	/* FIXME - this will change once we'll have GOOD gtt definitions */
894 	DIRECT_REG_WR(p_hwfn,
895 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
896 		      GTT_BAR0_MAP_REG_IGU_CMD +
897 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
898 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
899 
900 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
901 		   asserted_bits);
902 
903 	return ECORE_SUCCESS;
904 }
905 
906 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
907 				 enum block_id id, enum dbg_attn_type type,
908 				 bool b_clear)
909 {
910 	/* @DPDK */
911 	DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
912 }
913 
914 /**
915  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
916  * cause of the attention
917  *
918  * @param p_hwfn
919  * @param p_aeu - descriptor of an AEU bit which caused the attention
920  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
921  *  this bit to this group.
922  * @param bit_index - index of this bit in the aeu_en_reg
923  *
924  * @return enum _ecore_status_t
925  */
926 static enum _ecore_status_t
927 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
928 			      struct aeu_invert_reg_bit *p_aeu,
929 			      u32 aeu_en_reg,
930 			      const char *p_bit_name,
931 			      u32 bitmask)
932 {
933 	enum _ecore_status_t rc = ECORE_INVAL;
934 	bool b_fatal = false;
935 
936 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
937 		p_bit_name, bitmask);
938 
939 	/* Call callback before clearing the interrupt status */
940 	if (p_aeu->cb) {
941 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
942 			p_bit_name);
943 		rc = p_aeu->cb(p_hwfn);
944 	}
945 
946 	if (rc != ECORE_SUCCESS)
947 		b_fatal = true;
948 
949 	/* Print HW block interrupt registers */
950 	if (p_aeu->block_index != MAX_BLOCK_ID) {
951 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
952 				     ATTN_TYPE_INTERRUPT, !b_fatal);
953 }
954 
955 	/* @DPDK */
956 	/* Reach assertion if attention is fatal */
957 	if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
958 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
959 			  p_bit_name);
960 
961 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
962 	}
963 
964 	/* Prevent this Attention from being asserted in the future */
965 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
966 	    p_hwfn->p_dev->attn_clr_en) {
967 		u32 val;
968 		u32 mask = ~bitmask;
969 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
970 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
971 		DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
972 			p_bit_name);
973 	}
974 
975 	return rc;
976 }
977 
978 /**
979  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
980  *
981  * @param p_hwfn
982  * @param p_aeu - descriptor of an AEU bit which caused the parity
983  * @param aeu_en_reg - address of the AEU enable register
984  * @param bit_index
985  */
986 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
987 					 struct aeu_invert_reg_bit *p_aeu,
988 					 u32 aeu_en_reg, u8 bit_index)
989 {
990 	u32 block_id = p_aeu->block_index, mask, val;
991 
992 	DP_NOTICE(p_hwfn->p_dev, false,
993 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
994 		  p_aeu->bit_name, aeu_en_reg, bit_index);
995 
996 	if (block_id != MAX_BLOCK_ID) {
997 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
998 
999 		/* In A0, there's a single parity bit for several blocks */
1000 		if (block_id == BLOCK_BTB) {
1001 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
1002 					     ATTN_TYPE_PARITY, false);
1003 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
1004 					     ATTN_TYPE_PARITY, false);
1005 		}
1006 	}
1007 
1008 	/* Prevent this parity error from being re-asserted */
1009 	mask = ~(0x1 << bit_index);
1010 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1011 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1012 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1013 		p_aeu->bit_name);
1014 }
1015 
1016 /**
1017  * @brief - handles deassertion of previously asserted attentions.
1018  *
1019  * @param p_hwfn
1020  * @param deasserted_bits - newly deasserted bits
1021  * @return enum _ecore_status_t
1022  *
1023  */
1024 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1025 						  u16 deasserted_bits)
1026 {
1027 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1028 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1029 	u8 i, j, k, bit_idx;
1030 	enum _ecore_status_t rc = ECORE_SUCCESS;
1031 
1032 	/* Read the attention registers in the AEU */
1033 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1034 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1035 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1036 					  i * 0x4);
1037 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1038 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1039 	}
1040 
1041 	/* Handle parity attentions first */
1042 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1043 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1044 		u32 parities;
1045 
1046 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1047 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1048 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1049 
1050 		/* Skip register in which no parity bit is currently set */
1051 		if (!parities)
1052 			continue;
1053 
1054 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1055 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1056 
1057 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1058 			    !!(parities & (1 << bit_idx)))
1059 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1060 							     aeu_en, bit_idx);
1061 
1062 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1063 		}
1064 	}
1065 
1066 	/* Find non-parity cause for attention and act */
1067 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1068 		struct aeu_invert_reg_bit *p_aeu;
1069 
1070 		/* Handle only groups whose attention is currently deasserted */
1071 		if (!(deasserted_bits & (1 << k)))
1072 			continue;
1073 
1074 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1075 			u32 bits;
1076 
1077 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1078 				 i * sizeof(u32) +
1079 				 k * sizeof(u32) * NUM_ATTN_REGS;
1080 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1081 			bits = aeu_inv_arr[i] & en;
1082 
1083 			/* Skip if no bit from this group is currently set */
1084 			if (!bits)
1085 				continue;
1086 
1087 			/* Find all set bits from current register which belong
1088 			 * to current group, making them responsible for the
1089 			 * previous assertion.
1090 			 */
1091 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1092 				unsigned long int bitmask;
1093 				u8 bit, bit_len;
1094 
1095 				/* Need to account bits with changed meaning */
1096 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1097 
1098 				bit = bit_idx;
1099 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1100 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1101 					/* Skip Parity */
1102 					bit++;
1103 					bit_len--;
1104 				}
1105 
1106 				/* Find the bits relating to HW-block, then
1107 				 * shift so they'll become LSB.
1108 				 */
1109 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1110 				bitmask >>= bit;
1111 
1112 				if (bitmask) {
1113 					u32 flags = p_aeu->flags;
1114 					char bit_name[30];
1115 					u8 num;
1116 
1117 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1118 								bit_len);
1119 
1120 					/* Some bits represent more than a
1121 					 * a single interrupt. Correctly print
1122 					 * their name.
1123 					 */
1124 					if (ATTENTION_LENGTH(flags) > 2 ||
1125 					    ((flags & ATTENTION_PAR_INT) &&
1126 					    ATTENTION_LENGTH(flags) > 1))
1127 						OSAL_SNPRINTF(bit_name, 30,
1128 							      p_aeu->bit_name,
1129 							      num);
1130 					else
1131 						strlcpy(bit_name,
1132 							p_aeu->bit_name,
1133 							sizeof(bit_name));
1134 
1135 					/* We now need to pass bitmask in its
1136 					 * correct position.
1137 					 */
1138 					bitmask <<= bit;
1139 
1140 					/* Handle source of the attention */
1141 					ecore_int_deassertion_aeu_bit(p_hwfn,
1142 								      p_aeu,
1143 								      aeu_en,
1144 								      bit_name,
1145 								      bitmask);
1146 				}
1147 
1148 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1149 			}
1150 		}
1151 	}
1152 
1153 	/* Clear IGU indication for the deasserted bits */
1154 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1155 	DIRECT_REG_WR(p_hwfn,
1156 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
1157 		      GTT_BAR0_MAP_REG_IGU_CMD +
1158 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1159 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1160 
1161 	/* Unmask deasserted attentions in IGU */
1162 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1163 			    IGU_REG_ATTENTION_ENABLE);
1164 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1165 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1166 
1167 	/* Clear deassertion from inner state */
1168 	sb_attn_sw->known_attn &= ~deasserted_bits;
1169 
1170 	return rc;
1171 }
1172 
1173 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1174 {
1175 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1176 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1177 	u16 index = 0, asserted_bits, deasserted_bits;
1178 	u32 attn_bits = 0, attn_acks = 0;
1179 	enum _ecore_status_t rc = ECORE_SUCCESS;
1180 
1181 	/* Read current attention bits/acks - safeguard against attentions
1182 	 * by guaranting work on a synchronized timeframe
1183 	 */
1184 	do {
1185 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1186 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1187 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1188 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1189 	p_sb_attn->sb_index = index;
1190 
1191 	/* Attention / Deassertion are meaningful (and in correct state)
1192 	 * only when they differ and consistent with known state - deassertion
1193 	 * when previous attention & current ack, and assertion when current
1194 	 * attention with no previous attention
1195 	 */
1196 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1197 	    ~p_sb_attn_sw->known_attn;
1198 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1199 	    p_sb_attn_sw->known_attn;
1200 
1201 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1202 		DP_INFO(p_hwfn,
1203 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1204 			index, attn_bits, attn_acks, asserted_bits,
1205 			deasserted_bits, p_sb_attn_sw->known_attn);
1206 	else if (asserted_bits == 0x100)
1207 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1208 	else
1209 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1210 			   "MFW indication [deassertion]\n");
1211 
1212 	if (asserted_bits) {
1213 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1214 		if (rc)
1215 			return rc;
1216 	}
1217 
1218 	if (deasserted_bits)
1219 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1220 
1221 	return rc;
1222 }
1223 
1224 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1225 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1226 {
1227 	struct igu_prod_cons_update igu_ack = { 0 };
1228 
1229 	igu_ack.sb_id_and_flags =
1230 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1231 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1232 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1233 	     (IGU_SEG_ACCESS_ATTN <<
1234 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1235 
1236 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1237 
1238 	/* Both segments (interrupts & acks) are written to same place address;
1239 	 * Need to guarantee all commands will be received (in-order) by HW.
1240 	 */
1241 	OSAL_MMIOWB(p_hwfn->p_dev);
1242 	OSAL_BARRIER(p_hwfn->p_dev);
1243 }
1244 
1245 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1246 {
1247 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1248 	struct ecore_pi_info *pi_info = OSAL_NULL;
1249 	struct ecore_sb_attn_info *sb_attn;
1250 	struct ecore_sb_info *sb_info;
1251 	int arr_size;
1252 	u16 rc = 0;
1253 
1254 	if (!p_hwfn)
1255 		return;
1256 
1257 	if (!p_hwfn->p_sp_sb) {
1258 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1259 		return;
1260 	}
1261 
1262 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1263 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1264 	if (!sb_info) {
1265 		DP_ERR(p_hwfn->p_dev,
1266 		       "Status block is NULL - cannot ack interrupts\n");
1267 		return;
1268 	}
1269 
1270 	if (!p_hwfn->p_sb_attn) {
1271 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1272 		return;
1273 	}
1274 	sb_attn = p_hwfn->p_sb_attn;
1275 
1276 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1277 		   p_hwfn, p_hwfn->my_id);
1278 
1279 	/* Disable ack for def status block. Required both for msix +
1280 	 * inta in non-mask mode, in inta does no harm.
1281 	 */
1282 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1283 
1284 	/* Gather Interrupts/Attentions information */
1285 	if (!sb_info->sb_virt) {
1286 		DP_ERR(p_hwfn->p_dev,
1287 		       "Interrupt Status block is NULL -"
1288 		       " cannot check for new interrupts!\n");
1289 	} else {
1290 		u32 tmp_index = sb_info->sb_ack;
1291 		rc = ecore_sb_update_sb_idx(sb_info);
1292 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1293 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1294 			   tmp_index, sb_info->sb_ack);
1295 	}
1296 
1297 	if (!sb_attn || !sb_attn->sb_attn) {
1298 		DP_ERR(p_hwfn->p_dev,
1299 		       "Attentions Status block is NULL -"
1300 		       " cannot check for new attentions!\n");
1301 	} else {
1302 		u16 tmp_index = sb_attn->index;
1303 
1304 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1305 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1306 			   "Attention indices: 0x%08x --> 0x%08x\n",
1307 			   tmp_index, sb_attn->index);
1308 	}
1309 
1310 	/* Check if we expect interrupts at this time. if not just ack them */
1311 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1312 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1313 		return;
1314 	}
1315 
1316 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1317 
1318 	if (!p_hwfn->p_dpc_ptt) {
1319 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1320 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1321 		return;
1322 	}
1323 
1324 	if (rc & ECORE_SB_ATT_IDX)
1325 		ecore_int_attentions(p_hwfn);
1326 
1327 	if (rc & ECORE_SB_IDX) {
1328 		int pi;
1329 
1330 		/* Since we only looked at the SB index, it's possible more
1331 		 * than a single protocol-index on the SB incremented.
1332 		 * Iterate over all configured protocol indices and check
1333 		 * whether something happened for each.
1334 		 */
1335 		for (pi = 0; pi < arr_size; pi++) {
1336 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1337 			if (pi_info->comp_cb != OSAL_NULL)
1338 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1339 		}
1340 	}
1341 
1342 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1343 		/* This should be done before the interrupts are enabled,
1344 		 * since otherwise a new attention will be generated.
1345 		 */
1346 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1347 	}
1348 
1349 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1350 }
1351 
1352 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1353 {
1354 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1355 
1356 	if (!p_sb)
1357 		return;
1358 
1359 	if (p_sb->sb_attn) {
1360 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1361 				       p_sb->sb_phys,
1362 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1363 	}
1364 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1365 }
1366 
1367 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1368 				    struct ecore_ptt *p_ptt)
1369 {
1370 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1371 
1372 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1373 
1374 	sb_info->index = 0;
1375 	sb_info->known_attn = 0;
1376 
1377 	/* Configure Attention Status Block in IGU */
1378 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1379 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1380 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1381 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1382 }
1383 
1384 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1385 				   struct ecore_ptt *p_ptt,
1386 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1387 {
1388 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1389 	int i, j, k;
1390 
1391 	sb_info->sb_attn = sb_virt_addr;
1392 	sb_info->sb_phys = sb_phy_addr;
1393 
1394 	/* Set the pointer to the AEU descriptors */
1395 	sb_info->p_aeu_desc = aeu_descs;
1396 
1397 	/* Calculate Parity Masks */
1398 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1399 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1400 		/* j is array index, k is bit index */
1401 		for (j = 0, k = 0; k < 32; j++) {
1402 			struct aeu_invert_reg_bit *p_aeu;
1403 
1404 			p_aeu = &aeu_descs[i].bits[j];
1405 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1406 				sb_info->parity_mask[i] |= 1 << k;
1407 
1408 			k += ATTENTION_LENGTH(p_aeu->flags);
1409 		}
1410 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1411 			   "Attn Mask [Reg %d]: 0x%08x\n",
1412 			   i, sb_info->parity_mask[i]);
1413 	}
1414 
1415 	/* Set the address of cleanup for the mcp attention */
1416 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1417 	    MISC_REG_AEU_GENERAL_ATTN_0;
1418 
1419 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1420 }
1421 
1422 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1423 						    struct ecore_ptt *p_ptt)
1424 {
1425 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1426 	struct ecore_sb_attn_info *p_sb;
1427 	dma_addr_t p_phys = 0;
1428 	void *p_virt;
1429 
1430 	/* SB struct */
1431 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1432 	if (!p_sb) {
1433 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1434 		return ECORE_NOMEM;
1435 	}
1436 
1437 	/* SB ring  */
1438 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1439 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1440 	if (!p_virt) {
1441 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1442 		OSAL_FREE(p_dev, p_sb);
1443 		return ECORE_NOMEM;
1444 	}
1445 
1446 	/* Attention setup */
1447 	p_hwfn->p_sb_attn = p_sb;
1448 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1449 
1450 	return ECORE_SUCCESS;
1451 }
1452 
1453 /* coalescing timeout = timeset << (timer_res + 1) */
1454 #define ECORE_CAU_DEF_RX_USECS 24
1455 #define ECORE_CAU_DEF_TX_USECS 48
1456 
1457 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1458 			     struct cau_sb_entry *p_sb_entry,
1459 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1460 {
1461 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1462 	u32 cau_state;
1463 	u8 timer_res;
1464 
1465 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1466 
1467 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1468 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1469 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1470 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1471 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1472 
1473 	cau_state = CAU_HC_DISABLE_STATE;
1474 
1475 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1476 		cau_state = CAU_HC_ENABLE_STATE;
1477 		if (!p_dev->rx_coalesce_usecs)
1478 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1479 		if (!p_dev->tx_coalesce_usecs)
1480 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1481 	}
1482 
1483 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1484 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1485 		timer_res = 0;
1486 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1487 		timer_res = 1;
1488 	else
1489 		timer_res = 2;
1490 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1491 
1492 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1493 		timer_res = 0;
1494 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1495 		timer_res = 1;
1496 	else
1497 		timer_res = 2;
1498 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1499 
1500 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1501 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1502 }
1503 
1504 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1505 				   struct ecore_ptt *p_ptt,
1506 				   u16 igu_sb_id, u32 pi_index,
1507 				   enum ecore_coalescing_fsm coalescing_fsm,
1508 				   u8 timeset)
1509 {
1510 	struct cau_pi_entry pi_entry;
1511 	u32 sb_offset, pi_offset;
1512 
1513 	if (IS_VF(p_hwfn->p_dev))
1514 		return;/* @@@TBD MichalK- VF CAU... */
1515 
1516 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1517 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1518 
1519 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1520 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1521 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1522 	else
1523 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1524 
1525 	pi_offset = sb_offset + pi_index;
1526 	if (p_hwfn->hw_init_done) {
1527 		ecore_wr(p_hwfn, p_ptt,
1528 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1529 			 *((u32 *)&(pi_entry)));
1530 	} else {
1531 		STORE_RT_REG(p_hwfn,
1532 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1533 			     *((u32 *)&(pi_entry)));
1534 	}
1535 }
1536 
1537 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1538 			   struct ecore_ptt *p_ptt,
1539 			   struct ecore_sb_info *p_sb, u32 pi_index,
1540 			   enum ecore_coalescing_fsm coalescing_fsm,
1541 			   u8 timeset)
1542 {
1543 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1544 			       pi_index, coalescing_fsm, timeset);
1545 }
1546 
1547 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1548 			   struct ecore_ptt *p_ptt,
1549 			   dma_addr_t sb_phys, u16 igu_sb_id,
1550 			   u16 vf_number, u8 vf_valid)
1551 {
1552 	struct cau_sb_entry sb_entry;
1553 
1554 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1555 				vf_number, vf_valid);
1556 
1557 	if (p_hwfn->hw_init_done) {
1558 		/* Wide-bus, initialize via DMAE */
1559 		u64 phys_addr = (u64)sb_phys;
1560 
1561 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1562 				    (u64)(osal_uintptr_t)&phys_addr,
1563 				    CAU_REG_SB_ADDR_MEMORY +
1564 				    igu_sb_id * sizeof(u64), 2,
1565 				    OSAL_NULL /* default parameters */);
1566 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1567 				    (u64)(osal_uintptr_t)&sb_entry,
1568 				    CAU_REG_SB_VAR_MEMORY +
1569 				    igu_sb_id * sizeof(u64), 2,
1570 				    OSAL_NULL /* default parameters */);
1571 	} else {
1572 		/* Initialize Status Block Address */
1573 		STORE_RT_REG_AGG(p_hwfn,
1574 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1575 				 igu_sb_id * 2, sb_phys);
1576 
1577 		STORE_RT_REG_AGG(p_hwfn,
1578 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1579 				 igu_sb_id * 2, sb_entry);
1580 	}
1581 
1582 	/* Configure pi coalescing if set */
1583 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1584 		/* eth will open queues for all tcs, so configure all of them
1585 		 * properly, rather than just the active ones
1586 		 */
1587 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1588 
1589 		u8 timeset, timer_res;
1590 		u8 i;
1591 
1592 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1593 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1594 			timer_res = 0;
1595 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1596 			timer_res = 1;
1597 		else
1598 			timer_res = 2;
1599 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1600 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1601 				       ECORE_COAL_RX_STATE_MACHINE,
1602 				       timeset);
1603 
1604 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1605 			timer_res = 0;
1606 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1607 			timer_res = 1;
1608 		else
1609 			timer_res = 2;
1610 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1611 		for (i = 0; i < num_tc; i++) {
1612 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1613 					       igu_sb_id, TX_PI(i),
1614 					       ECORE_COAL_TX_STATE_MACHINE,
1615 					       timeset);
1616 		}
1617 	}
1618 }
1619 
1620 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1621 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1622 {
1623 	/* zero status block and ack counter */
1624 	sb_info->sb_ack = 0;
1625 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1626 
1627 	if (IS_PF(p_hwfn->p_dev))
1628 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1629 				      sb_info->igu_sb_id, 0, 0);
1630 }
1631 
1632 struct ecore_igu_block *
1633 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1634 {
1635 	struct ecore_igu_block *p_block;
1636 	u16 igu_id;
1637 
1638 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1639 	     igu_id++) {
1640 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1641 
1642 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1643 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1644 			continue;
1645 
1646 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1647 		    b_is_pf)
1648 			return p_block;
1649 	}
1650 
1651 	return OSAL_NULL;
1652 }
1653 
1654 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1655 				  u16 vector_id)
1656 {
1657 	struct ecore_igu_block *p_block;
1658 	u16 igu_id;
1659 
1660 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1661 	     igu_id++) {
1662 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1663 
1664 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1665 		    !p_block->is_pf ||
1666 		    p_block->vector_number != vector_id)
1667 			continue;
1668 
1669 		return igu_id;
1670 	}
1671 
1672 	return ECORE_SB_INVALID_IDX;
1673 }
1674 
1675 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1676 {
1677 	u16 igu_sb_id;
1678 
1679 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1680 	if (sb_id == ECORE_SP_SB_ID)
1681 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1682 	else if (IS_PF(p_hwfn->p_dev))
1683 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1684 	else
1685 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1686 
1687 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1688 		DP_NOTICE(p_hwfn, true,
1689 			  "Slowpath SB vector %04x doesn't exist\n",
1690 			  sb_id);
1691 	else if (sb_id == ECORE_SP_SB_ID)
1692 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1693 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1694 	else
1695 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1696 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1697 
1698 	return igu_sb_id;
1699 }
1700 
1701 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1702 				       struct ecore_ptt *p_ptt,
1703 				       struct ecore_sb_info *sb_info,
1704 				       void *sb_virt_addr,
1705 				       dma_addr_t sb_phy_addr, u16 sb_id)
1706 {
1707 	sb_info->sb_virt = sb_virt_addr;
1708 	sb_info->sb_phys = sb_phy_addr;
1709 
1710 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1711 
1712 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1713 		return ECORE_INVAL;
1714 
1715 	/* Let the igu info reference the client's SB info */
1716 	if (sb_id != ECORE_SP_SB_ID) {
1717 		if (IS_PF(p_hwfn->p_dev)) {
1718 			struct ecore_igu_info *p_info;
1719 			struct ecore_igu_block *p_block;
1720 
1721 			p_info = p_hwfn->hw_info.p_igu_info;
1722 			p_block = &p_info->entry[sb_info->igu_sb_id];
1723 
1724 			p_block->sb_info = sb_info;
1725 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1726 			p_info->usage.free_cnt--;
1727 		} else {
1728 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1729 		}
1730 	}
1731 #ifdef ECORE_CONFIG_DIRECT_HWFN
1732 	sb_info->p_hwfn = p_hwfn;
1733 #endif
1734 	sb_info->p_dev = p_hwfn->p_dev;
1735 
1736 	/* The igu address will hold the absolute address that needs to be
1737 	 * written to for a specific status block
1738 	 */
1739 	if (IS_PF(p_hwfn->p_dev)) {
1740 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1741 		    GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1742 
1743 	} else {
1744 		sb_info->igu_addr =
1745 		    (u8 OSAL_IOMEM *)p_hwfn->regview +
1746 		    PXP_VF_BAR0_START_IGU +
1747 		    ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1748 	}
1749 
1750 	sb_info->flags |= ECORE_SB_INFO_INIT;
1751 
1752 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1753 
1754 	return ECORE_SUCCESS;
1755 }
1756 
1757 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1758 					  struct ecore_sb_info *sb_info,
1759 					  u16 sb_id)
1760 {
1761 	struct ecore_igu_info *p_info;
1762 	struct ecore_igu_block *p_block;
1763 
1764 	if (sb_info == OSAL_NULL)
1765 		return ECORE_SUCCESS;
1766 
1767 	/* zero status block and ack counter */
1768 	sb_info->sb_ack = 0;
1769 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1770 
1771 	if (IS_VF(p_hwfn->p_dev)) {
1772 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1773 		return ECORE_SUCCESS;
1774 	}
1775 
1776 	p_info = p_hwfn->hw_info.p_igu_info;
1777 	p_block = &p_info->entry[sb_info->igu_sb_id];
1778 
1779 	/* Vector 0 is reserved to Default SB */
1780 	if (p_block->vector_number == 0) {
1781 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1782 		return ECORE_INVAL;
1783 	}
1784 
1785 	/* Lose reference to client's SB info, and fix counters */
1786 	p_block->sb_info = OSAL_NULL;
1787 	p_block->status |= ECORE_IGU_STATUS_FREE;
1788 	p_info->usage.free_cnt++;
1789 
1790 	return ECORE_SUCCESS;
1791 }
1792 
1793 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1794 {
1795 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1796 
1797 	if (!p_sb)
1798 		return;
1799 
1800 	if (p_sb->sb_info.sb_virt) {
1801 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1802 				       p_sb->sb_info.sb_virt,
1803 				       p_sb->sb_info.sb_phys,
1804 				       SB_ALIGNED_SIZE(p_hwfn));
1805 	}
1806 
1807 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1808 }
1809 
1810 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1811 						  struct ecore_ptt *p_ptt)
1812 {
1813 	struct ecore_sb_sp_info *p_sb;
1814 	dma_addr_t p_phys = 0;
1815 	void *p_virt;
1816 
1817 	/* SB struct */
1818 	p_sb =
1819 	    OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1820 		       sizeof(*p_sb));
1821 	if (!p_sb) {
1822 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1823 		return ECORE_NOMEM;
1824 	}
1825 
1826 	/* SB ring  */
1827 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1828 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1829 	if (!p_virt) {
1830 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1831 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1832 		return ECORE_NOMEM;
1833 	}
1834 
1835 	/* Status Block setup */
1836 	p_hwfn->p_sp_sb = p_sb;
1837 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1838 			  p_virt, p_phys, ECORE_SP_SB_ID);
1839 
1840 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1841 
1842 	return ECORE_SUCCESS;
1843 }
1844 
1845 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1846 					   ecore_int_comp_cb_t comp_cb,
1847 					   void *cookie,
1848 					   u8 *sb_idx, __le16 **p_fw_cons)
1849 {
1850 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1851 	enum _ecore_status_t rc = ECORE_NOMEM;
1852 	u8 pi;
1853 
1854 	/* Look for a free index */
1855 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1856 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1857 			continue;
1858 
1859 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1860 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1861 		*sb_idx = pi;
1862 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1863 		rc = ECORE_SUCCESS;
1864 		break;
1865 	}
1866 
1867 	return rc;
1868 }
1869 
1870 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1871 {
1872 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1873 
1874 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1875 		return ECORE_NOMEM;
1876 
1877 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1878 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1879 	return ECORE_SUCCESS;
1880 }
1881 
1882 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1883 {
1884 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1885 }
1886 
1887 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1888 			      struct ecore_ptt *p_ptt,
1889 			      enum ecore_int_mode int_mode)
1890 {
1891 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1892 
1893 #ifndef ASIC_ONLY
1894 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1895 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1896 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1897 	}
1898 #endif
1899 
1900 	p_hwfn->p_dev->int_mode = int_mode;
1901 	switch (p_hwfn->p_dev->int_mode) {
1902 	case ECORE_INT_MODE_INTA:
1903 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1904 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1905 		break;
1906 
1907 	case ECORE_INT_MODE_MSI:
1908 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1909 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1910 		break;
1911 
1912 	case ECORE_INT_MODE_MSIX:
1913 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1914 		break;
1915 	case ECORE_INT_MODE_POLL:
1916 		break;
1917 	}
1918 
1919 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1920 }
1921 
1922 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1923 				      struct ecore_ptt *p_ptt)
1924 {
1925 #ifndef ASIC_ONLY
1926 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1927 		DP_INFO(p_hwfn,
1928 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1929 		return;
1930 	}
1931 #endif
1932 
1933 	/* Configure AEU signal change to produce attentions */
1934 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1935 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1936 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1937 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1938 
1939 	/* Flush the writes to IGU */
1940 	OSAL_MMIOWB(p_hwfn->p_dev);
1941 
1942 	/* Unmask AEU signals toward IGU */
1943 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1944 }
1945 
1946 enum _ecore_status_t
1947 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1948 			  enum ecore_int_mode int_mode)
1949 {
1950 	enum _ecore_status_t rc = ECORE_SUCCESS;
1951 
1952 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1953 
1954 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1955 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1956 		if (rc != ECORE_SUCCESS) {
1957 			DP_NOTICE(p_hwfn, true,
1958 				  "Slowpath IRQ request failed\n");
1959 			return ECORE_NORESOURCES;
1960 		}
1961 		p_hwfn->b_int_requested = true;
1962 	}
1963 
1964 	/* Enable interrupt Generation */
1965 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1966 
1967 	p_hwfn->b_int_enabled = 1;
1968 
1969 	return rc;
1970 }
1971 
1972 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1973 			       struct ecore_ptt *p_ptt)
1974 {
1975 	p_hwfn->b_int_enabled = 0;
1976 
1977 	if (IS_VF(p_hwfn->p_dev))
1978 		return;
1979 
1980 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1981 }
1982 
1983 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1984 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1985 				     struct ecore_ptt *p_ptt,
1986 				     u32 igu_sb_id,
1987 				     bool cleanup_set,
1988 				     u16 opaque_fid)
1989 {
1990 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1991 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1992 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1993 	u8 type = 0;		/* FIXME MichalS type??? */
1994 
1995 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1996 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1997 
1998 	/* USE Control Command Register to perform cleanup. There is an
1999 	 * option to do this using IGU bar, but then it can't be used for VFs.
2000 	 */
2001 
2002 	/* Set the data field */
2003 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
2004 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
2005 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
2006 
2007 	/* Set the control register */
2008 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
2009 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
2010 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2011 
2012 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2013 
2014 	OSAL_BARRIER(p_hwfn->p_dev);
2015 
2016 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2017 
2018 	/* Flush the write to IGU */
2019 	OSAL_MMIOWB(p_hwfn->p_dev);
2020 
2021 	/* calculate where to read the status bit from */
2022 	sb_bit = 1 << (igu_sb_id % 32);
2023 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2024 
2025 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2026 
2027 	/* Now wait for the command to complete */
2028 	while (--sleep_cnt) {
2029 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2030 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2031 			break;
2032 		OSAL_MSLEEP(5);
2033 	}
2034 
2035 	if (!sleep_cnt)
2036 		DP_NOTICE(p_hwfn, true,
2037 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2038 			  val, igu_sb_id);
2039 }
2040 
2041 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2042 				       struct ecore_ptt *p_ptt,
2043 				       u16 igu_sb_id, u16 opaque, bool b_set)
2044 {
2045 	struct ecore_igu_block *p_block;
2046 	int pi, i;
2047 
2048 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2049 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2050 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2051 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2052 		   p_block->vector_number);
2053 
2054 	/* Set */
2055 	if (b_set)
2056 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2057 
2058 	/* Clear */
2059 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2060 
2061 	/* Wait for the IGU SB to cleanup */
2062 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2063 		u32 val;
2064 
2065 		val = ecore_rd(p_hwfn, p_ptt,
2066 			       IGU_REG_WRITE_DONE_PENDING +
2067 			       ((igu_sb_id / 32) * 4));
2068 		if (val & (1 << (igu_sb_id % 32)))
2069 			OSAL_UDELAY(10);
2070 		else
2071 			break;
2072 	}
2073 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2074 		DP_NOTICE(p_hwfn, true,
2075 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2076 			  igu_sb_id);
2077 
2078 	/* Clear the CAU for the SB */
2079 	for (pi = 0; pi < 12; pi++)
2080 		ecore_wr(p_hwfn, p_ptt,
2081 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2082 }
2083 
2084 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2085 				struct ecore_ptt *p_ptt,
2086 				bool b_set, bool b_slowpath)
2087 {
2088 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2089 	struct ecore_igu_block *p_block;
2090 	u16 igu_sb_id = 0;
2091 	u32 val = 0;
2092 
2093 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2094 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2095 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2096 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2097 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2098 	/* end temporary */
2099 
2100 	for (igu_sb_id = 0;
2101 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2102 	     igu_sb_id++) {
2103 		p_block = &p_info->entry[igu_sb_id];
2104 
2105 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2106 		    !p_block->is_pf ||
2107 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2108 			continue;
2109 
2110 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2111 						  p_hwfn->hw_info.opaque_fid,
2112 						  b_set);
2113 	}
2114 
2115 	if (b_slowpath)
2116 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2117 						  p_info->igu_dsb_id,
2118 						  p_hwfn->hw_info.opaque_fid,
2119 						  b_set);
2120 }
2121 
2122 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2123 			    struct ecore_ptt *p_ptt)
2124 {
2125 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2126 	struct ecore_igu_block *p_block;
2127 	int pf_sbs, vf_sbs;
2128 	u16 igu_sb_id;
2129 	u32 val, rval;
2130 
2131 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2132 		/* We're using an old MFW - have to prevent any switching
2133 		 * of SBs between PF and VFs as later driver wouldn't be
2134 		 * able to tell which belongs to which.
2135 		 */
2136 		p_info->b_allow_pf_vf_change = false;
2137 	} else {
2138 		/* Use the numbers the MFW have provided -
2139 		 * don't forget MFW accounts for the default SB as well.
2140 		 */
2141 		p_info->b_allow_pf_vf_change = true;
2142 
2143 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2144 			DP_INFO(p_hwfn,
2145 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2146 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2147 				p_info->usage.cnt);
2148 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2149 		}
2150 
2151 		/* TODO - how do we learn about VF SBs from MFW? */
2152 		if (IS_PF_SRIOV(p_hwfn)) {
2153 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2154 
2155 			if (vfs != p_info->usage.iov_cnt)
2156 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2157 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2158 					   p_info->usage.iov_cnt, vfs);
2159 
2160 			/* At this point we know how many SBs we have totally
2161 			 * in IGU + number of PF SBs. So we can validate that
2162 			 * we'd have sufficient for VF.
2163 			 */
2164 			if (vfs > p_info->usage.free_cnt +
2165 				  p_info->usage.free_cnt_iov -
2166 				  p_info->usage.cnt) {
2167 				DP_NOTICE(p_hwfn, true,
2168 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2169 					  p_info->usage.free_cnt +
2170 					  p_info->usage.free_cnt_iov,
2171 					  p_info->usage.cnt, vfs);
2172 				return ECORE_INVAL;
2173 			}
2174 		}
2175 	}
2176 
2177 	/* Cap the number of VFs SBs by the number of VFs */
2178 	if (IS_PF_SRIOV(p_hwfn))
2179 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2180 
2181 	/* Mark all SBs as free, now in the right PF/VFs division */
2182 	p_info->usage.free_cnt = p_info->usage.cnt;
2183 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2184 	p_info->usage.orig = p_info->usage.cnt;
2185 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2186 
2187 	/* We now proceed to re-configure the IGU cam to reflect the initial
2188 	 * configuration. We can start with the Default SB.
2189 	 */
2190 	pf_sbs = p_info->usage.cnt;
2191 	vf_sbs = p_info->usage.iov_cnt;
2192 
2193 	for (igu_sb_id = p_info->igu_dsb_id;
2194 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2195 	     igu_sb_id++) {
2196 		p_block = &p_info->entry[igu_sb_id];
2197 		val = 0;
2198 
2199 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2200 			continue;
2201 
2202 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2203 			p_block->function_id = p_hwfn->rel_pf_id;
2204 			p_block->is_pf = 1;
2205 			p_block->vector_number = 0;
2206 			p_block->status = ECORE_IGU_STATUS_VALID |
2207 					  ECORE_IGU_STATUS_PF |
2208 					  ECORE_IGU_STATUS_DSB;
2209 		} else if (pf_sbs) {
2210 			pf_sbs--;
2211 			p_block->function_id = p_hwfn->rel_pf_id;
2212 			p_block->is_pf = 1;
2213 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2214 			p_block->status = ECORE_IGU_STATUS_VALID |
2215 					  ECORE_IGU_STATUS_PF |
2216 					  ECORE_IGU_STATUS_FREE;
2217 		} else if (vf_sbs) {
2218 			p_block->function_id =
2219 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2220 				p_info->usage.iov_cnt - vf_sbs;
2221 			p_block->is_pf = 0;
2222 			p_block->vector_number = 0;
2223 			p_block->status = ECORE_IGU_STATUS_VALID |
2224 					  ECORE_IGU_STATUS_FREE;
2225 			vf_sbs--;
2226 		} else {
2227 			p_block->function_id = 0;
2228 			p_block->is_pf = 0;
2229 			p_block->vector_number = 0;
2230 		}
2231 
2232 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2233 			  p_block->function_id);
2234 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2235 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2236 			  p_block->vector_number);
2237 
2238 		/* VF entries would be enabled when VF is initializaed */
2239 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2240 
2241 		rval = ecore_rd(p_hwfn, p_ptt,
2242 				IGU_REG_MAPPING_MEMORY +
2243 				sizeof(u32) * igu_sb_id);
2244 
2245 		if (rval != val) {
2246 			ecore_wr(p_hwfn, p_ptt,
2247 				 IGU_REG_MAPPING_MEMORY +
2248 				 sizeof(u32) * igu_sb_id,
2249 				 val);
2250 
2251 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2252 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2253 				   igu_sb_id, p_block->function_id,
2254 				   p_block->is_pf, p_block->vector_number,
2255 				   rval, val);
2256 		}
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2263 				    struct ecore_ptt *p_ptt)
2264 {
2265 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2266 
2267 	/* Return all the usage indications to default prior to the reset;
2268 	 * The reset expects the !orig to reflect the initial status of the
2269 	 * SBs, and would re-calculate the originals based on those.
2270 	 */
2271 	p_cnt->cnt = p_cnt->orig;
2272 	p_cnt->free_cnt = p_cnt->orig;
2273 	p_cnt->iov_cnt = p_cnt->iov_orig;
2274 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2275 	p_cnt->orig = 0;
2276 	p_cnt->iov_orig = 0;
2277 
2278 	/* TODO - we probably need to re-configure the CAU as well... */
2279 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2280 }
2281 
2282 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2283 					 struct ecore_ptt *p_ptt,
2284 					 u16 igu_sb_id)
2285 {
2286 	u32 val = ecore_rd(p_hwfn, p_ptt,
2287 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2288 	struct ecore_igu_block *p_block;
2289 
2290 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2291 
2292 	/* Fill the block information */
2293 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2294 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2295 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2296 
2297 	p_block->igu_sb_id = igu_sb_id;
2298 }
2299 
2300 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2301 					    struct ecore_ptt *p_ptt)
2302 {
2303 	struct ecore_igu_info *p_igu_info;
2304 	struct ecore_igu_block *p_block;
2305 	u32 min_vf = 0, max_vf = 0;
2306 	u16 igu_sb_id;
2307 
2308 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2309 						 GFP_KERNEL,
2310 						 sizeof(*p_igu_info));
2311 	if (!p_hwfn->hw_info.p_igu_info)
2312 		return ECORE_NOMEM;
2313 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2314 
2315 	/* Distinguish between existent and onn-existent default SB */
2316 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2317 
2318 	/* Find the range of VF ids whose SB belong to this PF */
2319 	if (p_hwfn->p_dev->p_iov_info) {
2320 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2321 
2322 		min_vf = p_iov->first_vf_in_pf;
2323 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2324 	}
2325 
2326 	for (igu_sb_id = 0;
2327 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2328 	     igu_sb_id++) {
2329 		/* Read current entry; Notice it might not belong to this PF */
2330 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2331 		p_block = &p_igu_info->entry[igu_sb_id];
2332 
2333 		if ((p_block->is_pf) &&
2334 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2335 			p_block->status = ECORE_IGU_STATUS_PF |
2336 					  ECORE_IGU_STATUS_VALID |
2337 					  ECORE_IGU_STATUS_FREE;
2338 
2339 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2340 				p_igu_info->usage.cnt++;
2341 		} else if (!(p_block->is_pf) &&
2342 			   (p_block->function_id >= min_vf) &&
2343 			   (p_block->function_id < max_vf)) {
2344 			/* Available for VFs of this PF */
2345 			p_block->status = ECORE_IGU_STATUS_VALID |
2346 					  ECORE_IGU_STATUS_FREE;
2347 
2348 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2349 				p_igu_info->usage.iov_cnt++;
2350 		}
2351 
2352 		/* Mark the First entry belonging to the PF or its VFs
2353 		 * as the default SB [we'll reset IGU prior to first usage].
2354 		 */
2355 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2356 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2357 			p_igu_info->igu_dsb_id = igu_sb_id;
2358 			p_block->status |= ECORE_IGU_STATUS_DSB;
2359 		}
2360 
2361 		/* While this isn't suitable for all clients, limit number
2362 		 * of prints by having each PF print only its entries with the
2363 		 * exception of PF0 which would print everything.
2364 		 */
2365 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2366 		    (p_hwfn->abs_pf_id == 0))
2367 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2368 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2369 				   igu_sb_id, p_block->function_id,
2370 				   p_block->is_pf, p_block->vector_number);
2371 	}
2372 
2373 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2374 		DP_NOTICE(p_hwfn, true,
2375 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2376 			  p_igu_info->igu_dsb_id);
2377 		return ECORE_INVAL;
2378 	}
2379 
2380 	/* All non default SB are considered free at this point */
2381 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2382 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2383 
2384 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2385 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2386 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2387 		   p_igu_info->usage.iov_cnt);
2388 
2389 	return ECORE_SUCCESS;
2390 }
2391 
2392 enum _ecore_status_t
2393 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2394 			  u16 sb_id, bool b_to_vf)
2395 {
2396 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2397 	struct ecore_igu_block *p_block = OSAL_NULL;
2398 	u16 igu_sb_id = 0, vf_num = 0;
2399 	u32 val = 0;
2400 
2401 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2402 		return ECORE_INVAL;
2403 
2404 	if (sb_id == ECORE_SP_SB_ID)
2405 		return ECORE_INVAL;
2406 
2407 	if (!p_info->b_allow_pf_vf_change) {
2408 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2409 		return ECORE_INVAL;
2410 	}
2411 
2412 	/* If we're moving a SB from PF to VF, the client had to specify
2413 	 * which vector it wants to move.
2414 	 */
2415 	if (b_to_vf) {
2416 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2417 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2418 			return ECORE_INVAL;
2419 	}
2420 
2421 	/* If we're moving a SB from VF to PF, need to validate there isn't
2422 	 * already a line configured for that vector.
2423 	 */
2424 	if (!b_to_vf) {
2425 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2426 		    ECORE_SB_INVALID_IDX)
2427 			return ECORE_INVAL;
2428 	}
2429 
2430 	/* We need to validate that the SB can actually be relocated.
2431 	 * This would also handle the previous case where we've explicitly
2432 	 * stated which IGU SB needs to move.
2433 	 */
2434 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2435 	     igu_sb_id++) {
2436 		p_block = &p_info->entry[igu_sb_id];
2437 
2438 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2439 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2440 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2441 			if (b_to_vf)
2442 				return ECORE_INVAL;
2443 			else
2444 				continue;
2445 		}
2446 
2447 		break;
2448 	}
2449 
2450 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2451 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2452 			   "Failed to find a free SB to move\n");
2453 		return ECORE_INVAL;
2454 	}
2455 
2456 	/* At this point, p_block points to the SB we want to relocate */
2457 	if (b_to_vf) {
2458 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2459 
2460 		/* It doesn't matter which VF number we choose, since we're
2461 		 * going to disable the line; But let's keep it in range.
2462 		 */
2463 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2464 
2465 		p_block->function_id = (u8)vf_num;
2466 		p_block->is_pf = 0;
2467 		p_block->vector_number = 0;
2468 
2469 		p_info->usage.cnt--;
2470 		p_info->usage.free_cnt--;
2471 		p_info->usage.iov_cnt++;
2472 		p_info->usage.free_cnt_iov++;
2473 
2474 		/* TODO - if SBs aren't really the limiting factor,
2475 		 * then it might not be accurate [in the since that
2476 		 * we might not need decrement the feature].
2477 		 */
2478 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2479 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2480 	} else {
2481 		p_block->status |= ECORE_IGU_STATUS_PF;
2482 		p_block->function_id = p_hwfn->rel_pf_id;
2483 		p_block->is_pf = 1;
2484 		p_block->vector_number = sb_id + 1;
2485 
2486 		p_info->usage.cnt++;
2487 		p_info->usage.free_cnt++;
2488 		p_info->usage.iov_cnt--;
2489 		p_info->usage.free_cnt_iov--;
2490 
2491 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2492 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2493 	}
2494 
2495 	/* Update the IGU and CAU with the new configuration */
2496 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2497 		  p_block->function_id);
2498 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2499 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2500 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2501 		  p_block->vector_number);
2502 
2503 	ecore_wr(p_hwfn, p_ptt,
2504 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2505 		 val);
2506 
2507 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2508 			      igu_sb_id, vf_num,
2509 			      p_block->is_pf ? 0 : 1);
2510 
2511 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2512 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2513 		   igu_sb_id, p_block->function_id,
2514 		   p_block->is_pf, p_block->vector_number);
2515 
2516 	return ECORE_SUCCESS;
2517 }
2518 
2519 /**
2520  * @brief Initialize igu runtime registers
2521  *
2522  * @param p_hwfn
2523  */
2524 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2525 {
2526 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2527 
2528 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2529 }
2530 
2531 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2532 			  IGU_CMD_INT_ACK_BASE)
2533 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2534 			  IGU_CMD_INT_ACK_BASE)
2535 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2536 {
2537 	u32 intr_status_hi = 0, intr_status_lo = 0;
2538 	u64 intr_status = 0;
2539 
2540 	intr_status_lo = REG_RD(p_hwfn,
2541 				GTT_BAR0_MAP_REG_IGU_CMD +
2542 				LSB_IGU_CMD_ADDR * 8);
2543 	intr_status_hi = REG_RD(p_hwfn,
2544 				GTT_BAR0_MAP_REG_IGU_CMD +
2545 				MSB_IGU_CMD_ADDR * 8);
2546 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2547 
2548 	return intr_status;
2549 }
2550 
2551 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2552 {
2553 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2554 	p_hwfn->b_sp_dpc_enabled = true;
2555 }
2556 
2557 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2558 {
2559 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2560 	if (!p_hwfn->sp_dpc)
2561 		return ECORE_NOMEM;
2562 
2563 	return ECORE_SUCCESS;
2564 }
2565 
2566 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2567 {
2568 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2569 }
2570 
2571 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2572 				     struct ecore_ptt *p_ptt)
2573 {
2574 	enum _ecore_status_t rc = ECORE_SUCCESS;
2575 
2576 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2577 	if (rc != ECORE_SUCCESS) {
2578 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2579 		return rc;
2580 	}
2581 
2582 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2583 	if (rc != ECORE_SUCCESS) {
2584 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2585 		return rc;
2586 	}
2587 
2588 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2589 	if (rc != ECORE_SUCCESS)
2590 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2591 
2592 	return rc;
2593 }
2594 
2595 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2596 {
2597 	ecore_int_sp_sb_free(p_hwfn);
2598 	ecore_int_sb_attn_free(p_hwfn);
2599 	ecore_int_sp_dpc_free(p_hwfn);
2600 }
2601 
2602 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2603 {
2604 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2605 		return;
2606 
2607 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2608 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2609 	ecore_int_sp_dpc_setup(p_hwfn);
2610 }
2611 
2612 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2613 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2614 {
2615 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2616 
2617 	if (!p_igu_info || !p_sb_cnt_info)
2618 		return;
2619 
2620 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2621 		    sizeof(*p_sb_cnt_info));
2622 }
2623 
2624 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2625 {
2626 	int i;
2627 
2628 	for_each_hwfn(p_dev, i)
2629 		p_dev->hwfns[i].b_int_requested = false;
2630 }
2631 
2632 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2633 {
2634 	p_dev->attn_clr_en = clr_enable;
2635 }
2636 
2637 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2638 					     struct ecore_ptt *p_ptt,
2639 					     u8 timer_res, u16 sb_id, bool tx)
2640 {
2641 	struct cau_sb_entry sb_entry;
2642 	enum _ecore_status_t rc;
2643 
2644 	if (!p_hwfn->hw_init_done) {
2645 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2646 		return ECORE_INVAL;
2647 	}
2648 
2649 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2650 				 sb_id * sizeof(u64),
2651 				 (u64)(osal_uintptr_t)&sb_entry, 2,
2652 				 OSAL_NULL /* default parameters */);
2653 	if (rc != ECORE_SUCCESS) {
2654 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2655 		return rc;
2656 	}
2657 
2658 	if (tx)
2659 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2660 	else
2661 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2662 
2663 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2664 				 (u64)(osal_uintptr_t)&sb_entry,
2665 				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2666 				 OSAL_NULL /* default parameters */);
2667 	if (rc != ECORE_SUCCESS) {
2668 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2669 		return rc;
2670 	}
2671 
2672 	return rc;
2673 }
2674 
2675 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2676 					  struct ecore_ptt *p_ptt,
2677 					  struct ecore_sb_info *p_sb,
2678 					  struct ecore_sb_info_dbg *p_info)
2679 {
2680 	u16 sbid = p_sb->igu_sb_id;
2681 	int i;
2682 
2683 	if (IS_VF(p_hwfn->p_dev))
2684 		return ECORE_INVAL;
2685 
2686 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2687 		return ECORE_INVAL;
2688 
2689 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2690 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2691 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2692 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2693 
2694 	for (i = 0; i < PIS_PER_SB_E4; i++)
2695 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2696 					      CAU_REG_PI_MEMORY +
2697 					      sbid * 4 * PIS_PER_SB_E4 +
2698 					      i * 4);
2699 
2700 	return ECORE_SUCCESS;
2701 }
2702 
2703 void ecore_pf_flr_igu_cleanup(struct ecore_hwfn *p_hwfn)
2704 {
2705 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2706 	struct ecore_ptt *p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2707 							     RESERVED_PTT_DPC);
2708 	int i;
2709 
2710 	/* Do not reorder the following cleanup sequence */
2711 	/* Ack all attentions */
2712 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ACK_BITS, 0xfff);
2713 
2714 	/* Clear driver attention */
2715 	ecore_wr(p_hwfn,  p_dpc_ptt,
2716 		((p_hwfn->rel_pf_id << 3) + MISC_REG_AEU_GENERAL_ATTN_0), 0);
2717 
2718 	/* Clear per-PF IGU registers to restore them as if the IGU
2719 	 * was reset for this PF
2720 	 */
2721 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2722 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2723 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2724 
2725 	/* Execute IGU clean up*/
2726 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_FUNCTIONAL_CLEANUP, 1);
2727 
2728 	/* Clear Stats */
2729 	ecore_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_OF_INTA_ASSERTED, 0);
2730 
2731 	for (i = 0; i < IGU_REG_PBA_STS_PF_SIZE; i++)
2732 		ecore_wr(p_hwfn, p_ptt, IGU_REG_PBA_STS_PF + i * 4, 0);
2733 }
2734