xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision 0fa4f3eeefb3e76124f5bbc1fccedcf43f4503f3)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include <rte_string_fns.h>
10 
11 #include "bcm_osal.h"
12 #include "ecore.h"
13 #include "ecore_spq.h"
14 #include "ecore_gtt_reg_addr.h"
15 #include "ecore_init_ops.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_int.h"
18 #include "reg_addr.h"
19 #include "ecore_hw.h"
20 #include "ecore_sriov.h"
21 #include "ecore_vf.h"
22 #include "ecore_hw_defs.h"
23 #include "ecore_hsi_common.h"
24 #include "ecore_mcp.h"
25 
26 struct ecore_pi_info {
27 	ecore_int_comp_cb_t comp_cb;
28 	void *cookie;		/* Will be sent to the compl cb function */
29 };
30 
31 struct ecore_sb_sp_info {
32 	struct ecore_sb_info sb_info;
33 	/* per protocol index data */
34 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
35 };
36 
37 enum ecore_attention_type {
38 	ECORE_ATTN_TYPE_ATTN,
39 	ECORE_ATTN_TYPE_PARITY,
40 };
41 
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44 
45 struct aeu_invert_reg_bit {
46 	char bit_name[30];
47 
48 #define ATTENTION_PARITY		(1 << 0)
49 
50 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
51 #define ATTENTION_LENGTH_SHIFT		(4)
52 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
53 					 ATTENTION_LENGTH_SHIFT)
54 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
55 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
56 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
57 					 ATTENTION_PARITY)
58 
59 /* Multiple bits start with this offset */
60 #define ATTENTION_OFFSET_MASK		(0x000ff000)
61 #define ATTENTION_OFFSET_SHIFT		(12)
62 
63 #define ATTENTION_BB_MASK		(0x00700000)
64 #define ATTENTION_BB_SHIFT		(20)
65 #define ATTENTION_BB(value)		((value) << ATTENTION_BB_SHIFT)
66 #define ATTENTION_BB_DIFFERENT		(1 << 23)
67 
68 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
69 	unsigned int flags;
70 
71 	/* Callback to call if attention will be triggered */
72 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
73 
74 	enum block_id block_index;
75 };
76 
77 struct aeu_invert_reg {
78 	struct aeu_invert_reg_bit bits[32];
79 };
80 
81 #define MAX_ATTN_GRPS		(8)
82 #define NUM_ATTN_REGS		(9)
83 
84 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
85 {
86 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
87 
88 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
89 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
90 
91 	return ECORE_SUCCESS;
92 }
93 
94 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
101 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
102 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
103 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
104 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
116 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
117 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
118 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
119 {
120 	u32 tmp =
121 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
122 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
123 
124 	/* Disabled VF access */
125 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
126 		u32 addr, data;
127 
128 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
130 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
131 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
132 		DP_INFO(p_hwfn->p_dev,
133 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
134 			" Write [0x%02x] Addr [0x%08x]\n",
135 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
136 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
137 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
138 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
139 			(u8)((data &
140 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
141 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
142 			(u8)((data &
143 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
144 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
145 			(u8)((data &
146 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
147 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
148 			addr);
149 	}
150 
151 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
153 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
154 		u32 addr, data, length;
155 
156 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
158 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159 				PSWHST_REG_INCORRECT_ACCESS_DATA);
160 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
161 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
162 
163 		DP_INFO(p_hwfn->p_dev,
164 			"Incorrect access to %08x of length %08x - PF [%02x]"
165 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
166 			" Byte-Enable [%04x] [%08x]\n",
167 			addr, length,
168 			(u8)((data &
169 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
170 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
171 			(u8)((data &
172 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
173 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
174 			(u8)((data &
175 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
176 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
177 			(u8)((data &
178 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
179 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
180 			(u8)((data &
181 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
182 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
183 			(u8)((data &
184 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
185 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
186 			data);
187 	}
188 
189 	/* TODO - We know 'some' of these are legal due to virtualization,
190 	 * but is it true for all of them?
191 	 */
192 	return ECORE_SUCCESS;
193 }
194 
195 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
196 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
197 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
198 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
199 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
200 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
201 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
202 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
203 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
204 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
205 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
206 static const char *grc_timeout_attn_master_to_str(u8 master)
207 {
208 	switch (master) {
209 	case 1:
210 		return "PXP";
211 	case 2:
212 		return "MCP";
213 	case 3:
214 		return "MSDM";
215 	case 4:
216 		return "PSDM";
217 	case 5:
218 		return "YSDM";
219 	case 6:
220 		return "USDM";
221 	case 7:
222 		return "TSDM";
223 	case 8:
224 		return "XSDM";
225 	case 9:
226 		return "DBU";
227 	case 10:
228 		return "DMAE";
229 	default:
230 		return "Unknown";
231 	}
232 }
233 
234 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
235 {
236 	u32 tmp, tmp2;
237 
238 	/* We've already cleared the timeout interrupt register, so we learn
239 	 * of interrupts via the validity register
240 	 */
241 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
242 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
243 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
244 		goto out;
245 
246 	/* Read the GRC timeout information */
247 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
248 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
249 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
250 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
251 
252 	DP_NOTICE(p_hwfn->p_dev, false,
253 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
254 		  tmp2, tmp,
255 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
256 						       : "Read from",
257 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
258 		  grc_timeout_attn_master_to_str(
259 			(tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
260 			 ECORE_GRC_ATTENTION_MASTER_SHIFT),
261 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
262 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
263 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
264 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
265 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
266 		  ECORE_GRC_ATTENTION_VF_SHIFT);
267 
268 out:
269 	/* Regardles of anything else, clean the validity bit */
270 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
271 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
272 	return ECORE_SUCCESS;
273 }
274 
275 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
276 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
280 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
281 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
283 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
284 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
285 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
286 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
287 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
288 
289 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
290 						   struct ecore_ptt *p_ptt)
291 {
292 	u32 tmp;
293 
294 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
295 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
296 		u32 addr_lo, addr_hi, details;
297 
298 		addr_lo = ecore_rd(p_hwfn, p_ptt,
299 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
300 		addr_hi = ecore_rd(p_hwfn, p_ptt,
301 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
302 		details = ecore_rd(p_hwfn, p_ptt,
303 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
304 
305 		DP_NOTICE(p_hwfn, false,
306 			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
307 			  addr_hi, addr_lo, details,
308 			  (u8)((details &
309 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
310 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
311 			  (u8)((details &
312 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
313 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
314 			  (u8)((details &
315 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
316 			  tmp,
317 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
318 				1 : 0),
319 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
320 				1 : 0),
321 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
322 				1 : 0));
323 	}
324 
325 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
326 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
327 		u32 addr_lo, addr_hi, details;
328 
329 		addr_lo = ecore_rd(p_hwfn, p_ptt,
330 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
331 		addr_hi = ecore_rd(p_hwfn, p_ptt,
332 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
333 		details = ecore_rd(p_hwfn, p_ptt,
334 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
335 
336 		DP_NOTICE(p_hwfn, false,
337 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
338 			  addr_hi, addr_lo, details,
339 			  (u8)((details &
340 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
341 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
342 			  (u8)((details &
343 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
344 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
345 			  (u8)((details &
346 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
347 			  tmp,
348 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
349 				1 : 0),
350 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
351 				1 : 0),
352 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
353 				1 : 0));
354 	}
355 
356 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
357 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
358 		DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
359 
360 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
361 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
362 		u32 addr_hi, addr_lo;
363 
364 		addr_lo = ecore_rd(p_hwfn, p_ptt,
365 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
366 		addr_hi = ecore_rd(p_hwfn, p_ptt,
367 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
368 
369 		DP_NOTICE(p_hwfn, false,
370 			  "ICPL erorr - %08x [Address %08x:%08x]\n",
371 			  tmp, addr_hi, addr_lo);
372 	}
373 
374 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
375 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
376 		u32 addr_hi, addr_lo, details;
377 
378 		addr_lo = ecore_rd(p_hwfn, p_ptt,
379 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
380 		addr_hi = ecore_rd(p_hwfn, p_ptt,
381 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
382 		details = ecore_rd(p_hwfn, p_ptt,
383 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
384 
385 		DP_NOTICE(p_hwfn, false,
386 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
387 			  details, tmp, addr_hi, addr_lo);
388 	}
389 
390 	/* Clear the indications */
391 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
392 
393 	return ECORE_SUCCESS;
394 }
395 
396 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
397 {
398 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
399 }
400 
401 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
402 {
403 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
404 
405 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
406 
407 	return ECORE_INVAL;
408 }
409 
410 static enum _ecore_status_t
411 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
412 {
413 	DP_INFO(p_hwfn, "General attention 35!\n");
414 
415 	return ECORE_SUCCESS;
416 }
417 
418 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
419 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
420 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
421 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
422 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
423 
424 #define ECORE_DB_REC_COUNT			10
425 #define ECORE_DB_REC_INTERVAL			100
426 
427 /* assumes sticky overflow indication was set for this PF */
428 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
429 					      struct ecore_ptt *p_ptt)
430 {
431 	u8 count = ECORE_DB_REC_COUNT;
432 	u32 usage = 1;
433 
434 	/* wait for usage to zero or count to run out. This is necessary since
435 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
436 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
437 	 * half an EDPM in the queue and other half dropped. Another EDPM
438 	 * doorbell to the same address (from doorbell recovery mechanism or
439 	 * from the doorbelling entity) could have first half dropped and second
440 	 * half interperted as continuation of the first. To prevent such
441 	 * malformed doorbells from reaching the device, flush the queue before
442 	 * releaseing the overflow sticky indication.
443 	 */
444 	while (count-- && usage) {
445 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
446 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
447 	}
448 
449 	/* should have been depleted by now */
450 	if (usage) {
451 		DP_NOTICE(p_hwfn->p_dev, false,
452 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
453 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
454 		return ECORE_TIMEOUT;
455 	}
456 
457 	/* flush any pedning (e)dpm as they may never arrive */
458 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
459 
460 	/* release overflow sticky indication (stop silently dropping
461 	 * everything)
462 	 */
463 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
464 
465 	/* repeat all last doorbells (doorbell drop recovery) */
466 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
467 
468 	return ECORE_SUCCESS;
469 }
470 
471 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
472 {
473 	u32 int_sts, first_drop_reason, details, address, overflow,
474 		all_drops_reason;
475 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
476 	enum _ecore_status_t rc;
477 
478 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
479 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
480 		  int_sts);
481 
482 	/* int_sts may be zero since all PFs were interrupted for doorbell
483 	 * overflow but another one already handled it. Can abort here. If
484 	 * This PF also requires overflow recovery we will be interrupted again
485 	 */
486 	if (!int_sts)
487 		return ECORE_SUCCESS;
488 
489 	/* check if db_drop or overflow happened */
490 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
491 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
492 		/* obtain data about db drop/overflow */
493 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
494 				  DORQ_REG_DB_DROP_REASON) &
495 				  ECORE_DORQ_ATTENTION_REASON_MASK;
496 		details = ecore_rd(p_hwfn, p_ptt,
497 				   DORQ_REG_DB_DROP_DETAILS);
498 		address = ecore_rd(p_hwfn, p_ptt,
499 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
500 		overflow = ecore_rd(p_hwfn, p_ptt,
501 				    DORQ_REG_PF_OVFL_STICKY);
502 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
503 					    DORQ_REG_DB_DROP_DETAILS_REASON);
504 
505 		/* log info */
506 		DP_NOTICE(p_hwfn->p_dev, false,
507 			  "Doorbell drop occurred\n"
508 			  "Address\t\t0x%08x\t(second BAR address)\n"
509 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
510 			  "Size\t\t0x%04x\t\t(in bytes)\n"
511 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
512 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
513 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
514 			  address,
515 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
516 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
517 			  first_drop_reason, all_drops_reason, overflow);
518 
519 		/* if this PF caused overflow, initiate recovery */
520 		if (overflow) {
521 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
522 			if (rc != ECORE_SUCCESS)
523 				return rc;
524 		}
525 
526 		/* clear the doorbell drop details and prepare for next drop */
527 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
528 
529 		/* mark interrupt as handeld (note: even if drop was due to a
530 		 * different reason than overflow we mark as handled)
531 		 */
532 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
533 			 DORQ_REG_INT_STS_DB_DROP |
534 			 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
535 
536 		/* if there are no indications otherthan drop indications,
537 		 * success
538 		 */
539 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
540 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
541 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
542 			return ECORE_SUCCESS;
543 	}
544 
545 	/* some other indication was present - non recoverable */
546 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
547 
548 	return ECORE_INVAL;
549 }
550 
551 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
552 {
553 #ifndef ASIC_ONLY
554 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
555 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
556 				   TM_REG_INT_STS_1);
557 
558 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
559 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
560 			return ECORE_INVAL;
561 
562 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
563 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
564 			DP_INFO(p_hwfn,
565 				"TM attention on emulation - most likely"
566 				" results of clock-ratios\n");
567 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
568 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
569 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
570 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
571 
572 		return ECORE_SUCCESS;
573 	}
574 #endif
575 
576 	return ECORE_INVAL;
577 }
578 
579 /* Instead of major changes to the data-structure, we have a some 'special'
580  * identifiers for sources that changed meaning between adapters.
581  */
582 enum aeu_invert_reg_special_type {
583 	AEU_INVERT_REG_SPECIAL_CNIG_0,
584 	AEU_INVERT_REG_SPECIAL_CNIG_1,
585 	AEU_INVERT_REG_SPECIAL_CNIG_2,
586 	AEU_INVERT_REG_SPECIAL_CNIG_3,
587 	AEU_INVERT_REG_SPECIAL_MAX,
588 };
589 
590 static struct aeu_invert_reg_bit
591 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
592 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
593 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
594 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
595 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596 };
597 
598 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
599 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
600 	{
601 	 {			/* After Invert 1 */
602 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
603 	   MAX_BLOCK_ID},
604 	  }
605 	 },
606 
607 	{
608 	 {			/* After Invert 2 */
609 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
610 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
611 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
612 	   BLOCK_PGLUE_B},
613 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
615 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617 	  {"SW timers #%d",
618 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
619 	   OSAL_NULL, MAX_BLOCK_ID},
620 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
621 	   BLOCK_PGLCS},
622 	  }
623 	 },
624 
625 	{
626 	 {			/* After Invert 3 */
627 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
628 	   MAX_BLOCK_ID},
629 	  }
630 	 },
631 
632 	{
633 	 {			/* After Invert 4 */
634 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
635 	   ecore_fw_assertion, MAX_BLOCK_ID},
636 	  {"General Attention %d",
637 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
638 	   OSAL_NULL, MAX_BLOCK_ID},
639 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
640 	   ecore_general_attention_35, MAX_BLOCK_ID},
641 	  {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
642 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
643 			 OSAL_NULL, BLOCK_NWS},
644 	  {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
645 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
646 			    OSAL_NULL, BLOCK_NWS},
647 	  {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
648 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
649 			 OSAL_NULL, BLOCK_NWM},
650 	  {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
651 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
652 			    OSAL_NULL, BLOCK_NWM},
653 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
654 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
655 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
656 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
657 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
658 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
659 	  {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
660 	   MAX_BLOCK_ID},
661 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
662 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
663 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
664 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
665 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
666 	  }
667 	 },
668 
669 	{
670 	 {			/* After Invert 5 */
671 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
672 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
673 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
674 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
675 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
676 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
677 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
678 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
679 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
680 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
681 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
682 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
683 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
684 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
685 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
686 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
687 	  }
688 	 },
689 
690 	{
691 	 {			/* After Invert 6 */
692 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
693 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
694 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
695 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
696 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
697 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
698 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
699 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
700 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
701 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
702 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
703 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
704 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
705 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
706 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
707 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
708 	  }
709 	 },
710 
711 	{
712 	 {			/* After Invert 7 */
713 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
714 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
715 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
716 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
717 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
718 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
719 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
720 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
721 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
722 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
723 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
724 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
725 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
726 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
727 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
728 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
729 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
730 	  }
731 	 },
732 
733 	{
734 	 {			/* After Invert 8 */
735 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
736 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
737 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
738 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
739 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
740 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
741 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
742 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
743 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
744 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
745 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
746 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
747 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
748 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
749 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
752 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
753 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
754 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
755 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
756 	   MAX_BLOCK_ID},
757 	  }
758 	 },
759 
760 	{
761 	 {			/* After Invert 9 */
762 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
763 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
764 	   MAX_BLOCK_ID},
765 	  {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
766 	  {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
767 	  {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
768 	   MAX_BLOCK_ID},
769 	  }
770 	 },
771 
772 };
773 
774 static struct aeu_invert_reg_bit *
775 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
776 			struct aeu_invert_reg_bit *p_bit)
777 {
778 	if (!ECORE_IS_BB(p_hwfn->p_dev))
779 		return p_bit;
780 
781 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
782 		return p_bit;
783 
784 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
785 				  ATTENTION_BB_SHIFT];
786 }
787 
788 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
789 				     struct aeu_invert_reg_bit *p_bit)
790 {
791 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
792 		  ATTENTION_PARITY);
793 }
794 
795 #define ATTN_STATE_BITS		(0xfff)
796 #define ATTN_BITS_MASKABLE	(0x3ff)
797 struct ecore_sb_attn_info {
798 	/* Virtual & Physical address of the SB */
799 	struct atten_status_block *sb_attn;
800 	dma_addr_t sb_phys;
801 
802 	/* Last seen running index */
803 	u16 index;
804 
805 	/* A mask of the AEU bits resulting in a parity error */
806 	u32 parity_mask[NUM_ATTN_REGS];
807 
808 	/* A pointer to the attention description structure */
809 	struct aeu_invert_reg *p_aeu_desc;
810 
811 	/* Previously asserted attentions, which are still unasserted */
812 	u16 known_attn;
813 
814 	/* Cleanup address for the link's general hw attention */
815 	u32 mfw_attn_addr;
816 };
817 
818 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
819 				 struct ecore_sb_attn_info *p_sb_desc)
820 {
821 	u16 rc = 0, index;
822 
823 	OSAL_MMIOWB(p_hwfn->p_dev);
824 
825 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
826 	if (p_sb_desc->index != index) {
827 		p_sb_desc->index = index;
828 		rc = ECORE_SB_ATT_IDX;
829 	}
830 
831 	OSAL_MMIOWB(p_hwfn->p_dev);
832 
833 	return rc;
834 }
835 
836 /**
837  * @brief ecore_int_assertion - handles asserted attention bits
838  *
839  * @param p_hwfn
840  * @param asserted_bits newly asserted bits
841  * @return enum _ecore_status_t
842  */
843 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
844 						u16 asserted_bits)
845 {
846 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
847 	u32 igu_mask;
848 
849 	/* Mask the source of the attention in the IGU */
850 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
851 			    IGU_REG_ATTENTION_ENABLE);
852 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
853 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
854 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
855 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
856 
857 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
858 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
859 		   sb_attn_sw->known_attn,
860 		   sb_attn_sw->known_attn | asserted_bits);
861 	sb_attn_sw->known_attn |= asserted_bits;
862 
863 	/* Handle MCP events */
864 	if (asserted_bits & 0x100) {
865 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
866 		/* Clean the MCP attention */
867 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
868 			 sb_attn_sw->mfw_attn_addr, 0);
869 	}
870 
871 	/* FIXME - this will change once we'll have GOOD gtt definitions */
872 	DIRECT_REG_WR(p_hwfn,
873 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
874 		      GTT_BAR0_MAP_REG_IGU_CMD +
875 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
876 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
877 
878 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
879 		   asserted_bits);
880 
881 	return ECORE_SUCCESS;
882 }
883 
884 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
885 				 enum block_id id, enum dbg_attn_type type,
886 				 bool b_clear)
887 {
888 	/* @DPDK */
889 	DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
890 }
891 
892 /**
893  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
894  * cause of the attention
895  *
896  * @param p_hwfn
897  * @param p_aeu - descriptor of an AEU bit which caused the attention
898  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
899  *  this bit to this group.
900  * @param bit_index - index of this bit in the aeu_en_reg
901  *
902  * @return enum _ecore_status_t
903  */
904 static enum _ecore_status_t
905 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
906 			      struct aeu_invert_reg_bit *p_aeu,
907 			      u32 aeu_en_reg,
908 			      const char *p_bit_name,
909 			      u32 bitmask)
910 {
911 	enum _ecore_status_t rc = ECORE_INVAL;
912 	bool b_fatal = false;
913 
914 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
915 		p_bit_name, bitmask);
916 
917 	/* Call callback before clearing the interrupt status */
918 	if (p_aeu->cb) {
919 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
920 			p_bit_name);
921 		rc = p_aeu->cb(p_hwfn);
922 	}
923 
924 	if (rc != ECORE_SUCCESS)
925 		b_fatal = true;
926 
927 	/* Print HW block interrupt registers */
928 	if (p_aeu->block_index != MAX_BLOCK_ID) {
929 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
930 				     ATTN_TYPE_INTERRUPT, !b_fatal);
931 }
932 
933 	/* @DPDK */
934 	/* Reach assertion if attention is fatal */
935 	if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
936 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
937 			  p_bit_name);
938 
939 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
940 	}
941 
942 	/* Prevent this Attention from being asserted in the future */
943 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
944 	    p_hwfn->p_dev->attn_clr_en) {
945 		u32 val;
946 		u32 mask = ~bitmask;
947 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
948 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
949 		DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
950 			p_bit_name);
951 	}
952 
953 	return rc;
954 }
955 
956 /**
957  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
958  *
959  * @param p_hwfn
960  * @param p_aeu - descriptor of an AEU bit which caused the parity
961  * @param aeu_en_reg - address of the AEU enable register
962  * @param bit_index
963  */
964 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
965 					 struct aeu_invert_reg_bit *p_aeu,
966 					 u32 aeu_en_reg, u8 bit_index)
967 {
968 	u32 block_id = p_aeu->block_index, mask, val;
969 
970 	DP_NOTICE(p_hwfn->p_dev, false,
971 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
972 		  p_aeu->bit_name, aeu_en_reg, bit_index);
973 
974 	if (block_id != MAX_BLOCK_ID) {
975 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
976 
977 		/* In A0, there's a single parity bit for several blocks */
978 		if (block_id == BLOCK_BTB) {
979 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
980 					     ATTN_TYPE_PARITY, false);
981 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
982 					     ATTN_TYPE_PARITY, false);
983 		}
984 	}
985 
986 	/* Prevent this parity error from being re-asserted */
987 	mask = ~(0x1 << bit_index);
988 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
989 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
990 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
991 		p_aeu->bit_name);
992 }
993 
994 /**
995  * @brief - handles deassertion of previously asserted attentions.
996  *
997  * @param p_hwfn
998  * @param deasserted_bits - newly deasserted bits
999  * @return enum _ecore_status_t
1000  *
1001  */
1002 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1003 						  u16 deasserted_bits)
1004 {
1005 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1006 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1007 	u8 i, j, k, bit_idx;
1008 	enum _ecore_status_t rc = ECORE_SUCCESS;
1009 
1010 	/* Read the attention registers in the AEU */
1011 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1012 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1013 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1014 					  i * 0x4);
1015 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1016 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1017 	}
1018 
1019 	/* Handle parity attentions first */
1020 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1021 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1022 		u32 parities;
1023 
1024 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1025 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1026 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1027 
1028 		/* Skip register in which no parity bit is currently set */
1029 		if (!parities)
1030 			continue;
1031 
1032 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1033 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1034 
1035 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1036 			    !!(parities & (1 << bit_idx)))
1037 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1038 							     aeu_en, bit_idx);
1039 
1040 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1041 		}
1042 	}
1043 
1044 	/* Find non-parity cause for attention and act */
1045 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1046 		struct aeu_invert_reg_bit *p_aeu;
1047 
1048 		/* Handle only groups whose attention is currently deasserted */
1049 		if (!(deasserted_bits & (1 << k)))
1050 			continue;
1051 
1052 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1053 			u32 bits;
1054 
1055 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1056 				 i * sizeof(u32) +
1057 				 k * sizeof(u32) * NUM_ATTN_REGS;
1058 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1059 			bits = aeu_inv_arr[i] & en;
1060 
1061 			/* Skip if no bit from this group is currently set */
1062 			if (!bits)
1063 				continue;
1064 
1065 			/* Find all set bits from current register which belong
1066 			 * to current group, making them responsible for the
1067 			 * previous assertion.
1068 			 */
1069 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1070 				unsigned long int bitmask;
1071 				u8 bit, bit_len;
1072 
1073 				/* Need to account bits with changed meaning */
1074 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1075 
1076 				bit = bit_idx;
1077 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1078 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1079 					/* Skip Parity */
1080 					bit++;
1081 					bit_len--;
1082 				}
1083 
1084 				/* Find the bits relating to HW-block, then
1085 				 * shift so they'll become LSB.
1086 				 */
1087 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1088 				bitmask >>= bit;
1089 
1090 				if (bitmask) {
1091 					u32 flags = p_aeu->flags;
1092 					char bit_name[30];
1093 					u8 num;
1094 
1095 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1096 								bit_len);
1097 
1098 					/* Some bits represent more than a
1099 					 * a single interrupt. Correctly print
1100 					 * their name.
1101 					 */
1102 					if (ATTENTION_LENGTH(flags) > 2 ||
1103 					    ((flags & ATTENTION_PAR_INT) &&
1104 					    ATTENTION_LENGTH(flags) > 1))
1105 						OSAL_SNPRINTF(bit_name, 30,
1106 							      p_aeu->bit_name,
1107 							      num);
1108 					else
1109 						strlcpy(bit_name,
1110 							p_aeu->bit_name,
1111 							sizeof(bit_name));
1112 
1113 					/* We now need to pass bitmask in its
1114 					 * correct position.
1115 					 */
1116 					bitmask <<= bit;
1117 
1118 					/* Handle source of the attention */
1119 					ecore_int_deassertion_aeu_bit(p_hwfn,
1120 								      p_aeu,
1121 								      aeu_en,
1122 								      bit_name,
1123 								      bitmask);
1124 				}
1125 
1126 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1127 			}
1128 		}
1129 	}
1130 
1131 	/* Clear IGU indication for the deasserted bits */
1132 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1133 	DIRECT_REG_WR(p_hwfn,
1134 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
1135 		      GTT_BAR0_MAP_REG_IGU_CMD +
1136 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1137 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1138 
1139 	/* Unmask deasserted attentions in IGU */
1140 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1141 			    IGU_REG_ATTENTION_ENABLE);
1142 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1143 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1144 
1145 	/* Clear deassertion from inner state */
1146 	sb_attn_sw->known_attn &= ~deasserted_bits;
1147 
1148 	return rc;
1149 }
1150 
1151 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1152 {
1153 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1154 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1155 	u16 index = 0, asserted_bits, deasserted_bits;
1156 	u32 attn_bits = 0, attn_acks = 0;
1157 	enum _ecore_status_t rc = ECORE_SUCCESS;
1158 
1159 	/* Read current attention bits/acks - safeguard against attentions
1160 	 * by guaranting work on a synchronized timeframe
1161 	 */
1162 	do {
1163 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1164 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1165 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1166 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1167 	p_sb_attn->sb_index = index;
1168 
1169 	/* Attention / Deassertion are meaningful (and in correct state)
1170 	 * only when they differ and consistent with known state - deassertion
1171 	 * when previous attention & current ack, and assertion when current
1172 	 * attention with no previous attention
1173 	 */
1174 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1175 	    ~p_sb_attn_sw->known_attn;
1176 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1177 	    p_sb_attn_sw->known_attn;
1178 
1179 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1180 		DP_INFO(p_hwfn,
1181 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1182 			index, attn_bits, attn_acks, asserted_bits,
1183 			deasserted_bits, p_sb_attn_sw->known_attn);
1184 	else if (asserted_bits == 0x100)
1185 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1186 	else
1187 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1188 			   "MFW indication [deassertion]\n");
1189 
1190 	if (asserted_bits) {
1191 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1192 		if (rc)
1193 			return rc;
1194 	}
1195 
1196 	if (deasserted_bits)
1197 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1198 
1199 	return rc;
1200 }
1201 
1202 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1203 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1204 {
1205 	struct igu_prod_cons_update igu_ack = { 0 };
1206 
1207 	igu_ack.sb_id_and_flags =
1208 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1209 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1210 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1211 	     (IGU_SEG_ACCESS_ATTN <<
1212 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1213 
1214 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1215 
1216 	/* Both segments (interrupts & acks) are written to same place address;
1217 	 * Need to guarantee all commands will be received (in-order) by HW.
1218 	 */
1219 	OSAL_MMIOWB(p_hwfn->p_dev);
1220 	OSAL_BARRIER(p_hwfn->p_dev);
1221 }
1222 
1223 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1224 {
1225 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1226 	struct ecore_pi_info *pi_info = OSAL_NULL;
1227 	struct ecore_sb_attn_info *sb_attn;
1228 	struct ecore_sb_info *sb_info;
1229 	int arr_size;
1230 	u16 rc = 0;
1231 
1232 	if (!p_hwfn)
1233 		return;
1234 
1235 	if (!p_hwfn->p_sp_sb) {
1236 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1237 		return;
1238 	}
1239 
1240 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1241 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1242 	if (!sb_info) {
1243 		DP_ERR(p_hwfn->p_dev,
1244 		       "Status block is NULL - cannot ack interrupts\n");
1245 		return;
1246 	}
1247 
1248 	if (!p_hwfn->p_sb_attn) {
1249 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1250 		return;
1251 	}
1252 	sb_attn = p_hwfn->p_sb_attn;
1253 
1254 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1255 		   p_hwfn, p_hwfn->my_id);
1256 
1257 	/* Disable ack for def status block. Required both for msix +
1258 	 * inta in non-mask mode, in inta does no harm.
1259 	 */
1260 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1261 
1262 	/* Gather Interrupts/Attentions information */
1263 	if (!sb_info->sb_virt) {
1264 		DP_ERR(p_hwfn->p_dev,
1265 		       "Interrupt Status block is NULL -"
1266 		       " cannot check for new interrupts!\n");
1267 	} else {
1268 		u32 tmp_index = sb_info->sb_ack;
1269 		rc = ecore_sb_update_sb_idx(sb_info);
1270 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1271 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1272 			   tmp_index, sb_info->sb_ack);
1273 	}
1274 
1275 	if (!sb_attn || !sb_attn->sb_attn) {
1276 		DP_ERR(p_hwfn->p_dev,
1277 		       "Attentions Status block is NULL -"
1278 		       " cannot check for new attentions!\n");
1279 	} else {
1280 		u16 tmp_index = sb_attn->index;
1281 
1282 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1283 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1284 			   "Attention indices: 0x%08x --> 0x%08x\n",
1285 			   tmp_index, sb_attn->index);
1286 	}
1287 
1288 	/* Check if we expect interrupts at this time. if not just ack them */
1289 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1290 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1291 		return;
1292 	}
1293 
1294 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1295 
1296 	if (!p_hwfn->p_dpc_ptt) {
1297 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1298 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1299 		return;
1300 	}
1301 
1302 	if (rc & ECORE_SB_ATT_IDX)
1303 		ecore_int_attentions(p_hwfn);
1304 
1305 	if (rc & ECORE_SB_IDX) {
1306 		int pi;
1307 
1308 		/* Since we only looked at the SB index, it's possible more
1309 		 * than a single protocol-index on the SB incremented.
1310 		 * Iterate over all configured protocol indices and check
1311 		 * whether something happened for each.
1312 		 */
1313 		for (pi = 0; pi < arr_size; pi++) {
1314 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1315 			if (pi_info->comp_cb != OSAL_NULL)
1316 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1317 		}
1318 	}
1319 
1320 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1321 		/* This should be done before the interrupts are enabled,
1322 		 * since otherwise a new attention will be generated.
1323 		 */
1324 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1325 	}
1326 
1327 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1328 }
1329 
1330 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1331 {
1332 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1333 
1334 	if (!p_sb)
1335 		return;
1336 
1337 	if (p_sb->sb_attn) {
1338 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1339 				       p_sb->sb_phys,
1340 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1341 	}
1342 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1343 }
1344 
1345 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1346 				    struct ecore_ptt *p_ptt)
1347 {
1348 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1349 
1350 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1351 
1352 	sb_info->index = 0;
1353 	sb_info->known_attn = 0;
1354 
1355 	/* Configure Attention Status Block in IGU */
1356 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1357 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1358 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1359 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1360 }
1361 
1362 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1363 				   struct ecore_ptt *p_ptt,
1364 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1365 {
1366 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1367 	int i, j, k;
1368 
1369 	sb_info->sb_attn = sb_virt_addr;
1370 	sb_info->sb_phys = sb_phy_addr;
1371 
1372 	/* Set the pointer to the AEU descriptors */
1373 	sb_info->p_aeu_desc = aeu_descs;
1374 
1375 	/* Calculate Parity Masks */
1376 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1377 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1378 		/* j is array index, k is bit index */
1379 		for (j = 0, k = 0; k < 32; j++) {
1380 			struct aeu_invert_reg_bit *p_aeu;
1381 
1382 			p_aeu = &aeu_descs[i].bits[j];
1383 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1384 				sb_info->parity_mask[i] |= 1 << k;
1385 
1386 			k += ATTENTION_LENGTH(p_aeu->flags);
1387 		}
1388 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1389 			   "Attn Mask [Reg %d]: 0x%08x\n",
1390 			   i, sb_info->parity_mask[i]);
1391 	}
1392 
1393 	/* Set the address of cleanup for the mcp attention */
1394 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1395 	    MISC_REG_AEU_GENERAL_ATTN_0;
1396 
1397 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1398 }
1399 
1400 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1401 						    struct ecore_ptt *p_ptt)
1402 {
1403 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1404 	struct ecore_sb_attn_info *p_sb;
1405 	dma_addr_t p_phys = 0;
1406 	void *p_virt;
1407 
1408 	/* SB struct */
1409 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1410 	if (!p_sb) {
1411 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1412 		return ECORE_NOMEM;
1413 	}
1414 
1415 	/* SB ring  */
1416 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1417 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1418 	if (!p_virt) {
1419 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1420 		OSAL_FREE(p_dev, p_sb);
1421 		return ECORE_NOMEM;
1422 	}
1423 
1424 	/* Attention setup */
1425 	p_hwfn->p_sb_attn = p_sb;
1426 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1427 
1428 	return ECORE_SUCCESS;
1429 }
1430 
1431 /* coalescing timeout = timeset << (timer_res + 1) */
1432 #define ECORE_CAU_DEF_RX_USECS 24
1433 #define ECORE_CAU_DEF_TX_USECS 48
1434 
1435 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1436 			     struct cau_sb_entry *p_sb_entry,
1437 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1438 {
1439 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1440 	u32 cau_state;
1441 	u8 timer_res;
1442 
1443 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1444 
1445 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1446 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1447 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1448 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1449 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1450 
1451 	cau_state = CAU_HC_DISABLE_STATE;
1452 
1453 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1454 		cau_state = CAU_HC_ENABLE_STATE;
1455 		if (!p_dev->rx_coalesce_usecs)
1456 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1457 		if (!p_dev->tx_coalesce_usecs)
1458 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1459 	}
1460 
1461 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1462 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1463 		timer_res = 0;
1464 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1465 		timer_res = 1;
1466 	else
1467 		timer_res = 2;
1468 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1469 
1470 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1471 		timer_res = 0;
1472 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1473 		timer_res = 1;
1474 	else
1475 		timer_res = 2;
1476 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1477 
1478 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1479 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1480 }
1481 
1482 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1483 				   struct ecore_ptt *p_ptt,
1484 				   u16 igu_sb_id, u32 pi_index,
1485 				   enum ecore_coalescing_fsm coalescing_fsm,
1486 				   u8 timeset)
1487 {
1488 	struct cau_pi_entry pi_entry;
1489 	u32 sb_offset, pi_offset;
1490 
1491 	if (IS_VF(p_hwfn->p_dev))
1492 		return;/* @@@TBD MichalK- VF CAU... */
1493 
1494 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1495 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1496 
1497 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1498 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1499 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1500 	else
1501 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1502 
1503 	pi_offset = sb_offset + pi_index;
1504 	if (p_hwfn->hw_init_done) {
1505 		ecore_wr(p_hwfn, p_ptt,
1506 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1507 			 *((u32 *)&(pi_entry)));
1508 	} else {
1509 		STORE_RT_REG(p_hwfn,
1510 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1511 			     *((u32 *)&(pi_entry)));
1512 	}
1513 }
1514 
1515 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1516 			   struct ecore_ptt *p_ptt,
1517 			   struct ecore_sb_info *p_sb, u32 pi_index,
1518 			   enum ecore_coalescing_fsm coalescing_fsm,
1519 			   u8 timeset)
1520 {
1521 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1522 			       pi_index, coalescing_fsm, timeset);
1523 }
1524 
1525 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1526 			   struct ecore_ptt *p_ptt,
1527 			   dma_addr_t sb_phys, u16 igu_sb_id,
1528 			   u16 vf_number, u8 vf_valid)
1529 {
1530 	struct cau_sb_entry sb_entry;
1531 
1532 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1533 				vf_number, vf_valid);
1534 
1535 	if (p_hwfn->hw_init_done) {
1536 		/* Wide-bus, initialize via DMAE */
1537 		u64 phys_addr = (u64)sb_phys;
1538 
1539 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1540 				    (u64)(osal_uintptr_t)&phys_addr,
1541 				    CAU_REG_SB_ADDR_MEMORY +
1542 				    igu_sb_id * sizeof(u64), 2, 0);
1543 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1544 				    (u64)(osal_uintptr_t)&sb_entry,
1545 				    CAU_REG_SB_VAR_MEMORY +
1546 				    igu_sb_id * sizeof(u64), 2, 0);
1547 	} else {
1548 		/* Initialize Status Block Address */
1549 		STORE_RT_REG_AGG(p_hwfn,
1550 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1551 				 igu_sb_id * 2, sb_phys);
1552 
1553 		STORE_RT_REG_AGG(p_hwfn,
1554 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1555 				 igu_sb_id * 2, sb_entry);
1556 	}
1557 
1558 	/* Configure pi coalescing if set */
1559 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1560 		/* eth will open queues for all tcs, so configure all of them
1561 		 * properly, rather than just the active ones
1562 		 */
1563 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1564 
1565 		u8 timeset, timer_res;
1566 		u8 i;
1567 
1568 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1569 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1570 			timer_res = 0;
1571 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1572 			timer_res = 1;
1573 		else
1574 			timer_res = 2;
1575 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1576 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1577 				       ECORE_COAL_RX_STATE_MACHINE,
1578 				       timeset);
1579 
1580 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1581 			timer_res = 0;
1582 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1583 			timer_res = 1;
1584 		else
1585 			timer_res = 2;
1586 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1587 		for (i = 0; i < num_tc; i++) {
1588 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1589 					       igu_sb_id, TX_PI(i),
1590 					       ECORE_COAL_TX_STATE_MACHINE,
1591 					       timeset);
1592 		}
1593 	}
1594 }
1595 
1596 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1597 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1598 {
1599 	/* zero status block and ack counter */
1600 	sb_info->sb_ack = 0;
1601 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1602 
1603 	if (IS_PF(p_hwfn->p_dev))
1604 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1605 				      sb_info->igu_sb_id, 0, 0);
1606 }
1607 
1608 struct ecore_igu_block *
1609 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1610 {
1611 	struct ecore_igu_block *p_block;
1612 	u16 igu_id;
1613 
1614 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1615 	     igu_id++) {
1616 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1617 
1618 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1619 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1620 			continue;
1621 
1622 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1623 		    b_is_pf)
1624 			return p_block;
1625 	}
1626 
1627 	return OSAL_NULL;
1628 }
1629 
1630 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1631 				  u16 vector_id)
1632 {
1633 	struct ecore_igu_block *p_block;
1634 	u16 igu_id;
1635 
1636 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1637 	     igu_id++) {
1638 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1639 
1640 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1641 		    !p_block->is_pf ||
1642 		    p_block->vector_number != vector_id)
1643 			continue;
1644 
1645 		return igu_id;
1646 	}
1647 
1648 	return ECORE_SB_INVALID_IDX;
1649 }
1650 
1651 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1652 {
1653 	u16 igu_sb_id;
1654 
1655 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1656 	if (sb_id == ECORE_SP_SB_ID)
1657 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1658 	else if (IS_PF(p_hwfn->p_dev))
1659 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1660 	else
1661 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1662 
1663 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1664 		DP_NOTICE(p_hwfn, true,
1665 			  "Slowpath SB vector %04x doesn't exist\n",
1666 			  sb_id);
1667 	else if (sb_id == ECORE_SP_SB_ID)
1668 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1669 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1670 	else
1671 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1672 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1673 
1674 	return igu_sb_id;
1675 }
1676 
1677 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1678 				       struct ecore_ptt *p_ptt,
1679 				       struct ecore_sb_info *sb_info,
1680 				       void *sb_virt_addr,
1681 				       dma_addr_t sb_phy_addr, u16 sb_id)
1682 {
1683 	sb_info->sb_virt = sb_virt_addr;
1684 	sb_info->sb_phys = sb_phy_addr;
1685 
1686 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1687 
1688 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1689 		return ECORE_INVAL;
1690 
1691 	/* Let the igu info reference the client's SB info */
1692 	if (sb_id != ECORE_SP_SB_ID) {
1693 		if (IS_PF(p_hwfn->p_dev)) {
1694 			struct ecore_igu_info *p_info;
1695 			struct ecore_igu_block *p_block;
1696 
1697 			p_info = p_hwfn->hw_info.p_igu_info;
1698 			p_block = &p_info->entry[sb_info->igu_sb_id];
1699 
1700 			p_block->sb_info = sb_info;
1701 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1702 			p_info->usage.free_cnt--;
1703 		} else {
1704 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1705 		}
1706 	}
1707 #ifdef ECORE_CONFIG_DIRECT_HWFN
1708 	sb_info->p_hwfn = p_hwfn;
1709 #endif
1710 	sb_info->p_dev = p_hwfn->p_dev;
1711 
1712 	/* The igu address will hold the absolute address that needs to be
1713 	 * written to for a specific status block
1714 	 */
1715 	if (IS_PF(p_hwfn->p_dev)) {
1716 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1717 		    GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1718 
1719 	} else {
1720 		sb_info->igu_addr =
1721 		    (u8 OSAL_IOMEM *)p_hwfn->regview +
1722 		    PXP_VF_BAR0_START_IGU +
1723 		    ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1724 	}
1725 
1726 	sb_info->flags |= ECORE_SB_INFO_INIT;
1727 
1728 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1729 
1730 	return ECORE_SUCCESS;
1731 }
1732 
1733 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1734 					  struct ecore_sb_info *sb_info,
1735 					  u16 sb_id)
1736 {
1737 	struct ecore_igu_info *p_info;
1738 	struct ecore_igu_block *p_block;
1739 
1740 	if (sb_info == OSAL_NULL)
1741 		return ECORE_SUCCESS;
1742 
1743 	/* zero status block and ack counter */
1744 	sb_info->sb_ack = 0;
1745 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1746 
1747 	if (IS_VF(p_hwfn->p_dev)) {
1748 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1749 		return ECORE_SUCCESS;
1750 	}
1751 
1752 	p_info = p_hwfn->hw_info.p_igu_info;
1753 	p_block = &p_info->entry[sb_info->igu_sb_id];
1754 
1755 	/* Vector 0 is reserved to Default SB */
1756 	if (p_block->vector_number == 0) {
1757 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1758 		return ECORE_INVAL;
1759 	}
1760 
1761 	/* Lose reference to client's SB info, and fix counters */
1762 	p_block->sb_info = OSAL_NULL;
1763 	p_block->status |= ECORE_IGU_STATUS_FREE;
1764 	p_info->usage.free_cnt++;
1765 
1766 	return ECORE_SUCCESS;
1767 }
1768 
1769 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1770 {
1771 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1772 
1773 	if (!p_sb)
1774 		return;
1775 
1776 	if (p_sb->sb_info.sb_virt) {
1777 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1778 				       p_sb->sb_info.sb_virt,
1779 				       p_sb->sb_info.sb_phys,
1780 				       SB_ALIGNED_SIZE(p_hwfn));
1781 	}
1782 
1783 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1784 }
1785 
1786 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1787 						  struct ecore_ptt *p_ptt)
1788 {
1789 	struct ecore_sb_sp_info *p_sb;
1790 	dma_addr_t p_phys = 0;
1791 	void *p_virt;
1792 
1793 	/* SB struct */
1794 	p_sb =
1795 	    OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1796 		       sizeof(*p_sb));
1797 	if (!p_sb) {
1798 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1799 		return ECORE_NOMEM;
1800 	}
1801 
1802 	/* SB ring  */
1803 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1804 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1805 	if (!p_virt) {
1806 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1807 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1808 		return ECORE_NOMEM;
1809 	}
1810 
1811 	/* Status Block setup */
1812 	p_hwfn->p_sp_sb = p_sb;
1813 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1814 			  p_virt, p_phys, ECORE_SP_SB_ID);
1815 
1816 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1817 
1818 	return ECORE_SUCCESS;
1819 }
1820 
1821 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1822 					   ecore_int_comp_cb_t comp_cb,
1823 					   void *cookie,
1824 					   u8 *sb_idx, __le16 **p_fw_cons)
1825 {
1826 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1827 	enum _ecore_status_t rc = ECORE_NOMEM;
1828 	u8 pi;
1829 
1830 	/* Look for a free index */
1831 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1832 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1833 			continue;
1834 
1835 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1836 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1837 		*sb_idx = pi;
1838 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1839 		rc = ECORE_SUCCESS;
1840 		break;
1841 	}
1842 
1843 	return rc;
1844 }
1845 
1846 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1847 {
1848 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1849 
1850 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1851 		return ECORE_NOMEM;
1852 
1853 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1854 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1855 	return ECORE_SUCCESS;
1856 }
1857 
1858 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1859 {
1860 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1861 }
1862 
1863 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1864 			      struct ecore_ptt *p_ptt,
1865 			      enum ecore_int_mode int_mode)
1866 {
1867 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1868 
1869 #ifndef ASIC_ONLY
1870 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1871 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1872 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1873 	}
1874 #endif
1875 
1876 	p_hwfn->p_dev->int_mode = int_mode;
1877 	switch (p_hwfn->p_dev->int_mode) {
1878 	case ECORE_INT_MODE_INTA:
1879 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1880 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1881 		break;
1882 
1883 	case ECORE_INT_MODE_MSI:
1884 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1885 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1886 		break;
1887 
1888 	case ECORE_INT_MODE_MSIX:
1889 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1890 		break;
1891 	case ECORE_INT_MODE_POLL:
1892 		break;
1893 	}
1894 
1895 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1896 }
1897 
1898 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1899 				      struct ecore_ptt *p_ptt)
1900 {
1901 #ifndef ASIC_ONLY
1902 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1903 		DP_INFO(p_hwfn,
1904 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1905 		return;
1906 	}
1907 #endif
1908 
1909 	/* Configure AEU signal change to produce attentions */
1910 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1911 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1912 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1913 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1914 
1915 	/* Flush the writes to IGU */
1916 	OSAL_MMIOWB(p_hwfn->p_dev);
1917 
1918 	/* Unmask AEU signals toward IGU */
1919 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1920 }
1921 
1922 enum _ecore_status_t
1923 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1924 			  enum ecore_int_mode int_mode)
1925 {
1926 	enum _ecore_status_t rc = ECORE_SUCCESS;
1927 
1928 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1929 
1930 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1931 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1932 		if (rc != ECORE_SUCCESS) {
1933 			DP_NOTICE(p_hwfn, true,
1934 				  "Slowpath IRQ request failed\n");
1935 			return ECORE_NORESOURCES;
1936 		}
1937 		p_hwfn->b_int_requested = true;
1938 	}
1939 
1940 	/* Enable interrupt Generation */
1941 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1942 
1943 	p_hwfn->b_int_enabled = 1;
1944 
1945 	return rc;
1946 }
1947 
1948 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1949 			       struct ecore_ptt *p_ptt)
1950 {
1951 	p_hwfn->b_int_enabled = 0;
1952 
1953 	if (IS_VF(p_hwfn->p_dev))
1954 		return;
1955 
1956 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1957 }
1958 
1959 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1960 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1961 				     struct ecore_ptt *p_ptt,
1962 				     u32 igu_sb_id,
1963 				     bool cleanup_set,
1964 				     u16 opaque_fid)
1965 {
1966 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1967 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1968 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1969 	u8 type = 0;		/* FIXME MichalS type??? */
1970 
1971 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1972 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1973 
1974 	/* USE Control Command Register to perform cleanup. There is an
1975 	 * option to do this using IGU bar, but then it can't be used for VFs.
1976 	 */
1977 
1978 	/* Set the data field */
1979 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1980 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1981 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1982 
1983 	/* Set the control register */
1984 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1985 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1986 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1987 
1988 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1989 
1990 	OSAL_BARRIER(p_hwfn->p_dev);
1991 
1992 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1993 
1994 	/* Flush the write to IGU */
1995 	OSAL_MMIOWB(p_hwfn->p_dev);
1996 
1997 	/* calculate where to read the status bit from */
1998 	sb_bit = 1 << (igu_sb_id % 32);
1999 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2000 
2001 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2002 
2003 	/* Now wait for the command to complete */
2004 	while (--sleep_cnt) {
2005 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2006 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2007 			break;
2008 		OSAL_MSLEEP(5);
2009 	}
2010 
2011 	if (!sleep_cnt)
2012 		DP_NOTICE(p_hwfn, true,
2013 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2014 			  val, igu_sb_id);
2015 }
2016 
2017 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2018 				       struct ecore_ptt *p_ptt,
2019 				       u16 igu_sb_id, u16 opaque, bool b_set)
2020 {
2021 	struct ecore_igu_block *p_block;
2022 	int pi, i;
2023 
2024 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2025 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2026 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2027 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2028 		   p_block->vector_number);
2029 
2030 	/* Set */
2031 	if (b_set)
2032 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2033 
2034 	/* Clear */
2035 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2036 
2037 	/* Wait for the IGU SB to cleanup */
2038 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2039 		u32 val;
2040 
2041 		val = ecore_rd(p_hwfn, p_ptt,
2042 			       IGU_REG_WRITE_DONE_PENDING +
2043 			       ((igu_sb_id / 32) * 4));
2044 		if (val & (1 << (igu_sb_id % 32)))
2045 			OSAL_UDELAY(10);
2046 		else
2047 			break;
2048 	}
2049 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2050 		DP_NOTICE(p_hwfn, true,
2051 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2052 			  igu_sb_id);
2053 
2054 	/* Clear the CAU for the SB */
2055 	for (pi = 0; pi < 12; pi++)
2056 		ecore_wr(p_hwfn, p_ptt,
2057 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2058 }
2059 
2060 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2061 				struct ecore_ptt *p_ptt,
2062 				bool b_set, bool b_slowpath)
2063 {
2064 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2065 	struct ecore_igu_block *p_block;
2066 	u16 igu_sb_id = 0;
2067 	u32 val = 0;
2068 
2069 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2070 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2071 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2072 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2073 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2074 	/* end temporary */
2075 
2076 	for (igu_sb_id = 0;
2077 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2078 	     igu_sb_id++) {
2079 		p_block = &p_info->entry[igu_sb_id];
2080 
2081 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2082 		    !p_block->is_pf ||
2083 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2084 			continue;
2085 
2086 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2087 						  p_hwfn->hw_info.opaque_fid,
2088 						  b_set);
2089 	}
2090 
2091 	if (b_slowpath)
2092 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2093 						  p_info->igu_dsb_id,
2094 						  p_hwfn->hw_info.opaque_fid,
2095 						  b_set);
2096 }
2097 
2098 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2099 			    struct ecore_ptt *p_ptt)
2100 {
2101 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2102 	struct ecore_igu_block *p_block;
2103 	int pf_sbs, vf_sbs;
2104 	u16 igu_sb_id;
2105 	u32 val, rval;
2106 
2107 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2108 		/* We're using an old MFW - have to prevent any switching
2109 		 * of SBs between PF and VFs as later driver wouldn't be
2110 		 * able to tell which belongs to which.
2111 		 */
2112 		p_info->b_allow_pf_vf_change = false;
2113 	} else {
2114 		/* Use the numbers the MFW have provided -
2115 		 * don't forget MFW accounts for the default SB as well.
2116 		 */
2117 		p_info->b_allow_pf_vf_change = true;
2118 
2119 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2120 			DP_INFO(p_hwfn,
2121 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2122 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2123 				p_info->usage.cnt);
2124 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2125 		}
2126 
2127 		/* TODO - how do we learn about VF SBs from MFW? */
2128 		if (IS_PF_SRIOV(p_hwfn)) {
2129 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2130 
2131 			if (vfs != p_info->usage.iov_cnt)
2132 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2133 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2134 					   p_info->usage.iov_cnt, vfs);
2135 
2136 			/* At this point we know how many SBs we have totally
2137 			 * in IGU + number of PF SBs. So we can validate that
2138 			 * we'd have sufficient for VF.
2139 			 */
2140 			if (vfs > p_info->usage.free_cnt +
2141 				  p_info->usage.free_cnt_iov -
2142 				  p_info->usage.cnt) {
2143 				DP_NOTICE(p_hwfn, true,
2144 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2145 					  p_info->usage.free_cnt +
2146 					  p_info->usage.free_cnt_iov,
2147 					  p_info->usage.cnt, vfs);
2148 				return ECORE_INVAL;
2149 			}
2150 		}
2151 	}
2152 
2153 	/* Cap the number of VFs SBs by the number of VFs */
2154 	if (IS_PF_SRIOV(p_hwfn))
2155 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2156 
2157 	/* Mark all SBs as free, now in the right PF/VFs division */
2158 	p_info->usage.free_cnt = p_info->usage.cnt;
2159 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2160 	p_info->usage.orig = p_info->usage.cnt;
2161 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2162 
2163 	/* We now proceed to re-configure the IGU cam to reflect the initial
2164 	 * configuration. We can start with the Default SB.
2165 	 */
2166 	pf_sbs = p_info->usage.cnt;
2167 	vf_sbs = p_info->usage.iov_cnt;
2168 
2169 	for (igu_sb_id = p_info->igu_dsb_id;
2170 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2171 	     igu_sb_id++) {
2172 		p_block = &p_info->entry[igu_sb_id];
2173 		val = 0;
2174 
2175 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2176 			continue;
2177 
2178 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2179 			p_block->function_id = p_hwfn->rel_pf_id;
2180 			p_block->is_pf = 1;
2181 			p_block->vector_number = 0;
2182 			p_block->status = ECORE_IGU_STATUS_VALID |
2183 					  ECORE_IGU_STATUS_PF |
2184 					  ECORE_IGU_STATUS_DSB;
2185 		} else if (pf_sbs) {
2186 			pf_sbs--;
2187 			p_block->function_id = p_hwfn->rel_pf_id;
2188 			p_block->is_pf = 1;
2189 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2190 			p_block->status = ECORE_IGU_STATUS_VALID |
2191 					  ECORE_IGU_STATUS_PF |
2192 					  ECORE_IGU_STATUS_FREE;
2193 		} else if (vf_sbs) {
2194 			p_block->function_id =
2195 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2196 				p_info->usage.iov_cnt - vf_sbs;
2197 			p_block->is_pf = 0;
2198 			p_block->vector_number = 0;
2199 			p_block->status = ECORE_IGU_STATUS_VALID |
2200 					  ECORE_IGU_STATUS_FREE;
2201 			vf_sbs--;
2202 		} else {
2203 			p_block->function_id = 0;
2204 			p_block->is_pf = 0;
2205 			p_block->vector_number = 0;
2206 		}
2207 
2208 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2209 			  p_block->function_id);
2210 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2211 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2212 			  p_block->vector_number);
2213 
2214 		/* VF entries would be enabled when VF is initializaed */
2215 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2216 
2217 		rval = ecore_rd(p_hwfn, p_ptt,
2218 				IGU_REG_MAPPING_MEMORY +
2219 				sizeof(u32) * igu_sb_id);
2220 
2221 		if (rval != val) {
2222 			ecore_wr(p_hwfn, p_ptt,
2223 				 IGU_REG_MAPPING_MEMORY +
2224 				 sizeof(u32) * igu_sb_id,
2225 				 val);
2226 
2227 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2228 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2229 				   igu_sb_id, p_block->function_id,
2230 				   p_block->is_pf, p_block->vector_number,
2231 				   rval, val);
2232 		}
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2239 				    struct ecore_ptt *p_ptt)
2240 {
2241 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2242 
2243 	/* Return all the usage indications to default prior to the reset;
2244 	 * The reset expects the !orig to reflect the initial status of the
2245 	 * SBs, and would re-calculate the originals based on those.
2246 	 */
2247 	p_cnt->cnt = p_cnt->orig;
2248 	p_cnt->free_cnt = p_cnt->orig;
2249 	p_cnt->iov_cnt = p_cnt->iov_orig;
2250 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2251 	p_cnt->orig = 0;
2252 	p_cnt->iov_orig = 0;
2253 
2254 	/* TODO - we probably need to re-configure the CAU as well... */
2255 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2256 }
2257 
2258 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2259 					 struct ecore_ptt *p_ptt,
2260 					 u16 igu_sb_id)
2261 {
2262 	u32 val = ecore_rd(p_hwfn, p_ptt,
2263 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2264 	struct ecore_igu_block *p_block;
2265 
2266 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2267 
2268 	/* Fill the block information */
2269 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2270 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2271 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2272 
2273 	p_block->igu_sb_id = igu_sb_id;
2274 }
2275 
2276 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2277 					    struct ecore_ptt *p_ptt)
2278 {
2279 	struct ecore_igu_info *p_igu_info;
2280 	struct ecore_igu_block *p_block;
2281 	u32 min_vf = 0, max_vf = 0;
2282 	u16 igu_sb_id;
2283 
2284 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2285 						 GFP_KERNEL,
2286 						 sizeof(*p_igu_info));
2287 	if (!p_hwfn->hw_info.p_igu_info)
2288 		return ECORE_NOMEM;
2289 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2290 
2291 	/* Distinguish between existent and onn-existent default SB */
2292 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2293 
2294 	/* Find the range of VF ids whose SB belong to this PF */
2295 	if (p_hwfn->p_dev->p_iov_info) {
2296 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2297 
2298 		min_vf = p_iov->first_vf_in_pf;
2299 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2300 	}
2301 
2302 	for (igu_sb_id = 0;
2303 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2304 	     igu_sb_id++) {
2305 		/* Read current entry; Notice it might not belong to this PF */
2306 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2307 		p_block = &p_igu_info->entry[igu_sb_id];
2308 
2309 		if ((p_block->is_pf) &&
2310 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2311 			p_block->status = ECORE_IGU_STATUS_PF |
2312 					  ECORE_IGU_STATUS_VALID |
2313 					  ECORE_IGU_STATUS_FREE;
2314 
2315 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2316 				p_igu_info->usage.cnt++;
2317 		} else if (!(p_block->is_pf) &&
2318 			   (p_block->function_id >= min_vf) &&
2319 			   (p_block->function_id < max_vf)) {
2320 			/* Available for VFs of this PF */
2321 			p_block->status = ECORE_IGU_STATUS_VALID |
2322 					  ECORE_IGU_STATUS_FREE;
2323 
2324 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2325 				p_igu_info->usage.iov_cnt++;
2326 		}
2327 
2328 		/* Mark the First entry belonging to the PF or its VFs
2329 		 * as the default SB [we'll reset IGU prior to first usage].
2330 		 */
2331 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2332 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2333 			p_igu_info->igu_dsb_id = igu_sb_id;
2334 			p_block->status |= ECORE_IGU_STATUS_DSB;
2335 		}
2336 
2337 		/* While this isn't suitable for all clients, limit number
2338 		 * of prints by having each PF print only its entries with the
2339 		 * exception of PF0 which would print everything.
2340 		 */
2341 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2342 		    (p_hwfn->abs_pf_id == 0))
2343 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2344 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2345 				   igu_sb_id, p_block->function_id,
2346 				   p_block->is_pf, p_block->vector_number);
2347 	}
2348 
2349 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2350 		DP_NOTICE(p_hwfn, true,
2351 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2352 			  p_igu_info->igu_dsb_id);
2353 		return ECORE_INVAL;
2354 	}
2355 
2356 	/* All non default SB are considered free at this point */
2357 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2358 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2359 
2360 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2361 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2362 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2363 		   p_igu_info->usage.iov_cnt);
2364 
2365 	return ECORE_SUCCESS;
2366 }
2367 
2368 enum _ecore_status_t
2369 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2370 			  u16 sb_id, bool b_to_vf)
2371 {
2372 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2373 	struct ecore_igu_block *p_block = OSAL_NULL;
2374 	u16 igu_sb_id = 0, vf_num = 0;
2375 	u32 val = 0;
2376 
2377 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2378 		return ECORE_INVAL;
2379 
2380 	if (sb_id == ECORE_SP_SB_ID)
2381 		return ECORE_INVAL;
2382 
2383 	if (!p_info->b_allow_pf_vf_change) {
2384 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2385 		return ECORE_INVAL;
2386 	}
2387 
2388 	/* If we're moving a SB from PF to VF, the client had to specify
2389 	 * which vector it wants to move.
2390 	 */
2391 	if (b_to_vf) {
2392 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2393 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2394 			return ECORE_INVAL;
2395 	}
2396 
2397 	/* If we're moving a SB from VF to PF, need to validate there isn't
2398 	 * already a line configured for that vector.
2399 	 */
2400 	if (!b_to_vf) {
2401 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2402 		    ECORE_SB_INVALID_IDX)
2403 			return ECORE_INVAL;
2404 	}
2405 
2406 	/* We need to validate that the SB can actually be relocated.
2407 	 * This would also handle the previous case where we've explicitly
2408 	 * stated which IGU SB needs to move.
2409 	 */
2410 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2411 	     igu_sb_id++) {
2412 		p_block = &p_info->entry[igu_sb_id];
2413 
2414 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2415 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2416 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2417 			if (b_to_vf)
2418 				return ECORE_INVAL;
2419 			else
2420 				continue;
2421 		}
2422 
2423 		break;
2424 	}
2425 
2426 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2427 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2428 			   "Failed to find a free SB to move\n");
2429 		return ECORE_INVAL;
2430 	}
2431 
2432 	/* At this point, p_block points to the SB we want to relocate */
2433 	if (b_to_vf) {
2434 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2435 
2436 		/* It doesn't matter which VF number we choose, since we're
2437 		 * going to disable the line; But let's keep it in range.
2438 		 */
2439 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2440 
2441 		p_block->function_id = (u8)vf_num;
2442 		p_block->is_pf = 0;
2443 		p_block->vector_number = 0;
2444 
2445 		p_info->usage.cnt--;
2446 		p_info->usage.free_cnt--;
2447 		p_info->usage.iov_cnt++;
2448 		p_info->usage.free_cnt_iov++;
2449 
2450 		/* TODO - if SBs aren't really the limiting factor,
2451 		 * then it might not be accurate [in the since that
2452 		 * we might not need decrement the feature].
2453 		 */
2454 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2455 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2456 	} else {
2457 		p_block->status |= ECORE_IGU_STATUS_PF;
2458 		p_block->function_id = p_hwfn->rel_pf_id;
2459 		p_block->is_pf = 1;
2460 		p_block->vector_number = sb_id + 1;
2461 
2462 		p_info->usage.cnt++;
2463 		p_info->usage.free_cnt++;
2464 		p_info->usage.iov_cnt--;
2465 		p_info->usage.free_cnt_iov--;
2466 
2467 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2468 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2469 	}
2470 
2471 	/* Update the IGU and CAU with the new configuration */
2472 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2473 		  p_block->function_id);
2474 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2475 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2476 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2477 		  p_block->vector_number);
2478 
2479 	ecore_wr(p_hwfn, p_ptt,
2480 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2481 		 val);
2482 
2483 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2484 			      igu_sb_id, vf_num,
2485 			      p_block->is_pf ? 0 : 1);
2486 
2487 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2488 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2489 		   igu_sb_id, p_block->function_id,
2490 		   p_block->is_pf, p_block->vector_number);
2491 
2492 	return ECORE_SUCCESS;
2493 }
2494 
2495 /**
2496  * @brief Initialize igu runtime registers
2497  *
2498  * @param p_hwfn
2499  */
2500 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2501 {
2502 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2503 
2504 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2505 }
2506 
2507 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2508 			  IGU_CMD_INT_ACK_BASE)
2509 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2510 			  IGU_CMD_INT_ACK_BASE)
2511 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2512 {
2513 	u32 intr_status_hi = 0, intr_status_lo = 0;
2514 	u64 intr_status = 0;
2515 
2516 	intr_status_lo = REG_RD(p_hwfn,
2517 				GTT_BAR0_MAP_REG_IGU_CMD +
2518 				LSB_IGU_CMD_ADDR * 8);
2519 	intr_status_hi = REG_RD(p_hwfn,
2520 				GTT_BAR0_MAP_REG_IGU_CMD +
2521 				MSB_IGU_CMD_ADDR * 8);
2522 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2523 
2524 	return intr_status;
2525 }
2526 
2527 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2528 {
2529 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2530 	p_hwfn->b_sp_dpc_enabled = true;
2531 }
2532 
2533 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2534 {
2535 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2536 	if (!p_hwfn->sp_dpc)
2537 		return ECORE_NOMEM;
2538 
2539 	return ECORE_SUCCESS;
2540 }
2541 
2542 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2543 {
2544 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2545 }
2546 
2547 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2548 				     struct ecore_ptt *p_ptt)
2549 {
2550 	enum _ecore_status_t rc = ECORE_SUCCESS;
2551 
2552 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2553 	if (rc != ECORE_SUCCESS) {
2554 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2555 		return rc;
2556 	}
2557 
2558 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2559 	if (rc != ECORE_SUCCESS) {
2560 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2561 		return rc;
2562 	}
2563 
2564 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2565 	if (rc != ECORE_SUCCESS)
2566 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2567 
2568 	return rc;
2569 }
2570 
2571 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2572 {
2573 	ecore_int_sp_sb_free(p_hwfn);
2574 	ecore_int_sb_attn_free(p_hwfn);
2575 	ecore_int_sp_dpc_free(p_hwfn);
2576 }
2577 
2578 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2579 {
2580 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2581 		return;
2582 
2583 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2584 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2585 	ecore_int_sp_dpc_setup(p_hwfn);
2586 }
2587 
2588 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2589 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2590 {
2591 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2592 
2593 	if (!p_igu_info || !p_sb_cnt_info)
2594 		return;
2595 
2596 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2597 		    sizeof(*p_sb_cnt_info));
2598 }
2599 
2600 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2601 {
2602 	int i;
2603 
2604 	for_each_hwfn(p_dev, i)
2605 		p_dev->hwfns[i].b_int_requested = false;
2606 }
2607 
2608 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2609 {
2610 	p_dev->attn_clr_en = clr_enable;
2611 }
2612 
2613 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2614 					     struct ecore_ptt *p_ptt,
2615 					     u8 timer_res, u16 sb_id, bool tx)
2616 {
2617 	struct cau_sb_entry sb_entry;
2618 	enum _ecore_status_t rc;
2619 
2620 	if (!p_hwfn->hw_init_done) {
2621 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2622 		return ECORE_INVAL;
2623 	}
2624 
2625 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2626 				 sb_id * sizeof(u64),
2627 				 (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2628 	if (rc != ECORE_SUCCESS) {
2629 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2630 		return rc;
2631 	}
2632 
2633 	if (tx)
2634 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2635 	else
2636 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2637 
2638 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2639 				 (u64)(osal_uintptr_t)&sb_entry,
2640 				 CAU_REG_SB_VAR_MEMORY +
2641 				 sb_id * sizeof(u64), 2, 0);
2642 	if (rc != ECORE_SUCCESS) {
2643 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2644 		return rc;
2645 	}
2646 
2647 	return rc;
2648 }
2649 
2650 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2651 					  struct ecore_ptt *p_ptt,
2652 					  struct ecore_sb_info *p_sb,
2653 					  struct ecore_sb_info_dbg *p_info)
2654 {
2655 	u16 sbid = p_sb->igu_sb_id;
2656 	int i;
2657 
2658 	if (IS_VF(p_hwfn->p_dev))
2659 		return ECORE_INVAL;
2660 
2661 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2662 		return ECORE_INVAL;
2663 
2664 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2665 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2666 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2667 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2668 
2669 	for (i = 0; i < PIS_PER_SB_E4; i++)
2670 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2671 					      CAU_REG_PI_MEMORY +
2672 					      sbid * 4 * PIS_PER_SB_E4 +
2673 					      i * 4);
2674 
2675 	return ECORE_SUCCESS;
2676 }
2677