xref: /dpdk/drivers/net/qede/base/ecore_int.c (revision 0c00abfd85448449d73acc09cc6fe445dba37b50)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6 
7 #include <rte_string_fns.h>
8 
9 #include "bcm_osal.h"
10 #include "ecore.h"
11 #include "ecore_spq.h"
12 #include "ecore_gtt_reg_addr.h"
13 #include "ecore_init_ops.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_int.h"
16 #include "reg_addr.h"
17 #include "ecore_hw.h"
18 #include "ecore_sriov.h"
19 #include "ecore_vf.h"
20 #include "ecore_hw_defs.h"
21 #include "ecore_hsi_common.h"
22 #include "ecore_mcp.h"
23 
24 struct ecore_pi_info {
25 	ecore_int_comp_cb_t comp_cb;
26 	void *cookie;		/* Will be sent to the compl cb function */
27 };
28 
29 struct ecore_sb_sp_info {
30 	struct ecore_sb_info sb_info;
31 	/* per protocol index data */
32 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
33 };
34 
35 enum ecore_attention_type {
36 	ECORE_ATTN_TYPE_ATTN,
37 	ECORE_ATTN_TYPE_PARITY,
38 };
39 
40 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
41 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
42 
43 struct aeu_invert_reg_bit {
44 	char bit_name[30];
45 
46 #define ATTENTION_PARITY		(1 << 0)
47 
48 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
49 #define ATTENTION_LENGTH_SHIFT		(4)
50 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
51 					 ATTENTION_LENGTH_SHIFT)
52 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
53 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
54 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
55 					 ATTENTION_PARITY)
56 
57 /* Multiple bits start with this offset */
58 #define ATTENTION_OFFSET_MASK		(0x000ff000)
59 #define ATTENTION_OFFSET_SHIFT		(12)
60 
61 #define ATTENTION_BB_MASK		(0x00700000)
62 #define ATTENTION_BB_SHIFT		(20)
63 #define ATTENTION_BB(value)		((value) << ATTENTION_BB_SHIFT)
64 #define ATTENTION_BB_DIFFERENT		(1 << 23)
65 
66 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
67 	unsigned int flags;
68 
69 	/* Callback to call if attention will be triggered */
70 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
71 
72 	enum block_id block_index;
73 };
74 
75 struct aeu_invert_reg {
76 	struct aeu_invert_reg_bit bits[32];
77 };
78 
79 #define MAX_ATTN_GRPS		(8)
80 #define NUM_ATTN_REGS		(9)
81 
82 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
83 {
84 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
85 
86 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n", tmp);
87 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 0xffffffff);
88 
89 	return ECORE_SUCCESS;
90 }
91 
92 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
93 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
94 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
95 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
96 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
97 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
98 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
99 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
100 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
101 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
102 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
103 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
104 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
105 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
106 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
107 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
108 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
109 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
110 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
111 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
112 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
113 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
114 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
115 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
116 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
117 {
118 	u32 tmp =
119 	    ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
120 		     PSWHST_REG_VF_DISABLED_ERROR_VALID);
121 
122 	/* Disabled VF access */
123 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
124 		u32 addr, data;
125 
126 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
128 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
130 		DP_INFO(p_hwfn->p_dev,
131 			"PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x]"
132 			" Write [0x%02x] Addr [0x%08x]\n",
133 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK)
134 			     >> ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
135 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK)
136 			     >> ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
137 			(u8)((data &
138 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
139 			      ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
140 			(u8)((data &
141 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
142 			      ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
143 			(u8)((data &
144 			      ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
145 			      ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
146 			addr);
147 	}
148 
149 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
151 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
152 		u32 addr, data, length;
153 
154 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
155 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
156 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
157 				PSWHST_REG_INCORRECT_ACCESS_DATA);
158 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
159 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
160 
161 		DP_INFO(p_hwfn->p_dev,
162 			"Incorrect access to %08x of length %08x - PF [%02x]"
163 			" VF [%04x] [valid %02x] client [%02x] write [%02x]"
164 			" Byte-Enable [%04x] [%08x]\n",
165 			addr, length,
166 			(u8)((data &
167 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
168 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
169 			(u8)((data &
170 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
171 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
172 			(u8)((data &
173 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
174 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
175 			(u8)((data &
176 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
177 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
178 			(u8)((data &
179 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
180 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
181 			(u8)((data &
182 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
183 		      ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
184 			data);
185 	}
186 
187 	/* TODO - We know 'some' of these are legal due to virtualization,
188 	 * but is it true for all of them?
189 	 */
190 	return ECORE_SUCCESS;
191 }
192 
193 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
194 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
195 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
196 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
197 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
198 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
199 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
200 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
201 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
202 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
203 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
204 static const char *grc_timeout_attn_master_to_str(u8 master)
205 {
206 	switch (master) {
207 	case 1:
208 		return "PXP";
209 	case 2:
210 		return "MCP";
211 	case 3:
212 		return "MSDM";
213 	case 4:
214 		return "PSDM";
215 	case 5:
216 		return "YSDM";
217 	case 6:
218 		return "USDM";
219 	case 7:
220 		return "TSDM";
221 	case 8:
222 		return "XSDM";
223 	case 9:
224 		return "DBU";
225 	case 10:
226 		return "DMAE";
227 	default:
228 		return "Unknown";
229 	}
230 }
231 
232 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
233 {
234 	u32 tmp, tmp2;
235 
236 	/* We've already cleared the timeout interrupt register, so we learn
237 	 * of interrupts via the validity register
238 	 */
239 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
240 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
241 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
242 		goto out;
243 
244 	/* Read the GRC timeout information */
245 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
246 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
247 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
248 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
249 
250 	DP_NOTICE(p_hwfn->p_dev, false,
251 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
252 		  tmp2, tmp,
253 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
254 						       : "Read from",
255 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
256 		  grc_timeout_attn_master_to_str(
257 			(tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
258 			 ECORE_GRC_ATTENTION_MASTER_SHIFT),
259 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
260 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
261 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
262 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
263 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
264 		  ECORE_GRC_ATTENTION_VF_SHIFT);
265 
266 out:
267 	/* Regardles of anything else, clean the validity bit */
268 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
269 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
270 	return ECORE_SUCCESS;
271 }
272 
273 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
274 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
275 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
276 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
277 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
278 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
279 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
280 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
281 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
282 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
283 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
284 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
285 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
286 
287 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
288 						   struct ecore_ptt *p_ptt,
289 						   bool is_hw_init)
290 {
291 	u32 tmp;
292 	char str[512] = {0};
293 
294 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
295 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
296 		u32 addr_lo, addr_hi, details;
297 
298 		addr_lo = ecore_rd(p_hwfn, p_ptt,
299 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
300 		addr_hi = ecore_rd(p_hwfn, p_ptt,
301 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
302 		details = ecore_rd(p_hwfn, p_ptt,
303 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
304 		OSAL_SNPRINTF(str, 512,
305 			 "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
306 			  addr_hi, addr_lo, details,
307 			  (u8)((details &
308 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
309 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
310 			  (u8)((details &
311 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
312 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
313 			  (u8)((details &
314 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
315 			  tmp,
316 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
317 				1 : 0),
318 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
319 				1 : 0),
320 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
321 				1 : 0));
322 		if (is_hw_init)
323 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "%s", str);
324 		else
325 			DP_NOTICE(p_hwfn, false, "%s", str);
326 	}
327 
328 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
329 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
330 		u32 addr_lo, addr_hi, details;
331 
332 		addr_lo = ecore_rd(p_hwfn, p_ptt,
333 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
334 		addr_hi = ecore_rd(p_hwfn, p_ptt,
335 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
336 		details = ecore_rd(p_hwfn, p_ptt,
337 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
338 
339 		DP_NOTICE(p_hwfn, false,
340 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
341 			  addr_hi, addr_lo, details,
342 			  (u8)((details &
343 				ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >>
344 			       ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
345 			  (u8)((details &
346 				ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >>
347 			       ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
348 			  (u8)((details &
349 			       ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
350 			  tmp,
351 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ?
352 				1 : 0),
353 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ?
354 				1 : 0),
355 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ?
356 				1 : 0));
357 	}
358 
359 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
360 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
361 		DP_NOTICE(p_hwfn, false, "ICPL erorr - %08x\n", tmp);
362 
363 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
364 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
365 		u32 addr_hi, addr_lo;
366 
367 		addr_lo = ecore_rd(p_hwfn, p_ptt,
368 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
369 		addr_hi = ecore_rd(p_hwfn, p_ptt,
370 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
371 
372 		DP_NOTICE(p_hwfn, false,
373 			  "ICPL erorr - %08x [Address %08x:%08x]\n",
374 			  tmp, addr_hi, addr_lo);
375 	}
376 
377 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
378 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
379 		u32 addr_hi, addr_lo, details;
380 
381 		addr_lo = ecore_rd(p_hwfn, p_ptt,
382 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
383 		addr_hi = ecore_rd(p_hwfn, p_ptt,
384 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
385 		details = ecore_rd(p_hwfn, p_ptt,
386 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
387 
388 		DP_NOTICE(p_hwfn, false,
389 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
390 			  details, tmp, addr_hi, addr_lo);
391 	}
392 
393 	/* Clear the indications */
394 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
395 
396 	return ECORE_SUCCESS;
397 }
398 
399 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
400 {
401 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
402 }
403 
404 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
405 {
406 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
407 
408 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
409 
410 	return ECORE_INVAL;
411 }
412 
413 static enum _ecore_status_t
414 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
415 {
416 	DP_INFO(p_hwfn, "General attention 35!\n");
417 
418 	return ECORE_SUCCESS;
419 }
420 
421 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
422 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
423 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
424 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
425 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
426 
427 #define ECORE_DB_REC_COUNT			10
428 #define ECORE_DB_REC_INTERVAL			100
429 
430 /* assumes sticky overflow indication was set for this PF */
431 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
432 					      struct ecore_ptt *p_ptt)
433 {
434 	u8 count = ECORE_DB_REC_COUNT;
435 	u32 usage = 1;
436 
437 	/* wait for usage to zero or count to run out. This is necessary since
438 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
439 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
440 	 * half an EDPM in the queue and other half dropped. Another EDPM
441 	 * doorbell to the same address (from doorbell recovery mechanism or
442 	 * from the doorbelling entity) could have first half dropped and second
443 	 * half interperted as continuation of the first. To prevent such
444 	 * malformed doorbells from reaching the device, flush the queue before
445 	 * releaseing the overflow sticky indication.
446 	 */
447 	while (count-- && usage) {
448 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
449 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
450 	}
451 
452 	/* should have been depleted by now */
453 	if (usage) {
454 		DP_NOTICE(p_hwfn->p_dev, false,
455 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
456 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
457 		return ECORE_TIMEOUT;
458 	}
459 
460 	/* flush any pedning (e)dpm as they may never arrive */
461 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
462 
463 	/* release overflow sticky indication (stop silently dropping
464 	 * everything)
465 	 */
466 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
467 
468 	/* repeat all last doorbells (doorbell drop recovery) */
469 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
470 
471 	return ECORE_SUCCESS;
472 }
473 
474 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
475 {
476 	u32 int_sts, first_drop_reason, details, address, overflow,
477 		all_drops_reason;
478 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
479 	enum _ecore_status_t rc;
480 
481 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
482 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
483 		  int_sts);
484 
485 	/* int_sts may be zero since all PFs were interrupted for doorbell
486 	 * overflow but another one already handled it. Can abort here. If
487 	 * This PF also requires overflow recovery we will be interrupted again
488 	 */
489 	if (!int_sts)
490 		return ECORE_SUCCESS;
491 
492 	/* check if db_drop or overflow happened */
493 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
494 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
495 		/* obtain data about db drop/overflow */
496 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
497 				  DORQ_REG_DB_DROP_REASON) &
498 				  ECORE_DORQ_ATTENTION_REASON_MASK;
499 		details = ecore_rd(p_hwfn, p_ptt,
500 				   DORQ_REG_DB_DROP_DETAILS);
501 		address = ecore_rd(p_hwfn, p_ptt,
502 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
503 		overflow = ecore_rd(p_hwfn, p_ptt,
504 				    DORQ_REG_PF_OVFL_STICKY);
505 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
506 					    DORQ_REG_DB_DROP_DETAILS_REASON);
507 
508 		/* log info */
509 		DP_NOTICE(p_hwfn->p_dev, false,
510 			  "Doorbell drop occurred\n"
511 			  "Address\t\t0x%08x\t(second BAR address)\n"
512 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
513 			  "Size\t\t0x%04x\t\t(in bytes)\n"
514 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
515 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
516 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
517 			  address,
518 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
519 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
520 			  first_drop_reason, all_drops_reason, overflow);
521 
522 		/* if this PF caused overflow, initiate recovery */
523 		if (overflow) {
524 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
525 			if (rc != ECORE_SUCCESS)
526 				return rc;
527 		}
528 
529 		/* clear the doorbell drop details and prepare for next drop */
530 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
531 
532 		/* mark interrupt as handeld (note: even if drop was due to a
533 		 * different reason than overflow we mark as handled)
534 		 */
535 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
536 			 DORQ_REG_INT_STS_DB_DROP |
537 			 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
538 
539 		/* if there are no indications otherthan drop indications,
540 		 * success
541 		 */
542 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
543 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
544 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
545 			return ECORE_SUCCESS;
546 	}
547 
548 	/* some other indication was present - non recoverable */
549 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
550 
551 	return ECORE_INVAL;
552 }
553 
554 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
555 {
556 #ifndef ASIC_ONLY
557 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
558 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
559 				   TM_REG_INT_STS_1);
560 
561 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
562 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
563 			return ECORE_INVAL;
564 
565 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
566 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
567 			DP_INFO(p_hwfn,
568 				"TM attention on emulation - most likely"
569 				" results of clock-ratios\n");
570 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
571 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
572 		    TM_REG_INT_MASK_1_PEND_TASK_SCAN;
573 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
574 
575 		return ECORE_SUCCESS;
576 	}
577 #endif
578 
579 	return ECORE_INVAL;
580 }
581 
582 /* Instead of major changes to the data-structure, we have a some 'special'
583  * identifiers for sources that changed meaning between adapters.
584  */
585 enum aeu_invert_reg_special_type {
586 	AEU_INVERT_REG_SPECIAL_CNIG_0,
587 	AEU_INVERT_REG_SPECIAL_CNIG_1,
588 	AEU_INVERT_REG_SPECIAL_CNIG_2,
589 	AEU_INVERT_REG_SPECIAL_CNIG_3,
590 	AEU_INVERT_REG_SPECIAL_MAX,
591 };
592 
593 static struct aeu_invert_reg_bit
594 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
595 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
597 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
599 };
600 
601 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
602 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
603 	{
604 	 {			/* After Invert 1 */
605 	  {"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
606 	   MAX_BLOCK_ID},
607 	  }
608 	 },
609 
610 	{
611 	 {			/* After Invert 2 */
612 	  {"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613 	  {"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614 	  {"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb,
615 	   BLOCK_PGLUE_B},
616 	  {"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617 	  {"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
618 	  {"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
619 	  {"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
620 	  {"SW timers #%d",
621 	   (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT),
622 	   OSAL_NULL, MAX_BLOCK_ID},
623 	  {"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
624 	   BLOCK_PGLCS},
625 	  }
626 	 },
627 
628 	{
629 	 {			/* After Invert 3 */
630 	  {"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
631 	   MAX_BLOCK_ID},
632 	  }
633 	 },
634 
635 	{
636 	 {			/* After Invert 4 */
637 	  {"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
638 	   ecore_fw_assertion, MAX_BLOCK_ID},
639 	  {"General Attention %d",
640 	   (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT),
641 	   OSAL_NULL, MAX_BLOCK_ID},
642 	  {"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE,
643 	   ecore_general_attention_35, MAX_BLOCK_ID},
644 	  {"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
645 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
646 			 OSAL_NULL, BLOCK_NWS},
647 	  {"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
648 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
649 			    OSAL_NULL, BLOCK_NWS},
650 	  {"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
651 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
652 			 OSAL_NULL, BLOCK_NWM},
653 	  {"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
654 			    ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
655 			    OSAL_NULL, BLOCK_NWM},
656 	  {"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
657 	  {"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
658 	  {"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
659 	  {"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
660 	  {"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
661 	  {"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
662 	  {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
663 	   MAX_BLOCK_ID},
664 	  {"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
665 	  {"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
666 	  {"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
667 	  {"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
668 	  {"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
669 	  }
670 	 },
671 
672 	{
673 	 {			/* After Invert 5 */
674 	  {"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
675 	  {"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
676 	  {"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
677 	  {"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
678 	  {"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
679 	  {"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
680 	  {"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
681 	  {"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
682 	  {"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
683 	  {"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
684 	  {"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
685 	  {"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
686 	  {"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
687 	  {"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
688 	  {"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
689 	  {"TSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSEM},
690 	  }
691 	 },
692 
693 	{
694 	 {			/* After Invert 6 */
695 	  {"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
696 	  {"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
697 	  {"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
698 	  {"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
699 	  {"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
700 	  {"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
701 	  {"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
702 	  {"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
703 	  {"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
704 	  {"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
705 	  {"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
706 	  {"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
707 	  {"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
708 	  {"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
709 	  {"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
710 	  {"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
711 	  }
712 	 },
713 
714 	{
715 	 {			/* After Invert 7 */
716 	  {"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
717 	  {"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
718 	  {"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
719 	  {"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
720 	  {"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
721 	  {"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
722 	  {"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
723 	  {"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
724 	  {"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
725 	  {"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
726 	  {"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
727 	  {"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
728 	  {"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
729 	  {"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
730 	  {"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
731 	  {"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
732 	  {"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
733 	  }
734 	 },
735 
736 	{
737 	 {			/* After Invert 8 */
738 	  {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
739 	  {"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
740 	  {"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
741 	  {"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
742 	  {"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
743 	  {"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
744 	  {"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
745 	  {"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
746 	  {"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
747 	  {"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
748 	  {"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
749 	  {"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
750 	  {"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751 	  {"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
752 	  {"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753 	  {"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
754 	  {"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
755 	  {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
756 	  {"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
757 	  {"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
758 	  {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
759 	   MAX_BLOCK_ID},
760 	  }
761 	 },
762 
763 	{
764 	 {			/* After Invert 9 */
765 	  {"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
766 	  {"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL,
767 	   MAX_BLOCK_ID},
768 	  {"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
769 	  {"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
770 	  {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL,
771 	   MAX_BLOCK_ID},
772 	  }
773 	 },
774 
775 };
776 
777 static struct aeu_invert_reg_bit *
778 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
779 			struct aeu_invert_reg_bit *p_bit)
780 {
781 	if (!ECORE_IS_BB(p_hwfn->p_dev))
782 		return p_bit;
783 
784 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
785 		return p_bit;
786 
787 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
788 				  ATTENTION_BB_SHIFT];
789 }
790 
791 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
792 				     struct aeu_invert_reg_bit *p_bit)
793 {
794 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
795 		  ATTENTION_PARITY);
796 }
797 
798 #define ATTN_STATE_BITS		(0xfff)
799 #define ATTN_BITS_MASKABLE	(0x3ff)
800 struct ecore_sb_attn_info {
801 	/* Virtual & Physical address of the SB */
802 	struct atten_status_block *sb_attn;
803 	dma_addr_t sb_phys;
804 
805 	/* Last seen running index */
806 	u16 index;
807 
808 	/* A mask of the AEU bits resulting in a parity error */
809 	u32 parity_mask[NUM_ATTN_REGS];
810 
811 	/* A pointer to the attention description structure */
812 	struct aeu_invert_reg *p_aeu_desc;
813 
814 	/* Previously asserted attentions, which are still unasserted */
815 	u16 known_attn;
816 
817 	/* Cleanup address for the link's general hw attention */
818 	u32 mfw_attn_addr;
819 };
820 
821 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
822 				 struct ecore_sb_attn_info *p_sb_desc)
823 {
824 	u16 rc = 0, index;
825 
826 	OSAL_MMIOWB(p_hwfn->p_dev);
827 
828 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
829 	if (p_sb_desc->index != index) {
830 		p_sb_desc->index = index;
831 		rc = ECORE_SB_ATT_IDX;
832 	}
833 
834 	OSAL_MMIOWB(p_hwfn->p_dev);
835 
836 	return rc;
837 }
838 
839 /**
840  * @brief ecore_int_assertion - handles asserted attention bits
841  *
842  * @param p_hwfn
843  * @param asserted_bits newly asserted bits
844  * @return enum _ecore_status_t
845  */
846 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
847 						u16 asserted_bits)
848 {
849 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
850 	u32 igu_mask;
851 
852 	/* Mask the source of the attention in the IGU */
853 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
854 			    IGU_REG_ATTENTION_ENABLE);
855 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
856 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
857 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
858 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
859 
860 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
861 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
862 		   sb_attn_sw->known_attn,
863 		   sb_attn_sw->known_attn | asserted_bits);
864 	sb_attn_sw->known_attn |= asserted_bits;
865 
866 	/* Handle MCP events */
867 	if (asserted_bits & 0x100) {
868 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
869 		/* Clean the MCP attention */
870 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
871 			 sb_attn_sw->mfw_attn_addr, 0);
872 	}
873 
874 	/* FIXME - this will change once we'll have GOOD gtt definitions */
875 	DIRECT_REG_WR(p_hwfn,
876 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
877 		      GTT_BAR0_MAP_REG_IGU_CMD +
878 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
879 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
880 
881 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
882 		   asserted_bits);
883 
884 	return ECORE_SUCCESS;
885 }
886 
887 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
888 				 enum block_id id, enum dbg_attn_type type,
889 				 bool b_clear)
890 {
891 	/* @DPDK */
892 	DP_NOTICE(p_hwfn->p_dev, false, "[block_id %d type %d]\n", id, type);
893 }
894 
895 /**
896  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
897  * cause of the attention
898  *
899  * @param p_hwfn
900  * @param p_aeu - descriptor of an AEU bit which caused the attention
901  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
902  *  this bit to this group.
903  * @param bit_index - index of this bit in the aeu_en_reg
904  *
905  * @return enum _ecore_status_t
906  */
907 static enum _ecore_status_t
908 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
909 			      struct aeu_invert_reg_bit *p_aeu,
910 			      u32 aeu_en_reg,
911 			      const char *p_bit_name,
912 			      u32 bitmask)
913 {
914 	enum _ecore_status_t rc = ECORE_INVAL;
915 	bool b_fatal = false;
916 
917 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
918 		p_bit_name, bitmask);
919 
920 	/* Call callback before clearing the interrupt status */
921 	if (p_aeu->cb) {
922 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
923 			p_bit_name);
924 		rc = p_aeu->cb(p_hwfn);
925 	}
926 
927 	if (rc != ECORE_SUCCESS)
928 		b_fatal = true;
929 
930 	/* Print HW block interrupt registers */
931 	if (p_aeu->block_index != MAX_BLOCK_ID) {
932 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
933 				     ATTN_TYPE_INTERRUPT, !b_fatal);
934 }
935 
936 	/* @DPDK */
937 	/* Reach assertion if attention is fatal */
938 	if (b_fatal || (strcmp(p_bit_name, "PGLUE B RBC") == 0)) {
939 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
940 			  p_bit_name);
941 
942 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
943 	}
944 
945 	/* Prevent this Attention from being asserted in the future */
946 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
947 	    p_hwfn->p_dev->attn_clr_en) {
948 		u32 val;
949 		u32 mask = ~bitmask;
950 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
951 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
952 		DP_ERR(p_hwfn, "`%s' - Disabled future attentions\n",
953 			p_bit_name);
954 	}
955 
956 	return rc;
957 }
958 
959 /**
960  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
961  *
962  * @param p_hwfn
963  * @param p_aeu - descriptor of an AEU bit which caused the parity
964  * @param aeu_en_reg - address of the AEU enable register
965  * @param bit_index
966  */
967 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
968 					 struct aeu_invert_reg_bit *p_aeu,
969 					 u32 aeu_en_reg, u8 bit_index)
970 {
971 	u32 block_id = p_aeu->block_index, mask, val;
972 
973 	DP_NOTICE(p_hwfn->p_dev, false,
974 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
975 		  p_aeu->bit_name, aeu_en_reg, bit_index);
976 
977 	if (block_id != MAX_BLOCK_ID) {
978 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
979 
980 		/* In A0, there's a single parity bit for several blocks */
981 		if (block_id == BLOCK_BTB) {
982 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
983 					     ATTN_TYPE_PARITY, false);
984 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
985 					     ATTN_TYPE_PARITY, false);
986 		}
987 	}
988 
989 	/* Prevent this parity error from being re-asserted */
990 	mask = ~(0x1 << bit_index);
991 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
992 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
993 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
994 		p_aeu->bit_name);
995 }
996 
997 /**
998  * @brief - handles deassertion of previously asserted attentions.
999  *
1000  * @param p_hwfn
1001  * @param deasserted_bits - newly deasserted bits
1002  * @return enum _ecore_status_t
1003  *
1004  */
1005 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1006 						  u16 deasserted_bits)
1007 {
1008 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1009 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1010 	u8 i, j, k, bit_idx;
1011 	enum _ecore_status_t rc = ECORE_SUCCESS;
1012 
1013 	/* Read the attention registers in the AEU */
1014 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1015 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1016 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1017 					  i * 0x4);
1018 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1019 			   "Deasserted bits [%d]: %08x\n", i, aeu_inv_arr[i]);
1020 	}
1021 
1022 	/* Handle parity attentions first */
1023 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1024 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1025 		u32 parities;
1026 
1027 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1028 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1029 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1030 
1031 		/* Skip register in which no parity bit is currently set */
1032 		if (!parities)
1033 			continue;
1034 
1035 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1036 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1037 
1038 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1039 			    !!(parities & (1 << bit_idx)))
1040 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1041 							     aeu_en, bit_idx);
1042 
1043 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1044 		}
1045 	}
1046 
1047 	/* Find non-parity cause for attention and act */
1048 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1049 		struct aeu_invert_reg_bit *p_aeu;
1050 
1051 		/* Handle only groups whose attention is currently deasserted */
1052 		if (!(deasserted_bits & (1 << k)))
1053 			continue;
1054 
1055 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1056 			u32 bits;
1057 
1058 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1059 				 i * sizeof(u32) +
1060 				 k * sizeof(u32) * NUM_ATTN_REGS;
1061 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1062 			bits = aeu_inv_arr[i] & en;
1063 
1064 			/* Skip if no bit from this group is currently set */
1065 			if (!bits)
1066 				continue;
1067 
1068 			/* Find all set bits from current register which belong
1069 			 * to current group, making them responsible for the
1070 			 * previous assertion.
1071 			 */
1072 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1073 				unsigned long int bitmask;
1074 				u8 bit, bit_len;
1075 
1076 				/* Need to account bits with changed meaning */
1077 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1078 
1079 				bit = bit_idx;
1080 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1081 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1082 					/* Skip Parity */
1083 					bit++;
1084 					bit_len--;
1085 				}
1086 
1087 				/* Find the bits relating to HW-block, then
1088 				 * shift so they'll become LSB.
1089 				 */
1090 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1091 				bitmask >>= bit;
1092 
1093 				if (bitmask) {
1094 					u32 flags = p_aeu->flags;
1095 					char bit_name[30];
1096 					u8 num;
1097 
1098 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1099 								bit_len);
1100 
1101 					/* Some bits represent more than a
1102 					 * a single interrupt. Correctly print
1103 					 * their name.
1104 					 */
1105 					if (ATTENTION_LENGTH(flags) > 2 ||
1106 					    ((flags & ATTENTION_PAR_INT) &&
1107 					    ATTENTION_LENGTH(flags) > 1))
1108 						OSAL_SNPRINTF(bit_name, 30,
1109 							      p_aeu->bit_name,
1110 							      num);
1111 					else
1112 						strlcpy(bit_name,
1113 							p_aeu->bit_name,
1114 							sizeof(bit_name));
1115 
1116 					/* We now need to pass bitmask in its
1117 					 * correct position.
1118 					 */
1119 					bitmask <<= bit;
1120 
1121 					/* Handle source of the attention */
1122 					ecore_int_deassertion_aeu_bit(p_hwfn,
1123 								      p_aeu,
1124 								      aeu_en,
1125 								      bit_name,
1126 								      bitmask);
1127 				}
1128 
1129 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1130 			}
1131 		}
1132 	}
1133 
1134 	/* Clear IGU indication for the deasserted bits */
1135 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1136 	DIRECT_REG_WR(p_hwfn,
1137 		      (u8 OSAL_IOMEM *) p_hwfn->regview +
1138 		      GTT_BAR0_MAP_REG_IGU_CMD +
1139 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1140 			IGU_CMD_INT_ACK_BASE) << 3), ~((u32)deasserted_bits));
1141 
1142 	/* Unmask deasserted attentions in IGU */
1143 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1144 			    IGU_REG_ATTENTION_ENABLE);
1145 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1146 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1147 
1148 	/* Clear deassertion from inner state */
1149 	sb_attn_sw->known_attn &= ~deasserted_bits;
1150 
1151 	return rc;
1152 }
1153 
1154 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1155 {
1156 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1157 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1158 	u16 index = 0, asserted_bits, deasserted_bits;
1159 	u32 attn_bits = 0, attn_acks = 0;
1160 	enum _ecore_status_t rc = ECORE_SUCCESS;
1161 
1162 	/* Read current attention bits/acks - safeguard against attentions
1163 	 * by guaranting work on a synchronized timeframe
1164 	 */
1165 	do {
1166 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1167 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1168 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1169 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1170 	p_sb_attn->sb_index = index;
1171 
1172 	/* Attention / Deassertion are meaningful (and in correct state)
1173 	 * only when they differ and consistent with known state - deassertion
1174 	 * when previous attention & current ack, and assertion when current
1175 	 * attention with no previous attention
1176 	 */
1177 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1178 	    ~p_sb_attn_sw->known_attn;
1179 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1180 	    p_sb_attn_sw->known_attn;
1181 
1182 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1183 		DP_INFO(p_hwfn,
1184 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1185 			index, attn_bits, attn_acks, asserted_bits,
1186 			deasserted_bits, p_sb_attn_sw->known_attn);
1187 	else if (asserted_bits == 0x100)
1188 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1189 	else
1190 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1191 			   "MFW indication [deassertion]\n");
1192 
1193 	if (asserted_bits) {
1194 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1195 		if (rc)
1196 			return rc;
1197 	}
1198 
1199 	if (deasserted_bits)
1200 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1201 
1202 	return rc;
1203 }
1204 
1205 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1206 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1207 {
1208 	struct igu_prod_cons_update igu_ack = { 0 };
1209 
1210 	igu_ack.sb_id_and_flags =
1211 	    ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1212 	     (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1213 	     (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1214 	     (IGU_SEG_ACCESS_ATTN <<
1215 	      IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1216 
1217 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1218 
1219 	/* Both segments (interrupts & acks) are written to same place address;
1220 	 * Need to guarantee all commands will be received (in-order) by HW.
1221 	 */
1222 	OSAL_MMIOWB(p_hwfn->p_dev);
1223 	OSAL_BARRIER(p_hwfn->p_dev);
1224 }
1225 
1226 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1227 {
1228 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1229 	struct ecore_pi_info *pi_info = OSAL_NULL;
1230 	struct ecore_sb_attn_info *sb_attn;
1231 	struct ecore_sb_info *sb_info;
1232 	int arr_size;
1233 	u16 rc = 0;
1234 
1235 	if (!p_hwfn)
1236 		return;
1237 
1238 	if (!p_hwfn->p_sp_sb) {
1239 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1240 		return;
1241 	}
1242 
1243 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1244 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1245 	if (!sb_info) {
1246 		DP_ERR(p_hwfn->p_dev,
1247 		       "Status block is NULL - cannot ack interrupts\n");
1248 		return;
1249 	}
1250 
1251 	if (!p_hwfn->p_sb_attn) {
1252 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1253 		return;
1254 	}
1255 	sb_attn = p_hwfn->p_sb_attn;
1256 
1257 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1258 		   p_hwfn, p_hwfn->my_id);
1259 
1260 	/* Disable ack for def status block. Required both for msix +
1261 	 * inta in non-mask mode, in inta does no harm.
1262 	 */
1263 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1264 
1265 	/* Gather Interrupts/Attentions information */
1266 	if (!sb_info->sb_virt) {
1267 		DP_ERR(p_hwfn->p_dev,
1268 		       "Interrupt Status block is NULL -"
1269 		       " cannot check for new interrupts!\n");
1270 	} else {
1271 		u32 tmp_index = sb_info->sb_ack;
1272 		rc = ecore_sb_update_sb_idx(sb_info);
1273 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1274 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1275 			   tmp_index, sb_info->sb_ack);
1276 	}
1277 
1278 	if (!sb_attn || !sb_attn->sb_attn) {
1279 		DP_ERR(p_hwfn->p_dev,
1280 		       "Attentions Status block is NULL -"
1281 		       " cannot check for new attentions!\n");
1282 	} else {
1283 		u16 tmp_index = sb_attn->index;
1284 
1285 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1286 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1287 			   "Attention indices: 0x%08x --> 0x%08x\n",
1288 			   tmp_index, sb_attn->index);
1289 	}
1290 
1291 	/* Check if we expect interrupts at this time. if not just ack them */
1292 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1293 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1294 		return;
1295 	}
1296 
1297 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1298 
1299 	if (!p_hwfn->p_dpc_ptt) {
1300 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1301 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1302 		return;
1303 	}
1304 
1305 	if (rc & ECORE_SB_ATT_IDX)
1306 		ecore_int_attentions(p_hwfn);
1307 
1308 	if (rc & ECORE_SB_IDX) {
1309 		int pi;
1310 
1311 		/* Since we only looked at the SB index, it's possible more
1312 		 * than a single protocol-index on the SB incremented.
1313 		 * Iterate over all configured protocol indices and check
1314 		 * whether something happened for each.
1315 		 */
1316 		for (pi = 0; pi < arr_size; pi++) {
1317 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1318 			if (pi_info->comp_cb != OSAL_NULL)
1319 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1320 		}
1321 	}
1322 
1323 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1324 		/* This should be done before the interrupts are enabled,
1325 		 * since otherwise a new attention will be generated.
1326 		 */
1327 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1328 	}
1329 
1330 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1331 }
1332 
1333 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1334 {
1335 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1336 
1337 	if (!p_sb)
1338 		return;
1339 
1340 	if (p_sb->sb_attn) {
1341 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1342 				       p_sb->sb_phys,
1343 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1344 	}
1345 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1346 }
1347 
1348 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1349 				    struct ecore_ptt *p_ptt)
1350 {
1351 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1352 
1353 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1354 
1355 	sb_info->index = 0;
1356 	sb_info->known_attn = 0;
1357 
1358 	/* Configure Attention Status Block in IGU */
1359 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1360 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1361 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1362 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1363 }
1364 
1365 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1366 				   struct ecore_ptt *p_ptt,
1367 				   void *sb_virt_addr, dma_addr_t sb_phy_addr)
1368 {
1369 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1370 	int i, j, k;
1371 
1372 	sb_info->sb_attn = sb_virt_addr;
1373 	sb_info->sb_phys = sb_phy_addr;
1374 
1375 	/* Set the pointer to the AEU descriptors */
1376 	sb_info->p_aeu_desc = aeu_descs;
1377 
1378 	/* Calculate Parity Masks */
1379 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1380 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1381 		/* j is array index, k is bit index */
1382 		for (j = 0, k = 0; k < 32; j++) {
1383 			struct aeu_invert_reg_bit *p_aeu;
1384 
1385 			p_aeu = &aeu_descs[i].bits[j];
1386 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1387 				sb_info->parity_mask[i] |= 1 << k;
1388 
1389 			k += ATTENTION_LENGTH(p_aeu->flags);
1390 		}
1391 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1392 			   "Attn Mask [Reg %d]: 0x%08x\n",
1393 			   i, sb_info->parity_mask[i]);
1394 	}
1395 
1396 	/* Set the address of cleanup for the mcp attention */
1397 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1398 	    MISC_REG_AEU_GENERAL_ATTN_0;
1399 
1400 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1401 }
1402 
1403 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1404 						    struct ecore_ptt *p_ptt)
1405 {
1406 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1407 	struct ecore_sb_attn_info *p_sb;
1408 	dma_addr_t p_phys = 0;
1409 	void *p_virt;
1410 
1411 	/* SB struct */
1412 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1413 	if (!p_sb) {
1414 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1415 		return ECORE_NOMEM;
1416 	}
1417 
1418 	/* SB ring  */
1419 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1420 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1421 	if (!p_virt) {
1422 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1423 		OSAL_FREE(p_dev, p_sb);
1424 		return ECORE_NOMEM;
1425 	}
1426 
1427 	/* Attention setup */
1428 	p_hwfn->p_sb_attn = p_sb;
1429 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1430 
1431 	return ECORE_SUCCESS;
1432 }
1433 
1434 /* coalescing timeout = timeset << (timer_res + 1) */
1435 #define ECORE_CAU_DEF_RX_USECS 24
1436 #define ECORE_CAU_DEF_TX_USECS 48
1437 
1438 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1439 			     struct cau_sb_entry *p_sb_entry,
1440 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1441 {
1442 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1443 	u32 cau_state;
1444 	u8 timer_res;
1445 
1446 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1447 
1448 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1449 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1450 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1451 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1452 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1453 
1454 	cau_state = CAU_HC_DISABLE_STATE;
1455 
1456 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1457 		cau_state = CAU_HC_ENABLE_STATE;
1458 		if (!p_dev->rx_coalesce_usecs)
1459 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1460 		if (!p_dev->tx_coalesce_usecs)
1461 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1462 	}
1463 
1464 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1465 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1466 		timer_res = 0;
1467 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1468 		timer_res = 1;
1469 	else
1470 		timer_res = 2;
1471 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1472 
1473 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1474 		timer_res = 0;
1475 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1476 		timer_res = 1;
1477 	else
1478 		timer_res = 2;
1479 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1480 
1481 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1482 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1483 }
1484 
1485 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1486 				   struct ecore_ptt *p_ptt,
1487 				   u16 igu_sb_id, u32 pi_index,
1488 				   enum ecore_coalescing_fsm coalescing_fsm,
1489 				   u8 timeset)
1490 {
1491 	struct cau_pi_entry pi_entry;
1492 	u32 sb_offset, pi_offset;
1493 
1494 	if (IS_VF(p_hwfn->p_dev))
1495 		return;/* @@@TBD MichalK- VF CAU... */
1496 
1497 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1498 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1499 
1500 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1501 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1502 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1503 	else
1504 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1505 
1506 	pi_offset = sb_offset + pi_index;
1507 	if (p_hwfn->hw_init_done) {
1508 		ecore_wr(p_hwfn, p_ptt,
1509 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1510 			 *((u32 *)&(pi_entry)));
1511 	} else {
1512 		STORE_RT_REG(p_hwfn,
1513 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1514 			     *((u32 *)&(pi_entry)));
1515 	}
1516 }
1517 
1518 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1519 			   struct ecore_ptt *p_ptt,
1520 			   struct ecore_sb_info *p_sb, u32 pi_index,
1521 			   enum ecore_coalescing_fsm coalescing_fsm,
1522 			   u8 timeset)
1523 {
1524 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1525 			       pi_index, coalescing_fsm, timeset);
1526 }
1527 
1528 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1529 			   struct ecore_ptt *p_ptt,
1530 			   dma_addr_t sb_phys, u16 igu_sb_id,
1531 			   u16 vf_number, u8 vf_valid)
1532 {
1533 	struct cau_sb_entry sb_entry;
1534 
1535 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1536 				vf_number, vf_valid);
1537 
1538 	if (p_hwfn->hw_init_done) {
1539 		/* Wide-bus, initialize via DMAE */
1540 		u64 phys_addr = (u64)sb_phys;
1541 
1542 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1543 				    (u64)(osal_uintptr_t)&phys_addr,
1544 				    CAU_REG_SB_ADDR_MEMORY +
1545 				    igu_sb_id * sizeof(u64), 2, 0);
1546 		ecore_dmae_host2grc(p_hwfn, p_ptt,
1547 				    (u64)(osal_uintptr_t)&sb_entry,
1548 				    CAU_REG_SB_VAR_MEMORY +
1549 				    igu_sb_id * sizeof(u64), 2, 0);
1550 	} else {
1551 		/* Initialize Status Block Address */
1552 		STORE_RT_REG_AGG(p_hwfn,
1553 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1554 				 igu_sb_id * 2, sb_phys);
1555 
1556 		STORE_RT_REG_AGG(p_hwfn,
1557 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1558 				 igu_sb_id * 2, sb_entry);
1559 	}
1560 
1561 	/* Configure pi coalescing if set */
1562 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1563 		/* eth will open queues for all tcs, so configure all of them
1564 		 * properly, rather than just the active ones
1565 		 */
1566 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1567 
1568 		u8 timeset, timer_res;
1569 		u8 i;
1570 
1571 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1572 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1573 			timer_res = 0;
1574 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1575 			timer_res = 1;
1576 		else
1577 			timer_res = 2;
1578 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1579 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1580 				       ECORE_COAL_RX_STATE_MACHINE,
1581 				       timeset);
1582 
1583 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1584 			timer_res = 0;
1585 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1586 			timer_res = 1;
1587 		else
1588 			timer_res = 2;
1589 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1590 		for (i = 0; i < num_tc; i++) {
1591 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1592 					       igu_sb_id, TX_PI(i),
1593 					       ECORE_COAL_TX_STATE_MACHINE,
1594 					       timeset);
1595 		}
1596 	}
1597 }
1598 
1599 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1600 			struct ecore_ptt *p_ptt, struct ecore_sb_info *sb_info)
1601 {
1602 	/* zero status block and ack counter */
1603 	sb_info->sb_ack = 0;
1604 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1605 
1606 	if (IS_PF(p_hwfn->p_dev))
1607 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1608 				      sb_info->igu_sb_id, 0, 0);
1609 }
1610 
1611 struct ecore_igu_block *
1612 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1613 {
1614 	struct ecore_igu_block *p_block;
1615 	u16 igu_id;
1616 
1617 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1618 	     igu_id++) {
1619 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1620 
1621 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1622 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1623 			continue;
1624 
1625 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1626 		    b_is_pf)
1627 			return p_block;
1628 	}
1629 
1630 	return OSAL_NULL;
1631 }
1632 
1633 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1634 				  u16 vector_id)
1635 {
1636 	struct ecore_igu_block *p_block;
1637 	u16 igu_id;
1638 
1639 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1640 	     igu_id++) {
1641 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1642 
1643 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1644 		    !p_block->is_pf ||
1645 		    p_block->vector_number != vector_id)
1646 			continue;
1647 
1648 		return igu_id;
1649 	}
1650 
1651 	return ECORE_SB_INVALID_IDX;
1652 }
1653 
1654 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1655 {
1656 	u16 igu_sb_id;
1657 
1658 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1659 	if (sb_id == ECORE_SP_SB_ID)
1660 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1661 	else if (IS_PF(p_hwfn->p_dev))
1662 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1663 	else
1664 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1665 
1666 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1667 		DP_NOTICE(p_hwfn, true,
1668 			  "Slowpath SB vector %04x doesn't exist\n",
1669 			  sb_id);
1670 	else if (sb_id == ECORE_SP_SB_ID)
1671 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1672 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1673 	else
1674 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1675 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1676 
1677 	return igu_sb_id;
1678 }
1679 
1680 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1681 				       struct ecore_ptt *p_ptt,
1682 				       struct ecore_sb_info *sb_info,
1683 				       void *sb_virt_addr,
1684 				       dma_addr_t sb_phy_addr, u16 sb_id)
1685 {
1686 	sb_info->sb_virt = sb_virt_addr;
1687 	sb_info->sb_phys = sb_phy_addr;
1688 
1689 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1690 
1691 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1692 		return ECORE_INVAL;
1693 
1694 	/* Let the igu info reference the client's SB info */
1695 	if (sb_id != ECORE_SP_SB_ID) {
1696 		if (IS_PF(p_hwfn->p_dev)) {
1697 			struct ecore_igu_info *p_info;
1698 			struct ecore_igu_block *p_block;
1699 
1700 			p_info = p_hwfn->hw_info.p_igu_info;
1701 			p_block = &p_info->entry[sb_info->igu_sb_id];
1702 
1703 			p_block->sb_info = sb_info;
1704 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1705 			p_info->usage.free_cnt--;
1706 		} else {
1707 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1708 		}
1709 	}
1710 #ifdef ECORE_CONFIG_DIRECT_HWFN
1711 	sb_info->p_hwfn = p_hwfn;
1712 #endif
1713 	sb_info->p_dev = p_hwfn->p_dev;
1714 
1715 	/* The igu address will hold the absolute address that needs to be
1716 	 * written to for a specific status block
1717 	 */
1718 	if (IS_PF(p_hwfn->p_dev)) {
1719 		sb_info->igu_addr = (u8 OSAL_IOMEM *)p_hwfn->regview +
1720 		    GTT_BAR0_MAP_REG_IGU_CMD + (sb_info->igu_sb_id << 3);
1721 
1722 	} else {
1723 		sb_info->igu_addr =
1724 		    (u8 OSAL_IOMEM *)p_hwfn->regview +
1725 		    PXP_VF_BAR0_START_IGU +
1726 		    ((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1727 	}
1728 
1729 	sb_info->flags |= ECORE_SB_INFO_INIT;
1730 
1731 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1732 
1733 	return ECORE_SUCCESS;
1734 }
1735 
1736 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1737 					  struct ecore_sb_info *sb_info,
1738 					  u16 sb_id)
1739 {
1740 	struct ecore_igu_info *p_info;
1741 	struct ecore_igu_block *p_block;
1742 
1743 	if (sb_info == OSAL_NULL)
1744 		return ECORE_SUCCESS;
1745 
1746 	/* zero status block and ack counter */
1747 	sb_info->sb_ack = 0;
1748 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1749 
1750 	if (IS_VF(p_hwfn->p_dev)) {
1751 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1752 		return ECORE_SUCCESS;
1753 	}
1754 
1755 	p_info = p_hwfn->hw_info.p_igu_info;
1756 	p_block = &p_info->entry[sb_info->igu_sb_id];
1757 
1758 	/* Vector 0 is reserved to Default SB */
1759 	if (p_block->vector_number == 0) {
1760 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1761 		return ECORE_INVAL;
1762 	}
1763 
1764 	/* Lose reference to client's SB info, and fix counters */
1765 	p_block->sb_info = OSAL_NULL;
1766 	p_block->status |= ECORE_IGU_STATUS_FREE;
1767 	p_info->usage.free_cnt++;
1768 
1769 	return ECORE_SUCCESS;
1770 }
1771 
1772 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1773 {
1774 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1775 
1776 	if (!p_sb)
1777 		return;
1778 
1779 	if (p_sb->sb_info.sb_virt) {
1780 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1781 				       p_sb->sb_info.sb_virt,
1782 				       p_sb->sb_info.sb_phys,
1783 				       SB_ALIGNED_SIZE(p_hwfn));
1784 	}
1785 
1786 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1787 }
1788 
1789 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1790 						  struct ecore_ptt *p_ptt)
1791 {
1792 	struct ecore_sb_sp_info *p_sb;
1793 	dma_addr_t p_phys = 0;
1794 	void *p_virt;
1795 
1796 	/* SB struct */
1797 	p_sb =
1798 	    OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL,
1799 		       sizeof(*p_sb));
1800 	if (!p_sb) {
1801 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1802 		return ECORE_NOMEM;
1803 	}
1804 
1805 	/* SB ring  */
1806 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1807 					 &p_phys, SB_ALIGNED_SIZE(p_hwfn));
1808 	if (!p_virt) {
1809 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1810 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1811 		return ECORE_NOMEM;
1812 	}
1813 
1814 	/* Status Block setup */
1815 	p_hwfn->p_sp_sb = p_sb;
1816 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1817 			  p_virt, p_phys, ECORE_SP_SB_ID);
1818 
1819 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1820 
1821 	return ECORE_SUCCESS;
1822 }
1823 
1824 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1825 					   ecore_int_comp_cb_t comp_cb,
1826 					   void *cookie,
1827 					   u8 *sb_idx, __le16 **p_fw_cons)
1828 {
1829 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1830 	enum _ecore_status_t rc = ECORE_NOMEM;
1831 	u8 pi;
1832 
1833 	/* Look for a free index */
1834 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1835 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1836 			continue;
1837 
1838 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1839 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1840 		*sb_idx = pi;
1841 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1842 		rc = ECORE_SUCCESS;
1843 		break;
1844 	}
1845 
1846 	return rc;
1847 }
1848 
1849 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn, u8 pi)
1850 {
1851 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1852 
1853 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1854 		return ECORE_NOMEM;
1855 
1856 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1857 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1858 	return ECORE_SUCCESS;
1859 }
1860 
1861 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1862 {
1863 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1864 }
1865 
1866 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1867 			      struct ecore_ptt *p_ptt,
1868 			      enum ecore_int_mode int_mode)
1869 {
1870 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1871 
1872 #ifndef ASIC_ONLY
1873 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1874 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1875 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1876 	}
1877 #endif
1878 
1879 	p_hwfn->p_dev->int_mode = int_mode;
1880 	switch (p_hwfn->p_dev->int_mode) {
1881 	case ECORE_INT_MODE_INTA:
1882 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1883 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1884 		break;
1885 
1886 	case ECORE_INT_MODE_MSI:
1887 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1888 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1889 		break;
1890 
1891 	case ECORE_INT_MODE_MSIX:
1892 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1893 		break;
1894 	case ECORE_INT_MODE_POLL:
1895 		break;
1896 	}
1897 
1898 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1899 }
1900 
1901 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1902 				      struct ecore_ptt *p_ptt)
1903 {
1904 #ifndef ASIC_ONLY
1905 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1906 		DP_INFO(p_hwfn,
1907 			"FPGA - Don't enable Attentions in IGU and MISC\n");
1908 		return;
1909 	}
1910 #endif
1911 
1912 	/* Configure AEU signal change to produce attentions */
1913 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1914 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1915 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1916 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1917 
1918 	/* Flush the writes to IGU */
1919 	OSAL_MMIOWB(p_hwfn->p_dev);
1920 
1921 	/* Unmask AEU signals toward IGU */
1922 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1923 }
1924 
1925 enum _ecore_status_t
1926 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1927 			  enum ecore_int_mode int_mode)
1928 {
1929 	enum _ecore_status_t rc = ECORE_SUCCESS;
1930 
1931 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1932 
1933 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1934 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1935 		if (rc != ECORE_SUCCESS) {
1936 			DP_NOTICE(p_hwfn, true,
1937 				  "Slowpath IRQ request failed\n");
1938 			return ECORE_NORESOURCES;
1939 		}
1940 		p_hwfn->b_int_requested = true;
1941 	}
1942 
1943 	/* Enable interrupt Generation */
1944 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1945 
1946 	p_hwfn->b_int_enabled = 1;
1947 
1948 	return rc;
1949 }
1950 
1951 void ecore_int_igu_disable_int(struct ecore_hwfn *p_hwfn,
1952 			       struct ecore_ptt *p_ptt)
1953 {
1954 	p_hwfn->b_int_enabled = 0;
1955 
1956 	if (IS_VF(p_hwfn->p_dev))
1957 		return;
1958 
1959 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1960 }
1961 
1962 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1963 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1964 				     struct ecore_ptt *p_ptt,
1965 				     u32 igu_sb_id,
1966 				     bool cleanup_set,
1967 				     u16 opaque_fid)
1968 {
1969 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1970 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1971 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1972 	u8 type = 0;		/* FIXME MichalS type??? */
1973 
1974 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1975 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1976 
1977 	/* USE Control Command Register to perform cleanup. There is an
1978 	 * option to do this using IGU bar, but then it can't be used for VFs.
1979 	 */
1980 
1981 	/* Set the data field */
1982 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1983 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1984 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1985 
1986 	/* Set the control register */
1987 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1988 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1989 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1990 
1991 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1992 
1993 	OSAL_BARRIER(p_hwfn->p_dev);
1994 
1995 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1996 
1997 	/* Flush the write to IGU */
1998 	OSAL_MMIOWB(p_hwfn->p_dev);
1999 
2000 	/* calculate where to read the status bit from */
2001 	sb_bit = 1 << (igu_sb_id % 32);
2002 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2003 
2004 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2005 
2006 	/* Now wait for the command to complete */
2007 	while (--sleep_cnt) {
2008 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2009 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2010 			break;
2011 		OSAL_MSLEEP(5);
2012 	}
2013 
2014 	if (!sleep_cnt)
2015 		DP_NOTICE(p_hwfn, true,
2016 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2017 			  val, igu_sb_id);
2018 }
2019 
2020 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2021 				       struct ecore_ptt *p_ptt,
2022 				       u16 igu_sb_id, u16 opaque, bool b_set)
2023 {
2024 	struct ecore_igu_block *p_block;
2025 	int pi, i;
2026 
2027 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2028 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2029 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2030 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2031 		   p_block->vector_number);
2032 
2033 	/* Set */
2034 	if (b_set)
2035 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2036 
2037 	/* Clear */
2038 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2039 
2040 	/* Wait for the IGU SB to cleanup */
2041 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2042 		u32 val;
2043 
2044 		val = ecore_rd(p_hwfn, p_ptt,
2045 			       IGU_REG_WRITE_DONE_PENDING +
2046 			       ((igu_sb_id / 32) * 4));
2047 		if (val & (1 << (igu_sb_id % 32)))
2048 			OSAL_UDELAY(10);
2049 		else
2050 			break;
2051 	}
2052 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2053 		DP_NOTICE(p_hwfn, true,
2054 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2055 			  igu_sb_id);
2056 
2057 	/* Clear the CAU for the SB */
2058 	for (pi = 0; pi < 12; pi++)
2059 		ecore_wr(p_hwfn, p_ptt,
2060 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2061 }
2062 
2063 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2064 				struct ecore_ptt *p_ptt,
2065 				bool b_set, bool b_slowpath)
2066 {
2067 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2068 	struct ecore_igu_block *p_block;
2069 	u16 igu_sb_id = 0;
2070 	u32 val = 0;
2071 
2072 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2073 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2074 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2075 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2076 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2077 	/* end temporary */
2078 
2079 	for (igu_sb_id = 0;
2080 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2081 	     igu_sb_id++) {
2082 		p_block = &p_info->entry[igu_sb_id];
2083 
2084 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2085 		    !p_block->is_pf ||
2086 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2087 			continue;
2088 
2089 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2090 						  p_hwfn->hw_info.opaque_fid,
2091 						  b_set);
2092 	}
2093 
2094 	if (b_slowpath)
2095 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2096 						  p_info->igu_dsb_id,
2097 						  p_hwfn->hw_info.opaque_fid,
2098 						  b_set);
2099 }
2100 
2101 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2102 			    struct ecore_ptt *p_ptt)
2103 {
2104 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2105 	struct ecore_igu_block *p_block;
2106 	int pf_sbs, vf_sbs;
2107 	u16 igu_sb_id;
2108 	u32 val, rval;
2109 
2110 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2111 		/* We're using an old MFW - have to prevent any switching
2112 		 * of SBs between PF and VFs as later driver wouldn't be
2113 		 * able to tell which belongs to which.
2114 		 */
2115 		p_info->b_allow_pf_vf_change = false;
2116 	} else {
2117 		/* Use the numbers the MFW have provided -
2118 		 * don't forget MFW accounts for the default SB as well.
2119 		 */
2120 		p_info->b_allow_pf_vf_change = true;
2121 
2122 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2123 			DP_INFO(p_hwfn,
2124 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2125 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2126 				p_info->usage.cnt);
2127 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2128 		}
2129 
2130 		/* TODO - how do we learn about VF SBs from MFW? */
2131 		if (IS_PF_SRIOV(p_hwfn)) {
2132 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2133 
2134 			if (vfs != p_info->usage.iov_cnt)
2135 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2136 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2137 					   p_info->usage.iov_cnt, vfs);
2138 
2139 			/* At this point we know how many SBs we have totally
2140 			 * in IGU + number of PF SBs. So we can validate that
2141 			 * we'd have sufficient for VF.
2142 			 */
2143 			if (vfs > p_info->usage.free_cnt +
2144 				  p_info->usage.free_cnt_iov -
2145 				  p_info->usage.cnt) {
2146 				DP_NOTICE(p_hwfn, true,
2147 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2148 					  p_info->usage.free_cnt +
2149 					  p_info->usage.free_cnt_iov,
2150 					  p_info->usage.cnt, vfs);
2151 				return ECORE_INVAL;
2152 			}
2153 		}
2154 	}
2155 
2156 	/* Cap the number of VFs SBs by the number of VFs */
2157 	if (IS_PF_SRIOV(p_hwfn))
2158 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2159 
2160 	/* Mark all SBs as free, now in the right PF/VFs division */
2161 	p_info->usage.free_cnt = p_info->usage.cnt;
2162 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2163 	p_info->usage.orig = p_info->usage.cnt;
2164 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2165 
2166 	/* We now proceed to re-configure the IGU cam to reflect the initial
2167 	 * configuration. We can start with the Default SB.
2168 	 */
2169 	pf_sbs = p_info->usage.cnt;
2170 	vf_sbs = p_info->usage.iov_cnt;
2171 
2172 	for (igu_sb_id = p_info->igu_dsb_id;
2173 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2174 	     igu_sb_id++) {
2175 		p_block = &p_info->entry[igu_sb_id];
2176 		val = 0;
2177 
2178 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2179 			continue;
2180 
2181 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2182 			p_block->function_id = p_hwfn->rel_pf_id;
2183 			p_block->is_pf = 1;
2184 			p_block->vector_number = 0;
2185 			p_block->status = ECORE_IGU_STATUS_VALID |
2186 					  ECORE_IGU_STATUS_PF |
2187 					  ECORE_IGU_STATUS_DSB;
2188 		} else if (pf_sbs) {
2189 			pf_sbs--;
2190 			p_block->function_id = p_hwfn->rel_pf_id;
2191 			p_block->is_pf = 1;
2192 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2193 			p_block->status = ECORE_IGU_STATUS_VALID |
2194 					  ECORE_IGU_STATUS_PF |
2195 					  ECORE_IGU_STATUS_FREE;
2196 		} else if (vf_sbs) {
2197 			p_block->function_id =
2198 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2199 				p_info->usage.iov_cnt - vf_sbs;
2200 			p_block->is_pf = 0;
2201 			p_block->vector_number = 0;
2202 			p_block->status = ECORE_IGU_STATUS_VALID |
2203 					  ECORE_IGU_STATUS_FREE;
2204 			vf_sbs--;
2205 		} else {
2206 			p_block->function_id = 0;
2207 			p_block->is_pf = 0;
2208 			p_block->vector_number = 0;
2209 		}
2210 
2211 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2212 			  p_block->function_id);
2213 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2214 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2215 			  p_block->vector_number);
2216 
2217 		/* VF entries would be enabled when VF is initializaed */
2218 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2219 
2220 		rval = ecore_rd(p_hwfn, p_ptt,
2221 				IGU_REG_MAPPING_MEMORY +
2222 				sizeof(u32) * igu_sb_id);
2223 
2224 		if (rval != val) {
2225 			ecore_wr(p_hwfn, p_ptt,
2226 				 IGU_REG_MAPPING_MEMORY +
2227 				 sizeof(u32) * igu_sb_id,
2228 				 val);
2229 
2230 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2231 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2232 				   igu_sb_id, p_block->function_id,
2233 				   p_block->is_pf, p_block->vector_number,
2234 				   rval, val);
2235 		}
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2242 				    struct ecore_ptt *p_ptt)
2243 {
2244 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2245 
2246 	/* Return all the usage indications to default prior to the reset;
2247 	 * The reset expects the !orig to reflect the initial status of the
2248 	 * SBs, and would re-calculate the originals based on those.
2249 	 */
2250 	p_cnt->cnt = p_cnt->orig;
2251 	p_cnt->free_cnt = p_cnt->orig;
2252 	p_cnt->iov_cnt = p_cnt->iov_orig;
2253 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2254 	p_cnt->orig = 0;
2255 	p_cnt->iov_orig = 0;
2256 
2257 	/* TODO - we probably need to re-configure the CAU as well... */
2258 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2259 }
2260 
2261 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2262 					 struct ecore_ptt *p_ptt,
2263 					 u16 igu_sb_id)
2264 {
2265 	u32 val = ecore_rd(p_hwfn, p_ptt,
2266 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2267 	struct ecore_igu_block *p_block;
2268 
2269 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2270 
2271 	/* Fill the block information */
2272 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2273 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2274 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2275 
2276 	p_block->igu_sb_id = igu_sb_id;
2277 }
2278 
2279 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2280 					    struct ecore_ptt *p_ptt)
2281 {
2282 	struct ecore_igu_info *p_igu_info;
2283 	struct ecore_igu_block *p_block;
2284 	u32 min_vf = 0, max_vf = 0;
2285 	u16 igu_sb_id;
2286 
2287 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2288 						 GFP_KERNEL,
2289 						 sizeof(*p_igu_info));
2290 	if (!p_hwfn->hw_info.p_igu_info)
2291 		return ECORE_NOMEM;
2292 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2293 
2294 	/* Distinguish between existent and onn-existent default SB */
2295 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2296 
2297 	/* Find the range of VF ids whose SB belong to this PF */
2298 	if (p_hwfn->p_dev->p_iov_info) {
2299 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2300 
2301 		min_vf = p_iov->first_vf_in_pf;
2302 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2303 	}
2304 
2305 	for (igu_sb_id = 0;
2306 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2307 	     igu_sb_id++) {
2308 		/* Read current entry; Notice it might not belong to this PF */
2309 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2310 		p_block = &p_igu_info->entry[igu_sb_id];
2311 
2312 		if ((p_block->is_pf) &&
2313 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2314 			p_block->status = ECORE_IGU_STATUS_PF |
2315 					  ECORE_IGU_STATUS_VALID |
2316 					  ECORE_IGU_STATUS_FREE;
2317 
2318 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2319 				p_igu_info->usage.cnt++;
2320 		} else if (!(p_block->is_pf) &&
2321 			   (p_block->function_id >= min_vf) &&
2322 			   (p_block->function_id < max_vf)) {
2323 			/* Available for VFs of this PF */
2324 			p_block->status = ECORE_IGU_STATUS_VALID |
2325 					  ECORE_IGU_STATUS_FREE;
2326 
2327 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2328 				p_igu_info->usage.iov_cnt++;
2329 		}
2330 
2331 		/* Mark the First entry belonging to the PF or its VFs
2332 		 * as the default SB [we'll reset IGU prior to first usage].
2333 		 */
2334 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2335 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2336 			p_igu_info->igu_dsb_id = igu_sb_id;
2337 			p_block->status |= ECORE_IGU_STATUS_DSB;
2338 		}
2339 
2340 		/* While this isn't suitable for all clients, limit number
2341 		 * of prints by having each PF print only its entries with the
2342 		 * exception of PF0 which would print everything.
2343 		 */
2344 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2345 		    (p_hwfn->abs_pf_id == 0))
2346 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2347 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2348 				   igu_sb_id, p_block->function_id,
2349 				   p_block->is_pf, p_block->vector_number);
2350 	}
2351 
2352 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2353 		DP_NOTICE(p_hwfn, true,
2354 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2355 			  p_igu_info->igu_dsb_id);
2356 		return ECORE_INVAL;
2357 	}
2358 
2359 	/* All non default SB are considered free at this point */
2360 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2361 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2362 
2363 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2364 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2365 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2366 		   p_igu_info->usage.iov_cnt);
2367 
2368 	return ECORE_SUCCESS;
2369 }
2370 
2371 enum _ecore_status_t
2372 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2373 			  u16 sb_id, bool b_to_vf)
2374 {
2375 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2376 	struct ecore_igu_block *p_block = OSAL_NULL;
2377 	u16 igu_sb_id = 0, vf_num = 0;
2378 	u32 val = 0;
2379 
2380 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2381 		return ECORE_INVAL;
2382 
2383 	if (sb_id == ECORE_SP_SB_ID)
2384 		return ECORE_INVAL;
2385 
2386 	if (!p_info->b_allow_pf_vf_change) {
2387 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2388 		return ECORE_INVAL;
2389 	}
2390 
2391 	/* If we're moving a SB from PF to VF, the client had to specify
2392 	 * which vector it wants to move.
2393 	 */
2394 	if (b_to_vf) {
2395 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2396 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2397 			return ECORE_INVAL;
2398 	}
2399 
2400 	/* If we're moving a SB from VF to PF, need to validate there isn't
2401 	 * already a line configured for that vector.
2402 	 */
2403 	if (!b_to_vf) {
2404 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2405 		    ECORE_SB_INVALID_IDX)
2406 			return ECORE_INVAL;
2407 	}
2408 
2409 	/* We need to validate that the SB can actually be relocated.
2410 	 * This would also handle the previous case where we've explicitly
2411 	 * stated which IGU SB needs to move.
2412 	 */
2413 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2414 	     igu_sb_id++) {
2415 		p_block = &p_info->entry[igu_sb_id];
2416 
2417 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2418 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2419 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2420 			if (b_to_vf)
2421 				return ECORE_INVAL;
2422 			else
2423 				continue;
2424 		}
2425 
2426 		break;
2427 	}
2428 
2429 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2430 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2431 			   "Failed to find a free SB to move\n");
2432 		return ECORE_INVAL;
2433 	}
2434 
2435 	/* At this point, p_block points to the SB we want to relocate */
2436 	if (b_to_vf) {
2437 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2438 
2439 		/* It doesn't matter which VF number we choose, since we're
2440 		 * going to disable the line; But let's keep it in range.
2441 		 */
2442 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2443 
2444 		p_block->function_id = (u8)vf_num;
2445 		p_block->is_pf = 0;
2446 		p_block->vector_number = 0;
2447 
2448 		p_info->usage.cnt--;
2449 		p_info->usage.free_cnt--;
2450 		p_info->usage.iov_cnt++;
2451 		p_info->usage.free_cnt_iov++;
2452 
2453 		/* TODO - if SBs aren't really the limiting factor,
2454 		 * then it might not be accurate [in the since that
2455 		 * we might not need decrement the feature].
2456 		 */
2457 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2458 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2459 	} else {
2460 		p_block->status |= ECORE_IGU_STATUS_PF;
2461 		p_block->function_id = p_hwfn->rel_pf_id;
2462 		p_block->is_pf = 1;
2463 		p_block->vector_number = sb_id + 1;
2464 
2465 		p_info->usage.cnt++;
2466 		p_info->usage.free_cnt++;
2467 		p_info->usage.iov_cnt--;
2468 		p_info->usage.free_cnt_iov--;
2469 
2470 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2471 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2472 	}
2473 
2474 	/* Update the IGU and CAU with the new configuration */
2475 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2476 		  p_block->function_id);
2477 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2478 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2479 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2480 		  p_block->vector_number);
2481 
2482 	ecore_wr(p_hwfn, p_ptt,
2483 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2484 		 val);
2485 
2486 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2487 			      igu_sb_id, vf_num,
2488 			      p_block->is_pf ? 0 : 1);
2489 
2490 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2491 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2492 		   igu_sb_id, p_block->function_id,
2493 		   p_block->is_pf, p_block->vector_number);
2494 
2495 	return ECORE_SUCCESS;
2496 }
2497 
2498 /**
2499  * @brief Initialize igu runtime registers
2500  *
2501  * @param p_hwfn
2502  */
2503 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2504 {
2505 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2506 
2507 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2508 }
2509 
2510 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2511 			  IGU_CMD_INT_ACK_BASE)
2512 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2513 			  IGU_CMD_INT_ACK_BASE)
2514 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2515 {
2516 	u32 intr_status_hi = 0, intr_status_lo = 0;
2517 	u64 intr_status = 0;
2518 
2519 	intr_status_lo = REG_RD(p_hwfn,
2520 				GTT_BAR0_MAP_REG_IGU_CMD +
2521 				LSB_IGU_CMD_ADDR * 8);
2522 	intr_status_hi = REG_RD(p_hwfn,
2523 				GTT_BAR0_MAP_REG_IGU_CMD +
2524 				MSB_IGU_CMD_ADDR * 8);
2525 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2526 
2527 	return intr_status;
2528 }
2529 
2530 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2531 {
2532 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2533 	p_hwfn->b_sp_dpc_enabled = true;
2534 }
2535 
2536 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2537 {
2538 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2539 	if (!p_hwfn->sp_dpc)
2540 		return ECORE_NOMEM;
2541 
2542 	return ECORE_SUCCESS;
2543 }
2544 
2545 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2546 {
2547 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2548 }
2549 
2550 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2551 				     struct ecore_ptt *p_ptt)
2552 {
2553 	enum _ecore_status_t rc = ECORE_SUCCESS;
2554 
2555 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2556 	if (rc != ECORE_SUCCESS) {
2557 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2558 		return rc;
2559 	}
2560 
2561 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2562 	if (rc != ECORE_SUCCESS) {
2563 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2564 		return rc;
2565 	}
2566 
2567 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2568 	if (rc != ECORE_SUCCESS)
2569 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2570 
2571 	return rc;
2572 }
2573 
2574 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2575 {
2576 	ecore_int_sp_sb_free(p_hwfn);
2577 	ecore_int_sb_attn_free(p_hwfn);
2578 	ecore_int_sp_dpc_free(p_hwfn);
2579 }
2580 
2581 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2582 {
2583 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2584 		return;
2585 
2586 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2587 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2588 	ecore_int_sp_dpc_setup(p_hwfn);
2589 }
2590 
2591 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2592 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2593 {
2594 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2595 
2596 	if (!p_igu_info || !p_sb_cnt_info)
2597 		return;
2598 
2599 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2600 		    sizeof(*p_sb_cnt_info));
2601 }
2602 
2603 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2604 {
2605 	int i;
2606 
2607 	for_each_hwfn(p_dev, i)
2608 		p_dev->hwfns[i].b_int_requested = false;
2609 }
2610 
2611 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2612 {
2613 	p_dev->attn_clr_en = clr_enable;
2614 }
2615 
2616 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2617 					     struct ecore_ptt *p_ptt,
2618 					     u8 timer_res, u16 sb_id, bool tx)
2619 {
2620 	struct cau_sb_entry sb_entry;
2621 	enum _ecore_status_t rc;
2622 
2623 	if (!p_hwfn->hw_init_done) {
2624 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2625 		return ECORE_INVAL;
2626 	}
2627 
2628 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2629 				 sb_id * sizeof(u64),
2630 				 (u64)(osal_uintptr_t)&sb_entry, 2, 0);
2631 	if (rc != ECORE_SUCCESS) {
2632 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2633 		return rc;
2634 	}
2635 
2636 	if (tx)
2637 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2638 	else
2639 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2640 
2641 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2642 				 (u64)(osal_uintptr_t)&sb_entry,
2643 				 CAU_REG_SB_VAR_MEMORY +
2644 				 sb_id * sizeof(u64), 2, 0);
2645 	if (rc != ECORE_SUCCESS) {
2646 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2647 		return rc;
2648 	}
2649 
2650 	return rc;
2651 }
2652 
2653 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2654 					  struct ecore_ptt *p_ptt,
2655 					  struct ecore_sb_info *p_sb,
2656 					  struct ecore_sb_info_dbg *p_info)
2657 {
2658 	u16 sbid = p_sb->igu_sb_id;
2659 	int i;
2660 
2661 	if (IS_VF(p_hwfn->p_dev))
2662 		return ECORE_INVAL;
2663 
2664 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2665 		return ECORE_INVAL;
2666 
2667 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2668 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2669 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2670 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2671 
2672 	for (i = 0; i < PIS_PER_SB_E4; i++)
2673 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2674 					      CAU_REG_PI_MEMORY +
2675 					      sbid * 4 * PIS_PER_SB_E4 +
2676 					      i * 4);
2677 
2678 	return ECORE_SUCCESS;
2679 }
2680