xref: /dpdk/drivers/net/qede/base/ecore_dev.c (revision fd8c20aab4c2fe2c568455be4efab76db126791f)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dcbx.h"
32 #include "ecore_l2.h"
33 
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35  * registers involved are not split and thus configuration is a race where
36  * some of the PFs configuration might be lost.
37  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39  * there's more than a single compiled ecore component in system].
40  */
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
43 
44 /******************** Doorbell Recovery *******************/
45 /* The doorbell recovery mechanism consists of a list of entries which represent
46  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
47  * entity needs to register with the mechanism and provide the parameters
48  * describing it's doorbell, including a location where last used doorbell data
49  * can be found. The doorbell execute function will traverse the list and
50  * doorbell all of the registered entries.
51  */
52 struct ecore_db_recovery_entry {
53 	osal_list_entry_t	list_entry;
54 	void OSAL_IOMEM		*db_addr;
55 	void			*db_data;
56 	enum ecore_db_rec_width	db_width;
57 	enum ecore_db_rec_space	db_space;
58 	u8			hwfn_idx;
59 };
60 
61 /* display a single doorbell recovery entry */
62 void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
63 				struct ecore_db_recovery_entry *db_entry,
64 				const char *action)
65 {
66 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
67 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
68 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
69 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
70 		   db_entry->hwfn_idx);
71 }
72 
73 /* doorbell address sanity (address within doorbell bar range) */
74 bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
75 			 void *db_data)
76 {
77 	/* make sure doorbell address  is within the doorbell bar */
78 	if (db_addr < p_dev->doorbells || (u8 *)db_addr >
79 			(u8 *)p_dev->doorbells + p_dev->db_size) {
80 		OSAL_WARN(true,
81 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
82 			  db_addr, p_dev->doorbells,
83 			  (u8 *)p_dev->doorbells + p_dev->db_size);
84 		return false;
85 	}
86 
87 	/* make sure doorbell data pointer is not null */
88 	if (!db_data) {
89 		OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
90 		return false;
91 	}
92 
93 	return true;
94 }
95 
96 /* find hwfn according to the doorbell address */
97 struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
98 					  void OSAL_IOMEM *db_addr)
99 {
100 	struct ecore_hwfn *p_hwfn;
101 
102 	/* In CMT doorbell bar is split down the middle between engine 0 and
103 	 * enigne 1
104 	 */
105 	if (ECORE_IS_CMT(p_dev))
106 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
107 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
108 	else
109 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
110 
111 	return p_hwfn;
112 }
113 
114 /* add a new entry to the doorbell recovery mechanism */
115 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
116 					   void OSAL_IOMEM *db_addr,
117 					   void *db_data,
118 					   enum ecore_db_rec_width db_width,
119 					   enum ecore_db_rec_space db_space)
120 {
121 	struct ecore_db_recovery_entry *db_entry;
122 	struct ecore_hwfn *p_hwfn;
123 
124 	/* shortcircuit VFs, for now */
125 	if (IS_VF(p_dev)) {
126 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
127 		return ECORE_SUCCESS;
128 	}
129 
130 	/* sanitize doorbell address */
131 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
132 		return ECORE_INVAL;
133 
134 	/* obtain hwfn from doorbell address */
135 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
136 
137 	/* create entry */
138 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
139 	if (!db_entry) {
140 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
141 		return ECORE_NOMEM;
142 	}
143 
144 	/* populate entry */
145 	db_entry->db_addr = db_addr;
146 	db_entry->db_data = db_data;
147 	db_entry->db_width = db_width;
148 	db_entry->db_space = db_space;
149 	db_entry->hwfn_idx = p_hwfn->my_id;
150 
151 	/* display */
152 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
153 
154 	/* protect the list */
155 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
156 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
157 			    &p_hwfn->db_recovery_info.list);
158 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
159 
160 	return ECORE_SUCCESS;
161 }
162 
163 /* remove an entry from the doorbell recovery mechanism */
164 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
165 					   void OSAL_IOMEM *db_addr,
166 					   void *db_data)
167 {
168 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
169 	enum _ecore_status_t rc = ECORE_INVAL;
170 	struct ecore_hwfn *p_hwfn;
171 
172 	/* shortcircuit VFs, for now */
173 	if (IS_VF(p_dev)) {
174 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
175 		return ECORE_SUCCESS;
176 	}
177 
178 	/* sanitize doorbell address */
179 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
180 		return ECORE_INVAL;
181 
182 	/* obtain hwfn from doorbell address */
183 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
184 
185 	/* protect the list */
186 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
187 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
188 				 &p_hwfn->db_recovery_info.list,
189 				 list_entry,
190 				 struct ecore_db_recovery_entry) {
191 		/* search according to db_data addr since db_addr is not unique
192 		 * (roce)
193 		 */
194 		if (db_entry->db_data == db_data) {
195 			ecore_db_recovery_dp_entry(p_hwfn, db_entry,
196 						   "Deleting");
197 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
198 					       &p_hwfn->db_recovery_info.list);
199 			rc = ECORE_SUCCESS;
200 			break;
201 		}
202 	}
203 
204 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
205 
206 	if (rc == ECORE_INVAL)
207 		/*OSAL_WARN(true,*/
208 		DP_NOTICE(p_hwfn, false,
209 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
210 			  db_data, db_addr);
211 	else
212 		OSAL_FREE(p_dev, db_entry);
213 
214 	return rc;
215 }
216 
217 /* initialize the doorbell recovery mechanism */
218 enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
219 {
220 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
221 
222 	/* make sure db_size was set in p_dev */
223 	if (!p_hwfn->p_dev->db_size) {
224 		DP_ERR(p_hwfn->p_dev, "db_size not set\n");
225 		return ECORE_INVAL;
226 	}
227 
228 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
229 #ifdef CONFIG_ECORE_LOCK_ALLOC
230 	OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock);
231 #endif
232 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
233 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
234 
235 	return ECORE_SUCCESS;
236 }
237 
238 /* destroy the doorbell recovery mechanism */
239 void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
240 {
241 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
242 
243 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
244 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
245 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
246 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
247 			db_entry = OSAL_LIST_FIRST_ENTRY(
248 						&p_hwfn->db_recovery_info.list,
249 						struct ecore_db_recovery_entry,
250 						list_entry);
251 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
252 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
253 					       &p_hwfn->db_recovery_info.list);
254 			OSAL_FREE(p_hwfn->p_dev, db_entry);
255 		}
256 	}
257 #ifdef CONFIG_ECORE_LOCK_ALLOC
258 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
259 #endif
260 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
261 }
262 
263 /* print the content of the doorbell recovery mechanism */
264 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
265 {
266 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
267 
268 	DP_NOTICE(p_hwfn, false,
269 		  "Dispalying doorbell recovery database. Counter was %d\n",
270 		  p_hwfn->db_recovery_info.db_recovery_counter);
271 
272 	/* protect the list */
273 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
274 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
275 				 &p_hwfn->db_recovery_info.list,
276 				 list_entry,
277 				 struct ecore_db_recovery_entry) {
278 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
279 	}
280 
281 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
282 }
283 
284 /* ring the doorbell of a single doorbell recovery entry */
285 void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
286 			    struct ecore_db_recovery_entry *db_entry,
287 			    enum ecore_db_rec_exec db_exec)
288 {
289 	/* Print according to width */
290 	if (db_entry->db_width == DB_REC_WIDTH_32B)
291 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %x\n",
292 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
293 			   db_entry->db_addr, *(u32 *)db_entry->db_data);
294 	else
295 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %lx\n",
296 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
297 			   db_entry->db_addr,
298 			   *(unsigned long *)(db_entry->db_data));
299 
300 	/* Sanity */
301 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
302 				 db_entry->db_data))
303 		return;
304 
305 	/* Flush the write combined buffer. Since there are multiple doorbelling
306 	 * entities using the same address, if we don't flush, a transaction
307 	 * could be lost.
308 	 */
309 	OSAL_WMB(p_hwfn->p_dev);
310 
311 	/* Ring the doorbell */
312 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
313 		if (db_entry->db_width == DB_REC_WIDTH_32B)
314 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr,
315 				      *(u32 *)(db_entry->db_data));
316 		else
317 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr,
318 					*(u64 *)(db_entry->db_data));
319 	}
320 
321 	/* Flush the write combined buffer. Next doorbell may come from a
322 	 * different entity to the same address...
323 	 */
324 	OSAL_WMB(p_hwfn->p_dev);
325 }
326 
327 /* traverse the doorbell recovery entry list and ring all the doorbells */
328 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
329 			       enum ecore_db_rec_exec db_exec)
330 {
331 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
332 
333 	if (db_exec != DB_REC_ONCE) {
334 		DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
335 			  p_hwfn->db_recovery_info.db_recovery_counter);
336 
337 		/* track amount of times recovery was executed */
338 		p_hwfn->db_recovery_info.db_recovery_counter++;
339 	}
340 
341 	/* protect the list */
342 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
343 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
344 				 &p_hwfn->db_recovery_info.list,
345 				 list_entry,
346 				 struct ecore_db_recovery_entry) {
347 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
348 		if (db_exec == DB_REC_ONCE)
349 			break;
350 	}
351 
352 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
353 }
354 /******************** Doorbell Recovery end ****************/
355 
356 /* Configurable */
357 #define ECORE_MIN_DPIS		(4)	/* The minimal num of DPIs required to
358 					 * load the driver. The number was
359 					 * arbitrarily set.
360 					 */
361 
362 /* Derived */
363 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
364 
365 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
366 			     struct ecore_ptt *p_ptt,
367 			     enum BAR_ID bar_id)
368 {
369 	u32 bar_reg = (bar_id == BAR_ID_0 ?
370 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
371 	u32 val;
372 
373 	if (IS_VF(p_hwfn->p_dev))
374 		return ecore_vf_hw_bar_size(p_hwfn, bar_id);
375 
376 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
377 	if (val)
378 		return 1 << (val + 15);
379 
380 	/* The above registers were updated in the past only in CMT mode. Since
381 	 * they were found to be useful MFW started updating them from 8.7.7.0.
382 	 * In older MFW versions they are set to 0 which means disabled.
383 	 */
384 	if (ECORE_IS_CMT(p_hwfn->p_dev)) {
385 		DP_INFO(p_hwfn,
386 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
387 		val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
388 	} else {
389 		DP_INFO(p_hwfn,
390 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
391 		val = 512 * 1024;
392 	}
393 
394 	return val;
395 }
396 
397 void ecore_init_dp(struct ecore_dev *p_dev,
398 		   u32 dp_module, u8 dp_level, void *dp_ctx)
399 {
400 	u32 i;
401 
402 	p_dev->dp_level = dp_level;
403 	p_dev->dp_module = dp_module;
404 	p_dev->dp_ctx = dp_ctx;
405 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
406 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
407 
408 		p_hwfn->dp_level = dp_level;
409 		p_hwfn->dp_module = dp_module;
410 		p_hwfn->dp_ctx = dp_ctx;
411 	}
412 }
413 
414 void ecore_init_struct(struct ecore_dev *p_dev)
415 {
416 	u8 i;
417 
418 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
419 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
420 
421 		p_hwfn->p_dev = p_dev;
422 		p_hwfn->my_id = i;
423 		p_hwfn->b_active = false;
424 
425 #ifdef CONFIG_ECORE_LOCK_ALLOC
426 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
427 #endif
428 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
429 	}
430 
431 	/* hwfn 0 is always active */
432 	p_dev->hwfns[0].b_active = true;
433 
434 	/* set the default cache alignment to 128 (may be overridden later) */
435 	p_dev->cache_shift = 7;
436 }
437 
438 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
439 {
440 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
441 
442 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
443 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
444 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
445 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
446 }
447 
448 void ecore_resc_free(struct ecore_dev *p_dev)
449 {
450 	int i;
451 
452 	if (IS_VF(p_dev)) {
453 		for_each_hwfn(p_dev, i)
454 			ecore_l2_free(&p_dev->hwfns[i]);
455 		return;
456 	}
457 
458 	OSAL_FREE(p_dev, p_dev->fw_data);
459 
460 	OSAL_FREE(p_dev, p_dev->reset_stats);
461 
462 	for_each_hwfn(p_dev, i) {
463 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
464 
465 		ecore_cxt_mngr_free(p_hwfn);
466 		ecore_qm_info_free(p_hwfn);
467 		ecore_spq_free(p_hwfn);
468 		ecore_eq_free(p_hwfn);
469 		ecore_consq_free(p_hwfn);
470 		ecore_int_free(p_hwfn);
471 		ecore_iov_free(p_hwfn);
472 		ecore_l2_free(p_hwfn);
473 		ecore_dmae_info_free(p_hwfn);
474 		ecore_dcbx_info_free(p_hwfn);
475 		/* @@@TBD Flush work-queue ? */
476 
477 		/* destroy doorbell recovery mechanism */
478 		ecore_db_recovery_teardown(p_hwfn);
479 	}
480 }
481 
482 /******************** QM initialization *******************/
483 
484 /* bitmaps for indicating active traffic classes.
485  * Special case for Arrowhead 4 port
486  */
487 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
488 #define ACTIVE_TCS_BMAP 0x9f
489 /* 0..3 actually used, OOO and high priority stuff all use 3 */
490 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
491 
492 /* determines the physical queue flags for a given PF. */
493 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
494 {
495 	u32 flags;
496 
497 	/* common flags */
498 	flags = PQ_FLAGS_LB;
499 
500 	/* feature flags */
501 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
502 		flags |= PQ_FLAGS_VFS;
503 
504 	/* protocol flags */
505 	switch (p_hwfn->hw_info.personality) {
506 	case ECORE_PCI_ETH:
507 		flags |= PQ_FLAGS_MCOS;
508 		break;
509 	case ECORE_PCI_FCOE:
510 		flags |= PQ_FLAGS_OFLD;
511 		break;
512 	case ECORE_PCI_ISCSI:
513 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
514 		break;
515 	case ECORE_PCI_ETH_ROCE:
516 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD;
517 		break;
518 	case ECORE_PCI_ETH_IWARP:
519 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
520 			 PQ_FLAGS_OFLD;
521 		break;
522 	default:
523 		DP_ERR(p_hwfn, "unknown personality %d\n",
524 		       p_hwfn->hw_info.personality);
525 		return 0;
526 	}
527 	return flags;
528 }
529 
530 /* Getters for resource amounts necessary for qm initialization */
531 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
532 {
533 	return p_hwfn->hw_info.num_hw_tc;
534 }
535 
536 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
537 {
538 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ?
539 			p_hwfn->p_dev->p_iov_info->total_vfs : 0;
540 }
541 
542 #define NUM_DEFAULT_RLS 1
543 
544 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
545 {
546 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
547 
548 	/* @DPDK */
549 	/* num RLs can't exceed resource amount of rls or vports or the
550 	 * dcqcn qps
551 	 */
552 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
553 				     (u16)RESC_NUM(p_hwfn, ECORE_VPORT));
554 
555 	/* make sure after we reserve the default and VF rls we'll have
556 	 * something left
557 	 */
558 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
559 		DP_NOTICE(p_hwfn, false,
560 			  "no rate limiters left for PF rate limiting"
561 			  " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
562 		return 0;
563 	}
564 
565 	/* subtract rls necessary for VFs and one default one for the PF */
566 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
567 
568 	return num_pf_rls;
569 }
570 
571 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
572 {
573 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
574 
575 	/* all pqs share the same vport (hence the 1 below), except for vfs
576 	 * and pf_rl pqs
577 	 */
578 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
579 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
580 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
581 		ecore_init_qm_get_num_vfs(p_hwfn) + 1;
582 }
583 
584 /* calc amount of PQs according to the requested flags */
585 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
586 {
587 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
588 
589 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
590 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
591 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
592 		ecore_init_qm_get_num_tcs(p_hwfn) +
593 	       (!!(PQ_FLAGS_LB & pq_flags)) +
594 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
595 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
596 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
597 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
598 		ecore_init_qm_get_num_vfs(p_hwfn);
599 }
600 
601 /* initialize the top level QM params */
602 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
603 {
604 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
605 	bool four_port;
606 
607 	/* pq and vport bases for this PF */
608 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
609 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
610 
611 	/* rate limiting and weighted fair queueing are always enabled */
612 	qm_info->vport_rl_en = 1;
613 	qm_info->vport_wfq_en = 1;
614 
615 	/* TC config is different for AH 4 port */
616 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
617 
618 	/* in AH 4 port we have fewer TCs per port */
619 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
620 						     NUM_OF_PHYS_TCS;
621 
622 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and
623 	 * 4 otherwise
624 	 */
625 	if (!qm_info->ooo_tc)
626 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
627 					      DCBX_TCP_OOO_TC;
628 }
629 
630 /* initialize qm vport params */
631 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
632 {
633 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
634 	u8 i;
635 
636 	/* all vports participate in weighted fair queueing */
637 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
638 		qm_info->qm_vport_params[i].vport_wfq = 1;
639 }
640 
641 /* initialize qm port params */
642 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
643 {
644 	/* Initialize qm port parameters */
645 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
646 
647 	/* indicate how ooo and high pri traffic is dealt with */
648 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
649 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
650 
651 	for (i = 0; i < num_ports; i++) {
652 		struct init_qm_port_params *p_qm_port =
653 			&p_hwfn->qm_info.qm_port_params[i];
654 
655 		p_qm_port->active = 1;
656 		p_qm_port->active_phys_tcs = active_phys_tcs;
657 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
658 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
659 	}
660 }
661 
662 /* Reset the params which must be reset for qm init. QM init may be called as
663  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
664  * params may be affected by the init but would simply recalculate to the same
665  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
666  * affected as these amounts stay the same.
667  */
668 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
669 {
670 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
671 
672 	qm_info->num_pqs = 0;
673 	qm_info->num_vports = 0;
674 	qm_info->num_pf_rls = 0;
675 	qm_info->num_vf_pqs = 0;
676 	qm_info->first_vf_pq = 0;
677 	qm_info->first_mcos_pq = 0;
678 	qm_info->first_rl_pq = 0;
679 }
680 
681 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
682 {
683 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
684 
685 	qm_info->num_vports++;
686 
687 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
688 		DP_ERR(p_hwfn,
689 		       "vport overflow! qm_info->num_vports %d,"
690 		       " qm_init_get_num_vports() %d\n",
691 		       qm_info->num_vports,
692 		       ecore_init_qm_get_num_vports(p_hwfn));
693 }
694 
695 /* initialize a single pq and manage qm_info resources accounting.
696  * The pq_init_flags param determines whether the PQ is rate limited
697  * (for VF or PF)
698  * and whether a new vport is allocated to the pq or not (i.e. vport will be
699  * shared)
700  */
701 
702 /* flags for pq init */
703 #define PQ_INIT_SHARE_VPORT	(1 << 0)
704 #define PQ_INIT_PF_RL		(1 << 1)
705 #define PQ_INIT_VF_RL		(1 << 2)
706 
707 /* defines for pq init */
708 #define PQ_INIT_DEFAULT_WRR_GROUP	1
709 #define PQ_INIT_DEFAULT_TC		0
710 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
711 
712 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
713 			     struct ecore_qm_info *qm_info,
714 			     u8 tc, u32 pq_init_flags)
715 {
716 	u16 pq_idx = qm_info->num_pqs, max_pq =
717 					ecore_init_qm_get_num_pqs(p_hwfn);
718 
719 	if (pq_idx > max_pq)
720 		DP_ERR(p_hwfn,
721 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
722 
723 	/* init pq params */
724 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
725 						 qm_info->num_vports;
726 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
727 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
728 	qm_info->qm_pq_params[pq_idx].rl_valid =
729 		(pq_init_flags & PQ_INIT_PF_RL ||
730 		 pq_init_flags & PQ_INIT_VF_RL);
731 
732 	/* qm params accounting */
733 	qm_info->num_pqs++;
734 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
735 		qm_info->num_vports++;
736 
737 	if (pq_init_flags & PQ_INIT_PF_RL)
738 		qm_info->num_pf_rls++;
739 
740 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
741 		DP_ERR(p_hwfn,
742 		       "vport overflow! qm_info->num_vports %d,"
743 		       " qm_init_get_num_vports() %d\n",
744 		       qm_info->num_vports,
745 		       ecore_init_qm_get_num_vports(p_hwfn));
746 
747 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
748 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d,"
749 		       " qm_init_get_num_pf_rls() %d\n",
750 		       qm_info->num_pf_rls,
751 		       ecore_init_qm_get_num_pf_rls(p_hwfn));
752 }
753 
754 /* get pq index according to PQ_FLAGS */
755 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
756 					     u32 pq_flags)
757 {
758 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
759 
760 	/* Can't have multiple flags set here */
761 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags,
762 				sizeof(pq_flags)) > 1)
763 		goto err;
764 
765 	switch (pq_flags) {
766 	case PQ_FLAGS_RLS:
767 		return &qm_info->first_rl_pq;
768 	case PQ_FLAGS_MCOS:
769 		return &qm_info->first_mcos_pq;
770 	case PQ_FLAGS_LB:
771 		return &qm_info->pure_lb_pq;
772 	case PQ_FLAGS_OOO:
773 		return &qm_info->ooo_pq;
774 	case PQ_FLAGS_ACK:
775 		return &qm_info->pure_ack_pq;
776 	case PQ_FLAGS_OFLD:
777 		return &qm_info->offload_pq;
778 	case PQ_FLAGS_VFS:
779 		return &qm_info->first_vf_pq;
780 	default:
781 		goto err;
782 	}
783 
784 err:
785 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
786 	return OSAL_NULL;
787 }
788 
789 /* save pq index in qm info */
790 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
791 				  u32 pq_flags, u16 pq_val)
792 {
793 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
794 
795 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
796 }
797 
798 /* get tx pq index, with the PQ TX base already set (ready for context init) */
799 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
800 {
801 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
802 
803 	return *base_pq_idx + CM_TX_PQ_BASE;
804 }
805 
806 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
807 {
808 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
809 
810 	if (tc > max_tc)
811 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
812 
813 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
814 }
815 
816 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
817 {
818 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
819 
820 	if (vf > max_vf)
821 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
822 
823 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
824 }
825 
826 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
827 {
828 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
829 
830 	if (rl > max_rl)
831 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
832 
833 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
834 }
835 
836 /* Functions for creating specific types of pqs */
837 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
838 {
839 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
840 
841 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
842 		return;
843 
844 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
845 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
846 }
847 
848 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
849 {
850 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
851 
852 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
853 		return;
854 
855 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
856 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
857 }
858 
859 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
860 {
861 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
862 
863 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
864 		return;
865 
866 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
867 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
868 }
869 
870 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
871 {
872 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
873 
874 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
875 		return;
876 
877 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
878 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
879 }
880 
881 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
882 {
883 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
884 	u8 tc_idx;
885 
886 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
887 		return;
888 
889 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
890 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
891 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
892 }
893 
894 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
895 {
896 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
897 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
898 
899 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
900 		return;
901 
902 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
903 
904 	qm_info->num_vf_pqs = num_vfs;
905 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
906 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC,
907 				 PQ_INIT_VF_RL);
908 }
909 
910 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
911 {
912 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
913 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
914 
915 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
916 		return;
917 
918 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
919 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
920 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC,
921 				 PQ_INIT_PF_RL);
922 }
923 
924 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
925 {
926 	/* rate limited pqs, must come first (FW assumption) */
927 	ecore_init_qm_rl_pqs(p_hwfn);
928 
929 	/* pqs for multi cos */
930 	ecore_init_qm_mcos_pqs(p_hwfn);
931 
932 	/* pure loopback pq */
933 	ecore_init_qm_lb_pq(p_hwfn);
934 
935 	/* out of order pq */
936 	ecore_init_qm_ooo_pq(p_hwfn);
937 
938 	/* pure ack pq */
939 	ecore_init_qm_pure_ack_pq(p_hwfn);
940 
941 	/* pq for offloaded protocol */
942 	ecore_init_qm_offload_pq(p_hwfn);
943 
944 	/* done sharing vports */
945 	ecore_init_qm_advance_vport(p_hwfn);
946 
947 	/* pqs for vfs */
948 	ecore_init_qm_vf_pqs(p_hwfn);
949 }
950 
951 /* compare values of getters against resources amounts */
952 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
953 {
954 	if (ecore_init_qm_get_num_vports(p_hwfn) >
955 	    RESC_NUM(p_hwfn, ECORE_VPORT)) {
956 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
957 		return ECORE_INVAL;
958 	}
959 
960 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
961 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
962 		return ECORE_INVAL;
963 	}
964 
965 	return ECORE_SUCCESS;
966 }
967 
968 /*
969  * Function for verbose printing of the qm initialization results
970  */
971 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
972 {
973 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
974 	struct init_qm_vport_params *vport;
975 	struct init_qm_port_params *port;
976 	struct init_qm_pq_params *pq;
977 	int i, tc;
978 
979 	/* top level params */
980 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
981 		   "qm init top level params: start_pq %d, start_vport %d,"
982 		   " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
983 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq,
984 		   qm_info->offload_pq, qm_info->pure_ack_pq);
985 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
986 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d,"
987 		   " num_vports %d, max_phys_tcs_per_port %d\n",
988 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs,
989 		   qm_info->num_vf_pqs, qm_info->num_vports,
990 		   qm_info->max_phys_tcs_per_port);
991 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
992 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d,"
993 		   " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
994 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en,
995 		   qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl,
996 		   qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
997 
998 	/* port table */
999 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
1000 		port = &qm_info->qm_port_params[i];
1001 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1002 			   "port idx %d, active %d, active_phys_tcs %d,"
1003 			   " num_pbf_cmd_lines %d, num_btb_blocks %d,"
1004 			   " reserved %d\n",
1005 			   i, port->active, port->active_phys_tcs,
1006 			   port->num_pbf_cmd_lines, port->num_btb_blocks,
1007 			   port->reserved);
1008 	}
1009 
1010 	/* vport table */
1011 	for (i = 0; i < qm_info->num_vports; i++) {
1012 		vport = &qm_info->qm_vport_params[i];
1013 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1014 			   "vport idx %d, vport_rl %d, wfq %d,"
1015 			   " first_tx_pq_id [ ",
1016 			   qm_info->start_vport + i, vport->vport_rl,
1017 			   vport->vport_wfq);
1018 		for (tc = 0; tc < NUM_OF_TCS; tc++)
1019 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ",
1020 				   vport->first_tx_pq_id[tc]);
1021 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
1022 	}
1023 
1024 	/* pq table */
1025 	for (i = 0; i < qm_info->num_pqs; i++) {
1026 		pq = &qm_info->qm_pq_params[i];
1027 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1028 			   "pq idx %d, vport_id %d, tc %d, wrr_grp %d,"
1029 			   " rl_valid %d\n",
1030 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id,
1031 			   pq->wrr_group, pq->rl_valid);
1032 	}
1033 }
1034 
1035 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
1036 {
1037 	/* reset params required for init run */
1038 	ecore_init_qm_reset_params(p_hwfn);
1039 
1040 	/* init QM top level params */
1041 	ecore_init_qm_params(p_hwfn);
1042 
1043 	/* init QM port params */
1044 	ecore_init_qm_port_params(p_hwfn);
1045 
1046 	/* init QM vport params */
1047 	ecore_init_qm_vport_params(p_hwfn);
1048 
1049 	/* init QM physical queue params */
1050 	ecore_init_qm_pq_params(p_hwfn);
1051 
1052 	/* display all that init */
1053 	ecore_dp_init_qm_params(p_hwfn);
1054 }
1055 
1056 /* This function reconfigures the QM pf on the fly.
1057  * For this purpose we:
1058  * 1. reconfigure the QM database
1059  * 2. set new values to runtime array
1060  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
1061  * 4. activate init tool in QM_PF stage
1062  * 5. send an sdm_qm_cmd through rbc interface to release the QM
1063  */
1064 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
1065 				     struct ecore_ptt *p_ptt)
1066 {
1067 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1068 	bool b_rc;
1069 	enum _ecore_status_t rc;
1070 
1071 	/* initialize ecore's qm data structure */
1072 	ecore_init_qm_info(p_hwfn);
1073 
1074 	/* stop PF's qm queues */
1075 	OSAL_SPIN_LOCK(&qm_lock);
1076 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
1077 				      qm_info->start_pq, qm_info->num_pqs);
1078 	OSAL_SPIN_UNLOCK(&qm_lock);
1079 	if (!b_rc)
1080 		return ECORE_INVAL;
1081 
1082 	/* clear the QM_PF runtime phase leftovers from previous init */
1083 	ecore_init_clear_rt_data(p_hwfn);
1084 
1085 	/* prepare QM portion of runtime array */
1086 	ecore_qm_init_pf(p_hwfn, p_ptt);
1087 
1088 	/* activate init tool on runtime array */
1089 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
1090 			    p_hwfn->hw_info.hw_mode);
1091 	if (rc != ECORE_SUCCESS)
1092 		return rc;
1093 
1094 	/* start PF's qm queues */
1095 	OSAL_SPIN_LOCK(&qm_lock);
1096 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
1097 				      qm_info->start_pq, qm_info->num_pqs);
1098 	OSAL_SPIN_UNLOCK(&qm_lock);
1099 	if (!b_rc)
1100 		return ECORE_INVAL;
1101 
1102 	return ECORE_SUCCESS;
1103 }
1104 
1105 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
1106 {
1107 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1108 	enum _ecore_status_t rc;
1109 
1110 	rc = ecore_init_qm_sanity(p_hwfn);
1111 	if (rc != ECORE_SUCCESS)
1112 		goto alloc_err;
1113 
1114 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1115 					    sizeof(struct init_qm_pq_params) *
1116 					    ecore_init_qm_get_num_pqs(p_hwfn));
1117 	if (!qm_info->qm_pq_params)
1118 		goto alloc_err;
1119 
1120 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1121 				       sizeof(struct init_qm_vport_params) *
1122 				       ecore_init_qm_get_num_vports(p_hwfn));
1123 	if (!qm_info->qm_vport_params)
1124 		goto alloc_err;
1125 
1126 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1127 				      sizeof(struct init_qm_port_params) *
1128 				      p_hwfn->p_dev->num_ports_in_engine);
1129 	if (!qm_info->qm_port_params)
1130 		goto alloc_err;
1131 
1132 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1133 					sizeof(struct ecore_wfq_data) *
1134 					ecore_init_qm_get_num_vports(p_hwfn));
1135 	if (!qm_info->wfq_data)
1136 		goto alloc_err;
1137 
1138 	return ECORE_SUCCESS;
1139 
1140 alloc_err:
1141 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
1142 	ecore_qm_info_free(p_hwfn);
1143 	return ECORE_NOMEM;
1144 }
1145 /******************** End QM initialization ***************/
1146 
1147 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
1148 {
1149 	enum _ecore_status_t rc = ECORE_SUCCESS;
1150 	int i;
1151 
1152 	if (IS_VF(p_dev)) {
1153 		for_each_hwfn(p_dev, i) {
1154 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
1155 			if (rc != ECORE_SUCCESS)
1156 				return rc;
1157 		}
1158 		return rc;
1159 	}
1160 
1161 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
1162 				     sizeof(*p_dev->fw_data));
1163 	if (!p_dev->fw_data)
1164 		return ECORE_NOMEM;
1165 
1166 	for_each_hwfn(p_dev, i) {
1167 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1168 		u32 n_eqes, num_cons;
1169 
1170 		/* initialize the doorbell recovery mechanism */
1171 		rc = ecore_db_recovery_setup(p_hwfn);
1172 		if (rc)
1173 			goto alloc_err;
1174 
1175 		/* First allocate the context manager structure */
1176 		rc = ecore_cxt_mngr_alloc(p_hwfn);
1177 		if (rc)
1178 			goto alloc_err;
1179 
1180 		/* Set the HW cid/tid numbers (in the context manager)
1181 		 * Must be done prior to any further computations.
1182 		 */
1183 		rc = ecore_cxt_set_pf_params(p_hwfn);
1184 		if (rc)
1185 			goto alloc_err;
1186 
1187 		rc = ecore_alloc_qm_data(p_hwfn);
1188 		if (rc)
1189 			goto alloc_err;
1190 
1191 		/* init qm info */
1192 		ecore_init_qm_info(p_hwfn);
1193 
1194 		/* Compute the ILT client partition */
1195 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
1196 		if (rc)
1197 			goto alloc_err;
1198 
1199 		/* CID map / ILT shadow table / T2
1200 		 * The talbes sizes are determined by the computations above
1201 		 */
1202 		rc = ecore_cxt_tables_alloc(p_hwfn);
1203 		if (rc)
1204 			goto alloc_err;
1205 
1206 		/* SPQ, must follow ILT because initializes SPQ context */
1207 		rc = ecore_spq_alloc(p_hwfn);
1208 		if (rc)
1209 			goto alloc_err;
1210 
1211 		/* SP status block allocation */
1212 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
1213 							   RESERVED_PTT_DPC);
1214 
1215 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
1216 		if (rc)
1217 			goto alloc_err;
1218 
1219 		rc = ecore_iov_alloc(p_hwfn);
1220 		if (rc)
1221 			goto alloc_err;
1222 
1223 		/* EQ */
1224 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
1225 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
1226 			/* Calculate the EQ size
1227 			 * ---------------------
1228 			 * Each ICID may generate up to one event at a time i.e.
1229 			 * the event must be handled/cleared before a new one
1230 			 * can be generated. We calculate the sum of events per
1231 			 * protocol and create an EQ deep enough to handle the
1232 			 * worst case:
1233 			 * - Core - according to SPQ.
1234 			 * - RoCE - per QP there are a couple of ICIDs, one
1235 			 *	  responder and one requester, each can
1236 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
1237 			 *	  Each CQ can generate an EQE. There are 2 CQs
1238 			 *	  per QP => n_eqes_cq = 2 * n_qp.
1239 			 *	  Hence the RoCE total is 4 * n_qp or
1240 			 *	  2 * num_cons.
1241 			 * - ENet - There can be up to two events per VF. One
1242 			 *	  for VF-PF channel and another for VF FLR
1243 			 *	  initial cleanup. The number of VFs is
1244 			 *	  bounded by MAX_NUM_VFS_BB, and is much
1245 			 *	  smaller than RoCE's so we avoid exact
1246 			 *	  calculation.
1247 			 */
1248 			if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
1249 				num_cons =
1250 				    ecore_cxt_get_proto_cid_count(
1251 						p_hwfn,
1252 						PROTOCOLID_ROCE,
1253 						OSAL_NULL);
1254 				num_cons *= 2;
1255 			} else {
1256 				num_cons = ecore_cxt_get_proto_cid_count(
1257 						p_hwfn,
1258 						PROTOCOLID_IWARP,
1259 						OSAL_NULL);
1260 			}
1261 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
1262 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1263 			num_cons =
1264 			    ecore_cxt_get_proto_cid_count(p_hwfn,
1265 							  PROTOCOLID_ISCSI,
1266 							  OSAL_NULL);
1267 			n_eqes += 2 * num_cons;
1268 		}
1269 
1270 		if (n_eqes > 0xFFFF) {
1271 			DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
1272 				       "The maximum of a u16 chain is 0x%x\n",
1273 			       n_eqes, 0xFFFF);
1274 			goto alloc_no_mem;
1275 		}
1276 
1277 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
1278 		if (rc)
1279 			goto alloc_err;
1280 
1281 		rc = ecore_consq_alloc(p_hwfn);
1282 		if (rc)
1283 			goto alloc_err;
1284 
1285 		rc = ecore_l2_alloc(p_hwfn);
1286 		if (rc != ECORE_SUCCESS)
1287 			goto alloc_err;
1288 
1289 		/* DMA info initialization */
1290 		rc = ecore_dmae_info_alloc(p_hwfn);
1291 		if (rc) {
1292 			DP_NOTICE(p_hwfn, true,
1293 				  "Failed to allocate memory for dmae_info"
1294 				  " structure\n");
1295 			goto alloc_err;
1296 		}
1297 
1298 		/* DCBX initialization */
1299 		rc = ecore_dcbx_info_alloc(p_hwfn);
1300 		if (rc) {
1301 			DP_NOTICE(p_hwfn, true,
1302 				  "Failed to allocate memory for dcbx structure\n");
1303 			goto alloc_err;
1304 		}
1305 	}
1306 
1307 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
1308 					 sizeof(*p_dev->reset_stats));
1309 	if (!p_dev->reset_stats) {
1310 		DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
1311 		goto alloc_no_mem;
1312 	}
1313 
1314 	return ECORE_SUCCESS;
1315 
1316 alloc_no_mem:
1317 	rc = ECORE_NOMEM;
1318 alloc_err:
1319 	ecore_resc_free(p_dev);
1320 	return rc;
1321 }
1322 
1323 void ecore_resc_setup(struct ecore_dev *p_dev)
1324 {
1325 	int i;
1326 
1327 	if (IS_VF(p_dev)) {
1328 		for_each_hwfn(p_dev, i)
1329 			ecore_l2_setup(&p_dev->hwfns[i]);
1330 		return;
1331 	}
1332 
1333 	for_each_hwfn(p_dev, i) {
1334 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1335 
1336 		ecore_cxt_mngr_setup(p_hwfn);
1337 		ecore_spq_setup(p_hwfn);
1338 		ecore_eq_setup(p_hwfn);
1339 		ecore_consq_setup(p_hwfn);
1340 
1341 		/* Read shadow of current MFW mailbox */
1342 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1343 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1344 			    p_hwfn->mcp_info->mfw_mb_cur,
1345 			    p_hwfn->mcp_info->mfw_mb_length);
1346 
1347 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1348 
1349 		ecore_l2_setup(p_hwfn);
1350 		ecore_iov_setup(p_hwfn);
1351 	}
1352 }
1353 
1354 #define FINAL_CLEANUP_POLL_CNT	(100)
1355 #define FINAL_CLEANUP_POLL_TIME	(10)
1356 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
1357 					 struct ecore_ptt *p_ptt,
1358 					 u16 id, bool is_vf)
1359 {
1360 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1361 	enum _ecore_status_t rc = ECORE_TIMEOUT;
1362 
1363 #ifndef ASIC_ONLY
1364 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
1365 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1366 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
1367 		return ECORE_SUCCESS;
1368 	}
1369 #endif
1370 
1371 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1372 	    USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1373 
1374 	if (is_vf)
1375 		id += 0x10;
1376 
1377 	command |= X_FINAL_CLEANUP_AGG_INT <<
1378 	    SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1379 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1380 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1381 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1382 
1383 /* Make sure notification is not set before initiating final cleanup */
1384 
1385 	if (REG_RD(p_hwfn, addr)) {
1386 		DP_NOTICE(p_hwfn, false,
1387 			  "Unexpected; Found final cleanup notification");
1388 		DP_NOTICE(p_hwfn, false,
1389 			  " before initiating final cleanup\n");
1390 		REG_WR(p_hwfn, addr, 0);
1391 	}
1392 
1393 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
1394 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
1395 		   id, command);
1396 
1397 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1398 
1399 	/* Poll until completion */
1400 	while (!REG_RD(p_hwfn, addr) && count--)
1401 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
1402 
1403 	if (REG_RD(p_hwfn, addr))
1404 		rc = ECORE_SUCCESS;
1405 	else
1406 		DP_NOTICE(p_hwfn, true,
1407 			  "Failed to receive FW final cleanup notification\n");
1408 
1409 	/* Cleanup afterwards */
1410 	REG_WR(p_hwfn, addr, 0);
1411 
1412 	return rc;
1413 }
1414 
1415 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
1416 {
1417 	int hw_mode = 0;
1418 
1419 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
1420 		hw_mode |= 1 << MODE_BB;
1421 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
1422 		hw_mode |= 1 << MODE_K2;
1423 	} else {
1424 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
1425 			  p_hwfn->p_dev->type);
1426 		return ECORE_INVAL;
1427 	}
1428 
1429 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
1430 	switch (p_hwfn->p_dev->num_ports_in_engine) {
1431 	case 1:
1432 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1433 		break;
1434 	case 2:
1435 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1436 		break;
1437 	case 4:
1438 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1439 		break;
1440 	default:
1441 		DP_NOTICE(p_hwfn, true,
1442 			  "num_ports_in_engine = %d not supported\n",
1443 			  p_hwfn->p_dev->num_ports_in_engine);
1444 		return ECORE_INVAL;
1445 	}
1446 
1447 	if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
1448 			  &p_hwfn->p_dev->mf_bits))
1449 		hw_mode |= 1 << MODE_MF_SD;
1450 	else
1451 		hw_mode |= 1 << MODE_MF_SI;
1452 
1453 #ifndef ASIC_ONLY
1454 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1455 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1456 			hw_mode |= 1 << MODE_FPGA;
1457 		} else {
1458 			if (p_hwfn->p_dev->b_is_emul_full)
1459 				hw_mode |= 1 << MODE_EMUL_FULL;
1460 			else
1461 				hw_mode |= 1 << MODE_EMUL_REDUCED;
1462 		}
1463 	} else
1464 #endif
1465 		hw_mode |= 1 << MODE_ASIC;
1466 
1467 	if (ECORE_IS_CMT(p_hwfn->p_dev))
1468 		hw_mode |= 1 << MODE_100G;
1469 
1470 	p_hwfn->hw_info.hw_mode = hw_mode;
1471 
1472 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
1473 		   "Configuring function for hw_mode: 0x%08x\n",
1474 		   p_hwfn->hw_info.hw_mode);
1475 
1476 	return ECORE_SUCCESS;
1477 }
1478 
1479 #ifndef ASIC_ONLY
1480 /* MFW-replacement initializations for non-ASIC */
1481 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
1482 					       struct ecore_ptt *p_ptt)
1483 {
1484 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1485 	u32 pl_hv = 1;
1486 	int i;
1487 
1488 	if (CHIP_REV_IS_EMUL(p_dev)) {
1489 		if (ECORE_IS_AH(p_dev))
1490 			pl_hv |= 0x600;
1491 	}
1492 
1493 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
1494 
1495 	if (CHIP_REV_IS_EMUL(p_dev) &&
1496 	    (ECORE_IS_AH(p_dev)))
1497 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
1498 			 0x3ffffff);
1499 
1500 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
1501 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
1502 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
1503 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
1504 
1505 	if (CHIP_REV_IS_EMUL(p_dev)) {
1506 		if (ECORE_IS_AH(p_dev)) {
1507 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
1508 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
1509 				 (p_dev->num_ports_in_engine >> 1));
1510 
1511 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
1512 				 p_dev->num_ports_in_engine == 4 ? 0 : 3);
1513 		}
1514 	}
1515 
1516 	/* Poll on RBC */
1517 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
1518 	for (i = 0; i < 100; i++) {
1519 		OSAL_UDELAY(50);
1520 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
1521 			break;
1522 	}
1523 	if (i == 100)
1524 		DP_NOTICE(p_hwfn, true,
1525 			  "RBC done failed to complete in PSWRQ2\n");
1526 
1527 	return ECORE_SUCCESS;
1528 }
1529 #endif
1530 
1531 /* Init run time data for all PFs and their VFs on an engine.
1532  * TBD - for VFs - Once we have parent PF info for each VF in
1533  * shmem available as CAU requires knowledge of parent PF for each VF.
1534  */
1535 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
1536 {
1537 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1538 	int i, igu_sb_id;
1539 
1540 	for_each_hwfn(p_dev, i) {
1541 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1542 		struct ecore_igu_info *p_igu_info;
1543 		struct ecore_igu_block *p_block;
1544 		struct cau_sb_entry sb_entry;
1545 
1546 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1547 
1548 		for (igu_sb_id = 0;
1549 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
1550 		     igu_sb_id++) {
1551 			p_block = &p_igu_info->entry[igu_sb_id];
1552 
1553 			if (!p_block->is_pf)
1554 				continue;
1555 
1556 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
1557 						p_block->function_id, 0, 0);
1558 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1559 					 sb_entry);
1560 		}
1561 	}
1562 }
1563 
1564 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
1565 				       struct ecore_ptt *p_ptt)
1566 {
1567 	u32 val, wr_mbs, cache_line_size;
1568 
1569 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1570 	switch (val) {
1571 	case 0:
1572 		wr_mbs = 128;
1573 		break;
1574 	case 1:
1575 		wr_mbs = 256;
1576 		break;
1577 	case 2:
1578 		wr_mbs = 512;
1579 		break;
1580 	default:
1581 		DP_INFO(p_hwfn,
1582 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1583 			val);
1584 		return;
1585 	}
1586 
1587 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
1588 	switch (cache_line_size) {
1589 	case 32:
1590 		val = 0;
1591 		break;
1592 	case 64:
1593 		val = 1;
1594 		break;
1595 	case 128:
1596 		val = 2;
1597 		break;
1598 	case 256:
1599 		val = 3;
1600 		break;
1601 	default:
1602 		DP_INFO(p_hwfn,
1603 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1604 			cache_line_size);
1605 	}
1606 
1607 	if (wr_mbs < OSAL_CACHE_LINE_SIZE)
1608 		DP_INFO(p_hwfn,
1609 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1610 			OSAL_CACHE_LINE_SIZE, wr_mbs);
1611 
1612 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1613 	if (val > 0) {
1614 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
1615 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
1616 	}
1617 }
1618 
1619 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
1620 						 struct ecore_ptt *p_ptt,
1621 						 int hw_mode)
1622 {
1623 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1624 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1625 	u8 vf_id, max_num_vfs;
1626 	u16 num_pfs, pf_id;
1627 	u32 concrete_fid;
1628 	enum _ecore_status_t rc = ECORE_SUCCESS;
1629 
1630 	ecore_init_cau_rt_data(p_dev);
1631 
1632 	/* Program GTT windows */
1633 	ecore_gtt_init(p_hwfn, p_ptt);
1634 
1635 #ifndef ASIC_ONLY
1636 	if (CHIP_REV_IS_EMUL(p_dev)) {
1637 		rc = ecore_hw_init_chip(p_hwfn, p_ptt);
1638 		if (rc != ECORE_SUCCESS)
1639 			return rc;
1640 	}
1641 #endif
1642 
1643 	if (p_hwfn->mcp_info) {
1644 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1645 			qm_info->pf_rl_en = 1;
1646 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1647 			qm_info->pf_wfq_en = 1;
1648 	}
1649 
1650 	ecore_qm_common_rt_init(p_hwfn,
1651 				p_dev->num_ports_in_engine,
1652 				qm_info->max_phys_tcs_per_port,
1653 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1654 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1655 				qm_info->qm_port_params);
1656 
1657 	ecore_cxt_hw_init_common(p_hwfn);
1658 
1659 	ecore_init_cache_line_size(p_hwfn, p_ptt);
1660 
1661 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1662 	if (rc != ECORE_SUCCESS)
1663 		return rc;
1664 
1665 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1666 	 * need to decide with which value, maybe runtime
1667 	 */
1668 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1669 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1670 
1671 	if (ECORE_IS_BB(p_dev)) {
1672 		/* Workaround clears ROCE search for all functions to prevent
1673 		 * involving non initialized function in processing ROCE packet.
1674 		 */
1675 		num_pfs = NUM_OF_ENG_PFS(p_dev);
1676 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1677 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1678 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1679 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1680 		}
1681 		/* pretend to original PF */
1682 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1683 	}
1684 
1685 	/* Workaround for avoiding CCFC execution error when getting packets
1686 	 * with CRC errors, and allowing instead the invoking of the FW error
1687 	 * handler.
1688 	 * This is not done inside the init tool since it currently can't
1689 	 * perform a pretending to VFs.
1690 	 */
1691 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1692 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1693 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1694 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1695 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1696 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1697 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1698 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1699 	}
1700 	/* pretend to original PF */
1701 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1702 
1703 	return rc;
1704 }
1705 
1706 #ifndef ASIC_ONLY
1707 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1708 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1709 
1710 #define PMEG_IF_BYTE_COUNT	8
1711 
1712 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1713 			     struct ecore_ptt *p_ptt,
1714 			     u32 addr, u64 data, u8 reg_type, u8 port)
1715 {
1716 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1717 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1718 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1719 		   (8 << PMEG_IF_BYTE_COUNT),
1720 		   (reg_type << 25) | (addr << 8) | port,
1721 		   (u32)((data >> 32) & 0xffffffff),
1722 		   (u32)(data & 0xffffffff));
1723 
1724 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1725 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1726 		  0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1727 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1728 		 (reg_type << 25) | (addr << 8) | port);
1729 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1730 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1731 		 (data >> 32) & 0xffffffff);
1732 }
1733 
1734 #define XLPORT_MODE_REG	(0x20a)
1735 #define XLPORT_MAC_CONTROL (0x210)
1736 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1737 #define XLPORT_ENABLE_REG (0x20b)
1738 
1739 #define XLMAC_CTRL (0x600)
1740 #define XLMAC_MODE (0x601)
1741 #define XLMAC_RX_MAX_SIZE (0x608)
1742 #define XLMAC_TX_CTRL (0x604)
1743 #define XLMAC_PAUSE_CTRL (0x60d)
1744 #define XLMAC_PFC_CTRL (0x60e)
1745 
1746 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1747 				    struct ecore_ptt *p_ptt)
1748 {
1749 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1750 
1751 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1752 
1753 	/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1754 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1755 			 port);
1756 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1757 	/* XLMAC: SOFT RESET */
1758 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1759 	/* XLMAC: Port Speed >= 10Gbps */
1760 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1761 	/* XLMAC: Max Size */
1762 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1763 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1764 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1765 			 0, port);
1766 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1767 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1768 			 0x30ffffc000ULL, 0, port);
1769 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1770 			 port);	/* XLMAC: TX_EN, RX_EN */
1771 	/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1772 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1773 			 0x1003 | (loopback << 2), 0, port);
1774 	/* Enabled Parallel PFC interface */
1775 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1776 
1777 	/* XLPORT port enable */
1778 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1779 }
1780 
1781 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1782 				       struct ecore_ptt *p_ptt)
1783 {
1784 	u8 port = p_hwfn->port_id;
1785 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1786 
1787 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1788 
1789 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1790 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1791 		 (port <<
1792 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1793 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1794 
1795 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1796 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1797 
1798 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1799 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1800 
1801 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1802 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1803 
1804 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1805 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1806 
1807 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1808 		 (0xA <<
1809 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1810 		 (8 <<
1811 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1812 
1813 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1814 		 0xa853);
1815 }
1816 
1817 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1818 				 struct ecore_ptt *p_ptt)
1819 {
1820 	if (ECORE_IS_AH(p_hwfn->p_dev))
1821 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1822 	else /* BB */
1823 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
1824 }
1825 
1826 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1827 			       struct ecore_ptt *p_ptt,  u8 port)
1828 {
1829 	int port_offset = port ? 0x800 : 0;
1830 	u32 xmac_rxctrl = 0;
1831 
1832 	/* Reset of XMAC */
1833 	/* FIXME: move to common start */
1834 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1835 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Clear */
1836 	OSAL_MSLEEP(1);
1837 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1838 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Set */
1839 
1840 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1841 
1842 	/* Set the number of ports on the Warp Core to 10G */
1843 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1844 
1845 	/* Soft reset of XMAC */
1846 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1847 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1848 	OSAL_MSLEEP(1);
1849 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1850 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1851 
1852 	/* FIXME: move to common end */
1853 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1854 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1855 
1856 	/* Set Max packet size: initialize XMAC block register for port 0 */
1857 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1858 
1859 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1860 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1861 
1862 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1863 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1864 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1865 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1866 			       XMAC_REG_RX_CTRL_BB + port_offset);
1867 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1868 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1869 }
1870 #endif
1871 
1872 static enum _ecore_status_t
1873 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1874 		       struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1875 {
1876 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
1877 	u32 min_dpis;
1878 	u32 n_wids;
1879 
1880 	/* Calculate DPI size
1881 	 * ------------------
1882 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1883 	 * the kernel for, e.g, L2. The others are free to be used by non-
1884 	 * trusted applications, typically from user space. Each page, called a
1885 	 * doorbell page is sectioned into windows that allow doorbells to be
1886 	 * issued in parallel by the kernel/application. The size of such a
1887 	 * window (a.k.a. WID) is 1kB.
1888 	 * Summary:
1889 	 *    1kB WID x N WIDS = DPI page size
1890 	 *    DPI page size x N DPIs = PWM region size
1891 	 * Notes:
1892 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1893 	 * in order to ensure that two applications won't share the same page.
1894 	 * It also must contain at least one WID per CPU to allow parallelism.
1895 	 * It also must be a power of 2, since it is stored as a bit shift.
1896 	 *
1897 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1898 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1899 	 * containing 4 WIDs.
1900 	 */
1901 	n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
1902 	dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
1903 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) &
1904 			~(OSAL_PAGE_SIZE - 1);
1905 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1906 	dpi_count = pwm_region_size / dpi_page_size;
1907 
1908 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1909 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1910 
1911 	/* Update hwfn */
1912 	p_hwfn->dpi_size = dpi_page_size;
1913 	p_hwfn->dpi_count = dpi_count;
1914 
1915 	/* Update registers */
1916 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1917 
1918 	if (dpi_count < min_dpis)
1919 		return ECORE_NORESOURCES;
1920 
1921 	return ECORE_SUCCESS;
1922 }
1923 
1924 enum ECORE_ROCE_EDPM_MODE {
1925 	ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1926 	ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1927 	ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1928 };
1929 
1930 static enum _ecore_status_t
1931 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1932 			      struct ecore_ptt *p_ptt)
1933 {
1934 	u32 pwm_regsize, norm_regsize;
1935 	u32 non_pwm_conn, min_addr_reg1;
1936 	u32 db_bar_size, n_cpus;
1937 	u32 roce_edpm_mode;
1938 	u32 pf_dems_shift;
1939 	enum _ecore_status_t rc = ECORE_SUCCESS;
1940 	u8 cond;
1941 
1942 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
1943 	if (ECORE_IS_CMT(p_hwfn->p_dev))
1944 		db_bar_size /= 2;
1945 
1946 	/* Calculate doorbell regions
1947 	 * -----------------------------------
1948 	 * The doorbell BAR is made of two regions. The first is called normal
1949 	 * region and the second is called PWM region. In the normal region
1950 	 * each ICID has its own set of addresses so that writing to that
1951 	 * specific address identifies the ICID. In the Process Window Mode
1952 	 * region the ICID is given in the data written to the doorbell. The
1953 	 * above per PF register denotes the offset in the doorbell BAR in which
1954 	 * the PWM region begins.
1955 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1956 	 * non-PWM connection. The calculation below computes the total non-PWM
1957 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1958 	 * in units of 4,096 bytes.
1959 	 */
1960 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1961 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1962 					  OSAL_NULL) +
1963 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1964 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn,
1965 			       OSAL_PAGE_SIZE);
1966 	min_addr_reg1 = norm_regsize / 4096;
1967 	pwm_regsize = db_bar_size - norm_regsize;
1968 
1969 	/* Check that the normal and PWM sizes are valid */
1970 	if (db_bar_size < norm_regsize) {
1971 		DP_ERR(p_hwfn->p_dev,
1972 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1973 		       db_bar_size, norm_regsize);
1974 		return ECORE_NORESOURCES;
1975 	}
1976 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1977 		DP_ERR(p_hwfn->p_dev,
1978 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1979 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1980 		       norm_regsize);
1981 		return ECORE_NORESOURCES;
1982 	}
1983 
1984 	/* Calculate number of DPIs */
1985 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1986 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1987 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1988 		/* Either EDPM is mandatory, or we are attempting to allocate a
1989 		 * WID per CPU.
1990 		 */
1991 		n_cpus = OSAL_NUM_CPUS();
1992 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1993 	}
1994 
1995 	cond = ((rc != ECORE_SUCCESS) &&
1996 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1997 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1998 	if (cond || p_hwfn->dcbx_no_edpm) {
1999 		/* Either EDPM is disabled from user configuration, or it is
2000 		 * disabled via DCBx, or it is not mandatory and we failed to
2001 		 * allocated a WID per CPU.
2002 		 */
2003 		n_cpus = 1;
2004 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2005 
2006 		/* If we entered this flow due to DCBX then the DPM register is
2007 		 * already configured.
2008 		 */
2009 	}
2010 
2011 	DP_INFO(p_hwfn,
2012 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
2013 		norm_regsize, pwm_regsize);
2014 	DP_INFO(p_hwfn,
2015 		" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
2016 		p_hwfn->dpi_size, p_hwfn->dpi_count,
2017 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
2018 		"disabled" : "enabled");
2019 
2020 	/* Check return codes from above calls */
2021 	if (rc != ECORE_SUCCESS) {
2022 		DP_ERR(p_hwfn,
2023 		       "Failed to allocate enough DPIs\n");
2024 		return ECORE_NORESOURCES;
2025 	}
2026 
2027 	/* Update hwfn */
2028 	p_hwfn->dpi_start_offset = norm_regsize;
2029 
2030 	/* Update registers */
2031 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
2032 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
2033 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
2034 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
2035 
2036 	return ECORE_SUCCESS;
2037 }
2038 
2039 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
2040 					       struct ecore_ptt *p_ptt,
2041 					       int hw_mode)
2042 {
2043 	u32 ppf_to_eng_sel[NIG_REG_PPF_TO_ENGINE_SEL_RT_SIZE];
2044 	u32 val;
2045 	enum _ecore_status_t rc	= ECORE_SUCCESS;
2046 	u8 i;
2047 
2048 	/* In CMT for non-RoCE packets - use connection based classification */
2049 	val = ECORE_IS_CMT(p_hwfn->p_dev) ? 0x8 : 0x0;
2050 	for (i = 0; i < NIG_REG_PPF_TO_ENGINE_SEL_RT_SIZE; i++)
2051 		ppf_to_eng_sel[i] = val;
2052 	STORE_RT_REG_AGG(p_hwfn, NIG_REG_PPF_TO_ENGINE_SEL_RT_OFFSET,
2053 			 ppf_to_eng_sel);
2054 
2055 	/* In CMT the gate should be cleared by the 2nd hwfn */
2056 	if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
2057 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
2058 
2059 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
2060 			    hw_mode);
2061 	if (rc != ECORE_SUCCESS)
2062 		return rc;
2063 
2064 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
2065 
2066 #ifndef ASIC_ONLY
2067 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
2068 		return ECORE_SUCCESS;
2069 
2070 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2071 		if (ECORE_IS_AH(p_hwfn->p_dev))
2072 			return ECORE_SUCCESS;
2073 		else if (ECORE_IS_BB(p_hwfn->p_dev))
2074 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
2075 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2076 		if (ECORE_IS_CMT(p_hwfn->p_dev)) {
2077 			/* Activate OPTE in CMT */
2078 			u32 val;
2079 
2080 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
2081 			val |= 0x10;
2082 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
2083 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
2084 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
2085 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
2086 			ecore_wr(p_hwfn, p_ptt,
2087 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
2088 			ecore_wr(p_hwfn, p_ptt,
2089 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
2090 			ecore_wr(p_hwfn, p_ptt,
2091 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
2092 				 0x55555555);
2093 		}
2094 
2095 		ecore_emul_link_init(p_hwfn, p_ptt);
2096 	} else {
2097 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
2098 	}
2099 #endif
2100 
2101 	return rc;
2102 }
2103 
2104 static enum _ecore_status_t
2105 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
2106 		 struct ecore_ptt *p_ptt,
2107 		 struct ecore_tunnel_info *p_tunn,
2108 		 int hw_mode,
2109 		 bool b_hw_start,
2110 		 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
2111 {
2112 	u8 rel_pf_id = p_hwfn->rel_pf_id;
2113 	u32 prs_reg;
2114 	enum _ecore_status_t rc = ECORE_SUCCESS;
2115 	u16 ctrl;
2116 	int pos;
2117 
2118 	if (p_hwfn->mcp_info) {
2119 		struct ecore_mcp_function_info *p_info;
2120 
2121 		p_info = &p_hwfn->mcp_info->func_info;
2122 		if (p_info->bandwidth_min)
2123 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
2124 
2125 		/* Update rate limit once we'll actually have a link */
2126 		p_hwfn->qm_info.pf_rl = 100000;
2127 	}
2128 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
2129 
2130 	ecore_int_igu_init_rt(p_hwfn);
2131 
2132 	/* Set VLAN in NIG if needed */
2133 	if (hw_mode & (1 << MODE_MF_SD)) {
2134 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
2135 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
2136 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
2137 			     p_hwfn->hw_info.ovlan);
2138 
2139 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2140 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
2141 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
2142 			     1);
2143 	}
2144 
2145 	/* Enable classification by MAC if needed */
2146 	if (hw_mode & (1 << MODE_MF_SI)) {
2147 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2148 			   "Configuring TAGMAC_CLS_TYPE\n");
2149 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
2150 			     1);
2151 	}
2152 
2153 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
2154 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
2155 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
2156 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
2157 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
2158 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
2159 
2160 	/* perform debug configuration when chip is out of reset */
2161 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
2162 
2163 	/* PF Init sequence */
2164 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
2165 	if (rc)
2166 		return rc;
2167 
2168 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
2169 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
2170 	if (rc)
2171 		return rc;
2172 
2173 	/* Pure runtime initializations - directly to the HW  */
2174 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
2175 
2176 	/* PCI relaxed ordering causes a decrease in the performance on some
2177 	 * systems. Till a root cause is found, disable this attribute in the
2178 	 * PCI config space.
2179 	 */
2180 	/* Not in use @DPDK
2181 	* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
2182 	* if (!pos) {
2183 	*	DP_NOTICE(p_hwfn, true,
2184 	*		  "Failed to find the PCIe Cap\n");
2185 	*	return ECORE_IO;
2186 	* }
2187 	* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
2188 	* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
2189 	* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
2190 	*/
2191 
2192 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
2193 	if (rc)
2194 		return rc;
2195 	if (b_hw_start) {
2196 		/* enable interrupts */
2197 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
2198 		if (rc != ECORE_SUCCESS)
2199 			return rc;
2200 
2201 		/* send function start command */
2202 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_tunn,
2203 				       allow_npar_tx_switch);
2204 		if (rc) {
2205 			DP_NOTICE(p_hwfn, true,
2206 				  "Function start ramrod failed\n");
2207 		} else {
2208 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2209 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2210 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2211 
2212 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2213 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
2214 					 (1 << 2));
2215 				ecore_wr(p_hwfn, p_ptt,
2216 				    PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2217 				    0x100);
2218 			}
2219 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2220 				   "PRS_REG_SEARCH registers after start PFn\n");
2221 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
2222 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2223 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
2224 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
2225 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2226 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
2227 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
2228 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2229 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
2230 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
2231 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2232 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
2233 			prs_reg = ecore_rd(p_hwfn, p_ptt,
2234 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
2235 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2236 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
2237 				   prs_reg);
2238 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
2239 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
2240 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
2241 		}
2242 	}
2243 	return rc;
2244 }
2245 
2246 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
2247 						  struct ecore_ptt *p_ptt,
2248 						  bool b_enable)
2249 {
2250 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
2251 
2252 	/* Configure the PF's internal FID_enable for master transactions */
2253 	ecore_wr(p_hwfn, p_ptt,
2254 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2255 
2256 	/* Wait until value is set - try for 1 second every 50us */
2257 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2258 		val = ecore_rd(p_hwfn, p_ptt,
2259 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2260 		if (val == set_val)
2261 			break;
2262 
2263 		OSAL_UDELAY(50);
2264 	}
2265 
2266 	if (val != set_val) {
2267 		DP_NOTICE(p_hwfn, true,
2268 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2269 		return ECORE_UNKNOWN_ERROR;
2270 	}
2271 
2272 	return ECORE_SUCCESS;
2273 }
2274 
2275 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
2276 				  struct ecore_ptt *p_main_ptt)
2277 {
2278 	/* Read shadow of current MFW mailbox */
2279 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
2280 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2281 		    p_hwfn->mcp_info->mfw_mb_cur,
2282 		    p_hwfn->mcp_info->mfw_mb_length);
2283 }
2284 
2285 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
2286 				     struct ecore_ptt *p_ptt)
2287 {
2288 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
2289 		 1 << p_hwfn->abs_pf_id);
2290 }
2291 
2292 static void
2293 ecore_fill_load_req_params(struct ecore_load_req_params *p_load_req,
2294 			   struct ecore_drv_load_params *p_drv_load)
2295 {
2296 	/* Make sure that if ecore-client didn't provide inputs, all the
2297 	 * expected defaults are indeed zero.
2298 	 */
2299 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
2300 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
2301 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
2302 
2303 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
2304 
2305 	if (p_drv_load != OSAL_NULL) {
2306 		p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2307 				       ECORE_DRV_ROLE_KDUMP :
2308 				       ECORE_DRV_ROLE_OS;
2309 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2310 		p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2311 		p_load_req->override_force_load =
2312 			p_drv_load->override_force_load;
2313 	}
2314 }
2315 
2316 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
2317 				    struct ecore_hw_init_params *p_params)
2318 {
2319 	if (p_params->p_tunn) {
2320 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2321 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2322 	}
2323 
2324 	p_hwfn->b_int_enabled = 1;
2325 
2326 	return ECORE_SUCCESS;
2327 }
2328 
2329 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
2330 				   struct ecore_hw_init_params *p_params)
2331 {
2332 	struct ecore_load_req_params load_req_params;
2333 	u32 load_code, resp, param, drv_mb_param;
2334 	bool b_default_mtu = true;
2335 	struct ecore_hwfn *p_hwfn;
2336 	enum _ecore_status_t rc = ECORE_SUCCESS;
2337 	int i;
2338 
2339 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
2340 		DP_NOTICE(p_dev, false,
2341 			  "MSI mode is not supported for CMT devices\n");
2342 		return ECORE_INVAL;
2343 	}
2344 
2345 	if (IS_PF(p_dev)) {
2346 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
2347 		if (rc != ECORE_SUCCESS)
2348 			return rc;
2349 	}
2350 
2351 	for_each_hwfn(p_dev, i) {
2352 		p_hwfn = &p_dev->hwfns[i];
2353 
2354 		/* If management didn't provide a default, set one of our own */
2355 		if (!p_hwfn->hw_info.mtu) {
2356 			p_hwfn->hw_info.mtu = 1500;
2357 			b_default_mtu = false;
2358 		}
2359 
2360 		if (IS_VF(p_dev)) {
2361 			ecore_vf_start(p_hwfn, p_params);
2362 			continue;
2363 		}
2364 
2365 		rc = ecore_calc_hw_mode(p_hwfn);
2366 		if (rc != ECORE_SUCCESS)
2367 			return rc;
2368 
2369 		ecore_fill_load_req_params(&load_req_params,
2370 					   p_params->p_drv_load_params);
2371 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
2372 					&load_req_params);
2373 		if (rc != ECORE_SUCCESS) {
2374 			DP_NOTICE(p_hwfn, true,
2375 				  "Failed sending a LOAD_REQ command\n");
2376 			return rc;
2377 		}
2378 
2379 		load_code = load_req_params.load_code;
2380 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
2381 			   "Load request was sent. Load code: 0x%x\n",
2382 			   load_code);
2383 
2384 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
2385 
2386 		/* CQ75580:
2387 		 * When coming back from hiberbate state, the registers from
2388 		 * which shadow is read initially are not initialized. It turns
2389 		 * out that these registers get initialized during the call to
2390 		 * ecore_mcp_load_req request. So we need to reread them here
2391 		 * to get the proper shadow register value.
2392 		 * Note: This is a workaround for the missing MFW
2393 		 * initialization. It may be removed once the implementation
2394 		 * is done.
2395 		 */
2396 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
2397 
2398 		/* Only relevant for recovery:
2399 		 * Clear the indication after the LOAD_REQ command is responded
2400 		 * by the MFW.
2401 		 */
2402 		p_dev->recov_in_prog = false;
2403 
2404 		p_hwfn->first_on_engine = (load_code ==
2405 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
2406 
2407 		if (!qm_lock_init) {
2408 			OSAL_SPIN_LOCK_INIT(&qm_lock);
2409 			qm_lock_init = true;
2410 		}
2411 
2412 		/* Clean up chip from previous driver if such remains exist.
2413 		 * This is not needed when the PF is the first one on the
2414 		 * engine, since afterwards we are going to init the FW.
2415 		 */
2416 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
2417 			rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
2418 						 p_hwfn->rel_pf_id, false);
2419 			if (rc != ECORE_SUCCESS) {
2420 				ecore_hw_err_notify(p_hwfn,
2421 						    ECORE_HW_ERR_RAMROD_FAIL);
2422 				goto load_err;
2423 			}
2424 		}
2425 
2426 		/* Log and clean previous pglue_b errors if such exist */
2427 		ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
2428 		ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
2429 
2430 		/* Enable the PF's internal FID_enable in the PXP */
2431 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
2432 						  true);
2433 		if (rc != ECORE_SUCCESS)
2434 			goto load_err;
2435 
2436 		switch (load_code) {
2437 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
2438 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2439 						  p_hwfn->hw_info.hw_mode);
2440 			if (rc != ECORE_SUCCESS)
2441 				break;
2442 			/* Fall into */
2443 		case FW_MSG_CODE_DRV_LOAD_PORT:
2444 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2445 						p_hwfn->hw_info.hw_mode);
2446 			if (rc != ECORE_SUCCESS)
2447 				break;
2448 			/* Fall into */
2449 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2450 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2451 					      p_params->p_tunn,
2452 					      p_hwfn->hw_info.hw_mode,
2453 					      p_params->b_hw_start,
2454 					      p_params->int_mode,
2455 					      p_params->allow_npar_tx_switch);
2456 			break;
2457 		default:
2458 			DP_NOTICE(p_hwfn, false,
2459 				  "Unexpected load code [0x%08x]", load_code);
2460 			rc = ECORE_NOTIMPL;
2461 			break;
2462 		}
2463 
2464 		if (rc != ECORE_SUCCESS) {
2465 			DP_NOTICE(p_hwfn, true,
2466 				  "init phase failed for loadcode 0x%x (rc %d)\n",
2467 				  load_code, rc);
2468 			goto load_err;
2469 		}
2470 
2471 		rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
2472 		if (rc != ECORE_SUCCESS)
2473 			return rc;
2474 
2475 		/* send DCBX attention request command */
2476 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
2477 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
2478 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2479 				   DRV_MSG_CODE_SET_DCBX,
2480 				   1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
2481 				   &param);
2482 		if (rc != ECORE_SUCCESS) {
2483 			DP_NOTICE(p_hwfn, true,
2484 				  "Failed to send DCBX attention request\n");
2485 			return rc;
2486 		}
2487 
2488 		p_hwfn->hw_init_done = true;
2489 	}
2490 
2491 	if (IS_PF(p_dev)) {
2492 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2493 		drv_mb_param = STORM_FW_VERSION;
2494 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2495 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2496 				   drv_mb_param, &resp, &param);
2497 		if (rc != ECORE_SUCCESS)
2498 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
2499 
2500 		if (!b_default_mtu)
2501 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2502 						      p_hwfn->hw_info.mtu);
2503 		if (rc != ECORE_SUCCESS)
2504 			DP_INFO(p_hwfn, "Failed to update default mtu\n");
2505 
2506 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
2507 						      p_hwfn->p_main_ptt,
2508 						ECORE_OV_DRIVER_STATE_DISABLED);
2509 		if (rc != ECORE_SUCCESS)
2510 			DP_INFO(p_hwfn, "Failed to update driver state\n");
2511 	}
2512 
2513 	return rc;
2514 
2515 load_err:
2516 	/* The MFW load lock should be released regardless of success or failure
2517 	 * of initialization.
2518 	 * TODO: replace this with an attempt to send cancel_load.
2519 	 */
2520 	ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
2521 	return rc;
2522 }
2523 
2524 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
2525 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
2526 				 struct ecore_hwfn *p_hwfn,
2527 				 struct ecore_ptt *p_ptt)
2528 {
2529 	int i;
2530 
2531 	/* close timers */
2532 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2533 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2534 	for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
2535 									i++) {
2536 		if ((!ecore_rd(p_hwfn, p_ptt,
2537 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2538 		    (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
2539 			break;
2540 
2541 		/* Dependent on number of connection/tasks, possibly
2542 		 * 1ms sleep is required between polls
2543 		 */
2544 		OSAL_MSLEEP(1);
2545 	}
2546 
2547 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
2548 		return;
2549 
2550 	DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
2551 		  " [Connection %02x Tasks %02x]\n",
2552 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2553 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2554 }
2555 
2556 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
2557 {
2558 	int j;
2559 
2560 	for_each_hwfn(p_dev, j) {
2561 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2562 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2563 
2564 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2565 	}
2566 }
2567 
2568 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
2569 						 struct ecore_ptt *p_ptt,
2570 						 u32 addr, u32 expected_val)
2571 {
2572 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
2573 
2574 	if (val != expected_val) {
2575 		DP_NOTICE(p_hwfn, true,
2576 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
2577 			  addr, val, expected_val);
2578 		return ECORE_UNKNOWN_ERROR;
2579 	}
2580 
2581 	return ECORE_SUCCESS;
2582 }
2583 
2584 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
2585 {
2586 	struct ecore_hwfn *p_hwfn;
2587 	struct ecore_ptt *p_ptt;
2588 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
2589 	int j;
2590 
2591 	for_each_hwfn(p_dev, j) {
2592 		p_hwfn = &p_dev->hwfns[j];
2593 		p_ptt = p_hwfn->p_main_ptt;
2594 
2595 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
2596 
2597 		if (IS_VF(p_dev)) {
2598 			ecore_vf_pf_int_cleanup(p_hwfn);
2599 			rc = ecore_vf_pf_reset(p_hwfn);
2600 			if (rc != ECORE_SUCCESS) {
2601 				DP_NOTICE(p_hwfn, true,
2602 					  "ecore_vf_pf_reset failed. rc = %d.\n",
2603 					  rc);
2604 				rc2 = ECORE_UNKNOWN_ERROR;
2605 			}
2606 			continue;
2607 		}
2608 
2609 		/* mark the hw as uninitialized... */
2610 		p_hwfn->hw_init_done = false;
2611 
2612 		/* Send unload command to MCP */
2613 		if (!p_dev->recov_in_prog) {
2614 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
2615 			if (rc != ECORE_SUCCESS) {
2616 				DP_NOTICE(p_hwfn, true,
2617 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2618 					  rc);
2619 				rc2 = ECORE_UNKNOWN_ERROR;
2620 			}
2621 		}
2622 
2623 		OSAL_DPC_SYNC(p_hwfn);
2624 
2625 		/* After this point no MFW attentions are expected, e.g. prevent
2626 		 * race between pf stop and dcbx pf update.
2627 		 */
2628 
2629 		rc = ecore_sp_pf_stop(p_hwfn);
2630 		if (rc != ECORE_SUCCESS) {
2631 			DP_NOTICE(p_hwfn, true,
2632 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2633 				  rc);
2634 			rc2 = ECORE_UNKNOWN_ERROR;
2635 		}
2636 
2637 		/* perform debug action after PF stop was sent */
2638 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
2639 
2640 		/* close NIG to BRB gate */
2641 		ecore_wr(p_hwfn, p_ptt,
2642 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2643 
2644 		/* close parser */
2645 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2646 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2647 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2648 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2649 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2650 
2651 		/* @@@TBD - clean transmission queues (5.b) */
2652 		/* @@@TBD - clean BTB (5.c) */
2653 
2654 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2655 
2656 		/* @@@TBD - verify DMAE requests are done (8) */
2657 
2658 		/* Disable Attention Generation */
2659 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
2660 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2661 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2662 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2663 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
2664 		if (rc != ECORE_SUCCESS) {
2665 			DP_NOTICE(p_hwfn, true,
2666 				  "Failed to return IGU CAM to default\n");
2667 			rc2 = ECORE_UNKNOWN_ERROR;
2668 		}
2669 
2670 		/* Need to wait 1ms to guarantee SBs are cleared */
2671 		OSAL_MSLEEP(1);
2672 
2673 		if (!p_dev->recov_in_prog) {
2674 			ecore_verify_reg_val(p_hwfn, p_ptt,
2675 					     QM_REG_USG_CNT_PF_TX, 0);
2676 			ecore_verify_reg_val(p_hwfn, p_ptt,
2677 					     QM_REG_USG_CNT_PF_OTHER, 0);
2678 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
2679 		}
2680 
2681 		/* Disable PF in HW blocks */
2682 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2683 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2684 
2685 		if (!p_dev->recov_in_prog) {
2686 			ecore_mcp_unload_done(p_hwfn, p_ptt);
2687 			if (rc != ECORE_SUCCESS) {
2688 				DP_NOTICE(p_hwfn, true,
2689 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2690 					  rc);
2691 				rc2 = ECORE_UNKNOWN_ERROR;
2692 			}
2693 		}
2694 	} /* hwfn loop */
2695 
2696 	if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
2697 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2698 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
2699 
2700 		 /* Clear the PF's internal FID_enable in the PXP.
2701 		  * In CMT this should only be done for first hw-function, and
2702 		  * only after all transactions have stopped for all active
2703 		  * hw-functions.
2704 		  */
2705 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
2706 						  false);
2707 		if (rc != ECORE_SUCCESS) {
2708 			DP_NOTICE(p_hwfn, true,
2709 				  "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
2710 				  rc);
2711 			rc2 = ECORE_UNKNOWN_ERROR;
2712 		}
2713 	}
2714 
2715 	return rc2;
2716 }
2717 
2718 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
2719 {
2720 	int j;
2721 
2722 	for_each_hwfn(p_dev, j) {
2723 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2724 		struct ecore_ptt *p_ptt;
2725 
2726 		if (IS_VF(p_dev)) {
2727 			ecore_vf_pf_int_cleanup(p_hwfn);
2728 			continue;
2729 		}
2730 		p_ptt = ecore_ptt_acquire(p_hwfn);
2731 		if (!p_ptt)
2732 			return ECORE_AGAIN;
2733 
2734 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2735 			   "Shutting down the fastpath\n");
2736 
2737 		ecore_wr(p_hwfn, p_ptt,
2738 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2739 
2740 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2741 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2742 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2743 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2744 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2745 
2746 		/* @@@TBD - clean transmission queues (5.b) */
2747 		/* @@@TBD - clean BTB (5.c) */
2748 
2749 		/* @@@TBD - verify DMAE requests are done (8) */
2750 
2751 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2752 		/* Need to wait 1ms to guarantee SBs are cleared */
2753 		OSAL_MSLEEP(1);
2754 		ecore_ptt_release(p_hwfn, p_ptt);
2755 	}
2756 
2757 	return ECORE_SUCCESS;
2758 }
2759 
2760 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
2761 {
2762 	struct ecore_ptt *p_ptt;
2763 
2764 	if (IS_VF(p_hwfn->p_dev))
2765 		return ECORE_SUCCESS;
2766 
2767 	p_ptt = ecore_ptt_acquire(p_hwfn);
2768 	if (!p_ptt)
2769 		return ECORE_AGAIN;
2770 
2771 	/* If roce info is allocated it means roce is initialized and should
2772 	 * be enabled in searcher.
2773 	 */
2774 	if (p_hwfn->p_rdma_info) {
2775 		if (p_hwfn->b_rdma_enabled_in_prs)
2776 			ecore_wr(p_hwfn, p_ptt,
2777 				 p_hwfn->rdma_prs_search_reg, 0x1);
2778 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
2779 	}
2780 
2781 	/* Re-open incoming traffic */
2782 	ecore_wr(p_hwfn, p_ptt,
2783 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2784 	ecore_ptt_release(p_hwfn, p_ptt);
2785 
2786 	return ECORE_SUCCESS;
2787 }
2788 
2789 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2790 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2791 {
2792 	ecore_ptt_pool_free(p_hwfn);
2793 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2794 }
2795 
2796 /* Setup bar access */
2797 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2798 {
2799 	/* clear indirect access */
2800 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
2801 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2802 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
2803 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2804 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
2805 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2806 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
2807 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2808 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
2809 	} else {
2810 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2811 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2812 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2813 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2814 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2815 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2816 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2817 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2818 	}
2819 
2820 	/* Clean previous pglue_b errors if such exist */
2821 	ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
2822 
2823 	/* enable internal target-read */
2824 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2825 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2826 }
2827 
2828 static void get_function_id(struct ecore_hwfn *p_hwfn)
2829 {
2830 	/* ME Register */
2831 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2832 						  PXP_PF_ME_OPAQUE_ADDR);
2833 
2834 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2835 
2836 	/* Bits 16-19 from the ME registers are the pf_num */
2837 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2838 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2839 				      PXP_CONCRETE_FID_PFID);
2840 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2841 				    PXP_CONCRETE_FID_PORT);
2842 
2843 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2844 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2845 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2846 }
2847 
2848 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2849 {
2850 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2851 	struct ecore_sb_cnt_info sb_cnt;
2852 	u32 non_l2_sbs = 0;
2853 
2854 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
2855 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
2856 
2857 	/* L2 Queues require each: 1 status block. 1 L2 queue */
2858 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
2859 		/* Start by allocating VF queues, then PF's */
2860 		feat_num[ECORE_VF_L2_QUE] =
2861 			OSAL_MIN_T(u32,
2862 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
2863 				   sb_cnt.iov_cnt);
2864 		feat_num[ECORE_PF_L2_QUE] =
2865 			OSAL_MIN_T(u32,
2866 				   sb_cnt.cnt - non_l2_sbs,
2867 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
2868 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
2869 	}
2870 
2871 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
2872 		feat_num[ECORE_FCOE_CQ] =
2873 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
2874 							     ECORE_CMDQS_CQS));
2875 
2876 	if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
2877 		feat_num[ECORE_ISCSI_CQ] =
2878 			OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
2879 							     ECORE_CMDQS_CQS));
2880 
2881 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2882 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
2883 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2884 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
2885 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
2886 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
2887 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
2888 		   (int)sb_cnt.cnt);
2889 }
2890 
2891 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2892 {
2893 	switch (res_id) {
2894 	case ECORE_L2_QUEUE:
2895 		return "L2_QUEUE";
2896 	case ECORE_VPORT:
2897 		return "VPORT";
2898 	case ECORE_RSS_ENG:
2899 		return "RSS_ENG";
2900 	case ECORE_PQ:
2901 		return "PQ";
2902 	case ECORE_RL:
2903 		return "RL";
2904 	case ECORE_MAC:
2905 		return "MAC";
2906 	case ECORE_VLAN:
2907 		return "VLAN";
2908 	case ECORE_RDMA_CNQ_RAM:
2909 		return "RDMA_CNQ_RAM";
2910 	case ECORE_ILT:
2911 		return "ILT";
2912 	case ECORE_LL2_QUEUE:
2913 		return "LL2_QUEUE";
2914 	case ECORE_CMDQS_CQS:
2915 		return "CMDQS_CQS";
2916 	case ECORE_RDMA_STATS_QUEUE:
2917 		return "RDMA_STATS_QUEUE";
2918 	case ECORE_BDQ:
2919 		return "BDQ";
2920 	case ECORE_SB:
2921 		return "SB";
2922 	default:
2923 		return "UNKNOWN_RESOURCE";
2924 	}
2925 }
2926 
2927 static enum _ecore_status_t
2928 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
2929 			      struct ecore_ptt *p_ptt,
2930 			      enum ecore_resources res_id,
2931 			      u32 resc_max_val,
2932 			      u32 *p_mcp_resp)
2933 {
2934 	enum _ecore_status_t rc;
2935 
2936 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
2937 					resc_max_val, p_mcp_resp);
2938 	if (rc != ECORE_SUCCESS) {
2939 		DP_NOTICE(p_hwfn, true,
2940 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2941 			  res_id, ecore_hw_get_resc_name(res_id));
2942 		return rc;
2943 	}
2944 
2945 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2946 		DP_INFO(p_hwfn,
2947 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2948 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
2949 
2950 	return ECORE_SUCCESS;
2951 }
2952 
2953 static enum _ecore_status_t
2954 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
2955 			    struct ecore_ptt *p_ptt)
2956 {
2957 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2958 	u32 resc_max_val, mcp_resp;
2959 	u8 res_id;
2960 	enum _ecore_status_t rc;
2961 
2962 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2963 		/* @DPDK */
2964 		switch (res_id) {
2965 		case ECORE_LL2_QUEUE:
2966 		case ECORE_RDMA_CNQ_RAM:
2967 		case ECORE_RDMA_STATS_QUEUE:
2968 		case ECORE_BDQ:
2969 			resc_max_val = 0;
2970 			break;
2971 		default:
2972 			continue;
2973 		}
2974 
2975 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
2976 						   resc_max_val, &mcp_resp);
2977 		if (rc != ECORE_SUCCESS)
2978 			return rc;
2979 
2980 		/* There's no point to continue to the next resource if the
2981 		 * command is not supported by the MFW.
2982 		 * We do continue if the command is supported but the resource
2983 		 * is unknown to the MFW. Such a resource will be later
2984 		 * configured with the default allocation values.
2985 		 */
2986 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2987 			return ECORE_NOTIMPL;
2988 	}
2989 
2990 	return ECORE_SUCCESS;
2991 }
2992 
2993 static
2994 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
2995 					    enum ecore_resources res_id,
2996 					    u32 *p_resc_num, u32 *p_resc_start)
2997 {
2998 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2999 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3000 
3001 	switch (res_id) {
3002 	case ECORE_L2_QUEUE:
3003 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
3004 				 MAX_NUM_L2_QUEUES_BB) / num_funcs;
3005 		break;
3006 	case ECORE_VPORT:
3007 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
3008 				 MAX_NUM_VPORTS_BB) / num_funcs;
3009 		break;
3010 	case ECORE_RSS_ENG:
3011 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
3012 				 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
3013 		break;
3014 	case ECORE_PQ:
3015 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
3016 				 MAX_QM_TX_QUEUES_BB) / num_funcs;
3017 		break;
3018 	case ECORE_RL:
3019 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
3020 		break;
3021 	case ECORE_MAC:
3022 	case ECORE_VLAN:
3023 		/* Each VFC resource can accommodate both a MAC and a VLAN */
3024 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
3025 		break;
3026 	case ECORE_ILT:
3027 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
3028 				 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
3029 		break;
3030 	case ECORE_LL2_QUEUE:
3031 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
3032 		break;
3033 	case ECORE_RDMA_CNQ_RAM:
3034 	case ECORE_CMDQS_CQS:
3035 		/* CNQ/CMDQS are the same resource */
3036 		/* @DPDK */
3037 		*p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
3038 		break;
3039 	case ECORE_RDMA_STATS_QUEUE:
3040 		/* @DPDK */
3041 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
3042 				 MAX_NUM_VPORTS_BB) / num_funcs;
3043 		break;
3044 	case ECORE_BDQ:
3045 		/* @DPDK */
3046 		*p_resc_num = 0;
3047 		break;
3048 	default:
3049 		break;
3050 	}
3051 
3052 
3053 	switch (res_id) {
3054 	case ECORE_BDQ:
3055 		if (!*p_resc_num)
3056 			*p_resc_start = 0;
3057 		break;
3058 	case ECORE_SB:
3059 		/* Since we want its value to reflect whether MFW supports
3060 		 * the new scheme, have a default of 0.
3061 		 */
3062 		*p_resc_num = 0;
3063 		break;
3064 	default:
3065 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3066 		break;
3067 	}
3068 
3069 	return ECORE_SUCCESS;
3070 }
3071 
3072 static enum _ecore_status_t
3073 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
3074 			 bool drv_resc_alloc)
3075 {
3076 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
3077 	u32 mcp_resp, *p_resc_num, *p_resc_start;
3078 	enum _ecore_status_t rc;
3079 
3080 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
3081 	p_resc_start = &RESC_START(p_hwfn, res_id);
3082 
3083 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3084 				    &dflt_resc_start);
3085 	if (rc != ECORE_SUCCESS) {
3086 		DP_ERR(p_hwfn,
3087 		       "Failed to get default amount for resource %d [%s]\n",
3088 			res_id, ecore_hw_get_resc_name(res_id));
3089 		return rc;
3090 	}
3091 
3092 #ifndef ASIC_ONLY
3093 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3094 		*p_resc_num = dflt_resc_num;
3095 		*p_resc_start = dflt_resc_start;
3096 		goto out;
3097 	}
3098 #endif
3099 
3100 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3101 				     &mcp_resp, p_resc_num, p_resc_start);
3102 	if (rc != ECORE_SUCCESS) {
3103 		DP_NOTICE(p_hwfn, true,
3104 			  "MFW response failure for an allocation request for"
3105 			  " resource %d [%s]\n",
3106 			  res_id, ecore_hw_get_resc_name(res_id));
3107 		return rc;
3108 	}
3109 
3110 	/* Default driver values are applied in the following cases:
3111 	 * - The resource allocation MB command is not supported by the MFW
3112 	 * - There is an internal error in the MFW while processing the request
3113 	 * - The resource ID is unknown to the MFW
3114 	 */
3115 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3116 		DP_INFO(p_hwfn,
3117 			"Failed to receive allocation info for resource %d [%s]."
3118 			" mcp_resp = 0x%x. Applying default values"
3119 			" [%d,%d].\n",
3120 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
3121 			dflt_resc_num, dflt_resc_start);
3122 
3123 		*p_resc_num = dflt_resc_num;
3124 		*p_resc_start = dflt_resc_start;
3125 		goto out;
3126 	}
3127 
3128 	if ((*p_resc_num != dflt_resc_num ||
3129 	     *p_resc_start != dflt_resc_start) &&
3130 	    res_id != ECORE_SB) {
3131 		DP_INFO(p_hwfn,
3132 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
3133 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
3134 			*p_resc_start, dflt_resc_num, dflt_resc_start,
3135 			drv_resc_alloc ? " - Applying default values" : "");
3136 		if (drv_resc_alloc) {
3137 			*p_resc_num = dflt_resc_num;
3138 			*p_resc_start = dflt_resc_start;
3139 		}
3140 	}
3141 out:
3142 	return ECORE_SUCCESS;
3143 }
3144 
3145 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
3146 						   bool drv_resc_alloc)
3147 {
3148 	enum _ecore_status_t rc;
3149 	u8 res_id;
3150 
3151 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
3152 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
3153 		if (rc != ECORE_SUCCESS)
3154 			return rc;
3155 	}
3156 
3157 	return ECORE_SUCCESS;
3158 }
3159 
3160 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
3161 					      struct ecore_ptt *p_ptt,
3162 					      bool drv_resc_alloc)
3163 {
3164 	struct ecore_resc_unlock_params resc_unlock_params;
3165 	struct ecore_resc_lock_params resc_lock_params;
3166 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
3167 	u8 res_id;
3168 	enum _ecore_status_t rc;
3169 #ifndef ASIC_ONLY
3170 	u32 *resc_start = p_hwfn->hw_info.resc_start;
3171 	u32 *resc_num = p_hwfn->hw_info.resc_num;
3172 	/* For AH, an equal share of the ILT lines between the maximal number of
3173 	 * PFs is not enough for RoCE. This would be solved by the future
3174 	 * resource allocation scheme, but isn't currently present for
3175 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
3176 	 * to work - the BB number of ILT lines divided by its max PFs number.
3177 	 */
3178 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
3179 #endif
3180 
3181 	/* Setting the max values of the soft resources and the following
3182 	 * resources allocation queries should be atomic. Since several PFs can
3183 	 * run in parallel - a resource lock is needed.
3184 	 * If either the resource lock or resource set value commands are not
3185 	 * supported - skip the max values setting, release the lock if
3186 	 * needed, and proceed to the queries. Other failures, including a
3187 	 * failure to acquire the lock, will cause this function to fail.
3188 	 * Old drivers that don't acquire the lock can run in parallel, and
3189 	 * their allocation values won't be affected by the updated max values.
3190 	 */
3191 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
3192 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
3193 
3194 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
3195 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3196 		return rc;
3197 	} else if (rc == ECORE_NOTIMPL) {
3198 		DP_INFO(p_hwfn,
3199 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3200 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
3201 		DP_NOTICE(p_hwfn, false,
3202 			  "Failed to acquire the resource lock for the resource allocation commands\n");
3203 		rc = ECORE_BUSY;
3204 		goto unlock_and_exit;
3205 	} else {
3206 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
3207 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
3208 			DP_NOTICE(p_hwfn, false,
3209 				  "Failed to set the max values of the soft resources\n");
3210 			goto unlock_and_exit;
3211 		} else if (rc == ECORE_NOTIMPL) {
3212 			DP_INFO(p_hwfn,
3213 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3214 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
3215 						   &resc_unlock_params);
3216 			if (rc != ECORE_SUCCESS)
3217 				DP_INFO(p_hwfn,
3218 					"Failed to release the resource lock for the resource allocation commands\n");
3219 		}
3220 	}
3221 
3222 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
3223 	if (rc != ECORE_SUCCESS)
3224 		goto unlock_and_exit;
3225 
3226 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3227 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
3228 					   &resc_unlock_params);
3229 		if (rc != ECORE_SUCCESS)
3230 			DP_INFO(p_hwfn,
3231 				"Failed to release the resource lock for the resource allocation commands\n");
3232 	}
3233 
3234 #ifndef ASIC_ONLY
3235 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
3236 		/* Reduced build contains less PQs */
3237 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
3238 			resc_num[ECORE_PQ] = 32;
3239 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
3240 			    p_hwfn->enabled_func_idx;
3241 		}
3242 
3243 		/* For AH emulation, since we have a possible maximal number of
3244 		 * 16 enabled PFs, in case there are not enough ILT lines -
3245 		 * allocate only first PF as RoCE and have all the other ETH
3246 		 * only with less ILT lines.
3247 		 */
3248 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
3249 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
3250 							 resc_num[ECORE_ILT],
3251 							 roce_min_ilt_lines);
3252 	}
3253 
3254 	/* Correct the common ILT calculation if PF0 has more */
3255 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
3256 	    p_hwfn->p_dev->b_is_emul_full &&
3257 	    p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
3258 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
3259 		    resc_num[ECORE_ILT];
3260 #endif
3261 
3262 	/* Sanity for ILT */
3263 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3264 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3265 		DP_NOTICE(p_hwfn, true,
3266 			  "Can't assign ILT pages [%08x,...,%08x]\n",
3267 			  RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
3268 								  ECORE_ILT) -
3269 			  1);
3270 		return ECORE_INVAL;
3271 	}
3272 
3273 	/* This will also learn the number of SBs from MFW */
3274 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
3275 		return ECORE_INVAL;
3276 
3277 	ecore_hw_set_feat(p_hwfn);
3278 
3279 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3280 		   "The numbers for each resource are:\n");
3281 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
3282 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
3283 			   ecore_hw_get_resc_name(res_id),
3284 			   RESC_NUM(p_hwfn, res_id),
3285 			   RESC_START(p_hwfn, res_id));
3286 
3287 	return ECORE_SUCCESS;
3288 
3289 unlock_and_exit:
3290 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3291 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
3292 				      &resc_unlock_params);
3293 	return rc;
3294 }
3295 
3296 static enum _ecore_status_t
3297 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
3298 		      struct ecore_ptt *p_ptt,
3299 		      struct ecore_hw_prepare_params *p_params)
3300 {
3301 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
3302 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3303 	struct ecore_mcp_link_capabilities *p_caps;
3304 	struct ecore_mcp_link_params *link;
3305 	enum _ecore_status_t rc;
3306 
3307 	/* Read global nvm_cfg address */
3308 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
3309 
3310 	/* Verify MCP has initialized it */
3311 	if (!nvm_cfg_addr) {
3312 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
3313 		if (p_params->b_relaxed_probe)
3314 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
3315 		return ECORE_INVAL;
3316 	}
3317 
3318 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
3319 
3320 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
3321 
3322 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3323 		   OFFSETOF(struct nvm_cfg1, glob) +
3324 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
3325 
3326 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
3327 
3328 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
3329 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
3330 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
3331 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
3332 		break;
3333 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
3334 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
3335 		break;
3336 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
3337 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
3338 		break;
3339 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
3340 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
3341 		break;
3342 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
3343 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
3344 		break;
3345 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
3346 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
3347 		break;
3348 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
3349 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
3350 		break;
3351 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
3352 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
3353 		break;
3354 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
3355 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
3356 		break;
3357 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
3358 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
3359 		break;
3360 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
3361 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
3362 		break;
3363 	default:
3364 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
3365 			  core_cfg);
3366 		break;
3367 	}
3368 
3369 	/* Read DCBX configuration */
3370 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3371 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3372 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
3373 			     port_cfg_addr +
3374 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
3375 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
3376 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
3377 	switch (dcbx_mode) {
3378 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
3379 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
3380 		break;
3381 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
3382 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
3383 		break;
3384 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
3385 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
3386 		break;
3387 	default:
3388 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
3389 	}
3390 
3391 	/* Read default link configuration */
3392 	link = &p_hwfn->mcp_info->link_input;
3393 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3394 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3395 	    OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3396 	link_temp = ecore_rd(p_hwfn, p_ptt,
3397 			     port_cfg_addr +
3398 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
3399 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
3400 	link->speed.advertised_speeds = link_temp;
3401 	p_caps->speed_capabilities = link->speed.advertised_speeds;
3402 
3403 	link_temp = ecore_rd(p_hwfn, p_ptt,
3404 				 port_cfg_addr +
3405 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
3406 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
3407 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
3408 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
3409 		link->speed.autoneg = true;
3410 		break;
3411 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
3412 		link->speed.forced_speed = 1000;
3413 		break;
3414 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
3415 		link->speed.forced_speed = 10000;
3416 		break;
3417 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
3418 		link->speed.forced_speed = 25000;
3419 		break;
3420 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
3421 		link->speed.forced_speed = 40000;
3422 		break;
3423 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
3424 		link->speed.forced_speed = 50000;
3425 		break;
3426 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
3427 		link->speed.forced_speed = 100000;
3428 		break;
3429 	default:
3430 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
3431 	}
3432 
3433 	p_caps->default_speed = link->speed.forced_speed;
3434 	p_caps->default_speed_autoneg = link->speed.autoneg;
3435 
3436 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
3437 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
3438 	link->pause.autoneg = !!(link_temp &
3439 				  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
3440 	link->pause.forced_rx = !!(link_temp &
3441 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
3442 	link->pause.forced_tx = !!(link_temp &
3443 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
3444 	link->loopback_mode = 0;
3445 
3446 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
3447 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
3448 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
3449 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
3450 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
3451 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
3452 		link->eee.enable = true;
3453 		switch (link_temp) {
3454 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
3455 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
3456 			link->eee.enable = false;
3457 			break;
3458 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
3459 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
3460 			break;
3461 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
3462 			p_caps->eee_lpi_timer =
3463 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
3464 			break;
3465 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
3466 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
3467 			break;
3468 		}
3469 
3470 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
3471 		link->eee.tx_lpi_enable = link->eee.enable;
3472 		link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
3473 	} else {
3474 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
3475 	}
3476 
3477 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3478 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n EEE: %02x [%08x usec]",
3479 		   link->speed.forced_speed, link->speed.advertised_speeds,
3480 		   link->speed.autoneg, link->pause.autoneg,
3481 		   p_caps->default_eee, p_caps->eee_lpi_timer);
3482 
3483 	/* Read Multi-function information from shmem */
3484 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3485 		   OFFSETOF(struct nvm_cfg1, glob) +
3486 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
3487 
3488 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
3489 
3490 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3491 	    NVM_CFG1_GLOB_MF_MODE_OFFSET;
3492 
3493 	switch (mf_mode) {
3494 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3495 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
3496 		break;
3497 	case NVM_CFG1_GLOB_MF_MODE_UFP:
3498 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
3499 					 1 << ECORE_MF_UFP_SPECIFIC;
3500 		break;
3501 
3502 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3503 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
3504 					 1 << ECORE_MF_LLH_PROTO_CLSS |
3505 					 1 << ECORE_MF_LL2_NON_UNICAST |
3506 					 1 << ECORE_MF_INTER_PF_SWITCH |
3507 					 1 << ECORE_MF_DISABLE_ARFS;
3508 		break;
3509 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3510 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
3511 					 1 << ECORE_MF_LLH_PROTO_CLSS |
3512 					 1 << ECORE_MF_LL2_NON_UNICAST;
3513 		if (ECORE_IS_BB(p_hwfn->p_dev))
3514 			p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
3515 		break;
3516 	}
3517 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
3518 		p_hwfn->p_dev->mf_bits);
3519 
3520 	if (ECORE_IS_CMT(p_hwfn->p_dev))
3521 		p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
3522 
3523 	/* It's funny since we have another switch, but it's easier
3524 	 * to throw this away in linux this way. Long term, it might be
3525 	 * better to have have getters for needed ECORE_MF_* fields,
3526 	 * convert client code and eliminate this.
3527 	 */
3528 	switch (mf_mode) {
3529 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3530 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
3531 		break;
3532 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3533 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
3534 		break;
3535 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3536 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
3537 		break;
3538 	case NVM_CFG1_GLOB_MF_MODE_UFP:
3539 		p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
3540 		break;
3541 	}
3542 
3543 	/* Read Multi-function information from shmem */
3544 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3545 		   OFFSETOF(struct nvm_cfg1, glob) +
3546 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
3547 
3548 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
3549 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3550 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
3551 				&p_hwfn->hw_info.device_capabilities);
3552 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3553 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
3554 				&p_hwfn->hw_info.device_capabilities);
3555 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3556 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
3557 				&p_hwfn->hw_info.device_capabilities);
3558 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3559 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
3560 				&p_hwfn->hw_info.device_capabilities);
3561 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
3562 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
3563 				&p_hwfn->hw_info.device_capabilities);
3564 
3565 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3566 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3567 		rc = ECORE_SUCCESS;
3568 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3569 	}
3570 
3571 	return rc;
3572 }
3573 
3574 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
3575 				struct ecore_ptt *p_ptt)
3576 {
3577 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3578 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3579 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3580 
3581 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3582 
3583 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3584 	 * in the other bits are selected.
3585 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
3586 	 * '0' only for enabled functions (function 0 always exists and
3587 	 * enabled).
3588 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
3589 	 * the number of functions for both hwfns is learnt from the same bits.
3590 	 */
3591 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
3592 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
3593 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
3594 	} else { /* E5 */
3595 		reg_function_hide = 0;
3596 	}
3597 
3598 	if (reg_function_hide & 0x1) {
3599 		if (ECORE_IS_BB(p_dev)) {
3600 			if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
3601 				num_funcs = 0;
3602 				eng_mask = 0xaaaa;
3603 			} else {
3604 				num_funcs = 1;
3605 				eng_mask = 0x5554;
3606 			}
3607 		} else {
3608 			num_funcs = 1;
3609 			eng_mask = 0xfffe;
3610 		}
3611 
3612 		/* Get the number of the enabled functions on the engine */
3613 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3614 		while (tmp) {
3615 			if (tmp & 0x1)
3616 				num_funcs++;
3617 			tmp >>= 0x1;
3618 		}
3619 
3620 		/* Get the PF index within the enabled functions */
3621 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3622 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
3623 		while (tmp) {
3624 			if (tmp & 0x1)
3625 				enabled_func_idx--;
3626 			tmp >>= 0x1;
3627 		}
3628 	}
3629 
3630 	p_hwfn->num_funcs_on_engine = num_funcs;
3631 	p_hwfn->enabled_func_idx = enabled_func_idx;
3632 
3633 #ifndef ASIC_ONLY
3634 	if (CHIP_REV_IS_FPGA(p_dev)) {
3635 		DP_NOTICE(p_hwfn, false,
3636 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
3637 		p_hwfn->num_funcs_on_engine = 4;
3638 	}
3639 #endif
3640 
3641 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3642 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3643 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
3644 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3645 }
3646 
3647 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
3648 				      struct ecore_ptt *p_ptt)
3649 {
3650 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3651 	u32 port_mode;
3652 
3653 #ifndef ASIC_ONLY
3654 	/* Read the port mode */
3655 	if (CHIP_REV_IS_FPGA(p_dev))
3656 		port_mode = 4;
3657 	else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
3658 		/* In CMT on emulation, assume 1 port */
3659 		port_mode = 1;
3660 	else
3661 #endif
3662 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
3663 
3664 	if (port_mode < 3) {
3665 		p_dev->num_ports_in_engine = 1;
3666 	} else if (port_mode <= 5) {
3667 		p_dev->num_ports_in_engine = 2;
3668 	} else {
3669 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
3670 			  p_dev->num_ports_in_engine);
3671 
3672 		/* Default num_ports_in_engine to something */
3673 		p_dev->num_ports_in_engine = 1;
3674 	}
3675 }
3676 
3677 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
3678 					 struct ecore_ptt *p_ptt)
3679 {
3680 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3681 	u32 port;
3682 	int i;
3683 
3684 	p_dev->num_ports_in_engine = 0;
3685 
3686 #ifndef ASIC_ONLY
3687 	if (CHIP_REV_IS_EMUL(p_dev)) {
3688 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
3689 		switch ((port & 0xf000) >> 12) {
3690 		case 1:
3691 			p_dev->num_ports_in_engine = 1;
3692 			break;
3693 		case 3:
3694 			p_dev->num_ports_in_engine = 2;
3695 			break;
3696 		case 0xf:
3697 			p_dev->num_ports_in_engine = 4;
3698 			break;
3699 		default:
3700 			DP_NOTICE(p_hwfn, false,
3701 				  "Unknown port mode in ECO_RESERVED %08x\n",
3702 				  port);
3703 		}
3704 	} else
3705 #endif
3706 		for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
3707 			port = ecore_rd(p_hwfn, p_ptt,
3708 					CNIG_REG_NIG_PORT0_CONF_K2_E5 +
3709 					(i * 4));
3710 			if (port & 1)
3711 				p_dev->num_ports_in_engine++;
3712 		}
3713 
3714 	if (!p_dev->num_ports_in_engine) {
3715 		DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
3716 
3717 		/* Default num_ports_in_engine to something */
3718 		p_dev->num_ports_in_engine = 1;
3719 	}
3720 }
3721 
3722 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
3723 				   struct ecore_ptt *p_ptt)
3724 {
3725 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3726 
3727 	/* Determine the number of ports per engine */
3728 	if (ECORE_IS_BB(p_dev))
3729 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
3730 	else
3731 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
3732 
3733 	/* Get the total number of ports of the device */
3734 	if (ECORE_IS_CMT(p_dev)) {
3735 		/* In CMT there is always only one port */
3736 		p_dev->num_ports = 1;
3737 #ifndef ASIC_ONLY
3738 	} else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
3739 		p_dev->num_ports = p_dev->num_ports_in_engine *
3740 				   ecore_device_num_engines(p_dev);
3741 #endif
3742 	} else {
3743 		u32 addr, global_offsize, global_addr;
3744 
3745 		addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
3746 					    PUBLIC_GLOBAL);
3747 		global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
3748 		global_addr = SECTION_ADDR(global_offsize, 0);
3749 		addr = global_addr + OFFSETOF(struct public_global, max_ports);
3750 		p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
3751 	}
3752 }
3753 
3754 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
3755 				   struct ecore_ptt *p_ptt)
3756 {
3757 	struct ecore_mcp_link_capabilities *p_caps;
3758 	u32 eee_status;
3759 
3760 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3761 	if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
3762 		return;
3763 
3764 	p_caps->eee_speed_caps = 0;
3765 	eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
3766 			      OFFSETOF(struct public_port, eee_status));
3767 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
3768 			EEE_SUPPORTED_SPEED_OFFSET;
3769 	if (eee_status & EEE_1G_SUPPORTED)
3770 		p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
3771 	if (eee_status & EEE_10G_ADV)
3772 		p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
3773 }
3774 
3775 static enum _ecore_status_t
3776 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3777 		  enum ecore_pci_personality personality,
3778 		  struct ecore_hw_prepare_params *p_params)
3779 {
3780 	bool drv_resc_alloc = p_params->drv_resc_alloc;
3781 	enum _ecore_status_t rc;
3782 
3783 	/* Since all information is common, only first hwfns should do this */
3784 	if (IS_LEAD_HWFN(p_hwfn)) {
3785 		rc = ecore_iov_hw_info(p_hwfn);
3786 		if (rc != ECORE_SUCCESS) {
3787 			if (p_params->b_relaxed_probe)
3788 				p_params->p_relaxed_res =
3789 						ECORE_HW_PREPARE_BAD_IOV;
3790 			else
3791 				return rc;
3792 		}
3793 	}
3794 
3795 	if (IS_LEAD_HWFN(p_hwfn))
3796 		ecore_hw_info_port_num(p_hwfn, p_ptt);
3797 
3798 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
3799 
3800 #ifndef ASIC_ONLY
3801 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
3802 #endif
3803 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
3804 	if (rc != ECORE_SUCCESS)
3805 		return rc;
3806 #ifndef ASIC_ONLY
3807 	}
3808 #endif
3809 
3810 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
3811 	if (rc != ECORE_SUCCESS) {
3812 		if (p_params->b_relaxed_probe)
3813 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
3814 		else
3815 			return rc;
3816 	}
3817 
3818 #ifndef ASIC_ONLY
3819 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
3820 #endif
3821 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
3822 			    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
3823 #ifndef ASIC_ONLY
3824 	} else {
3825 		static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
3826 
3827 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
3828 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
3829 	}
3830 #endif
3831 
3832 	if (ecore_mcp_is_init(p_hwfn)) {
3833 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
3834 			p_hwfn->hw_info.ovlan =
3835 			    p_hwfn->mcp_info->func_info.ovlan;
3836 
3837 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
3838 
3839 		ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
3840 
3841 		ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
3842 	}
3843 
3844 	if (personality != ECORE_PCI_DEFAULT) {
3845 		p_hwfn->hw_info.personality = personality;
3846 	} else if (ecore_mcp_is_init(p_hwfn)) {
3847 		enum ecore_pci_personality protocol;
3848 
3849 		protocol = p_hwfn->mcp_info->func_info.protocol;
3850 		p_hwfn->hw_info.personality = protocol;
3851 	}
3852 
3853 #ifndef ASIC_ONLY
3854 	/* To overcome ILT lack for emulation, until at least until we'll have
3855 	 * a definite answer from system about it, allow only PF0 to be RoCE.
3856 	 */
3857 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
3858 		if (!p_hwfn->rel_pf_id)
3859 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
3860 		else
3861 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
3862 	}
3863 #endif
3864 
3865 	/* although in BB some constellations may support more than 4 tcs,
3866 	 * that can result in performance penalty in some cases. 4
3867 	 * represents a good tradeoff between performance and flexibility.
3868 	 */
3869 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
3870 
3871 	/* start out with a single active tc. This can be increased either
3872 	 * by dcbx negotiation or by upper layer driver
3873 	 */
3874 	p_hwfn->hw_info.num_active_tc = 1;
3875 
3876 	ecore_get_num_funcs(p_hwfn, p_ptt);
3877 
3878 	if (ecore_mcp_is_init(p_hwfn))
3879 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
3880 
3881 	/* In case of forcing the driver's default resource allocation, calling
3882 	 * ecore_hw_get_resc() should come after initializing the personality
3883 	 * and after getting the number of functions, since the calculation of
3884 	 * the resources/features depends on them.
3885 	 * This order is not harmful if not forcing.
3886 	 */
3887 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
3888 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3889 		rc = ECORE_SUCCESS;
3890 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3891 	}
3892 
3893 	return rc;
3894 }
3895 
3896 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
3897 					       struct ecore_ptt *p_ptt)
3898 {
3899 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3900 	u16 device_id_mask;
3901 	u32 tmp;
3902 
3903 	/* Read Vendor Id / Device Id */
3904 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
3905 				  &p_dev->vendor_id);
3906 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
3907 				  &p_dev->device_id);
3908 
3909 	/* Determine type */
3910 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
3911 	switch (device_id_mask) {
3912 	case ECORE_DEV_ID_MASK_BB:
3913 		p_dev->type = ECORE_DEV_TYPE_BB;
3914 		break;
3915 	case ECORE_DEV_ID_MASK_AH:
3916 		p_dev->type = ECORE_DEV_TYPE_AH;
3917 		break;
3918 	default:
3919 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
3920 			  p_dev->device_id);
3921 		return ECORE_ABORTED;
3922 	}
3923 
3924 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
3925 	p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
3926 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
3927 	p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
3928 
3929 	/* Learn number of HW-functions */
3930 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
3931 
3932 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
3933 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
3934 		p_dev->num_hwfns = 2;
3935 	} else {
3936 		p_dev->num_hwfns = 1;
3937 	}
3938 
3939 #ifndef ASIC_ONLY
3940 	if (CHIP_REV_IS_EMUL(p_dev)) {
3941 		/* For some reason we have problems with this register
3942 		 * in B0 emulation; Simply assume no CMT
3943 		 */
3944 		DP_NOTICE(p_dev->hwfns, false,
3945 			  "device on emul - assume no CMT\n");
3946 		p_dev->num_hwfns = 1;
3947 	}
3948 #endif
3949 
3950 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
3951 	p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
3952 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
3953 	p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
3954 
3955 	DP_INFO(p_dev->hwfns,
3956 		"Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
3957 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
3958 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
3959 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
3960 		p_dev->chip_metal);
3961 
3962 	if (ECORE_IS_BB_A0(p_dev)) {
3963 		DP_NOTICE(p_dev->hwfns, false,
3964 			  "The chip type/rev (BB A0) is not supported!\n");
3965 		return ECORE_ABORTED;
3966 	}
3967 #ifndef ASIC_ONLY
3968 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
3969 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
3970 
3971 	if (CHIP_REV_IS_EMUL(p_dev)) {
3972 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
3973 		if (tmp & (1 << 29)) {
3974 			DP_NOTICE(p_hwfn, false,
3975 				  "Emulation: Running on a FULL build\n");
3976 			p_dev->b_is_emul_full = true;
3977 		} else {
3978 			DP_NOTICE(p_hwfn, false,
3979 				  "Emulation: Running on a REDUCED build\n");
3980 		}
3981 	}
3982 #endif
3983 
3984 	return ECORE_SUCCESS;
3985 }
3986 
3987 #ifndef LINUX_REMOVE
3988 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
3989 {
3990 	int j;
3991 
3992 	if (IS_VF(p_dev))
3993 		return;
3994 
3995 	for_each_hwfn(p_dev, j) {
3996 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3997 
3998 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
3999 			   "Mark hw/fw uninitialized\n");
4000 
4001 		p_hwfn->hw_init_done = false;
4002 
4003 		ecore_ptt_invalidate(p_hwfn);
4004 	}
4005 }
4006 #endif
4007 
4008 static enum _ecore_status_t
4009 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
4010 			void OSAL_IOMEM * p_regview,
4011 			void OSAL_IOMEM * p_doorbells,
4012 			struct ecore_hw_prepare_params *p_params)
4013 {
4014 	struct ecore_mdump_retain_data mdump_retain;
4015 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4016 	struct ecore_mdump_info mdump_info;
4017 	enum _ecore_status_t rc = ECORE_SUCCESS;
4018 
4019 	/* Split PCI bars evenly between hwfns */
4020 	p_hwfn->regview = p_regview;
4021 	p_hwfn->doorbells = p_doorbells;
4022 
4023 	if (IS_VF(p_dev))
4024 		return ecore_vf_hw_prepare(p_hwfn);
4025 
4026 	/* Validate that chip access is feasible */
4027 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
4028 		DP_ERR(p_hwfn,
4029 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
4030 		if (p_params->b_relaxed_probe)
4031 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
4032 		return ECORE_INVAL;
4033 	}
4034 
4035 	get_function_id(p_hwfn);
4036 
4037 	/* Allocate PTT pool */
4038 	rc = ecore_ptt_pool_alloc(p_hwfn);
4039 	if (rc) {
4040 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
4041 		if (p_params->b_relaxed_probe)
4042 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4043 		goto err0;
4044 	}
4045 
4046 	/* Allocate the main PTT */
4047 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
4048 
4049 	/* First hwfn learns basic information, e.g., number of hwfns */
4050 	if (!p_hwfn->my_id) {
4051 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
4052 		if (rc != ECORE_SUCCESS) {
4053 			if (p_params->b_relaxed_probe)
4054 				p_params->p_relaxed_res =
4055 					ECORE_HW_PREPARE_FAILED_DEV;
4056 			goto err1;
4057 		}
4058 	}
4059 
4060 	ecore_hw_hwfn_prepare(p_hwfn);
4061 
4062 	/* Initialize MCP structure */
4063 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
4064 	if (rc) {
4065 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
4066 		if (p_params->b_relaxed_probe)
4067 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4068 		goto err1;
4069 	}
4070 
4071 	/* Read the device configuration information from the HW and SHMEM */
4072 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
4073 			       p_params->personality, p_params);
4074 	if (rc) {
4075 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
4076 		goto err2;
4077 	}
4078 
4079 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
4080 	 * called, since among others it sets the ports number in an engine.
4081 	 */
4082 	if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
4083 	    !p_dev->recov_in_prog) {
4084 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4085 		if (rc != ECORE_SUCCESS)
4086 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
4087 	}
4088 
4089 	/* Check if mdump logs/data are present and update the epoch value */
4090 	if (IS_LEAD_HWFN(p_hwfn)) {
4091 #ifndef ASIC_ONLY
4092 		if (!CHIP_REV_IS_EMUL(p_dev)) {
4093 #endif
4094 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
4095 					      &mdump_info);
4096 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
4097 			DP_NOTICE(p_hwfn, false,
4098 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
4099 
4100 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
4101 						&mdump_retain);
4102 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
4103 			DP_NOTICE(p_hwfn, false,
4104 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
4105 				  mdump_retain.epoch, mdump_retain.pf,
4106 				  mdump_retain.status);
4107 
4108 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
4109 					   p_params->epoch);
4110 #ifndef ASIC_ONLY
4111 		}
4112 #endif
4113 	}
4114 
4115 	/* Allocate the init RT array and initialize the init-ops engine */
4116 	rc = ecore_init_alloc(p_hwfn);
4117 	if (rc) {
4118 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
4119 		if (p_params->b_relaxed_probe)
4120 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
4121 		goto err2;
4122 	}
4123 #ifndef ASIC_ONLY
4124 	if (CHIP_REV_IS_FPGA(p_dev)) {
4125 		DP_NOTICE(p_hwfn, false,
4126 			  "FPGA: workaround; Prevent DMAE parities\n");
4127 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
4128 			 7);
4129 
4130 		DP_NOTICE(p_hwfn, false,
4131 			  "FPGA: workaround: Set VF bar0 size\n");
4132 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4133 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
4134 	}
4135 #endif
4136 
4137 	return rc;
4138 err2:
4139 	if (IS_LEAD_HWFN(p_hwfn))
4140 		ecore_iov_free_hw_info(p_dev);
4141 	ecore_mcp_free(p_hwfn);
4142 err1:
4143 	ecore_hw_hwfn_free(p_hwfn);
4144 err0:
4145 	return rc;
4146 }
4147 
4148 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
4149 				      struct ecore_hw_prepare_params *p_params)
4150 {
4151 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4152 	enum _ecore_status_t rc;
4153 
4154 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
4155 	p_dev->allow_mdump = p_params->allow_mdump;
4156 
4157 	if (p_params->b_relaxed_probe)
4158 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
4159 
4160 	/* Store the precompiled init data ptrs */
4161 	if (IS_PF(p_dev))
4162 		ecore_init_iro_array(p_dev);
4163 
4164 	/* Initialize the first hwfn - will learn number of hwfns */
4165 	rc = ecore_hw_prepare_single(p_hwfn,
4166 				     p_dev->regview,
4167 				     p_dev->doorbells, p_params);
4168 	if (rc != ECORE_SUCCESS)
4169 		return rc;
4170 
4171 	p_params->personality = p_hwfn->hw_info.personality;
4172 
4173 	/* initilalize 2nd hwfn if necessary */
4174 	if (ECORE_IS_CMT(p_dev)) {
4175 		void OSAL_IOMEM *p_regview, *p_doorbell;
4176 		u8 OSAL_IOMEM *addr;
4177 
4178 		/* adjust bar offset for second engine */
4179 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
4180 					ecore_hw_bar_size(p_hwfn,
4181 							  p_hwfn->p_main_ptt,
4182 							  BAR_ID_0) / 2;
4183 		p_regview = (void OSAL_IOMEM *)addr;
4184 
4185 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
4186 					ecore_hw_bar_size(p_hwfn,
4187 							  p_hwfn->p_main_ptt,
4188 							  BAR_ID_1) / 2;
4189 		p_doorbell = (void OSAL_IOMEM *)addr;
4190 
4191 		/* prepare second hw function */
4192 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
4193 					     p_doorbell, p_params);
4194 
4195 		/* in case of error, need to free the previously
4196 		 * initiliazed hwfn 0.
4197 		 */
4198 		if (rc != ECORE_SUCCESS) {
4199 			if (p_params->b_relaxed_probe)
4200 				p_params->p_relaxed_res =
4201 						ECORE_HW_PREPARE_FAILED_ENG2;
4202 
4203 			if (IS_PF(p_dev)) {
4204 				ecore_init_free(p_hwfn);
4205 				ecore_mcp_free(p_hwfn);
4206 				ecore_hw_hwfn_free(p_hwfn);
4207 			} else {
4208 				DP_NOTICE(p_dev, true,
4209 					  "What do we need to free when VF hwfn1 init fails\n");
4210 			}
4211 			return rc;
4212 		}
4213 	}
4214 
4215 	return rc;
4216 }
4217 
4218 void ecore_hw_remove(struct ecore_dev *p_dev)
4219 {
4220 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4221 	int i;
4222 
4223 	if (IS_PF(p_dev))
4224 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4225 					ECORE_OV_DRIVER_STATE_NOT_LOADED);
4226 
4227 	for_each_hwfn(p_dev, i) {
4228 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4229 
4230 		if (IS_VF(p_dev)) {
4231 			ecore_vf_pf_release(p_hwfn);
4232 			continue;
4233 		}
4234 
4235 		ecore_init_free(p_hwfn);
4236 		ecore_hw_hwfn_free(p_hwfn);
4237 		ecore_mcp_free(p_hwfn);
4238 
4239 #ifdef CONFIG_ECORE_LOCK_ALLOC
4240 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
4241 #endif
4242 	}
4243 
4244 	ecore_iov_free_hw_info(p_dev);
4245 }
4246 
4247 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
4248 				      struct ecore_chain *p_chain)
4249 {
4250 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
4251 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4252 	struct ecore_chain_next *p_next;
4253 	u32 size, i;
4254 
4255 	if (!p_virt)
4256 		return;
4257 
4258 	size = p_chain->elem_size * p_chain->usable_per_page;
4259 
4260 	for (i = 0; i < p_chain->page_cnt; i++) {
4261 		if (!p_virt)
4262 			break;
4263 
4264 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
4265 		p_virt_next = p_next->next_virt;
4266 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4267 
4268 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
4269 				       ECORE_CHAIN_PAGE_SIZE);
4270 
4271 		p_virt = p_virt_next;
4272 		p_phys = p_phys_next;
4273 	}
4274 }
4275 
4276 static void ecore_chain_free_single(struct ecore_dev *p_dev,
4277 				    struct ecore_chain *p_chain)
4278 {
4279 	if (!p_chain->p_virt_addr)
4280 		return;
4281 
4282 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
4283 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
4284 }
4285 
4286 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
4287 				 struct ecore_chain *p_chain)
4288 {
4289 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
4290 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
4291 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4292 
4293 	if (!pp_virt_addr_tbl)
4294 		return;
4295 
4296 	if (!p_pbl_virt)
4297 		goto out;
4298 
4299 	for (i = 0; i < page_cnt; i++) {
4300 		if (!pp_virt_addr_tbl[i])
4301 			break;
4302 
4303 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
4304 				       *(dma_addr_t *)p_pbl_virt,
4305 				       ECORE_CHAIN_PAGE_SIZE);
4306 
4307 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4308 	}
4309 
4310 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4311 
4312 	if (!p_chain->b_external_pbl)
4313 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
4314 				       p_chain->pbl_sp.p_phys_table, pbl_size);
4315 out:
4316 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
4317 }
4318 
4319 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4320 {
4321 	switch (p_chain->mode) {
4322 	case ECORE_CHAIN_MODE_NEXT_PTR:
4323 		ecore_chain_free_next_ptr(p_dev, p_chain);
4324 		break;
4325 	case ECORE_CHAIN_MODE_SINGLE:
4326 		ecore_chain_free_single(p_dev, p_chain);
4327 		break;
4328 	case ECORE_CHAIN_MODE_PBL:
4329 		ecore_chain_free_pbl(p_dev, p_chain);
4330 		break;
4331 	}
4332 }
4333 
4334 static enum _ecore_status_t
4335 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
4336 			       enum ecore_chain_cnt_type cnt_type,
4337 			       osal_size_t elem_size, u32 page_cnt)
4338 {
4339 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4340 
4341 	/* The actual chain size can be larger than the maximal possible value
4342 	 * after rounding up the requested elements number to pages, and after
4343 	 * taking into acount the unusuable elements (next-ptr elements).
4344 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4345 	 * size/capacity fields are of a u32 type.
4346 	 */
4347 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
4348 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
4349 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
4350 	     chain_size > ECORE_U32_MAX)) {
4351 		DP_NOTICE(p_dev, true,
4352 			  "The actual chain size (0x%lx) is larger than the maximal possible value\n",
4353 			  (unsigned long)chain_size);
4354 		return ECORE_INVAL;
4355 	}
4356 
4357 	return ECORE_SUCCESS;
4358 }
4359 
4360 static enum _ecore_status_t
4361 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4362 {
4363 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
4364 	dma_addr_t p_phys = 0;
4365 	u32 i;
4366 
4367 	for (i = 0; i < p_chain->page_cnt; i++) {
4368 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4369 						 ECORE_CHAIN_PAGE_SIZE);
4370 		if (!p_virt) {
4371 			DP_NOTICE(p_dev, true,
4372 				  "Failed to allocate chain memory\n");
4373 			return ECORE_NOMEM;
4374 		}
4375 
4376 		if (i == 0) {
4377 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4378 			ecore_chain_reset(p_chain);
4379 		} else {
4380 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4381 						       p_virt, p_phys);
4382 		}
4383 
4384 		p_virt_prev = p_virt;
4385 	}
4386 	/* Last page's next element should point to the beginning of the
4387 	 * chain.
4388 	 */
4389 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4390 				       p_chain->p_virt_addr,
4391 				       p_chain->p_phys_addr);
4392 
4393 	return ECORE_SUCCESS;
4394 }
4395 
4396 static enum _ecore_status_t
4397 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
4398 {
4399 	dma_addr_t p_phys = 0;
4400 	void *p_virt = OSAL_NULL;
4401 
4402 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
4403 	if (!p_virt) {
4404 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
4405 		return ECORE_NOMEM;
4406 	}
4407 
4408 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
4409 	ecore_chain_reset(p_chain);
4410 
4411 	return ECORE_SUCCESS;
4412 }
4413 
4414 static enum _ecore_status_t
4415 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
4416 		      struct ecore_chain *p_chain,
4417 		      struct ecore_chain_ext_pbl *ext_pbl)
4418 {
4419 	u32 page_cnt = p_chain->page_cnt, size, i;
4420 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
4421 	void **pp_virt_addr_tbl = OSAL_NULL;
4422 	u8 *p_pbl_virt = OSAL_NULL;
4423 	void *p_virt = OSAL_NULL;
4424 
4425 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
4426 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
4427 	if (!pp_virt_addr_tbl) {
4428 		DP_NOTICE(p_dev, true,
4429 			  "Failed to allocate memory for the chain virtual addresses table\n");
4430 		return ECORE_NOMEM;
4431 	}
4432 
4433 	/* The allocation of the PBL table is done with its full size, since it
4434 	 * is expected to be successive.
4435 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
4436 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
4437 	 * should be saved to allow its freeing during the error flow.
4438 	 */
4439 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
4440 
4441 	if (ext_pbl == OSAL_NULL) {
4442 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
4443 	} else {
4444 		p_pbl_virt = ext_pbl->p_pbl_virt;
4445 		p_pbl_phys = ext_pbl->p_pbl_phys;
4446 		p_chain->b_external_pbl = true;
4447 	}
4448 
4449 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
4450 				 pp_virt_addr_tbl);
4451 	if (!p_pbl_virt) {
4452 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
4453 		return ECORE_NOMEM;
4454 	}
4455 
4456 	for (i = 0; i < page_cnt; i++) {
4457 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
4458 						 ECORE_CHAIN_PAGE_SIZE);
4459 		if (!p_virt) {
4460 			DP_NOTICE(p_dev, true,
4461 				  "Failed to allocate chain memory\n");
4462 			return ECORE_NOMEM;
4463 		}
4464 
4465 		if (i == 0) {
4466 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
4467 			ecore_chain_reset(p_chain);
4468 		}
4469 
4470 		/* Fill the PBL table with the physical address of the page */
4471 		*(dma_addr_t *)p_pbl_virt = p_phys;
4472 		/* Keep the virtual address of the page */
4473 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
4474 
4475 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
4476 	}
4477 
4478 	return ECORE_SUCCESS;
4479 }
4480 
4481 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
4482 				       enum ecore_chain_use_mode intended_use,
4483 				       enum ecore_chain_mode mode,
4484 				       enum ecore_chain_cnt_type cnt_type,
4485 				       u32 num_elems, osal_size_t elem_size,
4486 				       struct ecore_chain *p_chain,
4487 				       struct ecore_chain_ext_pbl *ext_pbl)
4488 {
4489 	u32 page_cnt;
4490 	enum _ecore_status_t rc = ECORE_SUCCESS;
4491 
4492 	if (mode == ECORE_CHAIN_MODE_SINGLE)
4493 		page_cnt = 1;
4494 	else
4495 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4496 
4497 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
4498 					    page_cnt);
4499 	if (rc) {
4500 		DP_NOTICE(p_dev, true,
4501 			  "Cannot allocate a chain with the given arguments:\n"
4502 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4503 			  intended_use, mode, cnt_type, num_elems, elem_size);
4504 		return rc;
4505 	}
4506 
4507 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
4508 				mode, cnt_type, p_dev->dp_ctx);
4509 
4510 	switch (mode) {
4511 	case ECORE_CHAIN_MODE_NEXT_PTR:
4512 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
4513 		break;
4514 	case ECORE_CHAIN_MODE_SINGLE:
4515 		rc = ecore_chain_alloc_single(p_dev, p_chain);
4516 		break;
4517 	case ECORE_CHAIN_MODE_PBL:
4518 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
4519 		break;
4520 	}
4521 	if (rc)
4522 		goto nomem;
4523 
4524 	return ECORE_SUCCESS;
4525 
4526 nomem:
4527 	ecore_chain_free(p_dev, p_chain);
4528 	return rc;
4529 }
4530 
4531 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
4532 				       u16 src_id, u16 *dst_id)
4533 {
4534 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
4535 		u16 min, max;
4536 
4537 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
4538 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
4539 		DP_NOTICE(p_hwfn, true,
4540 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4541 			  src_id, min, max);
4542 
4543 		return ECORE_INVAL;
4544 	}
4545 
4546 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
4547 
4548 	return ECORE_SUCCESS;
4549 }
4550 
4551 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
4552 				    u8 src_id, u8 *dst_id)
4553 {
4554 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
4555 		u8 min, max;
4556 
4557 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
4558 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
4559 		DP_NOTICE(p_hwfn, true,
4560 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
4561 			  src_id, min, max);
4562 
4563 		return ECORE_INVAL;
4564 	}
4565 
4566 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
4567 
4568 	return ECORE_SUCCESS;
4569 }
4570 
4571 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
4572 				      u8 src_id, u8 *dst_id)
4573 {
4574 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
4575 		u8 min, max;
4576 
4577 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
4578 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
4579 		DP_NOTICE(p_hwfn, true,
4580 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4581 			  src_id, min, max);
4582 
4583 		return ECORE_INVAL;
4584 	}
4585 
4586 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
4587 
4588 	return ECORE_SUCCESS;
4589 }
4590 
4591 static enum _ecore_status_t
4592 ecore_llh_add_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4593 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4594 			       u32 *p_entry_num)
4595 {
4596 	u32 en;
4597 	int i;
4598 
4599 	/* Find a free entry and utilize it */
4600 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4601 		en = ecore_rd(p_hwfn, p_ptt,
4602 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4603 			      i * sizeof(u32));
4604 		if (en)
4605 			continue;
4606 		ecore_wr(p_hwfn, p_ptt,
4607 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4608 			 2 * i * sizeof(u32), low);
4609 		ecore_wr(p_hwfn, p_ptt,
4610 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4611 			 (2 * i + 1) * sizeof(u32), high);
4612 		ecore_wr(p_hwfn, p_ptt,
4613 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4614 			 i * sizeof(u32), 0);
4615 		ecore_wr(p_hwfn, p_ptt,
4616 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4617 			 i * sizeof(u32), 0);
4618 		ecore_wr(p_hwfn, p_ptt,
4619 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4620 			 i * sizeof(u32), 1);
4621 		break;
4622 	}
4623 
4624 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4625 		return ECORE_NORESOURCES;
4626 
4627 	*p_entry_num = i;
4628 
4629 	return ECORE_SUCCESS;
4630 }
4631 
4632 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
4633 					  struct ecore_ptt *p_ptt, u8 *p_filter)
4634 {
4635 	u32 high, low, entry_num;
4636 	enum _ecore_status_t rc = ECORE_SUCCESS;
4637 
4638 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS,
4639 			   &p_hwfn->p_dev->mf_bits))
4640 		return ECORE_SUCCESS;
4641 
4642 	high = p_filter[1] | (p_filter[0] << 8);
4643 	low = p_filter[5] | (p_filter[4] << 8) |
4644 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4645 
4646 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4647 		rc = ecore_llh_add_mac_filter_bb_ah(p_hwfn, p_ptt, high, low,
4648 						    &entry_num);
4649 	if (rc != ECORE_SUCCESS) {
4650 		DP_NOTICE(p_hwfn, false,
4651 			  "Failed to find an empty LLH filter to utilize\n");
4652 		return rc;
4653 	}
4654 
4655 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4656 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx is added at %d\n",
4657 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4658 		   p_filter[4], p_filter[5], entry_num);
4659 
4660 	return rc;
4661 }
4662 
4663 static enum _ecore_status_t
4664 ecore_llh_remove_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4665 				  struct ecore_ptt *p_ptt, u32 high, u32 low,
4666 				  u32 *p_entry_num)
4667 {
4668 	int i;
4669 
4670 	/* Find the entry and clean it */
4671 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4672 		if (ecore_rd(p_hwfn, p_ptt,
4673 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4674 			     2 * i * sizeof(u32)) != low)
4675 			continue;
4676 		if (ecore_rd(p_hwfn, p_ptt,
4677 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4678 			     (2 * i + 1) * sizeof(u32)) != high)
4679 			continue;
4680 
4681 		ecore_wr(p_hwfn, p_ptt,
4682 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4683 		ecore_wr(p_hwfn, p_ptt,
4684 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4685 			 2 * i * sizeof(u32), 0);
4686 		ecore_wr(p_hwfn, p_ptt,
4687 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4688 			 (2 * i + 1) * sizeof(u32), 0);
4689 		break;
4690 	}
4691 
4692 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4693 		return ECORE_INVAL;
4694 
4695 	*p_entry_num = i;
4696 
4697 	return ECORE_SUCCESS;
4698 }
4699 
4700 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
4701 			     struct ecore_ptt *p_ptt, u8 *p_filter)
4702 {
4703 	u32 high, low, entry_num;
4704 	enum _ecore_status_t rc = ECORE_SUCCESS;
4705 
4706 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS,
4707 			   &p_hwfn->p_dev->mf_bits))
4708 		return;
4709 
4710 	high = p_filter[1] | (p_filter[0] << 8);
4711 	low = p_filter[5] | (p_filter[4] << 8) |
4712 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4713 
4714 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4715 		rc = ecore_llh_remove_mac_filter_bb_ah(p_hwfn, p_ptt, high,
4716 						       low, &entry_num);
4717 	if (rc != ECORE_SUCCESS) {
4718 		DP_NOTICE(p_hwfn, false,
4719 			  "Tried to remove a non-configured filter\n");
4720 		return;
4721 	}
4722 
4723 
4724 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4725 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx was removed from %d\n",
4726 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4727 		   p_filter[4], p_filter[5], entry_num);
4728 }
4729 
4730 static enum _ecore_status_t
4731 ecore_llh_add_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4732 				    struct ecore_ptt *p_ptt,
4733 				    enum ecore_llh_port_filter_type_t type,
4734 				    u32 high, u32 low, u32 *p_entry_num)
4735 {
4736 	u32 en;
4737 	int i;
4738 
4739 	/* Find a free entry and utilize it */
4740 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4741 		en = ecore_rd(p_hwfn, p_ptt,
4742 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4743 			      i * sizeof(u32));
4744 		if (en)
4745 			continue;
4746 		ecore_wr(p_hwfn, p_ptt,
4747 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4748 			 2 * i * sizeof(u32), low);
4749 		ecore_wr(p_hwfn, p_ptt,
4750 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4751 			 (2 * i + 1) * sizeof(u32), high);
4752 		ecore_wr(p_hwfn, p_ptt,
4753 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4754 			 i * sizeof(u32), 1);
4755 		ecore_wr(p_hwfn, p_ptt,
4756 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4757 			 i * sizeof(u32), 1 << type);
4758 		ecore_wr(p_hwfn, p_ptt,
4759 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 1);
4760 		break;
4761 	}
4762 
4763 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4764 		return ECORE_NORESOURCES;
4765 
4766 	*p_entry_num = i;
4767 
4768 	return ECORE_SUCCESS;
4769 }
4770 
4771 enum _ecore_status_t
4772 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
4773 			      struct ecore_ptt *p_ptt,
4774 			      u16 source_port_or_eth_type,
4775 			      u16 dest_port,
4776 			      enum ecore_llh_port_filter_type_t type)
4777 {
4778 	u32 high, low, entry_num;
4779 	enum _ecore_status_t rc = ECORE_SUCCESS;
4780 
4781 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS,
4782 			   &p_hwfn->p_dev->mf_bits))
4783 		return rc;
4784 
4785 	high = 0;
4786 	low = 0;
4787 
4788 	switch (type) {
4789 	case ECORE_LLH_FILTER_ETHERTYPE:
4790 		high = source_port_or_eth_type;
4791 		break;
4792 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4793 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4794 		low = source_port_or_eth_type << 16;
4795 		break;
4796 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4797 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4798 		low = dest_port;
4799 		break;
4800 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4801 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4802 		low = (source_port_or_eth_type << 16) | dest_port;
4803 		break;
4804 	default:
4805 		DP_NOTICE(p_hwfn, true,
4806 			  "Non valid LLH protocol filter type %d\n", type);
4807 		return ECORE_INVAL;
4808 	}
4809 
4810 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4811 		rc = ecore_llh_add_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4812 							 high, low, &entry_num);
4813 	if (rc != ECORE_SUCCESS) {
4814 		DP_NOTICE(p_hwfn, false,
4815 			  "Failed to find an empty LLH filter to utilize\n");
4816 		return rc;
4817 	}
4818 	switch (type) {
4819 	case ECORE_LLH_FILTER_ETHERTYPE:
4820 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4821 			   "ETH type %x is added at %d\n",
4822 			   source_port_or_eth_type, entry_num);
4823 		break;
4824 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4825 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4826 			   "TCP src port %x is added at %d\n",
4827 			   source_port_or_eth_type, entry_num);
4828 		break;
4829 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4830 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4831 			   "UDP src port %x is added at %d\n",
4832 			   source_port_or_eth_type, entry_num);
4833 		break;
4834 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4835 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4836 			   "TCP dst port %x is added at %d\n", dest_port,
4837 			   entry_num);
4838 		break;
4839 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4840 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4841 			   "UDP dst port %x is added at %d\n", dest_port,
4842 			   entry_num);
4843 		break;
4844 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4845 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4846 			   "TCP src/dst ports %x/%x are added at %d\n",
4847 			   source_port_or_eth_type, dest_port, entry_num);
4848 		break;
4849 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4850 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4851 			   "UDP src/dst ports %x/%x are added at %d\n",
4852 			   source_port_or_eth_type, dest_port, entry_num);
4853 		break;
4854 	}
4855 
4856 	return rc;
4857 }
4858 
4859 static enum _ecore_status_t
4860 ecore_llh_remove_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4861 				       struct ecore_ptt *p_ptt,
4862 				       enum ecore_llh_port_filter_type_t type,
4863 				       u32 high, u32 low, u32 *p_entry_num)
4864 {
4865 	int i;
4866 
4867 	/* Find the entry and clean it */
4868 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4869 		if (!ecore_rd(p_hwfn, p_ptt,
4870 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4871 			      i * sizeof(u32)))
4872 			continue;
4873 		if (!ecore_rd(p_hwfn, p_ptt,
4874 			      NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4875 			      i * sizeof(u32)))
4876 			continue;
4877 		if (!(ecore_rd(p_hwfn, p_ptt,
4878 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4879 			       i * sizeof(u32)) & (1 << type)))
4880 			continue;
4881 		if (ecore_rd(p_hwfn, p_ptt,
4882 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4883 			     2 * i * sizeof(u32)) != low)
4884 			continue;
4885 		if (ecore_rd(p_hwfn, p_ptt,
4886 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4887 			     (2 * i + 1) * sizeof(u32)) != high)
4888 			continue;
4889 
4890 		ecore_wr(p_hwfn, p_ptt,
4891 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4892 		ecore_wr(p_hwfn, p_ptt,
4893 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4894 			 i * sizeof(u32), 0);
4895 		ecore_wr(p_hwfn, p_ptt,
4896 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4897 			 i * sizeof(u32), 0);
4898 		ecore_wr(p_hwfn, p_ptt,
4899 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4900 			 2 * i * sizeof(u32), 0);
4901 		ecore_wr(p_hwfn, p_ptt,
4902 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4903 			 (2 * i + 1) * sizeof(u32), 0);
4904 		break;
4905 	}
4906 
4907 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4908 		return ECORE_INVAL;
4909 
4910 	*p_entry_num = i;
4911 
4912 	return ECORE_SUCCESS;
4913 }
4914 
4915 void
4916 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
4917 				 struct ecore_ptt *p_ptt,
4918 				 u16 source_port_or_eth_type,
4919 				 u16 dest_port,
4920 				 enum ecore_llh_port_filter_type_t type)
4921 {
4922 	u32 high, low, entry_num;
4923 	enum _ecore_status_t rc = ECORE_SUCCESS;
4924 
4925 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS,
4926 			   &p_hwfn->p_dev->mf_bits))
4927 		return;
4928 
4929 	high = 0;
4930 	low = 0;
4931 
4932 	switch (type) {
4933 	case ECORE_LLH_FILTER_ETHERTYPE:
4934 		high = source_port_or_eth_type;
4935 		break;
4936 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4937 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4938 		low = source_port_or_eth_type << 16;
4939 		break;
4940 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4941 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4942 		low = dest_port;
4943 		break;
4944 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4945 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4946 		low = (source_port_or_eth_type << 16) | dest_port;
4947 		break;
4948 	default:
4949 		DP_NOTICE(p_hwfn, true,
4950 			  "Non valid LLH protocol filter type %d\n", type);
4951 		return;
4952 	}
4953 
4954 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4955 		rc = ecore_llh_remove_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4956 							    high, low,
4957 							    &entry_num);
4958 	if (rc != ECORE_SUCCESS) {
4959 		DP_NOTICE(p_hwfn, false,
4960 			  "Tried to remove a non-configured filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x]\n",
4961 			  type, source_port_or_eth_type, dest_port);
4962 		return;
4963 	}
4964 
4965 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4966 		   "Protocol filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x] was removed from %d\n",
4967 		   type, source_port_or_eth_type, dest_port, entry_num);
4968 }
4969 
4970 static void ecore_llh_clear_all_filters_bb_ah(struct ecore_hwfn *p_hwfn,
4971 					      struct ecore_ptt *p_ptt)
4972 {
4973 	int i;
4974 
4975 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4976 		return;
4977 
4978 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4979 		ecore_wr(p_hwfn, p_ptt,
4980 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2  +
4981 			 i * sizeof(u32), 0);
4982 		ecore_wr(p_hwfn, p_ptt,
4983 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4984 			 2 * i * sizeof(u32), 0);
4985 		ecore_wr(p_hwfn, p_ptt,
4986 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4987 			 (2 * i + 1) * sizeof(u32), 0);
4988 	}
4989 }
4990 
4991 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
4992 			     struct ecore_ptt *p_ptt)
4993 {
4994 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS,
4995 			   &p_hwfn->p_dev->mf_bits) &&
4996 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS,
4997 			   &p_hwfn->p_dev->mf_bits))
4998 		return;
4999 
5000 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
5001 		ecore_llh_clear_all_filters_bb_ah(p_hwfn, p_ptt);
5002 }
5003 
5004 enum _ecore_status_t
5005 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
5006 				  struct ecore_ptt *p_ptt)
5007 {
5008 	if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
5009 		ecore_wr(p_hwfn, p_ptt,
5010 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
5011 			 1 << p_hwfn->abs_pf_id / 2);
5012 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
5013 		return ECORE_SUCCESS;
5014 	}
5015 
5016 	DP_NOTICE(p_hwfn, false,
5017 		  "This function can't be set as default\n");
5018 	return ECORE_INVAL;
5019 }
5020 
5021 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
5022 					       struct ecore_ptt *p_ptt,
5023 					       u32 hw_addr, void *p_eth_qzone,
5024 					       osal_size_t eth_qzone_size,
5025 					       u8 timeset)
5026 {
5027 	struct coalescing_timeset *p_coal_timeset;
5028 
5029 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
5030 		DP_NOTICE(p_hwfn, true,
5031 			  "Coalescing configuration not enabled\n");
5032 		return ECORE_INVAL;
5033 	}
5034 
5035 	p_coal_timeset = p_eth_qzone;
5036 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
5037 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
5038 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
5039 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
5040 
5041 	return ECORE_SUCCESS;
5042 }
5043 
5044 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
5045 					      u16 rx_coal, u16 tx_coal,
5046 					      void *p_handle)
5047 {
5048 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
5049 	enum _ecore_status_t rc = ECORE_SUCCESS;
5050 	struct ecore_ptt *p_ptt;
5051 
5052 	/* TODO - Configuring a single queue's coalescing but
5053 	 * claiming all queues are abiding same configuration
5054 	 * for PF and VF both.
5055 	 */
5056 
5057 	if (IS_VF(p_hwfn->p_dev))
5058 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
5059 						tx_coal, p_cid);
5060 
5061 	p_ptt = ecore_ptt_acquire(p_hwfn);
5062 	if (!p_ptt)
5063 		return ECORE_AGAIN;
5064 
5065 	if (rx_coal) {
5066 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5067 		if (rc)
5068 			goto out;
5069 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
5070 	}
5071 
5072 	if (tx_coal) {
5073 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5074 		if (rc)
5075 			goto out;
5076 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
5077 	}
5078 out:
5079 	ecore_ptt_release(p_hwfn, p_ptt);
5080 
5081 	return rc;
5082 }
5083 
5084 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
5085 					    struct ecore_ptt *p_ptt,
5086 					    u16 coalesce,
5087 					    struct ecore_queue_cid *p_cid)
5088 {
5089 	struct ustorm_eth_queue_zone eth_qzone;
5090 	u8 timeset, timer_res;
5091 	u32 address;
5092 	enum _ecore_status_t rc;
5093 
5094 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5095 	if (coalesce <= 0x7F) {
5096 		timer_res = 0;
5097 	} else if (coalesce <= 0xFF) {
5098 		timer_res = 1;
5099 	} else if (coalesce <= 0x1FF) {
5100 		timer_res = 2;
5101 	} else {
5102 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5103 		return ECORE_INVAL;
5104 	}
5105 	timeset = (u8)(coalesce >> timer_res);
5106 
5107 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5108 				     p_cid->sb_igu_id, false);
5109 	if (rc != ECORE_SUCCESS)
5110 		goto out;
5111 
5112 	address = BAR0_MAP_REG_USDM_RAM +
5113 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5114 
5115 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5116 				sizeof(struct ustorm_eth_queue_zone), timeset);
5117 	if (rc != ECORE_SUCCESS)
5118 		goto out;
5119 
5120 out:
5121 	return rc;
5122 }
5123 
5124 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
5125 					    struct ecore_ptt *p_ptt,
5126 					    u16 coalesce,
5127 					    struct ecore_queue_cid *p_cid)
5128 {
5129 	struct xstorm_eth_queue_zone eth_qzone;
5130 	u8 timeset, timer_res;
5131 	u32 address;
5132 	enum _ecore_status_t rc;
5133 
5134 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5135 	if (coalesce <= 0x7F) {
5136 		timer_res = 0;
5137 	} else if (coalesce <= 0xFF) {
5138 		timer_res = 1;
5139 	} else if (coalesce <= 0x1FF) {
5140 		timer_res = 2;
5141 	} else {
5142 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5143 		return ECORE_INVAL;
5144 	}
5145 
5146 	timeset = (u8)(coalesce >> timer_res);
5147 
5148 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5149 				     p_cid->sb_igu_id, true);
5150 	if (rc != ECORE_SUCCESS)
5151 		goto out;
5152 
5153 	address = BAR0_MAP_REG_XSDM_RAM +
5154 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5155 
5156 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5157 				sizeof(struct xstorm_eth_queue_zone), timeset);
5158 out:
5159 	return rc;
5160 }
5161 
5162 /* Calculate final WFQ values for all vports and configure it.
5163  * After this configuration each vport must have
5164  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
5165  */
5166 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5167 					       struct ecore_ptt *p_ptt,
5168 					       u32 min_pf_rate)
5169 {
5170 	struct init_qm_vport_params *vport_params;
5171 	int i;
5172 
5173 	vport_params = p_hwfn->qm_info.qm_vport_params;
5174 
5175 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5176 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5177 
5178 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
5179 		    min_pf_rate;
5180 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5181 				     vport_params[i].first_tx_pq_id,
5182 				     vport_params[i].vport_wfq);
5183 	}
5184 }
5185 
5186 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
5187 {
5188 	int i;
5189 
5190 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5191 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
5192 }
5193 
5194 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
5195 					     struct ecore_ptt *p_ptt)
5196 {
5197 	struct init_qm_vport_params *vport_params;
5198 	int i;
5199 
5200 	vport_params = p_hwfn->qm_info.qm_vport_params;
5201 
5202 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5203 		ecore_init_wfq_default_param(p_hwfn);
5204 		ecore_init_vport_wfq(p_hwfn, p_ptt,
5205 				     vport_params[i].first_tx_pq_id,
5206 				     vport_params[i].vport_wfq);
5207 	}
5208 }
5209 
5210 /* This function performs several validations for WFQ
5211  * configuration and required min rate for a given vport
5212  * 1. req_rate must be greater than one percent of min_pf_rate.
5213  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5214  *    rates to get less than one percent of min_pf_rate.
5215  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5216  */
5217 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
5218 						 u16 vport_id, u32 req_rate,
5219 						 u32 min_pf_rate)
5220 {
5221 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5222 	int non_requested_count = 0, req_count = 0, i, num_vports;
5223 
5224 	num_vports = p_hwfn->qm_info.num_vports;
5225 
5226 /* Accounting for the vports which are configured for WFQ explicitly */
5227 
5228 	for (i = 0; i < num_vports; i++) {
5229 		u32 tmp_speed;
5230 
5231 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
5232 			req_count++;
5233 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5234 			total_req_min_rate += tmp_speed;
5235 		}
5236 	}
5237 
5238 	/* Include current vport data as well */
5239 	req_count++;
5240 	total_req_min_rate += req_rate;
5241 	non_requested_count = num_vports - req_count;
5242 
5243 	/* validate possible error cases */
5244 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
5245 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5246 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5247 			   vport_id, req_rate, min_pf_rate);
5248 		return ECORE_INVAL;
5249 	}
5250 
5251 	/* TBD - for number of vports greater than 100 */
5252 	if (num_vports > ECORE_WFQ_UNIT) {
5253 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5254 			   "Number of vports is greater than %d\n",
5255 			   ECORE_WFQ_UNIT);
5256 		return ECORE_INVAL;
5257 	}
5258 
5259 	if (total_req_min_rate > min_pf_rate) {
5260 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5261 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5262 			   total_req_min_rate, min_pf_rate);
5263 		return ECORE_INVAL;
5264 	}
5265 
5266 	/* Data left for non requested vports */
5267 	total_left_rate = min_pf_rate - total_req_min_rate;
5268 	left_rate_per_vp = total_left_rate / non_requested_count;
5269 
5270 	/* validate if non requested get < 1% of min bw */
5271 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
5272 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5273 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5274 			   left_rate_per_vp, min_pf_rate);
5275 		return ECORE_INVAL;
5276 	}
5277 
5278 	/* now req_rate for given vport passes all scenarios.
5279 	 * assign final wfq rates to all vports.
5280 	 */
5281 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5282 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5283 
5284 	for (i = 0; i < num_vports; i++) {
5285 		if (p_hwfn->qm_info.wfq_data[i].configured)
5286 			continue;
5287 
5288 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5289 	}
5290 
5291 	return ECORE_SUCCESS;
5292 }
5293 
5294 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
5295 				       struct ecore_ptt *p_ptt,
5296 				       u16 vp_id, u32 rate)
5297 {
5298 	struct ecore_mcp_link_state *p_link;
5299 	int rc = ECORE_SUCCESS;
5300 
5301 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
5302 
5303 	if (!p_link->min_pf_rate) {
5304 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5305 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5306 		return rc;
5307 	}
5308 
5309 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5310 
5311 	if (rc == ECORE_SUCCESS)
5312 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5313 						   p_link->min_pf_rate);
5314 	else
5315 		DP_NOTICE(p_hwfn, false,
5316 			  "Validation failed while configuring min rate\n");
5317 
5318 	return rc;
5319 }
5320 
5321 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
5322 						   struct ecore_ptt *p_ptt,
5323 						   u32 min_pf_rate)
5324 {
5325 	bool use_wfq = false;
5326 	int rc = ECORE_SUCCESS;
5327 	u16 i;
5328 
5329 	/* Validate all pre configured vports for wfq */
5330 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5331 		u32 rate;
5332 
5333 		if (!p_hwfn->qm_info.wfq_data[i].configured)
5334 			continue;
5335 
5336 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5337 		use_wfq = true;
5338 
5339 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5340 		if (rc != ECORE_SUCCESS) {
5341 			DP_NOTICE(p_hwfn, false,
5342 				  "WFQ validation failed while configuring min rate\n");
5343 			break;
5344 		}
5345 	}
5346 
5347 	if (rc == ECORE_SUCCESS && use_wfq)
5348 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5349 	else
5350 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
5351 
5352 	return rc;
5353 }
5354 
5355 /* Main API for ecore clients to configure vport min rate.
5356  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5357  * rate - Speed in Mbps needs to be assigned to a given vport.
5358  */
5359 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
5360 {
5361 	int i, rc = ECORE_INVAL;
5362 
5363 	/* TBD - for multiple hardware functions - that is 100 gig */
5364 	if (ECORE_IS_CMT(p_dev)) {
5365 		DP_NOTICE(p_dev, false,
5366 			  "WFQ configuration is not supported for this device\n");
5367 		return rc;
5368 	}
5369 
5370 	for_each_hwfn(p_dev, i) {
5371 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5372 		struct ecore_ptt *p_ptt;
5373 
5374 		p_ptt = ecore_ptt_acquire(p_hwfn);
5375 		if (!p_ptt)
5376 			return ECORE_TIMEOUT;
5377 
5378 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5379 
5380 		if (rc != ECORE_SUCCESS) {
5381 			ecore_ptt_release(p_hwfn, p_ptt);
5382 			return rc;
5383 		}
5384 
5385 		ecore_ptt_release(p_hwfn, p_ptt);
5386 	}
5387 
5388 	return rc;
5389 }
5390 
5391 /* API to configure WFQ from mcp link change */
5392 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
5393 					   struct ecore_ptt *p_ptt,
5394 					   u32 min_pf_rate)
5395 {
5396 	int i;
5397 
5398 	/* TBD - for multiple hardware functions - that is 100 gig */
5399 	if (ECORE_IS_CMT(p_dev)) {
5400 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
5401 			   "WFQ configuration is not supported for this device\n");
5402 		return;
5403 	}
5404 
5405 	for_each_hwfn(p_dev, i) {
5406 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5407 
5408 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5409 							min_pf_rate);
5410 	}
5411 }
5412 
5413 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
5414 				       struct ecore_ptt *p_ptt,
5415 				       struct ecore_mcp_link_state *p_link,
5416 				       u8 max_bw)
5417 {
5418 	int rc = ECORE_SUCCESS;
5419 
5420 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5421 
5422 	if (!p_link->line_speed && (max_bw != 100))
5423 		return rc;
5424 
5425 	p_link->speed = (p_link->line_speed * max_bw) / 100;
5426 	p_hwfn->qm_info.pf_rl = p_link->speed;
5427 
5428 	/* Since the limiter also affects Tx-switched traffic, we don't want it
5429 	 * to limit such traffic in case there's no actual limit.
5430 	 * In that case, set limit to imaginary high boundary.
5431 	 */
5432 	if (max_bw == 100)
5433 		p_hwfn->qm_info.pf_rl = 100000;
5434 
5435 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5436 			      p_hwfn->qm_info.pf_rl);
5437 
5438 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5439 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
5440 		   p_link->speed);
5441 
5442 	return rc;
5443 }
5444 
5445 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5446 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
5447 {
5448 	int i, rc = ECORE_INVAL;
5449 
5450 	if (max_bw < 1 || max_bw > 100) {
5451 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
5452 		return rc;
5453 	}
5454 
5455 	for_each_hwfn(p_dev, i) {
5456 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5457 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5458 		struct ecore_mcp_link_state *p_link;
5459 		struct ecore_ptt *p_ptt;
5460 
5461 		p_link = &p_lead->mcp_info->link_output;
5462 
5463 		p_ptt = ecore_ptt_acquire(p_hwfn);
5464 		if (!p_ptt)
5465 			return ECORE_TIMEOUT;
5466 
5467 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5468 							p_link, max_bw);
5469 
5470 		ecore_ptt_release(p_hwfn, p_ptt);
5471 
5472 		if (rc != ECORE_SUCCESS)
5473 			break;
5474 	}
5475 
5476 	return rc;
5477 }
5478 
5479 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
5480 				       struct ecore_ptt *p_ptt,
5481 				       struct ecore_mcp_link_state *p_link,
5482 				       u8 min_bw)
5483 {
5484 	int rc = ECORE_SUCCESS;
5485 
5486 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5487 	p_hwfn->qm_info.pf_wfq = min_bw;
5488 
5489 	if (!p_link->line_speed)
5490 		return rc;
5491 
5492 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5493 
5494 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5495 
5496 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5497 		   "Configured MIN bandwidth to be %d Mb/sec\n",
5498 		   p_link->min_pf_rate);
5499 
5500 	return rc;
5501 }
5502 
5503 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5504 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
5505 {
5506 	int i, rc = ECORE_INVAL;
5507 
5508 	if (min_bw < 1 || min_bw > 100) {
5509 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
5510 		return rc;
5511 	}
5512 
5513 	for_each_hwfn(p_dev, i) {
5514 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5515 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
5516 		struct ecore_mcp_link_state *p_link;
5517 		struct ecore_ptt *p_ptt;
5518 
5519 		p_link = &p_lead->mcp_info->link_output;
5520 
5521 		p_ptt = ecore_ptt_acquire(p_hwfn);
5522 		if (!p_ptt)
5523 			return ECORE_TIMEOUT;
5524 
5525 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5526 							p_link, min_bw);
5527 		if (rc != ECORE_SUCCESS) {
5528 			ecore_ptt_release(p_hwfn, p_ptt);
5529 			return rc;
5530 		}
5531 
5532 		if (p_link->min_pf_rate) {
5533 			u32 min_rate = p_link->min_pf_rate;
5534 
5535 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
5536 								     p_ptt,
5537 								     min_rate);
5538 		}
5539 
5540 		ecore_ptt_release(p_hwfn, p_ptt);
5541 	}
5542 
5543 	return rc;
5544 }
5545 
5546 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
5547 {
5548 	struct ecore_mcp_link_state *p_link;
5549 
5550 	p_link = &p_hwfn->mcp_info->link_output;
5551 
5552 	if (p_link->min_pf_rate)
5553 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
5554 
5555 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
5556 		    sizeof(*p_hwfn->qm_info.wfq_data) *
5557 		    p_hwfn->qm_info.num_vports);
5558 }
5559 
5560 int ecore_device_num_engines(struct ecore_dev *p_dev)
5561 {
5562 	return ECORE_IS_BB(p_dev) ? 2 : 1;
5563 }
5564 
5565 int ecore_device_num_ports(struct ecore_dev *p_dev)
5566 {
5567 	return p_dev->num_ports;
5568 }
5569 
5570 void ecore_set_fw_mac_addr(__le16 *fw_msb,
5571 			  __le16 *fw_mid,
5572 			  __le16 *fw_lsb,
5573 			  u8 *mac)
5574 {
5575 	((u8 *)fw_msb)[0] = mac[1];
5576 	((u8 *)fw_msb)[1] = mac[0];
5577 	((u8 *)fw_mid)[0] = mac[3];
5578 	((u8 *)fw_mid)[1] = mac[2];
5579 	((u8 *)fw_lsb)[0] = mac[5];
5580 	((u8 *)fw_lsb)[1] = mac[4];
5581 }
5582