xref: /dpdk/drivers/net/qede/base/ecore_dev.c (revision f69ed1044230c218c9afd8f1b47b6fe6aa1eeec5)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6 
7 #include "bcm_osal.h"
8 #include "reg_addr.h"
9 #include "ecore_gtt_reg_addr.h"
10 #include "ecore.h"
11 #include "ecore_chain.h"
12 #include "ecore_status.h"
13 #include "ecore_hw.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_init_ops.h"
16 #include "ecore_int.h"
17 #include "ecore_cxt.h"
18 #include "ecore_spq.h"
19 #include "ecore_init_fw_funcs.h"
20 #include "ecore_sp_commands.h"
21 #include "ecore_dev_api.h"
22 #include "ecore_sriov.h"
23 #include "ecore_vf.h"
24 #include "ecore_mcp.h"
25 #include "ecore_hw_defs.h"
26 #include "mcp_public.h"
27 #include "ecore_iro.h"
28 #include "nvm_cfg.h"
29 #include "ecore_dcbx.h"
30 #include "ecore_l2.h"
31 
32 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
33  * registers involved are not split and thus configuration is a race where
34  * some of the PFs configuration might be lost.
35  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
36  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
37  * there's more than a single compiled ecore component in system].
38  */
39 static osal_spinlock_t qm_lock;
40 static u32 qm_lock_ref_cnt;
41 
42 #ifndef ASIC_ONLY
43 static bool b_ptt_gtt_init;
44 #endif
45 
46 /******************** Doorbell Recovery *******************/
47 /* The doorbell recovery mechanism consists of a list of entries which represent
48  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
49  * entity needs to register with the mechanism and provide the parameters
50  * describing it's doorbell, including a location where last used doorbell data
51  * can be found. The doorbell execute function will traverse the list and
52  * doorbell all of the registered entries.
53  */
54 struct ecore_db_recovery_entry {
55 	osal_list_entry_t	list_entry;
56 	void OSAL_IOMEM		*db_addr;
57 	void			*db_data;
58 	enum ecore_db_rec_width	db_width;
59 	enum ecore_db_rec_space	db_space;
60 	u8			hwfn_idx;
61 };
62 
63 /* display a single doorbell recovery entry */
64 void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
65 				struct ecore_db_recovery_entry *db_entry,
66 				const char *action)
67 {
68 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
69 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
70 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
71 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
72 		   db_entry->hwfn_idx);
73 }
74 
75 /* doorbell address sanity (address within doorbell bar range) */
76 bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
77 			 void *db_data)
78 {
79 	/* make sure doorbell address  is within the doorbell bar */
80 	if (db_addr < p_dev->doorbells || (u8 *)db_addr >
81 			(u8 *)p_dev->doorbells + p_dev->db_size) {
82 		OSAL_WARN(true,
83 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
84 			  db_addr, p_dev->doorbells,
85 			  (u8 *)p_dev->doorbells + p_dev->db_size);
86 		return false;
87 	}
88 
89 	/* make sure doorbell data pointer is not null */
90 	if (!db_data) {
91 		OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
92 		return false;
93 	}
94 
95 	return true;
96 }
97 
98 /* find hwfn according to the doorbell address */
99 struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
100 					  void OSAL_IOMEM *db_addr)
101 {
102 	struct ecore_hwfn *p_hwfn;
103 
104 	/* In CMT doorbell bar is split down the middle between engine 0 and
105 	 * enigne 1
106 	 */
107 	if (ECORE_IS_CMT(p_dev))
108 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
109 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
110 	else
111 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
112 
113 	return p_hwfn;
114 }
115 
116 /* add a new entry to the doorbell recovery mechanism */
117 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
118 					   void OSAL_IOMEM *db_addr,
119 					   void *db_data,
120 					   enum ecore_db_rec_width db_width,
121 					   enum ecore_db_rec_space db_space)
122 {
123 	struct ecore_db_recovery_entry *db_entry;
124 	struct ecore_hwfn *p_hwfn;
125 
126 	/* shortcircuit VFs, for now */
127 	if (IS_VF(p_dev)) {
128 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
129 		return ECORE_SUCCESS;
130 	}
131 
132 	/* sanitize doorbell address */
133 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
134 		return ECORE_INVAL;
135 
136 	/* obtain hwfn from doorbell address */
137 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
138 
139 	/* create entry */
140 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
141 	if (!db_entry) {
142 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
143 		return ECORE_NOMEM;
144 	}
145 
146 	/* populate entry */
147 	db_entry->db_addr = db_addr;
148 	db_entry->db_data = db_data;
149 	db_entry->db_width = db_width;
150 	db_entry->db_space = db_space;
151 	db_entry->hwfn_idx = p_hwfn->my_id;
152 
153 	/* display */
154 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
155 
156 	/* protect the list */
157 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
158 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
159 			    &p_hwfn->db_recovery_info.list);
160 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
161 
162 	return ECORE_SUCCESS;
163 }
164 
165 /* remove an entry from the doorbell recovery mechanism */
166 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
167 					   void OSAL_IOMEM *db_addr,
168 					   void *db_data)
169 {
170 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
171 	enum _ecore_status_t rc = ECORE_INVAL;
172 	struct ecore_hwfn *p_hwfn;
173 
174 	/* shortcircuit VFs, for now */
175 	if (IS_VF(p_dev)) {
176 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
177 		return ECORE_SUCCESS;
178 	}
179 
180 	/* sanitize doorbell address */
181 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
182 		return ECORE_INVAL;
183 
184 	/* obtain hwfn from doorbell address */
185 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
186 
187 	/* protect the list */
188 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
189 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
190 				 &p_hwfn->db_recovery_info.list,
191 				 list_entry,
192 				 struct ecore_db_recovery_entry) {
193 		/* search according to db_data addr since db_addr is not unique
194 		 * (roce)
195 		 */
196 		if (db_entry->db_data == db_data) {
197 			ecore_db_recovery_dp_entry(p_hwfn, db_entry,
198 						   "Deleting");
199 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
200 					       &p_hwfn->db_recovery_info.list);
201 			rc = ECORE_SUCCESS;
202 			break;
203 		}
204 	}
205 
206 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
207 
208 	if (rc == ECORE_INVAL)
209 		/*OSAL_WARN(true,*/
210 		DP_NOTICE(p_hwfn, false,
211 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
212 			  db_data, db_addr);
213 	else
214 		OSAL_FREE(p_dev, db_entry);
215 
216 	return rc;
217 }
218 
219 /* initialize the doorbell recovery mechanism */
220 enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
221 {
222 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
223 
224 	/* make sure db_size was set in p_dev */
225 	if (!p_hwfn->p_dev->db_size) {
226 		DP_ERR(p_hwfn->p_dev, "db_size not set\n");
227 		return ECORE_INVAL;
228 	}
229 
230 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
231 #ifdef CONFIG_ECORE_LOCK_ALLOC
232 	if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
233 		return ECORE_NOMEM;
234 #endif
235 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
236 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
237 
238 	return ECORE_SUCCESS;
239 }
240 
241 /* destroy the doorbell recovery mechanism */
242 void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
243 {
244 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
245 
246 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
247 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
248 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
249 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
250 			db_entry = OSAL_LIST_FIRST_ENTRY(
251 						&p_hwfn->db_recovery_info.list,
252 						struct ecore_db_recovery_entry,
253 						list_entry);
254 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
255 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
256 					       &p_hwfn->db_recovery_info.list);
257 			OSAL_FREE(p_hwfn->p_dev, db_entry);
258 		}
259 	}
260 #ifdef CONFIG_ECORE_LOCK_ALLOC
261 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
262 #endif
263 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
264 }
265 
266 /* print the content of the doorbell recovery mechanism */
267 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
268 {
269 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
270 
271 	DP_NOTICE(p_hwfn, false,
272 		  "Dispalying doorbell recovery database. Counter was %d\n",
273 		  p_hwfn->db_recovery_info.db_recovery_counter);
274 
275 	/* protect the list */
276 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
277 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
278 				 &p_hwfn->db_recovery_info.list,
279 				 list_entry,
280 				 struct ecore_db_recovery_entry) {
281 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
282 	}
283 
284 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
285 }
286 
287 /* ring the doorbell of a single doorbell recovery entry */
288 void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
289 			    struct ecore_db_recovery_entry *db_entry,
290 			    enum ecore_db_rec_exec db_exec)
291 {
292 	/* Print according to width */
293 	if (db_entry->db_width == DB_REC_WIDTH_32B)
294 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %x\n",
295 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
296 			   db_entry->db_addr, *(u32 *)db_entry->db_data);
297 	else
298 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %lx\n",
299 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
300 			   db_entry->db_addr,
301 			   *(unsigned long *)(db_entry->db_data));
302 
303 	/* Sanity */
304 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
305 				 db_entry->db_data))
306 		return;
307 
308 	/* Flush the write combined buffer. Since there are multiple doorbelling
309 	 * entities using the same address, if we don't flush, a transaction
310 	 * could be lost.
311 	 */
312 	OSAL_WMB(p_hwfn->p_dev);
313 
314 	/* Ring the doorbell */
315 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
316 		if (db_entry->db_width == DB_REC_WIDTH_32B)
317 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr,
318 				      *(u32 *)(db_entry->db_data));
319 		else
320 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr,
321 					*(u64 *)(db_entry->db_data));
322 	}
323 
324 	/* Flush the write combined buffer. Next doorbell may come from a
325 	 * different entity to the same address...
326 	 */
327 	OSAL_WMB(p_hwfn->p_dev);
328 }
329 
330 /* traverse the doorbell recovery entry list and ring all the doorbells */
331 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
332 			       enum ecore_db_rec_exec db_exec)
333 {
334 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
335 
336 	if (db_exec != DB_REC_ONCE) {
337 		DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
338 			  p_hwfn->db_recovery_info.db_recovery_counter);
339 
340 		/* track amount of times recovery was executed */
341 		p_hwfn->db_recovery_info.db_recovery_counter++;
342 	}
343 
344 	/* protect the list */
345 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
346 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
347 				 &p_hwfn->db_recovery_info.list,
348 				 list_entry,
349 				 struct ecore_db_recovery_entry) {
350 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
351 		if (db_exec == DB_REC_ONCE)
352 			break;
353 	}
354 
355 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
356 }
357 /******************** Doorbell Recovery end ****************/
358 
359 /********************************** NIG LLH ***********************************/
360 
361 enum ecore_llh_filter_type {
362 	ECORE_LLH_FILTER_TYPE_MAC,
363 	ECORE_LLH_FILTER_TYPE_PROTOCOL,
364 };
365 
366 struct ecore_llh_mac_filter {
367 	u8 addr[ETH_ALEN];
368 };
369 
370 struct ecore_llh_protocol_filter {
371 	enum ecore_llh_prot_filter_type_t type;
372 	u16 source_port_or_eth_type;
373 	u16 dest_port;
374 };
375 
376 union ecore_llh_filter {
377 	struct ecore_llh_mac_filter mac;
378 	struct ecore_llh_protocol_filter protocol;
379 };
380 
381 struct ecore_llh_filter_info {
382 	bool b_enabled;
383 	u32 ref_cnt;
384 	enum ecore_llh_filter_type type;
385 	union ecore_llh_filter filter;
386 };
387 
388 struct ecore_llh_info {
389 	/* Number of LLH filters banks */
390 	u8 num_ppfid;
391 
392 #define MAX_NUM_PPFID	8
393 	u8 ppfid_array[MAX_NUM_PPFID];
394 
395 	/* Array of filters arrays:
396 	 * "num_ppfid" elements of filters banks, where each is an array of
397 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
398 	 */
399 	struct ecore_llh_filter_info **pp_filters;
400 };
401 
402 static void ecore_llh_free(struct ecore_dev *p_dev)
403 {
404 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
405 	u32 i;
406 
407 	if (p_llh_info != OSAL_NULL) {
408 		if (p_llh_info->pp_filters != OSAL_NULL) {
409 			for (i = 0; i < p_llh_info->num_ppfid; i++)
410 				OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
411 		}
412 
413 		OSAL_FREE(p_dev, p_llh_info->pp_filters);
414 	}
415 
416 	OSAL_FREE(p_dev, p_llh_info);
417 	p_dev->p_llh_info = OSAL_NULL;
418 }
419 
420 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
421 {
422 	struct ecore_llh_info *p_llh_info;
423 	u32 size;
424 	u8 i;
425 
426 	p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
427 	if (!p_llh_info)
428 		return ECORE_NOMEM;
429 	p_dev->p_llh_info = p_llh_info;
430 
431 	for (i = 0; i < MAX_NUM_PPFID; i++) {
432 		if (!(p_dev->ppfid_bitmap & (0x1 << i)))
433 			continue;
434 
435 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
436 		DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
437 			   p_llh_info->num_ppfid, i);
438 		p_llh_info->num_ppfid++;
439 	}
440 
441 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
442 	p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
443 	if (!p_llh_info->pp_filters)
444 		return ECORE_NOMEM;
445 
446 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
447 	       sizeof(**p_llh_info->pp_filters);
448 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
449 		p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
450 							size);
451 		if (!p_llh_info->pp_filters[i])
452 			return ECORE_NOMEM;
453 	}
454 
455 	return ECORE_SUCCESS;
456 }
457 
458 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
459 						    u8 ppfid, u8 filter_idx,
460 						    const char *action)
461 {
462 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
463 
464 	if (ppfid >= p_llh_info->num_ppfid) {
465 		DP_NOTICE(p_dev, false,
466 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
467 			  action, ppfid, p_llh_info->num_ppfid);
468 		return ECORE_INVAL;
469 	}
470 
471 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
472 		DP_NOTICE(p_dev, false,
473 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
474 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
475 		return ECORE_INVAL;
476 	}
477 
478 	return ECORE_SUCCESS;
479 }
480 
481 #define ECORE_LLH_INVALID_FILTER_IDX	0xff
482 
483 static enum _ecore_status_t
484 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
485 			       union ecore_llh_filter *p_filter,
486 			       u8 *p_filter_idx)
487 {
488 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
489 	struct ecore_llh_filter_info *p_filters;
490 	enum _ecore_status_t rc;
491 	u8 i;
492 
493 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
494 	if (rc != ECORE_SUCCESS)
495 		return rc;
496 
497 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
498 
499 	p_filters = p_llh_info->pp_filters[ppfid];
500 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
501 		if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
502 				 sizeof(*p_filter))) {
503 			*p_filter_idx = i;
504 			break;
505 		}
506 	}
507 
508 	return ECORE_SUCCESS;
509 }
510 
511 static enum _ecore_status_t
512 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
513 			      u8 *p_filter_idx)
514 {
515 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
516 	struct ecore_llh_filter_info *p_filters;
517 	enum _ecore_status_t rc;
518 	u8 i;
519 
520 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
521 	if (rc != ECORE_SUCCESS)
522 		return rc;
523 
524 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
525 
526 	p_filters = p_llh_info->pp_filters[ppfid];
527 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
528 		if (!p_filters[i].b_enabled) {
529 			*p_filter_idx = i;
530 			break;
531 		}
532 	}
533 
534 	return ECORE_SUCCESS;
535 }
536 
537 static enum _ecore_status_t
538 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
539 			      enum ecore_llh_filter_type type,
540 			      union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
541 {
542 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
543 	struct ecore_llh_filter_info *p_filters;
544 	enum _ecore_status_t rc;
545 
546 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
547 	if (rc != ECORE_SUCCESS)
548 		return rc;
549 
550 	p_filters = p_llh_info->pp_filters[ppfid];
551 	if (!p_filters[filter_idx].ref_cnt) {
552 		p_filters[filter_idx].b_enabled = true;
553 		p_filters[filter_idx].type = type;
554 		OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
555 			    sizeof(p_filters[filter_idx].filter));
556 	}
557 
558 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
559 
560 	return ECORE_SUCCESS;
561 }
562 
563 static enum _ecore_status_t
564 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
565 			    enum ecore_llh_filter_type type,
566 			    union ecore_llh_filter *p_filter,
567 			    u8 *p_filter_idx, u32 *p_ref_cnt)
568 {
569 	enum _ecore_status_t rc;
570 
571 	/* Check if the same filter already exist */
572 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
573 					    p_filter_idx);
574 	if (rc != ECORE_SUCCESS)
575 		return rc;
576 
577 	/* Find a new entry in case of a new filter */
578 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
579 		rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
580 		if (rc != ECORE_SUCCESS)
581 			return rc;
582 	}
583 
584 	/* No free entry was found */
585 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
586 		DP_NOTICE(p_dev, false,
587 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
588 			  ppfid);
589 		return ECORE_NORESOURCES;
590 	}
591 
592 	return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
593 					     p_filter, p_ref_cnt);
594 }
595 
596 static enum _ecore_status_t
597 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
598 				 u8 filter_idx, u32 *p_ref_cnt)
599 {
600 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
601 	struct ecore_llh_filter_info *p_filters;
602 	enum _ecore_status_t rc;
603 
604 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
605 	if (rc != ECORE_SUCCESS)
606 		return rc;
607 
608 	p_filters = p_llh_info->pp_filters[ppfid];
609 	if (!p_filters[filter_idx].ref_cnt) {
610 		DP_NOTICE(p_dev, false,
611 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
612 		return ECORE_INVAL;
613 	}
614 
615 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
616 	if (!p_filters[filter_idx].ref_cnt)
617 		OSAL_MEM_ZERO(&p_filters[filter_idx],
618 			      sizeof(p_filters[filter_idx]));
619 
620 	return ECORE_SUCCESS;
621 }
622 
623 static enum _ecore_status_t
624 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
625 			       union ecore_llh_filter *p_filter,
626 			       u8 *p_filter_idx, u32 *p_ref_cnt)
627 {
628 	enum _ecore_status_t rc;
629 
630 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
631 					    p_filter_idx);
632 	if (rc != ECORE_SUCCESS)
633 		return rc;
634 
635 	/* No matching filter was found */
636 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
637 		DP_NOTICE(p_dev, false,
638 			  "Failed to find a filter in the LLH shadow\n");
639 		return ECORE_INVAL;
640 	}
641 
642 	return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
643 						p_ref_cnt);
644 }
645 
646 static enum _ecore_status_t
647 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
648 {
649 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
650 	struct ecore_llh_filter_info *p_filters;
651 	enum _ecore_status_t rc;
652 
653 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
654 	if (rc != ECORE_SUCCESS)
655 		return rc;
656 
657 	p_filters = p_llh_info->pp_filters[ppfid];
658 	OSAL_MEM_ZERO(p_filters,
659 		      NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
660 
661 	return ECORE_SUCCESS;
662 }
663 
664 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
665 					    u8 rel_ppfid, u8 *p_abs_ppfid)
666 {
667 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
668 	u8 ppfids = p_llh_info->num_ppfid - 1;
669 
670 	if (rel_ppfid >= p_llh_info->num_ppfid) {
671 		DP_NOTICE(p_dev, false,
672 			  "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
673 			  rel_ppfid, ppfids);
674 		return ECORE_INVAL;
675 	}
676 
677 	*p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
678 
679 	return ECORE_SUCCESS;
680 }
681 
682 static enum _ecore_status_t
683 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
684 {
685 	struct ecore_dev *p_dev = p_hwfn->p_dev;
686 	enum ecore_eng eng;
687 	u8 ppfid;
688 	enum _ecore_status_t rc;
689 
690 	rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
691 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
692 		DP_NOTICE(p_hwfn, false,
693 			  "Failed to get the engine affinity configuration\n");
694 		return rc;
695 	}
696 
697 	/* RoCE PF is bound to a single engine */
698 	if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
699 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
700 		rc = ecore_llh_set_roce_affinity(p_dev, eng);
701 		if (rc != ECORE_SUCCESS) {
702 			DP_NOTICE(p_dev, false,
703 				  "Failed to set the RoCE engine affinity\n");
704 			return rc;
705 		}
706 
707 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
708 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
709 			   eng);
710 	}
711 
712 	/* Storage PF is bound to a single engine while L2 PF uses both */
713 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
714 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
715 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
716 	else /* L2_PERSONALITY */
717 		eng = ECORE_BOTH_ENG;
718 
719 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
720 		rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
721 		if (rc != ECORE_SUCCESS) {
722 			DP_NOTICE(p_dev, false,
723 				  "Failed to set the engine affinity of ppfid %d\n",
724 				  ppfid);
725 			return rc;
726 		}
727 	}
728 
729 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
730 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
731 		   eng);
732 
733 	return ECORE_SUCCESS;
734 }
735 
736 static enum _ecore_status_t
737 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
738 			   bool avoid_eng_affin)
739 {
740 	struct ecore_dev *p_dev = p_hwfn->p_dev;
741 	enum _ecore_status_t rc;
742 
743 	/* Backwards compatible mode:
744 	 * - RoCE packets     - Use engine 0.
745 	 * - Non-RoCE packets - Use connection based classification for L2 PFs,
746 	 *                      and engine 0 otherwise.
747 	 */
748 	if (avoid_eng_affin) {
749 		enum ecore_eng eng;
750 		u8 ppfid;
751 
752 		if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
753 			eng = ECORE_ENG0;
754 			rc = ecore_llh_set_roce_affinity(p_dev, eng);
755 			if (rc != ECORE_SUCCESS) {
756 				DP_NOTICE(p_dev, false,
757 					  "Failed to set the RoCE engine affinity\n");
758 				return rc;
759 			}
760 
761 			DP_VERBOSE(p_dev, ECORE_MSG_SP,
762 				   "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
763 				   eng);
764 		}
765 
766 		eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
767 		       ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
768 							   : ECORE_BOTH_ENG;
769 		for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
770 			rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
771 			if (rc != ECORE_SUCCESS) {
772 				DP_NOTICE(p_dev, false,
773 					  "Failed to set the engine affinity of ppfid %d\n",
774 					  ppfid);
775 				return rc;
776 			}
777 		}
778 
779 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
780 			   "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
781 			   eng);
782 
783 		return ECORE_SUCCESS;
784 	}
785 
786 	return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
787 }
788 
789 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
790 						 struct ecore_ptt *p_ptt,
791 						 bool avoid_eng_affin)
792 {
793 	struct ecore_dev *p_dev = p_hwfn->p_dev;
794 	u8 ppfid, abs_ppfid;
795 	enum _ecore_status_t rc;
796 
797 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
798 		u32 addr;
799 
800 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
801 		if (rc != ECORE_SUCCESS)
802 			return rc;
803 
804 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
805 		ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
806 	}
807 
808 	if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
809 	    !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
810 		rc = ecore_llh_add_mac_filter(p_dev, 0,
811 					      p_hwfn->hw_info.hw_mac_addr);
812 		if (rc != ECORE_SUCCESS)
813 			DP_NOTICE(p_dev, false,
814 				  "Failed to add an LLH filter with the primary MAC\n");
815 	}
816 
817 	if (ECORE_IS_CMT(p_dev)) {
818 		rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
819 		if (rc != ECORE_SUCCESS)
820 			return rc;
821 	}
822 
823 	return ECORE_SUCCESS;
824 }
825 
826 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
827 {
828 	return p_dev->p_llh_info->num_ppfid;
829 }
830 
831 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
832 {
833 	return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
834 }
835 
836 /* TBD - should be removed when these definitions are available in reg_addr.h */
837 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK		0x3
838 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT		0
839 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK		0x3
840 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT	2
841 
842 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
843 						  u8 ppfid, enum ecore_eng eng)
844 {
845 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
846 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
847 	u32 addr, val, eng_sel;
848 	enum _ecore_status_t rc = ECORE_SUCCESS;
849 	u8 abs_ppfid;
850 
851 	if (p_ptt == OSAL_NULL)
852 		return ECORE_AGAIN;
853 
854 	if (!ECORE_IS_CMT(p_dev))
855 		goto out;
856 
857 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
858 	if (rc != ECORE_SUCCESS)
859 		goto out;
860 
861 	switch (eng) {
862 	case ECORE_ENG0:
863 		eng_sel = 0;
864 		break;
865 	case ECORE_ENG1:
866 		eng_sel = 1;
867 		break;
868 	case ECORE_BOTH_ENG:
869 		eng_sel = 2;
870 		break;
871 	default:
872 		DP_NOTICE(p_dev, false,
873 			  "Invalid affinity value for ppfid [%d]\n", eng);
874 		rc = ECORE_INVAL;
875 		goto out;
876 	}
877 
878 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
879 	val = ecore_rd(p_hwfn, p_ptt, addr);
880 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
881 	ecore_wr(p_hwfn, p_ptt, addr, val);
882 
883 	/* The iWARP affinity is set as the affinity of ppfid 0 */
884 	if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
885 		p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
886 out:
887 	ecore_ptt_release(p_hwfn, p_ptt);
888 
889 	return rc;
890 }
891 
892 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
893 						 enum ecore_eng eng)
894 {
895 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
896 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
897 	u32 addr, val, eng_sel;
898 	enum _ecore_status_t rc = ECORE_SUCCESS;
899 	u8 ppfid, abs_ppfid;
900 
901 	if (p_ptt == OSAL_NULL)
902 		return ECORE_AGAIN;
903 
904 	if (!ECORE_IS_CMT(p_dev))
905 		goto out;
906 
907 	switch (eng) {
908 	case ECORE_ENG0:
909 		eng_sel = 0;
910 		break;
911 	case ECORE_ENG1:
912 		eng_sel = 1;
913 		break;
914 	case ECORE_BOTH_ENG:
915 		eng_sel = 2;
916 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
917 			 0xf /* QP bit 15 */);
918 		break;
919 	default:
920 		DP_NOTICE(p_dev, false,
921 			  "Invalid affinity value for RoCE [%d]\n", eng);
922 		rc = ECORE_INVAL;
923 		goto out;
924 	}
925 
926 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
927 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
928 		if (rc != ECORE_SUCCESS)
929 			goto out;
930 
931 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
932 		val = ecore_rd(p_hwfn, p_ptt, addr);
933 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
934 		ecore_wr(p_hwfn, p_ptt, addr, val);
935 	}
936 out:
937 	ecore_ptt_release(p_hwfn, p_ptt);
938 
939 	return rc;
940 }
941 
942 struct ecore_llh_filter_details {
943 	u64 value;
944 	u32 mode;
945 	u32 protocol_type;
946 	u32 hdr_sel;
947 	u32 enable;
948 };
949 
950 static enum _ecore_status_t
951 ecore_llh_access_filter(struct ecore_hwfn *p_hwfn,
952 			struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
953 			struct ecore_llh_filter_details *p_details,
954 			bool b_write_access)
955 {
956 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
957 	struct dmae_params params;
958 	enum _ecore_status_t rc;
959 	u32 addr;
960 
961 	/* The NIG/LLH registers that are accessed in this function have only 16
962 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
963 	 * default ppfid
964 	 * Accessing filters of other ppfids requires pretending to other PFs,
965 	 * and thus the usage of the ecore_ppfid_rd/wr() functions.
966 	 */
967 
968 	/* Filter enable - should be done first when removing a filter */
969 	if (b_write_access && !p_details->enable) {
970 		addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
971 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
972 			       p_details->enable);
973 	}
974 
975 	/* Filter value */
976 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4;
977 	OSAL_MEMSET(&params, 0, sizeof(params));
978 
979 	if (b_write_access) {
980 		SET_FIELD(params.flags, DMAE_PARAMS_DST_PF_VALID, 0x1);
981 		params.dst_pf_id = pfid;
982 		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
983 					 (u64)(osal_uintptr_t)&p_details->value,
984 					 addr, 2 /* size_in_dwords */, &params);
985 	} else {
986 		SET_FIELD(params.flags, DMAE_PARAMS_SRC_PF_VALID, 0x1);
987 		SET_FIELD(params.flags, DMAE_PARAMS_COMPLETION_DST, 0x1);
988 		params.src_pf_id = pfid;
989 		rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
990 					 (u64)(osal_uintptr_t)&p_details->value,
991 					 2 /* size_in_dwords */, &params);
992 	}
993 
994 	if (rc != ECORE_SUCCESS)
995 		return rc;
996 
997 	/* Filter mode */
998 	addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4;
999 	if (b_write_access)
1000 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1001 	else
1002 		p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1003 						 addr);
1004 
1005 	/* Filter protocol type */
1006 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4;
1007 	if (b_write_access)
1008 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1009 			       p_details->protocol_type);
1010 	else
1011 		p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1012 							  abs_ppfid, addr);
1013 
1014 	/* Filter header select */
1015 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4;
1016 	if (b_write_access)
1017 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1018 			       p_details->hdr_sel);
1019 	else
1020 		p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1021 						    addr);
1022 
1023 	/* Filter enable - should be done last when adding a filter */
1024 	if (!b_write_access || p_details->enable) {
1025 		addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
1026 		if (b_write_access)
1027 			ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1028 				       p_details->enable);
1029 		else
1030 			p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1031 							   abs_ppfid, addr);
1032 	}
1033 
1034 	return ECORE_SUCCESS;
1035 }
1036 
1037 static enum _ecore_status_t
1038 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1039 			u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1040 			u32 high, u32 low)
1041 {
1042 	struct ecore_llh_filter_details filter_details;
1043 
1044 	filter_details.enable = 1;
1045 	filter_details.value = ((u64)high << 32) | low;
1046 	filter_details.hdr_sel =
1047 		OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits) ?
1048 		1 : /* inner/encapsulated header */
1049 		0;  /* outer/tunnel header */
1050 	filter_details.protocol_type = filter_prot_type;
1051 	filter_details.mode = filter_prot_type ?
1052 			      1 : /* protocol-based classification */
1053 			      0;  /* MAC-address based classification */
1054 
1055 	return ecore_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1056 				&filter_details,
1057 				true /* write access */);
1058 }
1059 
1060 static enum _ecore_status_t
1061 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn,
1062 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1063 {
1064 	struct ecore_llh_filter_details filter_details;
1065 
1066 	OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1067 
1068 	return ecore_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1069 				       &filter_details,
1070 				       true /* write access */);
1071 }
1072 
1073 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1074 					      u8 mac_addr[ETH_ALEN])
1075 {
1076 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1077 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1078 	union ecore_llh_filter filter;
1079 	u8 filter_idx, abs_ppfid;
1080 	u32 high, low, ref_cnt;
1081 	enum _ecore_status_t rc = ECORE_SUCCESS;
1082 
1083 	if (p_ptt == OSAL_NULL)
1084 		return ECORE_AGAIN;
1085 
1086 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1087 		goto out;
1088 
1089 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1090 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1091 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1092 					 ECORE_LLH_FILTER_TYPE_MAC,
1093 					 &filter, &filter_idx, &ref_cnt);
1094 	if (rc != ECORE_SUCCESS)
1095 		goto err;
1096 
1097 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1098 	if (rc != ECORE_SUCCESS)
1099 		goto err;
1100 
1101 	/* Configure the LLH only in case of a new the filter */
1102 	if (ref_cnt == 1) {
1103 		high = mac_addr[1] | (mac_addr[0] << 8);
1104 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1105 		      (mac_addr[2] << 24);
1106 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1107 					  0, high, low);
1108 		if (rc != ECORE_SUCCESS)
1109 			goto err;
1110 	}
1111 
1112 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1113 		   "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1114 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1115 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1116 		   ref_cnt);
1117 
1118 	goto out;
1119 
1120 err:
1121 	DP_NOTICE(p_dev, false,
1122 		  "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1123 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1124 		  mac_addr[4], mac_addr[5], ppfid);
1125 out:
1126 	ecore_ptt_release(p_hwfn, p_ptt);
1127 
1128 	return rc;
1129 }
1130 
1131 static enum _ecore_status_t
1132 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1133 				    enum ecore_llh_prot_filter_type_t type,
1134 				    u16 source_port_or_eth_type, u16 dest_port,
1135 				    char *str, osal_size_t str_len)
1136 {
1137 	switch (type) {
1138 	case ECORE_LLH_FILTER_ETHERTYPE:
1139 		OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1140 			      source_port_or_eth_type);
1141 		break;
1142 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1143 		OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1144 			      source_port_or_eth_type);
1145 		break;
1146 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1147 		OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1148 			      source_port_or_eth_type);
1149 		break;
1150 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1151 		OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1152 		break;
1153 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1154 		OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1155 		break;
1156 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1157 		OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1158 			      source_port_or_eth_type, dest_port);
1159 		break;
1160 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1161 		OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1162 			      source_port_or_eth_type, dest_port);
1163 		break;
1164 	default:
1165 		DP_NOTICE(p_dev, true,
1166 			  "Non valid LLH protocol filter type %d\n", type);
1167 		return ECORE_INVAL;
1168 	}
1169 
1170 	return ECORE_SUCCESS;
1171 }
1172 
1173 static enum _ecore_status_t
1174 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1175 				  enum ecore_llh_prot_filter_type_t type,
1176 				  u16 source_port_or_eth_type, u16 dest_port,
1177 				  u32 *p_high, u32 *p_low)
1178 {
1179 	*p_high = 0;
1180 	*p_low = 0;
1181 
1182 	switch (type) {
1183 	case ECORE_LLH_FILTER_ETHERTYPE:
1184 		*p_high = source_port_or_eth_type;
1185 		break;
1186 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1187 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1188 		*p_low = source_port_or_eth_type << 16;
1189 		break;
1190 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1191 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1192 		*p_low = dest_port;
1193 		break;
1194 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1195 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1196 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1197 		break;
1198 	default:
1199 		DP_NOTICE(p_dev, true,
1200 			  "Non valid LLH protocol filter type %d\n", type);
1201 		return ECORE_INVAL;
1202 	}
1203 
1204 	return ECORE_SUCCESS;
1205 }
1206 
1207 enum _ecore_status_t
1208 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1209 			      enum ecore_llh_prot_filter_type_t type,
1210 			      u16 source_port_or_eth_type, u16 dest_port)
1211 {
1212 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1213 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1214 	u8 filter_idx, abs_ppfid, type_bitmap;
1215 	char str[32];
1216 	union ecore_llh_filter filter;
1217 	u32 high, low, ref_cnt;
1218 	enum _ecore_status_t rc = ECORE_SUCCESS;
1219 
1220 	if (p_ptt == OSAL_NULL)
1221 		return ECORE_AGAIN;
1222 
1223 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1224 		goto out;
1225 
1226 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1227 						 source_port_or_eth_type,
1228 						 dest_port, str, sizeof(str));
1229 	if (rc != ECORE_SUCCESS)
1230 		goto err;
1231 
1232 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1233 	filter.protocol.type = type;
1234 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1235 	filter.protocol.dest_port = dest_port;
1236 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1237 					 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1238 					 &filter, &filter_idx, &ref_cnt);
1239 	if (rc != ECORE_SUCCESS)
1240 		goto err;
1241 
1242 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1243 	if (rc != ECORE_SUCCESS)
1244 		goto err;
1245 
1246 	/* Configure the LLH only in case of a new the filter */
1247 	if (ref_cnt == 1) {
1248 		rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1249 						       source_port_or_eth_type,
1250 						       dest_port, &high, &low);
1251 		if (rc != ECORE_SUCCESS)
1252 			goto err;
1253 
1254 		type_bitmap = 0x1 << type;
1255 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1256 					  type_bitmap, high, low);
1257 		if (rc != ECORE_SUCCESS)
1258 			goto err;
1259 	}
1260 
1261 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1262 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1263 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1264 
1265 	goto out;
1266 
1267 err:
1268 	DP_NOTICE(p_hwfn, false,
1269 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1270 		  str, ppfid);
1271 out:
1272 	ecore_ptt_release(p_hwfn, p_ptt);
1273 
1274 	return rc;
1275 }
1276 
1277 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1278 				 u8 mac_addr[ETH_ALEN])
1279 {
1280 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1281 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1282 	union ecore_llh_filter filter;
1283 	u8 filter_idx, abs_ppfid;
1284 	enum _ecore_status_t rc = ECORE_SUCCESS;
1285 	u32 ref_cnt;
1286 
1287 	if (p_ptt == OSAL_NULL)
1288 		return;
1289 
1290 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1291 		goto out;
1292 
1293 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1294 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1295 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1296 					    &ref_cnt);
1297 	if (rc != ECORE_SUCCESS)
1298 		goto err;
1299 
1300 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1301 	if (rc != ECORE_SUCCESS)
1302 		goto err;
1303 
1304 	/* Remove from the LLH in case the filter is not in use */
1305 	if (!ref_cnt) {
1306 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1307 					     filter_idx);
1308 		if (rc != ECORE_SUCCESS)
1309 			goto err;
1310 	}
1311 
1312 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1313 		   "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1314 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1315 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1316 		   ref_cnt);
1317 
1318 	goto out;
1319 
1320 err:
1321 	DP_NOTICE(p_dev, false,
1322 		  "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1323 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1324 		  mac_addr[4], mac_addr[5], ppfid);
1325 out:
1326 	ecore_ptt_release(p_hwfn, p_ptt);
1327 }
1328 
1329 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1330 				      enum ecore_llh_prot_filter_type_t type,
1331 				      u16 source_port_or_eth_type,
1332 				      u16 dest_port)
1333 {
1334 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1335 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1336 	u8 filter_idx, abs_ppfid;
1337 	char str[32];
1338 	union ecore_llh_filter filter;
1339 	enum _ecore_status_t rc = ECORE_SUCCESS;
1340 	u32 ref_cnt;
1341 
1342 	if (p_ptt == OSAL_NULL)
1343 		return;
1344 
1345 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1346 		goto out;
1347 
1348 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1349 						 source_port_or_eth_type,
1350 						 dest_port, str, sizeof(str));
1351 	if (rc != ECORE_SUCCESS)
1352 		goto err;
1353 
1354 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1355 	filter.protocol.type = type;
1356 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1357 	filter.protocol.dest_port = dest_port;
1358 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1359 					    &ref_cnt);
1360 	if (rc != ECORE_SUCCESS)
1361 		goto err;
1362 
1363 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1364 	if (rc != ECORE_SUCCESS)
1365 		goto err;
1366 
1367 	/* Remove from the LLH in case the filter is not in use */
1368 	if (!ref_cnt) {
1369 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1370 					     filter_idx);
1371 		if (rc != ECORE_SUCCESS)
1372 			goto err;
1373 	}
1374 
1375 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1376 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1377 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1378 
1379 	goto out;
1380 
1381 err:
1382 	DP_NOTICE(p_dev, false,
1383 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1384 		  str, ppfid);
1385 out:
1386 	ecore_ptt_release(p_hwfn, p_ptt);
1387 }
1388 
1389 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1390 {
1391 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1392 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1393 	u8 filter_idx, abs_ppfid;
1394 	enum _ecore_status_t rc = ECORE_SUCCESS;
1395 
1396 	if (p_ptt == OSAL_NULL)
1397 		return;
1398 
1399 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1400 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1401 		goto out;
1402 
1403 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1404 	if (rc != ECORE_SUCCESS)
1405 		goto out;
1406 
1407 	rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1408 	if (rc != ECORE_SUCCESS)
1409 		goto out;
1410 
1411 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1412 	     filter_idx++) {
1413 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt,
1414 						abs_ppfid, filter_idx);
1415 		if (rc != ECORE_SUCCESS)
1416 			goto out;
1417 	}
1418 out:
1419 	ecore_ptt_release(p_hwfn, p_ptt);
1420 }
1421 
1422 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1423 {
1424 	u8 ppfid;
1425 
1426 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1427 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1428 		return;
1429 
1430 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1431 		ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1432 }
1433 
1434 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1435 					 struct ecore_ptt *p_ptt, u32 addr,
1436 					 u32 val)
1437 {
1438 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1439 	u8 ppfid, abs_ppfid;
1440 	enum _ecore_status_t rc;
1441 
1442 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1443 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1444 		if (rc != ECORE_SUCCESS)
1445 			return rc;
1446 
1447 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1448 	}
1449 
1450 	return ECORE_SUCCESS;
1451 }
1452 
1453 enum _ecore_status_t
1454 ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1455 {
1456 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1457 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1458 	struct ecore_llh_filter_details filter_details;
1459 	u8 abs_ppfid, filter_idx;
1460 	u32 addr;
1461 	enum _ecore_status_t rc;
1462 
1463 	if (!p_ptt)
1464 		return ECORE_AGAIN;
1465 
1466 	rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1467 	if (rc != ECORE_SUCCESS)
1468 		goto out;
1469 
1470 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1471 	DP_NOTICE(p_hwfn, false,
1472 		  "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1473 		  p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1474 		  ecore_rd(p_hwfn, p_ptt, addr));
1475 
1476 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1477 	     filter_idx++) {
1478 		OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1479 		rc =  ecore_llh_access_filter(p_hwfn, p_ptt, abs_ppfid,
1480 					      filter_idx, &filter_details,
1481 					      false /* read access */);
1482 		if (rc != ECORE_SUCCESS)
1483 			goto out;
1484 
1485 		DP_NOTICE(p_hwfn, false,
1486 			  "filter %2hhd: enable %d, value 0x%016lx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1487 			  filter_idx, filter_details.enable,
1488 			  (unsigned long)filter_details.value,
1489 			  filter_details.mode,
1490 			  filter_details.protocol_type, filter_details.hdr_sel);
1491 	}
1492 
1493 
1494 out:
1495 	ecore_ptt_release(p_hwfn, p_ptt);
1496 
1497 	return rc;
1498 }
1499 
1500 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1501 {
1502 	u8 ppfid;
1503 	enum _ecore_status_t rc;
1504 
1505 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1506 		rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1507 		if (rc != ECORE_SUCCESS)
1508 			return rc;
1509 	}
1510 
1511 	return ECORE_SUCCESS;
1512 }
1513 
1514 /******************************* NIG LLH - End ********************************/
1515 
1516 /* Configurable */
1517 #define ECORE_MIN_DPIS		(4)	/* The minimal num of DPIs required to
1518 					 * load the driver. The number was
1519 					 * arbitrarily set.
1520 					 */
1521 
1522 /* Derived */
1523 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
1524 
1525 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1526 			     struct ecore_ptt *p_ptt,
1527 			     enum BAR_ID bar_id)
1528 {
1529 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1530 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1531 	u32 val;
1532 
1533 	if (IS_VF(p_hwfn->p_dev))
1534 		return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1535 
1536 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1537 	if (val)
1538 		return 1 << (val + 15);
1539 
1540 	/* The above registers were updated in the past only in CMT mode. Since
1541 	 * they were found to be useful MFW started updating them from 8.7.7.0.
1542 	 * In older MFW versions they are set to 0 which means disabled.
1543 	 */
1544 	if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1545 		DP_INFO(p_hwfn,
1546 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1547 		val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1548 	} else {
1549 		DP_INFO(p_hwfn,
1550 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1551 		val = 512 * 1024;
1552 	}
1553 
1554 	return val;
1555 }
1556 
1557 void ecore_init_dp(struct ecore_dev *p_dev,
1558 		   u32 dp_module, u8 dp_level, void *dp_ctx)
1559 {
1560 	u32 i;
1561 
1562 	p_dev->dp_level = dp_level;
1563 	p_dev->dp_module = dp_module;
1564 	p_dev->dp_ctx = dp_ctx;
1565 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1566 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1567 
1568 		p_hwfn->dp_level = dp_level;
1569 		p_hwfn->dp_module = dp_module;
1570 		p_hwfn->dp_ctx = dp_ctx;
1571 	}
1572 }
1573 
1574 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1575 {
1576 	u8 i;
1577 
1578 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1579 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1580 
1581 		p_hwfn->p_dev = p_dev;
1582 		p_hwfn->my_id = i;
1583 		p_hwfn->b_active = false;
1584 
1585 #ifdef CONFIG_ECORE_LOCK_ALLOC
1586 		if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1587 			goto handle_err;
1588 #endif
1589 		OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1590 	}
1591 
1592 	/* hwfn 0 is always active */
1593 	p_dev->hwfns[0].b_active = true;
1594 
1595 	/* set the default cache alignment to 128 (may be overridden later) */
1596 	p_dev->cache_shift = 7;
1597 	return ECORE_SUCCESS;
1598 #ifdef CONFIG_ECORE_LOCK_ALLOC
1599 handle_err:
1600 	while (--i) {
1601 		struct ecore_hwfn *p_hwfn = OSAL_NULL;
1602 
1603 		p_hwfn = &p_dev->hwfns[i];
1604 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1605 	}
1606 	return ECORE_NOMEM;
1607 #endif
1608 }
1609 
1610 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1611 {
1612 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1613 
1614 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1615 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1616 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1617 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1618 }
1619 
1620 static void ecore_dbg_user_data_free(struct ecore_hwfn *p_hwfn)
1621 {
1622 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->dbg_user_info);
1623 	p_hwfn->dbg_user_info = OSAL_NULL;
1624 }
1625 
1626 void ecore_resc_free(struct ecore_dev *p_dev)
1627 {
1628 	int i;
1629 
1630 	if (IS_VF(p_dev)) {
1631 		for_each_hwfn(p_dev, i)
1632 			ecore_l2_free(&p_dev->hwfns[i]);
1633 		return;
1634 	}
1635 
1636 	OSAL_FREE(p_dev, p_dev->fw_data);
1637 
1638 	OSAL_FREE(p_dev, p_dev->reset_stats);
1639 
1640 	ecore_llh_free(p_dev);
1641 
1642 	for_each_hwfn(p_dev, i) {
1643 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1644 
1645 		ecore_cxt_mngr_free(p_hwfn);
1646 		ecore_qm_info_free(p_hwfn);
1647 		ecore_spq_free(p_hwfn);
1648 		ecore_eq_free(p_hwfn);
1649 		ecore_consq_free(p_hwfn);
1650 		ecore_int_free(p_hwfn);
1651 		ecore_iov_free(p_hwfn);
1652 		ecore_l2_free(p_hwfn);
1653 		ecore_dmae_info_free(p_hwfn);
1654 		ecore_dcbx_info_free(p_hwfn);
1655 		ecore_dbg_user_data_free(p_hwfn);
1656 		ecore_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem);
1657 		/* @@@TBD Flush work-queue ? */
1658 
1659 		/* destroy doorbell recovery mechanism */
1660 		ecore_db_recovery_teardown(p_hwfn);
1661 	}
1662 }
1663 
1664 /******************** QM initialization *******************/
1665 
1666 /* bitmaps for indicating active traffic classes.
1667  * Special case for Arrowhead 4 port
1668  */
1669 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1670 #define ACTIVE_TCS_BMAP 0x9f
1671 /* 0..3 actually used, OOO and high priority stuff all use 3 */
1672 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
1673 
1674 /* determines the physical queue flags for a given PF. */
1675 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1676 {
1677 	u32 flags;
1678 
1679 	/* common flags */
1680 	flags = PQ_FLAGS_LB;
1681 
1682 	/* feature flags */
1683 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1684 		flags |= PQ_FLAGS_VFS;
1685 	if (IS_ECORE_PACING(p_hwfn))
1686 		flags |= PQ_FLAGS_RLS;
1687 
1688 	/* protocol flags */
1689 	switch (p_hwfn->hw_info.personality) {
1690 	case ECORE_PCI_ETH:
1691 		if (!IS_ECORE_PACING(p_hwfn))
1692 			flags |= PQ_FLAGS_MCOS;
1693 		break;
1694 	case ECORE_PCI_FCOE:
1695 		flags |= PQ_FLAGS_OFLD;
1696 		break;
1697 	case ECORE_PCI_ISCSI:
1698 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1699 		break;
1700 	case ECORE_PCI_ETH_ROCE:
1701 		flags |= PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1702 		if (!IS_ECORE_PACING(p_hwfn))
1703 			flags |= PQ_FLAGS_MCOS;
1704 		break;
1705 	case ECORE_PCI_ETH_IWARP:
1706 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1707 		if (!IS_ECORE_PACING(p_hwfn))
1708 			flags |= PQ_FLAGS_MCOS;
1709 		break;
1710 	default:
1711 		DP_ERR(p_hwfn, "unknown personality %d\n",
1712 		       p_hwfn->hw_info.personality);
1713 		return 0;
1714 	}
1715 	return flags;
1716 }
1717 
1718 /* Getters for resource amounts necessary for qm initialization */
1719 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1720 {
1721 	return p_hwfn->hw_info.num_hw_tc;
1722 }
1723 
1724 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1725 {
1726 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ?
1727 			p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1728 }
1729 
1730 #define NUM_DEFAULT_RLS 1
1731 
1732 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1733 {
1734 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1735 
1736 	/* num RLs can't exceed resource amount of rls or vports or the
1737 	 * dcqcn qps
1738 	 */
1739 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1740 				     RESC_NUM(p_hwfn, ECORE_VPORT));
1741 
1742 	/* make sure after we reserve the default and VF rls we'll have
1743 	 * something left
1744 	 */
1745 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1746 		DP_NOTICE(p_hwfn, false,
1747 			  "no rate limiters left for PF rate limiting"
1748 			  " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1749 		return 0;
1750 	}
1751 
1752 	/* subtract rls necessary for VFs and one default one for the PF */
1753 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1754 
1755 	return num_pf_rls;
1756 }
1757 
1758 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1759 {
1760 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1761 
1762 	/* all pqs share the same vport (hence the 1 below), except for vfs
1763 	 * and pf_rl pqs
1764 	 */
1765 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1766 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
1767 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
1768 		ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1769 }
1770 
1771 /* calc amount of PQs according to the requested flags */
1772 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1773 {
1774 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1775 
1776 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1777 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
1778 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
1779 		ecore_init_qm_get_num_tcs(p_hwfn) +
1780 	       (!!(PQ_FLAGS_LB & pq_flags)) +
1781 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
1782 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1783 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
1784 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
1785 		ecore_init_qm_get_num_vfs(p_hwfn);
1786 }
1787 
1788 /* initialize the top level QM params */
1789 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1790 {
1791 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1792 	bool four_port;
1793 
1794 	/* pq and vport bases for this PF */
1795 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1796 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1797 
1798 	/* rate limiting and weighted fair queueing are always enabled */
1799 	qm_info->vport_rl_en = 1;
1800 	qm_info->vport_wfq_en = 1;
1801 
1802 	/* TC config is different for AH 4 port */
1803 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1804 
1805 	/* in AH 4 port we have fewer TCs per port */
1806 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
1807 						     NUM_OF_PHYS_TCS;
1808 
1809 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and
1810 	 * 4 otherwise
1811 	 */
1812 	if (!qm_info->ooo_tc)
1813 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
1814 					      DCBX_TCP_OOO_TC;
1815 }
1816 
1817 /* initialize qm vport params */
1818 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1819 {
1820 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1821 	u8 i;
1822 
1823 	/* all vports participate in weighted fair queueing */
1824 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1825 		qm_info->qm_vport_params[i].wfq = 1;
1826 }
1827 
1828 /* initialize qm port params */
1829 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1830 {
1831 	/* Initialize qm port parameters */
1832 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1833 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1834 
1835 	/* indicate how ooo and high pri traffic is dealt with */
1836 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1837 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1838 
1839 	for (i = 0; i < num_ports; i++) {
1840 		struct init_qm_port_params *p_qm_port =
1841 			&p_hwfn->qm_info.qm_port_params[i];
1842 		u16 pbf_max_cmd_lines;
1843 
1844 		p_qm_port->active = 1;
1845 		p_qm_port->active_phys_tcs = active_phys_tcs;
1846 		pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(p_dev);
1847 		p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports;
1848 		p_qm_port->num_btb_blocks =
1849 			NUM_OF_BTB_BLOCKS(p_dev) / num_ports;
1850 	}
1851 }
1852 
1853 /* Reset the params which must be reset for qm init. QM init may be called as
1854  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1855  * params may be affected by the init but would simply recalculate to the same
1856  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1857  * affected as these amounts stay the same.
1858  */
1859 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1860 {
1861 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1862 
1863 	qm_info->num_pqs = 0;
1864 	qm_info->num_vports = 0;
1865 	qm_info->num_pf_rls = 0;
1866 	qm_info->num_vf_pqs = 0;
1867 	qm_info->first_vf_pq = 0;
1868 	qm_info->first_mcos_pq = 0;
1869 	qm_info->first_rl_pq = 0;
1870 }
1871 
1872 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1873 {
1874 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1875 
1876 	qm_info->num_vports++;
1877 
1878 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1879 		DP_ERR(p_hwfn,
1880 		       "vport overflow! qm_info->num_vports %d,"
1881 		       " qm_init_get_num_vports() %d\n",
1882 		       qm_info->num_vports,
1883 		       ecore_init_qm_get_num_vports(p_hwfn));
1884 }
1885 
1886 /* initialize a single pq and manage qm_info resources accounting.
1887  * The pq_init_flags param determines whether the PQ is rate limited
1888  * (for VF or PF)
1889  * and whether a new vport is allocated to the pq or not (i.e. vport will be
1890  * shared)
1891  */
1892 
1893 /* flags for pq init */
1894 #define PQ_INIT_SHARE_VPORT	(1 << 0)
1895 #define PQ_INIT_PF_RL		(1 << 1)
1896 #define PQ_INIT_VF_RL		(1 << 2)
1897 
1898 /* defines for pq init */
1899 #define PQ_INIT_DEFAULT_WRR_GROUP	1
1900 #define PQ_INIT_DEFAULT_TC		0
1901 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
1902 
1903 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
1904 			     struct ecore_qm_info *qm_info,
1905 			     u8 tc, u32 pq_init_flags)
1906 {
1907 	u16 pq_idx = qm_info->num_pqs, max_pq =
1908 					ecore_init_qm_get_num_pqs(p_hwfn);
1909 
1910 	if (pq_idx > max_pq)
1911 		DP_ERR(p_hwfn,
1912 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
1913 
1914 	/* init pq params */
1915 	qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
1916 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
1917 						 qm_info->num_vports;
1918 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
1919 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
1920 	qm_info->qm_pq_params[pq_idx].rl_valid =
1921 		(pq_init_flags & PQ_INIT_PF_RL ||
1922 		 pq_init_flags & PQ_INIT_VF_RL);
1923 
1924 	/* The "rl_id" is set as the "vport_id" */
1925 	qm_info->qm_pq_params[pq_idx].rl_id =
1926 		qm_info->qm_pq_params[pq_idx].vport_id;
1927 
1928 	/* qm params accounting */
1929 	qm_info->num_pqs++;
1930 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
1931 		qm_info->num_vports++;
1932 
1933 	if (pq_init_flags & PQ_INIT_PF_RL)
1934 		qm_info->num_pf_rls++;
1935 
1936 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1937 		DP_ERR(p_hwfn,
1938 		       "vport overflow! qm_info->num_vports %d,"
1939 		       " qm_init_get_num_vports() %d\n",
1940 		       qm_info->num_vports,
1941 		       ecore_init_qm_get_num_vports(p_hwfn));
1942 
1943 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
1944 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d,"
1945 		       " qm_init_get_num_pf_rls() %d\n",
1946 		       qm_info->num_pf_rls,
1947 		       ecore_init_qm_get_num_pf_rls(p_hwfn));
1948 }
1949 
1950 /* get pq index according to PQ_FLAGS */
1951 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
1952 					     u32 pq_flags)
1953 {
1954 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1955 
1956 	/* Can't have multiple flags set here */
1957 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags,
1958 				sizeof(pq_flags)) > 1)
1959 		goto err;
1960 
1961 	switch (pq_flags) {
1962 	case PQ_FLAGS_RLS:
1963 		return &qm_info->first_rl_pq;
1964 	case PQ_FLAGS_MCOS:
1965 		return &qm_info->first_mcos_pq;
1966 	case PQ_FLAGS_LB:
1967 		return &qm_info->pure_lb_pq;
1968 	case PQ_FLAGS_OOO:
1969 		return &qm_info->ooo_pq;
1970 	case PQ_FLAGS_ACK:
1971 		return &qm_info->pure_ack_pq;
1972 	case PQ_FLAGS_OFLD:
1973 		return &qm_info->offload_pq;
1974 	case PQ_FLAGS_VFS:
1975 		return &qm_info->first_vf_pq;
1976 	default:
1977 		goto err;
1978 	}
1979 
1980 err:
1981 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
1982 	return OSAL_NULL;
1983 }
1984 
1985 /* save pq index in qm info */
1986 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
1987 				  u32 pq_flags, u16 pq_val)
1988 {
1989 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1990 
1991 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
1992 }
1993 
1994 /* get tx pq index, with the PQ TX base already set (ready for context init) */
1995 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
1996 {
1997 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1998 
1999 	return *base_pq_idx + CM_TX_PQ_BASE;
2000 }
2001 
2002 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2003 {
2004 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2005 
2006 	if (tc > max_tc)
2007 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2008 
2009 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
2010 }
2011 
2012 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2013 {
2014 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2015 
2016 	if (vf > max_vf)
2017 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2018 
2019 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
2020 }
2021 
2022 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl)
2023 {
2024 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2025 
2026 	/* for rate limiters, it is okay to use the modulo behavior - no
2027 	 * DP_ERR
2028 	 */
2029 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + (rl % max_rl);
2030 }
2031 
2032 u16 ecore_get_qm_vport_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl)
2033 {
2034 	u16 start_pq, pq, qm_pq_idx;
2035 
2036 	pq = ecore_get_cm_pq_idx_rl(p_hwfn, rl);
2037 	start_pq = p_hwfn->qm_info.start_pq;
2038 	qm_pq_idx = pq - start_pq - CM_TX_PQ_BASE;
2039 
2040 	if (qm_pq_idx > p_hwfn->qm_info.num_pqs) {
2041 		DP_ERR(p_hwfn,
2042 		       "qm_pq_idx %d must be smaller than %d\n",
2043 			qm_pq_idx, p_hwfn->qm_info.num_pqs);
2044 	}
2045 
2046 	return p_hwfn->qm_info.qm_pq_params[qm_pq_idx].vport_id;
2047 }
2048 
2049 /* Functions for creating specific types of pqs */
2050 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2051 {
2052 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2053 
2054 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2055 		return;
2056 
2057 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2058 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2059 }
2060 
2061 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2062 {
2063 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2064 
2065 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2066 		return;
2067 
2068 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2069 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2070 }
2071 
2072 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2073 {
2074 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2075 
2076 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2077 		return;
2078 
2079 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2080 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2081 }
2082 
2083 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2084 {
2085 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2086 
2087 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2088 		return;
2089 
2090 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2091 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2092 }
2093 
2094 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2095 {
2096 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2097 	u8 tc_idx;
2098 
2099 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2100 		return;
2101 
2102 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2103 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2104 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2105 }
2106 
2107 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2108 {
2109 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2110 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2111 
2112 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2113 		return;
2114 
2115 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2116 
2117 	qm_info->num_vf_pqs = num_vfs;
2118 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2119 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC,
2120 				 PQ_INIT_VF_RL);
2121 }
2122 
2123 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2124 {
2125 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2126 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2127 
2128 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2129 		return;
2130 
2131 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2132 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2133 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC,
2134 				 PQ_INIT_PF_RL);
2135 }
2136 
2137 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2138 {
2139 	/* rate limited pqs, must come first (FW assumption) */
2140 	ecore_init_qm_rl_pqs(p_hwfn);
2141 
2142 	/* pqs for multi cos */
2143 	ecore_init_qm_mcos_pqs(p_hwfn);
2144 
2145 	/* pure loopback pq */
2146 	ecore_init_qm_lb_pq(p_hwfn);
2147 
2148 	/* out of order pq */
2149 	ecore_init_qm_ooo_pq(p_hwfn);
2150 
2151 	/* pure ack pq */
2152 	ecore_init_qm_pure_ack_pq(p_hwfn);
2153 
2154 	/* pq for offloaded protocol */
2155 	ecore_init_qm_offload_pq(p_hwfn);
2156 
2157 	/* done sharing vports */
2158 	ecore_init_qm_advance_vport(p_hwfn);
2159 
2160 	/* pqs for vfs */
2161 	ecore_init_qm_vf_pqs(p_hwfn);
2162 }
2163 
2164 /* compare values of getters against resources amounts */
2165 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2166 {
2167 	if (ecore_init_qm_get_num_vports(p_hwfn) >
2168 	    RESC_NUM(p_hwfn, ECORE_VPORT)) {
2169 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2170 		return ECORE_INVAL;
2171 	}
2172 
2173 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2174 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2175 		return ECORE_INVAL;
2176 	}
2177 
2178 	return ECORE_SUCCESS;
2179 }
2180 
2181 /*
2182  * Function for verbose printing of the qm initialization results
2183  */
2184 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2185 {
2186 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2187 	struct init_qm_vport_params *vport;
2188 	struct init_qm_port_params *port;
2189 	struct init_qm_pq_params *pq;
2190 	int i, tc;
2191 
2192 	/* top level params */
2193 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2194 		   "qm init top level params: start_pq %d, start_vport %d,"
2195 		   " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2196 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq,
2197 		   qm_info->offload_pq, qm_info->pure_ack_pq);
2198 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2199 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d,"
2200 		   " num_vports %d, max_phys_tcs_per_port %d\n",
2201 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs,
2202 		   qm_info->num_vf_pqs, qm_info->num_vports,
2203 		   qm_info->max_phys_tcs_per_port);
2204 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2205 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d,"
2206 		   " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2207 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en,
2208 		   qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl,
2209 		   qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2210 
2211 	/* port table */
2212 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2213 		port = &qm_info->qm_port_params[i];
2214 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2215 			   "port idx %d, active %d, active_phys_tcs %d,"
2216 			   " num_pbf_cmd_lines %d, num_btb_blocks %d,"
2217 			   " reserved %d\n",
2218 			   i, port->active, port->active_phys_tcs,
2219 			   port->num_pbf_cmd_lines, port->num_btb_blocks,
2220 			   port->reserved);
2221 	}
2222 
2223 	/* vport table */
2224 	for (i = 0; i < qm_info->num_vports; i++) {
2225 		vport = &qm_info->qm_vport_params[i];
2226 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, wfq %d, first_tx_pq_id [ ",
2227 			   qm_info->start_vport + i, vport->wfq);
2228 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2229 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ",
2230 				   vport->first_tx_pq_id[tc]);
2231 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2232 	}
2233 
2234 	/* pq table */
2235 	for (i = 0; i < qm_info->num_pqs; i++) {
2236 		pq = &qm_info->qm_pq_params[i];
2237 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
2238 			   "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d, rl_id %d\n",
2239 			   qm_info->start_pq + i, pq->port_id, pq->vport_id,
2240 			   pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id);
2241 	}
2242 }
2243 
2244 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2245 {
2246 	/* reset params required for init run */
2247 	ecore_init_qm_reset_params(p_hwfn);
2248 
2249 	/* init QM top level params */
2250 	ecore_init_qm_params(p_hwfn);
2251 
2252 	/* init QM port params */
2253 	ecore_init_qm_port_params(p_hwfn);
2254 
2255 	/* init QM vport params */
2256 	ecore_init_qm_vport_params(p_hwfn);
2257 
2258 	/* init QM physical queue params */
2259 	ecore_init_qm_pq_params(p_hwfn);
2260 
2261 	/* display all that init */
2262 	ecore_dp_init_qm_params(p_hwfn);
2263 }
2264 
2265 /* This function reconfigures the QM pf on the fly.
2266  * For this purpose we:
2267  * 1. reconfigure the QM database
2268  * 2. set new values to runtime array
2269  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2270  * 4. activate init tool in QM_PF stage
2271  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2272  */
2273 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2274 				     struct ecore_ptt *p_ptt)
2275 {
2276 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2277 	bool b_rc;
2278 	enum _ecore_status_t rc = ECORE_SUCCESS;
2279 
2280 	/* multiple flows can issue qm reconf. Need to lock */
2281 	OSAL_SPIN_LOCK(&qm_lock);
2282 
2283 	/* initialize ecore's qm data structure */
2284 	ecore_init_qm_info(p_hwfn);
2285 
2286 	/* stop PF's qm queues */
2287 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2288 				      qm_info->start_pq, qm_info->num_pqs);
2289 	if (!b_rc) {
2290 		rc = ECORE_INVAL;
2291 		goto unlock;
2292 	}
2293 
2294 	/* clear the QM_PF runtime phase leftovers from previous init */
2295 	ecore_init_clear_rt_data(p_hwfn);
2296 
2297 	/* prepare QM portion of runtime array */
2298 	ecore_qm_init_pf(p_hwfn, p_ptt, false);
2299 
2300 	/* activate init tool on runtime array */
2301 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2302 			    p_hwfn->hw_info.hw_mode);
2303 
2304 	/* start PF's qm queues */
2305 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2306 				      qm_info->start_pq, qm_info->num_pqs);
2307 	if (!b_rc)
2308 		rc = ECORE_INVAL;
2309 
2310 unlock:
2311 	OSAL_SPIN_UNLOCK(&qm_lock);
2312 
2313 	return rc;
2314 }
2315 
2316 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2317 {
2318 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2319 	enum _ecore_status_t rc;
2320 
2321 	rc = ecore_init_qm_sanity(p_hwfn);
2322 	if (rc != ECORE_SUCCESS)
2323 		goto alloc_err;
2324 
2325 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2326 					    sizeof(struct init_qm_pq_params) *
2327 					    ecore_init_qm_get_num_pqs(p_hwfn));
2328 	if (!qm_info->qm_pq_params)
2329 		goto alloc_err;
2330 
2331 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2332 				       sizeof(struct init_qm_vport_params) *
2333 				       ecore_init_qm_get_num_vports(p_hwfn));
2334 	if (!qm_info->qm_vport_params)
2335 		goto alloc_err;
2336 
2337 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2338 				      sizeof(struct init_qm_port_params) *
2339 				      p_hwfn->p_dev->num_ports_in_engine);
2340 	if (!qm_info->qm_port_params)
2341 		goto alloc_err;
2342 
2343 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2344 					sizeof(struct ecore_wfq_data) *
2345 					ecore_init_qm_get_num_vports(p_hwfn));
2346 	if (!qm_info->wfq_data)
2347 		goto alloc_err;
2348 
2349 	return ECORE_SUCCESS;
2350 
2351 alloc_err:
2352 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2353 	ecore_qm_info_free(p_hwfn);
2354 	return ECORE_NOMEM;
2355 }
2356 /******************** End QM initialization ***************/
2357 
2358 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2359 {
2360 	enum _ecore_status_t rc = ECORE_SUCCESS;
2361 	int i;
2362 
2363 	if (IS_VF(p_dev)) {
2364 		for_each_hwfn(p_dev, i) {
2365 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2366 			if (rc != ECORE_SUCCESS)
2367 				return rc;
2368 		}
2369 		return rc;
2370 	}
2371 
2372 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2373 				     sizeof(*p_dev->fw_data));
2374 	if (!p_dev->fw_data)
2375 		return ECORE_NOMEM;
2376 
2377 	for_each_hwfn(p_dev, i) {
2378 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2379 		u32 n_eqes, num_cons;
2380 
2381 		/* initialize the doorbell recovery mechanism */
2382 		rc = ecore_db_recovery_setup(p_hwfn);
2383 		if (rc)
2384 			goto alloc_err;
2385 
2386 		/* First allocate the context manager structure */
2387 		rc = ecore_cxt_mngr_alloc(p_hwfn);
2388 		if (rc)
2389 			goto alloc_err;
2390 
2391 		/* Set the HW cid/tid numbers (in the context manager)
2392 		 * Must be done prior to any further computations.
2393 		 */
2394 		rc = ecore_cxt_set_pf_params(p_hwfn);
2395 		if (rc)
2396 			goto alloc_err;
2397 
2398 		rc = ecore_alloc_qm_data(p_hwfn);
2399 		if (rc)
2400 			goto alloc_err;
2401 
2402 		/* init qm info */
2403 		ecore_init_qm_info(p_hwfn);
2404 
2405 		/* Compute the ILT client partition */
2406 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
2407 		if (rc)
2408 			goto alloc_err;
2409 
2410 		/* CID map / ILT shadow table / T2
2411 		 * The talbes sizes are determined by the computations above
2412 		 */
2413 		rc = ecore_cxt_tables_alloc(p_hwfn);
2414 		if (rc)
2415 			goto alloc_err;
2416 
2417 		/* SPQ, must follow ILT because initializes SPQ context */
2418 		rc = ecore_spq_alloc(p_hwfn);
2419 		if (rc)
2420 			goto alloc_err;
2421 
2422 		/* SP status block allocation */
2423 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2424 							   RESERVED_PTT_DPC);
2425 
2426 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2427 		if (rc)
2428 			goto alloc_err;
2429 
2430 		rc = ecore_iov_alloc(p_hwfn);
2431 		if (rc)
2432 			goto alloc_err;
2433 
2434 		/* EQ */
2435 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2436 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2437 			/* Calculate the EQ size
2438 			 * ---------------------
2439 			 * Each ICID may generate up to one event at a time i.e.
2440 			 * the event must be handled/cleared before a new one
2441 			 * can be generated. We calculate the sum of events per
2442 			 * protocol and create an EQ deep enough to handle the
2443 			 * worst case:
2444 			 * - Core - according to SPQ.
2445 			 * - RoCE - per QP there are a couple of ICIDs, one
2446 			 *	  responder and one requester, each can
2447 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
2448 			 *	  Each CQ can generate an EQE. There are 2 CQs
2449 			 *	  per QP => n_eqes_cq = 2 * n_qp.
2450 			 *	  Hence the RoCE total is 4 * n_qp or
2451 			 *	  2 * num_cons.
2452 			 * - ENet - There can be up to two events per VF. One
2453 			 *	  for VF-PF channel and another for VF FLR
2454 			 *	  initial cleanup. The number of VFs is
2455 			 *	  bounded by MAX_NUM_VFS_BB, and is much
2456 			 *	  smaller than RoCE's so we avoid exact
2457 			 *	  calculation.
2458 			 */
2459 			if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
2460 				num_cons =
2461 				    ecore_cxt_get_proto_cid_count(
2462 						p_hwfn,
2463 						PROTOCOLID_ROCE,
2464 						OSAL_NULL);
2465 				num_cons *= 2;
2466 			} else {
2467 				num_cons = ecore_cxt_get_proto_cid_count(
2468 						p_hwfn,
2469 						PROTOCOLID_IWARP,
2470 						OSAL_NULL);
2471 			}
2472 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
2473 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2474 			num_cons =
2475 			    ecore_cxt_get_proto_cid_count(p_hwfn,
2476 							  PROTOCOLID_ISCSI,
2477 							  OSAL_NULL);
2478 			n_eqes += 2 * num_cons;
2479 		}
2480 
2481 		if (n_eqes > 0xFFFF) {
2482 			DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
2483 				       "The maximum of a u16 chain is 0x%x\n",
2484 			       n_eqes, 0xFFFF);
2485 			goto alloc_no_mem;
2486 		}
2487 
2488 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2489 		if (rc)
2490 			goto alloc_err;
2491 
2492 		rc = ecore_consq_alloc(p_hwfn);
2493 		if (rc)
2494 			goto alloc_err;
2495 
2496 		rc = ecore_l2_alloc(p_hwfn);
2497 		if (rc != ECORE_SUCCESS)
2498 			goto alloc_err;
2499 
2500 		/* DMA info initialization */
2501 		rc = ecore_dmae_info_alloc(p_hwfn);
2502 		if (rc) {
2503 			DP_NOTICE(p_hwfn, false, "Failed to allocate memory for dmae_info structure\n");
2504 			goto alloc_err;
2505 		}
2506 
2507 		/* DCBX initialization */
2508 		rc = ecore_dcbx_info_alloc(p_hwfn);
2509 		if (rc) {
2510 			DP_NOTICE(p_hwfn, false,
2511 				  "Failed to allocate memory for dcbx structure\n");
2512 			goto alloc_err;
2513 		}
2514 
2515 		rc = OSAL_DBG_ALLOC_USER_DATA(p_hwfn, &p_hwfn->dbg_user_info);
2516 		if (rc) {
2517 			DP_NOTICE(p_hwfn, false,
2518 				  "Failed to allocate dbg user info structure\n");
2519 			goto alloc_err;
2520 		}
2521 
2522 		rc = OSAL_DBG_ALLOC_USER_DATA(p_hwfn, &p_hwfn->dbg_user_info);
2523 		if (rc) {
2524 			DP_NOTICE(p_hwfn, false,
2525 				  "Failed to allocate dbg user info structure\n");
2526 			goto alloc_err;
2527 		}
2528 	} /* hwfn loop */
2529 
2530 	rc = ecore_llh_alloc(p_dev);
2531 	if (rc != ECORE_SUCCESS) {
2532 		DP_NOTICE(p_dev, true,
2533 			  "Failed to allocate memory for the llh_info structure\n");
2534 		goto alloc_err;
2535 	}
2536 
2537 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2538 					 sizeof(*p_dev->reset_stats));
2539 	if (!p_dev->reset_stats) {
2540 		DP_NOTICE(p_dev, false, "Failed to allocate reset statistics\n");
2541 		goto alloc_no_mem;
2542 	}
2543 
2544 	return ECORE_SUCCESS;
2545 
2546 alloc_no_mem:
2547 	rc = ECORE_NOMEM;
2548 alloc_err:
2549 	ecore_resc_free(p_dev);
2550 	return rc;
2551 }
2552 
2553 void ecore_resc_setup(struct ecore_dev *p_dev)
2554 {
2555 	int i;
2556 
2557 	if (IS_VF(p_dev)) {
2558 		for_each_hwfn(p_dev, i)
2559 			ecore_l2_setup(&p_dev->hwfns[i]);
2560 		return;
2561 	}
2562 
2563 	for_each_hwfn(p_dev, i) {
2564 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2565 
2566 		ecore_cxt_mngr_setup(p_hwfn);
2567 		ecore_spq_setup(p_hwfn);
2568 		ecore_eq_setup(p_hwfn);
2569 		ecore_consq_setup(p_hwfn);
2570 
2571 		/* Read shadow of current MFW mailbox */
2572 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2573 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2574 			    p_hwfn->mcp_info->mfw_mb_cur,
2575 			    p_hwfn->mcp_info->mfw_mb_length);
2576 
2577 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2578 
2579 		ecore_l2_setup(p_hwfn);
2580 		ecore_iov_setup(p_hwfn);
2581 	}
2582 }
2583 
2584 #define FINAL_CLEANUP_POLL_CNT	(100)
2585 #define FINAL_CLEANUP_POLL_TIME	(10)
2586 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2587 					 struct ecore_ptt *p_ptt,
2588 					 u16 id, bool is_vf)
2589 {
2590 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2591 	enum _ecore_status_t rc = ECORE_TIMEOUT;
2592 
2593 #ifndef ASIC_ONLY
2594 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2595 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2596 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2597 		return ECORE_SUCCESS;
2598 	}
2599 #endif
2600 
2601 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2602 	    USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2603 
2604 	if (is_vf)
2605 		id += 0x10;
2606 
2607 	command |= X_FINAL_CLEANUP_AGG_INT <<
2608 	    SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2609 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2610 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2611 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2612 
2613 /* Make sure notification is not set before initiating final cleanup */
2614 
2615 	if (REG_RD(p_hwfn, addr)) {
2616 		DP_NOTICE(p_hwfn, false,
2617 			  "Unexpected; Found final cleanup notification");
2618 		DP_NOTICE(p_hwfn, false,
2619 			  " before initiating final cleanup\n");
2620 		REG_WR(p_hwfn, addr, 0);
2621 	}
2622 
2623 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2624 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2625 		   id, command);
2626 
2627 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2628 
2629 	/* Poll until completion */
2630 	while (!REG_RD(p_hwfn, addr) && count--)
2631 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2632 
2633 	if (REG_RD(p_hwfn, addr))
2634 		rc = ECORE_SUCCESS;
2635 	else
2636 		DP_NOTICE(p_hwfn, true,
2637 			  "Failed to receive FW final cleanup notification\n");
2638 
2639 	/* Cleanup afterwards */
2640 	REG_WR(p_hwfn, addr, 0);
2641 
2642 	return rc;
2643 }
2644 
2645 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2646 {
2647 	int hw_mode = 0;
2648 
2649 	if (ECORE_IS_BB(p_hwfn->p_dev)) {
2650 		hw_mode |= 1 << MODE_BB;
2651 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2652 		hw_mode |= 1 << MODE_K2;
2653 	} else {
2654 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2655 			  p_hwfn->p_dev->type);
2656 		return ECORE_INVAL;
2657 	}
2658 
2659 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
2660 	switch (p_hwfn->p_dev->num_ports_in_engine) {
2661 	case 1:
2662 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2663 		break;
2664 	case 2:
2665 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2666 		break;
2667 	case 4:
2668 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2669 		break;
2670 	default:
2671 		DP_NOTICE(p_hwfn, true,
2672 			  "num_ports_in_engine = %d not supported\n",
2673 			  p_hwfn->p_dev->num_ports_in_engine);
2674 		return ECORE_INVAL;
2675 	}
2676 
2677 	if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits))
2678 		hw_mode |= 1 << MODE_MF_SD;
2679 	else
2680 		hw_mode |= 1 << MODE_MF_SI;
2681 
2682 #ifndef ASIC_ONLY
2683 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2684 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2685 			hw_mode |= 1 << MODE_FPGA;
2686 		} else {
2687 			if (p_hwfn->p_dev->b_is_emul_full)
2688 				hw_mode |= 1 << MODE_EMUL_FULL;
2689 			else
2690 				hw_mode |= 1 << MODE_EMUL_REDUCED;
2691 		}
2692 	} else
2693 #endif
2694 		hw_mode |= 1 << MODE_ASIC;
2695 
2696 	if (ECORE_IS_CMT(p_hwfn->p_dev))
2697 		hw_mode |= 1 << MODE_100G;
2698 
2699 	p_hwfn->hw_info.hw_mode = hw_mode;
2700 
2701 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2702 		   "Configuring function for hw_mode: 0x%08x\n",
2703 		   p_hwfn->hw_info.hw_mode);
2704 
2705 	return ECORE_SUCCESS;
2706 }
2707 
2708 #ifndef ASIC_ONLY
2709 /* MFW-replacement initializations for emulation */
2710 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_dev *p_dev,
2711 					       struct ecore_ptt *p_ptt)
2712 {
2713 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2714 	u32 pl_hv, wr_mbs;
2715 	int i, pos;
2716 	u16 ctrl = 0;
2717 
2718 	if (!CHIP_REV_IS_EMUL(p_dev)) {
2719 		DP_NOTICE(p_dev, false,
2720 			  "ecore_hw_init_chip() shouldn't be called in a non-emulation environment\n");
2721 		return ECORE_INVAL;
2722 	}
2723 
2724 	pl_hv = ECORE_IS_BB(p_dev) ? 0x1 : 0x401;
2725 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2726 
2727 	if (ECORE_IS_AH(p_dev))
2728 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2, 0x3ffffff);
2729 
2730 	/* Initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2731 	if (ECORE_IS_BB(p_dev))
2732 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2733 
2734 	if (ECORE_IS_AH(p_dev)) {
2735 		/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2736 		ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2737 			 p_dev->num_ports_in_engine >> 1);
2738 
2739 		ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2740 			 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2741 	}
2742 
2743 	/* Signal the PSWRQ block to start initializing internal memories */
2744 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2745 	for (i = 0; i < 100; i++) {
2746 		OSAL_UDELAY(50);
2747 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2748 			break;
2749 	}
2750 	if (i == 100) {
2751 		DP_NOTICE(p_hwfn, true,
2752 			  "RBC done failed to complete in PSWRQ2\n");
2753 		return ECORE_TIMEOUT;
2754 	}
2755 
2756 	/* Indicate PSWRQ to initialize steering tag table with zeros */
2757 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RESET_STT, 1);
2758 	for (i = 0; i < 100; i++) {
2759 		OSAL_UDELAY(50);
2760 		if (!ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_RESET_STT))
2761 			break;
2762 	}
2763 	if (i == 100) {
2764 		DP_NOTICE(p_hwfn, true,
2765 			  "Steering tag table initialization failed to complete in PSWRQ2\n");
2766 		return ECORE_TIMEOUT;
2767 	}
2768 
2769 	/* Clear a possible PSWRQ2 STT parity which might have been generated by
2770 	 * a previous MSI-X read.
2771 	 */
2772 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_PRTY_STS_WR_H_0, 0x8);
2773 
2774 	/* Configure PSWRQ2_REG_WR_MBS0 according to the MaxPayloadSize field in
2775 	 * the PCI configuration space. The value is common for all PFs, so it
2776 	 * is okay to do it according to the first loading PF.
2777 	 */
2778 	pos = OSAL_PCI_FIND_CAPABILITY(p_dev, PCI_CAP_ID_EXP);
2779 	if (!pos) {
2780 		DP_NOTICE(p_dev, true,
2781 			  "Failed to find the PCI Express Capability structure in the PCI config space\n");
2782 		return ECORE_IO;
2783 	}
2784 
2785 	OSAL_PCI_READ_CONFIG_WORD(p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
2786 	wr_mbs = (ctrl & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
2787 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0, wr_mbs);
2788 
2789 	/* Configure the PGLUE_B to discard mode */
2790 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_DISCARD_NBLOCK, 0x3f);
2791 
2792 	return ECORE_SUCCESS;
2793 }
2794 #endif
2795 
2796 /* Init run time data for all PFs and their VFs on an engine.
2797  * TBD - for VFs - Once we have parent PF info for each VF in
2798  * shmem available as CAU requires knowledge of parent PF for each VF.
2799  */
2800 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2801 {
2802 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2803 	u32 igu_sb_id;
2804 	int i;
2805 
2806 	for_each_hwfn(p_dev, i) {
2807 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2808 		struct ecore_igu_info *p_igu_info;
2809 		struct ecore_igu_block *p_block;
2810 		struct cau_sb_entry sb_entry;
2811 
2812 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2813 
2814 		for (igu_sb_id = 0;
2815 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2816 		     igu_sb_id++) {
2817 			p_block = &p_igu_info->entry[igu_sb_id];
2818 
2819 			if (!p_block->is_pf)
2820 				continue;
2821 
2822 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2823 						p_block->function_id, 0, 0);
2824 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2825 					 sb_entry);
2826 		}
2827 	}
2828 }
2829 
2830 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2831 				       struct ecore_ptt *p_ptt)
2832 {
2833 	u32 val, wr_mbs, cache_line_size;
2834 
2835 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2836 	switch (val) {
2837 	case 0:
2838 		wr_mbs = 128;
2839 		break;
2840 	case 1:
2841 		wr_mbs = 256;
2842 		break;
2843 	case 2:
2844 		wr_mbs = 512;
2845 		break;
2846 	default:
2847 		DP_INFO(p_hwfn,
2848 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2849 			val);
2850 		return;
2851 	}
2852 
2853 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2854 	switch (cache_line_size) {
2855 	case 32:
2856 		val = 0;
2857 		break;
2858 	case 64:
2859 		val = 1;
2860 		break;
2861 	case 128:
2862 		val = 2;
2863 		break;
2864 	case 256:
2865 		val = 3;
2866 		break;
2867 	default:
2868 		DP_INFO(p_hwfn,
2869 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2870 			cache_line_size);
2871 	}
2872 
2873 	if (wr_mbs < OSAL_CACHE_LINE_SIZE)
2874 		DP_INFO(p_hwfn,
2875 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2876 			OSAL_CACHE_LINE_SIZE, wr_mbs);
2877 
2878 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2879 	if (val > 0) {
2880 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2881 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2882 	}
2883 }
2884 
2885 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2886 						 struct ecore_ptt *p_ptt,
2887 						 int hw_mode)
2888 {
2889 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2890 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2891 	u8 vf_id, max_num_vfs;
2892 	u16 num_pfs, pf_id;
2893 	u32 concrete_fid;
2894 	enum _ecore_status_t rc = ECORE_SUCCESS;
2895 
2896 	ecore_init_cau_rt_data(p_dev);
2897 
2898 	/* Program GTT windows */
2899 	ecore_gtt_init(p_hwfn);
2900 
2901 #ifndef ASIC_ONLY
2902 	if (CHIP_REV_IS_EMUL(p_dev) && IS_LEAD_HWFN(p_hwfn)) {
2903 		rc = ecore_hw_init_chip(p_dev, p_ptt);
2904 		if (rc != ECORE_SUCCESS)
2905 			return rc;
2906 	}
2907 #endif
2908 
2909 	if (p_hwfn->mcp_info) {
2910 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2911 			qm_info->pf_rl_en = 1;
2912 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2913 			qm_info->pf_wfq_en = 1;
2914 	}
2915 
2916 	ecore_qm_common_rt_init(p_hwfn,
2917 				p_dev->num_ports_in_engine,
2918 				qm_info->max_phys_tcs_per_port,
2919 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
2920 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
2921 				qm_info->qm_port_params,
2922 				OSAL_NULL /* global RLs are not configured */);
2923 
2924 	ecore_cxt_hw_init_common(p_hwfn);
2925 
2926 	ecore_init_cache_line_size(p_hwfn, p_ptt);
2927 
2928 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
2929 			    hw_mode);
2930 	if (rc != ECORE_SUCCESS)
2931 		return rc;
2932 
2933 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
2934 	 * need to decide with which value, maybe runtime
2935 	 */
2936 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
2937 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
2938 
2939 	if (ECORE_IS_BB(p_dev)) {
2940 		/* Workaround clears ROCE search for all functions to prevent
2941 		 * involving non initialized function in processing ROCE packet.
2942 		 */
2943 		num_pfs = (u16)NUM_OF_ENG_PFS(p_dev);
2944 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
2945 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
2946 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2947 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2948 		}
2949 		/* pretend to original PF */
2950 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2951 	}
2952 
2953 	/* Workaround for avoiding CCFC execution error when getting packets
2954 	 * with CRC errors, and allowing instead the invoking of the FW error
2955 	 * handler.
2956 	 * This is not done inside the init tool since it currently can't
2957 	 * perform a pretending to VFs.
2958 	 */
2959 	max_num_vfs = (u8)NUM_OF_VFS(p_dev);
2960 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
2961 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
2962 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
2963 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
2964 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
2965 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
2966 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
2967 	}
2968 	/* pretend to original PF */
2969 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2970 
2971 	return rc;
2972 }
2973 
2974 #ifndef ASIC_ONLY
2975 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
2976 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
2977 
2978 #define PMEG_IF_BYTE_COUNT	8
2979 
2980 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
2981 			     struct ecore_ptt *p_ptt,
2982 			     u32 addr, u64 data, u8 reg_type, u8 port)
2983 {
2984 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2985 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
2986 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
2987 		   (8 << PMEG_IF_BYTE_COUNT),
2988 		   (reg_type << 25) | (addr << 8) | port,
2989 		   (u32)((data >> 32) & 0xffffffff),
2990 		   (u32)(data & 0xffffffff));
2991 
2992 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
2993 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
2994 		  0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
2995 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
2996 		 (reg_type << 25) | (addr << 8) | port);
2997 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
2998 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
2999 		 (data >> 32) & 0xffffffff);
3000 }
3001 
3002 #define XLPORT_MODE_REG	(0x20a)
3003 #define XLPORT_MAC_CONTROL (0x210)
3004 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3005 #define XLPORT_ENABLE_REG (0x20b)
3006 
3007 #define XLMAC_CTRL (0x600)
3008 #define XLMAC_MODE (0x601)
3009 #define XLMAC_RX_MAX_SIZE (0x608)
3010 #define XLMAC_TX_CTRL (0x604)
3011 #define XLMAC_PAUSE_CTRL (0x60d)
3012 #define XLMAC_PFC_CTRL (0x60e)
3013 
3014 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3015 				    struct ecore_ptt *p_ptt)
3016 {
3017 	u8 loopback = 0, port = p_hwfn->port_id * 2;
3018 
3019 	/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
3020 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
3021 			 port);
3022 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3023 	/* XLMAC: SOFT RESET */
3024 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
3025 	/* XLMAC: Port Speed >= 10Gbps */
3026 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
3027 	/* XLMAC: Max Size */
3028 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
3029 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3030 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3031 			 0, port);
3032 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
3033 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3034 			 0x30ffffc000ULL, 0, port);
3035 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
3036 			 port);	/* XLMAC: TX_EN, RX_EN */
3037 	/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3038 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3039 			 0x1003 | (loopback << 2), 0, port);
3040 	/* Enabled Parallel PFC interface */
3041 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
3042 
3043 	/* XLPORT port enable */
3044 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
3045 }
3046 
3047 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
3048 				       struct ecore_ptt *p_ptt)
3049 {
3050 	u32 mac_base, mac_config_val = 0xa853;
3051 	u8 port = p_hwfn->port_id;
3052 
3053 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
3054 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_SHIFT) |
3055 		 (port <<
3056 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_SHIFT) |
3057 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_SHIFT));
3058 
3059 	mac_base = NWM_REG_MAC0_K2 + (port << 2) * NWM_REG_MAC0_SIZE;
3060 
3061 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2,
3062 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_SHIFT);
3063 
3064 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2,
3065 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_SHIFT);
3066 
3067 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2,
3068 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_SHIFT);
3069 
3070 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2,
3071 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_SHIFT);
3072 
3073 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2,
3074 		 (0xA <<
3075 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_SHIFT) |
3076 		 (8 <<
3077 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_SHIFT));
3078 
3079 	/* Strip the CRC field from the frame */
3080 	mac_config_val &= ~ETH_MAC_REG_COMMAND_CONFIG_CRC_FWD_K2;
3081 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2,
3082 		 mac_config_val);
3083 }
3084 
3085 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3086 				 struct ecore_ptt *p_ptt)
3087 {
3088 	u8 port = ECORE_IS_BB(p_hwfn->p_dev) ? p_hwfn->port_id * 2
3089 					     : p_hwfn->port_id;
3090 
3091 	DP_INFO(p_hwfn->p_dev, "Emulation: Configuring Link [port %02x]\n",
3092 		port);
3093 
3094 	if (ECORE_IS_BB(p_hwfn->p_dev))
3095 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
3096 	else
3097 		ecore_emul_link_init_ah(p_hwfn, p_ptt);
3098 
3099 	return;
3100 }
3101 
3102 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3103 			       struct ecore_ptt *p_ptt,  u8 port)
3104 {
3105 	int port_offset = port ? 0x800 : 0;
3106 	u32 xmac_rxctrl = 0;
3107 
3108 	/* Reset of XMAC */
3109 	/* FIXME: move to common start */
3110 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3111 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Clear */
3112 	OSAL_MSLEEP(1);
3113 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3114 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Set */
3115 
3116 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3117 
3118 	/* Set the number of ports on the Warp Core to 10G */
3119 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3120 
3121 	/* Soft reset of XMAC */
3122 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3123 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3124 	OSAL_MSLEEP(1);
3125 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3126 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3127 
3128 	/* FIXME: move to common end */
3129 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3130 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3131 
3132 	/* Set Max packet size: initialize XMAC block register for port 0 */
3133 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3134 
3135 	/* CRC append for Tx packets: init XMAC block register for port 1 */
3136 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3137 
3138 	/* Enable TX and RX: initialize XMAC block register for port 1 */
3139 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3140 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3141 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3142 			       XMAC_REG_RX_CTRL_BB + port_offset);
3143 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3144 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3145 }
3146 #endif
3147 
3148 static u32 ecore_hw_norm_region_conn(struct ecore_hwfn *p_hwfn)
3149 {
3150 	u32 norm_region_conn;
3151 
3152 	/* The order of CIDs allocation is according to the order of
3153 	 * 'enum protocol_type'. Therefore, the number of CIDs for the normal
3154 	 * region is calculated based on the CORE CIDs, in case of non-ETH
3155 	 * personality, and otherwise - based on the ETH CIDs.
3156 	 */
3157 	norm_region_conn =
3158 		ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3159 		ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3160 					      OSAL_NULL) +
3161 		ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3162 					      OSAL_NULL);
3163 
3164 	return norm_region_conn;
3165 }
3166 
3167 static enum _ecore_status_t
3168 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3169 		       struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
3170 {
3171 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
3172 	u32 min_dpis;
3173 	u32 n_wids;
3174 
3175 	/* Calculate DPI size
3176 	 * ------------------
3177 	 * The PWM region contains Doorbell Pages. The first is reserverd for
3178 	 * the kernel for, e.g, L2. The others are free to be used by non-
3179 	 * trusted applications, typically from user space. Each page, called a
3180 	 * doorbell page is sectioned into windows that allow doorbells to be
3181 	 * issued in parallel by the kernel/application. The size of such a
3182 	 * window (a.k.a. WID) is 1kB.
3183 	 * Summary:
3184 	 *    1kB WID x N WIDS = DPI page size
3185 	 *    DPI page size x N DPIs = PWM region size
3186 	 * Notes:
3187 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3188 	 * in order to ensure that two applications won't share the same page.
3189 	 * It also must contain at least one WID per CPU to allow parallelism.
3190 	 * It also must be a power of 2, since it is stored as a bit shift.
3191 	 *
3192 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3193 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3194 	 * containing 4 WIDs.
3195 	 */
3196 	n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3197 	dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3198 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) &
3199 			~(OSAL_PAGE_SIZE - 1);
3200 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3201 	dpi_count = pwm_region_size / dpi_page_size;
3202 
3203 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3204 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3205 
3206 	/* Update hwfn */
3207 	p_hwfn->dpi_size = dpi_page_size;
3208 	p_hwfn->dpi_count = dpi_count;
3209 
3210 	/* Update registers */
3211 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3212 
3213 	if (dpi_count < min_dpis)
3214 		return ECORE_NORESOURCES;
3215 
3216 	return ECORE_SUCCESS;
3217 }
3218 
3219 enum ECORE_ROCE_EDPM_MODE {
3220 	ECORE_ROCE_EDPM_MODE_ENABLE = 0,
3221 	ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
3222 	ECORE_ROCE_EDPM_MODE_DISABLE = 2,
3223 };
3224 
3225 bool ecore_edpm_enabled(struct ecore_hwfn *p_hwfn)
3226 {
3227 	if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
3228 		return false;
3229 
3230 	return true;
3231 }
3232 
3233 static enum _ecore_status_t
3234 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3235 			      struct ecore_ptt *p_ptt)
3236 {
3237 	u32 norm_region_conn, min_addr_reg1;
3238 	u32 pwm_regsize, norm_regsize;
3239 	u32 db_bar_size, n_cpus;
3240 	u32 roce_edpm_mode;
3241 	u32 pf_dems_shift;
3242 	enum _ecore_status_t rc = ECORE_SUCCESS;
3243 	u8 cond;
3244 
3245 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3246 	if (ECORE_IS_CMT(p_hwfn->p_dev))
3247 		db_bar_size /= 2;
3248 
3249 	/* Calculate doorbell regions
3250 	 * -----------------------------------
3251 	 * The doorbell BAR is made of two regions. The first is called normal
3252 	 * region and the second is called PWM region. In the normal region
3253 	 * each ICID has its own set of addresses so that writing to that
3254 	 * specific address identifies the ICID. In the Process Window Mode
3255 	 * region the ICID is given in the data written to the doorbell. The
3256 	 * above per PF register denotes the offset in the doorbell BAR in which
3257 	 * the PWM region begins.
3258 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3259 	 * non-PWM connection. The calculation below computes the total non-PWM
3260 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3261 	 * in units of 4,096 bytes.
3262 	 */
3263 	norm_region_conn = ecore_hw_norm_region_conn(p_hwfn);
3264 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * norm_region_conn,
3265 			       OSAL_PAGE_SIZE);
3266 	min_addr_reg1 = norm_regsize / 4096;
3267 	pwm_regsize = db_bar_size - norm_regsize;
3268 
3269 	/* Check that the normal and PWM sizes are valid */
3270 	if (db_bar_size < norm_regsize) {
3271 		DP_ERR(p_hwfn->p_dev,
3272 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3273 		       db_bar_size, norm_regsize);
3274 		return ECORE_NORESOURCES;
3275 	}
3276 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3277 		DP_ERR(p_hwfn->p_dev,
3278 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3279 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3280 		       norm_regsize);
3281 		return ECORE_NORESOURCES;
3282 	}
3283 
3284 	/* Calculate number of DPIs */
3285 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
3286 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3287 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3288 		/* Either EDPM is mandatory, or we are attempting to allocate a
3289 		 * WID per CPU.
3290 		 */
3291 		n_cpus = OSAL_NUM_CPUS();
3292 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3293 	}
3294 
3295 	cond = ((rc != ECORE_SUCCESS) &&
3296 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3297 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3298 	if (cond || p_hwfn->dcbx_no_edpm) {
3299 		/* Either EDPM is disabled from user configuration, or it is
3300 		 * disabled via DCBx, or it is not mandatory and we failed to
3301 		 * allocated a WID per CPU.
3302 		 */
3303 		n_cpus = 1;
3304 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3305 
3306 		/* If we entered this flow due to DCBX then the DPM register is
3307 		 * already configured.
3308 		 */
3309 	}
3310 
3311 	DP_INFO(p_hwfn,
3312 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
3313 		norm_regsize, pwm_regsize);
3314 	DP_INFO(p_hwfn,
3315 		" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
3316 		p_hwfn->dpi_size, p_hwfn->dpi_count,
3317 		(!ecore_edpm_enabled(p_hwfn)) ?
3318 		"disabled" : "enabled");
3319 
3320 	/* Check return codes from above calls */
3321 	if (rc != ECORE_SUCCESS) {
3322 		DP_ERR(p_hwfn,
3323 		       "Failed to allocate enough DPIs\n");
3324 		return ECORE_NORESOURCES;
3325 	}
3326 
3327 	/* Update hwfn */
3328 	p_hwfn->dpi_start_offset = norm_regsize;
3329 
3330 	/* Update registers */
3331 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3332 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3333 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3334 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3335 
3336 	return ECORE_SUCCESS;
3337 }
3338 
3339 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3340 					       struct ecore_ptt *p_ptt,
3341 					       int hw_mode)
3342 {
3343 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3344 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3345 
3346 	/* In CMT the gate should be cleared by the 2nd hwfn */
3347 	if (!ECORE_IS_CMT(p_dev) || !IS_LEAD_HWFN(p_hwfn))
3348 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3349 
3350 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3351 			    hw_mode);
3352 	if (rc != ECORE_SUCCESS)
3353 		return rc;
3354 
3355 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3356 
3357 #ifndef ASIC_ONLY
3358 	if (CHIP_REV_IS_FPGA(p_dev) && ECORE_IS_BB(p_dev))
3359 		ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3360 
3361 	if (CHIP_REV_IS_EMUL(p_dev)) {
3362 		if (ECORE_IS_CMT(p_dev)) {
3363 			/* Activate OPTE in CMT */
3364 			u32 val;
3365 
3366 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3367 			val |= 0x10;
3368 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3369 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3370 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3371 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3372 			ecore_wr(p_hwfn, p_ptt,
3373 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3374 			ecore_wr(p_hwfn, p_ptt,
3375 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3376 			ecore_wr(p_hwfn, p_ptt,
3377 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3378 				 0x55555555);
3379 		}
3380 
3381 		/* Set the TAGMAC default function on the port if needed.
3382 		 * The ppfid should be set in the vector, except in BB which has
3383 		 * a bug in the LLH where the ppfid is actually engine based.
3384 		 */
3385 		if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_dev->mf_bits)) {
3386 			u8 pf_id = p_hwfn->rel_pf_id;
3387 
3388 			if (!ECORE_IS_BB(p_dev))
3389 				pf_id /= p_dev->num_ports_in_engine;
3390 			ecore_wr(p_hwfn, p_ptt,
3391 				 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
3392 		}
3393 
3394 		ecore_emul_link_init(p_hwfn, p_ptt);
3395 	}
3396 #endif
3397 
3398 	return ECORE_SUCCESS;
3399 }
3400 
3401 static enum _ecore_status_t
3402 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3403 		 int hw_mode, struct ecore_hw_init_params *p_params)
3404 {
3405 	u8 rel_pf_id = p_hwfn->rel_pf_id;
3406 	u32 prs_reg;
3407 	enum _ecore_status_t rc = ECORE_SUCCESS;
3408 	u16 ctrl;
3409 	int pos;
3410 
3411 	if (p_hwfn->mcp_info) {
3412 		struct ecore_mcp_function_info *p_info;
3413 
3414 		p_info = &p_hwfn->mcp_info->func_info;
3415 		if (p_info->bandwidth_min)
3416 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3417 
3418 		/* Update rate limit once we'll actually have a link */
3419 		p_hwfn->qm_info.pf_rl = 100000;
3420 	}
3421 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3422 
3423 	ecore_int_igu_init_rt(p_hwfn);
3424 
3425 	/* Set VLAN in NIG if needed */
3426 	if (hw_mode & (1 << MODE_MF_SD)) {
3427 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3428 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3429 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3430 			     p_hwfn->hw_info.ovlan);
3431 
3432 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3433 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3434 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3435 			     1);
3436 	}
3437 
3438 	/* Enable classification by MAC if needed */
3439 	if (hw_mode & (1 << MODE_MF_SI)) {
3440 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3441 			   "Configuring TAGMAC_CLS_TYPE\n");
3442 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
3443 			     1);
3444 	}
3445 
3446 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
3447 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3448 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3449 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3450 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3451 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3452 
3453 	/* perform debug configuration when chip is out of reset */
3454 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3455 
3456 	/* Sanity check before the PF init sequence that uses DMAE */
3457 	rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3458 	if (rc)
3459 		return rc;
3460 
3461 	/* PF Init sequence */
3462 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3463 	if (rc)
3464 		return rc;
3465 
3466 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3467 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3468 	if (rc)
3469 		return rc;
3470 
3471 	ecore_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem);
3472 
3473 	/* Pure runtime initializations - directly to the HW  */
3474 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3475 
3476 	/* PCI relaxed ordering causes a decrease in the performance on some
3477 	 * systems. Till a root cause is found, disable this attribute in the
3478 	 * PCI config space.
3479 	 */
3480 	/* Not in use @DPDK
3481 	* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3482 	* if (!pos) {
3483 	*	DP_NOTICE(p_hwfn, true,
3484 	*		  "Failed to find the PCIe Cap\n");
3485 	*	return ECORE_IO;
3486 	* }
3487 	* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3488 	* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3489 	* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
3490 	*/
3491 
3492 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3493 	if (rc != ECORE_SUCCESS)
3494 		return rc;
3495 
3496 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
3497 	if (IS_LEAD_HWFN(p_hwfn)) {
3498 		rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3499 					p_params->avoid_eng_affin);
3500 		if (rc != ECORE_SUCCESS)
3501 			return rc;
3502 	}
3503 
3504 	if (p_params->b_hw_start) {
3505 		/* enable interrupts */
3506 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3507 		if (rc != ECORE_SUCCESS)
3508 			return rc;
3509 
3510 		/* send function start command */
3511 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3512 				       p_params->allow_npar_tx_switch);
3513 		if (rc) {
3514 			DP_NOTICE(p_hwfn, true,
3515 				  "Function start ramrod failed\n");
3516 			return rc;
3517 		}
3518 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3519 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3520 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3521 
3522 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
3523 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3524 					(1 << 2));
3525 			ecore_wr(p_hwfn, p_ptt,
3526 				 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3527 				 0x100);
3528 		}
3529 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3530 				"PRS_REG_SEARCH registers after start PFn\n");
3531 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3532 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3533 				"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3534 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3535 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3536 				"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3537 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3538 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3539 				"PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3540 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3541 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3542 				"PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3543 		prs_reg = ecore_rd(p_hwfn, p_ptt,
3544 				PRS_REG_SEARCH_TCP_FIRST_FRAG);
3545 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3546 				"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3547 				prs_reg);
3548 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3549 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3550 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3551 	}
3552 	return ECORE_SUCCESS;
3553 }
3554 
3555 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3556 						  struct ecore_ptt *p_ptt,
3557 						  bool b_enable)
3558 {
3559 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3560 
3561 	/* Configure the PF's internal FID_enable for master transactions */
3562 	ecore_wr(p_hwfn, p_ptt,
3563 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3564 
3565 	/* Wait until value is set - try for 1 second every 50us */
3566 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3567 		val = ecore_rd(p_hwfn, p_ptt,
3568 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3569 		if (val == set_val)
3570 			break;
3571 
3572 		OSAL_UDELAY(50);
3573 	}
3574 
3575 	if (val != set_val) {
3576 		DP_NOTICE(p_hwfn, true,
3577 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
3578 		return ECORE_UNKNOWN_ERROR;
3579 	}
3580 
3581 	return ECORE_SUCCESS;
3582 }
3583 
3584 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3585 				  struct ecore_ptt *p_main_ptt)
3586 {
3587 	/* Read shadow of current MFW mailbox */
3588 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3589 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3590 		    p_hwfn->mcp_info->mfw_mb_cur,
3591 		    p_hwfn->mcp_info->mfw_mb_length);
3592 }
3593 
3594 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3595 				   struct ecore_ptt *p_ptt)
3596 {
3597 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3598 		 1 << p_hwfn->abs_pf_id);
3599 }
3600 
3601 static enum _ecore_status_t
3602 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3603 			   struct ecore_load_req_params *p_load_req,
3604 			   struct ecore_drv_load_params *p_drv_load)
3605 {
3606 	/* Make sure that if ecore-client didn't provide inputs, all the
3607 	 * expected defaults are indeed zero.
3608 	 */
3609 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3610 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3611 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3612 
3613 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3614 
3615 	if (p_drv_load == OSAL_NULL)
3616 		goto out;
3617 
3618 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3619 			       ECORE_DRV_ROLE_KDUMP :
3620 			       ECORE_DRV_ROLE_OS;
3621 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3622 	p_load_req->override_force_load = p_drv_load->override_force_load;
3623 
3624 	/* Old MFW versions don't support timeout values other than default and
3625 	 * none, so these values are replaced according to the fall-back action.
3626 	 */
3627 
3628 	if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3629 	    p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3630 	    (p_hwfn->mcp_info->capabilities &
3631 	     FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3632 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3633 		goto out;
3634 	}
3635 
3636 	switch (p_drv_load->mfw_timeout_fallback) {
3637 	case ECORE_TO_FALLBACK_TO_NONE:
3638 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3639 		break;
3640 	case ECORE_TO_FALLBACK_TO_DEFAULT:
3641 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3642 		break;
3643 	case ECORE_TO_FALLBACK_FAIL_LOAD:
3644 		DP_NOTICE(p_hwfn, false,
3645 			  "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3646 			  p_drv_load->mfw_timeout_val,
3647 			  ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3648 			  ECORE_LOAD_REQ_LOCK_TO_NONE);
3649 		return ECORE_ABORTED;
3650 	}
3651 
3652 	DP_INFO(p_hwfn,
3653 		"Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3654 		p_drv_load->mfw_timeout_val,
3655 		(p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3656 		"default" : "none",
3657 		p_load_req->timeout_val);
3658 out:
3659 	return ECORE_SUCCESS;
3660 }
3661 
3662 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3663 				    struct ecore_hw_init_params *p_params)
3664 {
3665 	if (p_params->p_tunn) {
3666 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3667 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3668 	}
3669 
3670 	p_hwfn->b_int_enabled = 1;
3671 
3672 	return ECORE_SUCCESS;
3673 }
3674 
3675 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3676 				   struct ecore_hw_init_params *p_params)
3677 {
3678 	struct ecore_load_req_params load_req_params;
3679 	u32 load_code, resp, param, drv_mb_param;
3680 	bool b_default_mtu = true;
3681 	struct ecore_hwfn *p_hwfn;
3682 	const u32 *fw_overlays;
3683 	u32 fw_overlays_len;
3684 	enum _ecore_status_t rc = ECORE_SUCCESS;
3685 	u16 ether_type;
3686 	int i;
3687 
3688 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3689 		DP_NOTICE(p_dev, false,
3690 			  "MSI mode is not supported for CMT devices\n");
3691 		return ECORE_INVAL;
3692 	}
3693 
3694 	if (IS_PF(p_dev)) {
3695 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3696 		if (rc != ECORE_SUCCESS)
3697 			return rc;
3698 	}
3699 
3700 	for_each_hwfn(p_dev, i) {
3701 		p_hwfn = &p_dev->hwfns[i];
3702 
3703 		/* If management didn't provide a default, set one of our own */
3704 		if (!p_hwfn->hw_info.mtu) {
3705 			p_hwfn->hw_info.mtu = 1500;
3706 			b_default_mtu = false;
3707 		}
3708 
3709 		if (IS_VF(p_dev)) {
3710 			ecore_vf_start(p_hwfn, p_params);
3711 			continue;
3712 		}
3713 
3714 		rc = ecore_calc_hw_mode(p_hwfn);
3715 		if (rc != ECORE_SUCCESS)
3716 			return rc;
3717 
3718 		if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3719 						   &p_dev->mf_bits) ||
3720 				     OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3721 						   &p_dev->mf_bits))) {
3722 			if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3723 					  &p_dev->mf_bits))
3724 				ether_type = ETHER_TYPE_VLAN;
3725 			else
3726 				ether_type = ETHER_TYPE_QINQ;
3727 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3728 				     ether_type);
3729 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3730 				     ether_type);
3731 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3732 				     ether_type);
3733 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3734 				     ether_type);
3735 		}
3736 
3737 		ecore_set_spq_block_timeout(p_hwfn, p_params->spq_timeout_ms);
3738 
3739 		rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3740 						p_params->p_drv_load_params);
3741 		if (rc != ECORE_SUCCESS)
3742 			return rc;
3743 
3744 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3745 					&load_req_params);
3746 		if (rc != ECORE_SUCCESS) {
3747 			DP_NOTICE(p_hwfn, false,
3748 				  "Failed sending a LOAD_REQ command\n");
3749 			return rc;
3750 		}
3751 
3752 		load_code = load_req_params.load_code;
3753 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3754 			   "Load request was sent. Load code: 0x%x\n",
3755 			   load_code);
3756 
3757 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3758 
3759 		/* CQ75580:
3760 		 * When coming back from hiberbate state, the registers from
3761 		 * which shadow is read initially are not initialized. It turns
3762 		 * out that these registers get initialized during the call to
3763 		 * ecore_mcp_load_req request. So we need to reread them here
3764 		 * to get the proper shadow register value.
3765 		 * Note: This is a workaround for the missing MFW
3766 		 * initialization. It may be removed once the implementation
3767 		 * is done.
3768 		 */
3769 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3770 
3771 		/* Only relevant for recovery:
3772 		 * Clear the indication after the LOAD_REQ command is responded
3773 		 * by the MFW.
3774 		 */
3775 		p_dev->recov_in_prog = false;
3776 
3777 		p_hwfn->first_on_engine = (load_code ==
3778 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
3779 
3780 		if (!qm_lock_ref_cnt) {
3781 #ifdef CONFIG_ECORE_LOCK_ALLOC
3782 			rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3783 			if (rc) {
3784 				DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3785 				goto qm_lock_fail;
3786 			}
3787 #endif
3788 			OSAL_SPIN_LOCK_INIT(&qm_lock);
3789 		}
3790 		++qm_lock_ref_cnt;
3791 
3792 		/* Clean up chip from previous driver if such remains exist.
3793 		 * This is not needed when the PF is the first one on the
3794 		 * engine, since afterwards we are going to init the FW.
3795 		 */
3796 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3797 			rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3798 						 p_hwfn->rel_pf_id, false);
3799 			if (rc != ECORE_SUCCESS) {
3800 				ecore_hw_err_notify(p_hwfn,
3801 						    ECORE_HW_ERR_RAMROD_FAIL);
3802 				goto load_err;
3803 			}
3804 		}
3805 
3806 		/* Log and clear previous pglue_b errors if such exist */
3807 		ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt, true);
3808 
3809 		/* Enable the PF's internal FID_enable in the PXP */
3810 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3811 						  true);
3812 		if (rc != ECORE_SUCCESS)
3813 			goto load_err;
3814 
3815 		/* Clear the pglue_b was_error indication.
3816 		 * It must be done after the BME and the internal FID_enable for
3817 		 * the PF are set, since VDMs may cause the indication to be set
3818 		 * again.
3819 		 */
3820 		ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3821 
3822 		fw_overlays = p_dev->fw_data->fw_overlays;
3823 		fw_overlays_len = p_dev->fw_data->fw_overlays_len;
3824 		p_hwfn->fw_overlay_mem =
3825 			ecore_fw_overlay_mem_alloc(p_hwfn, fw_overlays,
3826 						   fw_overlays_len);
3827 		if (!p_hwfn->fw_overlay_mem) {
3828 			DP_NOTICE(p_hwfn, false,
3829 				  "Failed to allocate fw overlay memory\n");
3830 			goto load_err;
3831 		}
3832 
3833 		switch (load_code) {
3834 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3835 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3836 						  p_hwfn->hw_info.hw_mode);
3837 			if (rc != ECORE_SUCCESS)
3838 				break;
3839 			/* Fall into */
3840 		case FW_MSG_CODE_DRV_LOAD_PORT:
3841 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3842 						p_hwfn->hw_info.hw_mode);
3843 			if (rc != ECORE_SUCCESS)
3844 				break;
3845 			/* Fall into */
3846 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3847 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3848 					      p_hwfn->hw_info.hw_mode,
3849 					      p_params);
3850 			break;
3851 		default:
3852 			DP_NOTICE(p_hwfn, false,
3853 				  "Unexpected load code [0x%08x]", load_code);
3854 			rc = ECORE_NOTIMPL;
3855 			break;
3856 		}
3857 
3858 		if (rc != ECORE_SUCCESS) {
3859 			DP_NOTICE(p_hwfn, false,
3860 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3861 				  load_code, rc);
3862 			goto load_err;
3863 		}
3864 
3865 		rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3866 		if (rc != ECORE_SUCCESS) {
3867 			DP_NOTICE(p_hwfn, false,
3868 				  "Sending load done failed, rc = %d\n", rc);
3869 			if (rc == ECORE_NOMEM) {
3870 				DP_NOTICE(p_hwfn, false,
3871 					  "Sending load done was failed due to memory allocation failure\n");
3872 				goto load_err;
3873 			}
3874 			return rc;
3875 		}
3876 
3877 		/* send DCBX attention request command */
3878 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3879 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3880 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3881 				   DRV_MSG_CODE_SET_DCBX,
3882 				   1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3883 				   &param);
3884 		if (rc != ECORE_SUCCESS) {
3885 			DP_NOTICE(p_hwfn, false,
3886 				  "Failed to send DCBX attention request\n");
3887 			return rc;
3888 		}
3889 
3890 		p_hwfn->hw_init_done = true;
3891 	}
3892 
3893 	if (IS_PF(p_dev)) {
3894 		/* Get pre-negotiated values for stag, bandwidth etc. */
3895 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3896 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3897 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3898 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3899 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3900 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3901 				   &resp, &param);
3902 		if (rc != ECORE_SUCCESS)
3903 			DP_NOTICE(p_hwfn, false,
3904 				  "Failed to send GET_OEM_UPDATES attention request\n");
3905 	}
3906 
3907 	if (IS_PF(p_dev)) {
3908 		/* Get pre-negotiated values for stag, bandwidth etc. */
3909 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3910 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3911 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3912 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3913 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3914 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3915 				   &resp, &param);
3916 		if (rc != ECORE_SUCCESS)
3917 			DP_NOTICE(p_hwfn, false,
3918 				  "Failed to send GET_OEM_UPDATES attention request\n");
3919 	}
3920 
3921 	if (IS_PF(p_dev)) {
3922 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3923 		drv_mb_param = STORM_FW_VERSION;
3924 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3925 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3926 				   drv_mb_param, &resp, &param);
3927 		if (rc != ECORE_SUCCESS)
3928 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3929 
3930 		if (!b_default_mtu) {
3931 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3932 						      p_hwfn->hw_info.mtu);
3933 			if (rc != ECORE_SUCCESS)
3934 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
3935 		}
3936 
3937 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3938 						      p_hwfn->p_main_ptt,
3939 						ECORE_OV_DRIVER_STATE_DISABLED);
3940 		if (rc != ECORE_SUCCESS)
3941 			DP_INFO(p_hwfn, "Failed to update driver state\n");
3942 
3943 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3944 						 ECORE_OV_ESWITCH_NONE);
3945 		if (rc != ECORE_SUCCESS)
3946 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
3947 	}
3948 
3949 	return rc;
3950 
3951 load_err:
3952 	--qm_lock_ref_cnt;
3953 #ifdef CONFIG_ECORE_LOCK_ALLOC
3954 	if (!qm_lock_ref_cnt)
3955 		OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
3956 qm_lock_fail:
3957 #endif
3958 	/* The MFW load lock should be released regardless of success or failure
3959 	 * of initialization.
3960 	 * TODO: replace this with an attempt to send cancel_load.
3961 	 */
3962 	ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3963 	return rc;
3964 }
3965 
3966 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
3967 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
3968 				 struct ecore_hwfn *p_hwfn,
3969 				 struct ecore_ptt *p_ptt)
3970 {
3971 	int i;
3972 
3973 	/* close timers */
3974 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
3975 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
3976 	for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
3977 									i++) {
3978 		if ((!ecore_rd(p_hwfn, p_ptt,
3979 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
3980 		    (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
3981 			break;
3982 
3983 		/* Dependent on number of connection/tasks, possibly
3984 		 * 1ms sleep is required between polls
3985 		 */
3986 		OSAL_MSLEEP(1);
3987 	}
3988 
3989 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
3990 		return;
3991 
3992 	DP_NOTICE(p_hwfn, false,
3993 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
3994 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
3995 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
3996 }
3997 
3998 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
3999 {
4000 	int j;
4001 
4002 	for_each_hwfn(p_dev, j) {
4003 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4004 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4005 
4006 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4007 	}
4008 }
4009 
4010 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4011 						 struct ecore_ptt *p_ptt,
4012 						 u32 addr, u32 expected_val)
4013 {
4014 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4015 
4016 	if (val != expected_val) {
4017 		DP_NOTICE(p_hwfn, true,
4018 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4019 			  addr, val, expected_val);
4020 		return ECORE_UNKNOWN_ERROR;
4021 	}
4022 
4023 	return ECORE_SUCCESS;
4024 }
4025 
4026 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4027 {
4028 	struct ecore_hwfn *p_hwfn;
4029 	struct ecore_ptt *p_ptt;
4030 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4031 	int j;
4032 
4033 	for_each_hwfn(p_dev, j) {
4034 		p_hwfn = &p_dev->hwfns[j];
4035 		p_ptt = p_hwfn->p_main_ptt;
4036 
4037 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4038 
4039 		if (IS_VF(p_dev)) {
4040 			ecore_vf_pf_int_cleanup(p_hwfn);
4041 			rc = ecore_vf_pf_reset(p_hwfn);
4042 			if (rc != ECORE_SUCCESS) {
4043 				DP_NOTICE(p_hwfn, true,
4044 					  "ecore_vf_pf_reset failed. rc = %d.\n",
4045 					  rc);
4046 				rc2 = ECORE_UNKNOWN_ERROR;
4047 			}
4048 			continue;
4049 		}
4050 
4051 		/* mark the hw as uninitialized... */
4052 		p_hwfn->hw_init_done = false;
4053 
4054 		/* Send unload command to MCP */
4055 		if (!p_dev->recov_in_prog) {
4056 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4057 			if (rc != ECORE_SUCCESS) {
4058 				DP_NOTICE(p_hwfn, false,
4059 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4060 					  rc);
4061 				rc2 = ECORE_UNKNOWN_ERROR;
4062 			}
4063 		}
4064 
4065 		OSAL_DPC_SYNC(p_hwfn);
4066 
4067 		/* After this point no MFW attentions are expected, e.g. prevent
4068 		 * race between pf stop and dcbx pf update.
4069 		 */
4070 
4071 		rc = ecore_sp_pf_stop(p_hwfn);
4072 		if (rc != ECORE_SUCCESS) {
4073 			DP_NOTICE(p_hwfn, false,
4074 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4075 				  rc);
4076 			rc2 = ECORE_UNKNOWN_ERROR;
4077 		}
4078 
4079 		OSAL_DPC_SYNC(p_hwfn);
4080 
4081 		/* After this point we don't expect the FW to send us async
4082 		 * events
4083 		 */
4084 
4085 		/* perform debug action after PF stop was sent */
4086 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4087 
4088 		/* close NIG to BRB gate */
4089 		ecore_wr(p_hwfn, p_ptt,
4090 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4091 
4092 		/* close parser */
4093 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4094 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4095 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4096 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4097 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4098 
4099 		/* @@@TBD - clean transmission queues (5.b) */
4100 		/* @@@TBD - clean BTB (5.c) */
4101 
4102 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4103 
4104 		/* @@@TBD - verify DMAE requests are done (8) */
4105 
4106 		/* Disable Attention Generation */
4107 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
4108 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4109 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4110 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4111 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4112 		if (rc != ECORE_SUCCESS) {
4113 			DP_NOTICE(p_hwfn, true,
4114 				  "Failed to return IGU CAM to default\n");
4115 			rc2 = ECORE_UNKNOWN_ERROR;
4116 		}
4117 
4118 		/* Need to wait 1ms to guarantee SBs are cleared */
4119 		OSAL_MSLEEP(1);
4120 
4121 		if (IS_LEAD_HWFN(p_hwfn) &&
4122 		    OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4123 		    !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4124 			ecore_llh_remove_mac_filter(p_dev, 0,
4125 						   p_hwfn->hw_info.hw_mac_addr);
4126 
4127 		if (!p_dev->recov_in_prog) {
4128 			ecore_verify_reg_val(p_hwfn, p_ptt,
4129 					     QM_REG_USG_CNT_PF_TX, 0);
4130 			ecore_verify_reg_val(p_hwfn, p_ptt,
4131 					     QM_REG_USG_CNT_PF_OTHER, 0);
4132 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
4133 		}
4134 
4135 		/* Disable PF in HW blocks */
4136 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4137 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4138 
4139 		--qm_lock_ref_cnt;
4140 #ifdef CONFIG_ECORE_LOCK_ALLOC
4141 		if (!qm_lock_ref_cnt)
4142 			OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4143 #endif
4144 
4145 		if (!p_dev->recov_in_prog) {
4146 			rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4147 			if (rc == ECORE_NOMEM) {
4148 				DP_NOTICE(p_hwfn, false,
4149 					 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4150 				rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4151 			}
4152 			if (rc != ECORE_SUCCESS) {
4153 				DP_NOTICE(p_hwfn, false,
4154 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4155 					  rc);
4156 				rc2 = ECORE_UNKNOWN_ERROR;
4157 			}
4158 		}
4159 	} /* hwfn loop */
4160 
4161 	if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4162 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
4163 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4164 
4165 		 /* Clear the PF's internal FID_enable in the PXP.
4166 		  * In CMT this should only be done for first hw-function, and
4167 		  * only after all transactions have stopped for all active
4168 		  * hw-functions.
4169 		  */
4170 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4171 						  false);
4172 		if (rc != ECORE_SUCCESS) {
4173 			DP_NOTICE(p_hwfn, true,
4174 				  "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4175 				  rc);
4176 			rc2 = ECORE_UNKNOWN_ERROR;
4177 		}
4178 	}
4179 
4180 	return rc2;
4181 }
4182 
4183 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4184 {
4185 	int j;
4186 
4187 	for_each_hwfn(p_dev, j) {
4188 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4189 		struct ecore_ptt *p_ptt;
4190 
4191 		if (IS_VF(p_dev)) {
4192 			ecore_vf_pf_int_cleanup(p_hwfn);
4193 			continue;
4194 		}
4195 		p_ptt = ecore_ptt_acquire(p_hwfn);
4196 		if (!p_ptt)
4197 			return ECORE_AGAIN;
4198 
4199 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
4200 			   "Shutting down the fastpath\n");
4201 
4202 		ecore_wr(p_hwfn, p_ptt,
4203 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4204 
4205 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4206 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4207 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4208 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4209 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4210 
4211 		/* @@@TBD - clean transmission queues (5.b) */
4212 		/* @@@TBD - clean BTB (5.c) */
4213 
4214 		/* @@@TBD - verify DMAE requests are done (8) */
4215 
4216 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4217 		/* Need to wait 1ms to guarantee SBs are cleared */
4218 		OSAL_MSLEEP(1);
4219 		ecore_ptt_release(p_hwfn, p_ptt);
4220 	}
4221 
4222 	return ECORE_SUCCESS;
4223 }
4224 
4225 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4226 {
4227 	struct ecore_ptt *p_ptt;
4228 
4229 	if (IS_VF(p_hwfn->p_dev))
4230 		return ECORE_SUCCESS;
4231 
4232 	p_ptt = ecore_ptt_acquire(p_hwfn);
4233 	if (!p_ptt)
4234 		return ECORE_AGAIN;
4235 
4236 	/* If roce info is allocated it means roce is initialized and should
4237 	 * be enabled in searcher.
4238 	 */
4239 	if (p_hwfn->p_rdma_info) {
4240 		if (p_hwfn->b_rdma_enabled_in_prs)
4241 			ecore_wr(p_hwfn, p_ptt,
4242 				 p_hwfn->rdma_prs_search_reg, 0x1);
4243 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
4244 	}
4245 
4246 	/* Re-open incoming traffic */
4247 	ecore_wr(p_hwfn, p_ptt,
4248 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4249 	ecore_ptt_release(p_hwfn, p_ptt);
4250 
4251 	return ECORE_SUCCESS;
4252 }
4253 
4254 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
4255 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4256 {
4257 	ecore_ptt_pool_free(p_hwfn);
4258 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4259 }
4260 
4261 /* Setup bar access */
4262 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4263 {
4264 	/* clear indirect access */
4265 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
4266 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4267 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
4268 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4269 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
4270 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4271 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
4272 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4273 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
4274 	} else {
4275 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4276 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4277 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4278 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4279 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4280 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4281 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4282 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4283 	}
4284 
4285 	/* Clean previous pglue_b errors if such exist */
4286 	ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4287 
4288 	/* enable internal target-read */
4289 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4290 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4291 }
4292 
4293 static void get_function_id(struct ecore_hwfn *p_hwfn)
4294 {
4295 	/* ME Register */
4296 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
4297 						  PXP_PF_ME_OPAQUE_ADDR);
4298 
4299 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4300 
4301 	/* Bits 16-19 from the ME registers are the pf_num */
4302 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4303 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4304 				      PXP_CONCRETE_FID_PFID);
4305 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4306 				    PXP_CONCRETE_FID_PORT);
4307 
4308 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4309 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4310 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4311 }
4312 
4313 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4314 {
4315 	u32 *feat_num = p_hwfn->hw_info.feat_num;
4316 	struct ecore_sb_cnt_info sb_cnt;
4317 	u32 non_l2_sbs = 0;
4318 
4319 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4320 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4321 
4322 	/* L2 Queues require each: 1 status block. 1 L2 queue */
4323 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4324 		/* Start by allocating VF queues, then PF's */
4325 		feat_num[ECORE_VF_L2_QUE] =
4326 			OSAL_MIN_T(u32,
4327 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4328 				   sb_cnt.iov_cnt);
4329 		feat_num[ECORE_PF_L2_QUE] =
4330 			OSAL_MIN_T(u32,
4331 				   sb_cnt.cnt - non_l2_sbs,
4332 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4333 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4334 	}
4335 
4336 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
4337 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) {
4338 		u32 *p_storage_feat = ECORE_IS_FCOE_PERSONALITY(p_hwfn) ?
4339 				      &feat_num[ECORE_FCOE_CQ] :
4340 				      &feat_num[ECORE_ISCSI_CQ];
4341 		u32 limit = sb_cnt.cnt;
4342 
4343 		/* The number of queues should not exceed the number of FP SBs.
4344 		 * In storage target, the queues are divided into pairs of a CQ
4345 		 * and a CmdQ, and each pair uses a single SB. The limit in
4346 		 * this case should allow a max ratio of 2:1 instead of 1:1.
4347 		 */
4348 		if (p_hwfn->p_dev->b_is_target)
4349 			limit *= 2;
4350 		*p_storage_feat = OSAL_MIN_T(u32, limit,
4351 					     RESC_NUM(p_hwfn, ECORE_CMDQS_CQS));
4352 
4353 		/* @DPDK */
4354 		/* The size of "cq_cmdq_sb_num_arr" in the fcoe/iscsi init
4355 		 * ramrod is limited to "NUM_OF_GLOBAL_QUEUES / 2".
4356 		 */
4357 		*p_storage_feat = OSAL_MIN_T(u32, *p_storage_feat,
4358 					     (NUM_OF_GLOBAL_QUEUES / 2));
4359 	}
4360 
4361 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4362 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4363 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4364 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4365 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4366 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4367 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4368 		   (int)sb_cnt.cnt);
4369 }
4370 
4371 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4372 {
4373 	switch (res_id) {
4374 	case ECORE_L2_QUEUE:
4375 		return "L2_QUEUE";
4376 	case ECORE_VPORT:
4377 		return "VPORT";
4378 	case ECORE_RSS_ENG:
4379 		return "RSS_ENG";
4380 	case ECORE_PQ:
4381 		return "PQ";
4382 	case ECORE_RL:
4383 		return "RL";
4384 	case ECORE_MAC:
4385 		return "MAC";
4386 	case ECORE_VLAN:
4387 		return "VLAN";
4388 	case ECORE_RDMA_CNQ_RAM:
4389 		return "RDMA_CNQ_RAM";
4390 	case ECORE_ILT:
4391 		return "ILT";
4392 	case ECORE_LL2_QUEUE:
4393 		return "LL2_QUEUE";
4394 	case ECORE_CMDQS_CQS:
4395 		return "CMDQS_CQS";
4396 	case ECORE_RDMA_STATS_QUEUE:
4397 		return "RDMA_STATS_QUEUE";
4398 	case ECORE_BDQ:
4399 		return "BDQ";
4400 	case ECORE_SB:
4401 		return "SB";
4402 	default:
4403 		return "UNKNOWN_RESOURCE";
4404 	}
4405 }
4406 
4407 static enum _ecore_status_t
4408 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4409 			      struct ecore_ptt *p_ptt,
4410 			      enum ecore_resources res_id,
4411 			      u32 resc_max_val,
4412 			      u32 *p_mcp_resp)
4413 {
4414 	enum _ecore_status_t rc;
4415 
4416 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4417 					resc_max_val, p_mcp_resp);
4418 	if (rc != ECORE_SUCCESS) {
4419 		DP_NOTICE(p_hwfn, false,
4420 			  "MFW response failure for a max value setting of resource %d [%s]\n",
4421 			  res_id, ecore_hw_get_resc_name(res_id));
4422 		return rc;
4423 	}
4424 
4425 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4426 		DP_INFO(p_hwfn,
4427 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4428 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4429 
4430 	return ECORE_SUCCESS;
4431 }
4432 
4433 #define RDMA_NUM_STATISTIC_COUNTERS_K2                  MAX_NUM_VPORTS_K2
4434 #define RDMA_NUM_STATISTIC_COUNTERS_BB                  MAX_NUM_VPORTS_BB
4435 
4436 static u32 ecore_hsi_def_val[][MAX_CHIP_IDS] = {
4437 	{MAX_NUM_VFS_BB, MAX_NUM_VFS_K2},
4438 	{MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2},
4439 	{MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2},
4440 	{MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2, },
4441 	{MAX_NUM_PFS_BB, MAX_NUM_PFS_K2},
4442 	{MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2},
4443 	{ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2},
4444 	{MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2},
4445 	{PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2},
4446 	{RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2},
4447 	{MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS},
4448 	{PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES},
4449 	{BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2},
4450 };
4451 
4452 u32 ecore_get_hsi_def_val(struct ecore_dev *p_dev, enum ecore_hsi_def_type type)
4453 {
4454 	enum chip_ids chip_id = ECORE_IS_BB(p_dev) ? CHIP_BB : CHIP_K2;
4455 
4456 	if (type >= ECORE_NUM_HSI_DEFS) {
4457 		DP_ERR(p_dev, "Unexpected HSI definition type [%d]\n", type);
4458 		return 0;
4459 	}
4460 
4461 	return ecore_hsi_def_val[type][chip_id];
4462 }
4463 
4464 static enum _ecore_status_t
4465 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4466 			    struct ecore_ptt *p_ptt)
4467 {
4468 	u32 resc_max_val, mcp_resp;
4469 	u8 res_id;
4470 	enum _ecore_status_t rc;
4471 
4472 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4473 		/* @DPDK */
4474 		switch (res_id) {
4475 		case ECORE_LL2_QUEUE:
4476 		case ECORE_RDMA_CNQ_RAM:
4477 		case ECORE_RDMA_STATS_QUEUE:
4478 		case ECORE_BDQ:
4479 			resc_max_val = 0;
4480 			break;
4481 		default:
4482 			continue;
4483 		}
4484 
4485 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4486 						   resc_max_val, &mcp_resp);
4487 		if (rc != ECORE_SUCCESS)
4488 			return rc;
4489 
4490 		/* There's no point to continue to the next resource if the
4491 		 * command is not supported by the MFW.
4492 		 * We do continue if the command is supported but the resource
4493 		 * is unknown to the MFW. Such a resource will be later
4494 		 * configured with the default allocation values.
4495 		 */
4496 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4497 			return ECORE_NOTIMPL;
4498 	}
4499 
4500 	return ECORE_SUCCESS;
4501 }
4502 
4503 static
4504 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4505 					    enum ecore_resources res_id,
4506 					    u32 *p_resc_num, u32 *p_resc_start)
4507 {
4508 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
4509 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4510 
4511 	switch (res_id) {
4512 	case ECORE_L2_QUEUE:
4513 		*p_resc_num = NUM_OF_L2_QUEUES(p_dev) / num_funcs;
4514 		break;
4515 	case ECORE_VPORT:
4516 		*p_resc_num = NUM_OF_VPORTS(p_dev) / num_funcs;
4517 		break;
4518 	case ECORE_RSS_ENG:
4519 		*p_resc_num = NUM_OF_RSS_ENGINES(p_dev) / num_funcs;
4520 		break;
4521 	case ECORE_PQ:
4522 		*p_resc_num = NUM_OF_QM_TX_QUEUES(p_dev) / num_funcs;
4523 		*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4524 		break;
4525 	case ECORE_RL:
4526 		*p_resc_num = NUM_OF_QM_GLOBAL_RLS(p_dev) / num_funcs;
4527 		break;
4528 	case ECORE_MAC:
4529 	case ECORE_VLAN:
4530 		/* Each VFC resource can accommodate both a MAC and a VLAN */
4531 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4532 		break;
4533 	case ECORE_ILT:
4534 		*p_resc_num = NUM_OF_PXP_ILT_RECORDS(p_dev) / num_funcs;
4535 		break;
4536 	case ECORE_LL2_QUEUE:
4537 		*p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs;
4538 		break;
4539 	case ECORE_RDMA_CNQ_RAM:
4540 	case ECORE_CMDQS_CQS:
4541 		/* CNQ/CMDQS are the same resource */
4542 		/* @DPDK */
4543 		*p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
4544 		break;
4545 	case ECORE_RDMA_STATS_QUEUE:
4546 		*p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(p_dev) / num_funcs;
4547 		break;
4548 	case ECORE_BDQ:
4549 		/* @DPDK */
4550 		*p_resc_num = 0;
4551 		break;
4552 	default:
4553 		break;
4554 	}
4555 
4556 
4557 	switch (res_id) {
4558 	case ECORE_BDQ:
4559 		if (!*p_resc_num)
4560 			*p_resc_start = 0;
4561 		break;
4562 	case ECORE_SB:
4563 		/* Since we want its value to reflect whether MFW supports
4564 		 * the new scheme, have a default of 0.
4565 		 */
4566 		*p_resc_num = 0;
4567 		break;
4568 	default:
4569 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4570 		break;
4571 	}
4572 
4573 	return ECORE_SUCCESS;
4574 }
4575 
4576 static enum _ecore_status_t
4577 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4578 			 bool drv_resc_alloc)
4579 {
4580 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
4581 	u32 mcp_resp, *p_resc_num, *p_resc_start;
4582 	enum _ecore_status_t rc;
4583 
4584 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
4585 	p_resc_start = &RESC_START(p_hwfn, res_id);
4586 
4587 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4588 				    &dflt_resc_start);
4589 	if (rc != ECORE_SUCCESS) {
4590 		DP_ERR(p_hwfn,
4591 		       "Failed to get default amount for resource %d [%s]\n",
4592 			res_id, ecore_hw_get_resc_name(res_id));
4593 		return rc;
4594 	}
4595 
4596 #ifndef ASIC_ONLY
4597 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4598 		*p_resc_num = dflt_resc_num;
4599 		*p_resc_start = dflt_resc_start;
4600 		goto out;
4601 	}
4602 #endif
4603 
4604 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4605 				     &mcp_resp, p_resc_num, p_resc_start);
4606 	if (rc != ECORE_SUCCESS) {
4607 		DP_NOTICE(p_hwfn, true,
4608 			  "MFW response failure for an allocation request for"
4609 			  " resource %d [%s]\n",
4610 			  res_id, ecore_hw_get_resc_name(res_id));
4611 		return rc;
4612 	}
4613 
4614 	/* Default driver values are applied in the following cases:
4615 	 * - The resource allocation MB command is not supported by the MFW
4616 	 * - There is an internal error in the MFW while processing the request
4617 	 * - The resource ID is unknown to the MFW
4618 	 */
4619 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4620 		DP_INFO(p_hwfn,
4621 			"Failed to receive allocation info for resource %d [%s]."
4622 			" mcp_resp = 0x%x. Applying default values"
4623 			" [%d,%d].\n",
4624 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4625 			dflt_resc_num, dflt_resc_start);
4626 
4627 		*p_resc_num = dflt_resc_num;
4628 		*p_resc_start = dflt_resc_start;
4629 		goto out;
4630 	}
4631 
4632 	if ((*p_resc_num != dflt_resc_num ||
4633 	     *p_resc_start != dflt_resc_start) &&
4634 	    res_id != ECORE_SB) {
4635 		DP_INFO(p_hwfn,
4636 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4637 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4638 			*p_resc_start, dflt_resc_num, dflt_resc_start,
4639 			drv_resc_alloc ? " - Applying default values" : "");
4640 		if (drv_resc_alloc) {
4641 			*p_resc_num = dflt_resc_num;
4642 			*p_resc_start = dflt_resc_start;
4643 		}
4644 	}
4645 out:
4646 	return ECORE_SUCCESS;
4647 }
4648 
4649 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4650 						   bool drv_resc_alloc)
4651 {
4652 	enum _ecore_status_t rc;
4653 	u8 res_id;
4654 
4655 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4656 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4657 		if (rc != ECORE_SUCCESS)
4658 			return rc;
4659 	}
4660 
4661 	return ECORE_SUCCESS;
4662 }
4663 
4664 #define ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS	0xaa
4665 #define ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS	0x55
4666 #define ECORE_NONUSED_PPFID_MASK_AH_4P		0xf0
4667 
4668 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4669 						      struct ecore_ptt *p_ptt)
4670 {
4671 	u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn), new_bitmap;
4672 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4673 	enum _ecore_status_t rc;
4674 
4675 	rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4676 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4677 		return rc;
4678 	else if (rc == ECORE_NOTIMPL)
4679 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4680 
4681 	/* 4-ports mode has limitations that should be enforced:
4682 	 * - BB: the MFW can access only PPFIDs which their corresponding PFIDs
4683 	 *       belong to this certain port.
4684 	 * - AH: only 4 PPFIDs per port are available.
4685 	 */
4686 	if (ecore_device_num_ports(p_dev) == 4) {
4687 		u8 mask;
4688 
4689 		if (ECORE_IS_BB(p_dev))
4690 			mask = MFW_PORT(p_hwfn) > 1 ?
4691 			       ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS :
4692 			       ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS;
4693 		else
4694 			mask = ECORE_NONUSED_PPFID_MASK_AH_4P;
4695 
4696 		if (p_dev->ppfid_bitmap & mask) {
4697 			new_bitmap = p_dev->ppfid_bitmap & ~mask;
4698 			DP_INFO(p_hwfn,
4699 				"Fix the PPFID bitmap for 4-ports mode: 0x%hhx -> 0x%hhx\n",
4700 				p_dev->ppfid_bitmap, new_bitmap);
4701 			p_dev->ppfid_bitmap = new_bitmap;
4702 		}
4703 	}
4704 
4705 	/* The native PPFID is expected to be part of the allocated bitmap */
4706 	if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4707 		new_bitmap = 0x1 << native_ppfid_idx;
4708 		DP_INFO(p_hwfn,
4709 			"Fix the PPFID bitmap to inculde the native PPFID: %hhd -> 0x%hhx\n",
4710 			p_dev->ppfid_bitmap, new_bitmap);
4711 		p_dev->ppfid_bitmap = new_bitmap;
4712 	}
4713 
4714 	return ECORE_SUCCESS;
4715 }
4716 
4717 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4718 					      struct ecore_ptt *p_ptt,
4719 					      bool drv_resc_alloc)
4720 {
4721 	struct ecore_resc_unlock_params resc_unlock_params;
4722 	struct ecore_resc_lock_params resc_lock_params;
4723 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4724 	u32 max_ilt_lines;
4725 	u8 res_id;
4726 	enum _ecore_status_t rc;
4727 #ifndef ASIC_ONLY
4728 	u32 *resc_start = p_hwfn->hw_info.resc_start;
4729 	u32 *resc_num = p_hwfn->hw_info.resc_num;
4730 	/* For AH, an equal share of the ILT lines between the maximal number of
4731 	 * PFs is not enough for RoCE. This would be solved by the future
4732 	 * resource allocation scheme, but isn't currently present for
4733 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4734 	 * to work - the BB number of ILT lines divided by its max PFs number.
4735 	 */
4736 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4737 #endif
4738 
4739 	/* Setting the max values of the soft resources and the following
4740 	 * resources allocation queries should be atomic. Since several PFs can
4741 	 * run in parallel - a resource lock is needed.
4742 	 * If either the resource lock or resource set value commands are not
4743 	 * supported - skip the max values setting, release the lock if
4744 	 * needed, and proceed to the queries. Other failures, including a
4745 	 * failure to acquire the lock, will cause this function to fail.
4746 	 * Old drivers that don't acquire the lock can run in parallel, and
4747 	 * their allocation values won't be affected by the updated max values.
4748 	 */
4749 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4750 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
4751 
4752 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4753 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4754 		return rc;
4755 	} else if (rc == ECORE_NOTIMPL) {
4756 		DP_INFO(p_hwfn,
4757 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4758 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4759 		DP_NOTICE(p_hwfn, false,
4760 			  "Failed to acquire the resource lock for the resource allocation commands\n");
4761 		rc = ECORE_BUSY;
4762 		goto unlock_and_exit;
4763 	} else {
4764 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4765 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4766 			DP_NOTICE(p_hwfn, false,
4767 				  "Failed to set the max values of the soft resources\n");
4768 			goto unlock_and_exit;
4769 		} else if (rc == ECORE_NOTIMPL) {
4770 			DP_INFO(p_hwfn,
4771 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4772 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4773 						   &resc_unlock_params);
4774 			if (rc != ECORE_SUCCESS)
4775 				DP_INFO(p_hwfn,
4776 					"Failed to release the resource lock for the resource allocation commands\n");
4777 		}
4778 	}
4779 
4780 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
4781 	if (rc != ECORE_SUCCESS)
4782 		goto unlock_and_exit;
4783 
4784 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
4785 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4786 					   &resc_unlock_params);
4787 		if (rc != ECORE_SUCCESS)
4788 			DP_INFO(p_hwfn,
4789 				"Failed to release the resource lock for the resource allocation commands\n");
4790 	}
4791 
4792 	/* PPFID bitmap */
4793 	if (IS_LEAD_HWFN(p_hwfn)) {
4794 		rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
4795 		if (rc != ECORE_SUCCESS)
4796 			return rc;
4797 	}
4798 
4799 #ifndef ASIC_ONLY
4800 	if (CHIP_REV_IS_EMUL(p_dev)) {
4801 		/* Reduced build contains less PQs */
4802 		if (!(p_dev->b_is_emul_full)) {
4803 			resc_num[ECORE_PQ] = 32;
4804 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
4805 			    p_hwfn->enabled_func_idx;
4806 		}
4807 
4808 		/* For AH emulation, since we have a possible maximal number of
4809 		 * 16 enabled PFs, in case there are not enough ILT lines -
4810 		 * allocate only first PF as RoCE and have all the other as
4811 		 * ETH-only with less ILT lines.
4812 		 * In case we increase the number of ILT lines for PF0, we need
4813 		 * also to correct the start value for PF1-15.
4814 		 */
4815 		if (ECORE_IS_AH(p_dev) && p_dev->b_is_emul_full) {
4816 			if (!p_hwfn->rel_pf_id) {
4817 				resc_num[ECORE_ILT] =
4818 					OSAL_MAX_T(u32, resc_num[ECORE_ILT],
4819 							 roce_min_ilt_lines);
4820 			} else if (resc_num[ECORE_ILT] < roce_min_ilt_lines) {
4821 				resc_start[ECORE_ILT] += roce_min_ilt_lines -
4822 							 resc_num[ECORE_ILT];
4823 			}
4824 		}
4825 	}
4826 #endif
4827 
4828 	/* Sanity for ILT */
4829 	max_ilt_lines = NUM_OF_PXP_ILT_RECORDS(p_dev);
4830 	if (RESC_END(p_hwfn, ECORE_ILT) > max_ilt_lines) {
4831 		DP_NOTICE(p_hwfn, true,
4832 			  "Can't assign ILT pages [%08x,...,%08x]\n",
4833 			  RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
4834 								  ECORE_ILT) -
4835 			  1);
4836 		return ECORE_INVAL;
4837 	}
4838 
4839 	/* This will also learn the number of SBs from MFW */
4840 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
4841 		return ECORE_INVAL;
4842 
4843 	ecore_hw_set_feat(p_hwfn);
4844 
4845 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4846 		   "The numbers for each resource are:\n");
4847 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
4848 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
4849 			   ecore_hw_get_resc_name(res_id),
4850 			   RESC_NUM(p_hwfn, res_id),
4851 			   RESC_START(p_hwfn, res_id));
4852 
4853 	return ECORE_SUCCESS;
4854 
4855 unlock_and_exit:
4856 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
4857 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4858 				      &resc_unlock_params);
4859 	return rc;
4860 }
4861 
4862 #ifndef ASIC_ONLY
4863 static enum _ecore_status_t
4864 ecore_emul_hw_get_nvm_info(struct ecore_hwfn *p_hwfn)
4865 {
4866 	if (IS_LEAD_HWFN(p_hwfn)) {
4867 		struct ecore_dev *p_dev = p_hwfn->p_dev;
4868 
4869 		/* The MF mode on emulation is either default or NPAR 1.0 */
4870 		p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
4871 				 1 << ECORE_MF_LLH_PROTO_CLSS |
4872 				 1 << ECORE_MF_LL2_NON_UNICAST;
4873 		if (p_hwfn->num_funcs_on_port > 1)
4874 			p_dev->mf_bits |= 1 << ECORE_MF_INTER_PF_SWITCH |
4875 					  1 << ECORE_MF_DISABLE_ARFS;
4876 		else
4877 			p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
4878 	}
4879 
4880 	return ECORE_SUCCESS;
4881 }
4882 #endif
4883 
4884 static enum _ecore_status_t
4885 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
4886 		      struct ecore_ptt *p_ptt,
4887 		      struct ecore_hw_prepare_params *p_params)
4888 {
4889 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
4890 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
4891 	struct ecore_mcp_link_capabilities *p_caps;
4892 	struct ecore_mcp_link_params *link;
4893 	enum _ecore_status_t rc;
4894 
4895 #ifndef ASIC_ONLY
4896 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
4897 		return ecore_emul_hw_get_nvm_info(p_hwfn);
4898 #endif
4899 
4900 	/* Read global nvm_cfg address */
4901 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
4902 
4903 	/* Verify MCP has initialized it */
4904 	if (!nvm_cfg_addr) {
4905 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
4906 		if (p_params->b_relaxed_probe)
4907 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
4908 		return ECORE_INVAL;
4909 	}
4910 
4911 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
4912 
4913 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
4914 
4915 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4916 		   OFFSETOF(struct nvm_cfg1, glob) +
4917 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
4918 
4919 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
4920 
4921 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
4922 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
4923 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
4924 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
4925 		break;
4926 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
4927 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
4928 		break;
4929 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
4930 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
4931 		break;
4932 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
4933 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
4934 		break;
4935 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
4936 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
4937 		break;
4938 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
4939 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
4940 		break;
4941 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
4942 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
4943 		break;
4944 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
4945 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
4946 		break;
4947 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
4948 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
4949 		break;
4950 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
4951 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
4952 		break;
4953 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
4954 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
4955 		break;
4956 	default:
4957 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
4958 			  core_cfg);
4959 		break;
4960 	}
4961 
4962 	/* Read DCBX configuration */
4963 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4964 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4965 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
4966 			     port_cfg_addr +
4967 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
4968 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
4969 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
4970 	switch (dcbx_mode) {
4971 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
4972 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
4973 		break;
4974 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
4975 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
4976 		break;
4977 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
4978 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
4979 		break;
4980 	default:
4981 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
4982 	}
4983 
4984 	/* Read default link configuration */
4985 	link = &p_hwfn->mcp_info->link_input;
4986 	p_caps = &p_hwfn->mcp_info->link_capabilities;
4987 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4988 	    OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4989 	link_temp = ecore_rd(p_hwfn, p_ptt,
4990 			     port_cfg_addr +
4991 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
4992 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
4993 	link->speed.advertised_speeds = link_temp;
4994 	p_caps->speed_capabilities = link->speed.advertised_speeds;
4995 
4996 	link_temp = ecore_rd(p_hwfn, p_ptt,
4997 				 port_cfg_addr +
4998 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
4999 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5000 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5001 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5002 		link->speed.autoneg = true;
5003 		break;
5004 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5005 		link->speed.forced_speed = 1000;
5006 		break;
5007 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5008 		link->speed.forced_speed = 10000;
5009 		break;
5010 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5011 		link->speed.forced_speed = 25000;
5012 		break;
5013 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5014 		link->speed.forced_speed = 40000;
5015 		break;
5016 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5017 		link->speed.forced_speed = 50000;
5018 		break;
5019 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5020 		link->speed.forced_speed = 100000;
5021 		break;
5022 	default:
5023 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
5024 	}
5025 
5026 	p_caps->default_speed = link->speed.forced_speed;
5027 	p_caps->default_speed_autoneg = link->speed.autoneg;
5028 
5029 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5030 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5031 	link->pause.autoneg = !!(link_temp &
5032 				  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5033 	link->pause.forced_rx = !!(link_temp &
5034 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5035 	link->pause.forced_tx = !!(link_temp &
5036 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5037 	link->loopback_mode = 0;
5038 
5039 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5040 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5041 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
5042 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5043 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5044 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5045 		link->eee.enable = true;
5046 		switch (link_temp) {
5047 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5048 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5049 			link->eee.enable = false;
5050 			break;
5051 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5052 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5053 			break;
5054 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5055 			p_caps->eee_lpi_timer =
5056 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5057 			break;
5058 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5059 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5060 			break;
5061 		}
5062 
5063 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5064 		link->eee.tx_lpi_enable = link->eee.enable;
5065 		link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5066 	} else {
5067 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5068 	}
5069 
5070 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5071 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n EEE: %02x [%08x usec]",
5072 		   link->speed.forced_speed, link->speed.advertised_speeds,
5073 		   link->speed.autoneg, link->pause.autoneg,
5074 		   p_caps->default_eee, p_caps->eee_lpi_timer);
5075 
5076 	/* Read Multi-function information from shmem */
5077 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5078 		   OFFSETOF(struct nvm_cfg1, glob) +
5079 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5080 
5081 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5082 
5083 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5084 	    NVM_CFG1_GLOB_MF_MODE_OFFSET;
5085 
5086 	switch (mf_mode) {
5087 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5088 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5089 		break;
5090 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5091 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5092 					 1 << ECORE_MF_UFP_SPECIFIC |
5093 					 1 << ECORE_MF_8021Q_TAGGING;
5094 		break;
5095 	case NVM_CFG1_GLOB_MF_MODE_BD:
5096 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5097 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5098 					 1 << ECORE_MF_8021AD_TAGGING |
5099 					 1 << ECORE_MF_FIP_SPECIAL;
5100 		break;
5101 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5102 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5103 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5104 					 1 << ECORE_MF_LL2_NON_UNICAST |
5105 					 1 << ECORE_MF_INTER_PF_SWITCH |
5106 					 1 << ECORE_MF_DISABLE_ARFS;
5107 		break;
5108 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5109 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5110 					 1 << ECORE_MF_LLH_PROTO_CLSS |
5111 					 1 << ECORE_MF_LL2_NON_UNICAST;
5112 		if (ECORE_IS_BB(p_hwfn->p_dev))
5113 			p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5114 		break;
5115 	}
5116 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5117 		p_hwfn->p_dev->mf_bits);
5118 
5119 	if (ECORE_IS_CMT(p_hwfn->p_dev))
5120 		p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5121 
5122 	/* It's funny since we have another switch, but it's easier
5123 	 * to throw this away in linux this way. Long term, it might be
5124 	 * better to have have getters for needed ECORE_MF_* fields,
5125 	 * convert client code and eliminate this.
5126 	 */
5127 	switch (mf_mode) {
5128 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5129 	case NVM_CFG1_GLOB_MF_MODE_BD:
5130 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5131 		break;
5132 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5133 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5134 		break;
5135 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5136 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5137 		break;
5138 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5139 		p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5140 		break;
5141 	}
5142 
5143 	/* Read Multi-function information from shmem */
5144 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5145 		   OFFSETOF(struct nvm_cfg1, glob) +
5146 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5147 
5148 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5149 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5150 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5151 				&p_hwfn->hw_info.device_capabilities);
5152 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5153 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5154 				&p_hwfn->hw_info.device_capabilities);
5155 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5156 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5157 				&p_hwfn->hw_info.device_capabilities);
5158 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5159 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5160 				&p_hwfn->hw_info.device_capabilities);
5161 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5162 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5163 				&p_hwfn->hw_info.device_capabilities);
5164 
5165 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5166 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5167 		rc = ECORE_SUCCESS;
5168 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5169 	}
5170 
5171 	return rc;
5172 }
5173 
5174 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5175 				struct ecore_ptt *p_ptt)
5176 {
5177 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5178 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5179 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5180 
5181 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5182 
5183 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5184 	 * in the other bits are selected.
5185 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
5186 	 * '0' only for enabled functions (function 0 always exists and
5187 	 * enabled).
5188 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
5189 	 * the number of functions for both hwfns is learnt from the same bits.
5190 	 */
5191 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
5192 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
5193 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
5194 	} else { /* E5 */
5195 		reg_function_hide = 0;
5196 	}
5197 
5198 	if (reg_function_hide & 0x1) {
5199 		if (ECORE_IS_BB(p_dev)) {
5200 			if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5201 				num_funcs = 0;
5202 				eng_mask = 0xaaaa;
5203 			} else {
5204 				num_funcs = 1;
5205 				eng_mask = 0x5554;
5206 			}
5207 		} else {
5208 			num_funcs = 1;
5209 			eng_mask = 0xfffe;
5210 		}
5211 
5212 		/* Get the number of the enabled functions on the engine */
5213 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5214 		while (tmp) {
5215 			if (tmp & 0x1)
5216 				num_funcs++;
5217 			tmp >>= 0x1;
5218 		}
5219 
5220 		/* Get the PF index within the enabled functions */
5221 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5222 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
5223 		while (tmp) {
5224 			if (tmp & 0x1)
5225 				enabled_func_idx--;
5226 			tmp >>= 0x1;
5227 		}
5228 	}
5229 
5230 	p_hwfn->num_funcs_on_engine = num_funcs;
5231 	p_hwfn->enabled_func_idx = enabled_func_idx;
5232 
5233 #ifndef ASIC_ONLY
5234 	if (CHIP_REV_IS_FPGA(p_dev)) {
5235 		DP_NOTICE(p_hwfn, false,
5236 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5237 		p_hwfn->num_funcs_on_engine = 4;
5238 	}
5239 #endif
5240 
5241 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5242 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5243 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5244 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5245 }
5246 
5247 #ifndef ASIC_ONLY
5248 static void ecore_emul_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5249 					 struct ecore_ptt *p_ptt)
5250 {
5251 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5252 	u32 eco_reserved;
5253 
5254 	/* MISCS_REG_ECO_RESERVED[15:12]: num of ports in an engine */
5255 	eco_reserved = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5256 	switch ((eco_reserved & 0xf000) >> 12) {
5257 		case 1:
5258 			p_dev->num_ports_in_engine = 1;
5259 			break;
5260 		case 3:
5261 			p_dev->num_ports_in_engine = 2;
5262 			break;
5263 		case 0xf:
5264 			p_dev->num_ports_in_engine = 4;
5265 			break;
5266 		default:
5267 			DP_NOTICE(p_hwfn, false,
5268 			  "Emulation: Unknown port mode [ECO_RESERVED 0x%08x]\n",
5269 			  eco_reserved);
5270 		p_dev->num_ports_in_engine = 1; /* Default to something */
5271 		break;
5272 		}
5273 
5274 	p_dev->num_ports = p_dev->num_ports_in_engine *
5275 			   ecore_device_num_engines(p_dev);
5276 }
5277 #endif
5278 
5279 /* Determine the number of ports of the device and per engine */
5280 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5281 				   struct ecore_ptt *p_ptt)
5282 {
5283 	u32 addr, global_offsize, global_addr, port_mode;
5284 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5285 
5286 #ifndef ASIC_ONLY
5287 	if (CHIP_REV_IS_TEDIBEAR(p_dev)) {
5288 		p_dev->num_ports_in_engine = 1;
5289 		p_dev->num_ports = 2;
5290 		return;
5291 	}
5292 
5293 	if (CHIP_REV_IS_EMUL(p_dev)) {
5294 		ecore_emul_hw_info_port_num(p_hwfn, p_ptt);
5295 		return;
5296 	}
5297 #endif
5298 
5299 		/* In CMT there is always only one port */
5300 	if (ECORE_IS_CMT(p_dev)) {
5301 		p_dev->num_ports_in_engine = 1;
5302 		p_dev->num_ports = 1;
5303 		return;
5304 	}
5305 
5306 	/* Determine the number of ports per engine */
5307 	port_mode = ecore_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE);
5308 	switch (port_mode) {
5309 	case 0x0:
5310 		p_dev->num_ports_in_engine = 1;
5311 		break;
5312 	case 0x1:
5313 		p_dev->num_ports_in_engine = 2;
5314 		break;
5315 	case 0x2:
5316 		p_dev->num_ports_in_engine = 4;
5317 		break;
5318 	default:
5319 		DP_NOTICE(p_hwfn, false, "Unknown port mode 0x%08x\n",
5320 			  port_mode);
5321 		p_dev->num_ports_in_engine = 1; /* Default to something */
5322 		break;
5323 	}
5324 
5325 	/* Get the total number of ports of the device */
5326 	addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5327 				    PUBLIC_GLOBAL);
5328 	global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5329 	global_addr = SECTION_ADDR(global_offsize, 0);
5330 	addr = global_addr + OFFSETOF(struct public_global, max_ports);
5331 	p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5332 }
5333 
5334 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5335 				   struct ecore_ptt *p_ptt)
5336 {
5337 	struct ecore_mcp_link_capabilities *p_caps;
5338 	u32 eee_status;
5339 
5340 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5341 	if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5342 		return;
5343 
5344 	p_caps->eee_speed_caps = 0;
5345 	eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5346 			      OFFSETOF(struct public_port, eee_status));
5347 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5348 			EEE_SUPPORTED_SPEED_OFFSET;
5349 	if (eee_status & EEE_1G_SUPPORTED)
5350 		p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5351 	if (eee_status & EEE_10G_ADV)
5352 		p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5353 }
5354 
5355 static enum _ecore_status_t
5356 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5357 		  enum ecore_pci_personality personality,
5358 		  struct ecore_hw_prepare_params *p_params)
5359 {
5360 	bool drv_resc_alloc = p_params->drv_resc_alloc;
5361 	enum _ecore_status_t rc;
5362 
5363 	if (IS_ECORE_PACING(p_hwfn)) {
5364 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_IOV,
5365 			   "Skipping IOV as packet pacing is requested\n");
5366 	}
5367 
5368 	/* Since all information is common, only first hwfns should do this */
5369 	if (IS_LEAD_HWFN(p_hwfn) && !IS_ECORE_PACING(p_hwfn)) {
5370 		rc = ecore_iov_hw_info(p_hwfn);
5371 		if (rc != ECORE_SUCCESS) {
5372 			if (p_params->b_relaxed_probe)
5373 				p_params->p_relaxed_res =
5374 						ECORE_HW_PREPARE_BAD_IOV;
5375 			else
5376 				return rc;
5377 		}
5378 	}
5379 
5380 	if (IS_LEAD_HWFN(p_hwfn))
5381 		ecore_hw_info_port_num(p_hwfn, p_ptt);
5382 
5383 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5384 
5385 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5386 	if (rc != ECORE_SUCCESS)
5387 		return rc;
5388 
5389 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5390 	if (rc != ECORE_SUCCESS) {
5391 		if (p_params->b_relaxed_probe)
5392 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5393 		else
5394 			return rc;
5395 	}
5396 
5397 #ifndef ASIC_ONLY
5398 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5399 #endif
5400 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5401 			    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5402 #ifndef ASIC_ONLY
5403 	} else {
5404 		static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
5405 
5406 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5407 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5408 	}
5409 #endif
5410 
5411 	if (ecore_mcp_is_init(p_hwfn)) {
5412 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5413 			p_hwfn->hw_info.ovlan =
5414 			    p_hwfn->mcp_info->func_info.ovlan;
5415 
5416 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5417 
5418 		ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5419 
5420 		ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5421 	}
5422 
5423 	if (personality != ECORE_PCI_DEFAULT) {
5424 		p_hwfn->hw_info.personality = personality;
5425 	} else if (ecore_mcp_is_init(p_hwfn)) {
5426 		enum ecore_pci_personality protocol;
5427 
5428 		protocol = p_hwfn->mcp_info->func_info.protocol;
5429 		p_hwfn->hw_info.personality = protocol;
5430 	}
5431 #ifndef ASIC_ONLY
5432 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
5433 		/* AH emulation:
5434 		 * Allow only PF0 to be RoCE to overcome a lack of ILT lines.
5435 	 */
5436 		if (ECORE_IS_AH(p_hwfn->p_dev) && p_hwfn->rel_pf_id)
5437 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5438 		else
5439 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5440 	}
5441 #endif
5442 
5443 	/* although in BB some constellations may support more than 4 tcs,
5444 	 * that can result in performance penalty in some cases. 4
5445 	 * represents a good tradeoff between performance and flexibility.
5446 	 */
5447 	if (IS_ECORE_PACING(p_hwfn))
5448 		p_hwfn->hw_info.num_hw_tc = 1;
5449 	else
5450 		p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5451 
5452 	/* start out with a single active tc. This can be increased either
5453 	 * by dcbx negotiation or by upper layer driver
5454 	 */
5455 	p_hwfn->hw_info.num_active_tc = 1;
5456 
5457 	ecore_get_num_funcs(p_hwfn, p_ptt);
5458 
5459 	if (ecore_mcp_is_init(p_hwfn))
5460 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5461 
5462 	/* In case of forcing the driver's default resource allocation, calling
5463 	 * ecore_hw_get_resc() should come after initializing the personality
5464 	 * and after getting the number of functions, since the calculation of
5465 	 * the resources/features depends on them.
5466 	 * This order is not harmful if not forcing.
5467 	 */
5468 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5469 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5470 		rc = ECORE_SUCCESS;
5471 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5472 	}
5473 
5474 	return rc;
5475 }
5476 
5477 #define ECORE_MAX_DEVICE_NAME_LEN (8)
5478 
5479 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5480 {
5481 	u8 n;
5482 
5483 	n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5484 	OSAL_SNPRINTF((char *)name, n, "%s %c%d",
5485 		      ECORE_IS_BB(p_dev) ? "BB" : "AH",
5486 		      'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5487 }
5488 
5489 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5490 					       struct ecore_ptt *p_ptt)
5491 {
5492 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5493 	u16 device_id_mask;
5494 	u32 tmp;
5495 
5496 	/* Read Vendor Id / Device Id */
5497 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5498 				  &p_dev->vendor_id);
5499 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5500 				  &p_dev->device_id);
5501 
5502 	/* Determine type */
5503 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5504 	switch (device_id_mask) {
5505 	case ECORE_DEV_ID_MASK_BB:
5506 		p_dev->type = ECORE_DEV_TYPE_BB;
5507 		break;
5508 	case ECORE_DEV_ID_MASK_AH:
5509 		p_dev->type = ECORE_DEV_TYPE_AH;
5510 		break;
5511 	default:
5512 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5513 			  p_dev->device_id);
5514 		return ECORE_ABORTED;
5515 	}
5516 
5517 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5518 	p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5519 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5520 	p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5521 
5522 	/* Learn number of HW-functions */
5523 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5524 
5525 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
5526 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5527 		p_dev->num_hwfns = 2;
5528 	} else {
5529 		p_dev->num_hwfns = 1;
5530 	}
5531 
5532 #ifndef ASIC_ONLY
5533 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_BB(p_dev)) {
5534 		/* For some reason we have problems with this register
5535 		 * in BB B0 emulation; Simply assume no CMT
5536 		 */
5537 		DP_NOTICE(p_dev->hwfns, false,
5538 			  "device on emul - assume no CMT\n");
5539 		p_dev->num_hwfns = 1;
5540 	}
5541 #endif
5542 
5543 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5544 	p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5545 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5546 	p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5547 
5548 	DP_INFO(p_dev->hwfns,
5549 		"Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5550 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
5551 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5552 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5553 		p_dev->chip_metal);
5554 
5555 	if (ECORE_IS_BB_A0(p_dev)) {
5556 		DP_NOTICE(p_dev->hwfns, false,
5557 			  "The chip type/rev (BB A0) is not supported!\n");
5558 		return ECORE_ABORTED;
5559 	}
5560 #ifndef ASIC_ONLY
5561 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5562 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5563 
5564 	if (CHIP_REV_IS_EMUL(p_dev)) {
5565 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5566 
5567 		/* MISCS_REG_ECO_RESERVED[29]: full/reduced emulation build */
5568 		p_dev->b_is_emul_full = !!(tmp & (1 << 29));
5569 
5570 		/* MISCS_REG_ECO_RESERVED[28]: emulation build w/ or w/o MAC */
5571 		p_dev->b_is_emul_mac = !!(tmp & (1 << 28));
5572 
5573 			DP_NOTICE(p_hwfn, false,
5574 			  "Emulation: Running on a %s build %s MAC\n",
5575 			  p_dev->b_is_emul_full ? "full" : "reduced",
5576 			  p_dev->b_is_emul_mac ? "with" : "without");
5577 	}
5578 #endif
5579 
5580 	return ECORE_SUCCESS;
5581 }
5582 
5583 #ifndef LINUX_REMOVE
5584 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
5585 {
5586 	int j;
5587 
5588 	if (IS_VF(p_dev))
5589 		return;
5590 
5591 	for_each_hwfn(p_dev, j) {
5592 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5593 
5594 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
5595 			   "Mark hw/fw uninitialized\n");
5596 
5597 		p_hwfn->hw_init_done = false;
5598 
5599 		ecore_ptt_invalidate(p_hwfn);
5600 	}
5601 }
5602 #endif
5603 
5604 static enum _ecore_status_t
5605 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5606 			void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5607 			struct ecore_hw_prepare_params *p_params)
5608 {
5609 	struct ecore_mdump_retain_data mdump_retain;
5610 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5611 	struct ecore_mdump_info mdump_info;
5612 	enum _ecore_status_t rc = ECORE_SUCCESS;
5613 
5614 	/* Split PCI bars evenly between hwfns */
5615 	p_hwfn->regview = p_regview;
5616 	p_hwfn->doorbells = p_doorbells;
5617 	p_hwfn->db_phys_addr = db_phys_addr;
5618 
5619 	if (IS_VF(p_dev))
5620 		return ecore_vf_hw_prepare(p_hwfn, p_params);
5621 
5622 	/* Validate that chip access is feasible */
5623 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5624 		DP_ERR(p_hwfn,
5625 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
5626 		if (p_params->b_relaxed_probe)
5627 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5628 		return ECORE_INVAL;
5629 	}
5630 
5631 	get_function_id(p_hwfn);
5632 
5633 	/* Allocate PTT pool */
5634 	rc = ecore_ptt_pool_alloc(p_hwfn);
5635 	if (rc) {
5636 		DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5637 		if (p_params->b_relaxed_probe)
5638 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5639 		goto err0;
5640 	}
5641 
5642 	/* Allocate the main PTT */
5643 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5644 
5645 	/* First hwfn learns basic information, e.g., number of hwfns */
5646 	if (IS_LEAD_HWFN(p_hwfn)) {
5647 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5648 		if (rc != ECORE_SUCCESS) {
5649 			if (p_params->b_relaxed_probe)
5650 				p_params->p_relaxed_res =
5651 					ECORE_HW_PREPARE_FAILED_DEV;
5652 			goto err1;
5653 		}
5654 	}
5655 
5656 #ifndef ASIC_ONLY
5657 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) && !b_ptt_gtt_init) {
5658 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
5659 		u32 val;
5660 
5661 		/* Initialize PTT/GTT (done by MFW on ASIC) */
5662 		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_START_INIT_PTT_GTT, 1);
5663 		OSAL_MSLEEP(10);
5664 		ecore_ptt_invalidate(p_hwfn);
5665 		val = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_INIT_DONE_PTT_GTT);
5666 		if (val != 1) {
5667 			DP_ERR(p_hwfn,
5668 			       "PTT and GTT init in PGLUE_B didn't complete\n");
5669 			goto err1;
5670 		}
5671 
5672 		/* Clear a possible PGLUE_B parity from a previous GRC access */
5673 		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_PRTY_STS_WR_H_0, 0x380);
5674 
5675 		b_ptt_gtt_init = true;
5676 	}
5677 #endif
5678 
5679 	/* Store the precompiled init data ptrs */
5680 	if (IS_LEAD_HWFN(p_hwfn))
5681 		ecore_init_iro_array(p_hwfn->p_dev);
5682 
5683 	ecore_hw_hwfn_prepare(p_hwfn);
5684 
5685 	/* Initialize MCP structure */
5686 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5687 	if (rc) {
5688 		DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5689 		if (p_params->b_relaxed_probe)
5690 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5691 		goto err1;
5692 	}
5693 
5694 	/* Read the device configuration information from the HW and SHMEM */
5695 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5696 			       p_params->personality, p_params);
5697 	if (rc) {
5698 		DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5699 		goto err2;
5700 	}
5701 
5702 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5703 	 * called, since among others it sets the ports number in an engine.
5704 	 */
5705 	if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5706 	    !p_dev->recov_in_prog) {
5707 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5708 		if (rc != ECORE_SUCCESS)
5709 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5710 
5711 		/* Workaround for MFW issue where PF FLR does not cleanup
5712 		 * IGU block
5713 		 */
5714 		if (!(p_hwfn->mcp_info->capabilities &
5715 		      FW_MB_PARAM_FEATURE_SUPPORT_IGU_CLEANUP))
5716 			ecore_pf_flr_igu_cleanup(p_hwfn);
5717 	}
5718 
5719 	/* Check if mdump logs/data are present and update the epoch value */
5720 	if (IS_LEAD_HWFN(p_hwfn)) {
5721 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5722 					      &mdump_info);
5723 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5724 			DP_NOTICE(p_hwfn, false,
5725 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5726 
5727 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5728 						&mdump_retain);
5729 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
5730 			DP_NOTICE(p_hwfn, false,
5731 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5732 				  mdump_retain.epoch, mdump_retain.pf,
5733 				  mdump_retain.status);
5734 
5735 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5736 					   p_params->epoch);
5737 	}
5738 
5739 	/* Allocate the init RT array and initialize the init-ops engine */
5740 	rc = ecore_init_alloc(p_hwfn);
5741 	if (rc) {
5742 		DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5743 		if (p_params->b_relaxed_probe)
5744 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5745 		goto err2;
5746 	}
5747 #ifndef ASIC_ONLY
5748 	if (CHIP_REV_IS_FPGA(p_dev)) {
5749 		if (ECORE_IS_AH(p_dev)) {
5750 			DP_NOTICE(p_hwfn, false,
5751 				  "FPGA: workaround; Prevent DMAE parities\n");
5752 			ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5753 				 PCIE_REG_PRTY_MASK_K2, 7);
5754 		}
5755 
5756 		DP_NOTICE(p_hwfn, false,
5757 			  "FPGA: workaround: Set VF bar0 size\n");
5758 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5759 			 PGLUE_B_REG_VF_BAR0_SIZE_K2, 4);
5760 	}
5761 #endif
5762 
5763 	return rc;
5764 err2:
5765 	if (IS_LEAD_HWFN(p_hwfn))
5766 		ecore_iov_free_hw_info(p_dev);
5767 	ecore_mcp_free(p_hwfn);
5768 err1:
5769 	ecore_hw_hwfn_free(p_hwfn);
5770 err0:
5771 	return rc;
5772 }
5773 
5774 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5775 				      struct ecore_hw_prepare_params *p_params)
5776 {
5777 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5778 	enum _ecore_status_t rc;
5779 
5780 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5781 	p_dev->allow_mdump = p_params->allow_mdump;
5782 	p_hwfn->b_en_pacing = p_params->b_en_pacing;
5783 	p_dev->b_is_target = p_params->b_is_target;
5784 
5785 	if (p_params->b_relaxed_probe)
5786 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5787 
5788 	/* Initialize the first hwfn - will learn number of hwfns */
5789 	rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
5790 				     p_dev->doorbells, p_dev->db_phys_addr,
5791 				     p_params);
5792 	if (rc != ECORE_SUCCESS)
5793 		return rc;
5794 
5795 	p_params->personality = p_hwfn->hw_info.personality;
5796 
5797 	/* Initialize 2nd hwfn if necessary */
5798 	if (ECORE_IS_CMT(p_dev)) {
5799 		void OSAL_IOMEM *p_regview, *p_doorbell;
5800 		u8 OSAL_IOMEM *addr;
5801 		u64 db_phys_addr;
5802 		u32 offset;
5803 
5804 		/* adjust bar offset for second engine */
5805 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
5806 					   BAR_ID_0) / 2;
5807 		addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
5808 		p_regview = (void OSAL_IOMEM *)addr;
5809 
5810 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
5811 					   BAR_ID_1) / 2;
5812 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
5813 		p_doorbell = (void OSAL_IOMEM *)addr;
5814 		db_phys_addr = p_dev->db_phys_addr + offset;
5815 
5816 		p_dev->hwfns[1].b_en_pacing = p_params->b_en_pacing;
5817 		/* prepare second hw function */
5818 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
5819 					     p_doorbell, db_phys_addr,
5820 					     p_params);
5821 
5822 		/* in case of error, need to free the previously
5823 		 * initiliazed hwfn 0.
5824 		 */
5825 		if (rc != ECORE_SUCCESS) {
5826 			if (p_params->b_relaxed_probe)
5827 				p_params->p_relaxed_res =
5828 						ECORE_HW_PREPARE_FAILED_ENG2;
5829 
5830 			if (IS_PF(p_dev)) {
5831 				ecore_init_free(p_hwfn);
5832 				ecore_mcp_free(p_hwfn);
5833 				ecore_hw_hwfn_free(p_hwfn);
5834 			} else {
5835 				DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
5836 			}
5837 			return rc;
5838 		}
5839 	}
5840 
5841 	return rc;
5842 }
5843 
5844 void ecore_hw_remove(struct ecore_dev *p_dev)
5845 {
5846 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5847 	int i;
5848 
5849 	if (IS_PF(p_dev))
5850 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
5851 					ECORE_OV_DRIVER_STATE_NOT_LOADED);
5852 
5853 	for_each_hwfn(p_dev, i) {
5854 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5855 
5856 		if (IS_VF(p_dev)) {
5857 			ecore_vf_pf_release(p_hwfn);
5858 			continue;
5859 		}
5860 
5861 		ecore_init_free(p_hwfn);
5862 		ecore_hw_hwfn_free(p_hwfn);
5863 		ecore_mcp_free(p_hwfn);
5864 
5865 #ifdef CONFIG_ECORE_LOCK_ALLOC
5866 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
5867 #endif
5868 	}
5869 
5870 	ecore_iov_free_hw_info(p_dev);
5871 }
5872 
5873 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
5874 				      struct ecore_chain *p_chain)
5875 {
5876 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
5877 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
5878 	struct ecore_chain_next *p_next;
5879 	u32 size, i;
5880 
5881 	if (!p_virt)
5882 		return;
5883 
5884 	size = p_chain->elem_size * p_chain->usable_per_page;
5885 
5886 	for (i = 0; i < p_chain->page_cnt; i++) {
5887 		if (!p_virt)
5888 			break;
5889 
5890 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
5891 		p_virt_next = p_next->next_virt;
5892 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
5893 
5894 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
5895 				       ECORE_CHAIN_PAGE_SIZE);
5896 
5897 		p_virt = p_virt_next;
5898 		p_phys = p_phys_next;
5899 	}
5900 }
5901 
5902 static void ecore_chain_free_single(struct ecore_dev *p_dev,
5903 				    struct ecore_chain *p_chain)
5904 {
5905 	if (!p_chain->p_virt_addr)
5906 		return;
5907 
5908 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
5909 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
5910 }
5911 
5912 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
5913 				 struct ecore_chain *p_chain)
5914 {
5915 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
5916 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
5917 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
5918 
5919 	if (!pp_virt_addr_tbl)
5920 		return;
5921 
5922 	if (!p_pbl_virt)
5923 		goto out;
5924 
5925 	for (i = 0; i < page_cnt; i++) {
5926 		if (!pp_virt_addr_tbl[i])
5927 			break;
5928 
5929 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
5930 				       *(dma_addr_t *)p_pbl_virt,
5931 				       ECORE_CHAIN_PAGE_SIZE);
5932 
5933 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
5934 	}
5935 
5936 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
5937 
5938 	if (!p_chain->b_external_pbl)
5939 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
5940 				       p_chain->pbl_sp.p_phys_table, pbl_size);
5941 out:
5942 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
5943 }
5944 
5945 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
5946 {
5947 	switch (p_chain->mode) {
5948 	case ECORE_CHAIN_MODE_NEXT_PTR:
5949 		ecore_chain_free_next_ptr(p_dev, p_chain);
5950 		break;
5951 	case ECORE_CHAIN_MODE_SINGLE:
5952 		ecore_chain_free_single(p_dev, p_chain);
5953 		break;
5954 	case ECORE_CHAIN_MODE_PBL:
5955 		ecore_chain_free_pbl(p_dev, p_chain);
5956 		break;
5957 	}
5958 }
5959 
5960 static enum _ecore_status_t
5961 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
5962 			       enum ecore_chain_cnt_type cnt_type,
5963 			       osal_size_t elem_size, u32 page_cnt)
5964 {
5965 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
5966 
5967 	/* The actual chain size can be larger than the maximal possible value
5968 	 * after rounding up the requested elements number to pages, and after
5969 	 * taking into acount the unusuable elements (next-ptr elements).
5970 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
5971 	 * size/capacity fields are of a u32 type.
5972 	 */
5973 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
5974 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
5975 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
5976 	     chain_size > ECORE_U32_MAX)) {
5977 		DP_NOTICE(p_dev, true,
5978 			  "The actual chain size (0x%lx) is larger than the maximal possible value\n",
5979 			  (unsigned long)chain_size);
5980 		return ECORE_INVAL;
5981 	}
5982 
5983 	return ECORE_SUCCESS;
5984 }
5985 
5986 static enum _ecore_status_t
5987 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
5988 {
5989 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
5990 	dma_addr_t p_phys = 0;
5991 	u32 i;
5992 
5993 	for (i = 0; i < p_chain->page_cnt; i++) {
5994 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
5995 						 ECORE_CHAIN_PAGE_SIZE);
5996 		if (!p_virt) {
5997 			DP_NOTICE(p_dev, false,
5998 				  "Failed to allocate chain memory\n");
5999 			return ECORE_NOMEM;
6000 		}
6001 
6002 		if (i == 0) {
6003 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6004 			ecore_chain_reset(p_chain);
6005 		} else {
6006 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6007 						       p_virt, p_phys);
6008 		}
6009 
6010 		p_virt_prev = p_virt;
6011 	}
6012 	/* Last page's next element should point to the beginning of the
6013 	 * chain.
6014 	 */
6015 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6016 				       p_chain->p_virt_addr,
6017 				       p_chain->p_phys_addr);
6018 
6019 	return ECORE_SUCCESS;
6020 }
6021 
6022 static enum _ecore_status_t
6023 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6024 {
6025 	dma_addr_t p_phys = 0;
6026 	void *p_virt = OSAL_NULL;
6027 
6028 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6029 	if (!p_virt) {
6030 		DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6031 		return ECORE_NOMEM;
6032 	}
6033 
6034 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
6035 	ecore_chain_reset(p_chain);
6036 
6037 	return ECORE_SUCCESS;
6038 }
6039 
6040 static enum _ecore_status_t
6041 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6042 		      struct ecore_chain *p_chain,
6043 		      struct ecore_chain_ext_pbl *ext_pbl)
6044 {
6045 	u32 page_cnt = p_chain->page_cnt, size, i;
6046 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
6047 	void **pp_virt_addr_tbl = OSAL_NULL;
6048 	u8 *p_pbl_virt = OSAL_NULL;
6049 	void *p_virt = OSAL_NULL;
6050 
6051 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
6052 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6053 	if (!pp_virt_addr_tbl) {
6054 		DP_NOTICE(p_dev, false,
6055 			  "Failed to allocate memory for the chain virtual addresses table\n");
6056 		return ECORE_NOMEM;
6057 	}
6058 
6059 	/* The allocation of the PBL table is done with its full size, since it
6060 	 * is expected to be successive.
6061 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6062 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
6063 	 * should be saved to allow its freeing during the error flow.
6064 	 */
6065 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6066 
6067 	if (ext_pbl == OSAL_NULL) {
6068 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6069 	} else {
6070 		p_pbl_virt = ext_pbl->p_pbl_virt;
6071 		p_pbl_phys = ext_pbl->p_pbl_phys;
6072 		p_chain->b_external_pbl = true;
6073 	}
6074 
6075 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6076 				 pp_virt_addr_tbl);
6077 	if (!p_pbl_virt) {
6078 		DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6079 		return ECORE_NOMEM;
6080 	}
6081 
6082 	for (i = 0; i < page_cnt; i++) {
6083 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6084 						 ECORE_CHAIN_PAGE_SIZE);
6085 		if (!p_virt) {
6086 			DP_NOTICE(p_dev, false,
6087 				  "Failed to allocate chain memory\n");
6088 			return ECORE_NOMEM;
6089 		}
6090 
6091 		if (i == 0) {
6092 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
6093 			ecore_chain_reset(p_chain);
6094 		}
6095 
6096 		/* Fill the PBL table with the physical address of the page */
6097 		*(dma_addr_t *)p_pbl_virt = p_phys;
6098 		/* Keep the virtual address of the page */
6099 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6100 
6101 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6102 	}
6103 
6104 	return ECORE_SUCCESS;
6105 }
6106 
6107 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6108 				       enum ecore_chain_use_mode intended_use,
6109 				       enum ecore_chain_mode mode,
6110 				       enum ecore_chain_cnt_type cnt_type,
6111 				       u32 num_elems, osal_size_t elem_size,
6112 				       struct ecore_chain *p_chain,
6113 				       struct ecore_chain_ext_pbl *ext_pbl)
6114 {
6115 	u32 page_cnt;
6116 	enum _ecore_status_t rc = ECORE_SUCCESS;
6117 
6118 	if (mode == ECORE_CHAIN_MODE_SINGLE)
6119 		page_cnt = 1;
6120 	else
6121 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6122 
6123 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6124 					    page_cnt);
6125 	if (rc) {
6126 		DP_NOTICE(p_dev, false,
6127 			  "Cannot allocate a chain with the given arguments:\n"
6128 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6129 			  intended_use, mode, cnt_type, num_elems, elem_size);
6130 		return rc;
6131 	}
6132 
6133 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6134 				mode, cnt_type, p_dev->dp_ctx);
6135 
6136 	switch (mode) {
6137 	case ECORE_CHAIN_MODE_NEXT_PTR:
6138 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6139 		break;
6140 	case ECORE_CHAIN_MODE_SINGLE:
6141 		rc = ecore_chain_alloc_single(p_dev, p_chain);
6142 		break;
6143 	case ECORE_CHAIN_MODE_PBL:
6144 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6145 		break;
6146 	}
6147 	if (rc)
6148 		goto nomem;
6149 
6150 	return ECORE_SUCCESS;
6151 
6152 nomem:
6153 	ecore_chain_free(p_dev, p_chain);
6154 	return rc;
6155 }
6156 
6157 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6158 				       u16 src_id, u16 *dst_id)
6159 {
6160 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6161 		u16 min, max;
6162 
6163 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6164 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6165 		DP_NOTICE(p_hwfn, true,
6166 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6167 			  src_id, min, max);
6168 
6169 		return ECORE_INVAL;
6170 	}
6171 
6172 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6173 
6174 	return ECORE_SUCCESS;
6175 }
6176 
6177 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6178 				    u8 src_id, u8 *dst_id)
6179 {
6180 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6181 		u8 min, max;
6182 
6183 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6184 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6185 		DP_NOTICE(p_hwfn, true,
6186 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
6187 			  src_id, min, max);
6188 
6189 		return ECORE_INVAL;
6190 	}
6191 
6192 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6193 
6194 	return ECORE_SUCCESS;
6195 }
6196 
6197 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6198 				      u8 src_id, u8 *dst_id)
6199 {
6200 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6201 		u8 min, max;
6202 
6203 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6204 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6205 		DP_NOTICE(p_hwfn, true,
6206 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6207 			  src_id, min, max);
6208 
6209 		return ECORE_INVAL;
6210 	}
6211 
6212 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6213 
6214 	return ECORE_SUCCESS;
6215 }
6216 
6217 enum _ecore_status_t
6218 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6219 				  struct ecore_ptt *p_ptt)
6220 {
6221 	if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6222 		ecore_wr(p_hwfn, p_ptt,
6223 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6224 			 1 << p_hwfn->abs_pf_id / 2);
6225 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6226 		return ECORE_SUCCESS;
6227 	}
6228 
6229 	DP_NOTICE(p_hwfn, false,
6230 		  "This function can't be set as default\n");
6231 	return ECORE_INVAL;
6232 }
6233 
6234 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6235 					       struct ecore_ptt *p_ptt,
6236 					       u32 hw_addr, void *p_eth_qzone,
6237 					       osal_size_t eth_qzone_size,
6238 					       u8 timeset)
6239 {
6240 	struct coalescing_timeset *p_coal_timeset;
6241 
6242 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6243 		DP_NOTICE(p_hwfn, true,
6244 			  "Coalescing configuration not enabled\n");
6245 		return ECORE_INVAL;
6246 	}
6247 
6248 	p_coal_timeset = p_eth_qzone;
6249 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6250 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6251 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6252 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6253 
6254 	return ECORE_SUCCESS;
6255 }
6256 
6257 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6258 					      u16 rx_coal, u16 tx_coal,
6259 					      void *p_handle)
6260 {
6261 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6262 	enum _ecore_status_t rc = ECORE_SUCCESS;
6263 	struct ecore_ptt *p_ptt;
6264 
6265 	/* TODO - Configuring a single queue's coalescing but
6266 	 * claiming all queues are abiding same configuration
6267 	 * for PF and VF both.
6268 	 */
6269 
6270 	if (IS_VF(p_hwfn->p_dev))
6271 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6272 						tx_coal, p_cid);
6273 
6274 	p_ptt = ecore_ptt_acquire(p_hwfn);
6275 	if (!p_ptt)
6276 		return ECORE_AGAIN;
6277 
6278 	if (rx_coal) {
6279 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6280 		if (rc)
6281 			goto out;
6282 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6283 	}
6284 
6285 	if (tx_coal) {
6286 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6287 		if (rc)
6288 			goto out;
6289 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6290 	}
6291 out:
6292 	ecore_ptt_release(p_hwfn, p_ptt);
6293 
6294 	return rc;
6295 }
6296 
6297 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6298 					    struct ecore_ptt *p_ptt,
6299 					    u16 coalesce,
6300 					    struct ecore_queue_cid *p_cid)
6301 {
6302 	struct ustorm_eth_queue_zone eth_qzone;
6303 	u8 timeset, timer_res;
6304 	u32 address;
6305 	enum _ecore_status_t rc;
6306 
6307 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6308 	if (coalesce <= 0x7F) {
6309 		timer_res = 0;
6310 	} else if (coalesce <= 0xFF) {
6311 		timer_res = 1;
6312 	} else if (coalesce <= 0x1FF) {
6313 		timer_res = 2;
6314 	} else {
6315 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6316 		return ECORE_INVAL;
6317 	}
6318 	timeset = (u8)(coalesce >> timer_res);
6319 
6320 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6321 				     p_cid->sb_igu_id, false);
6322 	if (rc != ECORE_SUCCESS)
6323 		goto out;
6324 
6325 	address = BAR0_MAP_REG_USDM_RAM +
6326 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6327 
6328 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6329 				sizeof(struct ustorm_eth_queue_zone), timeset);
6330 	if (rc != ECORE_SUCCESS)
6331 		goto out;
6332 
6333 out:
6334 	return rc;
6335 }
6336 
6337 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6338 					    struct ecore_ptt *p_ptt,
6339 					    u16 coalesce,
6340 					    struct ecore_queue_cid *p_cid)
6341 {
6342 	struct xstorm_eth_queue_zone eth_qzone;
6343 	u8 timeset, timer_res;
6344 	u32 address;
6345 	enum _ecore_status_t rc;
6346 
6347 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6348 	if (coalesce <= 0x7F) {
6349 		timer_res = 0;
6350 	} else if (coalesce <= 0xFF) {
6351 		timer_res = 1;
6352 	} else if (coalesce <= 0x1FF) {
6353 		timer_res = 2;
6354 	} else {
6355 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6356 		return ECORE_INVAL;
6357 	}
6358 
6359 	timeset = (u8)(coalesce >> timer_res);
6360 
6361 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6362 				     p_cid->sb_igu_id, true);
6363 	if (rc != ECORE_SUCCESS)
6364 		goto out;
6365 
6366 	address = BAR0_MAP_REG_XSDM_RAM +
6367 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6368 
6369 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6370 				sizeof(struct xstorm_eth_queue_zone), timeset);
6371 out:
6372 	return rc;
6373 }
6374 
6375 /* Calculate final WFQ values for all vports and configure it.
6376  * After this configuration each vport must have
6377  * approx min rate =  wfq * min_pf_rate / ECORE_WFQ_UNIT
6378  */
6379 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6380 					       struct ecore_ptt *p_ptt,
6381 					       u32 min_pf_rate)
6382 {
6383 	struct init_qm_vport_params *vport_params;
6384 	int i;
6385 
6386 	vport_params = p_hwfn->qm_info.qm_vport_params;
6387 
6388 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6389 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6390 
6391 		vport_params[i].wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6392 		    min_pf_rate;
6393 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6394 				     vport_params[i].first_tx_pq_id,
6395 				     vport_params[i].wfq);
6396 	}
6397 }
6398 
6399 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6400 {
6401 	int i;
6402 
6403 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6404 		p_hwfn->qm_info.qm_vport_params[i].wfq = 1;
6405 }
6406 
6407 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6408 					     struct ecore_ptt *p_ptt)
6409 {
6410 	struct init_qm_vport_params *vport_params;
6411 	int i;
6412 
6413 	vport_params = p_hwfn->qm_info.qm_vport_params;
6414 
6415 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6416 		ecore_init_wfq_default_param(p_hwfn);
6417 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6418 				     vport_params[i].first_tx_pq_id,
6419 				     vport_params[i].wfq);
6420 	}
6421 }
6422 
6423 /* This function performs several validations for WFQ
6424  * configuration and required min rate for a given vport
6425  * 1. req_rate must be greater than one percent of min_pf_rate.
6426  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6427  *    rates to get less than one percent of min_pf_rate.
6428  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6429  */
6430 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6431 						 u16 vport_id, u32 req_rate,
6432 						 u32 min_pf_rate)
6433 {
6434 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6435 	int non_requested_count = 0, req_count = 0, i, num_vports;
6436 
6437 	num_vports = p_hwfn->qm_info.num_vports;
6438 
6439 /* Accounting for the vports which are configured for WFQ explicitly */
6440 
6441 	for (i = 0; i < num_vports; i++) {
6442 		u32 tmp_speed;
6443 
6444 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6445 			req_count++;
6446 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6447 			total_req_min_rate += tmp_speed;
6448 		}
6449 	}
6450 
6451 	/* Include current vport data as well */
6452 	req_count++;
6453 	total_req_min_rate += req_rate;
6454 	non_requested_count = num_vports - req_count;
6455 
6456 	/* validate possible error cases */
6457 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6458 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6459 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6460 			   vport_id, req_rate, min_pf_rate);
6461 		return ECORE_INVAL;
6462 	}
6463 
6464 	/* TBD - for number of vports greater than 100 */
6465 	if (num_vports > ECORE_WFQ_UNIT) {
6466 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6467 			   "Number of vports is greater than %d\n",
6468 			   ECORE_WFQ_UNIT);
6469 		return ECORE_INVAL;
6470 	}
6471 
6472 	if (total_req_min_rate > min_pf_rate) {
6473 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6474 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6475 			   total_req_min_rate, min_pf_rate);
6476 		return ECORE_INVAL;
6477 	}
6478 
6479 	/* Data left for non requested vports */
6480 	total_left_rate = min_pf_rate - total_req_min_rate;
6481 	left_rate_per_vp = total_left_rate / non_requested_count;
6482 
6483 	/* validate if non requested get < 1% of min bw */
6484 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6485 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6486 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6487 			   left_rate_per_vp, min_pf_rate);
6488 		return ECORE_INVAL;
6489 	}
6490 
6491 	/* now req_rate for given vport passes all scenarios.
6492 	 * assign final wfq rates to all vports.
6493 	 */
6494 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6495 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6496 
6497 	for (i = 0; i < num_vports; i++) {
6498 		if (p_hwfn->qm_info.wfq_data[i].configured)
6499 			continue;
6500 
6501 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6502 	}
6503 
6504 	return ECORE_SUCCESS;
6505 }
6506 
6507 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6508 				       struct ecore_ptt *p_ptt,
6509 				       u16 vp_id, u32 rate)
6510 {
6511 	struct ecore_mcp_link_state *p_link;
6512 	int rc = ECORE_SUCCESS;
6513 
6514 	p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
6515 
6516 	if (!p_link->min_pf_rate) {
6517 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6518 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6519 		return rc;
6520 	}
6521 
6522 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6523 
6524 	if (rc == ECORE_SUCCESS)
6525 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6526 						   p_link->min_pf_rate);
6527 	else
6528 		DP_NOTICE(p_hwfn, false,
6529 			  "Validation failed while configuring min rate\n");
6530 
6531 	return rc;
6532 }
6533 
6534 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6535 						   struct ecore_ptt *p_ptt,
6536 						   u32 min_pf_rate)
6537 {
6538 	bool use_wfq = false;
6539 	int rc = ECORE_SUCCESS;
6540 	u16 i;
6541 
6542 	/* Validate all pre configured vports for wfq */
6543 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6544 		u32 rate;
6545 
6546 		if (!p_hwfn->qm_info.wfq_data[i].configured)
6547 			continue;
6548 
6549 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6550 		use_wfq = true;
6551 
6552 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6553 		if (rc != ECORE_SUCCESS) {
6554 			DP_NOTICE(p_hwfn, false,
6555 				  "WFQ validation failed while configuring min rate\n");
6556 			break;
6557 		}
6558 	}
6559 
6560 	if (rc == ECORE_SUCCESS && use_wfq)
6561 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6562 	else
6563 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6564 
6565 	return rc;
6566 }
6567 
6568 /* Main API for ecore clients to configure vport min rate.
6569  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6570  * rate - Speed in Mbps needs to be assigned to a given vport.
6571  */
6572 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6573 {
6574 	int i, rc = ECORE_INVAL;
6575 
6576 	/* TBD - for multiple hardware functions - that is 100 gig */
6577 	if (ECORE_IS_CMT(p_dev)) {
6578 		DP_NOTICE(p_dev, false,
6579 			  "WFQ configuration is not supported for this device\n");
6580 		return rc;
6581 	}
6582 
6583 	for_each_hwfn(p_dev, i) {
6584 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6585 		struct ecore_ptt *p_ptt;
6586 
6587 		p_ptt = ecore_ptt_acquire(p_hwfn);
6588 		if (!p_ptt)
6589 			return ECORE_TIMEOUT;
6590 
6591 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6592 
6593 		if (rc != ECORE_SUCCESS) {
6594 			ecore_ptt_release(p_hwfn, p_ptt);
6595 			return rc;
6596 		}
6597 
6598 		ecore_ptt_release(p_hwfn, p_ptt);
6599 	}
6600 
6601 	return rc;
6602 }
6603 
6604 /* API to configure WFQ from mcp link change */
6605 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6606 					   struct ecore_ptt *p_ptt,
6607 					   u32 min_pf_rate)
6608 {
6609 	int i;
6610 
6611 	/* TBD - for multiple hardware functions - that is 100 gig */
6612 	if (ECORE_IS_CMT(p_dev)) {
6613 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6614 			   "WFQ configuration is not supported for this device\n");
6615 		return;
6616 	}
6617 
6618 	for_each_hwfn(p_dev, i) {
6619 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6620 
6621 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6622 							min_pf_rate);
6623 	}
6624 }
6625 
6626 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6627 				       struct ecore_ptt *p_ptt,
6628 				       struct ecore_mcp_link_state *p_link,
6629 				       u8 max_bw)
6630 {
6631 	int rc = ECORE_SUCCESS;
6632 
6633 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6634 
6635 	if (!p_link->line_speed && (max_bw != 100))
6636 		return rc;
6637 
6638 	p_link->speed = (p_link->line_speed * max_bw) / 100;
6639 	p_hwfn->qm_info.pf_rl = p_link->speed;
6640 
6641 	/* Since the limiter also affects Tx-switched traffic, we don't want it
6642 	 * to limit such traffic in case there's no actual limit.
6643 	 * In that case, set limit to imaginary high boundary.
6644 	 */
6645 	if (max_bw == 100)
6646 		p_hwfn->qm_info.pf_rl = 100000;
6647 
6648 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6649 			      p_hwfn->qm_info.pf_rl);
6650 
6651 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6652 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
6653 		   p_link->speed);
6654 
6655 	return rc;
6656 }
6657 
6658 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
6659 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6660 {
6661 	int i, rc = ECORE_INVAL;
6662 
6663 	if (max_bw < 1 || max_bw > 100) {
6664 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6665 		return rc;
6666 	}
6667 
6668 	for_each_hwfn(p_dev, i) {
6669 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6670 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6671 		struct ecore_mcp_link_state *p_link;
6672 		struct ecore_ptt *p_ptt;
6673 
6674 		p_link = &p_lead->mcp_info->link_output;
6675 
6676 		p_ptt = ecore_ptt_acquire(p_hwfn);
6677 		if (!p_ptt)
6678 			return ECORE_TIMEOUT;
6679 
6680 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6681 							p_link, max_bw);
6682 
6683 		ecore_ptt_release(p_hwfn, p_ptt);
6684 
6685 		if (rc != ECORE_SUCCESS)
6686 			break;
6687 	}
6688 
6689 	return rc;
6690 }
6691 
6692 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6693 				       struct ecore_ptt *p_ptt,
6694 				       struct ecore_mcp_link_state *p_link,
6695 				       u8 min_bw)
6696 {
6697 	int rc = ECORE_SUCCESS;
6698 
6699 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6700 	p_hwfn->qm_info.pf_wfq = min_bw;
6701 
6702 	if (!p_link->line_speed)
6703 		return rc;
6704 
6705 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6706 
6707 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6708 
6709 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6710 		   "Configured MIN bandwidth to be %d Mb/sec\n",
6711 		   p_link->min_pf_rate);
6712 
6713 	return rc;
6714 }
6715 
6716 /* Main API to configure PF min bandwidth where bw range is [1-100] */
6717 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6718 {
6719 	int i, rc = ECORE_INVAL;
6720 
6721 	if (min_bw < 1 || min_bw > 100) {
6722 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6723 		return rc;
6724 	}
6725 
6726 	for_each_hwfn(p_dev, i) {
6727 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6728 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6729 		struct ecore_mcp_link_state *p_link;
6730 		struct ecore_ptt *p_ptt;
6731 
6732 		p_link = &p_lead->mcp_info->link_output;
6733 
6734 		p_ptt = ecore_ptt_acquire(p_hwfn);
6735 		if (!p_ptt)
6736 			return ECORE_TIMEOUT;
6737 
6738 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6739 							p_link, min_bw);
6740 		if (rc != ECORE_SUCCESS) {
6741 			ecore_ptt_release(p_hwfn, p_ptt);
6742 			return rc;
6743 		}
6744 
6745 		if (p_link->min_pf_rate) {
6746 			u32 min_rate = p_link->min_pf_rate;
6747 
6748 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6749 								     p_ptt,
6750 								     min_rate);
6751 		}
6752 
6753 		ecore_ptt_release(p_hwfn, p_ptt);
6754 	}
6755 
6756 	return rc;
6757 }
6758 
6759 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6760 {
6761 	struct ecore_mcp_link_state *p_link;
6762 
6763 	p_link = &p_hwfn->mcp_info->link_output;
6764 
6765 	if (p_link->min_pf_rate)
6766 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6767 
6768 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6769 		    sizeof(*p_hwfn->qm_info.wfq_data) *
6770 		    p_hwfn->qm_info.num_vports);
6771 }
6772 
6773 int ecore_device_num_engines(struct ecore_dev *p_dev)
6774 {
6775 	return ECORE_IS_BB(p_dev) ? 2 : 1;
6776 }
6777 
6778 int ecore_device_num_ports(struct ecore_dev *p_dev)
6779 {
6780 	return p_dev->num_ports;
6781 }
6782 
6783 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6784 			  __le16 *fw_mid,
6785 			  __le16 *fw_lsb,
6786 			  u8 *mac)
6787 {
6788 	((u8 *)fw_msb)[0] = mac[1];
6789 	((u8 *)fw_msb)[1] = mac[0];
6790 	((u8 *)fw_mid)[0] = mac[3];
6791 	((u8 *)fw_mid)[1] = mac[2];
6792 	((u8 *)fw_lsb)[0] = mac[5];
6793 	((u8 *)fw_lsb)[1] = mac[4];
6794 }
6795 
6796 bool ecore_is_mf_fip_special(struct ecore_dev *p_dev)
6797 {
6798 	return !!OSAL_TEST_BIT(ECORE_MF_FIP_SPECIAL, &p_dev->mf_bits);
6799 }
6800