1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (c) 2016 - 2018 Cavium Inc. 3 * All rights reserved. 4 * www.cavium.com 5 */ 6 7 #include "bcm_osal.h" 8 #include "reg_addr.h" 9 #include "ecore_gtt_reg_addr.h" 10 #include "ecore.h" 11 #include "ecore_chain.h" 12 #include "ecore_status.h" 13 #include "ecore_hw.h" 14 #include "ecore_rt_defs.h" 15 #include "ecore_init_ops.h" 16 #include "ecore_int.h" 17 #include "ecore_cxt.h" 18 #include "ecore_spq.h" 19 #include "ecore_init_fw_funcs.h" 20 #include "ecore_sp_commands.h" 21 #include "ecore_dev_api.h" 22 #include "ecore_sriov.h" 23 #include "ecore_vf.h" 24 #include "ecore_mcp.h" 25 #include "ecore_hw_defs.h" 26 #include "mcp_public.h" 27 #include "ecore_iro.h" 28 #include "nvm_cfg.h" 29 #include "ecore_dcbx.h" 30 #include "ecore_l2.h" 31 32 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM 33 * registers involved are not split and thus configuration is a race where 34 * some of the PFs configuration might be lost. 35 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration 36 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where 37 * there's more than a single compiled ecore component in system]. 38 */ 39 static osal_spinlock_t qm_lock; 40 static u32 qm_lock_ref_cnt; 41 42 #ifndef ASIC_ONLY 43 static bool b_ptt_gtt_init; 44 #endif 45 46 /******************** Doorbell Recovery *******************/ 47 /* The doorbell recovery mechanism consists of a list of entries which represent 48 * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each 49 * entity needs to register with the mechanism and provide the parameters 50 * describing it's doorbell, including a location where last used doorbell data 51 * can be found. The doorbell execute function will traverse the list and 52 * doorbell all of the registered entries. 53 */ 54 struct ecore_db_recovery_entry { 55 osal_list_entry_t list_entry; 56 void OSAL_IOMEM *db_addr; 57 void *db_data; 58 enum ecore_db_rec_width db_width; 59 enum ecore_db_rec_space db_space; 60 u8 hwfn_idx; 61 }; 62 63 /* display a single doorbell recovery entry */ 64 void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn, 65 struct ecore_db_recovery_entry *db_entry, 66 const char *action) 67 { 68 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n", 69 action, db_entry, db_entry->db_addr, db_entry->db_data, 70 db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b", 71 db_entry->db_space == DB_REC_USER ? "user" : "kernel", 72 db_entry->hwfn_idx); 73 } 74 75 /* doorbell address sanity (address within doorbell bar range) */ 76 bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr, 77 void *db_data) 78 { 79 /* make sure doorbell address is within the doorbell bar */ 80 if (db_addr < p_dev->doorbells || (u8 *)db_addr > 81 (u8 *)p_dev->doorbells + p_dev->db_size) { 82 OSAL_WARN(true, 83 "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n", 84 db_addr, p_dev->doorbells, 85 (u8 *)p_dev->doorbells + p_dev->db_size); 86 return false; 87 } 88 89 /* make sure doorbell data pointer is not null */ 90 if (!db_data) { 91 OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data); 92 return false; 93 } 94 95 return true; 96 } 97 98 /* find hwfn according to the doorbell address */ 99 struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev, 100 void OSAL_IOMEM *db_addr) 101 { 102 struct ecore_hwfn *p_hwfn; 103 104 /* In CMT doorbell bar is split down the middle between engine 0 and 105 * enigne 1 106 */ 107 if (ECORE_IS_CMT(p_dev)) 108 p_hwfn = db_addr < p_dev->hwfns[1].doorbells ? 109 &p_dev->hwfns[0] : &p_dev->hwfns[1]; 110 else 111 p_hwfn = ECORE_LEADING_HWFN(p_dev); 112 113 return p_hwfn; 114 } 115 116 /* add a new entry to the doorbell recovery mechanism */ 117 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev, 118 void OSAL_IOMEM *db_addr, 119 void *db_data, 120 enum ecore_db_rec_width db_width, 121 enum ecore_db_rec_space db_space) 122 { 123 struct ecore_db_recovery_entry *db_entry; 124 struct ecore_hwfn *p_hwfn; 125 126 /* shortcircuit VFs, for now */ 127 if (IS_VF(p_dev)) { 128 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n"); 129 return ECORE_SUCCESS; 130 } 131 132 /* sanitize doorbell address */ 133 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data)) 134 return ECORE_INVAL; 135 136 /* obtain hwfn from doorbell address */ 137 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr); 138 139 /* create entry */ 140 db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry)); 141 if (!db_entry) { 142 DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n"); 143 return ECORE_NOMEM; 144 } 145 146 /* populate entry */ 147 db_entry->db_addr = db_addr; 148 db_entry->db_data = db_data; 149 db_entry->db_width = db_width; 150 db_entry->db_space = db_space; 151 db_entry->hwfn_idx = p_hwfn->my_id; 152 153 /* display */ 154 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding"); 155 156 /* protect the list */ 157 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 158 OSAL_LIST_PUSH_TAIL(&db_entry->list_entry, 159 &p_hwfn->db_recovery_info.list); 160 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 161 162 return ECORE_SUCCESS; 163 } 164 165 /* remove an entry from the doorbell recovery mechanism */ 166 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev, 167 void OSAL_IOMEM *db_addr, 168 void *db_data) 169 { 170 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 171 enum _ecore_status_t rc = ECORE_INVAL; 172 struct ecore_hwfn *p_hwfn; 173 174 /* shortcircuit VFs, for now */ 175 if (IS_VF(p_dev)) { 176 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n"); 177 return ECORE_SUCCESS; 178 } 179 180 /* sanitize doorbell address */ 181 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data)) 182 return ECORE_INVAL; 183 184 /* obtain hwfn from doorbell address */ 185 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr); 186 187 /* protect the list */ 188 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 189 OSAL_LIST_FOR_EACH_ENTRY(db_entry, 190 &p_hwfn->db_recovery_info.list, 191 list_entry, 192 struct ecore_db_recovery_entry) { 193 /* search according to db_data addr since db_addr is not unique 194 * (roce) 195 */ 196 if (db_entry->db_data == db_data) { 197 ecore_db_recovery_dp_entry(p_hwfn, db_entry, 198 "Deleting"); 199 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry, 200 &p_hwfn->db_recovery_info.list); 201 rc = ECORE_SUCCESS; 202 break; 203 } 204 } 205 206 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 207 208 if (rc == ECORE_INVAL) 209 /*OSAL_WARN(true,*/ 210 DP_NOTICE(p_hwfn, false, 211 "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n", 212 db_data, db_addr); 213 else 214 OSAL_FREE(p_dev, db_entry); 215 216 return rc; 217 } 218 219 /* initialize the doorbell recovery mechanism */ 220 enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn) 221 { 222 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n"); 223 224 /* make sure db_size was set in p_dev */ 225 if (!p_hwfn->p_dev->db_size) { 226 DP_ERR(p_hwfn->p_dev, "db_size not set\n"); 227 return ECORE_INVAL; 228 } 229 230 OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list); 231 #ifdef CONFIG_ECORE_LOCK_ALLOC 232 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock)) 233 return ECORE_NOMEM; 234 #endif 235 OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock); 236 p_hwfn->db_recovery_info.db_recovery_counter = 0; 237 238 return ECORE_SUCCESS; 239 } 240 241 /* destroy the doorbell recovery mechanism */ 242 void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn) 243 { 244 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 245 246 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n"); 247 if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) { 248 DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n"); 249 while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) { 250 db_entry = OSAL_LIST_FIRST_ENTRY( 251 &p_hwfn->db_recovery_info.list, 252 struct ecore_db_recovery_entry, 253 list_entry); 254 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging"); 255 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry, 256 &p_hwfn->db_recovery_info.list); 257 OSAL_FREE(p_hwfn->p_dev, db_entry); 258 } 259 } 260 #ifdef CONFIG_ECORE_LOCK_ALLOC 261 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock); 262 #endif 263 p_hwfn->db_recovery_info.db_recovery_counter = 0; 264 } 265 266 /* print the content of the doorbell recovery mechanism */ 267 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn) 268 { 269 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 270 271 DP_NOTICE(p_hwfn, false, 272 "Dispalying doorbell recovery database. Counter was %d\n", 273 p_hwfn->db_recovery_info.db_recovery_counter); 274 275 /* protect the list */ 276 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 277 OSAL_LIST_FOR_EACH_ENTRY(db_entry, 278 &p_hwfn->db_recovery_info.list, 279 list_entry, 280 struct ecore_db_recovery_entry) { 281 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing"); 282 } 283 284 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 285 } 286 287 /* ring the doorbell of a single doorbell recovery entry */ 288 void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn, 289 struct ecore_db_recovery_entry *db_entry, 290 enum ecore_db_rec_exec db_exec) 291 { 292 /* Print according to width */ 293 if (db_entry->db_width == DB_REC_WIDTH_32B) 294 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %x\n", 295 db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing", 296 db_entry->db_addr, *(u32 *)db_entry->db_data); 297 else 298 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %lx\n", 299 db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing", 300 db_entry->db_addr, 301 *(unsigned long *)(db_entry->db_data)); 302 303 /* Sanity */ 304 if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr, 305 db_entry->db_data)) 306 return; 307 308 /* Flush the write combined buffer. Since there are multiple doorbelling 309 * entities using the same address, if we don't flush, a transaction 310 * could be lost. 311 */ 312 OSAL_WMB(p_hwfn->p_dev); 313 314 /* Ring the doorbell */ 315 if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) { 316 if (db_entry->db_width == DB_REC_WIDTH_32B) 317 DIRECT_REG_WR(p_hwfn, db_entry->db_addr, 318 *(u32 *)(db_entry->db_data)); 319 else 320 DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, 321 *(u64 *)(db_entry->db_data)); 322 } 323 324 /* Flush the write combined buffer. Next doorbell may come from a 325 * different entity to the same address... 326 */ 327 OSAL_WMB(p_hwfn->p_dev); 328 } 329 330 /* traverse the doorbell recovery entry list and ring all the doorbells */ 331 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn, 332 enum ecore_db_rec_exec db_exec) 333 { 334 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 335 336 if (db_exec != DB_REC_ONCE) { 337 DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n", 338 p_hwfn->db_recovery_info.db_recovery_counter); 339 340 /* track amount of times recovery was executed */ 341 p_hwfn->db_recovery_info.db_recovery_counter++; 342 } 343 344 /* protect the list */ 345 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 346 OSAL_LIST_FOR_EACH_ENTRY(db_entry, 347 &p_hwfn->db_recovery_info.list, 348 list_entry, 349 struct ecore_db_recovery_entry) { 350 ecore_db_recovery_ring(p_hwfn, db_entry, db_exec); 351 if (db_exec == DB_REC_ONCE) 352 break; 353 } 354 355 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 356 } 357 /******************** Doorbell Recovery end ****************/ 358 359 /********************************** NIG LLH ***********************************/ 360 361 enum ecore_llh_filter_type { 362 ECORE_LLH_FILTER_TYPE_MAC, 363 ECORE_LLH_FILTER_TYPE_PROTOCOL, 364 }; 365 366 struct ecore_llh_mac_filter { 367 u8 addr[ETH_ALEN]; 368 }; 369 370 struct ecore_llh_protocol_filter { 371 enum ecore_llh_prot_filter_type_t type; 372 u16 source_port_or_eth_type; 373 u16 dest_port; 374 }; 375 376 union ecore_llh_filter { 377 struct ecore_llh_mac_filter mac; 378 struct ecore_llh_protocol_filter protocol; 379 }; 380 381 struct ecore_llh_filter_info { 382 bool b_enabled; 383 u32 ref_cnt; 384 enum ecore_llh_filter_type type; 385 union ecore_llh_filter filter; 386 }; 387 388 struct ecore_llh_info { 389 /* Number of LLH filters banks */ 390 u8 num_ppfid; 391 392 #define MAX_NUM_PPFID 8 393 u8 ppfid_array[MAX_NUM_PPFID]; 394 395 /* Array of filters arrays: 396 * "num_ppfid" elements of filters banks, where each is an array of 397 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters. 398 */ 399 struct ecore_llh_filter_info **pp_filters; 400 }; 401 402 static void ecore_llh_free(struct ecore_dev *p_dev) 403 { 404 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 405 u32 i; 406 407 if (p_llh_info != OSAL_NULL) { 408 if (p_llh_info->pp_filters != OSAL_NULL) { 409 for (i = 0; i < p_llh_info->num_ppfid; i++) 410 OSAL_FREE(p_dev, p_llh_info->pp_filters[i]); 411 } 412 413 OSAL_FREE(p_dev, p_llh_info->pp_filters); 414 } 415 416 OSAL_FREE(p_dev, p_llh_info); 417 p_dev->p_llh_info = OSAL_NULL; 418 } 419 420 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev) 421 { 422 struct ecore_llh_info *p_llh_info; 423 u32 size; 424 u8 i; 425 426 p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info)); 427 if (!p_llh_info) 428 return ECORE_NOMEM; 429 p_dev->p_llh_info = p_llh_info; 430 431 for (i = 0; i < MAX_NUM_PPFID; i++) { 432 if (!(p_dev->ppfid_bitmap & (0x1 << i))) 433 continue; 434 435 p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i; 436 DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n", 437 p_llh_info->num_ppfid, i); 438 p_llh_info->num_ppfid++; 439 } 440 441 size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters); 442 p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size); 443 if (!p_llh_info->pp_filters) 444 return ECORE_NOMEM; 445 446 size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE * 447 sizeof(**p_llh_info->pp_filters); 448 for (i = 0; i < p_llh_info->num_ppfid; i++) { 449 p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL, 450 size); 451 if (!p_llh_info->pp_filters[i]) 452 return ECORE_NOMEM; 453 } 454 455 return ECORE_SUCCESS; 456 } 457 458 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev, 459 u8 ppfid, u8 filter_idx, 460 const char *action) 461 { 462 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 463 464 if (ppfid >= p_llh_info->num_ppfid) { 465 DP_NOTICE(p_dev, false, 466 "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n", 467 action, ppfid, p_llh_info->num_ppfid); 468 return ECORE_INVAL; 469 } 470 471 if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 472 DP_NOTICE(p_dev, false, 473 "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n", 474 action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE); 475 return ECORE_INVAL; 476 } 477 478 return ECORE_SUCCESS; 479 } 480 481 #define ECORE_LLH_INVALID_FILTER_IDX 0xff 482 483 static enum _ecore_status_t 484 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid, 485 union ecore_llh_filter *p_filter, 486 u8 *p_filter_idx) 487 { 488 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 489 struct ecore_llh_filter_info *p_filters; 490 enum _ecore_status_t rc; 491 u8 i; 492 493 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search"); 494 if (rc != ECORE_SUCCESS) 495 return rc; 496 497 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX; 498 499 p_filters = p_llh_info->pp_filters[ppfid]; 500 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 501 if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter, 502 sizeof(*p_filter))) { 503 *p_filter_idx = i; 504 break; 505 } 506 } 507 508 return ECORE_SUCCESS; 509 } 510 511 static enum _ecore_status_t 512 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid, 513 u8 *p_filter_idx) 514 { 515 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 516 struct ecore_llh_filter_info *p_filters; 517 enum _ecore_status_t rc; 518 u8 i; 519 520 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx"); 521 if (rc != ECORE_SUCCESS) 522 return rc; 523 524 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX; 525 526 p_filters = p_llh_info->pp_filters[ppfid]; 527 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 528 if (!p_filters[i].b_enabled) { 529 *p_filter_idx = i; 530 break; 531 } 532 } 533 534 return ECORE_SUCCESS; 535 } 536 537 static enum _ecore_status_t 538 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx, 539 enum ecore_llh_filter_type type, 540 union ecore_llh_filter *p_filter, u32 *p_ref_cnt) 541 { 542 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 543 struct ecore_llh_filter_info *p_filters; 544 enum _ecore_status_t rc; 545 546 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add"); 547 if (rc != ECORE_SUCCESS) 548 return rc; 549 550 p_filters = p_llh_info->pp_filters[ppfid]; 551 if (!p_filters[filter_idx].ref_cnt) { 552 p_filters[filter_idx].b_enabled = true; 553 p_filters[filter_idx].type = type; 554 OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter, 555 sizeof(p_filters[filter_idx].filter)); 556 } 557 558 *p_ref_cnt = ++p_filters[filter_idx].ref_cnt; 559 560 return ECORE_SUCCESS; 561 } 562 563 static enum _ecore_status_t 564 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, 565 enum ecore_llh_filter_type type, 566 union ecore_llh_filter *p_filter, 567 u8 *p_filter_idx, u32 *p_ref_cnt) 568 { 569 enum _ecore_status_t rc; 570 571 /* Check if the same filter already exist */ 572 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter, 573 p_filter_idx); 574 if (rc != ECORE_SUCCESS) 575 return rc; 576 577 /* Find a new entry in case of a new filter */ 578 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) { 579 rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx); 580 if (rc != ECORE_SUCCESS) 581 return rc; 582 } 583 584 /* No free entry was found */ 585 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) { 586 DP_NOTICE(p_dev, false, 587 "Failed to find an empty LLH filter to utilize [ppfid %d]\n", 588 ppfid); 589 return ECORE_NORESOURCES; 590 } 591 592 return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type, 593 p_filter, p_ref_cnt); 594 } 595 596 static enum _ecore_status_t 597 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid, 598 u8 filter_idx, u32 *p_ref_cnt) 599 { 600 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 601 struct ecore_llh_filter_info *p_filters; 602 enum _ecore_status_t rc; 603 604 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove"); 605 if (rc != ECORE_SUCCESS) 606 return rc; 607 608 p_filters = p_llh_info->pp_filters[ppfid]; 609 if (!p_filters[filter_idx].ref_cnt) { 610 DP_NOTICE(p_dev, false, 611 "LLH shadow: trying to remove a filter with ref_cnt=0\n"); 612 return ECORE_INVAL; 613 } 614 615 *p_ref_cnt = --p_filters[filter_idx].ref_cnt; 616 if (!p_filters[filter_idx].ref_cnt) 617 OSAL_MEM_ZERO(&p_filters[filter_idx], 618 sizeof(p_filters[filter_idx])); 619 620 return ECORE_SUCCESS; 621 } 622 623 static enum _ecore_status_t 624 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid, 625 union ecore_llh_filter *p_filter, 626 u8 *p_filter_idx, u32 *p_ref_cnt) 627 { 628 enum _ecore_status_t rc; 629 630 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter, 631 p_filter_idx); 632 if (rc != ECORE_SUCCESS) 633 return rc; 634 635 /* No matching filter was found */ 636 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) { 637 DP_NOTICE(p_dev, false, 638 "Failed to find a filter in the LLH shadow\n"); 639 return ECORE_INVAL; 640 } 641 642 return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx, 643 p_ref_cnt); 644 } 645 646 static enum _ecore_status_t 647 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid) 648 { 649 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 650 struct ecore_llh_filter_info *p_filters; 651 enum _ecore_status_t rc; 652 653 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all"); 654 if (rc != ECORE_SUCCESS) 655 return rc; 656 657 p_filters = p_llh_info->pp_filters[ppfid]; 658 OSAL_MEM_ZERO(p_filters, 659 NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters)); 660 661 return ECORE_SUCCESS; 662 } 663 664 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev, 665 u8 rel_ppfid, u8 *p_abs_ppfid) 666 { 667 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 668 u8 ppfids = p_llh_info->num_ppfid - 1; 669 670 if (rel_ppfid >= p_llh_info->num_ppfid) { 671 DP_NOTICE(p_dev, false, 672 "rel_ppfid %d is not valid, available indices are 0..%hhd\n", 673 rel_ppfid, ppfids); 674 return ECORE_INVAL; 675 } 676 677 *p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid]; 678 679 return ECORE_SUCCESS; 680 } 681 682 static enum _ecore_status_t 683 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt) 684 { 685 struct ecore_dev *p_dev = p_hwfn->p_dev; 686 enum ecore_eng eng; 687 u8 ppfid; 688 enum _ecore_status_t rc; 689 690 rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt); 691 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) { 692 DP_NOTICE(p_hwfn, false, 693 "Failed to get the engine affinity configuration\n"); 694 return rc; 695 } 696 697 /* RoCE PF is bound to a single engine */ 698 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) { 699 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0; 700 rc = ecore_llh_set_roce_affinity(p_dev, eng); 701 if (rc != ECORE_SUCCESS) { 702 DP_NOTICE(p_dev, false, 703 "Failed to set the RoCE engine affinity\n"); 704 return rc; 705 } 706 707 DP_VERBOSE(p_dev, ECORE_MSG_SP, 708 "LLH: Set the engine affinity of RoCE packets as %d\n", 709 eng); 710 } 711 712 /* Storage PF is bound to a single engine while L2 PF uses both */ 713 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) || 714 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) 715 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0; 716 else /* L2_PERSONALITY */ 717 eng = ECORE_BOTH_ENG; 718 719 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 720 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng); 721 if (rc != ECORE_SUCCESS) { 722 DP_NOTICE(p_dev, false, 723 "Failed to set the engine affinity of ppfid %d\n", 724 ppfid); 725 return rc; 726 } 727 } 728 729 DP_VERBOSE(p_dev, ECORE_MSG_SP, 730 "LLH: Set the engine affinity of non-RoCE packets as %d\n", 731 eng); 732 733 return ECORE_SUCCESS; 734 } 735 736 static enum _ecore_status_t 737 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 738 bool avoid_eng_affin) 739 { 740 struct ecore_dev *p_dev = p_hwfn->p_dev; 741 enum _ecore_status_t rc; 742 743 /* Backwards compatible mode: 744 * - RoCE packets - Use engine 0. 745 * - Non-RoCE packets - Use connection based classification for L2 PFs, 746 * and engine 0 otherwise. 747 */ 748 if (avoid_eng_affin) { 749 enum ecore_eng eng; 750 u8 ppfid; 751 752 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) { 753 eng = ECORE_ENG0; 754 rc = ecore_llh_set_roce_affinity(p_dev, eng); 755 if (rc != ECORE_SUCCESS) { 756 DP_NOTICE(p_dev, false, 757 "Failed to set the RoCE engine affinity\n"); 758 return rc; 759 } 760 761 DP_VERBOSE(p_dev, ECORE_MSG_SP, 762 "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n", 763 eng); 764 } 765 766 eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) || 767 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0 768 : ECORE_BOTH_ENG; 769 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 770 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng); 771 if (rc != ECORE_SUCCESS) { 772 DP_NOTICE(p_dev, false, 773 "Failed to set the engine affinity of ppfid %d\n", 774 ppfid); 775 return rc; 776 } 777 } 778 779 DP_VERBOSE(p_dev, ECORE_MSG_SP, 780 "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n", 781 eng); 782 783 return ECORE_SUCCESS; 784 } 785 786 return __ecore_llh_set_engine_affin(p_hwfn, p_ptt); 787 } 788 789 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn, 790 struct ecore_ptt *p_ptt, 791 bool avoid_eng_affin) 792 { 793 struct ecore_dev *p_dev = p_hwfn->p_dev; 794 u8 ppfid, abs_ppfid; 795 enum _ecore_status_t rc; 796 797 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 798 u32 addr; 799 800 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 801 if (rc != ECORE_SUCCESS) 802 return rc; 803 804 addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4; 805 ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id); 806 } 807 808 if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) && 809 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) { 810 rc = ecore_llh_add_mac_filter(p_dev, 0, 811 p_hwfn->hw_info.hw_mac_addr); 812 if (rc != ECORE_SUCCESS) 813 DP_NOTICE(p_dev, false, 814 "Failed to add an LLH filter with the primary MAC\n"); 815 } 816 817 if (ECORE_IS_CMT(p_dev)) { 818 rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin); 819 if (rc != ECORE_SUCCESS) 820 return rc; 821 } 822 823 return ECORE_SUCCESS; 824 } 825 826 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev) 827 { 828 return p_dev->p_llh_info->num_ppfid; 829 } 830 831 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev) 832 { 833 return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0; 834 } 835 836 /* TBD - should be removed when these definitions are available in reg_addr.h */ 837 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3 838 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0 839 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3 840 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2 841 842 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev, 843 u8 ppfid, enum ecore_eng eng) 844 { 845 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 846 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 847 u32 addr, val, eng_sel; 848 enum _ecore_status_t rc = ECORE_SUCCESS; 849 u8 abs_ppfid; 850 851 if (p_ptt == OSAL_NULL) 852 return ECORE_AGAIN; 853 854 if (!ECORE_IS_CMT(p_dev)) 855 goto out; 856 857 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 858 if (rc != ECORE_SUCCESS) 859 goto out; 860 861 switch (eng) { 862 case ECORE_ENG0: 863 eng_sel = 0; 864 break; 865 case ECORE_ENG1: 866 eng_sel = 1; 867 break; 868 case ECORE_BOTH_ENG: 869 eng_sel = 2; 870 break; 871 default: 872 DP_NOTICE(p_dev, false, 873 "Invalid affinity value for ppfid [%d]\n", eng); 874 rc = ECORE_INVAL; 875 goto out; 876 } 877 878 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; 879 val = ecore_rd(p_hwfn, p_ptt, addr); 880 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel); 881 ecore_wr(p_hwfn, p_ptt, addr, val); 882 883 /* The iWARP affinity is set as the affinity of ppfid 0 */ 884 if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn)) 885 p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0; 886 out: 887 ecore_ptt_release(p_hwfn, p_ptt); 888 889 return rc; 890 } 891 892 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev, 893 enum ecore_eng eng) 894 { 895 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 896 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 897 u32 addr, val, eng_sel; 898 enum _ecore_status_t rc = ECORE_SUCCESS; 899 u8 ppfid, abs_ppfid; 900 901 if (p_ptt == OSAL_NULL) 902 return ECORE_AGAIN; 903 904 if (!ECORE_IS_CMT(p_dev)) 905 goto out; 906 907 switch (eng) { 908 case ECORE_ENG0: 909 eng_sel = 0; 910 break; 911 case ECORE_ENG1: 912 eng_sel = 1; 913 break; 914 case ECORE_BOTH_ENG: 915 eng_sel = 2; 916 ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL, 917 0xf /* QP bit 15 */); 918 break; 919 default: 920 DP_NOTICE(p_dev, false, 921 "Invalid affinity value for RoCE [%d]\n", eng); 922 rc = ECORE_INVAL; 923 goto out; 924 } 925 926 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 927 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 928 if (rc != ECORE_SUCCESS) 929 goto out; 930 931 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; 932 val = ecore_rd(p_hwfn, p_ptt, addr); 933 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel); 934 ecore_wr(p_hwfn, p_ptt, addr, val); 935 } 936 out: 937 ecore_ptt_release(p_hwfn, p_ptt); 938 939 return rc; 940 } 941 942 struct ecore_llh_filter_details { 943 u64 value; 944 u32 mode; 945 u32 protocol_type; 946 u32 hdr_sel; 947 u32 enable; 948 }; 949 950 static enum _ecore_status_t 951 ecore_llh_access_filter(struct ecore_hwfn *p_hwfn, 952 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx, 953 struct ecore_llh_filter_details *p_details, 954 bool b_write_access) 955 { 956 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid); 957 struct dmae_params params; 958 enum _ecore_status_t rc; 959 u32 addr; 960 961 /* The NIG/LLH registers that are accessed in this function have only 16 962 * rows which are exposed to a PF. I.e. only the 16 filters of its 963 * default ppfid 964 * Accessing filters of other ppfids requires pretending to other PFs, 965 * and thus the usage of the ecore_ppfid_rd/wr() functions. 966 */ 967 968 /* Filter enable - should be done first when removing a filter */ 969 if (b_write_access && !p_details->enable) { 970 addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4; 971 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 972 p_details->enable); 973 } 974 975 /* Filter value */ 976 addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4; 977 OSAL_MEMSET(¶ms, 0, sizeof(params)); 978 979 if (b_write_access) { 980 SET_FIELD(params.flags, DMAE_PARAMS_DST_PF_VALID, 0x1); 981 params.dst_pf_id = pfid; 982 rc = ecore_dmae_host2grc(p_hwfn, p_ptt, 983 (u64)(osal_uintptr_t)&p_details->value, 984 addr, 2 /* size_in_dwords */, ¶ms); 985 } else { 986 SET_FIELD(params.flags, DMAE_PARAMS_SRC_PF_VALID, 0x1); 987 SET_FIELD(params.flags, DMAE_PARAMS_COMPLETION_DST, 0x1); 988 params.src_pf_id = pfid; 989 rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr, 990 (u64)(osal_uintptr_t)&p_details->value, 991 2 /* size_in_dwords */, ¶ms); 992 } 993 994 if (rc != ECORE_SUCCESS) 995 return rc; 996 997 /* Filter mode */ 998 addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4; 999 if (b_write_access) 1000 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode); 1001 else 1002 p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid, 1003 addr); 1004 1005 /* Filter protocol type */ 1006 addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4; 1007 if (b_write_access) 1008 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 1009 p_details->protocol_type); 1010 else 1011 p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt, 1012 abs_ppfid, addr); 1013 1014 /* Filter header select */ 1015 addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4; 1016 if (b_write_access) 1017 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 1018 p_details->hdr_sel); 1019 else 1020 p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid, 1021 addr); 1022 1023 /* Filter enable - should be done last when adding a filter */ 1024 if (!b_write_access || p_details->enable) { 1025 addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4; 1026 if (b_write_access) 1027 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 1028 p_details->enable); 1029 else 1030 p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt, 1031 abs_ppfid, addr); 1032 } 1033 1034 return ECORE_SUCCESS; 1035 } 1036 1037 static enum _ecore_status_t 1038 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 1039 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, 1040 u32 high, u32 low) 1041 { 1042 struct ecore_llh_filter_details filter_details; 1043 1044 filter_details.enable = 1; 1045 filter_details.value = ((u64)high << 32) | low; 1046 filter_details.hdr_sel = 1047 OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits) ? 1048 1 : /* inner/encapsulated header */ 1049 0; /* outer/tunnel header */ 1050 filter_details.protocol_type = filter_prot_type; 1051 filter_details.mode = filter_prot_type ? 1052 1 : /* protocol-based classification */ 1053 0; /* MAC-address based classification */ 1054 1055 return ecore_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1056 &filter_details, 1057 true /* write access */); 1058 } 1059 1060 static enum _ecore_status_t 1061 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, 1062 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx) 1063 { 1064 struct ecore_llh_filter_details filter_details; 1065 1066 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details)); 1067 1068 return ecore_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1069 &filter_details, 1070 true /* write access */); 1071 } 1072 1073 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid, 1074 u8 mac_addr[ETH_ALEN]) 1075 { 1076 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1077 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1078 union ecore_llh_filter filter; 1079 u8 filter_idx, abs_ppfid; 1080 u32 high, low, ref_cnt; 1081 enum _ecore_status_t rc = ECORE_SUCCESS; 1082 1083 if (p_ptt == OSAL_NULL) 1084 return ECORE_AGAIN; 1085 1086 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1087 goto out; 1088 1089 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1090 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN); 1091 rc = ecore_llh_shadow_add_filter(p_dev, ppfid, 1092 ECORE_LLH_FILTER_TYPE_MAC, 1093 &filter, &filter_idx, &ref_cnt); 1094 if (rc != ECORE_SUCCESS) 1095 goto err; 1096 1097 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1098 if (rc != ECORE_SUCCESS) 1099 goto err; 1100 1101 /* Configure the LLH only in case of a new the filter */ 1102 if (ref_cnt == 1) { 1103 high = mac_addr[1] | (mac_addr[0] << 8); 1104 low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) | 1105 (mac_addr[2] << 24); 1106 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1107 0, high, low); 1108 if (rc != ECORE_SUCCESS) 1109 goto err; 1110 } 1111 1112 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1113 "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1114 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1115 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx, 1116 ref_cnt); 1117 1118 goto out; 1119 1120 err: 1121 DP_NOTICE(p_dev, false, 1122 "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n", 1123 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1124 mac_addr[4], mac_addr[5], ppfid); 1125 out: 1126 ecore_ptt_release(p_hwfn, p_ptt); 1127 1128 return rc; 1129 } 1130 1131 static enum _ecore_status_t 1132 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev, 1133 enum ecore_llh_prot_filter_type_t type, 1134 u16 source_port_or_eth_type, u16 dest_port, 1135 char *str, osal_size_t str_len) 1136 { 1137 switch (type) { 1138 case ECORE_LLH_FILTER_ETHERTYPE: 1139 OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x", 1140 source_port_or_eth_type); 1141 break; 1142 case ECORE_LLH_FILTER_TCP_SRC_PORT: 1143 OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x", 1144 source_port_or_eth_type); 1145 break; 1146 case ECORE_LLH_FILTER_UDP_SRC_PORT: 1147 OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x", 1148 source_port_or_eth_type); 1149 break; 1150 case ECORE_LLH_FILTER_TCP_DEST_PORT: 1151 OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port); 1152 break; 1153 case ECORE_LLH_FILTER_UDP_DEST_PORT: 1154 OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port); 1155 break; 1156 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 1157 OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x", 1158 source_port_or_eth_type, dest_port); 1159 break; 1160 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 1161 OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x", 1162 source_port_or_eth_type, dest_port); 1163 break; 1164 default: 1165 DP_NOTICE(p_dev, true, 1166 "Non valid LLH protocol filter type %d\n", type); 1167 return ECORE_INVAL; 1168 } 1169 1170 return ECORE_SUCCESS; 1171 } 1172 1173 static enum _ecore_status_t 1174 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev, 1175 enum ecore_llh_prot_filter_type_t type, 1176 u16 source_port_or_eth_type, u16 dest_port, 1177 u32 *p_high, u32 *p_low) 1178 { 1179 *p_high = 0; 1180 *p_low = 0; 1181 1182 switch (type) { 1183 case ECORE_LLH_FILTER_ETHERTYPE: 1184 *p_high = source_port_or_eth_type; 1185 break; 1186 case ECORE_LLH_FILTER_TCP_SRC_PORT: 1187 case ECORE_LLH_FILTER_UDP_SRC_PORT: 1188 *p_low = source_port_or_eth_type << 16; 1189 break; 1190 case ECORE_LLH_FILTER_TCP_DEST_PORT: 1191 case ECORE_LLH_FILTER_UDP_DEST_PORT: 1192 *p_low = dest_port; 1193 break; 1194 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 1195 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 1196 *p_low = (source_port_or_eth_type << 16) | dest_port; 1197 break; 1198 default: 1199 DP_NOTICE(p_dev, true, 1200 "Non valid LLH protocol filter type %d\n", type); 1201 return ECORE_INVAL; 1202 } 1203 1204 return ECORE_SUCCESS; 1205 } 1206 1207 enum _ecore_status_t 1208 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid, 1209 enum ecore_llh_prot_filter_type_t type, 1210 u16 source_port_or_eth_type, u16 dest_port) 1211 { 1212 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1213 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1214 u8 filter_idx, abs_ppfid, type_bitmap; 1215 char str[32]; 1216 union ecore_llh_filter filter; 1217 u32 high, low, ref_cnt; 1218 enum _ecore_status_t rc = ECORE_SUCCESS; 1219 1220 if (p_ptt == OSAL_NULL) 1221 return ECORE_AGAIN; 1222 1223 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits)) 1224 goto out; 1225 1226 rc = ecore_llh_protocol_filter_stringify(p_dev, type, 1227 source_port_or_eth_type, 1228 dest_port, str, sizeof(str)); 1229 if (rc != ECORE_SUCCESS) 1230 goto err; 1231 1232 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1233 filter.protocol.type = type; 1234 filter.protocol.source_port_or_eth_type = source_port_or_eth_type; 1235 filter.protocol.dest_port = dest_port; 1236 rc = ecore_llh_shadow_add_filter(p_dev, ppfid, 1237 ECORE_LLH_FILTER_TYPE_PROTOCOL, 1238 &filter, &filter_idx, &ref_cnt); 1239 if (rc != ECORE_SUCCESS) 1240 goto err; 1241 1242 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1243 if (rc != ECORE_SUCCESS) 1244 goto err; 1245 1246 /* Configure the LLH only in case of a new the filter */ 1247 if (ref_cnt == 1) { 1248 rc = ecore_llh_protocol_filter_to_hilo(p_dev, type, 1249 source_port_or_eth_type, 1250 dest_port, &high, &low); 1251 if (rc != ECORE_SUCCESS) 1252 goto err; 1253 1254 type_bitmap = 0x1 << type; 1255 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1256 type_bitmap, high, low); 1257 if (rc != ECORE_SUCCESS) 1258 goto err; 1259 } 1260 1261 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1262 "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1263 str, ppfid, abs_ppfid, filter_idx, ref_cnt); 1264 1265 goto out; 1266 1267 err: 1268 DP_NOTICE(p_hwfn, false, 1269 "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n", 1270 str, ppfid); 1271 out: 1272 ecore_ptt_release(p_hwfn, p_ptt); 1273 1274 return rc; 1275 } 1276 1277 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid, 1278 u8 mac_addr[ETH_ALEN]) 1279 { 1280 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1281 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1282 union ecore_llh_filter filter; 1283 u8 filter_idx, abs_ppfid; 1284 enum _ecore_status_t rc = ECORE_SUCCESS; 1285 u32 ref_cnt; 1286 1287 if (p_ptt == OSAL_NULL) 1288 return; 1289 1290 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1291 goto out; 1292 1293 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1294 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN); 1295 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx, 1296 &ref_cnt); 1297 if (rc != ECORE_SUCCESS) 1298 goto err; 1299 1300 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1301 if (rc != ECORE_SUCCESS) 1302 goto err; 1303 1304 /* Remove from the LLH in case the filter is not in use */ 1305 if (!ref_cnt) { 1306 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, 1307 filter_idx); 1308 if (rc != ECORE_SUCCESS) 1309 goto err; 1310 } 1311 1312 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1313 "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1314 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1315 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx, 1316 ref_cnt); 1317 1318 goto out; 1319 1320 err: 1321 DP_NOTICE(p_dev, false, 1322 "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n", 1323 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1324 mac_addr[4], mac_addr[5], ppfid); 1325 out: 1326 ecore_ptt_release(p_hwfn, p_ptt); 1327 } 1328 1329 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid, 1330 enum ecore_llh_prot_filter_type_t type, 1331 u16 source_port_or_eth_type, 1332 u16 dest_port) 1333 { 1334 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1335 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1336 u8 filter_idx, abs_ppfid; 1337 char str[32]; 1338 union ecore_llh_filter filter; 1339 enum _ecore_status_t rc = ECORE_SUCCESS; 1340 u32 ref_cnt; 1341 1342 if (p_ptt == OSAL_NULL) 1343 return; 1344 1345 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits)) 1346 goto out; 1347 1348 rc = ecore_llh_protocol_filter_stringify(p_dev, type, 1349 source_port_or_eth_type, 1350 dest_port, str, sizeof(str)); 1351 if (rc != ECORE_SUCCESS) 1352 goto err; 1353 1354 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1355 filter.protocol.type = type; 1356 filter.protocol.source_port_or_eth_type = source_port_or_eth_type; 1357 filter.protocol.dest_port = dest_port; 1358 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx, 1359 &ref_cnt); 1360 if (rc != ECORE_SUCCESS) 1361 goto err; 1362 1363 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1364 if (rc != ECORE_SUCCESS) 1365 goto err; 1366 1367 /* Remove from the LLH in case the filter is not in use */ 1368 if (!ref_cnt) { 1369 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, 1370 filter_idx); 1371 if (rc != ECORE_SUCCESS) 1372 goto err; 1373 } 1374 1375 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1376 "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1377 str, ppfid, abs_ppfid, filter_idx, ref_cnt); 1378 1379 goto out; 1380 1381 err: 1382 DP_NOTICE(p_dev, false, 1383 "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n", 1384 str, ppfid); 1385 out: 1386 ecore_ptt_release(p_hwfn, p_ptt); 1387 } 1388 1389 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid) 1390 { 1391 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1392 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1393 u8 filter_idx, abs_ppfid; 1394 enum _ecore_status_t rc = ECORE_SUCCESS; 1395 1396 if (p_ptt == OSAL_NULL) 1397 return; 1398 1399 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) && 1400 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1401 goto out; 1402 1403 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1404 if (rc != ECORE_SUCCESS) 1405 goto out; 1406 1407 rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid); 1408 if (rc != ECORE_SUCCESS) 1409 goto out; 1410 1411 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; 1412 filter_idx++) { 1413 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, 1414 abs_ppfid, filter_idx); 1415 if (rc != ECORE_SUCCESS) 1416 goto out; 1417 } 1418 out: 1419 ecore_ptt_release(p_hwfn, p_ptt); 1420 } 1421 1422 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev) 1423 { 1424 u8 ppfid; 1425 1426 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) && 1427 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1428 return; 1429 1430 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) 1431 ecore_llh_clear_ppfid_filters(p_dev, ppfid); 1432 } 1433 1434 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn, 1435 struct ecore_ptt *p_ptt, u32 addr, 1436 u32 val) 1437 { 1438 struct ecore_dev *p_dev = p_hwfn->p_dev; 1439 u8 ppfid, abs_ppfid; 1440 enum _ecore_status_t rc; 1441 1442 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 1443 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1444 if (rc != ECORE_SUCCESS) 1445 return rc; 1446 1447 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val); 1448 } 1449 1450 return ECORE_SUCCESS; 1451 } 1452 1453 enum _ecore_status_t 1454 ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid) 1455 { 1456 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1457 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1458 struct ecore_llh_filter_details filter_details; 1459 u8 abs_ppfid, filter_idx; 1460 u32 addr; 1461 enum _ecore_status_t rc; 1462 1463 if (!p_ptt) 1464 return ECORE_AGAIN; 1465 1466 rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid); 1467 if (rc != ECORE_SUCCESS) 1468 goto out; 1469 1470 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; 1471 DP_NOTICE(p_hwfn, false, 1472 "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n", 1473 p_hwfn->rel_pf_id, ppfid, abs_ppfid, 1474 ecore_rd(p_hwfn, p_ptt, addr)); 1475 1476 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; 1477 filter_idx++) { 1478 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details)); 1479 rc = ecore_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, 1480 filter_idx, &filter_details, 1481 false /* read access */); 1482 if (rc != ECORE_SUCCESS) 1483 goto out; 1484 1485 DP_NOTICE(p_hwfn, false, 1486 "filter %2hhd: enable %d, value 0x%016lx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n", 1487 filter_idx, filter_details.enable, 1488 (unsigned long)filter_details.value, 1489 filter_details.mode, 1490 filter_details.protocol_type, filter_details.hdr_sel); 1491 } 1492 1493 1494 out: 1495 ecore_ptt_release(p_hwfn, p_ptt); 1496 1497 return rc; 1498 } 1499 1500 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev) 1501 { 1502 u8 ppfid; 1503 enum _ecore_status_t rc; 1504 1505 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 1506 rc = ecore_llh_dump_ppfid(p_dev, ppfid); 1507 if (rc != ECORE_SUCCESS) 1508 return rc; 1509 } 1510 1511 return ECORE_SUCCESS; 1512 } 1513 1514 /******************************* NIG LLH - End ********************************/ 1515 1516 /* Configurable */ 1517 #define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to 1518 * load the driver. The number was 1519 * arbitrarily set. 1520 */ 1521 1522 /* Derived */ 1523 #define ECORE_MIN_PWM_REGION (ECORE_WID_SIZE * ECORE_MIN_DPIS) 1524 1525 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, 1526 struct ecore_ptt *p_ptt, 1527 enum BAR_ID bar_id) 1528 { 1529 u32 bar_reg = (bar_id == BAR_ID_0 ? 1530 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); 1531 u32 val; 1532 1533 if (IS_VF(p_hwfn->p_dev)) 1534 return ecore_vf_hw_bar_size(p_hwfn, bar_id); 1535 1536 val = ecore_rd(p_hwfn, p_ptt, bar_reg); 1537 if (val) 1538 return 1 << (val + 15); 1539 1540 /* The above registers were updated in the past only in CMT mode. Since 1541 * they were found to be useful MFW started updating them from 8.7.7.0. 1542 * In older MFW versions they are set to 0 which means disabled. 1543 */ 1544 if (ECORE_IS_CMT(p_hwfn->p_dev)) { 1545 DP_INFO(p_hwfn, 1546 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); 1547 val = BAR_ID_0 ? 256 * 1024 : 512 * 1024; 1548 } else { 1549 DP_INFO(p_hwfn, 1550 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); 1551 val = 512 * 1024; 1552 } 1553 1554 return val; 1555 } 1556 1557 void ecore_init_dp(struct ecore_dev *p_dev, 1558 u32 dp_module, u8 dp_level, void *dp_ctx) 1559 { 1560 u32 i; 1561 1562 p_dev->dp_level = dp_level; 1563 p_dev->dp_module = dp_module; 1564 p_dev->dp_ctx = dp_ctx; 1565 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 1566 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 1567 1568 p_hwfn->dp_level = dp_level; 1569 p_hwfn->dp_module = dp_module; 1570 p_hwfn->dp_ctx = dp_ctx; 1571 } 1572 } 1573 1574 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev) 1575 { 1576 u8 i; 1577 1578 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 1579 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 1580 1581 p_hwfn->p_dev = p_dev; 1582 p_hwfn->my_id = i; 1583 p_hwfn->b_active = false; 1584 1585 #ifdef CONFIG_ECORE_LOCK_ALLOC 1586 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock)) 1587 goto handle_err; 1588 #endif 1589 OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock); 1590 } 1591 1592 /* hwfn 0 is always active */ 1593 p_dev->hwfns[0].b_active = true; 1594 1595 /* set the default cache alignment to 128 (may be overridden later) */ 1596 p_dev->cache_shift = 7; 1597 return ECORE_SUCCESS; 1598 #ifdef CONFIG_ECORE_LOCK_ALLOC 1599 handle_err: 1600 while (--i) { 1601 struct ecore_hwfn *p_hwfn = OSAL_NULL; 1602 1603 p_hwfn = &p_dev->hwfns[i]; 1604 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock); 1605 } 1606 return ECORE_NOMEM; 1607 #endif 1608 } 1609 1610 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn) 1611 { 1612 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1613 1614 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params); 1615 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params); 1616 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params); 1617 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data); 1618 } 1619 1620 static void ecore_dbg_user_data_free(struct ecore_hwfn *p_hwfn) 1621 { 1622 OSAL_FREE(p_hwfn->p_dev, p_hwfn->dbg_user_info); 1623 p_hwfn->dbg_user_info = OSAL_NULL; 1624 } 1625 1626 void ecore_resc_free(struct ecore_dev *p_dev) 1627 { 1628 int i; 1629 1630 if (IS_VF(p_dev)) { 1631 for_each_hwfn(p_dev, i) 1632 ecore_l2_free(&p_dev->hwfns[i]); 1633 return; 1634 } 1635 1636 OSAL_FREE(p_dev, p_dev->fw_data); 1637 1638 OSAL_FREE(p_dev, p_dev->reset_stats); 1639 1640 ecore_llh_free(p_dev); 1641 1642 for_each_hwfn(p_dev, i) { 1643 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 1644 1645 ecore_cxt_mngr_free(p_hwfn); 1646 ecore_qm_info_free(p_hwfn); 1647 ecore_spq_free(p_hwfn); 1648 ecore_eq_free(p_hwfn); 1649 ecore_consq_free(p_hwfn); 1650 ecore_int_free(p_hwfn); 1651 ecore_iov_free(p_hwfn); 1652 ecore_l2_free(p_hwfn); 1653 ecore_dmae_info_free(p_hwfn); 1654 ecore_dcbx_info_free(p_hwfn); 1655 ecore_dbg_user_data_free(p_hwfn); 1656 ecore_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem); 1657 /* @@@TBD Flush work-queue ? */ 1658 1659 /* destroy doorbell recovery mechanism */ 1660 ecore_db_recovery_teardown(p_hwfn); 1661 } 1662 } 1663 1664 /******************** QM initialization *******************/ 1665 1666 /* bitmaps for indicating active traffic classes. 1667 * Special case for Arrowhead 4 port 1668 */ 1669 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */ 1670 #define ACTIVE_TCS_BMAP 0x9f 1671 /* 0..3 actually used, OOO and high priority stuff all use 3 */ 1672 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf 1673 1674 /* determines the physical queue flags for a given PF. */ 1675 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn) 1676 { 1677 u32 flags; 1678 1679 /* common flags */ 1680 flags = PQ_FLAGS_LB; 1681 1682 /* feature flags */ 1683 if (IS_ECORE_SRIOV(p_hwfn->p_dev)) 1684 flags |= PQ_FLAGS_VFS; 1685 if (IS_ECORE_PACING(p_hwfn)) 1686 flags |= PQ_FLAGS_RLS; 1687 1688 /* protocol flags */ 1689 switch (p_hwfn->hw_info.personality) { 1690 case ECORE_PCI_ETH: 1691 if (!IS_ECORE_PACING(p_hwfn)) 1692 flags |= PQ_FLAGS_MCOS; 1693 break; 1694 case ECORE_PCI_FCOE: 1695 flags |= PQ_FLAGS_OFLD; 1696 break; 1697 case ECORE_PCI_ISCSI: 1698 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 1699 break; 1700 case ECORE_PCI_ETH_ROCE: 1701 flags |= PQ_FLAGS_OFLD | PQ_FLAGS_LLT; 1702 if (!IS_ECORE_PACING(p_hwfn)) 1703 flags |= PQ_FLAGS_MCOS; 1704 break; 1705 case ECORE_PCI_ETH_IWARP: 1706 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 1707 if (!IS_ECORE_PACING(p_hwfn)) 1708 flags |= PQ_FLAGS_MCOS; 1709 break; 1710 default: 1711 DP_ERR(p_hwfn, "unknown personality %d\n", 1712 p_hwfn->hw_info.personality); 1713 return 0; 1714 } 1715 return flags; 1716 } 1717 1718 /* Getters for resource amounts necessary for qm initialization */ 1719 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn) 1720 { 1721 return p_hwfn->hw_info.num_hw_tc; 1722 } 1723 1724 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn) 1725 { 1726 return IS_ECORE_SRIOV(p_hwfn->p_dev) ? 1727 p_hwfn->p_dev->p_iov_info->total_vfs : 0; 1728 } 1729 1730 #define NUM_DEFAULT_RLS 1 1731 1732 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn) 1733 { 1734 u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn); 1735 1736 /* num RLs can't exceed resource amount of rls or vports or the 1737 * dcqcn qps 1738 */ 1739 num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL), 1740 RESC_NUM(p_hwfn, ECORE_VPORT)); 1741 1742 /* make sure after we reserve the default and VF rls we'll have 1743 * something left 1744 */ 1745 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) { 1746 DP_NOTICE(p_hwfn, false, 1747 "no rate limiters left for PF rate limiting" 1748 " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs); 1749 return 0; 1750 } 1751 1752 /* subtract rls necessary for VFs and one default one for the PF */ 1753 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; 1754 1755 return num_pf_rls; 1756 } 1757 1758 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn) 1759 { 1760 u32 pq_flags = ecore_get_pq_flags(p_hwfn); 1761 1762 /* all pqs share the same vport (hence the 1 below), except for vfs 1763 * and pf_rl pqs 1764 */ 1765 return (!!(PQ_FLAGS_RLS & pq_flags)) * 1766 ecore_init_qm_get_num_pf_rls(p_hwfn) + 1767 (!!(PQ_FLAGS_VFS & pq_flags)) * 1768 ecore_init_qm_get_num_vfs(p_hwfn) + 1; 1769 } 1770 1771 /* calc amount of PQs according to the requested flags */ 1772 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn) 1773 { 1774 u32 pq_flags = ecore_get_pq_flags(p_hwfn); 1775 1776 return (!!(PQ_FLAGS_RLS & pq_flags)) * 1777 ecore_init_qm_get_num_pf_rls(p_hwfn) + 1778 (!!(PQ_FLAGS_MCOS & pq_flags)) * 1779 ecore_init_qm_get_num_tcs(p_hwfn) + 1780 (!!(PQ_FLAGS_LB & pq_flags)) + 1781 (!!(PQ_FLAGS_OOO & pq_flags)) + 1782 (!!(PQ_FLAGS_ACK & pq_flags)) + 1783 (!!(PQ_FLAGS_OFLD & pq_flags)) + 1784 (!!(PQ_FLAGS_VFS & pq_flags)) * 1785 ecore_init_qm_get_num_vfs(p_hwfn); 1786 } 1787 1788 /* initialize the top level QM params */ 1789 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn) 1790 { 1791 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1792 bool four_port; 1793 1794 /* pq and vport bases for this PF */ 1795 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ); 1796 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT); 1797 1798 /* rate limiting and weighted fair queueing are always enabled */ 1799 qm_info->vport_rl_en = 1; 1800 qm_info->vport_wfq_en = 1; 1801 1802 /* TC config is different for AH 4 port */ 1803 four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2; 1804 1805 /* in AH 4 port we have fewer TCs per port */ 1806 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : 1807 NUM_OF_PHYS_TCS; 1808 1809 /* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 1810 * 4 otherwise 1811 */ 1812 if (!qm_info->ooo_tc) 1813 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : 1814 DCBX_TCP_OOO_TC; 1815 } 1816 1817 /* initialize qm vport params */ 1818 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn) 1819 { 1820 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1821 u8 i; 1822 1823 /* all vports participate in weighted fair queueing */ 1824 for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++) 1825 qm_info->qm_vport_params[i].wfq = 1; 1826 } 1827 1828 /* initialize qm port params */ 1829 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn) 1830 { 1831 /* Initialize qm port parameters */ 1832 u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine; 1833 struct ecore_dev *p_dev = p_hwfn->p_dev; 1834 1835 /* indicate how ooo and high pri traffic is dealt with */ 1836 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? 1837 ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP; 1838 1839 for (i = 0; i < num_ports; i++) { 1840 struct init_qm_port_params *p_qm_port = 1841 &p_hwfn->qm_info.qm_port_params[i]; 1842 u16 pbf_max_cmd_lines; 1843 1844 p_qm_port->active = 1; 1845 p_qm_port->active_phys_tcs = active_phys_tcs; 1846 pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(p_dev); 1847 p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports; 1848 p_qm_port->num_btb_blocks = 1849 NUM_OF_BTB_BLOCKS(p_dev) / num_ports; 1850 } 1851 } 1852 1853 /* Reset the params which must be reset for qm init. QM init may be called as 1854 * a result of flows other than driver load (e.g. dcbx renegotiation). Other 1855 * params may be affected by the init but would simply recalculate to the same 1856 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not 1857 * affected as these amounts stay the same. 1858 */ 1859 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn) 1860 { 1861 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1862 1863 qm_info->num_pqs = 0; 1864 qm_info->num_vports = 0; 1865 qm_info->num_pf_rls = 0; 1866 qm_info->num_vf_pqs = 0; 1867 qm_info->first_vf_pq = 0; 1868 qm_info->first_mcos_pq = 0; 1869 qm_info->first_rl_pq = 0; 1870 } 1871 1872 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn) 1873 { 1874 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1875 1876 qm_info->num_vports++; 1877 1878 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn)) 1879 DP_ERR(p_hwfn, 1880 "vport overflow! qm_info->num_vports %d," 1881 " qm_init_get_num_vports() %d\n", 1882 qm_info->num_vports, 1883 ecore_init_qm_get_num_vports(p_hwfn)); 1884 } 1885 1886 /* initialize a single pq and manage qm_info resources accounting. 1887 * The pq_init_flags param determines whether the PQ is rate limited 1888 * (for VF or PF) 1889 * and whether a new vport is allocated to the pq or not (i.e. vport will be 1890 * shared) 1891 */ 1892 1893 /* flags for pq init */ 1894 #define PQ_INIT_SHARE_VPORT (1 << 0) 1895 #define PQ_INIT_PF_RL (1 << 1) 1896 #define PQ_INIT_VF_RL (1 << 2) 1897 1898 /* defines for pq init */ 1899 #define PQ_INIT_DEFAULT_WRR_GROUP 1 1900 #define PQ_INIT_DEFAULT_TC 0 1901 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc) 1902 1903 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn, 1904 struct ecore_qm_info *qm_info, 1905 u8 tc, u32 pq_init_flags) 1906 { 1907 u16 pq_idx = qm_info->num_pqs, max_pq = 1908 ecore_init_qm_get_num_pqs(p_hwfn); 1909 1910 if (pq_idx > max_pq) 1911 DP_ERR(p_hwfn, 1912 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); 1913 1914 /* init pq params */ 1915 qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; 1916 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + 1917 qm_info->num_vports; 1918 qm_info->qm_pq_params[pq_idx].tc_id = tc; 1919 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; 1920 qm_info->qm_pq_params[pq_idx].rl_valid = 1921 (pq_init_flags & PQ_INIT_PF_RL || 1922 pq_init_flags & PQ_INIT_VF_RL); 1923 1924 /* The "rl_id" is set as the "vport_id" */ 1925 qm_info->qm_pq_params[pq_idx].rl_id = 1926 qm_info->qm_pq_params[pq_idx].vport_id; 1927 1928 /* qm params accounting */ 1929 qm_info->num_pqs++; 1930 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) 1931 qm_info->num_vports++; 1932 1933 if (pq_init_flags & PQ_INIT_PF_RL) 1934 qm_info->num_pf_rls++; 1935 1936 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn)) 1937 DP_ERR(p_hwfn, 1938 "vport overflow! qm_info->num_vports %d," 1939 " qm_init_get_num_vports() %d\n", 1940 qm_info->num_vports, 1941 ecore_init_qm_get_num_vports(p_hwfn)); 1942 1943 if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn)) 1944 DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d," 1945 " qm_init_get_num_pf_rls() %d\n", 1946 qm_info->num_pf_rls, 1947 ecore_init_qm_get_num_pf_rls(p_hwfn)); 1948 } 1949 1950 /* get pq index according to PQ_FLAGS */ 1951 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn, 1952 u32 pq_flags) 1953 { 1954 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1955 1956 /* Can't have multiple flags set here */ 1957 if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, 1958 sizeof(pq_flags)) > 1) 1959 goto err; 1960 1961 switch (pq_flags) { 1962 case PQ_FLAGS_RLS: 1963 return &qm_info->first_rl_pq; 1964 case PQ_FLAGS_MCOS: 1965 return &qm_info->first_mcos_pq; 1966 case PQ_FLAGS_LB: 1967 return &qm_info->pure_lb_pq; 1968 case PQ_FLAGS_OOO: 1969 return &qm_info->ooo_pq; 1970 case PQ_FLAGS_ACK: 1971 return &qm_info->pure_ack_pq; 1972 case PQ_FLAGS_OFLD: 1973 return &qm_info->offload_pq; 1974 case PQ_FLAGS_VFS: 1975 return &qm_info->first_vf_pq; 1976 default: 1977 goto err; 1978 } 1979 1980 err: 1981 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags); 1982 return OSAL_NULL; 1983 } 1984 1985 /* save pq index in qm info */ 1986 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn, 1987 u32 pq_flags, u16 pq_val) 1988 { 1989 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 1990 1991 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; 1992 } 1993 1994 /* get tx pq index, with the PQ TX base already set (ready for context init) */ 1995 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags) 1996 { 1997 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 1998 1999 return *base_pq_idx + CM_TX_PQ_BASE; 2000 } 2001 2002 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc) 2003 { 2004 u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn); 2005 2006 if (tc > max_tc) 2007 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); 2008 2009 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc); 2010 } 2011 2012 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf) 2013 { 2014 u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn); 2015 2016 if (vf > max_vf) 2017 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); 2018 2019 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf); 2020 } 2021 2022 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl) 2023 { 2024 u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn); 2025 2026 /* for rate limiters, it is okay to use the modulo behavior - no 2027 * DP_ERR 2028 */ 2029 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + (rl % max_rl); 2030 } 2031 2032 u16 ecore_get_qm_vport_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl) 2033 { 2034 u16 start_pq, pq, qm_pq_idx; 2035 2036 pq = ecore_get_cm_pq_idx_rl(p_hwfn, rl); 2037 start_pq = p_hwfn->qm_info.start_pq; 2038 qm_pq_idx = pq - start_pq - CM_TX_PQ_BASE; 2039 2040 if (qm_pq_idx > p_hwfn->qm_info.num_pqs) { 2041 DP_ERR(p_hwfn, 2042 "qm_pq_idx %d must be smaller than %d\n", 2043 qm_pq_idx, p_hwfn->qm_info.num_pqs); 2044 } 2045 2046 return p_hwfn->qm_info.qm_pq_params[qm_pq_idx].vport_id; 2047 } 2048 2049 /* Functions for creating specific types of pqs */ 2050 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn) 2051 { 2052 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2053 2054 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) 2055 return; 2056 2057 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); 2058 ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); 2059 } 2060 2061 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn) 2062 { 2063 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2064 2065 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) 2066 return; 2067 2068 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); 2069 ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); 2070 } 2071 2072 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn) 2073 { 2074 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2075 2076 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) 2077 return; 2078 2079 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); 2080 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 2081 } 2082 2083 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn) 2084 { 2085 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2086 2087 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) 2088 return; 2089 2090 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); 2091 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 2092 } 2093 2094 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn) 2095 { 2096 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2097 u8 tc_idx; 2098 2099 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) 2100 return; 2101 2102 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); 2103 for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++) 2104 ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); 2105 } 2106 2107 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn) 2108 { 2109 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2110 u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn); 2111 2112 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) 2113 return; 2114 2115 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); 2116 2117 qm_info->num_vf_pqs = num_vfs; 2118 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) 2119 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, 2120 PQ_INIT_VF_RL); 2121 } 2122 2123 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn) 2124 { 2125 u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn); 2126 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2127 2128 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) 2129 return; 2130 2131 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); 2132 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) 2133 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, 2134 PQ_INIT_PF_RL); 2135 } 2136 2137 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn) 2138 { 2139 /* rate limited pqs, must come first (FW assumption) */ 2140 ecore_init_qm_rl_pqs(p_hwfn); 2141 2142 /* pqs for multi cos */ 2143 ecore_init_qm_mcos_pqs(p_hwfn); 2144 2145 /* pure loopback pq */ 2146 ecore_init_qm_lb_pq(p_hwfn); 2147 2148 /* out of order pq */ 2149 ecore_init_qm_ooo_pq(p_hwfn); 2150 2151 /* pure ack pq */ 2152 ecore_init_qm_pure_ack_pq(p_hwfn); 2153 2154 /* pq for offloaded protocol */ 2155 ecore_init_qm_offload_pq(p_hwfn); 2156 2157 /* done sharing vports */ 2158 ecore_init_qm_advance_vport(p_hwfn); 2159 2160 /* pqs for vfs */ 2161 ecore_init_qm_vf_pqs(p_hwfn); 2162 } 2163 2164 /* compare values of getters against resources amounts */ 2165 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn) 2166 { 2167 if (ecore_init_qm_get_num_vports(p_hwfn) > 2168 RESC_NUM(p_hwfn, ECORE_VPORT)) { 2169 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); 2170 return ECORE_INVAL; 2171 } 2172 2173 if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) { 2174 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); 2175 return ECORE_INVAL; 2176 } 2177 2178 return ECORE_SUCCESS; 2179 } 2180 2181 /* 2182 * Function for verbose printing of the qm initialization results 2183 */ 2184 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn) 2185 { 2186 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2187 struct init_qm_vport_params *vport; 2188 struct init_qm_port_params *port; 2189 struct init_qm_pq_params *pq; 2190 int i, tc; 2191 2192 /* top level params */ 2193 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2194 "qm init top level params: start_pq %d, start_vport %d," 2195 " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n", 2196 qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, 2197 qm_info->offload_pq, qm_info->pure_ack_pq); 2198 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2199 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d," 2200 " num_vports %d, max_phys_tcs_per_port %d\n", 2201 qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, 2202 qm_info->num_vf_pqs, qm_info->num_vports, 2203 qm_info->max_phys_tcs_per_port); 2204 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2205 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d," 2206 " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", 2207 qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, 2208 qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, 2209 qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn)); 2210 2211 /* port table */ 2212 for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) { 2213 port = &qm_info->qm_port_params[i]; 2214 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2215 "port idx %d, active %d, active_phys_tcs %d," 2216 " num_pbf_cmd_lines %d, num_btb_blocks %d," 2217 " reserved %d\n", 2218 i, port->active, port->active_phys_tcs, 2219 port->num_pbf_cmd_lines, port->num_btb_blocks, 2220 port->reserved); 2221 } 2222 2223 /* vport table */ 2224 for (i = 0; i < qm_info->num_vports; i++) { 2225 vport = &qm_info->qm_vport_params[i]; 2226 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, wfq %d, first_tx_pq_id [ ", 2227 qm_info->start_vport + i, vport->wfq); 2228 for (tc = 0; tc < NUM_OF_TCS; tc++) 2229 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", 2230 vport->first_tx_pq_id[tc]); 2231 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n"); 2232 } 2233 2234 /* pq table */ 2235 for (i = 0; i < qm_info->num_pqs; i++) { 2236 pq = &qm_info->qm_pq_params[i]; 2237 DP_VERBOSE(p_hwfn, ECORE_MSG_SP, 2238 "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d, rl_id %d\n", 2239 qm_info->start_pq + i, pq->port_id, pq->vport_id, 2240 pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id); 2241 } 2242 } 2243 2244 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn) 2245 { 2246 /* reset params required for init run */ 2247 ecore_init_qm_reset_params(p_hwfn); 2248 2249 /* init QM top level params */ 2250 ecore_init_qm_params(p_hwfn); 2251 2252 /* init QM port params */ 2253 ecore_init_qm_port_params(p_hwfn); 2254 2255 /* init QM vport params */ 2256 ecore_init_qm_vport_params(p_hwfn); 2257 2258 /* init QM physical queue params */ 2259 ecore_init_qm_pq_params(p_hwfn); 2260 2261 /* display all that init */ 2262 ecore_dp_init_qm_params(p_hwfn); 2263 } 2264 2265 /* This function reconfigures the QM pf on the fly. 2266 * For this purpose we: 2267 * 1. reconfigure the QM database 2268 * 2. set new values to runtime array 2269 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM 2270 * 4. activate init tool in QM_PF stage 2271 * 5. send an sdm_qm_cmd through rbc interface to release the QM 2272 */ 2273 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn, 2274 struct ecore_ptt *p_ptt) 2275 { 2276 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2277 bool b_rc; 2278 enum _ecore_status_t rc = ECORE_SUCCESS; 2279 2280 /* multiple flows can issue qm reconf. Need to lock */ 2281 OSAL_SPIN_LOCK(&qm_lock); 2282 2283 /* initialize ecore's qm data structure */ 2284 ecore_init_qm_info(p_hwfn); 2285 2286 /* stop PF's qm queues */ 2287 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, 2288 qm_info->start_pq, qm_info->num_pqs); 2289 if (!b_rc) { 2290 rc = ECORE_INVAL; 2291 goto unlock; 2292 } 2293 2294 /* clear the QM_PF runtime phase leftovers from previous init */ 2295 ecore_init_clear_rt_data(p_hwfn); 2296 2297 /* prepare QM portion of runtime array */ 2298 ecore_qm_init_pf(p_hwfn, p_ptt, false); 2299 2300 /* activate init tool on runtime array */ 2301 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, 2302 p_hwfn->hw_info.hw_mode); 2303 2304 /* start PF's qm queues */ 2305 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, 2306 qm_info->start_pq, qm_info->num_pqs); 2307 if (!b_rc) 2308 rc = ECORE_INVAL; 2309 2310 unlock: 2311 OSAL_SPIN_UNLOCK(&qm_lock); 2312 2313 return rc; 2314 } 2315 2316 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn) 2317 { 2318 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2319 enum _ecore_status_t rc; 2320 2321 rc = ecore_init_qm_sanity(p_hwfn); 2322 if (rc != ECORE_SUCCESS) 2323 goto alloc_err; 2324 2325 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2326 sizeof(struct init_qm_pq_params) * 2327 ecore_init_qm_get_num_pqs(p_hwfn)); 2328 if (!qm_info->qm_pq_params) 2329 goto alloc_err; 2330 2331 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2332 sizeof(struct init_qm_vport_params) * 2333 ecore_init_qm_get_num_vports(p_hwfn)); 2334 if (!qm_info->qm_vport_params) 2335 goto alloc_err; 2336 2337 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2338 sizeof(struct init_qm_port_params) * 2339 p_hwfn->p_dev->num_ports_in_engine); 2340 if (!qm_info->qm_port_params) 2341 goto alloc_err; 2342 2343 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2344 sizeof(struct ecore_wfq_data) * 2345 ecore_init_qm_get_num_vports(p_hwfn)); 2346 if (!qm_info->wfq_data) 2347 goto alloc_err; 2348 2349 return ECORE_SUCCESS; 2350 2351 alloc_err: 2352 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n"); 2353 ecore_qm_info_free(p_hwfn); 2354 return ECORE_NOMEM; 2355 } 2356 /******************** End QM initialization ***************/ 2357 2358 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev) 2359 { 2360 enum _ecore_status_t rc = ECORE_SUCCESS; 2361 int i; 2362 2363 if (IS_VF(p_dev)) { 2364 for_each_hwfn(p_dev, i) { 2365 rc = ecore_l2_alloc(&p_dev->hwfns[i]); 2366 if (rc != ECORE_SUCCESS) 2367 return rc; 2368 } 2369 return rc; 2370 } 2371 2372 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL, 2373 sizeof(*p_dev->fw_data)); 2374 if (!p_dev->fw_data) 2375 return ECORE_NOMEM; 2376 2377 for_each_hwfn(p_dev, i) { 2378 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 2379 u32 n_eqes, num_cons; 2380 2381 /* initialize the doorbell recovery mechanism */ 2382 rc = ecore_db_recovery_setup(p_hwfn); 2383 if (rc) 2384 goto alloc_err; 2385 2386 /* First allocate the context manager structure */ 2387 rc = ecore_cxt_mngr_alloc(p_hwfn); 2388 if (rc) 2389 goto alloc_err; 2390 2391 /* Set the HW cid/tid numbers (in the context manager) 2392 * Must be done prior to any further computations. 2393 */ 2394 rc = ecore_cxt_set_pf_params(p_hwfn); 2395 if (rc) 2396 goto alloc_err; 2397 2398 rc = ecore_alloc_qm_data(p_hwfn); 2399 if (rc) 2400 goto alloc_err; 2401 2402 /* init qm info */ 2403 ecore_init_qm_info(p_hwfn); 2404 2405 /* Compute the ILT client partition */ 2406 rc = ecore_cxt_cfg_ilt_compute(p_hwfn); 2407 if (rc) 2408 goto alloc_err; 2409 2410 /* CID map / ILT shadow table / T2 2411 * The talbes sizes are determined by the computations above 2412 */ 2413 rc = ecore_cxt_tables_alloc(p_hwfn); 2414 if (rc) 2415 goto alloc_err; 2416 2417 /* SPQ, must follow ILT because initializes SPQ context */ 2418 rc = ecore_spq_alloc(p_hwfn); 2419 if (rc) 2420 goto alloc_err; 2421 2422 /* SP status block allocation */ 2423 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn, 2424 RESERVED_PTT_DPC); 2425 2426 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt); 2427 if (rc) 2428 goto alloc_err; 2429 2430 rc = ecore_iov_alloc(p_hwfn); 2431 if (rc) 2432 goto alloc_err; 2433 2434 /* EQ */ 2435 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain); 2436 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) { 2437 /* Calculate the EQ size 2438 * --------------------- 2439 * Each ICID may generate up to one event at a time i.e. 2440 * the event must be handled/cleared before a new one 2441 * can be generated. We calculate the sum of events per 2442 * protocol and create an EQ deep enough to handle the 2443 * worst case: 2444 * - Core - according to SPQ. 2445 * - RoCE - per QP there are a couple of ICIDs, one 2446 * responder and one requester, each can 2447 * generate an EQE => n_eqes_qp = 2 * n_qp. 2448 * Each CQ can generate an EQE. There are 2 CQs 2449 * per QP => n_eqes_cq = 2 * n_qp. 2450 * Hence the RoCE total is 4 * n_qp or 2451 * 2 * num_cons. 2452 * - ENet - There can be up to two events per VF. One 2453 * for VF-PF channel and another for VF FLR 2454 * initial cleanup. The number of VFs is 2455 * bounded by MAX_NUM_VFS_BB, and is much 2456 * smaller than RoCE's so we avoid exact 2457 * calculation. 2458 */ 2459 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) { 2460 num_cons = 2461 ecore_cxt_get_proto_cid_count( 2462 p_hwfn, 2463 PROTOCOLID_ROCE, 2464 OSAL_NULL); 2465 num_cons *= 2; 2466 } else { 2467 num_cons = ecore_cxt_get_proto_cid_count( 2468 p_hwfn, 2469 PROTOCOLID_IWARP, 2470 OSAL_NULL); 2471 } 2472 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; 2473 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) { 2474 num_cons = 2475 ecore_cxt_get_proto_cid_count(p_hwfn, 2476 PROTOCOLID_ISCSI, 2477 OSAL_NULL); 2478 n_eqes += 2 * num_cons; 2479 } 2480 2481 if (n_eqes > 0xFFFF) { 2482 DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements." 2483 "The maximum of a u16 chain is 0x%x\n", 2484 n_eqes, 0xFFFF); 2485 goto alloc_no_mem; 2486 } 2487 2488 rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes); 2489 if (rc) 2490 goto alloc_err; 2491 2492 rc = ecore_consq_alloc(p_hwfn); 2493 if (rc) 2494 goto alloc_err; 2495 2496 rc = ecore_l2_alloc(p_hwfn); 2497 if (rc != ECORE_SUCCESS) 2498 goto alloc_err; 2499 2500 /* DMA info initialization */ 2501 rc = ecore_dmae_info_alloc(p_hwfn); 2502 if (rc) { 2503 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for dmae_info structure\n"); 2504 goto alloc_err; 2505 } 2506 2507 /* DCBX initialization */ 2508 rc = ecore_dcbx_info_alloc(p_hwfn); 2509 if (rc) { 2510 DP_NOTICE(p_hwfn, false, 2511 "Failed to allocate memory for dcbx structure\n"); 2512 goto alloc_err; 2513 } 2514 2515 rc = OSAL_DBG_ALLOC_USER_DATA(p_hwfn, &p_hwfn->dbg_user_info); 2516 if (rc) { 2517 DP_NOTICE(p_hwfn, false, 2518 "Failed to allocate dbg user info structure\n"); 2519 goto alloc_err; 2520 } 2521 2522 rc = OSAL_DBG_ALLOC_USER_DATA(p_hwfn, &p_hwfn->dbg_user_info); 2523 if (rc) { 2524 DP_NOTICE(p_hwfn, false, 2525 "Failed to allocate dbg user info structure\n"); 2526 goto alloc_err; 2527 } 2528 } /* hwfn loop */ 2529 2530 rc = ecore_llh_alloc(p_dev); 2531 if (rc != ECORE_SUCCESS) { 2532 DP_NOTICE(p_dev, true, 2533 "Failed to allocate memory for the llh_info structure\n"); 2534 goto alloc_err; 2535 } 2536 2537 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL, 2538 sizeof(*p_dev->reset_stats)); 2539 if (!p_dev->reset_stats) { 2540 DP_NOTICE(p_dev, false, "Failed to allocate reset statistics\n"); 2541 goto alloc_no_mem; 2542 } 2543 2544 return ECORE_SUCCESS; 2545 2546 alloc_no_mem: 2547 rc = ECORE_NOMEM; 2548 alloc_err: 2549 ecore_resc_free(p_dev); 2550 return rc; 2551 } 2552 2553 void ecore_resc_setup(struct ecore_dev *p_dev) 2554 { 2555 int i; 2556 2557 if (IS_VF(p_dev)) { 2558 for_each_hwfn(p_dev, i) 2559 ecore_l2_setup(&p_dev->hwfns[i]); 2560 return; 2561 } 2562 2563 for_each_hwfn(p_dev, i) { 2564 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 2565 2566 ecore_cxt_mngr_setup(p_hwfn); 2567 ecore_spq_setup(p_hwfn); 2568 ecore_eq_setup(p_hwfn); 2569 ecore_consq_setup(p_hwfn); 2570 2571 /* Read shadow of current MFW mailbox */ 2572 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); 2573 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow, 2574 p_hwfn->mcp_info->mfw_mb_cur, 2575 p_hwfn->mcp_info->mfw_mb_length); 2576 2577 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt); 2578 2579 ecore_l2_setup(p_hwfn); 2580 ecore_iov_setup(p_hwfn); 2581 } 2582 } 2583 2584 #define FINAL_CLEANUP_POLL_CNT (100) 2585 #define FINAL_CLEANUP_POLL_TIME (10) 2586 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn, 2587 struct ecore_ptt *p_ptt, 2588 u16 id, bool is_vf) 2589 { 2590 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; 2591 enum _ecore_status_t rc = ECORE_TIMEOUT; 2592 2593 #ifndef ASIC_ONLY 2594 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) || 2595 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 2596 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n"); 2597 return ECORE_SUCCESS; 2598 } 2599 #endif 2600 2601 addr = GTT_BAR0_MAP_REG_USDM_RAM + 2602 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); 2603 2604 if (is_vf) 2605 id += 0x10; 2606 2607 command |= X_FINAL_CLEANUP_AGG_INT << 2608 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; 2609 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; 2610 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; 2611 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; 2612 2613 /* Make sure notification is not set before initiating final cleanup */ 2614 2615 if (REG_RD(p_hwfn, addr)) { 2616 DP_NOTICE(p_hwfn, false, 2617 "Unexpected; Found final cleanup notification"); 2618 DP_NOTICE(p_hwfn, false, 2619 " before initiating final cleanup\n"); 2620 REG_WR(p_hwfn, addr, 0); 2621 } 2622 2623 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2624 "Sending final cleanup for PFVF[%d] [Command %08x]\n", 2625 id, command); 2626 2627 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); 2628 2629 /* Poll until completion */ 2630 while (!REG_RD(p_hwfn, addr) && count--) 2631 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME); 2632 2633 if (REG_RD(p_hwfn, addr)) 2634 rc = ECORE_SUCCESS; 2635 else 2636 DP_NOTICE(p_hwfn, true, 2637 "Failed to receive FW final cleanup notification\n"); 2638 2639 /* Cleanup afterwards */ 2640 REG_WR(p_hwfn, addr, 0); 2641 2642 return rc; 2643 } 2644 2645 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn) 2646 { 2647 int hw_mode = 0; 2648 2649 if (ECORE_IS_BB(p_hwfn->p_dev)) { 2650 hw_mode |= 1 << MODE_BB; 2651 } else if (ECORE_IS_AH(p_hwfn->p_dev)) { 2652 hw_mode |= 1 << MODE_K2; 2653 } else { 2654 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n", 2655 p_hwfn->p_dev->type); 2656 return ECORE_INVAL; 2657 } 2658 2659 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */ 2660 switch (p_hwfn->p_dev->num_ports_in_engine) { 2661 case 1: 2662 hw_mode |= 1 << MODE_PORTS_PER_ENG_1; 2663 break; 2664 case 2: 2665 hw_mode |= 1 << MODE_PORTS_PER_ENG_2; 2666 break; 2667 case 4: 2668 hw_mode |= 1 << MODE_PORTS_PER_ENG_4; 2669 break; 2670 default: 2671 DP_NOTICE(p_hwfn, true, 2672 "num_ports_in_engine = %d not supported\n", 2673 p_hwfn->p_dev->num_ports_in_engine); 2674 return ECORE_INVAL; 2675 } 2676 2677 if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits)) 2678 hw_mode |= 1 << MODE_MF_SD; 2679 else 2680 hw_mode |= 1 << MODE_MF_SI; 2681 2682 #ifndef ASIC_ONLY 2683 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 2684 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) { 2685 hw_mode |= 1 << MODE_FPGA; 2686 } else { 2687 if (p_hwfn->p_dev->b_is_emul_full) 2688 hw_mode |= 1 << MODE_EMUL_FULL; 2689 else 2690 hw_mode |= 1 << MODE_EMUL_REDUCED; 2691 } 2692 } else 2693 #endif 2694 hw_mode |= 1 << MODE_ASIC; 2695 2696 if (ECORE_IS_CMT(p_hwfn->p_dev)) 2697 hw_mode |= 1 << MODE_100G; 2698 2699 p_hwfn->hw_info.hw_mode = hw_mode; 2700 2701 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP), 2702 "Configuring function for hw_mode: 0x%08x\n", 2703 p_hwfn->hw_info.hw_mode); 2704 2705 return ECORE_SUCCESS; 2706 } 2707 2708 #ifndef ASIC_ONLY 2709 /* MFW-replacement initializations for emulation */ 2710 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_dev *p_dev, 2711 struct ecore_ptt *p_ptt) 2712 { 2713 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 2714 u32 pl_hv, wr_mbs; 2715 int i, pos; 2716 u16 ctrl = 0; 2717 2718 if (!CHIP_REV_IS_EMUL(p_dev)) { 2719 DP_NOTICE(p_dev, false, 2720 "ecore_hw_init_chip() shouldn't be called in a non-emulation environment\n"); 2721 return ECORE_INVAL; 2722 } 2723 2724 pl_hv = ECORE_IS_BB(p_dev) ? 0x1 : 0x401; 2725 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv); 2726 2727 if (ECORE_IS_AH(p_dev)) 2728 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2, 0x3ffffff); 2729 2730 /* Initialize port mode to 4x10G_E (10G with 4x10 SERDES) */ 2731 if (ECORE_IS_BB(p_dev)) 2732 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4); 2733 2734 if (ECORE_IS_AH(p_dev)) { 2735 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */ 2736 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE, 2737 p_dev->num_ports_in_engine >> 1); 2738 2739 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN, 2740 p_dev->num_ports_in_engine == 4 ? 0 : 3); 2741 } 2742 2743 /* Signal the PSWRQ block to start initializing internal memories */ 2744 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1); 2745 for (i = 0; i < 100; i++) { 2746 OSAL_UDELAY(50); 2747 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1) 2748 break; 2749 } 2750 if (i == 100) { 2751 DP_NOTICE(p_hwfn, true, 2752 "RBC done failed to complete in PSWRQ2\n"); 2753 return ECORE_TIMEOUT; 2754 } 2755 2756 /* Indicate PSWRQ to initialize steering tag table with zeros */ 2757 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RESET_STT, 1); 2758 for (i = 0; i < 100; i++) { 2759 OSAL_UDELAY(50); 2760 if (!ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_RESET_STT)) 2761 break; 2762 } 2763 if (i == 100) { 2764 DP_NOTICE(p_hwfn, true, 2765 "Steering tag table initialization failed to complete in PSWRQ2\n"); 2766 return ECORE_TIMEOUT; 2767 } 2768 2769 /* Clear a possible PSWRQ2 STT parity which might have been generated by 2770 * a previous MSI-X read. 2771 */ 2772 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_PRTY_STS_WR_H_0, 0x8); 2773 2774 /* Configure PSWRQ2_REG_WR_MBS0 according to the MaxPayloadSize field in 2775 * the PCI configuration space. The value is common for all PFs, so it 2776 * is okay to do it according to the first loading PF. 2777 */ 2778 pos = OSAL_PCI_FIND_CAPABILITY(p_dev, PCI_CAP_ID_EXP); 2779 if (!pos) { 2780 DP_NOTICE(p_dev, true, 2781 "Failed to find the PCI Express Capability structure in the PCI config space\n"); 2782 return ECORE_IO; 2783 } 2784 2785 OSAL_PCI_READ_CONFIG_WORD(p_dev, pos + PCI_EXP_DEVCTL, &ctrl); 2786 wr_mbs = (ctrl & PCI_EXP_DEVCTL_PAYLOAD) >> 5; 2787 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0, wr_mbs); 2788 2789 /* Configure the PGLUE_B to discard mode */ 2790 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_DISCARD_NBLOCK, 0x3f); 2791 2792 return ECORE_SUCCESS; 2793 } 2794 #endif 2795 2796 /* Init run time data for all PFs and their VFs on an engine. 2797 * TBD - for VFs - Once we have parent PF info for each VF in 2798 * shmem available as CAU requires knowledge of parent PF for each VF. 2799 */ 2800 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev) 2801 { 2802 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; 2803 u32 igu_sb_id; 2804 int i; 2805 2806 for_each_hwfn(p_dev, i) { 2807 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 2808 struct ecore_igu_info *p_igu_info; 2809 struct ecore_igu_block *p_block; 2810 struct cau_sb_entry sb_entry; 2811 2812 p_igu_info = p_hwfn->hw_info.p_igu_info; 2813 2814 for (igu_sb_id = 0; 2815 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev); 2816 igu_sb_id++) { 2817 p_block = &p_igu_info->entry[igu_sb_id]; 2818 2819 if (!p_block->is_pf) 2820 continue; 2821 2822 ecore_init_cau_sb_entry(p_hwfn, &sb_entry, 2823 p_block->function_id, 0, 0); 2824 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, 2825 sb_entry); 2826 } 2827 } 2828 } 2829 2830 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn, 2831 struct ecore_ptt *p_ptt) 2832 { 2833 u32 val, wr_mbs, cache_line_size; 2834 2835 val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); 2836 switch (val) { 2837 case 0: 2838 wr_mbs = 128; 2839 break; 2840 case 1: 2841 wr_mbs = 256; 2842 break; 2843 case 2: 2844 wr_mbs = 512; 2845 break; 2846 default: 2847 DP_INFO(p_hwfn, 2848 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 2849 val); 2850 return; 2851 } 2852 2853 cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs); 2854 switch (cache_line_size) { 2855 case 32: 2856 val = 0; 2857 break; 2858 case 64: 2859 val = 1; 2860 break; 2861 case 128: 2862 val = 2; 2863 break; 2864 case 256: 2865 val = 3; 2866 break; 2867 default: 2868 DP_INFO(p_hwfn, 2869 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 2870 cache_line_size); 2871 } 2872 2873 if (wr_mbs < OSAL_CACHE_LINE_SIZE) 2874 DP_INFO(p_hwfn, 2875 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", 2876 OSAL_CACHE_LINE_SIZE, wr_mbs); 2877 2878 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); 2879 if (val > 0) { 2880 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); 2881 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); 2882 } 2883 } 2884 2885 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn, 2886 struct ecore_ptt *p_ptt, 2887 int hw_mode) 2888 { 2889 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2890 struct ecore_dev *p_dev = p_hwfn->p_dev; 2891 u8 vf_id, max_num_vfs; 2892 u16 num_pfs, pf_id; 2893 u32 concrete_fid; 2894 enum _ecore_status_t rc = ECORE_SUCCESS; 2895 2896 ecore_init_cau_rt_data(p_dev); 2897 2898 /* Program GTT windows */ 2899 ecore_gtt_init(p_hwfn); 2900 2901 #ifndef ASIC_ONLY 2902 if (CHIP_REV_IS_EMUL(p_dev) && IS_LEAD_HWFN(p_hwfn)) { 2903 rc = ecore_hw_init_chip(p_dev, p_ptt); 2904 if (rc != ECORE_SUCCESS) 2905 return rc; 2906 } 2907 #endif 2908 2909 if (p_hwfn->mcp_info) { 2910 if (p_hwfn->mcp_info->func_info.bandwidth_max) 2911 qm_info->pf_rl_en = 1; 2912 if (p_hwfn->mcp_info->func_info.bandwidth_min) 2913 qm_info->pf_wfq_en = 1; 2914 } 2915 2916 ecore_qm_common_rt_init(p_hwfn, 2917 p_dev->num_ports_in_engine, 2918 qm_info->max_phys_tcs_per_port, 2919 qm_info->pf_rl_en, qm_info->pf_wfq_en, 2920 qm_info->vport_rl_en, qm_info->vport_wfq_en, 2921 qm_info->qm_port_params, 2922 OSAL_NULL /* global RLs are not configured */); 2923 2924 ecore_cxt_hw_init_common(p_hwfn); 2925 2926 ecore_init_cache_line_size(p_hwfn, p_ptt); 2927 2928 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn), 2929 hw_mode); 2930 if (rc != ECORE_SUCCESS) 2931 return rc; 2932 2933 /* @@TBD MichalK - should add VALIDATE_VFID to init tool... 2934 * need to decide with which value, maybe runtime 2935 */ 2936 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); 2937 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); 2938 2939 if (ECORE_IS_BB(p_dev)) { 2940 /* Workaround clears ROCE search for all functions to prevent 2941 * involving non initialized function in processing ROCE packet. 2942 */ 2943 num_pfs = (u16)NUM_OF_ENG_PFS(p_dev); 2944 for (pf_id = 0; pf_id < num_pfs; pf_id++) { 2945 ecore_fid_pretend(p_hwfn, p_ptt, pf_id); 2946 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 2947 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 2948 } 2949 /* pretend to original PF */ 2950 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 2951 } 2952 2953 /* Workaround for avoiding CCFC execution error when getting packets 2954 * with CRC errors, and allowing instead the invoking of the FW error 2955 * handler. 2956 * This is not done inside the init tool since it currently can't 2957 * perform a pretending to VFs. 2958 */ 2959 max_num_vfs = (u8)NUM_OF_VFS(p_dev); 2960 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { 2961 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id); 2962 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid); 2963 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); 2964 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); 2965 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); 2966 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); 2967 } 2968 /* pretend to original PF */ 2969 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 2970 2971 return rc; 2972 } 2973 2974 #ifndef ASIC_ONLY 2975 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4) 2976 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5) 2977 2978 #define PMEG_IF_BYTE_COUNT 8 2979 2980 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn, 2981 struct ecore_ptt *p_ptt, 2982 u32 addr, u64 data, u8 reg_type, u8 port) 2983 { 2984 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 2985 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n", 2986 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) | 2987 (8 << PMEG_IF_BYTE_COUNT), 2988 (reg_type << 25) | (addr << 8) | port, 2989 (u32)((data >> 32) & 0xffffffff), 2990 (u32)(data & 0xffffffff)); 2991 2992 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB, 2993 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) & 2994 0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT)); 2995 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB, 2996 (reg_type << 25) | (addr << 8) | port); 2997 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff); 2998 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, 2999 (data >> 32) & 0xffffffff); 3000 } 3001 3002 #define XLPORT_MODE_REG (0x20a) 3003 #define XLPORT_MAC_CONTROL (0x210) 3004 #define XLPORT_FLOW_CONTROL_CONFIG (0x207) 3005 #define XLPORT_ENABLE_REG (0x20b) 3006 3007 #define XLMAC_CTRL (0x600) 3008 #define XLMAC_MODE (0x601) 3009 #define XLMAC_RX_MAX_SIZE (0x608) 3010 #define XLMAC_TX_CTRL (0x604) 3011 #define XLMAC_PAUSE_CTRL (0x60d) 3012 #define XLMAC_PFC_CTRL (0x60e) 3013 3014 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn, 3015 struct ecore_ptt *p_ptt) 3016 { 3017 u8 loopback = 0, port = p_hwfn->port_id * 2; 3018 3019 /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */ 3020 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1, 3021 port); 3022 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port); 3023 /* XLMAC: SOFT RESET */ 3024 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port); 3025 /* XLMAC: Port Speed >= 10Gbps */ 3026 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port); 3027 /* XLMAC: Max Size */ 3028 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port); 3029 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL, 3030 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38), 3031 0, port); 3032 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port); 3033 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL, 3034 0x30ffffc000ULL, 0, port); 3035 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0, 3036 port); /* XLMAC: TX_EN, RX_EN */ 3037 /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */ 3038 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 3039 0x1003 | (loopback << 2), 0, port); 3040 /* Enabled Parallel PFC interface */ 3041 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port); 3042 3043 /* XLPORT port enable */ 3044 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port); 3045 } 3046 3047 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn, 3048 struct ecore_ptt *p_ptt) 3049 { 3050 u32 mac_base, mac_config_val = 0xa853; 3051 u8 port = p_hwfn->port_id; 3052 3053 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2), 3054 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_SHIFT) | 3055 (port << 3056 CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_SHIFT) | 3057 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_SHIFT)); 3058 3059 mac_base = NWM_REG_MAC0_K2 + (port << 2) * NWM_REG_MAC0_SIZE; 3060 3061 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2, 3062 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_SHIFT); 3063 3064 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2, 3065 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_SHIFT); 3066 3067 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2, 3068 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_SHIFT); 3069 3070 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2, 3071 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_SHIFT); 3072 3073 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2, 3074 (0xA << 3075 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_SHIFT) | 3076 (8 << 3077 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_SHIFT)); 3078 3079 /* Strip the CRC field from the frame */ 3080 mac_config_val &= ~ETH_MAC_REG_COMMAND_CONFIG_CRC_FWD_K2; 3081 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2, 3082 mac_config_val); 3083 } 3084 3085 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn, 3086 struct ecore_ptt *p_ptt) 3087 { 3088 u8 port = ECORE_IS_BB(p_hwfn->p_dev) ? p_hwfn->port_id * 2 3089 : p_hwfn->port_id; 3090 3091 DP_INFO(p_hwfn->p_dev, "Emulation: Configuring Link [port %02x]\n", 3092 port); 3093 3094 if (ECORE_IS_BB(p_hwfn->p_dev)) 3095 ecore_emul_link_init_bb(p_hwfn, p_ptt); 3096 else 3097 ecore_emul_link_init_ah(p_hwfn, p_ptt); 3098 3099 return; 3100 } 3101 3102 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn, 3103 struct ecore_ptt *p_ptt, u8 port) 3104 { 3105 int port_offset = port ? 0x800 : 0; 3106 u32 xmac_rxctrl = 0; 3107 3108 /* Reset of XMAC */ 3109 /* FIXME: move to common start */ 3110 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32), 3111 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */ 3112 OSAL_MSLEEP(1); 3113 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32), 3114 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */ 3115 3116 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1); 3117 3118 /* Set the number of ports on the Warp Core to 10G */ 3119 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3); 3120 3121 /* Soft reset of XMAC */ 3122 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32), 3123 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT); 3124 OSAL_MSLEEP(1); 3125 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32), 3126 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT); 3127 3128 /* FIXME: move to common end */ 3129 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) 3130 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20); 3131 3132 /* Set Max packet size: initialize XMAC block register for port 0 */ 3133 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710); 3134 3135 /* CRC append for Tx packets: init XMAC block register for port 1 */ 3136 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800); 3137 3138 /* Enable TX and RX: initialize XMAC block register for port 1 */ 3139 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset, 3140 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB); 3141 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, 3142 XMAC_REG_RX_CTRL_BB + port_offset); 3143 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB; 3144 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl); 3145 } 3146 #endif 3147 3148 static u32 ecore_hw_norm_region_conn(struct ecore_hwfn *p_hwfn) 3149 { 3150 u32 norm_region_conn; 3151 3152 /* The order of CIDs allocation is according to the order of 3153 * 'enum protocol_type'. Therefore, the number of CIDs for the normal 3154 * region is calculated based on the CORE CIDs, in case of non-ETH 3155 * personality, and otherwise - based on the ETH CIDs. 3156 */ 3157 norm_region_conn = 3158 ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + 3159 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, 3160 OSAL_NULL) + 3161 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, 3162 OSAL_NULL); 3163 3164 return norm_region_conn; 3165 } 3166 3167 static enum _ecore_status_t 3168 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn, 3169 struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) 3170 { 3171 u32 dpi_bit_shift, dpi_count, dpi_page_size; 3172 u32 min_dpis; 3173 u32 n_wids; 3174 3175 /* Calculate DPI size 3176 * ------------------ 3177 * The PWM region contains Doorbell Pages. The first is reserverd for 3178 * the kernel for, e.g, L2. The others are free to be used by non- 3179 * trusted applications, typically from user space. Each page, called a 3180 * doorbell page is sectioned into windows that allow doorbells to be 3181 * issued in parallel by the kernel/application. The size of such a 3182 * window (a.k.a. WID) is 1kB. 3183 * Summary: 3184 * 1kB WID x N WIDS = DPI page size 3185 * DPI page size x N DPIs = PWM region size 3186 * Notes: 3187 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE 3188 * in order to ensure that two applications won't share the same page. 3189 * It also must contain at least one WID per CPU to allow parallelism. 3190 * It also must be a power of 2, since it is stored as a bit shift. 3191 * 3192 * The DPI page size is stored in a register as 'dpi_bit_shift' so that 3193 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096 3194 * containing 4 WIDs. 3195 */ 3196 n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus); 3197 dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids); 3198 dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & 3199 ~(OSAL_PAGE_SIZE - 1); 3200 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096); 3201 dpi_count = pwm_region_size / dpi_page_size; 3202 3203 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; 3204 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis); 3205 3206 /* Update hwfn */ 3207 p_hwfn->dpi_size = dpi_page_size; 3208 p_hwfn->dpi_count = dpi_count; 3209 3210 /* Update registers */ 3211 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); 3212 3213 if (dpi_count < min_dpis) 3214 return ECORE_NORESOURCES; 3215 3216 return ECORE_SUCCESS; 3217 } 3218 3219 enum ECORE_ROCE_EDPM_MODE { 3220 ECORE_ROCE_EDPM_MODE_ENABLE = 0, 3221 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1, 3222 ECORE_ROCE_EDPM_MODE_DISABLE = 2, 3223 }; 3224 3225 bool ecore_edpm_enabled(struct ecore_hwfn *p_hwfn) 3226 { 3227 if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm) 3228 return false; 3229 3230 return true; 3231 } 3232 3233 static enum _ecore_status_t 3234 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn, 3235 struct ecore_ptt *p_ptt) 3236 { 3237 u32 norm_region_conn, min_addr_reg1; 3238 u32 pwm_regsize, norm_regsize; 3239 u32 db_bar_size, n_cpus; 3240 u32 roce_edpm_mode; 3241 u32 pf_dems_shift; 3242 enum _ecore_status_t rc = ECORE_SUCCESS; 3243 u8 cond; 3244 3245 db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); 3246 if (ECORE_IS_CMT(p_hwfn->p_dev)) 3247 db_bar_size /= 2; 3248 3249 /* Calculate doorbell regions 3250 * ----------------------------------- 3251 * The doorbell BAR is made of two regions. The first is called normal 3252 * region and the second is called PWM region. In the normal region 3253 * each ICID has its own set of addresses so that writing to that 3254 * specific address identifies the ICID. In the Process Window Mode 3255 * region the ICID is given in the data written to the doorbell. The 3256 * above per PF register denotes the offset in the doorbell BAR in which 3257 * the PWM region begins. 3258 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per 3259 * non-PWM connection. The calculation below computes the total non-PWM 3260 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is 3261 * in units of 4,096 bytes. 3262 */ 3263 norm_region_conn = ecore_hw_norm_region_conn(p_hwfn); 3264 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * norm_region_conn, 3265 OSAL_PAGE_SIZE); 3266 min_addr_reg1 = norm_regsize / 4096; 3267 pwm_regsize = db_bar_size - norm_regsize; 3268 3269 /* Check that the normal and PWM sizes are valid */ 3270 if (db_bar_size < norm_regsize) { 3271 DP_ERR(p_hwfn->p_dev, 3272 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", 3273 db_bar_size, norm_regsize); 3274 return ECORE_NORESOURCES; 3275 } 3276 if (pwm_regsize < ECORE_MIN_PWM_REGION) { 3277 DP_ERR(p_hwfn->p_dev, 3278 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", 3279 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size, 3280 norm_regsize); 3281 return ECORE_NORESOURCES; 3282 } 3283 3284 /* Calculate number of DPIs */ 3285 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; 3286 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) || 3287 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) { 3288 /* Either EDPM is mandatory, or we are attempting to allocate a 3289 * WID per CPU. 3290 */ 3291 n_cpus = OSAL_NUM_CPUS(); 3292 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 3293 } 3294 3295 cond = ((rc != ECORE_SUCCESS) && 3296 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) || 3297 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE); 3298 if (cond || p_hwfn->dcbx_no_edpm) { 3299 /* Either EDPM is disabled from user configuration, or it is 3300 * disabled via DCBx, or it is not mandatory and we failed to 3301 * allocated a WID per CPU. 3302 */ 3303 n_cpus = 1; 3304 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 3305 3306 /* If we entered this flow due to DCBX then the DPM register is 3307 * already configured. 3308 */ 3309 } 3310 3311 DP_INFO(p_hwfn, 3312 "doorbell bar: normal_region_size=%d, pwm_region_size=%d", 3313 norm_regsize, pwm_regsize); 3314 DP_INFO(p_hwfn, 3315 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", 3316 p_hwfn->dpi_size, p_hwfn->dpi_count, 3317 (!ecore_edpm_enabled(p_hwfn)) ? 3318 "disabled" : "enabled"); 3319 3320 /* Check return codes from above calls */ 3321 if (rc != ECORE_SUCCESS) { 3322 DP_ERR(p_hwfn, 3323 "Failed to allocate enough DPIs\n"); 3324 return ECORE_NORESOURCES; 3325 } 3326 3327 /* Update hwfn */ 3328 p_hwfn->dpi_start_offset = norm_regsize; 3329 3330 /* Update registers */ 3331 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ 3332 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4); 3333 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); 3334 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); 3335 3336 return ECORE_SUCCESS; 3337 } 3338 3339 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn, 3340 struct ecore_ptt *p_ptt, 3341 int hw_mode) 3342 { 3343 struct ecore_dev *p_dev = p_hwfn->p_dev; 3344 enum _ecore_status_t rc = ECORE_SUCCESS; 3345 3346 /* In CMT the gate should be cleared by the 2nd hwfn */ 3347 if (!ECORE_IS_CMT(p_dev) || !IS_LEAD_HWFN(p_hwfn)) 3348 STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0); 3349 3350 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, 3351 hw_mode); 3352 if (rc != ECORE_SUCCESS) 3353 return rc; 3354 3355 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); 3356 3357 #ifndef ASIC_ONLY 3358 if (CHIP_REV_IS_FPGA(p_dev) && ECORE_IS_BB(p_dev)) 3359 ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id); 3360 3361 if (CHIP_REV_IS_EMUL(p_dev)) { 3362 if (ECORE_IS_CMT(p_dev)) { 3363 /* Activate OPTE in CMT */ 3364 u32 val; 3365 3366 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV); 3367 val |= 0x10; 3368 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val); 3369 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1); 3370 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1); 3371 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1); 3372 ecore_wr(p_hwfn, p_ptt, 3373 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1); 3374 ecore_wr(p_hwfn, p_ptt, 3375 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555); 3376 ecore_wr(p_hwfn, p_ptt, 3377 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4, 3378 0x55555555); 3379 } 3380 3381 /* Set the TAGMAC default function on the port if needed. 3382 * The ppfid should be set in the vector, except in BB which has 3383 * a bug in the LLH where the ppfid is actually engine based. 3384 */ 3385 if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_dev->mf_bits)) { 3386 u8 pf_id = p_hwfn->rel_pf_id; 3387 3388 if (!ECORE_IS_BB(p_dev)) 3389 pf_id /= p_dev->num_ports_in_engine; 3390 ecore_wr(p_hwfn, p_ptt, 3391 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id); 3392 } 3393 3394 ecore_emul_link_init(p_hwfn, p_ptt); 3395 } 3396 #endif 3397 3398 return ECORE_SUCCESS; 3399 } 3400 3401 static enum _ecore_status_t 3402 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 3403 int hw_mode, struct ecore_hw_init_params *p_params) 3404 { 3405 u8 rel_pf_id = p_hwfn->rel_pf_id; 3406 u32 prs_reg; 3407 enum _ecore_status_t rc = ECORE_SUCCESS; 3408 u16 ctrl; 3409 int pos; 3410 3411 if (p_hwfn->mcp_info) { 3412 struct ecore_mcp_function_info *p_info; 3413 3414 p_info = &p_hwfn->mcp_info->func_info; 3415 if (p_info->bandwidth_min) 3416 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; 3417 3418 /* Update rate limit once we'll actually have a link */ 3419 p_hwfn->qm_info.pf_rl = 100000; 3420 } 3421 ecore_cxt_hw_init_pf(p_hwfn, p_ptt); 3422 3423 ecore_int_igu_init_rt(p_hwfn); 3424 3425 /* Set VLAN in NIG if needed */ 3426 if (hw_mode & (1 << MODE_MF_SD)) { 3427 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n"); 3428 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); 3429 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, 3430 p_hwfn->hw_info.ovlan); 3431 3432 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 3433 "Configuring LLH_FUNC_FILTER_HDR_SEL\n"); 3434 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET, 3435 1); 3436 } 3437 3438 /* Enable classification by MAC if needed */ 3439 if (hw_mode & (1 << MODE_MF_SI)) { 3440 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 3441 "Configuring TAGMAC_CLS_TYPE\n"); 3442 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 3443 1); 3444 } 3445 3446 /* Protocl Configuration - @@@TBD - should we set 0 otherwise? */ 3447 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 3448 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0); 3449 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 3450 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0); 3451 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); 3452 3453 /* perform debug configuration when chip is out of reset */ 3454 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id); 3455 3456 /* Sanity check before the PF init sequence that uses DMAE */ 3457 rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); 3458 if (rc) 3459 return rc; 3460 3461 /* PF Init sequence */ 3462 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); 3463 if (rc) 3464 return rc; 3465 3466 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ 3467 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); 3468 if (rc) 3469 return rc; 3470 3471 ecore_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem); 3472 3473 /* Pure runtime initializations - directly to the HW */ 3474 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); 3475 3476 /* PCI relaxed ordering causes a decrease in the performance on some 3477 * systems. Till a root cause is found, disable this attribute in the 3478 * PCI config space. 3479 */ 3480 /* Not in use @DPDK 3481 * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP); 3482 * if (!pos) { 3483 * DP_NOTICE(p_hwfn, true, 3484 * "Failed to find the PCIe Cap\n"); 3485 * return ECORE_IO; 3486 * } 3487 * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl); 3488 * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN; 3489 * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl); 3490 */ 3491 3492 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); 3493 if (rc != ECORE_SUCCESS) 3494 return rc; 3495 3496 /* Use the leading hwfn since in CMT only NIG #0 is operational */ 3497 if (IS_LEAD_HWFN(p_hwfn)) { 3498 rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt, 3499 p_params->avoid_eng_affin); 3500 if (rc != ECORE_SUCCESS) 3501 return rc; 3502 } 3503 3504 if (p_params->b_hw_start) { 3505 /* enable interrupts */ 3506 rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode); 3507 if (rc != ECORE_SUCCESS) 3508 return rc; 3509 3510 /* send function start command */ 3511 rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn, 3512 p_params->allow_npar_tx_switch); 3513 if (rc) { 3514 DP_NOTICE(p_hwfn, true, 3515 "Function start ramrod failed\n"); 3516 return rc; 3517 } 3518 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1); 3519 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3520 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg); 3521 3522 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) { 3523 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, 3524 (1 << 2)); 3525 ecore_wr(p_hwfn, p_ptt, 3526 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 3527 0x100); 3528 } 3529 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3530 "PRS_REG_SEARCH registers after start PFn\n"); 3531 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP); 3532 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3533 "PRS_REG_SEARCH_TCP: %x\n", prs_reg); 3534 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP); 3535 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3536 "PRS_REG_SEARCH_UDP: %x\n", prs_reg); 3537 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE); 3538 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3539 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg); 3540 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE); 3541 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3542 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg); 3543 prs_reg = ecore_rd(p_hwfn, p_ptt, 3544 PRS_REG_SEARCH_TCP_FIRST_FRAG); 3545 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3546 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n", 3547 prs_reg); 3548 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1); 3549 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3550 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg); 3551 } 3552 return ECORE_SUCCESS; 3553 } 3554 3555 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn, 3556 struct ecore_ptt *p_ptt, 3557 bool b_enable) 3558 { 3559 u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0; 3560 3561 /* Configure the PF's internal FID_enable for master transactions */ 3562 ecore_wr(p_hwfn, p_ptt, 3563 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); 3564 3565 /* Wait until value is set - try for 1 second every 50us */ 3566 for (delay_idx = 0; delay_idx < 20000; delay_idx++) { 3567 val = ecore_rd(p_hwfn, p_ptt, 3568 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 3569 if (val == set_val) 3570 break; 3571 3572 OSAL_UDELAY(50); 3573 } 3574 3575 if (val != set_val) { 3576 DP_NOTICE(p_hwfn, true, 3577 "PFID_ENABLE_MASTER wasn't changed after a second\n"); 3578 return ECORE_UNKNOWN_ERROR; 3579 } 3580 3581 return ECORE_SUCCESS; 3582 } 3583 3584 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn, 3585 struct ecore_ptt *p_main_ptt) 3586 { 3587 /* Read shadow of current MFW mailbox */ 3588 ecore_mcp_read_mb(p_hwfn, p_main_ptt); 3589 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow, 3590 p_hwfn->mcp_info->mfw_mb_cur, 3591 p_hwfn->mcp_info->mfw_mb_length); 3592 } 3593 3594 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn, 3595 struct ecore_ptt *p_ptt) 3596 { 3597 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 3598 1 << p_hwfn->abs_pf_id); 3599 } 3600 3601 static enum _ecore_status_t 3602 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn, 3603 struct ecore_load_req_params *p_load_req, 3604 struct ecore_drv_load_params *p_drv_load) 3605 { 3606 /* Make sure that if ecore-client didn't provide inputs, all the 3607 * expected defaults are indeed zero. 3608 */ 3609 OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0); 3610 OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0); 3611 OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0); 3612 3613 OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req)); 3614 3615 if (p_drv_load == OSAL_NULL) 3616 goto out; 3617 3618 p_load_req->drv_role = p_drv_load->is_crash_kernel ? 3619 ECORE_DRV_ROLE_KDUMP : 3620 ECORE_DRV_ROLE_OS; 3621 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; 3622 p_load_req->override_force_load = p_drv_load->override_force_load; 3623 3624 /* Old MFW versions don't support timeout values other than default and 3625 * none, so these values are replaced according to the fall-back action. 3626 */ 3627 3628 if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT || 3629 p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE || 3630 (p_hwfn->mcp_info->capabilities & 3631 FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) { 3632 p_load_req->timeout_val = p_drv_load->mfw_timeout_val; 3633 goto out; 3634 } 3635 3636 switch (p_drv_load->mfw_timeout_fallback) { 3637 case ECORE_TO_FALLBACK_TO_NONE: 3638 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE; 3639 break; 3640 case ECORE_TO_FALLBACK_TO_DEFAULT: 3641 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT; 3642 break; 3643 case ECORE_TO_FALLBACK_FAIL_LOAD: 3644 DP_NOTICE(p_hwfn, false, 3645 "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n", 3646 p_drv_load->mfw_timeout_val, 3647 ECORE_LOAD_REQ_LOCK_TO_DEFAULT, 3648 ECORE_LOAD_REQ_LOCK_TO_NONE); 3649 return ECORE_ABORTED; 3650 } 3651 3652 DP_INFO(p_hwfn, 3653 "Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n", 3654 p_drv_load->mfw_timeout_val, 3655 (p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ? 3656 "default" : "none", 3657 p_load_req->timeout_val); 3658 out: 3659 return ECORE_SUCCESS; 3660 } 3661 3662 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn, 3663 struct ecore_hw_init_params *p_params) 3664 { 3665 if (p_params->p_tunn) { 3666 ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn); 3667 ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); 3668 } 3669 3670 p_hwfn->b_int_enabled = 1; 3671 3672 return ECORE_SUCCESS; 3673 } 3674 3675 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev, 3676 struct ecore_hw_init_params *p_params) 3677 { 3678 struct ecore_load_req_params load_req_params; 3679 u32 load_code, resp, param, drv_mb_param; 3680 bool b_default_mtu = true; 3681 struct ecore_hwfn *p_hwfn; 3682 const u32 *fw_overlays; 3683 u32 fw_overlays_len; 3684 enum _ecore_status_t rc = ECORE_SUCCESS; 3685 u16 ether_type; 3686 int i; 3687 3688 if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) { 3689 DP_NOTICE(p_dev, false, 3690 "MSI mode is not supported for CMT devices\n"); 3691 return ECORE_INVAL; 3692 } 3693 3694 if (IS_PF(p_dev)) { 3695 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data); 3696 if (rc != ECORE_SUCCESS) 3697 return rc; 3698 } 3699 3700 for_each_hwfn(p_dev, i) { 3701 p_hwfn = &p_dev->hwfns[i]; 3702 3703 /* If management didn't provide a default, set one of our own */ 3704 if (!p_hwfn->hw_info.mtu) { 3705 p_hwfn->hw_info.mtu = 1500; 3706 b_default_mtu = false; 3707 } 3708 3709 if (IS_VF(p_dev)) { 3710 ecore_vf_start(p_hwfn, p_params); 3711 continue; 3712 } 3713 3714 rc = ecore_calc_hw_mode(p_hwfn); 3715 if (rc != ECORE_SUCCESS) 3716 return rc; 3717 3718 if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING, 3719 &p_dev->mf_bits) || 3720 OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING, 3721 &p_dev->mf_bits))) { 3722 if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING, 3723 &p_dev->mf_bits)) 3724 ether_type = ETHER_TYPE_VLAN; 3725 else 3726 ether_type = ETHER_TYPE_QINQ; 3727 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, 3728 ether_type); 3729 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, 3730 ether_type); 3731 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, 3732 ether_type); 3733 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, 3734 ether_type); 3735 } 3736 3737 ecore_set_spq_block_timeout(p_hwfn, p_params->spq_timeout_ms); 3738 3739 rc = ecore_fill_load_req_params(p_hwfn, &load_req_params, 3740 p_params->p_drv_load_params); 3741 if (rc != ECORE_SUCCESS) 3742 return rc; 3743 3744 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, 3745 &load_req_params); 3746 if (rc != ECORE_SUCCESS) { 3747 DP_NOTICE(p_hwfn, false, 3748 "Failed sending a LOAD_REQ command\n"); 3749 return rc; 3750 } 3751 3752 load_code = load_req_params.load_code; 3753 DP_VERBOSE(p_hwfn, ECORE_MSG_SP, 3754 "Load request was sent. Load code: 0x%x\n", 3755 load_code); 3756 3757 ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); 3758 3759 /* CQ75580: 3760 * When coming back from hiberbate state, the registers from 3761 * which shadow is read initially are not initialized. It turns 3762 * out that these registers get initialized during the call to 3763 * ecore_mcp_load_req request. So we need to reread them here 3764 * to get the proper shadow register value. 3765 * Note: This is a workaround for the missing MFW 3766 * initialization. It may be removed once the implementation 3767 * is done. 3768 */ 3769 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); 3770 3771 /* Only relevant for recovery: 3772 * Clear the indication after the LOAD_REQ command is responded 3773 * by the MFW. 3774 */ 3775 p_dev->recov_in_prog = false; 3776 3777 p_hwfn->first_on_engine = (load_code == 3778 FW_MSG_CODE_DRV_LOAD_ENGINE); 3779 3780 if (!qm_lock_ref_cnt) { 3781 #ifdef CONFIG_ECORE_LOCK_ALLOC 3782 rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock); 3783 if (rc) { 3784 DP_ERR(p_hwfn, "qm_lock allocation failed\n"); 3785 goto qm_lock_fail; 3786 } 3787 #endif 3788 OSAL_SPIN_LOCK_INIT(&qm_lock); 3789 } 3790 ++qm_lock_ref_cnt; 3791 3792 /* Clean up chip from previous driver if such remains exist. 3793 * This is not needed when the PF is the first one on the 3794 * engine, since afterwards we are going to init the FW. 3795 */ 3796 if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) { 3797 rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt, 3798 p_hwfn->rel_pf_id, false); 3799 if (rc != ECORE_SUCCESS) { 3800 ecore_hw_err_notify(p_hwfn, 3801 ECORE_HW_ERR_RAMROD_FAIL); 3802 goto load_err; 3803 } 3804 } 3805 3806 /* Log and clear previous pglue_b errors if such exist */ 3807 ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt, true); 3808 3809 /* Enable the PF's internal FID_enable in the PXP */ 3810 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt, 3811 true); 3812 if (rc != ECORE_SUCCESS) 3813 goto load_err; 3814 3815 /* Clear the pglue_b was_error indication. 3816 * It must be done after the BME and the internal FID_enable for 3817 * the PF are set, since VDMs may cause the indication to be set 3818 * again. 3819 */ 3820 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); 3821 3822 fw_overlays = p_dev->fw_data->fw_overlays; 3823 fw_overlays_len = p_dev->fw_data->fw_overlays_len; 3824 p_hwfn->fw_overlay_mem = 3825 ecore_fw_overlay_mem_alloc(p_hwfn, fw_overlays, 3826 fw_overlays_len); 3827 if (!p_hwfn->fw_overlay_mem) { 3828 DP_NOTICE(p_hwfn, false, 3829 "Failed to allocate fw overlay memory\n"); 3830 goto load_err; 3831 } 3832 3833 switch (load_code) { 3834 case FW_MSG_CODE_DRV_LOAD_ENGINE: 3835 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, 3836 p_hwfn->hw_info.hw_mode); 3837 if (rc != ECORE_SUCCESS) 3838 break; 3839 /* Fall into */ 3840 case FW_MSG_CODE_DRV_LOAD_PORT: 3841 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, 3842 p_hwfn->hw_info.hw_mode); 3843 if (rc != ECORE_SUCCESS) 3844 break; 3845 /* Fall into */ 3846 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 3847 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, 3848 p_hwfn->hw_info.hw_mode, 3849 p_params); 3850 break; 3851 default: 3852 DP_NOTICE(p_hwfn, false, 3853 "Unexpected load code [0x%08x]", load_code); 3854 rc = ECORE_NOTIMPL; 3855 break; 3856 } 3857 3858 if (rc != ECORE_SUCCESS) { 3859 DP_NOTICE(p_hwfn, false, 3860 "init phase failed for loadcode 0x%x (rc %d)\n", 3861 load_code, rc); 3862 goto load_err; 3863 } 3864 3865 rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); 3866 if (rc != ECORE_SUCCESS) { 3867 DP_NOTICE(p_hwfn, false, 3868 "Sending load done failed, rc = %d\n", rc); 3869 if (rc == ECORE_NOMEM) { 3870 DP_NOTICE(p_hwfn, false, 3871 "Sending load done was failed due to memory allocation failure\n"); 3872 goto load_err; 3873 } 3874 return rc; 3875 } 3876 3877 /* send DCBX attention request command */ 3878 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB, 3879 "sending phony dcbx set command to trigger DCBx attention handling\n"); 3880 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3881 DRV_MSG_CODE_SET_DCBX, 3882 1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp, 3883 ¶m); 3884 if (rc != ECORE_SUCCESS) { 3885 DP_NOTICE(p_hwfn, false, 3886 "Failed to send DCBX attention request\n"); 3887 return rc; 3888 } 3889 3890 p_hwfn->hw_init_done = true; 3891 } 3892 3893 if (IS_PF(p_dev)) { 3894 /* Get pre-negotiated values for stag, bandwidth etc. */ 3895 p_hwfn = ECORE_LEADING_HWFN(p_dev); 3896 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, 3897 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); 3898 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3899 DRV_MSG_CODE_GET_OEM_UPDATES, 3900 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET, 3901 &resp, ¶m); 3902 if (rc != ECORE_SUCCESS) 3903 DP_NOTICE(p_hwfn, false, 3904 "Failed to send GET_OEM_UPDATES attention request\n"); 3905 } 3906 3907 if (IS_PF(p_dev)) { 3908 /* Get pre-negotiated values for stag, bandwidth etc. */ 3909 p_hwfn = ECORE_LEADING_HWFN(p_dev); 3910 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, 3911 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); 3912 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3913 DRV_MSG_CODE_GET_OEM_UPDATES, 3914 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET, 3915 &resp, ¶m); 3916 if (rc != ECORE_SUCCESS) 3917 DP_NOTICE(p_hwfn, false, 3918 "Failed to send GET_OEM_UPDATES attention request\n"); 3919 } 3920 3921 if (IS_PF(p_dev)) { 3922 p_hwfn = ECORE_LEADING_HWFN(p_dev); 3923 drv_mb_param = STORM_FW_VERSION; 3924 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3925 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, 3926 drv_mb_param, &resp, ¶m); 3927 if (rc != ECORE_SUCCESS) 3928 DP_INFO(p_hwfn, "Failed to update firmware version\n"); 3929 3930 if (!b_default_mtu) { 3931 rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, 3932 p_hwfn->hw_info.mtu); 3933 if (rc != ECORE_SUCCESS) 3934 DP_INFO(p_hwfn, "Failed to update default mtu\n"); 3935 } 3936 3937 rc = ecore_mcp_ov_update_driver_state(p_hwfn, 3938 p_hwfn->p_main_ptt, 3939 ECORE_OV_DRIVER_STATE_DISABLED); 3940 if (rc != ECORE_SUCCESS) 3941 DP_INFO(p_hwfn, "Failed to update driver state\n"); 3942 3943 rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, 3944 ECORE_OV_ESWITCH_NONE); 3945 if (rc != ECORE_SUCCESS) 3946 DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); 3947 } 3948 3949 return rc; 3950 3951 load_err: 3952 --qm_lock_ref_cnt; 3953 #ifdef CONFIG_ECORE_LOCK_ALLOC 3954 if (!qm_lock_ref_cnt) 3955 OSAL_SPIN_LOCK_DEALLOC(&qm_lock); 3956 qm_lock_fail: 3957 #endif 3958 /* The MFW load lock should be released regardless of success or failure 3959 * of initialization. 3960 * TODO: replace this with an attempt to send cancel_load. 3961 */ 3962 ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); 3963 return rc; 3964 } 3965 3966 #define ECORE_HW_STOP_RETRY_LIMIT (10) 3967 static void ecore_hw_timers_stop(struct ecore_dev *p_dev, 3968 struct ecore_hwfn *p_hwfn, 3969 struct ecore_ptt *p_ptt) 3970 { 3971 int i; 3972 3973 /* close timers */ 3974 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); 3975 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); 3976 for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog; 3977 i++) { 3978 if ((!ecore_rd(p_hwfn, p_ptt, 3979 TM_REG_PF_SCAN_ACTIVE_CONN)) && 3980 (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) 3981 break; 3982 3983 /* Dependent on number of connection/tasks, possibly 3984 * 1ms sleep is required between polls 3985 */ 3986 OSAL_MSLEEP(1); 3987 } 3988 3989 if (i < ECORE_HW_STOP_RETRY_LIMIT) 3990 return; 3991 3992 DP_NOTICE(p_hwfn, false, 3993 "Timers linear scans are not over [Connection %02x Tasks %02x]\n", 3994 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), 3995 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); 3996 } 3997 3998 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev) 3999 { 4000 int j; 4001 4002 for_each_hwfn(p_dev, j) { 4003 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j]; 4004 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt; 4005 4006 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt); 4007 } 4008 } 4009 4010 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn, 4011 struct ecore_ptt *p_ptt, 4012 u32 addr, u32 expected_val) 4013 { 4014 u32 val = ecore_rd(p_hwfn, p_ptt, addr); 4015 4016 if (val != expected_val) { 4017 DP_NOTICE(p_hwfn, true, 4018 "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n", 4019 addr, val, expected_val); 4020 return ECORE_UNKNOWN_ERROR; 4021 } 4022 4023 return ECORE_SUCCESS; 4024 } 4025 4026 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev) 4027 { 4028 struct ecore_hwfn *p_hwfn; 4029 struct ecore_ptt *p_ptt; 4030 enum _ecore_status_t rc, rc2 = ECORE_SUCCESS; 4031 int j; 4032 4033 for_each_hwfn(p_dev, j) { 4034 p_hwfn = &p_dev->hwfns[j]; 4035 p_ptt = p_hwfn->p_main_ptt; 4036 4037 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n"); 4038 4039 if (IS_VF(p_dev)) { 4040 ecore_vf_pf_int_cleanup(p_hwfn); 4041 rc = ecore_vf_pf_reset(p_hwfn); 4042 if (rc != ECORE_SUCCESS) { 4043 DP_NOTICE(p_hwfn, true, 4044 "ecore_vf_pf_reset failed. rc = %d.\n", 4045 rc); 4046 rc2 = ECORE_UNKNOWN_ERROR; 4047 } 4048 continue; 4049 } 4050 4051 /* mark the hw as uninitialized... */ 4052 p_hwfn->hw_init_done = false; 4053 4054 /* Send unload command to MCP */ 4055 if (!p_dev->recov_in_prog) { 4056 rc = ecore_mcp_unload_req(p_hwfn, p_ptt); 4057 if (rc != ECORE_SUCCESS) { 4058 DP_NOTICE(p_hwfn, false, 4059 "Failed sending a UNLOAD_REQ command. rc = %d.\n", 4060 rc); 4061 rc2 = ECORE_UNKNOWN_ERROR; 4062 } 4063 } 4064 4065 OSAL_DPC_SYNC(p_hwfn); 4066 4067 /* After this point no MFW attentions are expected, e.g. prevent 4068 * race between pf stop and dcbx pf update. 4069 */ 4070 4071 rc = ecore_sp_pf_stop(p_hwfn); 4072 if (rc != ECORE_SUCCESS) { 4073 DP_NOTICE(p_hwfn, false, 4074 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", 4075 rc); 4076 rc2 = ECORE_UNKNOWN_ERROR; 4077 } 4078 4079 OSAL_DPC_SYNC(p_hwfn); 4080 4081 /* After this point we don't expect the FW to send us async 4082 * events 4083 */ 4084 4085 /* perform debug action after PF stop was sent */ 4086 OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id); 4087 4088 /* close NIG to BRB gate */ 4089 ecore_wr(p_hwfn, p_ptt, 4090 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 4091 4092 /* close parser */ 4093 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 4094 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 4095 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 4096 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 4097 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 4098 4099 /* @@@TBD - clean transmission queues (5.b) */ 4100 /* @@@TBD - clean BTB (5.c) */ 4101 4102 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt); 4103 4104 /* @@@TBD - verify DMAE requests are done (8) */ 4105 4106 /* Disable Attention Generation */ 4107 ecore_int_igu_disable_int(p_hwfn, p_ptt); 4108 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); 4109 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); 4110 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); 4111 rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt); 4112 if (rc != ECORE_SUCCESS) { 4113 DP_NOTICE(p_hwfn, true, 4114 "Failed to return IGU CAM to default\n"); 4115 rc2 = ECORE_UNKNOWN_ERROR; 4116 } 4117 4118 /* Need to wait 1ms to guarantee SBs are cleared */ 4119 OSAL_MSLEEP(1); 4120 4121 if (IS_LEAD_HWFN(p_hwfn) && 4122 OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) && 4123 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) 4124 ecore_llh_remove_mac_filter(p_dev, 0, 4125 p_hwfn->hw_info.hw_mac_addr); 4126 4127 if (!p_dev->recov_in_prog) { 4128 ecore_verify_reg_val(p_hwfn, p_ptt, 4129 QM_REG_USG_CNT_PF_TX, 0); 4130 ecore_verify_reg_val(p_hwfn, p_ptt, 4131 QM_REG_USG_CNT_PF_OTHER, 0); 4132 /* @@@TBD - assert on incorrect xCFC values (10.b) */ 4133 } 4134 4135 /* Disable PF in HW blocks */ 4136 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); 4137 ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); 4138 4139 --qm_lock_ref_cnt; 4140 #ifdef CONFIG_ECORE_LOCK_ALLOC 4141 if (!qm_lock_ref_cnt) 4142 OSAL_SPIN_LOCK_DEALLOC(&qm_lock); 4143 #endif 4144 4145 if (!p_dev->recov_in_prog) { 4146 rc = ecore_mcp_unload_done(p_hwfn, p_ptt); 4147 if (rc == ECORE_NOMEM) { 4148 DP_NOTICE(p_hwfn, false, 4149 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n"); 4150 rc = ecore_mcp_unload_done(p_hwfn, p_ptt); 4151 } 4152 if (rc != ECORE_SUCCESS) { 4153 DP_NOTICE(p_hwfn, false, 4154 "Failed sending a UNLOAD_DONE command. rc = %d.\n", 4155 rc); 4156 rc2 = ECORE_UNKNOWN_ERROR; 4157 } 4158 } 4159 } /* hwfn loop */ 4160 4161 if (IS_PF(p_dev) && !p_dev->recov_in_prog) { 4162 p_hwfn = ECORE_LEADING_HWFN(p_dev); 4163 p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt; 4164 4165 /* Clear the PF's internal FID_enable in the PXP. 4166 * In CMT this should only be done for first hw-function, and 4167 * only after all transactions have stopped for all active 4168 * hw-functions. 4169 */ 4170 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt, 4171 false); 4172 if (rc != ECORE_SUCCESS) { 4173 DP_NOTICE(p_hwfn, true, 4174 "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n", 4175 rc); 4176 rc2 = ECORE_UNKNOWN_ERROR; 4177 } 4178 } 4179 4180 return rc2; 4181 } 4182 4183 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev) 4184 { 4185 int j; 4186 4187 for_each_hwfn(p_dev, j) { 4188 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j]; 4189 struct ecore_ptt *p_ptt; 4190 4191 if (IS_VF(p_dev)) { 4192 ecore_vf_pf_int_cleanup(p_hwfn); 4193 continue; 4194 } 4195 p_ptt = ecore_ptt_acquire(p_hwfn); 4196 if (!p_ptt) 4197 return ECORE_AGAIN; 4198 4199 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, 4200 "Shutting down the fastpath\n"); 4201 4202 ecore_wr(p_hwfn, p_ptt, 4203 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 4204 4205 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 4206 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 4207 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 4208 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 4209 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 4210 4211 /* @@@TBD - clean transmission queues (5.b) */ 4212 /* @@@TBD - clean BTB (5.c) */ 4213 4214 /* @@@TBD - verify DMAE requests are done (8) */ 4215 4216 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); 4217 /* Need to wait 1ms to guarantee SBs are cleared */ 4218 OSAL_MSLEEP(1); 4219 ecore_ptt_release(p_hwfn, p_ptt); 4220 } 4221 4222 return ECORE_SUCCESS; 4223 } 4224 4225 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn) 4226 { 4227 struct ecore_ptt *p_ptt; 4228 4229 if (IS_VF(p_hwfn->p_dev)) 4230 return ECORE_SUCCESS; 4231 4232 p_ptt = ecore_ptt_acquire(p_hwfn); 4233 if (!p_ptt) 4234 return ECORE_AGAIN; 4235 4236 /* If roce info is allocated it means roce is initialized and should 4237 * be enabled in searcher. 4238 */ 4239 if (p_hwfn->p_rdma_info) { 4240 if (p_hwfn->b_rdma_enabled_in_prs) 4241 ecore_wr(p_hwfn, p_ptt, 4242 p_hwfn->rdma_prs_search_reg, 0x1); 4243 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1); 4244 } 4245 4246 /* Re-open incoming traffic */ 4247 ecore_wr(p_hwfn, p_ptt, 4248 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); 4249 ecore_ptt_release(p_hwfn, p_ptt); 4250 4251 return ECORE_SUCCESS; 4252 } 4253 4254 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ 4255 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn) 4256 { 4257 ecore_ptt_pool_free(p_hwfn); 4258 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info); 4259 } 4260 4261 /* Setup bar access */ 4262 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn) 4263 { 4264 /* clear indirect access */ 4265 if (ECORE_IS_AH(p_hwfn->p_dev)) { 4266 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4267 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); 4268 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4269 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); 4270 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4271 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); 4272 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4273 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); 4274 } else { 4275 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4276 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); 4277 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4278 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); 4279 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4280 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); 4281 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4282 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); 4283 } 4284 4285 /* Clean previous pglue_b errors if such exist */ 4286 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); 4287 4288 /* enable internal target-read */ 4289 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4290 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 4291 } 4292 4293 static void get_function_id(struct ecore_hwfn *p_hwfn) 4294 { 4295 /* ME Register */ 4296 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, 4297 PXP_PF_ME_OPAQUE_ADDR); 4298 4299 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); 4300 4301 /* Bits 16-19 from the ME registers are the pf_num */ 4302 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; 4303 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 4304 PXP_CONCRETE_FID_PFID); 4305 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 4306 PXP_CONCRETE_FID_PORT); 4307 4308 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 4309 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", 4310 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); 4311 } 4312 4313 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn) 4314 { 4315 u32 *feat_num = p_hwfn->hw_info.feat_num; 4316 struct ecore_sb_cnt_info sb_cnt; 4317 u32 non_l2_sbs = 0; 4318 4319 OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt)); 4320 ecore_int_get_num_sbs(p_hwfn, &sb_cnt); 4321 4322 /* L2 Queues require each: 1 status block. 1 L2 queue */ 4323 if (ECORE_IS_L2_PERSONALITY(p_hwfn)) { 4324 /* Start by allocating VF queues, then PF's */ 4325 feat_num[ECORE_VF_L2_QUE] = 4326 OSAL_MIN_T(u32, 4327 RESC_NUM(p_hwfn, ECORE_L2_QUEUE), 4328 sb_cnt.iov_cnt); 4329 feat_num[ECORE_PF_L2_QUE] = 4330 OSAL_MIN_T(u32, 4331 sb_cnt.cnt - non_l2_sbs, 4332 RESC_NUM(p_hwfn, ECORE_L2_QUEUE) - 4333 FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE)); 4334 } 4335 4336 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) || 4337 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) { 4338 u32 *p_storage_feat = ECORE_IS_FCOE_PERSONALITY(p_hwfn) ? 4339 &feat_num[ECORE_FCOE_CQ] : 4340 &feat_num[ECORE_ISCSI_CQ]; 4341 u32 limit = sb_cnt.cnt; 4342 4343 /* The number of queues should not exceed the number of FP SBs. 4344 * In storage target, the queues are divided into pairs of a CQ 4345 * and a CmdQ, and each pair uses a single SB. The limit in 4346 * this case should allow a max ratio of 2:1 instead of 1:1. 4347 */ 4348 if (p_hwfn->p_dev->b_is_target) 4349 limit *= 2; 4350 *p_storage_feat = OSAL_MIN_T(u32, limit, 4351 RESC_NUM(p_hwfn, ECORE_CMDQS_CQS)); 4352 4353 /* @DPDK */ 4354 /* The size of "cq_cmdq_sb_num_arr" in the fcoe/iscsi init 4355 * ramrod is limited to "NUM_OF_GLOBAL_QUEUES / 2". 4356 */ 4357 *p_storage_feat = OSAL_MIN_T(u32, *p_storage_feat, 4358 (NUM_OF_GLOBAL_QUEUES / 2)); 4359 } 4360 4361 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 4362 "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n", 4363 (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE), 4364 (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE), 4365 (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ), 4366 (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ), 4367 (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ), 4368 (int)sb_cnt.cnt); 4369 } 4370 4371 const char *ecore_hw_get_resc_name(enum ecore_resources res_id) 4372 { 4373 switch (res_id) { 4374 case ECORE_L2_QUEUE: 4375 return "L2_QUEUE"; 4376 case ECORE_VPORT: 4377 return "VPORT"; 4378 case ECORE_RSS_ENG: 4379 return "RSS_ENG"; 4380 case ECORE_PQ: 4381 return "PQ"; 4382 case ECORE_RL: 4383 return "RL"; 4384 case ECORE_MAC: 4385 return "MAC"; 4386 case ECORE_VLAN: 4387 return "VLAN"; 4388 case ECORE_RDMA_CNQ_RAM: 4389 return "RDMA_CNQ_RAM"; 4390 case ECORE_ILT: 4391 return "ILT"; 4392 case ECORE_LL2_QUEUE: 4393 return "LL2_QUEUE"; 4394 case ECORE_CMDQS_CQS: 4395 return "CMDQS_CQS"; 4396 case ECORE_RDMA_STATS_QUEUE: 4397 return "RDMA_STATS_QUEUE"; 4398 case ECORE_BDQ: 4399 return "BDQ"; 4400 case ECORE_SB: 4401 return "SB"; 4402 default: 4403 return "UNKNOWN_RESOURCE"; 4404 } 4405 } 4406 4407 static enum _ecore_status_t 4408 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn, 4409 struct ecore_ptt *p_ptt, 4410 enum ecore_resources res_id, 4411 u32 resc_max_val, 4412 u32 *p_mcp_resp) 4413 { 4414 enum _ecore_status_t rc; 4415 4416 rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, 4417 resc_max_val, p_mcp_resp); 4418 if (rc != ECORE_SUCCESS) { 4419 DP_NOTICE(p_hwfn, false, 4420 "MFW response failure for a max value setting of resource %d [%s]\n", 4421 res_id, ecore_hw_get_resc_name(res_id)); 4422 return rc; 4423 } 4424 4425 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) 4426 DP_INFO(p_hwfn, 4427 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", 4428 res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp); 4429 4430 return ECORE_SUCCESS; 4431 } 4432 4433 #define RDMA_NUM_STATISTIC_COUNTERS_K2 MAX_NUM_VPORTS_K2 4434 #define RDMA_NUM_STATISTIC_COUNTERS_BB MAX_NUM_VPORTS_BB 4435 4436 static u32 ecore_hsi_def_val[][MAX_CHIP_IDS] = { 4437 {MAX_NUM_VFS_BB, MAX_NUM_VFS_K2}, 4438 {MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2}, 4439 {MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2}, 4440 {MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2, }, 4441 {MAX_NUM_PFS_BB, MAX_NUM_PFS_K2}, 4442 {MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2}, 4443 {ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2}, 4444 {MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2}, 4445 {PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2}, 4446 {RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2}, 4447 {MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS}, 4448 {PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES}, 4449 {BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2}, 4450 }; 4451 4452 u32 ecore_get_hsi_def_val(struct ecore_dev *p_dev, enum ecore_hsi_def_type type) 4453 { 4454 enum chip_ids chip_id = ECORE_IS_BB(p_dev) ? CHIP_BB : CHIP_K2; 4455 4456 if (type >= ECORE_NUM_HSI_DEFS) { 4457 DP_ERR(p_dev, "Unexpected HSI definition type [%d]\n", type); 4458 return 0; 4459 } 4460 4461 return ecore_hsi_def_val[type][chip_id]; 4462 } 4463 4464 static enum _ecore_status_t 4465 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn, 4466 struct ecore_ptt *p_ptt) 4467 { 4468 u32 resc_max_val, mcp_resp; 4469 u8 res_id; 4470 enum _ecore_status_t rc; 4471 4472 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) { 4473 /* @DPDK */ 4474 switch (res_id) { 4475 case ECORE_LL2_QUEUE: 4476 case ECORE_RDMA_CNQ_RAM: 4477 case ECORE_RDMA_STATS_QUEUE: 4478 case ECORE_BDQ: 4479 resc_max_val = 0; 4480 break; 4481 default: 4482 continue; 4483 } 4484 4485 rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, 4486 resc_max_val, &mcp_resp); 4487 if (rc != ECORE_SUCCESS) 4488 return rc; 4489 4490 /* There's no point to continue to the next resource if the 4491 * command is not supported by the MFW. 4492 * We do continue if the command is supported but the resource 4493 * is unknown to the MFW. Such a resource will be later 4494 * configured with the default allocation values. 4495 */ 4496 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) 4497 return ECORE_NOTIMPL; 4498 } 4499 4500 return ECORE_SUCCESS; 4501 } 4502 4503 static 4504 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn, 4505 enum ecore_resources res_id, 4506 u32 *p_resc_num, u32 *p_resc_start) 4507 { 4508 u8 num_funcs = p_hwfn->num_funcs_on_engine; 4509 struct ecore_dev *p_dev = p_hwfn->p_dev; 4510 4511 switch (res_id) { 4512 case ECORE_L2_QUEUE: 4513 *p_resc_num = NUM_OF_L2_QUEUES(p_dev) / num_funcs; 4514 break; 4515 case ECORE_VPORT: 4516 *p_resc_num = NUM_OF_VPORTS(p_dev) / num_funcs; 4517 break; 4518 case ECORE_RSS_ENG: 4519 *p_resc_num = NUM_OF_RSS_ENGINES(p_dev) / num_funcs; 4520 break; 4521 case ECORE_PQ: 4522 *p_resc_num = NUM_OF_QM_TX_QUEUES(p_dev) / num_funcs; 4523 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ 4524 break; 4525 case ECORE_RL: 4526 *p_resc_num = NUM_OF_QM_GLOBAL_RLS(p_dev) / num_funcs; 4527 break; 4528 case ECORE_MAC: 4529 case ECORE_VLAN: 4530 /* Each VFC resource can accommodate both a MAC and a VLAN */ 4531 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; 4532 break; 4533 case ECORE_ILT: 4534 *p_resc_num = NUM_OF_PXP_ILT_RECORDS(p_dev) / num_funcs; 4535 break; 4536 case ECORE_LL2_QUEUE: 4537 *p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs; 4538 break; 4539 case ECORE_RDMA_CNQ_RAM: 4540 case ECORE_CMDQS_CQS: 4541 /* CNQ/CMDQS are the same resource */ 4542 /* @DPDK */ 4543 *p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs; 4544 break; 4545 case ECORE_RDMA_STATS_QUEUE: 4546 *p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(p_dev) / num_funcs; 4547 break; 4548 case ECORE_BDQ: 4549 /* @DPDK */ 4550 *p_resc_num = 0; 4551 break; 4552 default: 4553 break; 4554 } 4555 4556 4557 switch (res_id) { 4558 case ECORE_BDQ: 4559 if (!*p_resc_num) 4560 *p_resc_start = 0; 4561 break; 4562 case ECORE_SB: 4563 /* Since we want its value to reflect whether MFW supports 4564 * the new scheme, have a default of 0. 4565 */ 4566 *p_resc_num = 0; 4567 break; 4568 default: 4569 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; 4570 break; 4571 } 4572 4573 return ECORE_SUCCESS; 4574 } 4575 4576 static enum _ecore_status_t 4577 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id, 4578 bool drv_resc_alloc) 4579 { 4580 u32 dflt_resc_num = 0, dflt_resc_start = 0; 4581 u32 mcp_resp, *p_resc_num, *p_resc_start; 4582 enum _ecore_status_t rc; 4583 4584 p_resc_num = &RESC_NUM(p_hwfn, res_id); 4585 p_resc_start = &RESC_START(p_hwfn, res_id); 4586 4587 rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, 4588 &dflt_resc_start); 4589 if (rc != ECORE_SUCCESS) { 4590 DP_ERR(p_hwfn, 4591 "Failed to get default amount for resource %d [%s]\n", 4592 res_id, ecore_hw_get_resc_name(res_id)); 4593 return rc; 4594 } 4595 4596 #ifndef ASIC_ONLY 4597 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 4598 *p_resc_num = dflt_resc_num; 4599 *p_resc_start = dflt_resc_start; 4600 goto out; 4601 } 4602 #endif 4603 4604 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, 4605 &mcp_resp, p_resc_num, p_resc_start); 4606 if (rc != ECORE_SUCCESS) { 4607 DP_NOTICE(p_hwfn, true, 4608 "MFW response failure for an allocation request for" 4609 " resource %d [%s]\n", 4610 res_id, ecore_hw_get_resc_name(res_id)); 4611 return rc; 4612 } 4613 4614 /* Default driver values are applied in the following cases: 4615 * - The resource allocation MB command is not supported by the MFW 4616 * - There is an internal error in the MFW while processing the request 4617 * - The resource ID is unknown to the MFW 4618 */ 4619 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { 4620 DP_INFO(p_hwfn, 4621 "Failed to receive allocation info for resource %d [%s]." 4622 " mcp_resp = 0x%x. Applying default values" 4623 " [%d,%d].\n", 4624 res_id, ecore_hw_get_resc_name(res_id), mcp_resp, 4625 dflt_resc_num, dflt_resc_start); 4626 4627 *p_resc_num = dflt_resc_num; 4628 *p_resc_start = dflt_resc_start; 4629 goto out; 4630 } 4631 4632 if ((*p_resc_num != dflt_resc_num || 4633 *p_resc_start != dflt_resc_start) && 4634 res_id != ECORE_SB) { 4635 DP_INFO(p_hwfn, 4636 "MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n", 4637 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num, 4638 *p_resc_start, dflt_resc_num, dflt_resc_start, 4639 drv_resc_alloc ? " - Applying default values" : ""); 4640 if (drv_resc_alloc) { 4641 *p_resc_num = dflt_resc_num; 4642 *p_resc_start = dflt_resc_start; 4643 } 4644 } 4645 out: 4646 return ECORE_SUCCESS; 4647 } 4648 4649 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, 4650 bool drv_resc_alloc) 4651 { 4652 enum _ecore_status_t rc; 4653 u8 res_id; 4654 4655 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) { 4656 rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc); 4657 if (rc != ECORE_SUCCESS) 4658 return rc; 4659 } 4660 4661 return ECORE_SUCCESS; 4662 } 4663 4664 #define ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS 0xaa 4665 #define ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS 0x55 4666 #define ECORE_NONUSED_PPFID_MASK_AH_4P 0xf0 4667 4668 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn, 4669 struct ecore_ptt *p_ptt) 4670 { 4671 u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn), new_bitmap; 4672 struct ecore_dev *p_dev = p_hwfn->p_dev; 4673 enum _ecore_status_t rc; 4674 4675 rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt); 4676 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) 4677 return rc; 4678 else if (rc == ECORE_NOTIMPL) 4679 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx; 4680 4681 /* 4-ports mode has limitations that should be enforced: 4682 * - BB: the MFW can access only PPFIDs which their corresponding PFIDs 4683 * belong to this certain port. 4684 * - AH: only 4 PPFIDs per port are available. 4685 */ 4686 if (ecore_device_num_ports(p_dev) == 4) { 4687 u8 mask; 4688 4689 if (ECORE_IS_BB(p_dev)) 4690 mask = MFW_PORT(p_hwfn) > 1 ? 4691 ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS : 4692 ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS; 4693 else 4694 mask = ECORE_NONUSED_PPFID_MASK_AH_4P; 4695 4696 if (p_dev->ppfid_bitmap & mask) { 4697 new_bitmap = p_dev->ppfid_bitmap & ~mask; 4698 DP_INFO(p_hwfn, 4699 "Fix the PPFID bitmap for 4-ports mode: 0x%hhx -> 0x%hhx\n", 4700 p_dev->ppfid_bitmap, new_bitmap); 4701 p_dev->ppfid_bitmap = new_bitmap; 4702 } 4703 } 4704 4705 /* The native PPFID is expected to be part of the allocated bitmap */ 4706 if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) { 4707 new_bitmap = 0x1 << native_ppfid_idx; 4708 DP_INFO(p_hwfn, 4709 "Fix the PPFID bitmap to inculde the native PPFID: %hhd -> 0x%hhx\n", 4710 p_dev->ppfid_bitmap, new_bitmap); 4711 p_dev->ppfid_bitmap = new_bitmap; 4712 } 4713 4714 return ECORE_SUCCESS; 4715 } 4716 4717 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn, 4718 struct ecore_ptt *p_ptt, 4719 bool drv_resc_alloc) 4720 { 4721 struct ecore_resc_unlock_params resc_unlock_params; 4722 struct ecore_resc_lock_params resc_lock_params; 4723 struct ecore_dev *p_dev = p_hwfn->p_dev; 4724 u32 max_ilt_lines; 4725 u8 res_id; 4726 enum _ecore_status_t rc; 4727 #ifndef ASIC_ONLY 4728 u32 *resc_start = p_hwfn->hw_info.resc_start; 4729 u32 *resc_num = p_hwfn->hw_info.resc_num; 4730 /* For AH, an equal share of the ILT lines between the maximal number of 4731 * PFs is not enough for RoCE. This would be solved by the future 4732 * resource allocation scheme, but isn't currently present for 4733 * FPGA/emulation. For now we keep a number that is sufficient for RoCE 4734 * to work - the BB number of ILT lines divided by its max PFs number. 4735 */ 4736 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB; 4737 #endif 4738 4739 /* Setting the max values of the soft resources and the following 4740 * resources allocation queries should be atomic. Since several PFs can 4741 * run in parallel - a resource lock is needed. 4742 * If either the resource lock or resource set value commands are not 4743 * supported - skip the max values setting, release the lock if 4744 * needed, and proceed to the queries. Other failures, including a 4745 * failure to acquire the lock, will cause this function to fail. 4746 * Old drivers that don't acquire the lock can run in parallel, and 4747 * their allocation values won't be affected by the updated max values. 4748 */ 4749 ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, 4750 ECORE_RESC_LOCK_RESC_ALLOC, false); 4751 4752 rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); 4753 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) { 4754 return rc; 4755 } else if (rc == ECORE_NOTIMPL) { 4756 DP_INFO(p_hwfn, 4757 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); 4758 } else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) { 4759 DP_NOTICE(p_hwfn, false, 4760 "Failed to acquire the resource lock for the resource allocation commands\n"); 4761 rc = ECORE_BUSY; 4762 goto unlock_and_exit; 4763 } else { 4764 rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt); 4765 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) { 4766 DP_NOTICE(p_hwfn, false, 4767 "Failed to set the max values of the soft resources\n"); 4768 goto unlock_and_exit; 4769 } else if (rc == ECORE_NOTIMPL) { 4770 DP_INFO(p_hwfn, 4771 "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); 4772 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt, 4773 &resc_unlock_params); 4774 if (rc != ECORE_SUCCESS) 4775 DP_INFO(p_hwfn, 4776 "Failed to release the resource lock for the resource allocation commands\n"); 4777 } 4778 } 4779 4780 rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc); 4781 if (rc != ECORE_SUCCESS) 4782 goto unlock_and_exit; 4783 4784 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { 4785 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt, 4786 &resc_unlock_params); 4787 if (rc != ECORE_SUCCESS) 4788 DP_INFO(p_hwfn, 4789 "Failed to release the resource lock for the resource allocation commands\n"); 4790 } 4791 4792 /* PPFID bitmap */ 4793 if (IS_LEAD_HWFN(p_hwfn)) { 4794 rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt); 4795 if (rc != ECORE_SUCCESS) 4796 return rc; 4797 } 4798 4799 #ifndef ASIC_ONLY 4800 if (CHIP_REV_IS_EMUL(p_dev)) { 4801 /* Reduced build contains less PQs */ 4802 if (!(p_dev->b_is_emul_full)) { 4803 resc_num[ECORE_PQ] = 32; 4804 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] * 4805 p_hwfn->enabled_func_idx; 4806 } 4807 4808 /* For AH emulation, since we have a possible maximal number of 4809 * 16 enabled PFs, in case there are not enough ILT lines - 4810 * allocate only first PF as RoCE and have all the other as 4811 * ETH-only with less ILT lines. 4812 * In case we increase the number of ILT lines for PF0, we need 4813 * also to correct the start value for PF1-15. 4814 */ 4815 if (ECORE_IS_AH(p_dev) && p_dev->b_is_emul_full) { 4816 if (!p_hwfn->rel_pf_id) { 4817 resc_num[ECORE_ILT] = 4818 OSAL_MAX_T(u32, resc_num[ECORE_ILT], 4819 roce_min_ilt_lines); 4820 } else if (resc_num[ECORE_ILT] < roce_min_ilt_lines) { 4821 resc_start[ECORE_ILT] += roce_min_ilt_lines - 4822 resc_num[ECORE_ILT]; 4823 } 4824 } 4825 } 4826 #endif 4827 4828 /* Sanity for ILT */ 4829 max_ilt_lines = NUM_OF_PXP_ILT_RECORDS(p_dev); 4830 if (RESC_END(p_hwfn, ECORE_ILT) > max_ilt_lines) { 4831 DP_NOTICE(p_hwfn, true, 4832 "Can't assign ILT pages [%08x,...,%08x]\n", 4833 RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn, 4834 ECORE_ILT) - 4835 1); 4836 return ECORE_INVAL; 4837 } 4838 4839 /* This will also learn the number of SBs from MFW */ 4840 if (ecore_int_igu_reset_cam(p_hwfn, p_ptt)) 4841 return ECORE_INVAL; 4842 4843 ecore_hw_set_feat(p_hwfn); 4844 4845 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 4846 "The numbers for each resource are:\n"); 4847 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) 4848 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n", 4849 ecore_hw_get_resc_name(res_id), 4850 RESC_NUM(p_hwfn, res_id), 4851 RESC_START(p_hwfn, res_id)); 4852 4853 return ECORE_SUCCESS; 4854 4855 unlock_and_exit: 4856 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) 4857 ecore_mcp_resc_unlock(p_hwfn, p_ptt, 4858 &resc_unlock_params); 4859 return rc; 4860 } 4861 4862 #ifndef ASIC_ONLY 4863 static enum _ecore_status_t 4864 ecore_emul_hw_get_nvm_info(struct ecore_hwfn *p_hwfn) 4865 { 4866 if (IS_LEAD_HWFN(p_hwfn)) { 4867 struct ecore_dev *p_dev = p_hwfn->p_dev; 4868 4869 /* The MF mode on emulation is either default or NPAR 1.0 */ 4870 p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS | 4871 1 << ECORE_MF_LLH_PROTO_CLSS | 4872 1 << ECORE_MF_LL2_NON_UNICAST; 4873 if (p_hwfn->num_funcs_on_port > 1) 4874 p_dev->mf_bits |= 1 << ECORE_MF_INTER_PF_SWITCH | 4875 1 << ECORE_MF_DISABLE_ARFS; 4876 else 4877 p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF; 4878 } 4879 4880 return ECORE_SUCCESS; 4881 } 4882 #endif 4883 4884 static enum _ecore_status_t 4885 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn, 4886 struct ecore_ptt *p_ptt, 4887 struct ecore_hw_prepare_params *p_params) 4888 { 4889 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode; 4890 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; 4891 struct ecore_mcp_link_capabilities *p_caps; 4892 struct ecore_mcp_link_params *link; 4893 enum _ecore_status_t rc; 4894 4895 #ifndef ASIC_ONLY 4896 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) 4897 return ecore_emul_hw_get_nvm_info(p_hwfn); 4898 #endif 4899 4900 /* Read global nvm_cfg address */ 4901 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 4902 4903 /* Verify MCP has initialized it */ 4904 if (!nvm_cfg_addr) { 4905 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n"); 4906 if (p_params->b_relaxed_probe) 4907 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM; 4908 return ECORE_INVAL; 4909 } 4910 4911 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ 4912 4913 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 4914 4915 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4916 OFFSETOF(struct nvm_cfg1, glob) + 4917 OFFSETOF(struct nvm_cfg1_glob, core_cfg); 4918 4919 core_cfg = ecore_rd(p_hwfn, p_ptt, addr); 4920 4921 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> 4922 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { 4923 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: 4924 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G; 4925 break; 4926 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: 4927 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G; 4928 break; 4929 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: 4930 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G; 4931 break; 4932 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: 4933 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F; 4934 break; 4935 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: 4936 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E; 4937 break; 4938 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: 4939 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G; 4940 break; 4941 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: 4942 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G; 4943 break; 4944 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: 4945 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G; 4946 break; 4947 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: 4948 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G; 4949 break; 4950 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: 4951 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G; 4952 break; 4953 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: 4954 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G; 4955 break; 4956 default: 4957 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n", 4958 core_cfg); 4959 break; 4960 } 4961 4962 /* Read DCBX configuration */ 4963 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4964 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 4965 dcbx_mode = ecore_rd(p_hwfn, p_ptt, 4966 port_cfg_addr + 4967 OFFSETOF(struct nvm_cfg1_port, generic_cont0)); 4968 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK) 4969 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET; 4970 switch (dcbx_mode) { 4971 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC: 4972 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC; 4973 break; 4974 case NVM_CFG1_PORT_DCBX_MODE_CEE: 4975 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE; 4976 break; 4977 case NVM_CFG1_PORT_DCBX_MODE_IEEE: 4978 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE; 4979 break; 4980 default: 4981 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED; 4982 } 4983 4984 /* Read default link configuration */ 4985 link = &p_hwfn->mcp_info->link_input; 4986 p_caps = &p_hwfn->mcp_info->link_capabilities; 4987 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4988 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 4989 link_temp = ecore_rd(p_hwfn, p_ptt, 4990 port_cfg_addr + 4991 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask)); 4992 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; 4993 link->speed.advertised_speeds = link_temp; 4994 p_caps->speed_capabilities = link->speed.advertised_speeds; 4995 4996 link_temp = ecore_rd(p_hwfn, p_ptt, 4997 port_cfg_addr + 4998 OFFSETOF(struct nvm_cfg1_port, link_settings)); 4999 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> 5000 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { 5001 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: 5002 link->speed.autoneg = true; 5003 break; 5004 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: 5005 link->speed.forced_speed = 1000; 5006 break; 5007 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: 5008 link->speed.forced_speed = 10000; 5009 break; 5010 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: 5011 link->speed.forced_speed = 25000; 5012 break; 5013 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: 5014 link->speed.forced_speed = 40000; 5015 break; 5016 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: 5017 link->speed.forced_speed = 50000; 5018 break; 5019 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: 5020 link->speed.forced_speed = 100000; 5021 break; 5022 default: 5023 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp); 5024 } 5025 5026 p_caps->default_speed = link->speed.forced_speed; 5027 p_caps->default_speed_autoneg = link->speed.autoneg; 5028 5029 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; 5030 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; 5031 link->pause.autoneg = !!(link_temp & 5032 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); 5033 link->pause.forced_rx = !!(link_temp & 5034 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); 5035 link->pause.forced_tx = !!(link_temp & 5036 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); 5037 link->loopback_mode = 0; 5038 5039 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { 5040 link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr + 5041 OFFSETOF(struct nvm_cfg1_port, ext_phy)); 5042 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; 5043 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; 5044 p_caps->default_eee = ECORE_MCP_EEE_ENABLED; 5045 link->eee.enable = true; 5046 switch (link_temp) { 5047 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: 5048 p_caps->default_eee = ECORE_MCP_EEE_DISABLED; 5049 link->eee.enable = false; 5050 break; 5051 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: 5052 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; 5053 break; 5054 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: 5055 p_caps->eee_lpi_timer = 5056 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; 5057 break; 5058 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: 5059 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; 5060 break; 5061 } 5062 5063 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; 5064 link->eee.tx_lpi_enable = link->eee.enable; 5065 link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV; 5066 } else { 5067 p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED; 5068 } 5069 5070 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 5071 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n EEE: %02x [%08x usec]", 5072 link->speed.forced_speed, link->speed.advertised_speeds, 5073 link->speed.autoneg, link->pause.autoneg, 5074 p_caps->default_eee, p_caps->eee_lpi_timer); 5075 5076 /* Read Multi-function information from shmem */ 5077 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 5078 OFFSETOF(struct nvm_cfg1, glob) + 5079 OFFSETOF(struct nvm_cfg1_glob, generic_cont0); 5080 5081 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr); 5082 5083 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> 5084 NVM_CFG1_GLOB_MF_MODE_OFFSET; 5085 5086 switch (mf_mode) { 5087 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 5088 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS; 5089 break; 5090 case NVM_CFG1_GLOB_MF_MODE_UFP: 5091 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS | 5092 1 << ECORE_MF_UFP_SPECIFIC | 5093 1 << ECORE_MF_8021Q_TAGGING; 5094 break; 5095 case NVM_CFG1_GLOB_MF_MODE_BD: 5096 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS | 5097 1 << ECORE_MF_LLH_PROTO_CLSS | 5098 1 << ECORE_MF_8021AD_TAGGING | 5099 1 << ECORE_MF_FIP_SPECIAL; 5100 break; 5101 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 5102 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS | 5103 1 << ECORE_MF_LLH_PROTO_CLSS | 5104 1 << ECORE_MF_LL2_NON_UNICAST | 5105 1 << ECORE_MF_INTER_PF_SWITCH | 5106 1 << ECORE_MF_DISABLE_ARFS; 5107 break; 5108 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 5109 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS | 5110 1 << ECORE_MF_LLH_PROTO_CLSS | 5111 1 << ECORE_MF_LL2_NON_UNICAST; 5112 if (ECORE_IS_BB(p_hwfn->p_dev)) 5113 p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF; 5114 break; 5115 } 5116 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", 5117 p_hwfn->p_dev->mf_bits); 5118 5119 if (ECORE_IS_CMT(p_hwfn->p_dev)) 5120 p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS); 5121 5122 /* It's funny since we have another switch, but it's easier 5123 * to throw this away in linux this way. Long term, it might be 5124 * better to have have getters for needed ECORE_MF_* fields, 5125 * convert client code and eliminate this. 5126 */ 5127 switch (mf_mode) { 5128 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 5129 case NVM_CFG1_GLOB_MF_MODE_BD: 5130 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN; 5131 break; 5132 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 5133 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR; 5134 break; 5135 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 5136 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT; 5137 break; 5138 case NVM_CFG1_GLOB_MF_MODE_UFP: 5139 p_hwfn->p_dev->mf_mode = ECORE_MF_UFP; 5140 break; 5141 } 5142 5143 /* Read Multi-function information from shmem */ 5144 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 5145 OFFSETOF(struct nvm_cfg1, glob) + 5146 OFFSETOF(struct nvm_cfg1_glob, device_capabilities); 5147 5148 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr); 5149 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) 5150 OSAL_SET_BIT(ECORE_DEV_CAP_ETH, 5151 &p_hwfn->hw_info.device_capabilities); 5152 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) 5153 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE, 5154 &p_hwfn->hw_info.device_capabilities); 5155 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) 5156 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI, 5157 &p_hwfn->hw_info.device_capabilities); 5158 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) 5159 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE, 5160 &p_hwfn->hw_info.device_capabilities); 5161 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP) 5162 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP, 5163 &p_hwfn->hw_info.device_capabilities); 5164 5165 rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt); 5166 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) { 5167 rc = ECORE_SUCCESS; 5168 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP; 5169 } 5170 5171 return rc; 5172 } 5173 5174 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn, 5175 struct ecore_ptt *p_ptt) 5176 { 5177 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; 5178 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; 5179 struct ecore_dev *p_dev = p_hwfn->p_dev; 5180 5181 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; 5182 5183 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values 5184 * in the other bits are selected. 5185 * Bits 1-15 are for functions 1-15, respectively, and their value is 5186 * '0' only for enabled functions (function 0 always exists and 5187 * enabled). 5188 * In case of CMT in BB, only the "even" functions are enabled, and thus 5189 * the number of functions for both hwfns is learnt from the same bits. 5190 */ 5191 if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) { 5192 reg_function_hide = ecore_rd(p_hwfn, p_ptt, 5193 MISCS_REG_FUNCTION_HIDE_BB_K2); 5194 } else { /* E5 */ 5195 reg_function_hide = 0; 5196 } 5197 5198 if (reg_function_hide & 0x1) { 5199 if (ECORE_IS_BB(p_dev)) { 5200 if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) { 5201 num_funcs = 0; 5202 eng_mask = 0xaaaa; 5203 } else { 5204 num_funcs = 1; 5205 eng_mask = 0x5554; 5206 } 5207 } else { 5208 num_funcs = 1; 5209 eng_mask = 0xfffe; 5210 } 5211 5212 /* Get the number of the enabled functions on the engine */ 5213 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; 5214 while (tmp) { 5215 if (tmp & 0x1) 5216 num_funcs++; 5217 tmp >>= 0x1; 5218 } 5219 5220 /* Get the PF index within the enabled functions */ 5221 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; 5222 tmp = reg_function_hide & eng_mask & low_pfs_mask; 5223 while (tmp) { 5224 if (tmp & 0x1) 5225 enabled_func_idx--; 5226 tmp >>= 0x1; 5227 } 5228 } 5229 5230 p_hwfn->num_funcs_on_engine = num_funcs; 5231 p_hwfn->enabled_func_idx = enabled_func_idx; 5232 5233 #ifndef ASIC_ONLY 5234 if (CHIP_REV_IS_FPGA(p_dev)) { 5235 DP_NOTICE(p_hwfn, false, 5236 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n"); 5237 p_hwfn->num_funcs_on_engine = 4; 5238 } 5239 #endif 5240 5241 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 5242 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", 5243 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id, 5244 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); 5245 } 5246 5247 #ifndef ASIC_ONLY 5248 static void ecore_emul_hw_info_port_num(struct ecore_hwfn *p_hwfn, 5249 struct ecore_ptt *p_ptt) 5250 { 5251 struct ecore_dev *p_dev = p_hwfn->p_dev; 5252 u32 eco_reserved; 5253 5254 /* MISCS_REG_ECO_RESERVED[15:12]: num of ports in an engine */ 5255 eco_reserved = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED); 5256 switch ((eco_reserved & 0xf000) >> 12) { 5257 case 1: 5258 p_dev->num_ports_in_engine = 1; 5259 break; 5260 case 3: 5261 p_dev->num_ports_in_engine = 2; 5262 break; 5263 case 0xf: 5264 p_dev->num_ports_in_engine = 4; 5265 break; 5266 default: 5267 DP_NOTICE(p_hwfn, false, 5268 "Emulation: Unknown port mode [ECO_RESERVED 0x%08x]\n", 5269 eco_reserved); 5270 p_dev->num_ports_in_engine = 1; /* Default to something */ 5271 break; 5272 } 5273 5274 p_dev->num_ports = p_dev->num_ports_in_engine * 5275 ecore_device_num_engines(p_dev); 5276 } 5277 #endif 5278 5279 /* Determine the number of ports of the device and per engine */ 5280 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn, 5281 struct ecore_ptt *p_ptt) 5282 { 5283 u32 addr, global_offsize, global_addr, port_mode; 5284 struct ecore_dev *p_dev = p_hwfn->p_dev; 5285 5286 #ifndef ASIC_ONLY 5287 if (CHIP_REV_IS_TEDIBEAR(p_dev)) { 5288 p_dev->num_ports_in_engine = 1; 5289 p_dev->num_ports = 2; 5290 return; 5291 } 5292 5293 if (CHIP_REV_IS_EMUL(p_dev)) { 5294 ecore_emul_hw_info_port_num(p_hwfn, p_ptt); 5295 return; 5296 } 5297 #endif 5298 5299 /* In CMT there is always only one port */ 5300 if (ECORE_IS_CMT(p_dev)) { 5301 p_dev->num_ports_in_engine = 1; 5302 p_dev->num_ports = 1; 5303 return; 5304 } 5305 5306 /* Determine the number of ports per engine */ 5307 port_mode = ecore_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE); 5308 switch (port_mode) { 5309 case 0x0: 5310 p_dev->num_ports_in_engine = 1; 5311 break; 5312 case 0x1: 5313 p_dev->num_ports_in_engine = 2; 5314 break; 5315 case 0x2: 5316 p_dev->num_ports_in_engine = 4; 5317 break; 5318 default: 5319 DP_NOTICE(p_hwfn, false, "Unknown port mode 0x%08x\n", 5320 port_mode); 5321 p_dev->num_ports_in_engine = 1; /* Default to something */ 5322 break; 5323 } 5324 5325 /* Get the total number of ports of the device */ 5326 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 5327 PUBLIC_GLOBAL); 5328 global_offsize = ecore_rd(p_hwfn, p_ptt, addr); 5329 global_addr = SECTION_ADDR(global_offsize, 0); 5330 addr = global_addr + OFFSETOF(struct public_global, max_ports); 5331 p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr); 5332 } 5333 5334 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn, 5335 struct ecore_ptt *p_ptt) 5336 { 5337 struct ecore_mcp_link_capabilities *p_caps; 5338 u32 eee_status; 5339 5340 p_caps = &p_hwfn->mcp_info->link_capabilities; 5341 if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED) 5342 return; 5343 5344 p_caps->eee_speed_caps = 0; 5345 eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 5346 OFFSETOF(struct public_port, eee_status)); 5347 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> 5348 EEE_SUPPORTED_SPEED_OFFSET; 5349 if (eee_status & EEE_1G_SUPPORTED) 5350 p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV; 5351 if (eee_status & EEE_10G_ADV) 5352 p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV; 5353 } 5354 5355 static enum _ecore_status_t 5356 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 5357 enum ecore_pci_personality personality, 5358 struct ecore_hw_prepare_params *p_params) 5359 { 5360 bool drv_resc_alloc = p_params->drv_resc_alloc; 5361 enum _ecore_status_t rc; 5362 5363 if (IS_ECORE_PACING(p_hwfn)) { 5364 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_IOV, 5365 "Skipping IOV as packet pacing is requested\n"); 5366 } 5367 5368 /* Since all information is common, only first hwfns should do this */ 5369 if (IS_LEAD_HWFN(p_hwfn) && !IS_ECORE_PACING(p_hwfn)) { 5370 rc = ecore_iov_hw_info(p_hwfn); 5371 if (rc != ECORE_SUCCESS) { 5372 if (p_params->b_relaxed_probe) 5373 p_params->p_relaxed_res = 5374 ECORE_HW_PREPARE_BAD_IOV; 5375 else 5376 return rc; 5377 } 5378 } 5379 5380 if (IS_LEAD_HWFN(p_hwfn)) 5381 ecore_hw_info_port_num(p_hwfn, p_ptt); 5382 5383 ecore_mcp_get_capabilities(p_hwfn, p_ptt); 5384 5385 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params); 5386 if (rc != ECORE_SUCCESS) 5387 return rc; 5388 5389 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt); 5390 if (rc != ECORE_SUCCESS) { 5391 if (p_params->b_relaxed_probe) 5392 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU; 5393 else 5394 return rc; 5395 } 5396 5397 #ifndef ASIC_ONLY 5398 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) { 5399 #endif 5400 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, 5401 p_hwfn->mcp_info->func_info.mac, ETH_ALEN); 5402 #ifndef ASIC_ONLY 5403 } else { 5404 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 }; 5405 5406 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN); 5407 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id; 5408 } 5409 #endif 5410 5411 if (ecore_mcp_is_init(p_hwfn)) { 5412 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET) 5413 p_hwfn->hw_info.ovlan = 5414 p_hwfn->mcp_info->func_info.ovlan; 5415 5416 ecore_mcp_cmd_port_init(p_hwfn, p_ptt); 5417 5418 ecore_mcp_get_eee_caps(p_hwfn, p_ptt); 5419 5420 ecore_mcp_read_ufp_config(p_hwfn, p_ptt); 5421 } 5422 5423 if (personality != ECORE_PCI_DEFAULT) { 5424 p_hwfn->hw_info.personality = personality; 5425 } else if (ecore_mcp_is_init(p_hwfn)) { 5426 enum ecore_pci_personality protocol; 5427 5428 protocol = p_hwfn->mcp_info->func_info.protocol; 5429 p_hwfn->hw_info.personality = protocol; 5430 } 5431 #ifndef ASIC_ONLY 5432 else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) { 5433 /* AH emulation: 5434 * Allow only PF0 to be RoCE to overcome a lack of ILT lines. 5435 */ 5436 if (ECORE_IS_AH(p_hwfn->p_dev) && p_hwfn->rel_pf_id) 5437 p_hwfn->hw_info.personality = ECORE_PCI_ETH; 5438 else 5439 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; 5440 } 5441 #endif 5442 5443 /* although in BB some constellations may support more than 4 tcs, 5444 * that can result in performance penalty in some cases. 4 5445 * represents a good tradeoff between performance and flexibility. 5446 */ 5447 if (IS_ECORE_PACING(p_hwfn)) 5448 p_hwfn->hw_info.num_hw_tc = 1; 5449 else 5450 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; 5451 5452 /* start out with a single active tc. This can be increased either 5453 * by dcbx negotiation or by upper layer driver 5454 */ 5455 p_hwfn->hw_info.num_active_tc = 1; 5456 5457 ecore_get_num_funcs(p_hwfn, p_ptt); 5458 5459 if (ecore_mcp_is_init(p_hwfn)) 5460 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; 5461 5462 /* In case of forcing the driver's default resource allocation, calling 5463 * ecore_hw_get_resc() should come after initializing the personality 5464 * and after getting the number of functions, since the calculation of 5465 * the resources/features depends on them. 5466 * This order is not harmful if not forcing. 5467 */ 5468 rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc); 5469 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) { 5470 rc = ECORE_SUCCESS; 5471 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP; 5472 } 5473 5474 return rc; 5475 } 5476 5477 #define ECORE_MAX_DEVICE_NAME_LEN (8) 5478 5479 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars) 5480 { 5481 u8 n; 5482 5483 n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN); 5484 OSAL_SNPRINTF((char *)name, n, "%s %c%d", 5485 ECORE_IS_BB(p_dev) ? "BB" : "AH", 5486 'A' + p_dev->chip_rev, (int)p_dev->chip_metal); 5487 } 5488 5489 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn, 5490 struct ecore_ptt *p_ptt) 5491 { 5492 struct ecore_dev *p_dev = p_hwfn->p_dev; 5493 u16 device_id_mask; 5494 u32 tmp; 5495 5496 /* Read Vendor Id / Device Id */ 5497 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET, 5498 &p_dev->vendor_id); 5499 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET, 5500 &p_dev->device_id); 5501 5502 /* Determine type */ 5503 device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK; 5504 switch (device_id_mask) { 5505 case ECORE_DEV_ID_MASK_BB: 5506 p_dev->type = ECORE_DEV_TYPE_BB; 5507 break; 5508 case ECORE_DEV_ID_MASK_AH: 5509 p_dev->type = ECORE_DEV_TYPE_AH; 5510 break; 5511 default: 5512 DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n", 5513 p_dev->device_id); 5514 return ECORE_ABORTED; 5515 } 5516 5517 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); 5518 p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM); 5519 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); 5520 p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV); 5521 5522 /* Learn number of HW-functions */ 5523 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); 5524 5525 if (tmp & (1 << p_hwfn->rel_pf_id)) { 5526 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n"); 5527 p_dev->num_hwfns = 2; 5528 } else { 5529 p_dev->num_hwfns = 1; 5530 } 5531 5532 #ifndef ASIC_ONLY 5533 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_BB(p_dev)) { 5534 /* For some reason we have problems with this register 5535 * in BB B0 emulation; Simply assume no CMT 5536 */ 5537 DP_NOTICE(p_dev->hwfns, false, 5538 "device on emul - assume no CMT\n"); 5539 p_dev->num_hwfns = 1; 5540 } 5541 #endif 5542 5543 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG); 5544 p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID); 5545 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); 5546 p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL); 5547 5548 DP_INFO(p_dev->hwfns, 5549 "Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n", 5550 ECORE_IS_BB(p_dev) ? "BB" : "AH", 5551 'A' + p_dev->chip_rev, (int)p_dev->chip_metal, 5552 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id, 5553 p_dev->chip_metal); 5554 5555 if (ECORE_IS_BB_A0(p_dev)) { 5556 DP_NOTICE(p_dev->hwfns, false, 5557 "The chip type/rev (BB A0) is not supported!\n"); 5558 return ECORE_ABORTED; 5559 } 5560 #ifndef ASIC_ONLY 5561 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev)) 5562 ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1); 5563 5564 if (CHIP_REV_IS_EMUL(p_dev)) { 5565 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED); 5566 5567 /* MISCS_REG_ECO_RESERVED[29]: full/reduced emulation build */ 5568 p_dev->b_is_emul_full = !!(tmp & (1 << 29)); 5569 5570 /* MISCS_REG_ECO_RESERVED[28]: emulation build w/ or w/o MAC */ 5571 p_dev->b_is_emul_mac = !!(tmp & (1 << 28)); 5572 5573 DP_NOTICE(p_hwfn, false, 5574 "Emulation: Running on a %s build %s MAC\n", 5575 p_dev->b_is_emul_full ? "full" : "reduced", 5576 p_dev->b_is_emul_mac ? "with" : "without"); 5577 } 5578 #endif 5579 5580 return ECORE_SUCCESS; 5581 } 5582 5583 #ifndef LINUX_REMOVE 5584 void ecore_prepare_hibernate(struct ecore_dev *p_dev) 5585 { 5586 int j; 5587 5588 if (IS_VF(p_dev)) 5589 return; 5590 5591 for_each_hwfn(p_dev, j) { 5592 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j]; 5593 5594 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, 5595 "Mark hw/fw uninitialized\n"); 5596 5597 p_hwfn->hw_init_done = false; 5598 5599 ecore_ptt_invalidate(p_hwfn); 5600 } 5601 } 5602 #endif 5603 5604 static enum _ecore_status_t 5605 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview, 5606 void OSAL_IOMEM *p_doorbells, u64 db_phys_addr, 5607 struct ecore_hw_prepare_params *p_params) 5608 { 5609 struct ecore_mdump_retain_data mdump_retain; 5610 struct ecore_dev *p_dev = p_hwfn->p_dev; 5611 struct ecore_mdump_info mdump_info; 5612 enum _ecore_status_t rc = ECORE_SUCCESS; 5613 5614 /* Split PCI bars evenly between hwfns */ 5615 p_hwfn->regview = p_regview; 5616 p_hwfn->doorbells = p_doorbells; 5617 p_hwfn->db_phys_addr = db_phys_addr; 5618 5619 if (IS_VF(p_dev)) 5620 return ecore_vf_hw_prepare(p_hwfn, p_params); 5621 5622 /* Validate that chip access is feasible */ 5623 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { 5624 DP_ERR(p_hwfn, 5625 "Reading the ME register returns all Fs; Preventing further chip access\n"); 5626 if (p_params->b_relaxed_probe) 5627 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME; 5628 return ECORE_INVAL; 5629 } 5630 5631 get_function_id(p_hwfn); 5632 5633 /* Allocate PTT pool */ 5634 rc = ecore_ptt_pool_alloc(p_hwfn); 5635 if (rc) { 5636 DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n"); 5637 if (p_params->b_relaxed_probe) 5638 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM; 5639 goto err0; 5640 } 5641 5642 /* Allocate the main PTT */ 5643 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); 5644 5645 /* First hwfn learns basic information, e.g., number of hwfns */ 5646 if (IS_LEAD_HWFN(p_hwfn)) { 5647 rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); 5648 if (rc != ECORE_SUCCESS) { 5649 if (p_params->b_relaxed_probe) 5650 p_params->p_relaxed_res = 5651 ECORE_HW_PREPARE_FAILED_DEV; 5652 goto err1; 5653 } 5654 } 5655 5656 #ifndef ASIC_ONLY 5657 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) && !b_ptt_gtt_init) { 5658 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt; 5659 u32 val; 5660 5661 /* Initialize PTT/GTT (done by MFW on ASIC) */ 5662 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_START_INIT_PTT_GTT, 1); 5663 OSAL_MSLEEP(10); 5664 ecore_ptt_invalidate(p_hwfn); 5665 val = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_INIT_DONE_PTT_GTT); 5666 if (val != 1) { 5667 DP_ERR(p_hwfn, 5668 "PTT and GTT init in PGLUE_B didn't complete\n"); 5669 goto err1; 5670 } 5671 5672 /* Clear a possible PGLUE_B parity from a previous GRC access */ 5673 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_PRTY_STS_WR_H_0, 0x380); 5674 5675 b_ptt_gtt_init = true; 5676 } 5677 #endif 5678 5679 /* Store the precompiled init data ptrs */ 5680 if (IS_LEAD_HWFN(p_hwfn)) 5681 ecore_init_iro_array(p_hwfn->p_dev); 5682 5683 ecore_hw_hwfn_prepare(p_hwfn); 5684 5685 /* Initialize MCP structure */ 5686 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); 5687 if (rc) { 5688 DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n"); 5689 if (p_params->b_relaxed_probe) 5690 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM; 5691 goto err1; 5692 } 5693 5694 /* Read the device configuration information from the HW and SHMEM */ 5695 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, 5696 p_params->personality, p_params); 5697 if (rc) { 5698 DP_NOTICE(p_hwfn, false, "Failed to get HW information\n"); 5699 goto err2; 5700 } 5701 5702 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is 5703 * called, since among others it sets the ports number in an engine. 5704 */ 5705 if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) && 5706 !p_dev->recov_in_prog) { 5707 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); 5708 if (rc != ECORE_SUCCESS) 5709 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n"); 5710 5711 /* Workaround for MFW issue where PF FLR does not cleanup 5712 * IGU block 5713 */ 5714 if (!(p_hwfn->mcp_info->capabilities & 5715 FW_MB_PARAM_FEATURE_SUPPORT_IGU_CLEANUP)) 5716 ecore_pf_flr_igu_cleanup(p_hwfn); 5717 } 5718 5719 /* Check if mdump logs/data are present and update the epoch value */ 5720 if (IS_LEAD_HWFN(p_hwfn)) { 5721 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt, 5722 &mdump_info); 5723 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs) 5724 DP_NOTICE(p_hwfn, false, 5725 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n"); 5726 5727 rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt, 5728 &mdump_retain); 5729 if (rc == ECORE_SUCCESS && mdump_retain.valid) 5730 DP_NOTICE(p_hwfn, false, 5731 "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n", 5732 mdump_retain.epoch, mdump_retain.pf, 5733 mdump_retain.status); 5734 5735 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt, 5736 p_params->epoch); 5737 } 5738 5739 /* Allocate the init RT array and initialize the init-ops engine */ 5740 rc = ecore_init_alloc(p_hwfn); 5741 if (rc) { 5742 DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n"); 5743 if (p_params->b_relaxed_probe) 5744 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM; 5745 goto err2; 5746 } 5747 #ifndef ASIC_ONLY 5748 if (CHIP_REV_IS_FPGA(p_dev)) { 5749 if (ECORE_IS_AH(p_dev)) { 5750 DP_NOTICE(p_hwfn, false, 5751 "FPGA: workaround; Prevent DMAE parities\n"); 5752 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 5753 PCIE_REG_PRTY_MASK_K2, 7); 5754 } 5755 5756 DP_NOTICE(p_hwfn, false, 5757 "FPGA: workaround: Set VF bar0 size\n"); 5758 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 5759 PGLUE_B_REG_VF_BAR0_SIZE_K2, 4); 5760 } 5761 #endif 5762 5763 return rc; 5764 err2: 5765 if (IS_LEAD_HWFN(p_hwfn)) 5766 ecore_iov_free_hw_info(p_dev); 5767 ecore_mcp_free(p_hwfn); 5768 err1: 5769 ecore_hw_hwfn_free(p_hwfn); 5770 err0: 5771 return rc; 5772 } 5773 5774 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev, 5775 struct ecore_hw_prepare_params *p_params) 5776 { 5777 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 5778 enum _ecore_status_t rc; 5779 5780 p_dev->chk_reg_fifo = p_params->chk_reg_fifo; 5781 p_dev->allow_mdump = p_params->allow_mdump; 5782 p_hwfn->b_en_pacing = p_params->b_en_pacing; 5783 p_dev->b_is_target = p_params->b_is_target; 5784 5785 if (p_params->b_relaxed_probe) 5786 p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS; 5787 5788 /* Initialize the first hwfn - will learn number of hwfns */ 5789 rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview, 5790 p_dev->doorbells, p_dev->db_phys_addr, 5791 p_params); 5792 if (rc != ECORE_SUCCESS) 5793 return rc; 5794 5795 p_params->personality = p_hwfn->hw_info.personality; 5796 5797 /* Initialize 2nd hwfn if necessary */ 5798 if (ECORE_IS_CMT(p_dev)) { 5799 void OSAL_IOMEM *p_regview, *p_doorbell; 5800 u8 OSAL_IOMEM *addr; 5801 u64 db_phys_addr; 5802 u32 offset; 5803 5804 /* adjust bar offset for second engine */ 5805 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 5806 BAR_ID_0) / 2; 5807 addr = (u8 OSAL_IOMEM *)p_dev->regview + offset; 5808 p_regview = (void OSAL_IOMEM *)addr; 5809 5810 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 5811 BAR_ID_1) / 2; 5812 addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset; 5813 p_doorbell = (void OSAL_IOMEM *)addr; 5814 db_phys_addr = p_dev->db_phys_addr + offset; 5815 5816 p_dev->hwfns[1].b_en_pacing = p_params->b_en_pacing; 5817 /* prepare second hw function */ 5818 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview, 5819 p_doorbell, db_phys_addr, 5820 p_params); 5821 5822 /* in case of error, need to free the previously 5823 * initiliazed hwfn 0. 5824 */ 5825 if (rc != ECORE_SUCCESS) { 5826 if (p_params->b_relaxed_probe) 5827 p_params->p_relaxed_res = 5828 ECORE_HW_PREPARE_FAILED_ENG2; 5829 5830 if (IS_PF(p_dev)) { 5831 ecore_init_free(p_hwfn); 5832 ecore_mcp_free(p_hwfn); 5833 ecore_hw_hwfn_free(p_hwfn); 5834 } else { 5835 DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n"); 5836 } 5837 return rc; 5838 } 5839 } 5840 5841 return rc; 5842 } 5843 5844 void ecore_hw_remove(struct ecore_dev *p_dev) 5845 { 5846 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 5847 int i; 5848 5849 if (IS_PF(p_dev)) 5850 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, 5851 ECORE_OV_DRIVER_STATE_NOT_LOADED); 5852 5853 for_each_hwfn(p_dev, i) { 5854 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 5855 5856 if (IS_VF(p_dev)) { 5857 ecore_vf_pf_release(p_hwfn); 5858 continue; 5859 } 5860 5861 ecore_init_free(p_hwfn); 5862 ecore_hw_hwfn_free(p_hwfn); 5863 ecore_mcp_free(p_hwfn); 5864 5865 #ifdef CONFIG_ECORE_LOCK_ALLOC 5866 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock); 5867 #endif 5868 } 5869 5870 ecore_iov_free_hw_info(p_dev); 5871 } 5872 5873 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev, 5874 struct ecore_chain *p_chain) 5875 { 5876 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL; 5877 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; 5878 struct ecore_chain_next *p_next; 5879 u32 size, i; 5880 5881 if (!p_virt) 5882 return; 5883 5884 size = p_chain->elem_size * p_chain->usable_per_page; 5885 5886 for (i = 0; i < p_chain->page_cnt; i++) { 5887 if (!p_virt) 5888 break; 5889 5890 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size); 5891 p_virt_next = p_next->next_virt; 5892 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); 5893 5894 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys, 5895 ECORE_CHAIN_PAGE_SIZE); 5896 5897 p_virt = p_virt_next; 5898 p_phys = p_phys_next; 5899 } 5900 } 5901 5902 static void ecore_chain_free_single(struct ecore_dev *p_dev, 5903 struct ecore_chain *p_chain) 5904 { 5905 if (!p_chain->p_virt_addr) 5906 return; 5907 5908 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr, 5909 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE); 5910 } 5911 5912 static void ecore_chain_free_pbl(struct ecore_dev *p_dev, 5913 struct ecore_chain *p_chain) 5914 { 5915 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; 5916 u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table; 5917 u32 page_cnt = p_chain->page_cnt, i, pbl_size; 5918 5919 if (!pp_virt_addr_tbl) 5920 return; 5921 5922 if (!p_pbl_virt) 5923 goto out; 5924 5925 for (i = 0; i < page_cnt; i++) { 5926 if (!pp_virt_addr_tbl[i]) 5927 break; 5928 5929 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i], 5930 *(dma_addr_t *)p_pbl_virt, 5931 ECORE_CHAIN_PAGE_SIZE); 5932 5933 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE; 5934 } 5935 5936 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE; 5937 5938 if (!p_chain->b_external_pbl) 5939 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table, 5940 p_chain->pbl_sp.p_phys_table, pbl_size); 5941 out: 5942 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl); 5943 } 5944 5945 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain) 5946 { 5947 switch (p_chain->mode) { 5948 case ECORE_CHAIN_MODE_NEXT_PTR: 5949 ecore_chain_free_next_ptr(p_dev, p_chain); 5950 break; 5951 case ECORE_CHAIN_MODE_SINGLE: 5952 ecore_chain_free_single(p_dev, p_chain); 5953 break; 5954 case ECORE_CHAIN_MODE_PBL: 5955 ecore_chain_free_pbl(p_dev, p_chain); 5956 break; 5957 } 5958 } 5959 5960 static enum _ecore_status_t 5961 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev, 5962 enum ecore_chain_cnt_type cnt_type, 5963 osal_size_t elem_size, u32 page_cnt) 5964 { 5965 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; 5966 5967 /* The actual chain size can be larger than the maximal possible value 5968 * after rounding up the requested elements number to pages, and after 5969 * taking into acount the unusuable elements (next-ptr elements). 5970 * The size of a "u16" chain can be (U16_MAX + 1) since the chain 5971 * size/capacity fields are of a u32 type. 5972 */ 5973 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 && 5974 chain_size > ((u32)ECORE_U16_MAX + 1)) || 5975 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 && 5976 chain_size > ECORE_U32_MAX)) { 5977 DP_NOTICE(p_dev, true, 5978 "The actual chain size (0x%lx) is larger than the maximal possible value\n", 5979 (unsigned long)chain_size); 5980 return ECORE_INVAL; 5981 } 5982 5983 return ECORE_SUCCESS; 5984 } 5985 5986 static enum _ecore_status_t 5987 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain) 5988 { 5989 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL; 5990 dma_addr_t p_phys = 0; 5991 u32 i; 5992 5993 for (i = 0; i < p_chain->page_cnt; i++) { 5994 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, 5995 ECORE_CHAIN_PAGE_SIZE); 5996 if (!p_virt) { 5997 DP_NOTICE(p_dev, false, 5998 "Failed to allocate chain memory\n"); 5999 return ECORE_NOMEM; 6000 } 6001 6002 if (i == 0) { 6003 ecore_chain_init_mem(p_chain, p_virt, p_phys); 6004 ecore_chain_reset(p_chain); 6005 } else { 6006 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev, 6007 p_virt, p_phys); 6008 } 6009 6010 p_virt_prev = p_virt; 6011 } 6012 /* Last page's next element should point to the beginning of the 6013 * chain. 6014 */ 6015 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev, 6016 p_chain->p_virt_addr, 6017 p_chain->p_phys_addr); 6018 6019 return ECORE_SUCCESS; 6020 } 6021 6022 static enum _ecore_status_t 6023 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain) 6024 { 6025 dma_addr_t p_phys = 0; 6026 void *p_virt = OSAL_NULL; 6027 6028 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE); 6029 if (!p_virt) { 6030 DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n"); 6031 return ECORE_NOMEM; 6032 } 6033 6034 ecore_chain_init_mem(p_chain, p_virt, p_phys); 6035 ecore_chain_reset(p_chain); 6036 6037 return ECORE_SUCCESS; 6038 } 6039 6040 static enum _ecore_status_t 6041 ecore_chain_alloc_pbl(struct ecore_dev *p_dev, 6042 struct ecore_chain *p_chain, 6043 struct ecore_chain_ext_pbl *ext_pbl) 6044 { 6045 u32 page_cnt = p_chain->page_cnt, size, i; 6046 dma_addr_t p_phys = 0, p_pbl_phys = 0; 6047 void **pp_virt_addr_tbl = OSAL_NULL; 6048 u8 *p_pbl_virt = OSAL_NULL; 6049 void *p_virt = OSAL_NULL; 6050 6051 size = page_cnt * sizeof(*pp_virt_addr_tbl); 6052 pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size); 6053 if (!pp_virt_addr_tbl) { 6054 DP_NOTICE(p_dev, false, 6055 "Failed to allocate memory for the chain virtual addresses table\n"); 6056 return ECORE_NOMEM; 6057 } 6058 6059 /* The allocation of the PBL table is done with its full size, since it 6060 * is expected to be successive. 6061 * ecore_chain_init_pbl_mem() is called even in a case of an allocation 6062 * failure, since pp_virt_addr_tbl was previously allocated, and it 6063 * should be saved to allow its freeing during the error flow. 6064 */ 6065 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE; 6066 6067 if (ext_pbl == OSAL_NULL) { 6068 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size); 6069 } else { 6070 p_pbl_virt = ext_pbl->p_pbl_virt; 6071 p_pbl_phys = ext_pbl->p_pbl_phys; 6072 p_chain->b_external_pbl = true; 6073 } 6074 6075 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, 6076 pp_virt_addr_tbl); 6077 if (!p_pbl_virt) { 6078 DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n"); 6079 return ECORE_NOMEM; 6080 } 6081 6082 for (i = 0; i < page_cnt; i++) { 6083 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, 6084 ECORE_CHAIN_PAGE_SIZE); 6085 if (!p_virt) { 6086 DP_NOTICE(p_dev, false, 6087 "Failed to allocate chain memory\n"); 6088 return ECORE_NOMEM; 6089 } 6090 6091 if (i == 0) { 6092 ecore_chain_init_mem(p_chain, p_virt, p_phys); 6093 ecore_chain_reset(p_chain); 6094 } 6095 6096 /* Fill the PBL table with the physical address of the page */ 6097 *(dma_addr_t *)p_pbl_virt = p_phys; 6098 /* Keep the virtual address of the page */ 6099 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; 6100 6101 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE; 6102 } 6103 6104 return ECORE_SUCCESS; 6105 } 6106 6107 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev, 6108 enum ecore_chain_use_mode intended_use, 6109 enum ecore_chain_mode mode, 6110 enum ecore_chain_cnt_type cnt_type, 6111 u32 num_elems, osal_size_t elem_size, 6112 struct ecore_chain *p_chain, 6113 struct ecore_chain_ext_pbl *ext_pbl) 6114 { 6115 u32 page_cnt; 6116 enum _ecore_status_t rc = ECORE_SUCCESS; 6117 6118 if (mode == ECORE_CHAIN_MODE_SINGLE) 6119 page_cnt = 1; 6120 else 6121 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode); 6122 6123 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size, 6124 page_cnt); 6125 if (rc) { 6126 DP_NOTICE(p_dev, false, 6127 "Cannot allocate a chain with the given arguments:\n" 6128 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", 6129 intended_use, mode, cnt_type, num_elems, elem_size); 6130 return rc; 6131 } 6132 6133 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use, 6134 mode, cnt_type, p_dev->dp_ctx); 6135 6136 switch (mode) { 6137 case ECORE_CHAIN_MODE_NEXT_PTR: 6138 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain); 6139 break; 6140 case ECORE_CHAIN_MODE_SINGLE: 6141 rc = ecore_chain_alloc_single(p_dev, p_chain); 6142 break; 6143 case ECORE_CHAIN_MODE_PBL: 6144 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl); 6145 break; 6146 } 6147 if (rc) 6148 goto nomem; 6149 6150 return ECORE_SUCCESS; 6151 6152 nomem: 6153 ecore_chain_free(p_dev, p_chain); 6154 return rc; 6155 } 6156 6157 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn, 6158 u16 src_id, u16 *dst_id) 6159 { 6160 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) { 6161 u16 min, max; 6162 6163 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE); 6164 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE); 6165 DP_NOTICE(p_hwfn, true, 6166 "l2_queue id [%d] is not valid, available indices [%d - %d]\n", 6167 src_id, min, max); 6168 6169 return ECORE_INVAL; 6170 } 6171 6172 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id; 6173 6174 return ECORE_SUCCESS; 6175 } 6176 6177 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn, 6178 u8 src_id, u8 *dst_id) 6179 { 6180 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) { 6181 u8 min, max; 6182 6183 min = (u8)RESC_START(p_hwfn, ECORE_VPORT); 6184 max = min + RESC_NUM(p_hwfn, ECORE_VPORT); 6185 DP_NOTICE(p_hwfn, true, 6186 "vport id [%d] is not valid, available indices [%d - %d]\n", 6187 src_id, min, max); 6188 6189 return ECORE_INVAL; 6190 } 6191 6192 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id; 6193 6194 return ECORE_SUCCESS; 6195 } 6196 6197 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn, 6198 u8 src_id, u8 *dst_id) 6199 { 6200 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) { 6201 u8 min, max; 6202 6203 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG); 6204 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG); 6205 DP_NOTICE(p_hwfn, true, 6206 "rss_eng id [%d] is not valid, available indices [%d - %d]\n", 6207 src_id, min, max); 6208 6209 return ECORE_INVAL; 6210 } 6211 6212 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id; 6213 6214 return ECORE_SUCCESS; 6215 } 6216 6217 enum _ecore_status_t 6218 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn, 6219 struct ecore_ptt *p_ptt) 6220 { 6221 if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) { 6222 ecore_wr(p_hwfn, p_ptt, 6223 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 6224 1 << p_hwfn->abs_pf_id / 2); 6225 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0); 6226 return ECORE_SUCCESS; 6227 } 6228 6229 DP_NOTICE(p_hwfn, false, 6230 "This function can't be set as default\n"); 6231 return ECORE_INVAL; 6232 } 6233 6234 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn, 6235 struct ecore_ptt *p_ptt, 6236 u32 hw_addr, void *p_eth_qzone, 6237 osal_size_t eth_qzone_size, 6238 u8 timeset) 6239 { 6240 struct coalescing_timeset *p_coal_timeset; 6241 6242 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) { 6243 DP_NOTICE(p_hwfn, true, 6244 "Coalescing configuration not enabled\n"); 6245 return ECORE_INVAL; 6246 } 6247 6248 p_coal_timeset = p_eth_qzone; 6249 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size); 6250 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); 6251 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); 6252 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); 6253 6254 return ECORE_SUCCESS; 6255 } 6256 6257 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn, 6258 u16 rx_coal, u16 tx_coal, 6259 void *p_handle) 6260 { 6261 struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle; 6262 enum _ecore_status_t rc = ECORE_SUCCESS; 6263 struct ecore_ptt *p_ptt; 6264 6265 /* TODO - Configuring a single queue's coalescing but 6266 * claiming all queues are abiding same configuration 6267 * for PF and VF both. 6268 */ 6269 6270 if (IS_VF(p_hwfn->p_dev)) 6271 return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal, 6272 tx_coal, p_cid); 6273 6274 p_ptt = ecore_ptt_acquire(p_hwfn); 6275 if (!p_ptt) 6276 return ECORE_AGAIN; 6277 6278 if (rx_coal) { 6279 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 6280 if (rc) 6281 goto out; 6282 p_hwfn->p_dev->rx_coalesce_usecs = rx_coal; 6283 } 6284 6285 if (tx_coal) { 6286 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); 6287 if (rc) 6288 goto out; 6289 p_hwfn->p_dev->tx_coalesce_usecs = tx_coal; 6290 } 6291 out: 6292 ecore_ptt_release(p_hwfn, p_ptt); 6293 6294 return rc; 6295 } 6296 6297 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn, 6298 struct ecore_ptt *p_ptt, 6299 u16 coalesce, 6300 struct ecore_queue_cid *p_cid) 6301 { 6302 struct ustorm_eth_queue_zone eth_qzone; 6303 u8 timeset, timer_res; 6304 u32 address; 6305 enum _ecore_status_t rc; 6306 6307 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 6308 if (coalesce <= 0x7F) { 6309 timer_res = 0; 6310 } else if (coalesce <= 0xFF) { 6311 timer_res = 1; 6312 } else if (coalesce <= 0x1FF) { 6313 timer_res = 2; 6314 } else { 6315 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 6316 return ECORE_INVAL; 6317 } 6318 timeset = (u8)(coalesce >> timer_res); 6319 6320 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, 6321 p_cid->sb_igu_id, false); 6322 if (rc != ECORE_SUCCESS) 6323 goto out; 6324 6325 address = BAR0_MAP_REG_USDM_RAM + 6326 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 6327 6328 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 6329 sizeof(struct ustorm_eth_queue_zone), timeset); 6330 if (rc != ECORE_SUCCESS) 6331 goto out; 6332 6333 out: 6334 return rc; 6335 } 6336 6337 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn, 6338 struct ecore_ptt *p_ptt, 6339 u16 coalesce, 6340 struct ecore_queue_cid *p_cid) 6341 { 6342 struct xstorm_eth_queue_zone eth_qzone; 6343 u8 timeset, timer_res; 6344 u32 address; 6345 enum _ecore_status_t rc; 6346 6347 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 6348 if (coalesce <= 0x7F) { 6349 timer_res = 0; 6350 } else if (coalesce <= 0xFF) { 6351 timer_res = 1; 6352 } else if (coalesce <= 0x1FF) { 6353 timer_res = 2; 6354 } else { 6355 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 6356 return ECORE_INVAL; 6357 } 6358 6359 timeset = (u8)(coalesce >> timer_res); 6360 6361 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, 6362 p_cid->sb_igu_id, true); 6363 if (rc != ECORE_SUCCESS) 6364 goto out; 6365 6366 address = BAR0_MAP_REG_XSDM_RAM + 6367 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 6368 6369 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 6370 sizeof(struct xstorm_eth_queue_zone), timeset); 6371 out: 6372 return rc; 6373 } 6374 6375 /* Calculate final WFQ values for all vports and configure it. 6376 * After this configuration each vport must have 6377 * approx min rate = wfq * min_pf_rate / ECORE_WFQ_UNIT 6378 */ 6379 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn, 6380 struct ecore_ptt *p_ptt, 6381 u32 min_pf_rate) 6382 { 6383 struct init_qm_vport_params *vport_params; 6384 int i; 6385 6386 vport_params = p_hwfn->qm_info.qm_vport_params; 6387 6388 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 6389 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 6390 6391 vport_params[i].wfq = (wfq_speed * ECORE_WFQ_UNIT) / 6392 min_pf_rate; 6393 ecore_init_vport_wfq(p_hwfn, p_ptt, 6394 vport_params[i].first_tx_pq_id, 6395 vport_params[i].wfq); 6396 } 6397 } 6398 6399 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn) 6400 { 6401 int i; 6402 6403 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) 6404 p_hwfn->qm_info.qm_vport_params[i].wfq = 1; 6405 } 6406 6407 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn, 6408 struct ecore_ptt *p_ptt) 6409 { 6410 struct init_qm_vport_params *vport_params; 6411 int i; 6412 6413 vport_params = p_hwfn->qm_info.qm_vport_params; 6414 6415 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 6416 ecore_init_wfq_default_param(p_hwfn); 6417 ecore_init_vport_wfq(p_hwfn, p_ptt, 6418 vport_params[i].first_tx_pq_id, 6419 vport_params[i].wfq); 6420 } 6421 } 6422 6423 /* This function performs several validations for WFQ 6424 * configuration and required min rate for a given vport 6425 * 1. req_rate must be greater than one percent of min_pf_rate. 6426 * 2. req_rate should not cause other vports [not configured for WFQ explicitly] 6427 * rates to get less than one percent of min_pf_rate. 6428 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. 6429 */ 6430 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn, 6431 u16 vport_id, u32 req_rate, 6432 u32 min_pf_rate) 6433 { 6434 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; 6435 int non_requested_count = 0, req_count = 0, i, num_vports; 6436 6437 num_vports = p_hwfn->qm_info.num_vports; 6438 6439 /* Accounting for the vports which are configured for WFQ explicitly */ 6440 6441 for (i = 0; i < num_vports; i++) { 6442 u32 tmp_speed; 6443 6444 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) { 6445 req_count++; 6446 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 6447 total_req_min_rate += tmp_speed; 6448 } 6449 } 6450 6451 /* Include current vport data as well */ 6452 req_count++; 6453 total_req_min_rate += req_rate; 6454 non_requested_count = num_vports - req_count; 6455 6456 /* validate possible error cases */ 6457 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) { 6458 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6459 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 6460 vport_id, req_rate, min_pf_rate); 6461 return ECORE_INVAL; 6462 } 6463 6464 /* TBD - for number of vports greater than 100 */ 6465 if (num_vports > ECORE_WFQ_UNIT) { 6466 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6467 "Number of vports is greater than %d\n", 6468 ECORE_WFQ_UNIT); 6469 return ECORE_INVAL; 6470 } 6471 6472 if (total_req_min_rate > min_pf_rate) { 6473 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6474 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", 6475 total_req_min_rate, min_pf_rate); 6476 return ECORE_INVAL; 6477 } 6478 6479 /* Data left for non requested vports */ 6480 total_left_rate = min_pf_rate - total_req_min_rate; 6481 left_rate_per_vp = total_left_rate / non_requested_count; 6482 6483 /* validate if non requested get < 1% of min bw */ 6484 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) { 6485 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6486 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 6487 left_rate_per_vp, min_pf_rate); 6488 return ECORE_INVAL; 6489 } 6490 6491 /* now req_rate for given vport passes all scenarios. 6492 * assign final wfq rates to all vports. 6493 */ 6494 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; 6495 p_hwfn->qm_info.wfq_data[vport_id].configured = true; 6496 6497 for (i = 0; i < num_vports; i++) { 6498 if (p_hwfn->qm_info.wfq_data[i].configured) 6499 continue; 6500 6501 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; 6502 } 6503 6504 return ECORE_SUCCESS; 6505 } 6506 6507 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn, 6508 struct ecore_ptt *p_ptt, 6509 u16 vp_id, u32 rate) 6510 { 6511 struct ecore_mcp_link_state *p_link; 6512 int rc = ECORE_SUCCESS; 6513 6514 p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output; 6515 6516 if (!p_link->min_pf_rate) { 6517 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; 6518 p_hwfn->qm_info.wfq_data[vp_id].configured = true; 6519 return rc; 6520 } 6521 6522 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); 6523 6524 if (rc == ECORE_SUCCESS) 6525 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, 6526 p_link->min_pf_rate); 6527 else 6528 DP_NOTICE(p_hwfn, false, 6529 "Validation failed while configuring min rate\n"); 6530 6531 return rc; 6532 } 6533 6534 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn, 6535 struct ecore_ptt *p_ptt, 6536 u32 min_pf_rate) 6537 { 6538 bool use_wfq = false; 6539 int rc = ECORE_SUCCESS; 6540 u16 i; 6541 6542 /* Validate all pre configured vports for wfq */ 6543 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 6544 u32 rate; 6545 6546 if (!p_hwfn->qm_info.wfq_data[i].configured) 6547 continue; 6548 6549 rate = p_hwfn->qm_info.wfq_data[i].min_speed; 6550 use_wfq = true; 6551 6552 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate); 6553 if (rc != ECORE_SUCCESS) { 6554 DP_NOTICE(p_hwfn, false, 6555 "WFQ validation failed while configuring min rate\n"); 6556 break; 6557 } 6558 } 6559 6560 if (rc == ECORE_SUCCESS && use_wfq) 6561 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 6562 else 6563 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt); 6564 6565 return rc; 6566 } 6567 6568 /* Main API for ecore clients to configure vport min rate. 6569 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] 6570 * rate - Speed in Mbps needs to be assigned to a given vport. 6571 */ 6572 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate) 6573 { 6574 int i, rc = ECORE_INVAL; 6575 6576 /* TBD - for multiple hardware functions - that is 100 gig */ 6577 if (ECORE_IS_CMT(p_dev)) { 6578 DP_NOTICE(p_dev, false, 6579 "WFQ configuration is not supported for this device\n"); 6580 return rc; 6581 } 6582 6583 for_each_hwfn(p_dev, i) { 6584 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6585 struct ecore_ptt *p_ptt; 6586 6587 p_ptt = ecore_ptt_acquire(p_hwfn); 6588 if (!p_ptt) 6589 return ECORE_TIMEOUT; 6590 6591 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); 6592 6593 if (rc != ECORE_SUCCESS) { 6594 ecore_ptt_release(p_hwfn, p_ptt); 6595 return rc; 6596 } 6597 6598 ecore_ptt_release(p_hwfn, p_ptt); 6599 } 6600 6601 return rc; 6602 } 6603 6604 /* API to configure WFQ from mcp link change */ 6605 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev, 6606 struct ecore_ptt *p_ptt, 6607 u32 min_pf_rate) 6608 { 6609 int i; 6610 6611 /* TBD - for multiple hardware functions - that is 100 gig */ 6612 if (ECORE_IS_CMT(p_dev)) { 6613 DP_VERBOSE(p_dev, ECORE_MSG_LINK, 6614 "WFQ configuration is not supported for this device\n"); 6615 return; 6616 } 6617 6618 for_each_hwfn(p_dev, i) { 6619 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6620 6621 __ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, 6622 min_pf_rate); 6623 } 6624 } 6625 6626 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn, 6627 struct ecore_ptt *p_ptt, 6628 struct ecore_mcp_link_state *p_link, 6629 u8 max_bw) 6630 { 6631 int rc = ECORE_SUCCESS; 6632 6633 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; 6634 6635 if (!p_link->line_speed && (max_bw != 100)) 6636 return rc; 6637 6638 p_link->speed = (p_link->line_speed * max_bw) / 100; 6639 p_hwfn->qm_info.pf_rl = p_link->speed; 6640 6641 /* Since the limiter also affects Tx-switched traffic, we don't want it 6642 * to limit such traffic in case there's no actual limit. 6643 * In that case, set limit to imaginary high boundary. 6644 */ 6645 if (max_bw == 100) 6646 p_hwfn->qm_info.pf_rl = 100000; 6647 6648 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, 6649 p_hwfn->qm_info.pf_rl); 6650 6651 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6652 "Configured MAX bandwidth to be %08x Mb/sec\n", 6653 p_link->speed); 6654 6655 return rc; 6656 } 6657 6658 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ 6659 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw) 6660 { 6661 int i, rc = ECORE_INVAL; 6662 6663 if (max_bw < 1 || max_bw > 100) { 6664 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n"); 6665 return rc; 6666 } 6667 6668 for_each_hwfn(p_dev, i) { 6669 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6670 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev); 6671 struct ecore_mcp_link_state *p_link; 6672 struct ecore_ptt *p_ptt; 6673 6674 p_link = &p_lead->mcp_info->link_output; 6675 6676 p_ptt = ecore_ptt_acquire(p_hwfn); 6677 if (!p_ptt) 6678 return ECORE_TIMEOUT; 6679 6680 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt, 6681 p_link, max_bw); 6682 6683 ecore_ptt_release(p_hwfn, p_ptt); 6684 6685 if (rc != ECORE_SUCCESS) 6686 break; 6687 } 6688 6689 return rc; 6690 } 6691 6692 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn, 6693 struct ecore_ptt *p_ptt, 6694 struct ecore_mcp_link_state *p_link, 6695 u8 min_bw) 6696 { 6697 int rc = ECORE_SUCCESS; 6698 6699 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; 6700 p_hwfn->qm_info.pf_wfq = min_bw; 6701 6702 if (!p_link->line_speed) 6703 return rc; 6704 6705 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; 6706 6707 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); 6708 6709 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6710 "Configured MIN bandwidth to be %d Mb/sec\n", 6711 p_link->min_pf_rate); 6712 6713 return rc; 6714 } 6715 6716 /* Main API to configure PF min bandwidth where bw range is [1-100] */ 6717 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw) 6718 { 6719 int i, rc = ECORE_INVAL; 6720 6721 if (min_bw < 1 || min_bw > 100) { 6722 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n"); 6723 return rc; 6724 } 6725 6726 for_each_hwfn(p_dev, i) { 6727 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6728 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev); 6729 struct ecore_mcp_link_state *p_link; 6730 struct ecore_ptt *p_ptt; 6731 6732 p_link = &p_lead->mcp_info->link_output; 6733 6734 p_ptt = ecore_ptt_acquire(p_hwfn); 6735 if (!p_ptt) 6736 return ECORE_TIMEOUT; 6737 6738 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt, 6739 p_link, min_bw); 6740 if (rc != ECORE_SUCCESS) { 6741 ecore_ptt_release(p_hwfn, p_ptt); 6742 return rc; 6743 } 6744 6745 if (p_link->min_pf_rate) { 6746 u32 min_rate = p_link->min_pf_rate; 6747 6748 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn, 6749 p_ptt, 6750 min_rate); 6751 } 6752 6753 ecore_ptt_release(p_hwfn, p_ptt); 6754 } 6755 6756 return rc; 6757 } 6758 6759 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt) 6760 { 6761 struct ecore_mcp_link_state *p_link; 6762 6763 p_link = &p_hwfn->mcp_info->link_output; 6764 6765 if (p_link->min_pf_rate) 6766 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt); 6767 6768 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0, 6769 sizeof(*p_hwfn->qm_info.wfq_data) * 6770 p_hwfn->qm_info.num_vports); 6771 } 6772 6773 int ecore_device_num_engines(struct ecore_dev *p_dev) 6774 { 6775 return ECORE_IS_BB(p_dev) ? 2 : 1; 6776 } 6777 6778 int ecore_device_num_ports(struct ecore_dev *p_dev) 6779 { 6780 return p_dev->num_ports; 6781 } 6782 6783 void ecore_set_fw_mac_addr(__le16 *fw_msb, 6784 __le16 *fw_mid, 6785 __le16 *fw_lsb, 6786 u8 *mac) 6787 { 6788 ((u8 *)fw_msb)[0] = mac[1]; 6789 ((u8 *)fw_msb)[1] = mac[0]; 6790 ((u8 *)fw_mid)[0] = mac[3]; 6791 ((u8 *)fw_mid)[1] = mac[2]; 6792 ((u8 *)fw_lsb)[0] = mac[5]; 6793 ((u8 *)fw_lsb)[1] = mac[4]; 6794 } 6795 6796 bool ecore_is_mf_fip_special(struct ecore_dev *p_dev) 6797 { 6798 return !!OSAL_TEST_BIT(ECORE_MF_FIP_SPECIAL, &p_dev->mf_bits); 6799 } 6800