xref: /dpdk/drivers/net/qede/base/ecore_dev.c (revision b79e4c00af0e7cfb8601ab0208659d226b82bd10)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
33 #include "ecore_l2.h"
34 
35 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
36  * registers involved are not split and thus configuration is a race where
37  * some of the PFs configuration might be lost.
38  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
39  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
40  * there's more than a single compiled ecore component in system].
41  */
42 static osal_spinlock_t qm_lock;
43 static bool qm_lock_init;
44 
45 /* Configurable */
46 #define ECORE_MIN_DPIS		(4)	/* The minimal num of DPIs required to
47 					 * load the driver. The number was
48 					 * arbitrarily set.
49 					 */
50 
51 /* Derived */
52 #define ECORE_MIN_PWM_REGION	((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
53 
54 enum BAR_ID {
55 	BAR_ID_0,		/* used for GRC */
56 	BAR_ID_1		/* Used for doorbells */
57 };
58 
59 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
60 {
61 	u32 bar_reg = (bar_id == BAR_ID_0 ?
62 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
63 	u32 val;
64 
65 	if (IS_VF(p_hwfn->p_dev)) {
66 		/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
67 		 * read from actual register, but we're currently not using
68 		 * it for actual doorbelling.
69 		 */
70 		return 1 << 17;
71 	}
72 
73 	val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
74 	if (val)
75 		return 1 << (val + 15);
76 
77 	/* The above registers were updated in the past only in CMT mode. Since
78 	 * they were found to be useful MFW started updating them from 8.7.7.0.
79 	 * In older MFW versions they are set to 0 which means disabled.
80 	 */
81 	if (p_hwfn->p_dev->num_hwfns > 1) {
82 		DP_NOTICE(p_hwfn, false,
83 			  "BAR size not configured. Assuming BAR size of 256kB"
84 			  " for GRC and 512kB for DB\n");
85 		val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
86 	} else {
87 		DP_NOTICE(p_hwfn, false,
88 			  "BAR size not configured. Assuming BAR size of 512kB"
89 			  " for GRC and 512kB for DB\n");
90 		val = 512 * 1024;
91 	}
92 
93 	return val;
94 }
95 
96 void ecore_init_dp(struct ecore_dev *p_dev,
97 		   u32 dp_module, u8 dp_level, void *dp_ctx)
98 {
99 	u32 i;
100 
101 	p_dev->dp_level = dp_level;
102 	p_dev->dp_module = dp_module;
103 	p_dev->dp_ctx = dp_ctx;
104 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
105 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
106 
107 		p_hwfn->dp_level = dp_level;
108 		p_hwfn->dp_module = dp_module;
109 		p_hwfn->dp_ctx = dp_ctx;
110 	}
111 }
112 
113 void ecore_init_struct(struct ecore_dev *p_dev)
114 {
115 	u8 i;
116 
117 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
118 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
119 
120 		p_hwfn->p_dev = p_dev;
121 		p_hwfn->my_id = i;
122 		p_hwfn->b_active = false;
123 
124 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
125 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
126 	}
127 
128 	/* hwfn 0 is always active */
129 	p_dev->hwfns[0].b_active = true;
130 
131 	/* set the default cache alignment to 128 (may be overridden later) */
132 	p_dev->cache_shift = 7;
133 }
134 
135 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
136 {
137 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
138 
139 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
140 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
141 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
142 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
143 }
144 
145 void ecore_resc_free(struct ecore_dev *p_dev)
146 {
147 	int i;
148 
149 	if (IS_VF(p_dev)) {
150 		for_each_hwfn(p_dev, i)
151 			ecore_l2_free(&p_dev->hwfns[i]);
152 		return;
153 	}
154 
155 	OSAL_FREE(p_dev, p_dev->fw_data);
156 
157 	OSAL_FREE(p_dev, p_dev->reset_stats);
158 
159 	for_each_hwfn(p_dev, i) {
160 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
161 
162 		ecore_cxt_mngr_free(p_hwfn);
163 		ecore_qm_info_free(p_hwfn);
164 		ecore_spq_free(p_hwfn);
165 		ecore_eq_free(p_hwfn);
166 		ecore_consq_free(p_hwfn);
167 		ecore_int_free(p_hwfn);
168 		ecore_iov_free(p_hwfn);
169 		ecore_l2_free(p_hwfn);
170 		ecore_dmae_info_free(p_hwfn);
171 		ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
172 		/* @@@TBD Flush work-queue ? */
173 	}
174 }
175 
176 /******************** QM initialization *******************/
177 
178 /* bitmaps for indicating active traffic classes.
179  * Special case for Arrowhead 4 port
180  */
181 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
182 #define ACTIVE_TCS_BMAP 0x9f
183 /* 0..3 actually used, OOO and high priority stuff all use 3 */
184 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
185 
186 /* determines the physical queue flags for a given PF. */
187 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
188 {
189 	u32 flags;
190 
191 	/* common flags */
192 	flags = PQ_FLAGS_LB;
193 
194 	/* feature flags */
195 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
196 		flags |= PQ_FLAGS_VFS;
197 
198 	/* protocol flags */
199 	switch (p_hwfn->hw_info.personality) {
200 	case ECORE_PCI_ETH:
201 		flags |= PQ_FLAGS_MCOS;
202 		break;
203 	case ECORE_PCI_FCOE:
204 		flags |= PQ_FLAGS_OFLD;
205 		break;
206 	case ECORE_PCI_ISCSI:
207 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
208 		break;
209 	case ECORE_PCI_ETH_ROCE:
210 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD;
211 		break;
212 	case ECORE_PCI_ETH_IWARP:
213 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
214 			 PQ_FLAGS_OFLD;
215 		break;
216 	default:
217 		DP_ERR(p_hwfn, "unknown personality %d\n",
218 		       p_hwfn->hw_info.personality);
219 		return 0;
220 	}
221 	return flags;
222 }
223 
224 /* Getters for resource amounts necessary for qm initialization */
225 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
226 {
227 	return p_hwfn->hw_info.num_hw_tc;
228 }
229 
230 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
231 {
232 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ?
233 			p_hwfn->p_dev->p_iov_info->total_vfs : 0;
234 }
235 
236 #define NUM_DEFAULT_RLS 1
237 
238 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
239 {
240 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
241 
242 	/* @DPDK */
243 	/* num RLs can't exceed resource amount of rls or vports or the
244 	 * dcqcn qps
245 	 */
246 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
247 				     (u16)RESC_NUM(p_hwfn, ECORE_VPORT));
248 
249 	/* make sure after we reserve the default and VF rls we'll have
250 	 * something left
251 	 */
252 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
253 		DP_NOTICE(p_hwfn, false,
254 			  "no rate limiters left for PF rate limiting"
255 			  " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
256 		return 0;
257 	}
258 
259 	/* subtract rls necessary for VFs and one default one for the PF */
260 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
261 
262 	return num_pf_rls;
263 }
264 
265 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
266 {
267 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
268 
269 	/* all pqs share the same vport (hence the 1 below), except for vfs
270 	 * and pf_rl pqs
271 	 */
272 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
273 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
274 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
275 		ecore_init_qm_get_num_vfs(p_hwfn) + 1;
276 }
277 
278 /* calc amount of PQs according to the requested flags */
279 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
280 {
281 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
282 
283 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
284 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
285 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
286 		ecore_init_qm_get_num_tcs(p_hwfn) +
287 	       (!!(PQ_FLAGS_LB & pq_flags)) +
288 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
289 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
290 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
291 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
292 		ecore_init_qm_get_num_vfs(p_hwfn);
293 }
294 
295 /* initialize the top level QM params */
296 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
297 {
298 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
299 	bool four_port;
300 
301 	/* pq and vport bases for this PF */
302 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
303 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
304 
305 	/* rate limiting and weighted fair queueing are always enabled */
306 	qm_info->vport_rl_en = 1;
307 	qm_info->vport_wfq_en = 1;
308 
309 	/* TC config is different for AH 4 port */
310 	four_port = p_hwfn->p_dev->num_ports_in_engines == MAX_NUM_PORTS_K2;
311 
312 	/* in AH 4 port we have fewer TCs per port */
313 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
314 						     NUM_OF_PHYS_TCS;
315 
316 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and
317 	 * 4 otherwise
318 	 */
319 	if (!qm_info->ooo_tc)
320 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
321 					      DCBX_TCP_OOO_TC;
322 }
323 
324 /* initialize qm vport params */
325 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
326 {
327 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
328 	u8 i;
329 
330 	/* all vports participate in weighted fair queueing */
331 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
332 		qm_info->qm_vport_params[i].vport_wfq = 1;
333 }
334 
335 /* initialize qm port params */
336 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
337 {
338 	/* Initialize qm port parameters */
339 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engines;
340 
341 	/* indicate how ooo and high pri traffic is dealt with */
342 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
343 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
344 
345 	for (i = 0; i < num_ports; i++) {
346 		struct init_qm_port_params *p_qm_port =
347 			&p_hwfn->qm_info.qm_port_params[i];
348 
349 		p_qm_port->active = 1;
350 		p_qm_port->active_phys_tcs = active_phys_tcs;
351 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
352 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
353 	}
354 }
355 
356 /* Reset the params which must be reset for qm init. QM init may be called as
357  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
358  * params may be affected by the init but would simply recalculate to the same
359  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
360  * affected as these amounts stay the same.
361  */
362 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
363 {
364 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
365 
366 	qm_info->num_pqs = 0;
367 	qm_info->num_vports = 0;
368 	qm_info->num_pf_rls = 0;
369 	qm_info->num_vf_pqs = 0;
370 	qm_info->first_vf_pq = 0;
371 	qm_info->first_mcos_pq = 0;
372 	qm_info->first_rl_pq = 0;
373 }
374 
375 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
376 {
377 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
378 
379 	qm_info->num_vports++;
380 
381 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
382 		DP_ERR(p_hwfn,
383 		       "vport overflow! qm_info->num_vports %d,"
384 		       " qm_init_get_num_vports() %d\n",
385 		       qm_info->num_vports,
386 		       ecore_init_qm_get_num_vports(p_hwfn));
387 }
388 
389 /* initialize a single pq and manage qm_info resources accounting.
390  * The pq_init_flags param determines whether the PQ is rate limited
391  * (for VF or PF)
392  * and whether a new vport is allocated to the pq or not (i.e. vport will be
393  * shared)
394  */
395 
396 /* flags for pq init */
397 #define PQ_INIT_SHARE_VPORT	(1 << 0)
398 #define PQ_INIT_PF_RL		(1 << 1)
399 #define PQ_INIT_VF_RL		(1 << 2)
400 
401 /* defines for pq init */
402 #define PQ_INIT_DEFAULT_WRR_GROUP	1
403 #define PQ_INIT_DEFAULT_TC		0
404 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
405 
406 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
407 			     struct ecore_qm_info *qm_info,
408 			     u8 tc, u32 pq_init_flags)
409 {
410 	u16 pq_idx = qm_info->num_pqs, max_pq =
411 					ecore_init_qm_get_num_pqs(p_hwfn);
412 
413 	if (pq_idx > max_pq)
414 		DP_ERR(p_hwfn,
415 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
416 
417 	/* init pq params */
418 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
419 						 qm_info->num_vports;
420 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
421 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
422 	qm_info->qm_pq_params[pq_idx].rl_valid =
423 		(pq_init_flags & PQ_INIT_PF_RL ||
424 		 pq_init_flags & PQ_INIT_VF_RL);
425 
426 	/* qm params accounting */
427 	qm_info->num_pqs++;
428 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
429 		qm_info->num_vports++;
430 
431 	if (pq_init_flags & PQ_INIT_PF_RL)
432 		qm_info->num_pf_rls++;
433 
434 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
435 		DP_ERR(p_hwfn,
436 		       "vport overflow! qm_info->num_vports %d,"
437 		       " qm_init_get_num_vports() %d\n",
438 		       qm_info->num_vports,
439 		       ecore_init_qm_get_num_vports(p_hwfn));
440 
441 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
442 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d,"
443 		       " qm_init_get_num_pf_rls() %d\n",
444 		       qm_info->num_pf_rls,
445 		       ecore_init_qm_get_num_pf_rls(p_hwfn));
446 }
447 
448 /* get pq index according to PQ_FLAGS */
449 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
450 					     u32 pq_flags)
451 {
452 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
453 
454 	/* Can't have multiple flags set here */
455 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags,
456 				sizeof(pq_flags)) > 1)
457 		goto err;
458 
459 	switch (pq_flags) {
460 	case PQ_FLAGS_RLS:
461 		return &qm_info->first_rl_pq;
462 	case PQ_FLAGS_MCOS:
463 		return &qm_info->first_mcos_pq;
464 	case PQ_FLAGS_LB:
465 		return &qm_info->pure_lb_pq;
466 	case PQ_FLAGS_OOO:
467 		return &qm_info->ooo_pq;
468 	case PQ_FLAGS_ACK:
469 		return &qm_info->pure_ack_pq;
470 	case PQ_FLAGS_OFLD:
471 		return &qm_info->offload_pq;
472 	case PQ_FLAGS_VFS:
473 		return &qm_info->first_vf_pq;
474 	default:
475 		goto err;
476 	}
477 
478 err:
479 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
480 	return OSAL_NULL;
481 }
482 
483 /* save pq index in qm info */
484 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
485 				  u32 pq_flags, u16 pq_val)
486 {
487 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
488 
489 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
490 }
491 
492 /* get tx pq index, with the PQ TX base already set (ready for context init) */
493 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
494 {
495 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
496 
497 	return *base_pq_idx + CM_TX_PQ_BASE;
498 }
499 
500 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
501 {
502 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
503 
504 	if (tc > max_tc)
505 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
506 
507 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
508 }
509 
510 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
511 {
512 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
513 
514 	if (vf > max_vf)
515 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
516 
517 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
518 }
519 
520 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
521 {
522 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
523 
524 	if (rl > max_rl)
525 		DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
526 
527 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
528 }
529 
530 /* Functions for creating specific types of pqs */
531 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
532 {
533 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
534 
535 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
536 		return;
537 
538 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
539 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
540 }
541 
542 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
543 {
544 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
545 
546 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
547 		return;
548 
549 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
550 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
551 }
552 
553 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
554 {
555 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
556 
557 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
558 		return;
559 
560 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
561 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
562 }
563 
564 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
565 {
566 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
567 
568 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
569 		return;
570 
571 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
572 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
573 }
574 
575 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
576 {
577 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
578 	u8 tc_idx;
579 
580 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
581 		return;
582 
583 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
584 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
585 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
586 }
587 
588 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
589 {
590 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
591 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
592 
593 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
594 		return;
595 
596 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
597 
598 	qm_info->num_vf_pqs = num_vfs;
599 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
600 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC,
601 				 PQ_INIT_VF_RL);
602 }
603 
604 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
605 {
606 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
607 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
608 
609 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
610 		return;
611 
612 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
613 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
614 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC,
615 				 PQ_INIT_PF_RL);
616 }
617 
618 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
619 {
620 	/* rate limited pqs, must come first (FW assumption) */
621 	ecore_init_qm_rl_pqs(p_hwfn);
622 
623 	/* pqs for multi cos */
624 	ecore_init_qm_mcos_pqs(p_hwfn);
625 
626 	/* pure loopback pq */
627 	ecore_init_qm_lb_pq(p_hwfn);
628 
629 	/* out of order pq */
630 	ecore_init_qm_ooo_pq(p_hwfn);
631 
632 	/* pure ack pq */
633 	ecore_init_qm_pure_ack_pq(p_hwfn);
634 
635 	/* pq for offloaded protocol */
636 	ecore_init_qm_offload_pq(p_hwfn);
637 
638 	/* done sharing vports */
639 	ecore_init_qm_advance_vport(p_hwfn);
640 
641 	/* pqs for vfs */
642 	ecore_init_qm_vf_pqs(p_hwfn);
643 }
644 
645 /* compare values of getters against resources amounts */
646 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
647 {
648 	if (ecore_init_qm_get_num_vports(p_hwfn) >
649 	    RESC_NUM(p_hwfn, ECORE_VPORT)) {
650 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
651 		return ECORE_INVAL;
652 	}
653 
654 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
655 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
656 		return ECORE_INVAL;
657 	}
658 
659 	return ECORE_SUCCESS;
660 }
661 
662 /*
663  * Function for verbose printing of the qm initialization results
664  */
665 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
666 {
667 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
668 	struct init_qm_vport_params *vport;
669 	struct init_qm_port_params *port;
670 	struct init_qm_pq_params *pq;
671 	int i, tc;
672 
673 	/* top level params */
674 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
675 		   "qm init top level params: start_pq %d, start_vport %d,"
676 		   " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
677 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq,
678 		   qm_info->offload_pq, qm_info->pure_ack_pq);
679 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
680 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d,"
681 		   " num_vports %d, max_phys_tcs_per_port %d\n",
682 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs,
683 		   qm_info->num_vf_pqs, qm_info->num_vports,
684 		   qm_info->max_phys_tcs_per_port);
685 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
686 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d,"
687 		   " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
688 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en,
689 		   qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl,
690 		   qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
691 
692 	/* port table */
693 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engines; i++) {
694 		port = &qm_info->qm_port_params[i];
695 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
696 			   "port idx %d, active %d, active_phys_tcs %d,"
697 			   " num_pbf_cmd_lines %d, num_btb_blocks %d,"
698 			   " reserved %d\n",
699 			   i, port->active, port->active_phys_tcs,
700 			   port->num_pbf_cmd_lines, port->num_btb_blocks,
701 			   port->reserved);
702 	}
703 
704 	/* vport table */
705 	for (i = 0; i < qm_info->num_vports; i++) {
706 		vport = &qm_info->qm_vport_params[i];
707 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
708 			   "vport idx %d, vport_rl %d, wfq %d,"
709 			   " first_tx_pq_id [ ",
710 			   qm_info->start_vport + i, vport->vport_rl,
711 			   vport->vport_wfq);
712 		for (tc = 0; tc < NUM_OF_TCS; tc++)
713 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ",
714 				   vport->first_tx_pq_id[tc]);
715 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
716 	}
717 
718 	/* pq table */
719 	for (i = 0; i < qm_info->num_pqs; i++) {
720 		pq = &qm_info->qm_pq_params[i];
721 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
722 			   "pq idx %d, vport_id %d, tc %d, wrr_grp %d,"
723 			   " rl_valid %d\n",
724 			   qm_info->start_pq + i, pq->vport_id, pq->tc_id,
725 			   pq->wrr_group, pq->rl_valid);
726 	}
727 }
728 
729 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
730 {
731 	/* reset params required for init run */
732 	ecore_init_qm_reset_params(p_hwfn);
733 
734 	/* init QM top level params */
735 	ecore_init_qm_params(p_hwfn);
736 
737 	/* init QM port params */
738 	ecore_init_qm_port_params(p_hwfn);
739 
740 	/* init QM vport params */
741 	ecore_init_qm_vport_params(p_hwfn);
742 
743 	/* init QM physical queue params */
744 	ecore_init_qm_pq_params(p_hwfn);
745 
746 	/* display all that init */
747 	ecore_dp_init_qm_params(p_hwfn);
748 }
749 
750 /* This function reconfigures the QM pf on the fly.
751  * For this purpose we:
752  * 1. reconfigure the QM database
753  * 2. set new values to runtime array
754  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
755  * 4. activate init tool in QM_PF stage
756  * 5. send an sdm_qm_cmd through rbc interface to release the QM
757  */
758 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
759 				     struct ecore_ptt *p_ptt)
760 {
761 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
762 	bool b_rc;
763 	enum _ecore_status_t rc;
764 
765 	/* initialize ecore's qm data structure */
766 	ecore_init_qm_info(p_hwfn);
767 
768 	/* stop PF's qm queues */
769 	OSAL_SPIN_LOCK(&qm_lock);
770 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
771 				      qm_info->start_pq, qm_info->num_pqs);
772 	OSAL_SPIN_UNLOCK(&qm_lock);
773 	if (!b_rc)
774 		return ECORE_INVAL;
775 
776 	/* clear the QM_PF runtime phase leftovers from previous init */
777 	ecore_init_clear_rt_data(p_hwfn);
778 
779 	/* prepare QM portion of runtime array */
780 	ecore_qm_init_pf(p_hwfn);
781 
782 	/* activate init tool on runtime array */
783 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
784 			    p_hwfn->hw_info.hw_mode);
785 	if (rc != ECORE_SUCCESS)
786 		return rc;
787 
788 	/* start PF's qm queues */
789 	OSAL_SPIN_LOCK(&qm_lock);
790 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
791 				      qm_info->start_pq, qm_info->num_pqs);
792 	OSAL_SPIN_UNLOCK(&qm_lock);
793 	if (!b_rc)
794 		return ECORE_INVAL;
795 
796 	return ECORE_SUCCESS;
797 }
798 
799 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
800 {
801 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
802 	enum _ecore_status_t rc;
803 
804 	rc = ecore_init_qm_sanity(p_hwfn);
805 	if (rc != ECORE_SUCCESS)
806 		goto alloc_err;
807 
808 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
809 					    sizeof(struct init_qm_pq_params) *
810 					    ecore_init_qm_get_num_pqs(p_hwfn));
811 	if (!qm_info->qm_pq_params)
812 		goto alloc_err;
813 
814 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
815 				       sizeof(struct init_qm_vport_params) *
816 				       ecore_init_qm_get_num_vports(p_hwfn));
817 	if (!qm_info->qm_vport_params)
818 		goto alloc_err;
819 
820 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
821 				      sizeof(struct init_qm_port_params) *
822 				      p_hwfn->p_dev->num_ports_in_engines);
823 	if (!qm_info->qm_port_params)
824 		goto alloc_err;
825 
826 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
827 					sizeof(struct ecore_wfq_data) *
828 					ecore_init_qm_get_num_vports(p_hwfn));
829 	if (!qm_info->wfq_data)
830 		goto alloc_err;
831 
832 	return ECORE_SUCCESS;
833 
834 alloc_err:
835 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
836 	ecore_qm_info_free(p_hwfn);
837 	return ECORE_NOMEM;
838 }
839 /******************** End QM initialization ***************/
840 
841 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
842 {
843 	enum _ecore_status_t rc = ECORE_SUCCESS;
844 	int i;
845 
846 	if (IS_VF(p_dev)) {
847 		for_each_hwfn(p_dev, i) {
848 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
849 			if (rc != ECORE_SUCCESS)
850 				return rc;
851 		}
852 		return rc;
853 	}
854 
855 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
856 				     sizeof(*p_dev->fw_data));
857 	if (!p_dev->fw_data)
858 		return ECORE_NOMEM;
859 
860 	for_each_hwfn(p_dev, i) {
861 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
862 		u32 n_eqes, num_cons;
863 
864 		/* First allocate the context manager structure */
865 		rc = ecore_cxt_mngr_alloc(p_hwfn);
866 		if (rc)
867 			goto alloc_err;
868 
869 		/* Set the HW cid/tid numbers (in the contest manager)
870 		 * Must be done prior to any further computations.
871 		 */
872 		rc = ecore_cxt_set_pf_params(p_hwfn);
873 		if (rc)
874 			goto alloc_err;
875 
876 		rc = ecore_alloc_qm_data(p_hwfn);
877 		if (rc)
878 			goto alloc_err;
879 
880 		/* init qm info */
881 		ecore_init_qm_info(p_hwfn);
882 
883 		/* Compute the ILT client partition */
884 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
885 		if (rc)
886 			goto alloc_err;
887 
888 		/* CID map / ILT shadow table / T2
889 		 * The talbes sizes are determined by the computations above
890 		 */
891 		rc = ecore_cxt_tables_alloc(p_hwfn);
892 		if (rc)
893 			goto alloc_err;
894 
895 		/* SPQ, must follow ILT because initializes SPQ context */
896 		rc = ecore_spq_alloc(p_hwfn);
897 		if (rc)
898 			goto alloc_err;
899 
900 		/* SP status block allocation */
901 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
902 							   RESERVED_PTT_DPC);
903 
904 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
905 		if (rc)
906 			goto alloc_err;
907 
908 		rc = ecore_iov_alloc(p_hwfn);
909 		if (rc)
910 			goto alloc_err;
911 
912 		/* EQ */
913 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
914 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
915 			/* Calculate the EQ size
916 			 * ---------------------
917 			 * Each ICID may generate up to one event at a time i.e.
918 			 * the event must be handled/cleared before a new one
919 			 * can be generated. We calculate the sum of events per
920 			 * protocol and create an EQ deep enough to handle the
921 			 * worst case:
922 			 * - Core - according to SPQ.
923 			 * - RoCE - per QP there are a couple of ICIDs, one
924 			 *	  responder and one requester, each can
925 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
926 			 *	  Each CQ can generate an EQE. There are 2 CQs
927 			 *	  per QP => n_eqes_cq = 2 * n_qp.
928 			 *	  Hence the RoCE total is 4 * n_qp or
929 			 *	  2 * num_cons.
930 			 * - ENet - There can be up to two events per VF. One
931 			 *	  for VF-PF channel and another for VF FLR
932 			 *	  initial cleanup. The number of VFs is
933 			 *	  bounded by MAX_NUM_VFS_BB, and is much
934 			 *	  smaller than RoCE's so we avoid exact
935 			 *	  calculation.
936 			 */
937 			if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
938 				num_cons =
939 				    ecore_cxt_get_proto_cid_count(
940 						p_hwfn,
941 						PROTOCOLID_ROCE,
942 						OSAL_NULL);
943 				num_cons *= 2;
944 			} else {
945 				num_cons = ecore_cxt_get_proto_cid_count(
946 						p_hwfn,
947 						PROTOCOLID_IWARP,
948 						OSAL_NULL);
949 			}
950 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
951 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
952 			num_cons =
953 			    ecore_cxt_get_proto_cid_count(p_hwfn,
954 							  PROTOCOLID_ISCSI,
955 							  OSAL_NULL);
956 			n_eqes += 2 * num_cons;
957 		}
958 
959 		if (n_eqes > 0xFFFF) {
960 			DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
961 				       "The maximum of a u16 chain is 0x%x\n",
962 			       n_eqes, 0xFFFF);
963 			goto alloc_no_mem;
964 		}
965 
966 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
967 		if (rc)
968 			goto alloc_err;
969 
970 		rc = ecore_consq_alloc(p_hwfn);
971 		if (rc)
972 			goto alloc_err;
973 
974 		rc = ecore_l2_alloc(p_hwfn);
975 		if (rc != ECORE_SUCCESS)
976 			goto alloc_err;
977 
978 		/* DMA info initialization */
979 		rc = ecore_dmae_info_alloc(p_hwfn);
980 		if (rc) {
981 			DP_NOTICE(p_hwfn, true,
982 				  "Failed to allocate memory for dmae_info"
983 				  " structure\n");
984 			goto alloc_err;
985 		}
986 
987 		/* DCBX initialization */
988 		rc = ecore_dcbx_info_alloc(p_hwfn);
989 		if (rc) {
990 			DP_NOTICE(p_hwfn, true,
991 				  "Failed to allocate memory for dcbx structure\n");
992 			goto alloc_err;
993 		}
994 	}
995 
996 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
997 					 sizeof(*p_dev->reset_stats));
998 	if (!p_dev->reset_stats) {
999 		DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
1000 		goto alloc_no_mem;
1001 	}
1002 
1003 	return ECORE_SUCCESS;
1004 
1005 alloc_no_mem:
1006 	rc = ECORE_NOMEM;
1007 alloc_err:
1008 	ecore_resc_free(p_dev);
1009 	return rc;
1010 }
1011 
1012 void ecore_resc_setup(struct ecore_dev *p_dev)
1013 {
1014 	int i;
1015 
1016 	if (IS_VF(p_dev)) {
1017 		for_each_hwfn(p_dev, i)
1018 			ecore_l2_setup(&p_dev->hwfns[i]);
1019 		return;
1020 	}
1021 
1022 	for_each_hwfn(p_dev, i) {
1023 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1024 
1025 		ecore_cxt_mngr_setup(p_hwfn);
1026 		ecore_spq_setup(p_hwfn);
1027 		ecore_eq_setup(p_hwfn);
1028 		ecore_consq_setup(p_hwfn);
1029 
1030 		/* Read shadow of current MFW mailbox */
1031 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1032 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1033 			    p_hwfn->mcp_info->mfw_mb_cur,
1034 			    p_hwfn->mcp_info->mfw_mb_length);
1035 
1036 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1037 
1038 		ecore_l2_setup(p_hwfn);
1039 		ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
1040 	}
1041 }
1042 
1043 #define FINAL_CLEANUP_POLL_CNT	(100)
1044 #define FINAL_CLEANUP_POLL_TIME	(10)
1045 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
1046 					 struct ecore_ptt *p_ptt,
1047 					 u16 id, bool is_vf)
1048 {
1049 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1050 	enum _ecore_status_t rc = ECORE_TIMEOUT;
1051 
1052 #ifndef ASIC_ONLY
1053 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
1054 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1055 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
1056 		return ECORE_SUCCESS;
1057 	}
1058 #endif
1059 
1060 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1061 	    USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1062 
1063 	if (is_vf)
1064 		id += 0x10;
1065 
1066 	command |= X_FINAL_CLEANUP_AGG_INT <<
1067 	    SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1068 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1069 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1070 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1071 
1072 /* Make sure notification is not set before initiating final cleanup */
1073 
1074 	if (REG_RD(p_hwfn, addr)) {
1075 		DP_NOTICE(p_hwfn, false,
1076 			  "Unexpected; Found final cleanup notification");
1077 		DP_NOTICE(p_hwfn, false,
1078 			  " before initiating final cleanup\n");
1079 		REG_WR(p_hwfn, addr, 0);
1080 	}
1081 
1082 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
1083 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
1084 		   id, command);
1085 
1086 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1087 
1088 	/* Poll until completion */
1089 	while (!REG_RD(p_hwfn, addr) && count--)
1090 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
1091 
1092 	if (REG_RD(p_hwfn, addr))
1093 		rc = ECORE_SUCCESS;
1094 	else
1095 		DP_NOTICE(p_hwfn, true,
1096 			  "Failed to receive FW final cleanup notification\n");
1097 
1098 	/* Cleanup afterwards */
1099 	REG_WR(p_hwfn, addr, 0);
1100 
1101 	return rc;
1102 }
1103 
1104 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
1105 {
1106 	int hw_mode = 0;
1107 
1108 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
1109 		hw_mode |= 1 << MODE_BB;
1110 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
1111 		hw_mode |= 1 << MODE_K2;
1112 	} else {
1113 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
1114 			  p_hwfn->p_dev->type);
1115 		return ECORE_INVAL;
1116 	}
1117 
1118 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
1119 	switch (p_hwfn->p_dev->num_ports_in_engines) {
1120 	case 1:
1121 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1122 		break;
1123 	case 2:
1124 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1125 		break;
1126 	case 4:
1127 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1128 		break;
1129 	default:
1130 		DP_NOTICE(p_hwfn, true,
1131 			  "num_ports_in_engine = %d not supported\n",
1132 			  p_hwfn->p_dev->num_ports_in_engines);
1133 		return ECORE_INVAL;
1134 	}
1135 
1136 	switch (p_hwfn->p_dev->mf_mode) {
1137 	case ECORE_MF_DEFAULT:
1138 	case ECORE_MF_NPAR:
1139 		hw_mode |= 1 << MODE_MF_SI;
1140 		break;
1141 	case ECORE_MF_OVLAN:
1142 		hw_mode |= 1 << MODE_MF_SD;
1143 		break;
1144 	default:
1145 		DP_NOTICE(p_hwfn, true,
1146 			  "Unsupported MF mode, init as DEFAULT\n");
1147 		hw_mode |= 1 << MODE_MF_SI;
1148 	}
1149 
1150 #ifndef ASIC_ONLY
1151 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
1152 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1153 			hw_mode |= 1 << MODE_FPGA;
1154 		} else {
1155 			if (p_hwfn->p_dev->b_is_emul_full)
1156 				hw_mode |= 1 << MODE_EMUL_FULL;
1157 			else
1158 				hw_mode |= 1 << MODE_EMUL_REDUCED;
1159 		}
1160 	} else
1161 #endif
1162 		hw_mode |= 1 << MODE_ASIC;
1163 
1164 	if (p_hwfn->p_dev->num_hwfns > 1)
1165 		hw_mode |= 1 << MODE_100G;
1166 
1167 	p_hwfn->hw_info.hw_mode = hw_mode;
1168 
1169 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
1170 		   "Configuring function for hw_mode: 0x%08x\n",
1171 		   p_hwfn->hw_info.hw_mode);
1172 
1173 	return ECORE_SUCCESS;
1174 }
1175 
1176 #ifndef ASIC_ONLY
1177 /* MFW-replacement initializations for non-ASIC */
1178 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
1179 					       struct ecore_ptt *p_ptt)
1180 {
1181 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1182 	u32 pl_hv = 1;
1183 	int i;
1184 
1185 	if (CHIP_REV_IS_EMUL(p_dev)) {
1186 		if (ECORE_IS_AH(p_dev))
1187 			pl_hv |= 0x600;
1188 	}
1189 
1190 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
1191 
1192 	if (CHIP_REV_IS_EMUL(p_dev) &&
1193 	    (ECORE_IS_AH(p_dev)))
1194 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
1195 			 0x3ffffff);
1196 
1197 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
1198 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
1199 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
1200 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
1201 
1202 	if (CHIP_REV_IS_EMUL(p_dev)) {
1203 		if (ECORE_IS_AH(p_dev)) {
1204 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
1205 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
1206 				 (p_dev->num_ports_in_engines >> 1));
1207 
1208 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
1209 				 p_dev->num_ports_in_engines == 4 ? 0 : 3);
1210 		}
1211 	}
1212 
1213 	/* Poll on RBC */
1214 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
1215 	for (i = 0; i < 100; i++) {
1216 		OSAL_UDELAY(50);
1217 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
1218 			break;
1219 	}
1220 	if (i == 100)
1221 		DP_NOTICE(p_hwfn, true,
1222 			  "RBC done failed to complete in PSWRQ2\n");
1223 
1224 	return ECORE_SUCCESS;
1225 }
1226 #endif
1227 
1228 /* Init run time data for all PFs and their VFs on an engine.
1229  * TBD - for VFs - Once we have parent PF info for each VF in
1230  * shmem available as CAU requires knowledge of parent PF for each VF.
1231  */
1232 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
1233 {
1234 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1235 	int i, sb_id;
1236 
1237 	for_each_hwfn(p_dev, i) {
1238 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1239 		struct ecore_igu_info *p_igu_info;
1240 		struct ecore_igu_block *p_block;
1241 		struct cau_sb_entry sb_entry;
1242 
1243 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1244 
1245 		for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
1246 		     sb_id++) {
1247 			p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
1248 
1249 			if (!p_block->is_pf)
1250 				continue;
1251 
1252 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
1253 						p_block->function_id, 0, 0);
1254 			STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
1255 		}
1256 	}
1257 }
1258 
1259 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
1260 						 struct ecore_ptt *p_ptt,
1261 						 int hw_mode)
1262 {
1263 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1264 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1265 	u8 vf_id, max_num_vfs;
1266 	u16 num_pfs, pf_id;
1267 	u32 concrete_fid;
1268 	enum _ecore_status_t rc = ECORE_SUCCESS;
1269 
1270 	ecore_init_cau_rt_data(p_dev);
1271 
1272 	/* Program GTT windows */
1273 	ecore_gtt_init(p_hwfn);
1274 
1275 #ifndef ASIC_ONLY
1276 	if (CHIP_REV_IS_EMUL(p_dev)) {
1277 		rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
1278 		if (rc != ECORE_SUCCESS)
1279 			return rc;
1280 	}
1281 #endif
1282 
1283 	if (p_hwfn->mcp_info) {
1284 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1285 			qm_info->pf_rl_en = 1;
1286 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1287 			qm_info->pf_wfq_en = 1;
1288 	}
1289 
1290 	ecore_qm_common_rt_init(p_hwfn,
1291 				p_dev->num_ports_in_engines,
1292 				qm_info->max_phys_tcs_per_port,
1293 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1294 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1295 				qm_info->qm_port_params);
1296 
1297 	ecore_cxt_hw_init_common(p_hwfn);
1298 
1299 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1300 	if (rc != ECORE_SUCCESS)
1301 		return rc;
1302 
1303 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1304 	 * need to decide with which value, maybe runtime
1305 	 */
1306 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1307 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1308 
1309 	if (ECORE_IS_BB(p_dev)) {
1310 		/* Workaround clears ROCE search for all functions to prevent
1311 		 * involving non initialized function in processing ROCE packet.
1312 		 */
1313 		num_pfs = NUM_OF_ENG_PFS(p_dev);
1314 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1315 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1316 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1317 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1318 		}
1319 		/* pretend to original PF */
1320 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1321 	}
1322 
1323 	/* Workaround for avoiding CCFC execution error when getting packets
1324 	 * with CRC errors, and allowing instead the invoking of the FW error
1325 	 * handler.
1326 	 * This is not done inside the init tool since it currently can't
1327 	 * perform a pretending to VFs.
1328 	 */
1329 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1330 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1331 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1332 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1333 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1334 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1335 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1336 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1337 	}
1338 	/* pretend to original PF */
1339 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1340 
1341 	return rc;
1342 }
1343 
1344 #ifndef ASIC_ONLY
1345 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1346 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1347 
1348 #define PMEG_IF_BYTE_COUNT	8
1349 
1350 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1351 			     struct ecore_ptt *p_ptt,
1352 			     u32 addr, u64 data, u8 reg_type, u8 port)
1353 {
1354 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1355 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1356 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
1357 		   (8 << PMEG_IF_BYTE_COUNT),
1358 		   (reg_type << 25) | (addr << 8) | port,
1359 		   (u32)((data >> 32) & 0xffffffff),
1360 		   (u32)(data & 0xffffffff));
1361 
1362 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
1363 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
1364 		  0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1365 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
1366 		 (reg_type << 25) | (addr << 8) | port);
1367 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
1368 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
1369 		 (data >> 32) & 0xffffffff);
1370 }
1371 
1372 #define XLPORT_MODE_REG	(0x20a)
1373 #define XLPORT_MAC_CONTROL (0x210)
1374 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1375 #define XLPORT_ENABLE_REG (0x20b)
1376 
1377 #define XLMAC_CTRL (0x600)
1378 #define XLMAC_MODE (0x601)
1379 #define XLMAC_RX_MAX_SIZE (0x608)
1380 #define XLMAC_TX_CTRL (0x604)
1381 #define XLMAC_PAUSE_CTRL (0x60d)
1382 #define XLMAC_PFC_CTRL (0x60e)
1383 
1384 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
1385 				    struct ecore_ptt *p_ptt)
1386 {
1387 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1388 
1389 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1390 
1391 	/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1392 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1393 			 port);
1394 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1395 	/* XLMAC: SOFT RESET */
1396 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1397 	/* XLMAC: Port Speed >= 10Gbps */
1398 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1399 	/* XLMAC: Max Size */
1400 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1401 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1402 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1403 			 0, port);
1404 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1405 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1406 			 0x30ffffc000ULL, 0, port);
1407 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1408 			 port);	/* XLMAC: TX_EN, RX_EN */
1409 	/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1410 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1411 			 0x1003 | (loopback << 2), 0, port);
1412 	/* Enabled Parallel PFC interface */
1413 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1414 
1415 	/* XLPORT port enable */
1416 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1417 }
1418 
1419 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
1420 				       struct ecore_ptt *p_ptt)
1421 {
1422 	u8 port = p_hwfn->port_id;
1423 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
1424 
1425 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1426 
1427 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
1428 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
1429 		 (port <<
1430 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
1431 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
1432 
1433 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
1434 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
1435 
1436 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
1437 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
1438 
1439 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
1440 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
1441 
1442 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
1443 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
1444 
1445 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
1446 		 (0xA <<
1447 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
1448 		 (8 <<
1449 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
1450 
1451 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
1452 		 0xa853);
1453 }
1454 
1455 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1456 				 struct ecore_ptt *p_ptt)
1457 {
1458 	if (ECORE_IS_AH(p_hwfn->p_dev))
1459 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
1460 	else /* BB */
1461 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
1462 }
1463 
1464 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
1465 			       struct ecore_ptt *p_ptt,  u8 port)
1466 {
1467 	int port_offset = port ? 0x800 : 0;
1468 	u32 xmac_rxctrl = 0;
1469 
1470 	/* Reset of XMAC */
1471 	/* FIXME: move to common start */
1472 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1473 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Clear */
1474 	OSAL_MSLEEP(1);
1475 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1476 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Set */
1477 
1478 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
1479 
1480 	/* Set the number of ports on the Warp Core to 10G */
1481 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
1482 
1483 	/* Soft reset of XMAC */
1484 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1485 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1486 	OSAL_MSLEEP(1);
1487 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1488 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1489 
1490 	/* FIXME: move to common end */
1491 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1492 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
1493 
1494 	/* Set Max packet size: initialize XMAC block register for port 0 */
1495 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
1496 
1497 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1498 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
1499 
1500 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1501 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
1502 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
1503 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
1504 			       XMAC_REG_RX_CTRL_BB + port_offset);
1505 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
1506 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
1507 }
1508 #endif
1509 
1510 static enum _ecore_status_t
1511 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1512 		       struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1513 {
1514 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1515 	u32 dpi_bit_shift, dpi_count;
1516 	u32 min_dpis;
1517 
1518 	/* Calculate DPI size
1519 	 * ------------------
1520 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1521 	 * the kernel for, e.g, L2. The others are free to be used by non-
1522 	 * trusted applications, typically from user space. Each page, called a
1523 	 * doorbell page is sectioned into windows that allow doorbells to be
1524 	 * issued in parallel by the kernel/application. The size of such a
1525 	 * window (a.k.a. WID) is 1kB.
1526 	 * Summary:
1527 	 *    1kB WID x N WIDS = DPI page size
1528 	 *    DPI page size x N DPIs = PWM region size
1529 	 * Notes:
1530 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1531 	 * in order to ensure that two applications won't share the same page.
1532 	 * It also must contain at least one WID per CPU to allow parallelism.
1533 	 * It also must be a power of 2, since it is stored as a bit shift.
1534 	 *
1535 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1536 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1537 	 * containing 4 WIDs.
1538 	 */
1539 	dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1540 	dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1541 	dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1542 	dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1543 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1544 
1545 	dpi_count = pwm_region_size / dpi_page_size;
1546 
1547 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1548 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1549 
1550 	/* Update hwfn */
1551 	p_hwfn->dpi_size = dpi_page_size;
1552 	p_hwfn->dpi_count = dpi_count;
1553 
1554 	/* Update registers */
1555 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1556 
1557 	if (dpi_count < min_dpis)
1558 		return ECORE_NORESOURCES;
1559 
1560 	return ECORE_SUCCESS;
1561 }
1562 
1563 enum ECORE_ROCE_EDPM_MODE {
1564 	ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1565 	ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1566 	ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1567 };
1568 
1569 static enum _ecore_status_t
1570 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1571 			      struct ecore_ptt *p_ptt)
1572 {
1573 	u32 pwm_regsize, norm_regsize;
1574 	u32 non_pwm_conn, min_addr_reg1;
1575 	u32 db_bar_size, n_cpus;
1576 	u32 roce_edpm_mode;
1577 	u32 pf_dems_shift;
1578 	enum _ecore_status_t rc = ECORE_SUCCESS;
1579 	u8 cond;
1580 
1581 	db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1582 	if (p_hwfn->p_dev->num_hwfns > 1)
1583 		db_bar_size /= 2;
1584 
1585 	/* Calculate doorbell regions
1586 	 * -----------------------------------
1587 	 * The doorbell BAR is made of two regions. The first is called normal
1588 	 * region and the second is called PWM region. In the normal region
1589 	 * each ICID has its own set of addresses so that writing to that
1590 	 * specific address identifies the ICID. In the Process Window Mode
1591 	 * region the ICID is given in the data written to the doorbell. The
1592 	 * above per PF register denotes the offset in the doorbell BAR in which
1593 	 * the PWM region begins.
1594 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1595 	 * non-PWM connection. The calculation below computes the total non-PWM
1596 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1597 	 * in units of 4,096 bytes.
1598 	 */
1599 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1600 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1601 					  OSAL_NULL) +
1602 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1603 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1604 	min_addr_reg1 = norm_regsize / 4096;
1605 	pwm_regsize = db_bar_size - norm_regsize;
1606 
1607 	/* Check that the normal and PWM sizes are valid */
1608 	if (db_bar_size < norm_regsize) {
1609 		DP_ERR(p_hwfn->p_dev,
1610 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1611 		       db_bar_size, norm_regsize);
1612 		return ECORE_NORESOURCES;
1613 	}
1614 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1615 		DP_ERR(p_hwfn->p_dev,
1616 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1617 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1618 		       norm_regsize);
1619 		return ECORE_NORESOURCES;
1620 	}
1621 
1622 	/* Calculate number of DPIs */
1623 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1624 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1625 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1626 		/* Either EDPM is mandatory, or we are attempting to allocate a
1627 		 * WID per CPU.
1628 		 */
1629 		n_cpus = OSAL_NUM_ACTIVE_CPU();
1630 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1631 	}
1632 
1633 	cond = ((rc != ECORE_SUCCESS) &&
1634 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1635 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1636 	if (cond || p_hwfn->dcbx_no_edpm) {
1637 		/* Either EDPM is disabled from user configuration, or it is
1638 		 * disabled via DCBx, or it is not mandatory and we failed to
1639 		 * allocated a WID per CPU.
1640 		 */
1641 		n_cpus = 1;
1642 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1643 
1644 		/* If we entered this flow due to DCBX then the DPM register is
1645 		 * already configured.
1646 		 */
1647 	}
1648 
1649 	DP_INFO(p_hwfn,
1650 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1651 		norm_regsize, pwm_regsize);
1652 	DP_INFO(p_hwfn,
1653 		" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1654 		p_hwfn->dpi_size, p_hwfn->dpi_count,
1655 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1656 		"disabled" : "enabled");
1657 
1658 	/* Check return codes from above calls */
1659 	if (rc != ECORE_SUCCESS) {
1660 		DP_ERR(p_hwfn,
1661 		       "Failed to allocate enough DPIs\n");
1662 		return ECORE_NORESOURCES;
1663 	}
1664 
1665 	/* Update hwfn */
1666 	p_hwfn->dpi_start_offset = norm_regsize;
1667 
1668 	/* Update registers */
1669 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1670 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1671 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1672 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1673 
1674 	return ECORE_SUCCESS;
1675 }
1676 
1677 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1678 					       struct ecore_ptt *p_ptt,
1679 					       int hw_mode)
1680 {
1681 	enum _ecore_status_t rc	= ECORE_SUCCESS;
1682 
1683 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1684 			    hw_mode);
1685 	if (rc != ECORE_SUCCESS)
1686 		return rc;
1687 #ifndef ASIC_ONLY
1688 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1689 		return ECORE_SUCCESS;
1690 
1691 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1692 		if (ECORE_IS_AH(p_hwfn->p_dev))
1693 			return ECORE_SUCCESS;
1694 		else if (ECORE_IS_BB(p_hwfn->p_dev))
1695 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
1696 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1697 		if (p_hwfn->p_dev->num_hwfns > 1) {
1698 			/* Activate OPTE in CMT */
1699 			u32 val;
1700 
1701 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1702 			val |= 0x10;
1703 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1704 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1705 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1706 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1707 			ecore_wr(p_hwfn, p_ptt,
1708 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1709 			ecore_wr(p_hwfn, p_ptt,
1710 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1711 			ecore_wr(p_hwfn, p_ptt,
1712 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1713 				 0x55555555);
1714 		}
1715 
1716 		ecore_emul_link_init(p_hwfn, p_ptt);
1717 	} else {
1718 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1719 	}
1720 #endif
1721 
1722 	return rc;
1723 }
1724 
1725 static enum _ecore_status_t
1726 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1727 		 struct ecore_ptt *p_ptt,
1728 		 struct ecore_tunnel_info *p_tunn,
1729 		 int hw_mode,
1730 		 bool b_hw_start,
1731 		 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1732 {
1733 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1734 	u32 prs_reg;
1735 	enum _ecore_status_t rc = ECORE_SUCCESS;
1736 	u16 ctrl;
1737 	int pos;
1738 
1739 	if (p_hwfn->mcp_info) {
1740 		struct ecore_mcp_function_info *p_info;
1741 
1742 		p_info = &p_hwfn->mcp_info->func_info;
1743 		if (p_info->bandwidth_min)
1744 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1745 
1746 		/* Update rate limit once we'll actually have a link */
1747 		p_hwfn->qm_info.pf_rl = 100000;
1748 	}
1749 	ecore_cxt_hw_init_pf(p_hwfn);
1750 
1751 	ecore_int_igu_init_rt(p_hwfn);
1752 
1753 	/* Set VLAN in NIG if needed */
1754 	if (hw_mode & (1 << MODE_MF_SD)) {
1755 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1756 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1757 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1758 			     p_hwfn->hw_info.ovlan);
1759 	}
1760 
1761 	/* Enable classification by MAC if needed */
1762 	if (hw_mode & (1 << MODE_MF_SI)) {
1763 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1764 			   "Configuring TAGMAC_CLS_TYPE\n");
1765 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1766 			     1);
1767 	}
1768 
1769 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
1770 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1771 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1772 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1773 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1774 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1775 
1776 	/* perform debug configuration when chip is out of reset */
1777 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1778 
1779 	/* Cleanup chip from previous driver if such remains exist */
1780 	rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1781 	if (rc != ECORE_SUCCESS) {
1782 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1783 		return rc;
1784 	}
1785 
1786 	/* PF Init sequence */
1787 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1788 	if (rc)
1789 		return rc;
1790 
1791 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1792 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1793 	if (rc)
1794 		return rc;
1795 
1796 	/* Pure runtime initializations - directly to the HW  */
1797 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1798 
1799 	/* PCI relaxed ordering causes a decrease in the performance on some
1800 	 * systems. Till a root cause is found, disable this attribute in the
1801 	 * PCI config space.
1802 	 */
1803 	/* Not in use @DPDK
1804 	* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1805 	* if (!pos) {
1806 	*	DP_NOTICE(p_hwfn, true,
1807 	*		  "Failed to find the PCIe Cap\n");
1808 	*	return ECORE_IO;
1809 	* }
1810 	* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1811 	* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1812 	* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1813 	*/
1814 
1815 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1816 	if (rc)
1817 		return rc;
1818 	if (b_hw_start) {
1819 		/* enable interrupts */
1820 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1821 		if (rc != ECORE_SUCCESS)
1822 			return rc;
1823 
1824 		/* send function start command */
1825 		rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1826 				       allow_npar_tx_switch);
1827 		if (rc) {
1828 			DP_NOTICE(p_hwfn, true,
1829 				  "Function start ramrod failed\n");
1830 		} else {
1831 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1832 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1833 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1834 
1835 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1836 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1837 					 (1 << 2));
1838 				ecore_wr(p_hwfn, p_ptt,
1839 				    PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1840 				    0x100);
1841 			}
1842 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1843 				   "PRS_REG_SEARCH registers after start PFn\n");
1844 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1845 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1846 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1847 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1848 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1849 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1850 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1851 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1852 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1853 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1854 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1855 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1856 			prs_reg = ecore_rd(p_hwfn, p_ptt,
1857 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
1858 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1859 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1860 				   prs_reg);
1861 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1862 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1863 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1864 		}
1865 	}
1866 	return rc;
1867 }
1868 
1869 static enum _ecore_status_t
1870 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1871 		      struct ecore_ptt *p_ptt, u8 enable)
1872 {
1873 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1874 
1875 	/* Change PF in PXP */
1876 	ecore_wr(p_hwfn, p_ptt,
1877 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1878 
1879 	/* wait until value is set - try for 1 second every 50us */
1880 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1881 		val = ecore_rd(p_hwfn, p_ptt,
1882 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1883 		if (val == set_val)
1884 			break;
1885 
1886 		OSAL_UDELAY(50);
1887 	}
1888 
1889 	if (val != set_val) {
1890 		DP_NOTICE(p_hwfn, true,
1891 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
1892 		return ECORE_UNKNOWN_ERROR;
1893 	}
1894 
1895 	return ECORE_SUCCESS;
1896 }
1897 
1898 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1899 				  struct ecore_ptt *p_main_ptt)
1900 {
1901 	/* Read shadow of current MFW mailbox */
1902 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1903 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1904 		    p_hwfn->mcp_info->mfw_mb_cur,
1905 		    p_hwfn->mcp_info->mfw_mb_length);
1906 }
1907 
1908 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
1909 				    struct ecore_hw_init_params *p_params)
1910 {
1911 	if (p_params->p_tunn) {
1912 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
1913 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
1914 	}
1915 
1916 	p_hwfn->b_int_enabled = 1;
1917 
1918 	return ECORE_SUCCESS;
1919 }
1920 
1921 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1922 				   struct ecore_hw_init_params *p_params)
1923 {
1924 	struct ecore_load_req_params load_req_params;
1925 	u32 load_code, param, drv_mb_param;
1926 	bool b_default_mtu = true;
1927 	struct ecore_hwfn *p_hwfn;
1928 	enum _ecore_status_t rc = ECORE_SUCCESS, mfw_rc;
1929 	int i;
1930 
1931 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
1932 	    (p_dev->num_hwfns > 1)) {
1933 		DP_NOTICE(p_dev, false,
1934 			  "MSI mode is not supported for CMT devices\n");
1935 		return ECORE_INVAL;
1936 	}
1937 
1938 	if (IS_PF(p_dev)) {
1939 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1940 		if (rc != ECORE_SUCCESS)
1941 			return rc;
1942 	}
1943 
1944 	for_each_hwfn(p_dev, i) {
1945 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1946 
1947 		/* If management didn't provide a default, set one of our own */
1948 		if (!p_hwfn->hw_info.mtu) {
1949 			p_hwfn->hw_info.mtu = 1500;
1950 			b_default_mtu = false;
1951 		}
1952 
1953 		if (IS_VF(p_dev)) {
1954 			ecore_vf_start(p_hwfn, p_params);
1955 			continue;
1956 		}
1957 
1958 		/* Enable DMAE in PXP */
1959 		rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1960 		if (rc != ECORE_SUCCESS)
1961 			return rc;
1962 
1963 		rc = ecore_calc_hw_mode(p_hwfn);
1964 		if (rc != ECORE_SUCCESS)
1965 			return rc;
1966 
1967 		OSAL_MEM_ZERO(&load_req_params, sizeof(load_req_params));
1968 		load_req_params.drv_role = p_params->is_crash_kernel ?
1969 					   ECORE_DRV_ROLE_KDUMP :
1970 					   ECORE_DRV_ROLE_OS;
1971 		load_req_params.timeout_val = p_params->mfw_timeout_val;
1972 		load_req_params.avoid_eng_reset = p_params->avoid_eng_reset;
1973 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
1974 					&load_req_params);
1975 		if (rc != ECORE_SUCCESS) {
1976 			DP_NOTICE(p_hwfn, true,
1977 				  "Failed sending a LOAD_REQ command\n");
1978 			return rc;
1979 		}
1980 
1981 		load_code = load_req_params.load_code;
1982 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1983 			   "Load request was sent. Load code: 0x%x\n",
1984 			   load_code);
1985 
1986 		/* CQ75580:
1987 		 * When coming back from hiberbate state, the registers from
1988 		 * which shadow is read initially are not initialized. It turns
1989 		 * out that these registers get initialized during the call to
1990 		 * ecore_mcp_load_req request. So we need to reread them here
1991 		 * to get the proper shadow register value.
1992 		 * Note: This is a workaround for the missing MFW
1993 		 * initialization. It may be removed once the implementation
1994 		 * is done.
1995 		 */
1996 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1997 
1998 		/* Only relevant for recovery:
1999 		 * Clear the indication after the LOAD_REQ command is responded
2000 		 * by the MFW.
2001 		 */
2002 		p_dev->recov_in_prog = false;
2003 
2004 		p_hwfn->first_on_engine = (load_code ==
2005 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
2006 
2007 		if (!qm_lock_init) {
2008 			OSAL_SPIN_LOCK_INIT(&qm_lock);
2009 			qm_lock_init = true;
2010 		}
2011 
2012 		switch (load_code) {
2013 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
2014 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2015 						  p_hwfn->hw_info.hw_mode);
2016 			if (rc != ECORE_SUCCESS)
2017 				break;
2018 			/* Fall into */
2019 		case FW_MSG_CODE_DRV_LOAD_PORT:
2020 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2021 						p_hwfn->hw_info.hw_mode);
2022 			if (rc != ECORE_SUCCESS)
2023 				break;
2024 			/* Fall into */
2025 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2026 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2027 					      p_params->p_tunn,
2028 					      p_hwfn->hw_info.hw_mode,
2029 					      p_params->b_hw_start,
2030 					      p_params->int_mode,
2031 					      p_params->allow_npar_tx_switch);
2032 			break;
2033 		default:
2034 			DP_NOTICE(p_hwfn, false,
2035 				  "Unexpected load code [0x%08x]", load_code);
2036 			rc = ECORE_NOTIMPL;
2037 			break;
2038 		}
2039 
2040 		if (rc != ECORE_SUCCESS)
2041 			DP_NOTICE(p_hwfn, true,
2042 				  "init phase failed for loadcode 0x%x (rc %d)\n",
2043 				  load_code, rc);
2044 
2045 		/* ACK mfw regardless of success or failure of initialization */
2046 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2047 				       DRV_MSG_CODE_LOAD_DONE,
2048 				       0, &load_code, &param);
2049 		if (rc != ECORE_SUCCESS)
2050 			return rc;
2051 
2052 		if (mfw_rc != ECORE_SUCCESS) {
2053 			DP_NOTICE(p_hwfn, true,
2054 				  "Failed sending a LOAD_DONE command\n");
2055 			return mfw_rc;
2056 		}
2057 
2058 		/* send DCBX attention request command */
2059 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
2060 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
2061 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2062 				       DRV_MSG_CODE_SET_DCBX,
2063 				       1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
2064 				       &load_code, &param);
2065 		if (mfw_rc != ECORE_SUCCESS) {
2066 			DP_NOTICE(p_hwfn, true,
2067 				  "Failed to send DCBX attention request\n");
2068 			return mfw_rc;
2069 		}
2070 
2071 		p_hwfn->hw_init_done = true;
2072 	}
2073 
2074 	if (IS_PF(p_dev)) {
2075 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2076 		drv_mb_param = STORM_FW_VERSION;
2077 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2078 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2079 				   drv_mb_param, &load_code, &param);
2080 		if (rc != ECORE_SUCCESS)
2081 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
2082 
2083 		if (!b_default_mtu)
2084 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2085 						      p_hwfn->hw_info.mtu);
2086 		if (rc != ECORE_SUCCESS)
2087 			DP_INFO(p_hwfn, "Failed to update default mtu\n");
2088 
2089 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
2090 						      p_hwfn->p_main_ptt,
2091 						ECORE_OV_DRIVER_STATE_DISABLED);
2092 		if (rc != ECORE_SUCCESS)
2093 			DP_INFO(p_hwfn, "Failed to update driver state\n");
2094 	}
2095 
2096 	return rc;
2097 }
2098 
2099 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
2100 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
2101 				 struct ecore_hwfn *p_hwfn,
2102 				 struct ecore_ptt *p_ptt)
2103 {
2104 	int i;
2105 
2106 	/* close timers */
2107 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2108 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2109 	for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
2110 									i++) {
2111 		if ((!ecore_rd(p_hwfn, p_ptt,
2112 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2113 		    (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
2114 			break;
2115 
2116 		/* Dependent on number of connection/tasks, possibly
2117 		 * 1ms sleep is required between polls
2118 		 */
2119 		OSAL_MSLEEP(1);
2120 	}
2121 
2122 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
2123 		return;
2124 
2125 	DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
2126 		  " [Connection %02x Tasks %02x]\n",
2127 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2128 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2129 }
2130 
2131 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
2132 {
2133 	int j;
2134 
2135 	for_each_hwfn(p_dev, j) {
2136 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2137 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2138 
2139 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2140 	}
2141 }
2142 
2143 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
2144 						 struct ecore_ptt *p_ptt,
2145 						 u32 addr, u32 expected_val)
2146 {
2147 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
2148 
2149 	if (val != expected_val) {
2150 		DP_NOTICE(p_hwfn, true,
2151 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
2152 			  addr, val, expected_val);
2153 		return ECORE_UNKNOWN_ERROR;
2154 	}
2155 
2156 	return ECORE_SUCCESS;
2157 }
2158 
2159 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
2160 {
2161 	struct ecore_hwfn *p_hwfn;
2162 	struct ecore_ptt *p_ptt;
2163 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
2164 	int j;
2165 
2166 	for_each_hwfn(p_dev, j) {
2167 		p_hwfn = &p_dev->hwfns[j];
2168 		p_ptt = p_hwfn->p_main_ptt;
2169 
2170 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
2171 
2172 		if (IS_VF(p_dev)) {
2173 			ecore_vf_pf_int_cleanup(p_hwfn);
2174 			rc = ecore_vf_pf_reset(p_hwfn);
2175 			if (rc != ECORE_SUCCESS) {
2176 				DP_NOTICE(p_hwfn, true,
2177 					  "ecore_vf_pf_reset failed. rc = %d.\n",
2178 					  rc);
2179 				rc2 = ECORE_UNKNOWN_ERROR;
2180 			}
2181 			continue;
2182 		}
2183 
2184 		/* mark the hw as uninitialized... */
2185 		p_hwfn->hw_init_done = false;
2186 
2187 		/* Send unload command to MCP */
2188 		if (!p_dev->recov_in_prog) {
2189 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
2190 			if (rc != ECORE_SUCCESS) {
2191 				DP_NOTICE(p_hwfn, true,
2192 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2193 					  rc);
2194 				rc2 = ECORE_UNKNOWN_ERROR;
2195 			}
2196 		}
2197 
2198 		OSAL_DPC_SYNC(p_hwfn);
2199 
2200 		/* After this point no MFW attentions are expected, e.g. prevent
2201 		 * race between pf stop and dcbx pf update.
2202 		 */
2203 
2204 		rc = ecore_sp_pf_stop(p_hwfn);
2205 		if (rc != ECORE_SUCCESS) {
2206 			DP_NOTICE(p_hwfn, true,
2207 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2208 				  rc);
2209 			rc2 = ECORE_UNKNOWN_ERROR;
2210 		}
2211 
2212 		/* perform debug action after PF stop was sent */
2213 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
2214 
2215 		/* close NIG to BRB gate */
2216 		ecore_wr(p_hwfn, p_ptt,
2217 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2218 
2219 		/* close parser */
2220 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2221 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2222 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2223 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2224 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2225 
2226 		/* @@@TBD - clean transmission queues (5.b) */
2227 		/* @@@TBD - clean BTB (5.c) */
2228 
2229 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
2230 
2231 		/* @@@TBD - verify DMAE requests are done (8) */
2232 
2233 		/* Disable Attention Generation */
2234 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
2235 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2236 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2237 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2238 		/* Need to wait 1ms to guarantee SBs are cleared */
2239 		OSAL_MSLEEP(1);
2240 
2241 		if (!p_dev->recov_in_prog) {
2242 			ecore_verify_reg_val(p_hwfn, p_ptt,
2243 					     QM_REG_USG_CNT_PF_TX, 0);
2244 			ecore_verify_reg_val(p_hwfn, p_ptt,
2245 					     QM_REG_USG_CNT_PF_OTHER, 0);
2246 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
2247 		}
2248 
2249 		/* Disable PF in HW blocks */
2250 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2251 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2252 
2253 		if (!p_dev->recov_in_prog) {
2254 			ecore_mcp_unload_done(p_hwfn, p_ptt);
2255 			if (rc != ECORE_SUCCESS) {
2256 				DP_NOTICE(p_hwfn, true,
2257 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2258 					  rc);
2259 				rc2 = ECORE_UNKNOWN_ERROR;
2260 			}
2261 		}
2262 	} /* hwfn loop */
2263 
2264 	if (IS_PF(p_dev)) {
2265 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
2266 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
2267 
2268 		/* Disable DMAE in PXP - in CMT, this should only be done for
2269 		 * first hw-function, and only after all transactions have
2270 		 * stopped for all active hw-functions.
2271 		 */
2272 		rc = ecore_change_pci_hwfn(p_hwfn, p_ptt, false);
2273 		if (rc != ECORE_SUCCESS) {
2274 			DP_NOTICE(p_hwfn, true,
2275 				  "ecore_change_pci_hwfn failed. rc = %d.\n",
2276 				  rc);
2277 			rc2 = ECORE_UNKNOWN_ERROR;
2278 		}
2279 	}
2280 
2281 	return rc2;
2282 }
2283 
2284 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
2285 {
2286 	int j;
2287 
2288 	for_each_hwfn(p_dev, j) {
2289 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2290 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2291 
2292 		if (IS_VF(p_dev)) {
2293 			ecore_vf_pf_int_cleanup(p_hwfn);
2294 			continue;
2295 		}
2296 
2297 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2298 			   "Shutting down the fastpath\n");
2299 
2300 		ecore_wr(p_hwfn, p_ptt,
2301 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2302 
2303 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2304 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2305 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2306 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2307 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2308 
2309 		/* @@@TBD - clean transmission queues (5.b) */
2310 		/* @@@TBD - clean BTB (5.c) */
2311 
2312 		/* @@@TBD - verify DMAE requests are done (8) */
2313 
2314 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2315 		/* Need to wait 1ms to guarantee SBs are cleared */
2316 		OSAL_MSLEEP(1);
2317 	}
2318 }
2319 
2320 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
2321 {
2322 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
2323 
2324 	if (IS_VF(p_hwfn->p_dev))
2325 		return;
2326 
2327 	/* If roce info is allocated it means roce is initialized and should
2328 	 * be enabled in searcher.
2329 	 */
2330 	if (p_hwfn->p_rdma_info) {
2331 		if (p_hwfn->b_rdma_enabled_in_prs)
2332 			ecore_wr(p_hwfn, p_ptt,
2333 				 p_hwfn->rdma_prs_search_reg, 0x1);
2334 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
2335 	}
2336 
2337 	/* Re-open incoming traffic */
2338 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2339 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2340 }
2341 
2342 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2343 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2344 {
2345 	ecore_ptt_pool_free(p_hwfn);
2346 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2347 }
2348 
2349 /* Setup bar access */
2350 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2351 {
2352 	/* clear indirect access */
2353 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
2354 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2355 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
2356 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2357 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
2358 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2359 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
2360 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2361 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
2362 	} else {
2363 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2364 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2365 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2366 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2367 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2368 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2369 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2370 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2371 	}
2372 
2373 	/* Clean Previous errors if such exist */
2374 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2375 		 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2376 
2377 	/* enable internal target-read */
2378 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2379 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2380 }
2381 
2382 static void get_function_id(struct ecore_hwfn *p_hwfn)
2383 {
2384 	/* ME Register */
2385 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2386 						  PXP_PF_ME_OPAQUE_ADDR);
2387 
2388 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2389 
2390 	/* Bits 16-19 from the ME registers are the pf_num */
2391 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2392 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2393 				      PXP_CONCRETE_FID_PFID);
2394 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2395 				    PXP_CONCRETE_FID_PORT);
2396 
2397 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2398 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2399 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2400 }
2401 
2402 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2403 {
2404 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2405 	struct ecore_sb_cnt_info sb_cnt_info;
2406 	int num_features = 1;
2407 
2408 	/* L2 Queues require each: 1 status block. 1 L2 queue */
2409 	feat_num[ECORE_PF_L2_QUE] =
2410 	    OSAL_MIN_T(u32,
2411 		       RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2412 		       RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2413 
2414 	OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2415 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2416 	feat_num[ECORE_VF_L2_QUE] =
2417 		OSAL_MIN_T(u32,
2418 			   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
2419 			   FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2420 			   sb_cnt_info.sb_iov_cnt);
2421 
2422 	feat_num[ECORE_FCOE_CQ] = OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_SB),
2423 					     RESC_NUM(p_hwfn, ECORE_CMDQS_CQS));
2424 	feat_num[ECORE_ISCSI_CQ] = OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_SB),
2425 					     RESC_NUM(p_hwfn, ECORE_CMDQS_CQS));
2426 
2427 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2428 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
2429 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
2430 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
2431 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
2432 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
2433 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
2434 		   RESC_NUM(p_hwfn, ECORE_SB));
2435 }
2436 
2437 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2438 {
2439 	switch (res_id) {
2440 	case ECORE_SB:
2441 		return "SB";
2442 	case ECORE_L2_QUEUE:
2443 		return "L2_QUEUE";
2444 	case ECORE_VPORT:
2445 		return "VPORT";
2446 	case ECORE_RSS_ENG:
2447 		return "RSS_ENG";
2448 	case ECORE_PQ:
2449 		return "PQ";
2450 	case ECORE_RL:
2451 		return "RL";
2452 	case ECORE_MAC:
2453 		return "MAC";
2454 	case ECORE_VLAN:
2455 		return "VLAN";
2456 	case ECORE_RDMA_CNQ_RAM:
2457 		return "RDMA_CNQ_RAM";
2458 	case ECORE_ILT:
2459 		return "ILT";
2460 	case ECORE_LL2_QUEUE:
2461 		return "LL2_QUEUE";
2462 	case ECORE_CMDQS_CQS:
2463 		return "CMDQS_CQS";
2464 	case ECORE_RDMA_STATS_QUEUE:
2465 		return "RDMA_STATS_QUEUE";
2466 	case ECORE_BDQ:
2467 		return "BDQ";
2468 	default:
2469 		return "UNKNOWN_RESOURCE";
2470 	}
2471 }
2472 
2473 static enum _ecore_status_t
2474 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
2475 			      enum ecore_resources res_id, u32 resc_max_val,
2476 			      u32 *p_mcp_resp)
2477 {
2478 	enum _ecore_status_t rc;
2479 
2480 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_hwfn->p_main_ptt, res_id,
2481 					resc_max_val, p_mcp_resp);
2482 	if (rc != ECORE_SUCCESS) {
2483 		DP_NOTICE(p_hwfn, true,
2484 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2485 			  res_id, ecore_hw_get_resc_name(res_id));
2486 		return rc;
2487 	}
2488 
2489 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2490 		DP_INFO(p_hwfn,
2491 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2492 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
2493 
2494 	return ECORE_SUCCESS;
2495 }
2496 
2497 static enum _ecore_status_t
2498 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn)
2499 {
2500 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2501 	u32 resc_max_val, mcp_resp;
2502 	u8 res_id;
2503 	enum _ecore_status_t rc;
2504 
2505 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2506 		/* @DPDK */
2507 		switch (res_id) {
2508 		case ECORE_LL2_QUEUE:
2509 		case ECORE_RDMA_CNQ_RAM:
2510 		case ECORE_RDMA_STATS_QUEUE:
2511 		case ECORE_BDQ:
2512 			resc_max_val = 0;
2513 			break;
2514 		default:
2515 			continue;
2516 		}
2517 
2518 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, res_id,
2519 						   resc_max_val, &mcp_resp);
2520 		if (rc != ECORE_SUCCESS)
2521 			return rc;
2522 
2523 		/* There's no point to continue to the next resource if the
2524 		 * command is not supported by the MFW.
2525 		 * We do continue if the command is supported but the resource
2526 		 * is unknown to the MFW. Such a resource will be later
2527 		 * configured with the default allocation values.
2528 		 */
2529 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2530 			return ECORE_NOTIMPL;
2531 	}
2532 
2533 	return ECORE_SUCCESS;
2534 }
2535 
2536 static
2537 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
2538 					    enum ecore_resources res_id,
2539 					    u32 *p_resc_num, u32 *p_resc_start)
2540 {
2541 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2542 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2543 	struct ecore_sb_cnt_info sb_cnt_info;
2544 
2545 	switch (res_id) {
2546 	case ECORE_SB:
2547 		OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2548 		ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2549 		*p_resc_num = sb_cnt_info.sb_cnt;
2550 		break;
2551 	case ECORE_L2_QUEUE:
2552 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2553 				 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2554 		break;
2555 	case ECORE_VPORT:
2556 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2557 				 MAX_NUM_VPORTS_BB) / num_funcs;
2558 		break;
2559 	case ECORE_RSS_ENG:
2560 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2561 				 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2562 		break;
2563 	case ECORE_PQ:
2564 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2565 				 MAX_QM_TX_QUEUES_BB) / num_funcs;
2566 		break;
2567 	case ECORE_RL:
2568 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2569 		break;
2570 	case ECORE_MAC:
2571 	case ECORE_VLAN:
2572 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2573 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2574 		break;
2575 	case ECORE_ILT:
2576 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2577 				 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2578 		break;
2579 	case ECORE_LL2_QUEUE:
2580 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2581 		break;
2582 	case ECORE_RDMA_CNQ_RAM:
2583 	case ECORE_CMDQS_CQS:
2584 		/* CNQ/CMDQS are the same resource */
2585 		/* @DPDK */
2586 		*p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2587 		break;
2588 	case ECORE_RDMA_STATS_QUEUE:
2589 		/* @DPDK */
2590 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2591 				 MAX_NUM_VPORTS_BB) / num_funcs;
2592 		break;
2593 	case ECORE_BDQ:
2594 		/* @DPDK */
2595 		*p_resc_num = 0;
2596 		break;
2597 	default:
2598 		break;
2599 	}
2600 
2601 
2602 	switch (res_id) {
2603 	case ECORE_BDQ:
2604 		if (!*p_resc_num)
2605 			*p_resc_start = 0;
2606 		break;
2607 	default:
2608 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
2609 		break;
2610 	}
2611 
2612 	return ECORE_SUCCESS;
2613 }
2614 
2615 static enum _ecore_status_t
2616 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
2617 			 bool drv_resc_alloc)
2618 {
2619 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
2620 	u32 mcp_resp, *p_resc_num, *p_resc_start;
2621 	enum _ecore_status_t rc;
2622 
2623 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
2624 	p_resc_start = &RESC_START(p_hwfn, res_id);
2625 
2626 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
2627 				    &dflt_resc_start);
2628 	if (rc != ECORE_SUCCESS) {
2629 		DP_ERR(p_hwfn,
2630 		       "Failed to get default amount for resource %d [%s]\n",
2631 			res_id, ecore_hw_get_resc_name(res_id));
2632 		return rc;
2633 	}
2634 
2635 #ifndef ASIC_ONLY
2636 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2637 		*p_resc_num = dflt_resc_num;
2638 		*p_resc_start = dflt_resc_start;
2639 		goto out;
2640 	}
2641 #endif
2642 
2643 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
2644 				     &mcp_resp, p_resc_num, p_resc_start);
2645 	if (rc != ECORE_SUCCESS) {
2646 		DP_NOTICE(p_hwfn, true,
2647 			  "MFW response failure for an allocation request for"
2648 			  " resource %d [%s]\n",
2649 			  res_id, ecore_hw_get_resc_name(res_id));
2650 		return rc;
2651 	}
2652 
2653 	/* Default driver values are applied in the following cases:
2654 	 * - The resource allocation MB command is not supported by the MFW
2655 	 * - There is an internal error in the MFW while processing the request
2656 	 * - The resource ID is unknown to the MFW
2657 	 */
2658 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2659 		DP_INFO(p_hwfn,
2660 			"Failed to receive allocation info for resource %d [%s]."
2661 			" mcp_resp = 0x%x. Applying default values"
2662 			" [%d,%d].\n",
2663 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
2664 			dflt_resc_num, dflt_resc_start);
2665 
2666 		*p_resc_num = dflt_resc_num;
2667 		*p_resc_start = dflt_resc_start;
2668 		goto out;
2669 	}
2670 
2671 	/* TBD - remove this when revising the handling of the SB resource */
2672 	if (res_id == ECORE_SB) {
2673 		/* Excluding the slowpath SB */
2674 		*p_resc_num -= 1;
2675 		*p_resc_start -= p_hwfn->enabled_func_idx;
2676 	}
2677 
2678 	if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2679 		DP_INFO(p_hwfn,
2680 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
2681 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
2682 			*p_resc_start, dflt_resc_num, dflt_resc_start,
2683 			drv_resc_alloc ? " - Applying default values" : "");
2684 		if (drv_resc_alloc) {
2685 			*p_resc_num = dflt_resc_num;
2686 			*p_resc_start = dflt_resc_start;
2687 		}
2688 	}
2689 out:
2690 	return ECORE_SUCCESS;
2691 }
2692 
2693 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2694 						   bool drv_resc_alloc)
2695 {
2696 	enum _ecore_status_t rc;
2697 	u8 res_id;
2698 
2699 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2700 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
2701 		if (rc != ECORE_SUCCESS)
2702 			return rc;
2703 	}
2704 
2705 	return ECORE_SUCCESS;
2706 }
2707 
2708 #define ECORE_RESC_ALLOC_LOCK_RETRY_CNT		10
2709 #define ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US	10000 /* 10 msec */
2710 
2711 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2712 					      bool drv_resc_alloc)
2713 {
2714 	struct ecore_resc_unlock_params resc_unlock_params;
2715 	struct ecore_resc_lock_params resc_lock_params;
2716 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2717 	u8 res_id;
2718 	enum _ecore_status_t rc;
2719 #ifndef ASIC_ONLY
2720 	u32 *resc_start = p_hwfn->hw_info.resc_start;
2721 	u32 *resc_num = p_hwfn->hw_info.resc_num;
2722 	/* For AH, an equal share of the ILT lines between the maximal number of
2723 	 * PFs is not enough for RoCE. This would be solved by the future
2724 	 * resource allocation scheme, but isn't currently present for
2725 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2726 	 * to work - the BB number of ILT lines divided by its max PFs number.
2727 	 */
2728 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2729 #endif
2730 
2731 	/* Setting the max values of the soft resources and the following
2732 	 * resources allocation queries should be atomic. Since several PFs can
2733 	 * run in parallel - a resource lock is needed.
2734 	 * If either the resource lock or resource set value commands are not
2735 	 * supported - skip the the max values setting, release the lock if
2736 	 * needed, and proceed to the queries. Other failures, including a
2737 	 * failure to acquire the lock, will cause this function to fail.
2738 	 * Old drivers that don't acquire the lock can run in parallel, and
2739 	 * their allocation values won't be affected by the updated max values.
2740 	 */
2741 	OSAL_MEM_ZERO(&resc_lock_params, sizeof(resc_lock_params));
2742 	resc_lock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
2743 	resc_lock_params.retry_num = ECORE_RESC_ALLOC_LOCK_RETRY_CNT;
2744 	resc_lock_params.retry_interval = ECORE_RESC_ALLOC_LOCK_RETRY_INTVL_US;
2745 	resc_lock_params.sleep_b4_retry = true;
2746 	OSAL_MEM_ZERO(&resc_unlock_params, sizeof(resc_unlock_params));
2747 	resc_unlock_params.resource = ECORE_RESC_LOCK_RESC_ALLOC;
2748 
2749 	rc = ecore_mcp_resc_lock(p_hwfn, p_hwfn->p_main_ptt, &resc_lock_params);
2750 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
2751 		return rc;
2752 	} else if (rc == ECORE_NOTIMPL) {
2753 		DP_INFO(p_hwfn,
2754 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
2755 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
2756 		DP_NOTICE(p_hwfn, false,
2757 			  "Failed to acquire the resource lock for the resource allocation commands\n");
2758 		rc = ECORE_BUSY;
2759 		goto unlock_and_exit;
2760 	} else {
2761 		rc = ecore_hw_set_soft_resc_size(p_hwfn);
2762 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
2763 			DP_NOTICE(p_hwfn, false,
2764 				  "Failed to set the max values of the soft resources\n");
2765 			goto unlock_and_exit;
2766 		} else if (rc == ECORE_NOTIMPL) {
2767 			DP_INFO(p_hwfn,
2768 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
2769 			rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
2770 						   &resc_unlock_params);
2771 			if (rc != ECORE_SUCCESS)
2772 				DP_INFO(p_hwfn,
2773 					"Failed to release the resource lock for the resource allocation commands\n");
2774 		}
2775 	}
2776 
2777 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
2778 	if (rc != ECORE_SUCCESS)
2779 		goto unlock_and_exit;
2780 
2781 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
2782 		rc = ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt,
2783 					   &resc_unlock_params);
2784 		if (rc != ECORE_SUCCESS)
2785 			DP_INFO(p_hwfn,
2786 				"Failed to release the resource lock for the resource allocation commands\n");
2787 	}
2788 
2789 #ifndef ASIC_ONLY
2790 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2791 		/* Reduced build contains less PQs */
2792 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
2793 			resc_num[ECORE_PQ] = 32;
2794 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2795 			    p_hwfn->enabled_func_idx;
2796 		}
2797 
2798 		/* For AH emulation, since we have a possible maximal number of
2799 		 * 16 enabled PFs, in case there are not enough ILT lines -
2800 		 * allocate only first PF as RoCE and have all the other ETH
2801 		 * only with less ILT lines.
2802 		 */
2803 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2804 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2805 							 resc_num[ECORE_ILT],
2806 							 roce_min_ilt_lines);
2807 	}
2808 
2809 	/* Correct the common ILT calculation if PF0 has more */
2810 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2811 	    p_hwfn->p_dev->b_is_emul_full &&
2812 	    p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2813 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
2814 		    resc_num[ECORE_ILT];
2815 #endif
2816 
2817 	/* Sanity for ILT */
2818 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2819 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2820 		DP_NOTICE(p_hwfn, true,
2821 			  "Can't assign ILT pages [%08x,...,%08x]\n",
2822 			  RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2823 								  ECORE_ILT) -
2824 			  1);
2825 		return ECORE_INVAL;
2826 	}
2827 
2828 	ecore_hw_set_feat(p_hwfn);
2829 
2830 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2831 		   "The numbers for each resource are:\n");
2832 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2833 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2834 			   ecore_hw_get_resc_name(res_id),
2835 			   RESC_NUM(p_hwfn, res_id),
2836 			   RESC_START(p_hwfn, res_id));
2837 
2838 	return ECORE_SUCCESS;
2839 
2840 unlock_and_exit:
2841 	ecore_mcp_resc_unlock(p_hwfn, p_hwfn->p_main_ptt, &resc_unlock_params);
2842 	return rc;
2843 }
2844 
2845 static enum _ecore_status_t
2846 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2847 		      struct ecore_ptt *p_ptt,
2848 		      struct ecore_hw_prepare_params *p_params)
2849 {
2850 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
2851 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2852 	struct ecore_mcp_link_params *link;
2853 	enum _ecore_status_t rc;
2854 
2855 	/* Read global nvm_cfg address */
2856 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2857 
2858 	/* Verify MCP has initialized it */
2859 	if (!nvm_cfg_addr) {
2860 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2861 		if (p_params->b_relaxed_probe)
2862 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
2863 		return ECORE_INVAL;
2864 	}
2865 
2866 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2867 
2868 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2869 
2870 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2871 	    OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2872 						       core_cfg);
2873 
2874 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2875 
2876 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2877 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2878 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2879 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2880 		break;
2881 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2882 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2883 		break;
2884 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2885 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2886 		break;
2887 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2888 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2889 		break;
2890 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2891 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2892 		break;
2893 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2894 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2895 		break;
2896 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2897 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2898 		break;
2899 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2900 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2901 		break;
2902 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2903 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
2904 		break;
2905 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2906 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2907 		break;
2908 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2909 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2910 		break;
2911 	default:
2912 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2913 			  core_cfg);
2914 		break;
2915 	}
2916 
2917 	/* Read DCBX configuration */
2918 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2919 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2920 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
2921 			     port_cfg_addr +
2922 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
2923 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
2924 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
2925 	switch (dcbx_mode) {
2926 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
2927 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
2928 		break;
2929 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
2930 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
2931 		break;
2932 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
2933 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
2934 		break;
2935 	default:
2936 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
2937 	}
2938 
2939 	/* Read default link configuration */
2940 	link = &p_hwfn->mcp_info->link_input;
2941 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2942 	    OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2943 	link_temp = ecore_rd(p_hwfn, p_ptt,
2944 			     port_cfg_addr +
2945 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2946 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2947 	link->speed.advertised_speeds = link_temp;
2948 
2949 	link_temp = link->speed.advertised_speeds;
2950 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2951 
2952 	link_temp = ecore_rd(p_hwfn, p_ptt,
2953 			     port_cfg_addr +
2954 			     OFFSETOF(struct nvm_cfg1_port, link_settings));
2955 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2956 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2957 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2958 		link->speed.autoneg = true;
2959 		break;
2960 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2961 		link->speed.forced_speed = 1000;
2962 		break;
2963 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2964 		link->speed.forced_speed = 10000;
2965 		break;
2966 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2967 		link->speed.forced_speed = 25000;
2968 		break;
2969 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2970 		link->speed.forced_speed = 40000;
2971 		break;
2972 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2973 		link->speed.forced_speed = 50000;
2974 		break;
2975 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2976 		link->speed.forced_speed = 100000;
2977 		break;
2978 	default:
2979 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2980 	}
2981 
2982 	p_hwfn->mcp_info->link_capabilities.default_speed =
2983 	    link->speed.forced_speed;
2984 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2985 	    link->speed.autoneg;
2986 
2987 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2988 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2989 	link->pause.autoneg = !!(link_temp &
2990 				  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2991 	link->pause.forced_rx = !!(link_temp &
2992 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2993 	link->pause.forced_tx = !!(link_temp &
2994 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2995 	link->loopback_mode = 0;
2996 
2997 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2998 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2999 		   link->speed.forced_speed, link->speed.advertised_speeds,
3000 		   link->speed.autoneg, link->pause.autoneg);
3001 
3002 	/* Read Multi-function information from shmem */
3003 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3004 	    OFFSETOF(struct nvm_cfg1, glob) +
3005 	    OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
3006 
3007 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
3008 
3009 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3010 	    NVM_CFG1_GLOB_MF_MODE_OFFSET;
3011 
3012 	switch (mf_mode) {
3013 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3014 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
3015 		break;
3016 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3017 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
3018 		break;
3019 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3020 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
3021 		break;
3022 	}
3023 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
3024 		p_hwfn->p_dev->mf_mode);
3025 
3026 	/* Read Multi-function information from shmem */
3027 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3028 	    OFFSETOF(struct nvm_cfg1, glob) +
3029 	    OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
3030 
3031 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
3032 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3033 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
3034 			     &p_hwfn->hw_info.device_capabilities);
3035 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3036 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
3037 			     &p_hwfn->hw_info.device_capabilities);
3038 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3039 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
3040 			     &p_hwfn->hw_info.device_capabilities);
3041 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3042 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
3043 			     &p_hwfn->hw_info.device_capabilities);
3044 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
3045 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
3046 			     &p_hwfn->hw_info.device_capabilities);
3047 
3048 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3049 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3050 		rc = ECORE_SUCCESS;
3051 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3052 	}
3053 
3054 	return rc;
3055 }
3056 
3057 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
3058 				struct ecore_ptt *p_ptt)
3059 {
3060 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3061 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3062 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3063 
3064 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3065 
3066 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3067 	 * in the other bits are selected.
3068 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
3069 	 * '0' only for enabled functions (function 0 always exists and
3070 	 * enabled).
3071 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
3072 	 * the number of functions for both hwfns is learnt from the same bits.
3073 	 */
3074 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
3075 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
3076 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
3077 	} else { /* E5 */
3078 		reg_function_hide = 0;
3079 	}
3080 
3081 	if (reg_function_hide & 0x1) {
3082 		if (ECORE_IS_BB(p_dev)) {
3083 			if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
3084 				num_funcs = 0;
3085 				eng_mask = 0xaaaa;
3086 			} else {
3087 				num_funcs = 1;
3088 				eng_mask = 0x5554;
3089 			}
3090 		} else {
3091 			num_funcs = 1;
3092 			eng_mask = 0xfffe;
3093 		}
3094 
3095 		/* Get the number of the enabled functions on the engine */
3096 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3097 		while (tmp) {
3098 			if (tmp & 0x1)
3099 				num_funcs++;
3100 			tmp >>= 0x1;
3101 		}
3102 
3103 		/* Get the PF index within the enabled functions */
3104 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3105 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
3106 		while (tmp) {
3107 			if (tmp & 0x1)
3108 				enabled_func_idx--;
3109 			tmp >>= 0x1;
3110 		}
3111 	}
3112 
3113 	p_hwfn->num_funcs_on_engine = num_funcs;
3114 	p_hwfn->enabled_func_idx = enabled_func_idx;
3115 
3116 #ifndef ASIC_ONLY
3117 	if (CHIP_REV_IS_FPGA(p_dev)) {
3118 		DP_NOTICE(p_hwfn, false,
3119 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
3120 		p_hwfn->num_funcs_on_engine = 4;
3121 	}
3122 #endif
3123 
3124 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
3125 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3126 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
3127 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3128 }
3129 
3130 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
3131 				      struct ecore_ptt *p_ptt)
3132 {
3133 	u32 port_mode;
3134 
3135 #ifndef ASIC_ONLY
3136 	/* Read the port mode */
3137 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3138 		port_mode = 4;
3139 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
3140 		 (p_hwfn->p_dev->num_hwfns > 1))
3141 		/* In CMT on emulation, assume 1 port */
3142 		port_mode = 1;
3143 	else
3144 #endif
3145 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
3146 
3147 	if (port_mode < 3) {
3148 		p_hwfn->p_dev->num_ports_in_engines = 1;
3149 	} else if (port_mode <= 5) {
3150 		p_hwfn->p_dev->num_ports_in_engines = 2;
3151 	} else {
3152 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
3153 			  p_hwfn->p_dev->num_ports_in_engines);
3154 
3155 		/* Default num_ports_in_engines to something */
3156 		p_hwfn->p_dev->num_ports_in_engines = 1;
3157 	}
3158 }
3159 
3160 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
3161 					 struct ecore_ptt *p_ptt)
3162 {
3163 	u32 port;
3164 	int i;
3165 
3166 	p_hwfn->p_dev->num_ports_in_engines = 0;
3167 
3168 #ifndef ASIC_ONLY
3169 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3170 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
3171 		switch ((port & 0xf000) >> 12) {
3172 		case 1:
3173 			p_hwfn->p_dev->num_ports_in_engines = 1;
3174 			break;
3175 		case 3:
3176 			p_hwfn->p_dev->num_ports_in_engines = 2;
3177 			break;
3178 		case 0xf:
3179 			p_hwfn->p_dev->num_ports_in_engines = 4;
3180 			break;
3181 		default:
3182 			DP_NOTICE(p_hwfn, false,
3183 				  "Unknown port mode in ECO_RESERVED %08x\n",
3184 				  port);
3185 		}
3186 	} else
3187 #endif
3188 		for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
3189 			port = ecore_rd(p_hwfn, p_ptt,
3190 					CNIG_REG_NIG_PORT0_CONF_K2_E5 +
3191 					(i * 4));
3192 			if (port & 1)
3193 				p_hwfn->p_dev->num_ports_in_engines++;
3194 		}
3195 }
3196 
3197 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
3198 				   struct ecore_ptt *p_ptt)
3199 {
3200 	if (ECORE_IS_BB(p_hwfn->p_dev))
3201 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
3202 	else
3203 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
3204 }
3205 
3206 static enum _ecore_status_t
3207 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3208 		  enum ecore_pci_personality personality,
3209 		  struct ecore_hw_prepare_params *p_params)
3210 {
3211 	bool drv_resc_alloc = p_params->drv_resc_alloc;
3212 	enum _ecore_status_t rc;
3213 
3214 	/* Since all information is common, only first hwfns should do this */
3215 	if (IS_LEAD_HWFN(p_hwfn)) {
3216 		rc = ecore_iov_hw_info(p_hwfn);
3217 		if (rc != ECORE_SUCCESS) {
3218 			if (p_params->b_relaxed_probe)
3219 				p_params->p_relaxed_res =
3220 						ECORE_HW_PREPARE_BAD_IOV;
3221 			else
3222 				return rc;
3223 		}
3224 	}
3225 
3226 	/* TODO In get_hw_info, amoungst others:
3227 	 * Get MCP FW revision and determine according to it the supported
3228 	 * featrues (e.g. DCB)
3229 	 * Get boot mode
3230 	 * ecore_get_pcie_width_speed, WOL capability.
3231 	 * Number of global CQ-s (for storage
3232 	 */
3233 	ecore_hw_info_port_num(p_hwfn, p_ptt);
3234 
3235 #ifndef ASIC_ONLY
3236 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
3237 #endif
3238 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
3239 	if (rc != ECORE_SUCCESS)
3240 		return rc;
3241 #ifndef ASIC_ONLY
3242 	}
3243 #endif
3244 
3245 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
3246 	if (rc != ECORE_SUCCESS) {
3247 		if (p_params->b_relaxed_probe)
3248 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
3249 		else
3250 			return rc;
3251 	}
3252 
3253 #ifndef ASIC_ONLY
3254 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
3255 #endif
3256 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
3257 			    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
3258 #ifndef ASIC_ONLY
3259 	} else {
3260 		static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
3261 
3262 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
3263 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
3264 	}
3265 #endif
3266 
3267 	if (ecore_mcp_is_init(p_hwfn)) {
3268 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
3269 			p_hwfn->hw_info.ovlan =
3270 			    p_hwfn->mcp_info->func_info.ovlan;
3271 
3272 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
3273 	}
3274 
3275 	if (personality != ECORE_PCI_DEFAULT) {
3276 		p_hwfn->hw_info.personality = personality;
3277 	} else if (ecore_mcp_is_init(p_hwfn)) {
3278 		enum ecore_pci_personality protocol;
3279 
3280 		protocol = p_hwfn->mcp_info->func_info.protocol;
3281 		p_hwfn->hw_info.personality = protocol;
3282 	}
3283 
3284 #ifndef ASIC_ONLY
3285 	/* To overcome ILT lack for emulation, until at least until we'll have
3286 	 * a definite answer from system about it, allow only PF0 to be RoCE.
3287 	 */
3288 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
3289 		if (!p_hwfn->rel_pf_id)
3290 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
3291 		else
3292 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
3293 	}
3294 #endif
3295 
3296 	/* although in BB some constellations may support more than 4 tcs,
3297 	 * that can result in performance penalty in some cases. 4
3298 	 * represents a good tradeoff between performance and flexibility.
3299 	 */
3300 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
3301 
3302 	/* start out with a single active tc. This can be increased either
3303 	 * by dcbx negotiation or by upper layer driver
3304 	 */
3305 	p_hwfn->hw_info.num_active_tc = 1;
3306 
3307 	ecore_get_num_funcs(p_hwfn, p_ptt);
3308 
3309 	if (ecore_mcp_is_init(p_hwfn))
3310 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
3311 
3312 	/* In case of forcing the driver's default resource allocation, calling
3313 	 * ecore_hw_get_resc() should come after initializing the personality
3314 	 * and after getting the number of functions, since the calculation of
3315 	 * the resources/features depends on them.
3316 	 * This order is not harmful if not forcing.
3317 	 */
3318 	rc = ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
3319 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
3320 		rc = ECORE_SUCCESS;
3321 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
3322 	}
3323 
3324 	return rc;
3325 }
3326 
3327 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
3328 {
3329 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3330 	u32 tmp;
3331 
3332 	/* Read Vendor Id / Device Id */
3333 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
3334 				  &p_dev->vendor_id);
3335 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
3336 				  &p_dev->device_id);
3337 
3338 	/* Determine type */
3339 	if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
3340 		p_dev->type = ECORE_DEV_TYPE_AH;
3341 	else
3342 		p_dev->type = ECORE_DEV_TYPE_BB;
3343 
3344 	p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3345 					 MISCS_REG_CHIP_NUM);
3346 	p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3347 					 MISCS_REG_CHIP_REV);
3348 
3349 	MASK_FIELD(CHIP_REV, p_dev->chip_rev);
3350 
3351 	/* Learn number of HW-functions */
3352 	tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3353 		       MISCS_REG_CMT_ENABLED_FOR_PAIR);
3354 
3355 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
3356 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
3357 		p_dev->num_hwfns = 2;
3358 	} else {
3359 		p_dev->num_hwfns = 1;
3360 	}
3361 
3362 #ifndef ASIC_ONLY
3363 	if (CHIP_REV_IS_EMUL(p_dev)) {
3364 		/* For some reason we have problems with this register
3365 		 * in B0 emulation; Simply assume no CMT
3366 		 */
3367 		DP_NOTICE(p_dev->hwfns, false,
3368 			  "device on emul - assume no CMT\n");
3369 		p_dev->num_hwfns = 1;
3370 	}
3371 #endif
3372 
3373 	p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3374 				       MISCS_REG_CHIP_TEST_REG) >> 4;
3375 	MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
3376 	p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3377 					   MISCS_REG_CHIP_METAL);
3378 	MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
3379 	DP_INFO(p_dev->hwfns,
3380 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
3381 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
3382 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
3383 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
3384 		p_dev->chip_metal);
3385 
3386 	if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
3387 		DP_NOTICE(p_dev->hwfns, false,
3388 			  "The chip type/rev (BB A0) is not supported!\n");
3389 		return ECORE_ABORTED;
3390 	}
3391 #ifndef ASIC_ONLY
3392 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
3393 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3394 			 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
3395 
3396 	if (CHIP_REV_IS_EMUL(p_dev)) {
3397 		tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
3398 			       MISCS_REG_ECO_RESERVED);
3399 		if (tmp & (1 << 29)) {
3400 			DP_NOTICE(p_hwfn, false,
3401 				  "Emulation: Running on a FULL build\n");
3402 			p_dev->b_is_emul_full = true;
3403 		} else {
3404 			DP_NOTICE(p_hwfn, false,
3405 				  "Emulation: Running on a REDUCED build\n");
3406 		}
3407 	}
3408 #endif
3409 
3410 	return ECORE_SUCCESS;
3411 }
3412 
3413 #ifndef LINUX_REMOVE
3414 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
3415 {
3416 	int j;
3417 
3418 	if (IS_VF(p_dev))
3419 		return;
3420 
3421 	for_each_hwfn(p_dev, j) {
3422 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3423 
3424 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
3425 			   "Mark hw/fw uninitialized\n");
3426 
3427 		p_hwfn->hw_init_done = false;
3428 		p_hwfn->first_on_engine = false;
3429 
3430 		ecore_ptt_invalidate(p_hwfn);
3431 	}
3432 }
3433 #endif
3434 
3435 static enum _ecore_status_t
3436 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
3437 			void OSAL_IOMEM * p_regview,
3438 			void OSAL_IOMEM * p_doorbells,
3439 			struct ecore_hw_prepare_params *p_params)
3440 {
3441 	struct ecore_dev *p_dev = p_hwfn->p_dev;
3442 	struct ecore_mdump_info mdump_info;
3443 	enum _ecore_status_t rc = ECORE_SUCCESS;
3444 
3445 	/* Split PCI bars evenly between hwfns */
3446 	p_hwfn->regview = p_regview;
3447 	p_hwfn->doorbells = p_doorbells;
3448 
3449 	if (IS_VF(p_dev))
3450 		return ecore_vf_hw_prepare(p_hwfn);
3451 
3452 	/* Validate that chip access is feasible */
3453 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
3454 		DP_ERR(p_hwfn,
3455 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
3456 		if (p_params->b_relaxed_probe)
3457 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
3458 		return ECORE_INVAL;
3459 	}
3460 
3461 	get_function_id(p_hwfn);
3462 
3463 	/* Allocate PTT pool */
3464 	rc = ecore_ptt_pool_alloc(p_hwfn);
3465 	if (rc) {
3466 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
3467 		if (p_params->b_relaxed_probe)
3468 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3469 		goto err0;
3470 	}
3471 
3472 	/* Allocate the main PTT */
3473 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
3474 
3475 	/* First hwfn learns basic information, e.g., number of hwfns */
3476 	if (!p_hwfn->my_id) {
3477 		rc = ecore_get_dev_info(p_dev);
3478 		if (rc != ECORE_SUCCESS) {
3479 			if (p_params->b_relaxed_probe)
3480 				p_params->p_relaxed_res =
3481 					ECORE_HW_PREPARE_FAILED_DEV;
3482 			goto err1;
3483 		}
3484 	}
3485 
3486 	ecore_hw_hwfn_prepare(p_hwfn);
3487 
3488 	/* Initialize MCP structure */
3489 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3490 	if (rc) {
3491 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3492 		if (p_params->b_relaxed_probe)
3493 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3494 		goto err1;
3495 	}
3496 
3497 	/* Read the device configuration information from the HW and SHMEM */
3498 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3499 			       p_params->personality, p_params);
3500 	if (rc) {
3501 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3502 		goto err2;
3503 	}
3504 
3505 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3506 	 * called, since among others it sets the ports number in an engine.
3507 	 */
3508 	if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
3509 	    !p_dev->recov_in_prog) {
3510 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3511 		if (rc != ECORE_SUCCESS)
3512 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3513 	}
3514 
3515 	/* Check if mdump logs are present and update the epoch value */
3516 	if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
3517 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
3518 					      &mdump_info);
3519 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
3520 			DP_NOTICE(p_hwfn, false,
3521 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
3522 		}
3523 
3524 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
3525 					   p_params->epoch);
3526 	}
3527 
3528 	/* Allocate the init RT array and initialize the init-ops engine */
3529 	rc = ecore_init_alloc(p_hwfn);
3530 	if (rc) {
3531 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3532 		if (p_params->b_relaxed_probe)
3533 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
3534 		goto err2;
3535 	}
3536 #ifndef ASIC_ONLY
3537 	if (CHIP_REV_IS_FPGA(p_dev)) {
3538 		DP_NOTICE(p_hwfn, false,
3539 			  "FPGA: workaround; Prevent DMAE parities\n");
3540 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
3541 			 7);
3542 
3543 		DP_NOTICE(p_hwfn, false,
3544 			  "FPGA: workaround: Set VF bar0 size\n");
3545 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3546 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
3547 	}
3548 #endif
3549 
3550 	return rc;
3551 err2:
3552 	if (IS_LEAD_HWFN(p_hwfn))
3553 		ecore_iov_free_hw_info(p_dev);
3554 	ecore_mcp_free(p_hwfn);
3555 err1:
3556 	ecore_hw_hwfn_free(p_hwfn);
3557 err0:
3558 	return rc;
3559 }
3560 
3561 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3562 				      struct ecore_hw_prepare_params *p_params)
3563 {
3564 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3565 	enum _ecore_status_t rc;
3566 
3567 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3568 	p_dev->allow_mdump = p_params->allow_mdump;
3569 
3570 	if (p_params->b_relaxed_probe)
3571 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
3572 
3573 	/* Store the precompiled init data ptrs */
3574 	if (IS_PF(p_dev))
3575 		ecore_init_iro_array(p_dev);
3576 
3577 	/* Initialize the first hwfn - will learn number of hwfns */
3578 	rc = ecore_hw_prepare_single(p_hwfn,
3579 				     p_dev->regview,
3580 				     p_dev->doorbells, p_params);
3581 	if (rc != ECORE_SUCCESS)
3582 		return rc;
3583 
3584 	p_params->personality = p_hwfn->hw_info.personality;
3585 
3586 	/* initilalize 2nd hwfn if necessary */
3587 	if (p_dev->num_hwfns > 1) {
3588 		void OSAL_IOMEM *p_regview, *p_doorbell;
3589 		u8 OSAL_IOMEM *addr;
3590 
3591 		/* adjust bar offset for second engine */
3592 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
3593 		    ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3594 		p_regview = (void OSAL_IOMEM *)addr;
3595 
3596 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3597 		    ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3598 		p_doorbell = (void OSAL_IOMEM *)addr;
3599 
3600 		/* prepare second hw function */
3601 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3602 					     p_doorbell, p_params);
3603 
3604 		/* in case of error, need to free the previously
3605 		 * initiliazed hwfn 0.
3606 		 */
3607 		if (rc != ECORE_SUCCESS) {
3608 			if (p_params->b_relaxed_probe)
3609 				p_params->p_relaxed_res =
3610 						ECORE_HW_PREPARE_FAILED_ENG2;
3611 
3612 			if (IS_PF(p_dev)) {
3613 				ecore_init_free(p_hwfn);
3614 				ecore_mcp_free(p_hwfn);
3615 				ecore_hw_hwfn_free(p_hwfn);
3616 			} else {
3617 				DP_NOTICE(p_dev, true,
3618 					  "What do we need to free when VF hwfn1 init fails\n");
3619 			}
3620 			return rc;
3621 		}
3622 	}
3623 
3624 	return rc;
3625 }
3626 
3627 void ecore_hw_remove(struct ecore_dev *p_dev)
3628 {
3629 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3630 	int i;
3631 
3632 	if (IS_PF(p_dev))
3633 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
3634 					ECORE_OV_DRIVER_STATE_NOT_LOADED);
3635 
3636 	for_each_hwfn(p_dev, i) {
3637 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3638 
3639 		if (IS_VF(p_dev)) {
3640 			ecore_vf_pf_release(p_hwfn);
3641 			continue;
3642 		}
3643 
3644 		ecore_init_free(p_hwfn);
3645 		ecore_hw_hwfn_free(p_hwfn);
3646 		ecore_mcp_free(p_hwfn);
3647 
3648 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3649 	}
3650 
3651 	ecore_iov_free_hw_info(p_dev);
3652 }
3653 
3654 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3655 				      struct ecore_chain *p_chain)
3656 {
3657 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3658 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3659 	struct ecore_chain_next *p_next;
3660 	u32 size, i;
3661 
3662 	if (!p_virt)
3663 		return;
3664 
3665 	size = p_chain->elem_size * p_chain->usable_per_page;
3666 
3667 	for (i = 0; i < p_chain->page_cnt; i++) {
3668 		if (!p_virt)
3669 			break;
3670 
3671 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3672 		p_virt_next = p_next->next_virt;
3673 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3674 
3675 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3676 				       ECORE_CHAIN_PAGE_SIZE);
3677 
3678 		p_virt = p_virt_next;
3679 		p_phys = p_phys_next;
3680 	}
3681 }
3682 
3683 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3684 				    struct ecore_chain *p_chain)
3685 {
3686 	if (!p_chain->p_virt_addr)
3687 		return;
3688 
3689 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3690 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3691 }
3692 
3693 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3694 				 struct ecore_chain *p_chain)
3695 {
3696 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3697 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
3698 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3699 
3700 	if (!pp_virt_addr_tbl)
3701 		return;
3702 
3703 	if (!p_pbl_virt)
3704 		goto out;
3705 
3706 	for (i = 0; i < page_cnt; i++) {
3707 		if (!pp_virt_addr_tbl[i])
3708 			break;
3709 
3710 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3711 				       *(dma_addr_t *)p_pbl_virt,
3712 				       ECORE_CHAIN_PAGE_SIZE);
3713 
3714 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3715 	}
3716 
3717 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3718 
3719 	if (!p_chain->b_external_pbl)
3720 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
3721 				       p_chain->pbl_sp.p_phys_table, pbl_size);
3722 out:
3723 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3724 }
3725 
3726 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3727 {
3728 	switch (p_chain->mode) {
3729 	case ECORE_CHAIN_MODE_NEXT_PTR:
3730 		ecore_chain_free_next_ptr(p_dev, p_chain);
3731 		break;
3732 	case ECORE_CHAIN_MODE_SINGLE:
3733 		ecore_chain_free_single(p_dev, p_chain);
3734 		break;
3735 	case ECORE_CHAIN_MODE_PBL:
3736 		ecore_chain_free_pbl(p_dev, p_chain);
3737 		break;
3738 	}
3739 }
3740 
3741 static enum _ecore_status_t
3742 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3743 			       enum ecore_chain_cnt_type cnt_type,
3744 			       osal_size_t elem_size, u32 page_cnt)
3745 {
3746 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3747 
3748 	/* The actual chain size can be larger than the maximal possible value
3749 	 * after rounding up the requested elements number to pages, and after
3750 	 * taking into acount the unusuable elements (next-ptr elements).
3751 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3752 	 * size/capacity fields are of a u32 type.
3753 	 */
3754 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3755 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3756 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3757 	     chain_size > ECORE_U32_MAX)) {
3758 		DP_NOTICE(p_dev, true,
3759 			  "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3760 			  (unsigned long)chain_size);
3761 		return ECORE_INVAL;
3762 	}
3763 
3764 	return ECORE_SUCCESS;
3765 }
3766 
3767 static enum _ecore_status_t
3768 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3769 {
3770 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3771 	dma_addr_t p_phys = 0;
3772 	u32 i;
3773 
3774 	for (i = 0; i < p_chain->page_cnt; i++) {
3775 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3776 						 ECORE_CHAIN_PAGE_SIZE);
3777 		if (!p_virt) {
3778 			DP_NOTICE(p_dev, true,
3779 				  "Failed to allocate chain memory\n");
3780 			return ECORE_NOMEM;
3781 		}
3782 
3783 		if (i == 0) {
3784 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
3785 			ecore_chain_reset(p_chain);
3786 		} else {
3787 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3788 						       p_virt, p_phys);
3789 		}
3790 
3791 		p_virt_prev = p_virt;
3792 	}
3793 	/* Last page's next element should point to the beginning of the
3794 	 * chain.
3795 	 */
3796 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3797 				       p_chain->p_virt_addr,
3798 				       p_chain->p_phys_addr);
3799 
3800 	return ECORE_SUCCESS;
3801 }
3802 
3803 static enum _ecore_status_t
3804 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3805 {
3806 	dma_addr_t p_phys = 0;
3807 	void *p_virt = OSAL_NULL;
3808 
3809 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3810 	if (!p_virt) {
3811 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3812 		return ECORE_NOMEM;
3813 	}
3814 
3815 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
3816 	ecore_chain_reset(p_chain);
3817 
3818 	return ECORE_SUCCESS;
3819 }
3820 
3821 static enum _ecore_status_t
3822 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3823 		      struct ecore_chain *p_chain,
3824 		      struct ecore_chain_ext_pbl *ext_pbl)
3825 {
3826 	void *p_virt = OSAL_NULL;
3827 	u8 *p_pbl_virt = OSAL_NULL;
3828 	void **pp_virt_addr_tbl = OSAL_NULL;
3829 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
3830 	u32 page_cnt = p_chain->page_cnt, size, i;
3831 
3832 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
3833 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
3834 	if (!pp_virt_addr_tbl) {
3835 		DP_NOTICE(p_dev, true,
3836 			  "Failed to allocate memory for the chain virtual addresses table\n");
3837 		return ECORE_NOMEM;
3838 	}
3839 
3840 	/* The allocation of the PBL table is done with its full size, since it
3841 	 * is expected to be successive.
3842 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3843 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
3844 	 * should be saved to allow its freeing during the error flow.
3845 	 */
3846 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3847 
3848 	if (ext_pbl == OSAL_NULL) {
3849 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3850 	} else {
3851 		p_pbl_virt = ext_pbl->p_pbl_virt;
3852 		p_pbl_phys = ext_pbl->p_pbl_phys;
3853 		p_chain->b_external_pbl = true;
3854 	}
3855 
3856 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3857 				 pp_virt_addr_tbl);
3858 	if (!p_pbl_virt) {
3859 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3860 		return ECORE_NOMEM;
3861 	}
3862 
3863 	for (i = 0; i < page_cnt; i++) {
3864 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3865 						 ECORE_CHAIN_PAGE_SIZE);
3866 		if (!p_virt) {
3867 			DP_NOTICE(p_dev, true,
3868 				  "Failed to allocate chain memory\n");
3869 			return ECORE_NOMEM;
3870 		}
3871 
3872 		if (i == 0) {
3873 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
3874 			ecore_chain_reset(p_chain);
3875 		}
3876 
3877 		/* Fill the PBL table with the physical address of the page */
3878 		*(dma_addr_t *)p_pbl_virt = p_phys;
3879 		/* Keep the virtual address of the page */
3880 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3881 
3882 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3883 	}
3884 
3885 	return ECORE_SUCCESS;
3886 }
3887 
3888 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3889 				       enum ecore_chain_use_mode intended_use,
3890 				       enum ecore_chain_mode mode,
3891 				       enum ecore_chain_cnt_type cnt_type,
3892 				       u32 num_elems, osal_size_t elem_size,
3893 				       struct ecore_chain *p_chain,
3894 				       struct ecore_chain_ext_pbl *ext_pbl)
3895 {
3896 	u32 page_cnt;
3897 	enum _ecore_status_t rc = ECORE_SUCCESS;
3898 
3899 	if (mode == ECORE_CHAIN_MODE_SINGLE)
3900 		page_cnt = 1;
3901 	else
3902 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3903 
3904 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3905 					    page_cnt);
3906 	if (rc) {
3907 		DP_NOTICE(p_dev, true,
3908 			  "Cannot allocate a chain with the given arguments:\n"
3909 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3910 			  intended_use, mode, cnt_type, num_elems, elem_size);
3911 		return rc;
3912 	}
3913 
3914 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3915 				mode, cnt_type, p_dev->dp_ctx);
3916 
3917 	switch (mode) {
3918 	case ECORE_CHAIN_MODE_NEXT_PTR:
3919 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3920 		break;
3921 	case ECORE_CHAIN_MODE_SINGLE:
3922 		rc = ecore_chain_alloc_single(p_dev, p_chain);
3923 		break;
3924 	case ECORE_CHAIN_MODE_PBL:
3925 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
3926 		break;
3927 	}
3928 	if (rc)
3929 		goto nomem;
3930 
3931 	return ECORE_SUCCESS;
3932 
3933 nomem:
3934 	ecore_chain_free(p_dev, p_chain);
3935 	return rc;
3936 }
3937 
3938 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3939 				       u16 src_id, u16 *dst_id)
3940 {
3941 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3942 		u16 min, max;
3943 
3944 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3945 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3946 		DP_NOTICE(p_hwfn, true,
3947 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3948 			  src_id, min, max);
3949 
3950 		return ECORE_INVAL;
3951 	}
3952 
3953 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3954 
3955 	return ECORE_SUCCESS;
3956 }
3957 
3958 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3959 				    u8 src_id, u8 *dst_id)
3960 {
3961 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3962 		u8 min, max;
3963 
3964 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3965 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3966 		DP_NOTICE(p_hwfn, true,
3967 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
3968 			  src_id, min, max);
3969 
3970 		return ECORE_INVAL;
3971 	}
3972 
3973 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3974 
3975 	return ECORE_SUCCESS;
3976 }
3977 
3978 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3979 				      u8 src_id, u8 *dst_id)
3980 {
3981 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3982 		u8 min, max;
3983 
3984 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3985 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3986 		DP_NOTICE(p_hwfn, true,
3987 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3988 			  src_id, min, max);
3989 
3990 		return ECORE_INVAL;
3991 	}
3992 
3993 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3994 
3995 	return ECORE_SUCCESS;
3996 }
3997 
3998 static enum _ecore_status_t
3999 ecore_llh_add_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4000 			       struct ecore_ptt *p_ptt, u32 high, u32 low,
4001 			       u32 *p_entry_num)
4002 {
4003 	u32 en;
4004 	int i;
4005 
4006 	/* Find a free entry and utilize it */
4007 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4008 		en = ecore_rd(p_hwfn, p_ptt,
4009 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4010 			      i * sizeof(u32));
4011 		if (en)
4012 			continue;
4013 		ecore_wr(p_hwfn, p_ptt,
4014 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4015 			 2 * i * sizeof(u32), low);
4016 		ecore_wr(p_hwfn, p_ptt,
4017 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4018 			 (2 * i + 1) * sizeof(u32), high);
4019 		ecore_wr(p_hwfn, p_ptt,
4020 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4021 			 i * sizeof(u32), 0);
4022 		ecore_wr(p_hwfn, p_ptt,
4023 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4024 			 i * sizeof(u32), 0);
4025 		ecore_wr(p_hwfn, p_ptt,
4026 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4027 			 i * sizeof(u32), 1);
4028 		break;
4029 	}
4030 
4031 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4032 		return ECORE_NORESOURCES;
4033 
4034 	*p_entry_num = i;
4035 
4036 	return ECORE_SUCCESS;
4037 }
4038 
4039 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
4040 					  struct ecore_ptt *p_ptt, u8 *p_filter)
4041 {
4042 	u32 high, low, entry_num;
4043 	enum _ecore_status_t rc;
4044 
4045 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4046 		return ECORE_SUCCESS;
4047 
4048 	high = p_filter[1] | (p_filter[0] << 8);
4049 	low = p_filter[5] | (p_filter[4] << 8) |
4050 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4051 
4052 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4053 		rc = ecore_llh_add_mac_filter_bb_ah(p_hwfn, p_ptt, high, low,
4054 						    &entry_num);
4055 	if (rc != ECORE_SUCCESS) {
4056 		DP_NOTICE(p_hwfn, false,
4057 			  "Failed to find an empty LLH filter to utilize\n");
4058 		return rc;
4059 	}
4060 
4061 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4062 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx is added at %d\n",
4063 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4064 		   p_filter[4], p_filter[5], entry_num);
4065 
4066 	return ECORE_SUCCESS;
4067 }
4068 
4069 static enum _ecore_status_t
4070 ecore_llh_remove_mac_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4071 				  struct ecore_ptt *p_ptt, u32 high, u32 low,
4072 				  u32 *p_entry_num)
4073 {
4074 	int i;
4075 
4076 	/* Find the entry and clean it */
4077 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4078 		if (ecore_rd(p_hwfn, p_ptt,
4079 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4080 			     2 * i * sizeof(u32)) != low)
4081 			continue;
4082 		if (ecore_rd(p_hwfn, p_ptt,
4083 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4084 			     (2 * i + 1) * sizeof(u32)) != high)
4085 			continue;
4086 
4087 		ecore_wr(p_hwfn, p_ptt,
4088 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4089 		ecore_wr(p_hwfn, p_ptt,
4090 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4091 			 2 * i * sizeof(u32), 0);
4092 		ecore_wr(p_hwfn, p_ptt,
4093 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4094 			 (2 * i + 1) * sizeof(u32), 0);
4095 		break;
4096 	}
4097 
4098 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4099 		return ECORE_INVAL;
4100 
4101 	*p_entry_num = i;
4102 
4103 	return ECORE_SUCCESS;
4104 }
4105 
4106 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
4107 			     struct ecore_ptt *p_ptt, u8 *p_filter)
4108 {
4109 	u32 high, low, entry_num;
4110 	enum _ecore_status_t rc;
4111 
4112 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4113 		return;
4114 
4115 	high = p_filter[1] | (p_filter[0] << 8);
4116 	low = p_filter[5] | (p_filter[4] << 8) |
4117 	      (p_filter[3] << 16) | (p_filter[2] << 24);
4118 
4119 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4120 		rc = ecore_llh_remove_mac_filter_bb_ah(p_hwfn, p_ptt, high,
4121 						       low, &entry_num);
4122 	if (rc != ECORE_SUCCESS) {
4123 		DP_NOTICE(p_hwfn, false,
4124 			  "Tried to remove a non-configured filter\n");
4125 		return;
4126 	}
4127 
4128 
4129 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4130 		   "MAC: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx was removed from %d\n",
4131 		   p_filter[0], p_filter[1], p_filter[2], p_filter[3],
4132 		   p_filter[4], p_filter[5], entry_num);
4133 }
4134 
4135 static enum _ecore_status_t
4136 ecore_llh_add_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4137 				    struct ecore_ptt *p_ptt,
4138 				    enum ecore_llh_port_filter_type_t type,
4139 				    u32 high, u32 low, u32 *p_entry_num)
4140 {
4141 	u32 en;
4142 	int i;
4143 
4144 	/* Find a free entry and utilize it */
4145 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4146 		en = ecore_rd(p_hwfn, p_ptt,
4147 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4148 			      i * sizeof(u32));
4149 		if (en)
4150 			continue;
4151 		ecore_wr(p_hwfn, p_ptt,
4152 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4153 			 2 * i * sizeof(u32), low);
4154 		ecore_wr(p_hwfn, p_ptt,
4155 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4156 			 (2 * i + 1) * sizeof(u32), high);
4157 		ecore_wr(p_hwfn, p_ptt,
4158 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4159 			 i * sizeof(u32), 1);
4160 		ecore_wr(p_hwfn, p_ptt,
4161 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4162 			 i * sizeof(u32), 1 << type);
4163 		ecore_wr(p_hwfn, p_ptt,
4164 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 1);
4165 		break;
4166 	}
4167 
4168 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4169 		return ECORE_NORESOURCES;
4170 
4171 	*p_entry_num = i;
4172 
4173 	return ECORE_SUCCESS;
4174 }
4175 
4176 enum _ecore_status_t
4177 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
4178 			      struct ecore_ptt *p_ptt,
4179 			      u16 source_port_or_eth_type,
4180 			      u16 dest_port,
4181 			      enum ecore_llh_port_filter_type_t type)
4182 {
4183 	u32 high, low, entry_num;
4184 	enum _ecore_status_t rc;
4185 
4186 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4187 		return ECORE_SUCCESS;
4188 
4189 	high = 0;
4190 	low = 0;
4191 
4192 	switch (type) {
4193 	case ECORE_LLH_FILTER_ETHERTYPE:
4194 		high = source_port_or_eth_type;
4195 		break;
4196 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4197 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4198 		low = source_port_or_eth_type << 16;
4199 		break;
4200 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4201 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4202 		low = dest_port;
4203 		break;
4204 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4205 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4206 		low = (source_port_or_eth_type << 16) | dest_port;
4207 		break;
4208 	default:
4209 		DP_NOTICE(p_hwfn, true,
4210 			  "Non valid LLH protocol filter type %d\n", type);
4211 		return ECORE_INVAL;
4212 	}
4213 
4214 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4215 		rc = ecore_llh_add_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4216 							 high, low, &entry_num);
4217 	if (rc != ECORE_SUCCESS) {
4218 		DP_NOTICE(p_hwfn, false,
4219 			  "Failed to find an empty LLH filter to utilize\n");
4220 		return rc;
4221 	}
4222 	switch (type) {
4223 	case ECORE_LLH_FILTER_ETHERTYPE:
4224 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4225 			   "ETH type %x is added at %d\n",
4226 			   source_port_or_eth_type, entry_num);
4227 		break;
4228 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4229 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4230 			   "TCP src port %x is added at %d\n",
4231 			   source_port_or_eth_type, entry_num);
4232 		break;
4233 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4234 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4235 			   "UDP src port %x is added at %d\n",
4236 			   source_port_or_eth_type, entry_num);
4237 		break;
4238 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4239 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4240 			   "TCP dst port %x is added at %d\n", dest_port,
4241 			   entry_num);
4242 		break;
4243 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4244 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4245 			   "UDP dst port %x is added at %d\n", dest_port,
4246 			   entry_num);
4247 		break;
4248 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4249 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4250 			   "TCP src/dst ports %x/%x are added at %d\n",
4251 			   source_port_or_eth_type, dest_port, entry_num);
4252 		break;
4253 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4254 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4255 			   "UDP src/dst ports %x/%x are added at %d\n",
4256 			   source_port_or_eth_type, dest_port, entry_num);
4257 		break;
4258 	}
4259 
4260 	return ECORE_SUCCESS;
4261 }
4262 
4263 static enum _ecore_status_t
4264 ecore_llh_remove_protocol_filter_bb_ah(struct ecore_hwfn *p_hwfn,
4265 				       struct ecore_ptt *p_ptt,
4266 				       enum ecore_llh_port_filter_type_t type,
4267 				       u32 high, u32 low, u32 *p_entry_num)
4268 {
4269 	int i;
4270 
4271 	/* Find the entry and clean it */
4272 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4273 		if (!ecore_rd(p_hwfn, p_ptt,
4274 			      NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 +
4275 			      i * sizeof(u32)))
4276 			continue;
4277 		if (!ecore_rd(p_hwfn, p_ptt,
4278 			      NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4279 			      i * sizeof(u32)))
4280 			continue;
4281 		if (!(ecore_rd(p_hwfn, p_ptt,
4282 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4283 			       i * sizeof(u32)) & (1 << type)))
4284 			continue;
4285 		if (ecore_rd(p_hwfn, p_ptt,
4286 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4287 			     2 * i * sizeof(u32)) != low)
4288 			continue;
4289 		if (ecore_rd(p_hwfn, p_ptt,
4290 			     NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4291 			     (2 * i + 1) * sizeof(u32)) != high)
4292 			continue;
4293 
4294 		ecore_wr(p_hwfn, p_ptt,
4295 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + i * sizeof(u32), 0);
4296 		ecore_wr(p_hwfn, p_ptt,
4297 			 NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 +
4298 			 i * sizeof(u32), 0);
4299 		ecore_wr(p_hwfn, p_ptt,
4300 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 +
4301 			 i * sizeof(u32), 0);
4302 		ecore_wr(p_hwfn, p_ptt,
4303 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4304 			 2 * i * sizeof(u32), 0);
4305 		ecore_wr(p_hwfn, p_ptt,
4306 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4307 			 (2 * i + 1) * sizeof(u32), 0);
4308 		break;
4309 	}
4310 
4311 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4312 		return ECORE_INVAL;
4313 
4314 	*p_entry_num = i;
4315 
4316 	return ECORE_SUCCESS;
4317 }
4318 
4319 void
4320 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
4321 				 struct ecore_ptt *p_ptt,
4322 				 u16 source_port_or_eth_type,
4323 				 u16 dest_port,
4324 				 enum ecore_llh_port_filter_type_t type)
4325 {
4326 	u32 high, low, entry_num;
4327 	enum _ecore_status_t rc;
4328 
4329 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4330 		return;
4331 
4332 	high = 0;
4333 	low = 0;
4334 
4335 	switch (type) {
4336 	case ECORE_LLH_FILTER_ETHERTYPE:
4337 		high = source_port_or_eth_type;
4338 		break;
4339 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
4340 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
4341 		low = source_port_or_eth_type << 16;
4342 		break;
4343 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
4344 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
4345 		low = dest_port;
4346 		break;
4347 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4348 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4349 		low = (source_port_or_eth_type << 16) | dest_port;
4350 		break;
4351 	default:
4352 		DP_NOTICE(p_hwfn, true,
4353 			  "Non valid LLH protocol filter type %d\n", type);
4354 		return;
4355 	}
4356 
4357 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4358 		rc = ecore_llh_remove_protocol_filter_bb_ah(p_hwfn, p_ptt, type,
4359 							    high, low,
4360 							    &entry_num);
4361 	if (rc != ECORE_SUCCESS) {
4362 		DP_NOTICE(p_hwfn, false,
4363 			  "Tried to remove a non-configured filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x]\n",
4364 			  type, source_port_or_eth_type, dest_port);
4365 		return;
4366 	}
4367 
4368 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
4369 		   "Protocol filter [type %d, source_port_or_eth_type 0x%x, dest_port 0x%x] was removed from %d\n",
4370 		   type, source_port_or_eth_type, dest_port, entry_num);
4371 }
4372 
4373 static void ecore_llh_clear_all_filters_bb_ah(struct ecore_hwfn *p_hwfn,
4374 					      struct ecore_ptt *p_ptt)
4375 {
4376 	int i;
4377 
4378 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4379 		return;
4380 
4381 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4382 		ecore_wr(p_hwfn, p_ptt,
4383 			 NIG_REG_LLH_FUNC_FILTER_EN_BB_K2  +
4384 			 i * sizeof(u32), 0);
4385 		ecore_wr(p_hwfn, p_ptt,
4386 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4387 			 2 * i * sizeof(u32), 0);
4388 		ecore_wr(p_hwfn, p_ptt,
4389 			 NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 +
4390 			 (2 * i + 1) * sizeof(u32), 0);
4391 	}
4392 }
4393 
4394 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
4395 			     struct ecore_ptt *p_ptt)
4396 {
4397 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
4398 		return;
4399 
4400 	if (ECORE_IS_BB(p_hwfn->p_dev) || ECORE_IS_AH(p_hwfn->p_dev))
4401 		ecore_llh_clear_all_filters_bb_ah(p_hwfn, p_ptt);
4402 }
4403 
4404 enum _ecore_status_t
4405 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
4406 				  struct ecore_ptt *p_ptt)
4407 {
4408 	if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
4409 		ecore_wr(p_hwfn, p_ptt,
4410 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
4411 			 1 << p_hwfn->abs_pf_id / 2);
4412 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
4413 		return ECORE_SUCCESS;
4414 	}
4415 
4416 	DP_NOTICE(p_hwfn, false,
4417 		  "This function can't be set as default\n");
4418 	return ECORE_INVAL;
4419 }
4420 
4421 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
4422 					       struct ecore_ptt *p_ptt,
4423 					       u32 hw_addr, void *p_eth_qzone,
4424 					       osal_size_t eth_qzone_size,
4425 					       u8 timeset)
4426 {
4427 	struct coalescing_timeset *p_coal_timeset;
4428 
4429 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
4430 		DP_NOTICE(p_hwfn, true,
4431 			  "Coalescing configuration not enabled\n");
4432 		return ECORE_INVAL;
4433 	}
4434 
4435 	p_coal_timeset = p_eth_qzone;
4436 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
4437 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
4438 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
4439 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
4440 
4441 	return ECORE_SUCCESS;
4442 }
4443 
4444 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
4445 					      u16 rx_coal, u16 tx_coal,
4446 					      void *p_handle)
4447 {
4448 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
4449 	enum _ecore_status_t rc = ECORE_SUCCESS;
4450 	struct ecore_ptt *p_ptt;
4451 
4452 	/* TODO - Configuring a single queue's coalescing but
4453 	 * claiming all queues are abiding same configuration
4454 	 * for PF and VF both.
4455 	 */
4456 
4457 	if (IS_VF(p_hwfn->p_dev))
4458 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
4459 						tx_coal, p_cid);
4460 
4461 	p_ptt = ecore_ptt_acquire(p_hwfn);
4462 	if (!p_ptt)
4463 		return ECORE_AGAIN;
4464 
4465 	if (rx_coal) {
4466 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
4467 		if (rc)
4468 			goto out;
4469 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
4470 	}
4471 
4472 	if (tx_coal) {
4473 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
4474 		if (rc)
4475 			goto out;
4476 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
4477 	}
4478 out:
4479 	ecore_ptt_release(p_hwfn, p_ptt);
4480 
4481 	return rc;
4482 }
4483 
4484 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
4485 					    struct ecore_ptt *p_ptt,
4486 					    u16 coalesce,
4487 					    struct ecore_queue_cid *p_cid)
4488 {
4489 	struct ustorm_eth_queue_zone eth_qzone;
4490 	u8 timeset, timer_res;
4491 	u32 address;
4492 	enum _ecore_status_t rc;
4493 
4494 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
4495 	if (coalesce <= 0x7F) {
4496 		timer_res = 0;
4497 	} else if (coalesce <= 0xFF) {
4498 		timer_res = 1;
4499 	} else if (coalesce <= 0x1FF) {
4500 		timer_res = 2;
4501 	} else {
4502 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
4503 		return ECORE_INVAL;
4504 	}
4505 	timeset = (u8)(coalesce >> timer_res);
4506 
4507 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
4508 				     p_cid->abs.sb_idx, false);
4509 	if (rc != ECORE_SUCCESS)
4510 		goto out;
4511 
4512 	address = BAR0_MAP_REG_USDM_RAM +
4513 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
4514 
4515 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
4516 				sizeof(struct ustorm_eth_queue_zone), timeset);
4517 	if (rc != ECORE_SUCCESS)
4518 		goto out;
4519 
4520 out:
4521 	return rc;
4522 }
4523 
4524 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
4525 					    struct ecore_ptt *p_ptt,
4526 					    u16 coalesce,
4527 					    struct ecore_queue_cid *p_cid)
4528 {
4529 	struct xstorm_eth_queue_zone eth_qzone;
4530 	u8 timeset, timer_res;
4531 	u32 address;
4532 	enum _ecore_status_t rc;
4533 
4534 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
4535 	if (coalesce <= 0x7F) {
4536 		timer_res = 0;
4537 	} else if (coalesce <= 0xFF) {
4538 		timer_res = 1;
4539 	} else if (coalesce <= 0x1FF) {
4540 		timer_res = 2;
4541 	} else {
4542 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
4543 		return ECORE_INVAL;
4544 	}
4545 
4546 	timeset = (u8)(coalesce >> timer_res);
4547 
4548 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
4549 				     p_cid->abs.sb_idx, true);
4550 	if (rc != ECORE_SUCCESS)
4551 		goto out;
4552 
4553 	address = BAR0_MAP_REG_XSDM_RAM +
4554 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
4555 
4556 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
4557 				sizeof(struct xstorm_eth_queue_zone), timeset);
4558 out:
4559 	return rc;
4560 }
4561 
4562 /* Calculate final WFQ values for all vports and configure it.
4563  * After this configuration each vport must have
4564  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
4565  */
4566 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
4567 					       struct ecore_ptt *p_ptt,
4568 					       u32 min_pf_rate)
4569 {
4570 	struct init_qm_vport_params *vport_params;
4571 	int i;
4572 
4573 	vport_params = p_hwfn->qm_info.qm_vport_params;
4574 
4575 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4576 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4577 
4578 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
4579 		    min_pf_rate;
4580 		ecore_init_vport_wfq(p_hwfn, p_ptt,
4581 				     vport_params[i].first_tx_pq_id,
4582 				     vport_params[i].vport_wfq);
4583 	}
4584 }
4585 
4586 static void
4587 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
4588 {
4589 	int i;
4590 
4591 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
4592 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
4593 }
4594 
4595 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
4596 					     struct ecore_ptt *p_ptt,
4597 					     u32 min_pf_rate)
4598 {
4599 	struct init_qm_vport_params *vport_params;
4600 	int i;
4601 
4602 	vport_params = p_hwfn->qm_info.qm_vport_params;
4603 
4604 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4605 		ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
4606 		ecore_init_vport_wfq(p_hwfn, p_ptt,
4607 				     vport_params[i].first_tx_pq_id,
4608 				     vport_params[i].vport_wfq);
4609 	}
4610 }
4611 
4612 /* This function performs several validations for WFQ
4613  * configuration and required min rate for a given vport
4614  * 1. req_rate must be greater than one percent of min_pf_rate.
4615  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
4616  *    rates to get less than one percent of min_pf_rate.
4617  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
4618  */
4619 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
4620 						 u16 vport_id, u32 req_rate,
4621 						 u32 min_pf_rate)
4622 {
4623 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
4624 	int non_requested_count = 0, req_count = 0, i, num_vports;
4625 
4626 	num_vports = p_hwfn->qm_info.num_vports;
4627 
4628 /* Accounting for the vports which are configured for WFQ explicitly */
4629 
4630 	for (i = 0; i < num_vports; i++) {
4631 		u32 tmp_speed;
4632 
4633 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
4634 			req_count++;
4635 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4636 			total_req_min_rate += tmp_speed;
4637 		}
4638 	}
4639 
4640 	/* Include current vport data as well */
4641 	req_count++;
4642 	total_req_min_rate += req_rate;
4643 	non_requested_count = num_vports - req_count;
4644 
4645 	/* validate possible error cases */
4646 	if (req_rate > min_pf_rate) {
4647 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4648 			   "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4649 			   vport_id, req_rate, min_pf_rate);
4650 		return ECORE_INVAL;
4651 	}
4652 
4653 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
4654 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4655 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4656 			   vport_id, req_rate, min_pf_rate);
4657 		return ECORE_INVAL;
4658 	}
4659 
4660 	/* TBD - for number of vports greater than 100 */
4661 	if (num_vports > ECORE_WFQ_UNIT) {
4662 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4663 			   "Number of vports is greater than %d\n",
4664 			   ECORE_WFQ_UNIT);
4665 		return ECORE_INVAL;
4666 	}
4667 
4668 	if (total_req_min_rate > min_pf_rate) {
4669 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4670 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4671 			   total_req_min_rate, min_pf_rate);
4672 		return ECORE_INVAL;
4673 	}
4674 
4675 	/* Data left for non requested vports */
4676 	total_left_rate = min_pf_rate - total_req_min_rate;
4677 	left_rate_per_vp = total_left_rate / non_requested_count;
4678 
4679 	/* validate if non requested get < 1% of min bw */
4680 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
4681 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4682 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4683 			   left_rate_per_vp, min_pf_rate);
4684 		return ECORE_INVAL;
4685 	}
4686 
4687 	/* now req_rate for given vport passes all scenarios.
4688 	 * assign final wfq rates to all vports.
4689 	 */
4690 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4691 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4692 
4693 	for (i = 0; i < num_vports; i++) {
4694 		if (p_hwfn->qm_info.wfq_data[i].configured)
4695 			continue;
4696 
4697 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4698 	}
4699 
4700 	return ECORE_SUCCESS;
4701 }
4702 
4703 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4704 				       struct ecore_ptt *p_ptt,
4705 				       u16 vp_id, u32 rate)
4706 {
4707 	struct ecore_mcp_link_state *p_link;
4708 	int rc = ECORE_SUCCESS;
4709 
4710 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4711 
4712 	if (!p_link->min_pf_rate) {
4713 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4714 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4715 		return rc;
4716 	}
4717 
4718 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4719 
4720 	if (rc == ECORE_SUCCESS)
4721 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4722 						   p_link->min_pf_rate);
4723 	else
4724 		DP_NOTICE(p_hwfn, false,
4725 			  "Validation failed while configuring min rate\n");
4726 
4727 	return rc;
4728 }
4729 
4730 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4731 						   struct ecore_ptt *p_ptt,
4732 						   u32 min_pf_rate)
4733 {
4734 	bool use_wfq = false;
4735 	int rc = ECORE_SUCCESS;
4736 	u16 i;
4737 
4738 	/* Validate all pre configured vports for wfq */
4739 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4740 		u32 rate;
4741 
4742 		if (!p_hwfn->qm_info.wfq_data[i].configured)
4743 			continue;
4744 
4745 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4746 		use_wfq = true;
4747 
4748 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4749 		if (rc != ECORE_SUCCESS) {
4750 			DP_NOTICE(p_hwfn, false,
4751 				  "WFQ validation failed while configuring min rate\n");
4752 			break;
4753 		}
4754 	}
4755 
4756 	if (rc == ECORE_SUCCESS && use_wfq)
4757 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4758 	else
4759 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4760 
4761 	return rc;
4762 }
4763 
4764 /* Main API for ecore clients to configure vport min rate.
4765  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4766  * rate - Speed in Mbps needs to be assigned to a given vport.
4767  */
4768 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4769 {
4770 	int i, rc = ECORE_INVAL;
4771 
4772 	/* TBD - for multiple hardware functions - that is 100 gig */
4773 	if (p_dev->num_hwfns > 1) {
4774 		DP_NOTICE(p_dev, false,
4775 			  "WFQ configuration is not supported for this device\n");
4776 		return rc;
4777 	}
4778 
4779 	for_each_hwfn(p_dev, i) {
4780 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4781 		struct ecore_ptt *p_ptt;
4782 
4783 		p_ptt = ecore_ptt_acquire(p_hwfn);
4784 		if (!p_ptt)
4785 			return ECORE_TIMEOUT;
4786 
4787 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4788 
4789 		if (rc != ECORE_SUCCESS) {
4790 			ecore_ptt_release(p_hwfn, p_ptt);
4791 			return rc;
4792 		}
4793 
4794 		ecore_ptt_release(p_hwfn, p_ptt);
4795 	}
4796 
4797 	return rc;
4798 }
4799 
4800 /* API to configure WFQ from mcp link change */
4801 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4802 					   u32 min_pf_rate)
4803 {
4804 	int i;
4805 
4806 	/* TBD - for multiple hardware functions - that is 100 gig */
4807 	if (p_dev->num_hwfns > 1) {
4808 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4809 			   "WFQ configuration is not supported for this device\n");
4810 		return;
4811 	}
4812 
4813 	for_each_hwfn(p_dev, i) {
4814 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4815 
4816 		__ecore_configure_vp_wfq_on_link_change(p_hwfn,
4817 							p_hwfn->p_dpc_ptt,
4818 							min_pf_rate);
4819 	}
4820 }
4821 
4822 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4823 				       struct ecore_ptt *p_ptt,
4824 				       struct ecore_mcp_link_state *p_link,
4825 				       u8 max_bw)
4826 {
4827 	int rc = ECORE_SUCCESS;
4828 
4829 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4830 
4831 	if (!p_link->line_speed && (max_bw != 100))
4832 		return rc;
4833 
4834 	p_link->speed = (p_link->line_speed * max_bw) / 100;
4835 	p_hwfn->qm_info.pf_rl = p_link->speed;
4836 
4837 	/* Since the limiter also affects Tx-switched traffic, we don't want it
4838 	 * to limit such traffic in case there's no actual limit.
4839 	 * In that case, set limit to imaginary high boundary.
4840 	 */
4841 	if (max_bw == 100)
4842 		p_hwfn->qm_info.pf_rl = 100000;
4843 
4844 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4845 			      p_hwfn->qm_info.pf_rl);
4846 
4847 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4848 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
4849 		   p_link->speed);
4850 
4851 	return rc;
4852 }
4853 
4854 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4855 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4856 {
4857 	int i, rc = ECORE_INVAL;
4858 
4859 	if (max_bw < 1 || max_bw > 100) {
4860 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4861 		return rc;
4862 	}
4863 
4864 	for_each_hwfn(p_dev, i) {
4865 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4866 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4867 		struct ecore_mcp_link_state *p_link;
4868 		struct ecore_ptt *p_ptt;
4869 
4870 		p_link = &p_lead->mcp_info->link_output;
4871 
4872 		p_ptt = ecore_ptt_acquire(p_hwfn);
4873 		if (!p_ptt)
4874 			return ECORE_TIMEOUT;
4875 
4876 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4877 							p_link, max_bw);
4878 
4879 		ecore_ptt_release(p_hwfn, p_ptt);
4880 
4881 		if (rc != ECORE_SUCCESS)
4882 			break;
4883 	}
4884 
4885 	return rc;
4886 }
4887 
4888 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4889 				       struct ecore_ptt *p_ptt,
4890 				       struct ecore_mcp_link_state *p_link,
4891 				       u8 min_bw)
4892 {
4893 	int rc = ECORE_SUCCESS;
4894 
4895 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4896 	p_hwfn->qm_info.pf_wfq = min_bw;
4897 
4898 	if (!p_link->line_speed)
4899 		return rc;
4900 
4901 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4902 
4903 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4904 
4905 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4906 		   "Configured MIN bandwidth to be %d Mb/sec\n",
4907 		   p_link->min_pf_rate);
4908 
4909 	return rc;
4910 }
4911 
4912 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4913 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4914 {
4915 	int i, rc = ECORE_INVAL;
4916 
4917 	if (min_bw < 1 || min_bw > 100) {
4918 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4919 		return rc;
4920 	}
4921 
4922 	for_each_hwfn(p_dev, i) {
4923 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4924 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4925 		struct ecore_mcp_link_state *p_link;
4926 		struct ecore_ptt *p_ptt;
4927 
4928 		p_link = &p_lead->mcp_info->link_output;
4929 
4930 		p_ptt = ecore_ptt_acquire(p_hwfn);
4931 		if (!p_ptt)
4932 			return ECORE_TIMEOUT;
4933 
4934 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4935 							p_link, min_bw);
4936 		if (rc != ECORE_SUCCESS) {
4937 			ecore_ptt_release(p_hwfn, p_ptt);
4938 			return rc;
4939 		}
4940 
4941 		if (p_link->min_pf_rate) {
4942 			u32 min_rate = p_link->min_pf_rate;
4943 
4944 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4945 								     p_ptt,
4946 								     min_rate);
4947 		}
4948 
4949 		ecore_ptt_release(p_hwfn, p_ptt);
4950 	}
4951 
4952 	return rc;
4953 }
4954 
4955 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4956 {
4957 	struct ecore_mcp_link_state *p_link;
4958 
4959 	p_link = &p_hwfn->mcp_info->link_output;
4960 
4961 	if (p_link->min_pf_rate)
4962 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4963 						 p_link->min_pf_rate);
4964 
4965 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4966 		    sizeof(*p_hwfn->qm_info.wfq_data) *
4967 		    p_hwfn->qm_info.num_vports);
4968 }
4969 
4970 int ecore_device_num_engines(struct ecore_dev *p_dev)
4971 {
4972 	return ECORE_IS_BB(p_dev) ? 2 : 1;
4973 }
4974 
4975 int ecore_device_num_ports(struct ecore_dev *p_dev)
4976 {
4977 	/* in CMT always only one port */
4978 	if (p_dev->num_hwfns > 1)
4979 		return 1;
4980 
4981 	return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4982 }
4983 
4984 void ecore_set_fw_mac_addr(__le16 *fw_msb,
4985 			  __le16 *fw_mid,
4986 			  __le16 *fw_lsb,
4987 			  u8 *mac)
4988 {
4989 	((u8 *)fw_msb)[0] = mac[1];
4990 	((u8 *)fw_msb)[1] = mac[0];
4991 	((u8 *)fw_mid)[0] = mac[3];
4992 	((u8 *)fw_mid)[1] = mac[2];
4993 	((u8 *)fw_lsb)[0] = mac[5];
4994 	((u8 *)fw_lsb)[1] = mac[4];
4995 }
4996