xref: /dpdk/drivers/net/qede/base/ecore_dev.c (revision aaffc740ec2cfdb304523c67020f09ad343cfacf)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
33 
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35  * registers involved are not split and thus configuration is a race where
36  * some of the PFs configuration might be lost.
37  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39  * there's more than a single compiled ecore component in system].
40  */
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
43 
44 /* Configurable */
45 #define ECORE_MIN_DPIS		(4)	/* The minimal num of DPIs required to
46 					 * load the driver. The number was
47 					 * arbitrarily set.
48 					 */
49 
50 /* Derived */
51 #define ECORE_MIN_PWM_REGION	((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
52 
53 enum BAR_ID {
54 	BAR_ID_0,		/* used for GRC */
55 	BAR_ID_1		/* Used for doorbells */
56 };
57 
58 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
59 {
60 	u32 bar_reg = (bar_id == BAR_ID_0 ?
61 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
62 	u32 val;
63 
64 	if (IS_VF(p_hwfn->p_dev)) {
65 		/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
66 		 * read from actual register, but we're currently not using
67 		 * it for actual doorbelling.
68 		 */
69 		return 1 << 17;
70 	}
71 
72 	val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
73 
74 	/* The above registers were updated in the past only in CMT mode. Since
75 	 * they were found to be useful MFW started updating them from 8.7.7.0.
76 	 * In older MFW versions they are set to 0 which means disabled.
77 	 */
78 	if (!val) {
79 		if (p_hwfn->p_dev->num_hwfns > 1) {
80 			DP_NOTICE(p_hwfn, false,
81 				  "BAR size not configured. Assuming BAR size");
82 			DP_NOTICE(p_hwfn, false,
83 				  "of 256kB for GRC and 512kB for DB\n");
84 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
85 		} else {
86 			DP_NOTICE(p_hwfn, false,
87 				  "BAR size not configured. Assuming BAR size");
88 			DP_NOTICE(p_hwfn, false,
89 				  "of 512kB for GRC and 512kB for DB\n");
90 			return 512 * 1024;
91 		}
92 	}
93 
94 	return 1 << (val + 15);
95 }
96 
97 void ecore_init_dp(struct ecore_dev *p_dev,
98 		   u32 dp_module, u8 dp_level, void *dp_ctx)
99 {
100 	u32 i;
101 
102 	p_dev->dp_level = dp_level;
103 	p_dev->dp_module = dp_module;
104 	p_dev->dp_ctx = dp_ctx;
105 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
106 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
107 
108 		p_hwfn->dp_level = dp_level;
109 		p_hwfn->dp_module = dp_module;
110 		p_hwfn->dp_ctx = dp_ctx;
111 	}
112 }
113 
114 void ecore_init_struct(struct ecore_dev *p_dev)
115 {
116 	u8 i;
117 
118 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
119 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
120 
121 		p_hwfn->p_dev = p_dev;
122 		p_hwfn->my_id = i;
123 		p_hwfn->b_active = false;
124 
125 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
126 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
127 	}
128 
129 	/* hwfn 0 is always active */
130 	p_dev->hwfns[0].b_active = true;
131 
132 	/* set the default cache alignment to 128 (may be overridden later) */
133 	p_dev->cache_shift = 7;
134 }
135 
136 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
137 {
138 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
139 
140 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
141 	qm_info->qm_pq_params = OSAL_NULL;
142 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
143 	qm_info->qm_vport_params = OSAL_NULL;
144 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
145 	qm_info->qm_port_params = OSAL_NULL;
146 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
147 	qm_info->wfq_data = OSAL_NULL;
148 }
149 
150 void ecore_resc_free(struct ecore_dev *p_dev)
151 {
152 	int i;
153 
154 	if (IS_VF(p_dev))
155 		return;
156 
157 	OSAL_FREE(p_dev, p_dev->fw_data);
158 	p_dev->fw_data = OSAL_NULL;
159 
160 	OSAL_FREE(p_dev, p_dev->reset_stats);
161 
162 	for_each_hwfn(p_dev, i) {
163 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
164 
165 		OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
166 		p_hwfn->p_tx_cids = OSAL_NULL;
167 		OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
168 		p_hwfn->p_rx_cids = OSAL_NULL;
169 	}
170 
171 	for_each_hwfn(p_dev, i) {
172 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
173 
174 		ecore_cxt_mngr_free(p_hwfn);
175 		ecore_qm_info_free(p_hwfn);
176 		ecore_spq_free(p_hwfn);
177 		ecore_eq_free(p_hwfn, p_hwfn->p_eq);
178 		ecore_consq_free(p_hwfn, p_hwfn->p_consq);
179 		ecore_int_free(p_hwfn);
180 #ifdef CONFIG_ECORE_LL2
181 		ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
182 #endif
183 		ecore_iov_free(p_hwfn);
184 		ecore_dmae_info_free(p_hwfn);
185 		ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
186 		/* @@@TBD Flush work-queue ? */
187 	}
188 }
189 
190 static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
191 					       bool b_sleepable)
192 {
193 	u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
194 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
195 	struct init_qm_port_params *p_qm_port;
196 	bool init_rdma_offload_pq = false;
197 	bool init_pure_ack_pq = false;
198 	bool init_ooo_pq = false;
199 	u16 num_pqs, protocol_pqs;
200 	u16 num_pf_rls = 0;
201 	u16 num_vfs = 0;
202 	u32 pf_rl;
203 	u8 pf_wfq;
204 
205 	/* @TMP - saving the existing min/max bw config before resetting the
206 	 * qm_info to restore them.
207 	 */
208 	pf_rl = qm_info->pf_rl;
209 	pf_wfq = qm_info->pf_wfq;
210 
211 #ifdef CONFIG_ECORE_SRIOV
212 	if (p_hwfn->p_dev->p_iov_info)
213 		num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
214 #endif
215 	OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
216 
217 #ifndef ASIC_ONLY
218 	/* @TMP - Don't allocate QM queues for VFs on emulation */
219 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
220 		DP_NOTICE(p_hwfn, false,
221 			  "Emulation - skip configuring QM queues for VFs\n");
222 		num_vfs = 0;
223 	}
224 #endif
225 
226 	/* ethernet PFs require a pq per tc. Even if only a subset of the TCs
227 	 * active, we want physical queues allocated for all of them, since we
228 	 * don't have a good recycle flow. Non ethernet PFs require only a
229 	 * single physical queue.
230 	 */
231 	if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
232 	    p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
233 	    p_hwfn->hw_info.personality == ECORE_PCI_ETH)
234 		protocol_pqs = p_hwfn->hw_info.num_hw_tc;
235 	else
236 		protocol_pqs = 1;
237 
238 	num_pqs = protocol_pqs + num_vfs + 1;	/* The '1' is for pure-LB */
239 	num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
240 
241 	if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
242 		num_pqs++;	/* for RoCE queue */
243 		init_rdma_offload_pq = true;
244 		if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
245 			/* Due to FW assumption that rl==vport, we limit the
246 			 * number of rate limiters by the minimum between its
247 			 * allocated number and the allocated number of vports.
248 			 * Another limitation is the number of supported qps
249 			 * with rate limiters in FW.
250 			 */
251 			num_pf_rls =
252 			    (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
253 					     RESC_NUM(p_hwfn, ECORE_VPORT));
254 
255 			/* we subtract num_vfs because each one requires a rate
256 			 * limiter, and one default rate limiter.
257 			 */
258 			if (num_pf_rls < num_vfs + 1) {
259 				DP_ERR(p_hwfn, "No RL for DCQCN");
260 				DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
261 				       num_pf_rls, num_vfs);
262 				return ECORE_INVAL;
263 			}
264 			num_pf_rls -= num_vfs + 1;
265 		}
266 
267 		num_pqs += num_pf_rls;
268 		qm_info->num_pf_rls = (u8)num_pf_rls;
269 	}
270 
271 	if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
272 		num_pqs += 3;	/* for iwarp queue / pure-ack / ooo */
273 		init_rdma_offload_pq = true;
274 		init_pure_ack_pq = true;
275 		init_ooo_pq = true;
276 	}
277 
278 	if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
279 		num_pqs += 2;	/* for iSCSI pure-ACK / OOO queue */
280 		init_pure_ack_pq = true;
281 		init_ooo_pq = true;
282 	}
283 
284 	/* Sanity checking that setup requires legal number of resources */
285 	if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
286 		DP_ERR(p_hwfn,
287 		       "Need too many Physical queues - 0x%04x avail %04x",
288 		       num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
289 		return ECORE_INVAL;
290 	}
291 
292 	/* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
293 	 * then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
294 	 */
295 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
296 					    b_sleepable ? GFP_KERNEL :
297 					    GFP_ATOMIC,
298 					    sizeof(struct init_qm_pq_params) *
299 					    num_pqs);
300 	if (!qm_info->qm_pq_params)
301 		goto alloc_err;
302 
303 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
304 					       b_sleepable ? GFP_KERNEL :
305 					       GFP_ATOMIC,
306 					       sizeof(struct
307 						      init_qm_vport_params) *
308 					       num_vports);
309 	if (!qm_info->qm_vport_params)
310 		goto alloc_err;
311 
312 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
313 					      b_sleepable ? GFP_KERNEL :
314 					      GFP_ATOMIC,
315 					      sizeof(struct init_qm_port_params)
316 					      * MAX_NUM_PORTS);
317 	if (!qm_info->qm_port_params)
318 		goto alloc_err;
319 
320 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
321 					b_sleepable ? GFP_KERNEL :
322 					GFP_ATOMIC,
323 					sizeof(struct ecore_wfq_data) *
324 					num_vports);
325 
326 	if (!qm_info->wfq_data)
327 		goto alloc_err;
328 
329 	vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
330 
331 	/* First init rate limited queues ( Due to RoCE assumption of
332 	 * qpid=rlid )
333 	 */
334 	for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
335 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
336 		qm_info->qm_pq_params[curr_queue].tc_id =
337 		    p_hwfn->hw_info.offload_tc;
338 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
339 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
340 	};
341 
342 	/* Protocol PQs */
343 	for (i = 0; i < protocol_pqs; i++) {
344 		struct init_qm_pq_params *params =
345 		    &qm_info->qm_pq_params[curr_queue++];
346 
347 		if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
348 		    p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
349 		    p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
350 			params->vport_id = vport_id;
351 			params->tc_id = i;
352 			/* Note: this assumes that if we had a configuration
353 			 * with N tcs and subsequently another configuration
354 			 * With Fewer TCs, the in flight traffic (in QM queues,
355 			 * in FW, from driver to FW) will still trickle out and
356 			 * not get "stuck" in the QM. This is determined by the
357 			 * NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
358 			 * supposed to be cleared in this map, allowing traffic
359 			 * to flush out. If this is not the case, we would need
360 			 * to set the TC of unused queues to 0, and reconfigure
361 			 * QM every time num of TCs changes. Unused queues in
362 			 * this context would mean those intended for TCs where
363 			 * tc_id > hw_info.num_active_tcs.
364 			 */
365 			params->wrr_group = 1;	/* @@@TBD ECORE_WRR_MEDIUM */
366 		} else {
367 			params->vport_id = vport_id;
368 			params->tc_id = p_hwfn->hw_info.offload_tc;
369 			params->wrr_group = 1;	/* @@@TBD ECORE_WRR_MEDIUM */
370 		}
371 	}
372 
373 	/* Then init pure-LB PQ */
374 	qm_info->pure_lb_pq = curr_queue;
375 	qm_info->qm_pq_params[curr_queue].vport_id =
376 	    (u8)RESC_START(p_hwfn, ECORE_VPORT);
377 	qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
378 	qm_info->qm_pq_params[curr_queue].wrr_group = 1;
379 	curr_queue++;
380 
381 	qm_info->offload_pq = 0;	/* Already initialized for iSCSI/FCoE */
382 	if (init_rdma_offload_pq) {
383 		qm_info->offload_pq = curr_queue;
384 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
385 		qm_info->qm_pq_params[curr_queue].tc_id =
386 		    p_hwfn->hw_info.offload_tc;
387 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
388 		curr_queue++;
389 	}
390 
391 	if (init_pure_ack_pq) {
392 		qm_info->pure_ack_pq = curr_queue;
393 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
394 		qm_info->qm_pq_params[curr_queue].tc_id =
395 		    p_hwfn->hw_info.offload_tc;
396 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
397 		curr_queue++;
398 	}
399 
400 	if (init_ooo_pq) {
401 		qm_info->ooo_pq = curr_queue;
402 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
403 		qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
404 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
405 		curr_queue++;
406 	}
407 
408 	/* Then init per-VF PQs */
409 	vf_offset = curr_queue;
410 	for (i = 0; i < num_vfs; i++) {
411 		/* First vport is used by the PF */
412 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
413 		/* @@@TBD VF Multi-cos */
414 		qm_info->qm_pq_params[curr_queue].tc_id = 0;
415 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
416 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
417 		curr_queue++;
418 	};
419 
420 	qm_info->vf_queues_offset = vf_offset;
421 	qm_info->num_pqs = num_pqs;
422 	qm_info->num_vports = num_vports;
423 
424 	/* Initialize qm port parameters */
425 	num_ports = p_hwfn->p_dev->num_ports_in_engines;
426 	for (i = 0; i < num_ports; i++) {
427 		p_qm_port = &qm_info->qm_port_params[i];
428 		p_qm_port->active = 1;
429 		/* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
430 		 * be in place
431 		 */
432 		if (num_ports == 4)
433 			p_qm_port->active_phys_tcs = 0xf;
434 		else
435 			p_qm_port->active_phys_tcs = 0x9f;
436 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
437 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
438 	}
439 
440 	if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
441 		qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
442 	else
443 		qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
444 
445 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
446 
447 	qm_info->num_vf_pqs = num_vfs;
448 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
449 
450 	for (i = 0; i < qm_info->num_vports; i++)
451 		qm_info->qm_vport_params[i].vport_wfq = 1;
452 
453 	qm_info->vport_rl_en = 1;
454 	qm_info->vport_wfq_en = 1;
455 	qm_info->pf_rl = pf_rl;
456 	qm_info->pf_wfq = pf_wfq;
457 
458 	return ECORE_SUCCESS;
459 
460  alloc_err:
461 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
462 	ecore_qm_info_free(p_hwfn);
463 	return ECORE_NOMEM;
464 }
465 
466 /* This function reconfigures the QM pf on the fly.
467  * For this purpose we:
468  * 1. reconfigure the QM database
469  * 2. set new values to runtime arrat
470  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
471  * 4. activate init tool in QM_PF stage
472  * 5. send an sdm_qm_cmd through rbc interface to release the QM
473  */
474 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
475 				     struct ecore_ptt *p_ptt)
476 {
477 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
478 	bool b_rc;
479 	enum _ecore_status_t rc;
480 
481 	/* qm_info is allocated in ecore_init_qm_info() which is already called
482 	 * from ecore_resc_alloc() or previous call of ecore_qm_reconf().
483 	 * The allocated size may change each init, so we free it before next
484 	 * allocation.
485 	 */
486 	ecore_qm_info_free(p_hwfn);
487 
488 	/* initialize ecore's qm data structure */
489 	rc = ecore_init_qm_info(p_hwfn, false);
490 	if (rc != ECORE_SUCCESS)
491 		return rc;
492 
493 	/* stop PF's qm queues */
494 	OSAL_SPIN_LOCK(&qm_lock);
495 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
496 				      qm_info->start_pq, qm_info->num_pqs);
497 	OSAL_SPIN_UNLOCK(&qm_lock);
498 	if (!b_rc)
499 		return ECORE_INVAL;
500 
501 	/* clear the QM_PF runtime phase leftovers from previous init */
502 	ecore_init_clear_rt_data(p_hwfn);
503 
504 	/* prepare QM portion of runtime array */
505 	ecore_qm_init_pf(p_hwfn);
506 
507 	/* activate init tool on runtime array */
508 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
509 			    p_hwfn->hw_info.hw_mode);
510 	if (rc != ECORE_SUCCESS)
511 		return rc;
512 
513 	/* start PF's qm queues */
514 	OSAL_SPIN_LOCK(&qm_lock);
515 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
516 				      qm_info->start_pq, qm_info->num_pqs);
517 	OSAL_SPIN_UNLOCK(&qm_lock);
518 	if (!b_rc)
519 		return ECORE_INVAL;
520 
521 	return ECORE_SUCCESS;
522 }
523 
524 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
525 {
526 	struct ecore_consq *p_consq;
527 	struct ecore_eq *p_eq;
528 #ifdef	CONFIG_ECORE_LL2
529 	struct ecore_ll2_info *p_ll2_info;
530 #endif
531 	enum _ecore_status_t rc = ECORE_SUCCESS;
532 	int i;
533 
534 	if (IS_VF(p_dev))
535 		return rc;
536 
537 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
538 				     sizeof(*p_dev->fw_data));
539 	if (!p_dev->fw_data)
540 		return ECORE_NOMEM;
541 
542 	/* Allocate Memory for the Queue->CID mapping */
543 	for_each_hwfn(p_dev, i) {
544 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
545 
546 		/* @@@TMP - resc management, change to actual required size */
547 		int tx_size = sizeof(struct ecore_hw_cid_data) *
548 		    RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
549 		int rx_size = sizeof(struct ecore_hw_cid_data) *
550 		    RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
551 
552 		p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
553 						tx_size);
554 		if (!p_hwfn->p_tx_cids) {
555 			DP_NOTICE(p_hwfn, true,
556 				  "Failed to allocate memory for Tx Cids\n");
557 			goto alloc_no_mem;
558 		}
559 
560 		p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
561 						rx_size);
562 		if (!p_hwfn->p_rx_cids) {
563 			DP_NOTICE(p_hwfn, true,
564 				  "Failed to allocate memory for Rx Cids\n");
565 			goto alloc_no_mem;
566 		}
567 	}
568 
569 	for_each_hwfn(p_dev, i) {
570 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
571 		u32 n_eqes, num_cons;
572 
573 		/* First allocate the context manager structure */
574 		rc = ecore_cxt_mngr_alloc(p_hwfn);
575 		if (rc)
576 			goto alloc_err;
577 
578 		/* Set the HW cid/tid numbers (in the contest manager)
579 		 * Must be done prior to any further computations.
580 		 */
581 		rc = ecore_cxt_set_pf_params(p_hwfn);
582 		if (rc)
583 			goto alloc_err;
584 
585 		/* Prepare and process QM requirements */
586 		rc = ecore_init_qm_info(p_hwfn, true);
587 		if (rc)
588 			goto alloc_err;
589 
590 		/* Compute the ILT client partition */
591 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
592 		if (rc)
593 			goto alloc_err;
594 
595 		/* CID map / ILT shadow table / T2
596 		 * The talbes sizes are determined by the computations above
597 		 */
598 		rc = ecore_cxt_tables_alloc(p_hwfn);
599 		if (rc)
600 			goto alloc_err;
601 
602 		/* SPQ, must follow ILT because initializes SPQ context */
603 		rc = ecore_spq_alloc(p_hwfn);
604 		if (rc)
605 			goto alloc_err;
606 
607 		/* SP status block allocation */
608 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
609 							   RESERVED_PTT_DPC);
610 
611 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
612 		if (rc)
613 			goto alloc_err;
614 
615 		rc = ecore_iov_alloc(p_hwfn);
616 		if (rc)
617 			goto alloc_err;
618 
619 		/* EQ */
620 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
621 		if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
622 		    (p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
623 			/* Calculate the EQ size
624 			 * ---------------------
625 			 * Each ICID may generate up to one event at a time i.e.
626 			 * the event must be handled/cleared before a new one
627 			 * can be generated. We calculate the sum of events per
628 			 * protocol and create an EQ deep enough to handle the
629 			 * worst case:
630 			 * - Core - according to SPQ.
631 			 * - RoCE - per QP there are a couple of ICIDs, one
632 			 *          responder and one requester, each can
633 			 *          generate an EQE => n_eqes_qp = 2 * n_qp.
634 			 *          Each CQ can generate an EQE. There are 2 CQs
635 			 *          per QP => n_eqes_cq = 2 * n_qp.
636 			 *          Hence the RoCE total is 4 * n_qp or
637 			 *          2 * num_cons.
638 			 * - ENet - There can be up to two events per VF. One
639 			 *          for VF-PF channel and another for VF FLR
640 			 *          initial cleanup. The number of VFs is
641 			 *          bounded by MAX_NUM_VFS_BB, and is much
642 			 *          smaller than RoCE's so we avoid exact
643 			 *          calculation.
644 			 */
645 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
646 				num_cons =
647 				    ecore_cxt_get_proto_cid_count(
648 						p_hwfn,
649 						PROTOCOLID_ROCE,
650 						0);
651 				num_cons *= 2;
652 			} else {
653 				num_cons = ecore_cxt_get_proto_cid_count(
654 						p_hwfn,
655 						PROTOCOLID_IWARP,
656 						0);
657 			}
658 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
659 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
660 			num_cons =
661 			    ecore_cxt_get_proto_cid_count(p_hwfn,
662 							  PROTOCOLID_ISCSI, 0);
663 			n_eqes += 2 * num_cons;
664 		}
665 
666 		if (n_eqes > 0xFFFF) {
667 			DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
668 				       "The maximum of a u16 chain is 0x%x\n",
669 			       n_eqes, 0xFFFF);
670 			goto alloc_err;
671 		}
672 
673 		p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
674 		if (!p_eq)
675 			goto alloc_no_mem;
676 		p_hwfn->p_eq = p_eq;
677 
678 		p_consq = ecore_consq_alloc(p_hwfn);
679 		if (!p_consq)
680 			goto alloc_no_mem;
681 		p_hwfn->p_consq = p_consq;
682 
683 #ifdef CONFIG_ECORE_LL2
684 		if (p_hwfn->using_ll2) {
685 			p_ll2_info = ecore_ll2_alloc(p_hwfn);
686 			if (!p_ll2_info)
687 				goto alloc_no_mem;
688 			p_hwfn->p_ll2_info = p_ll2_info;
689 		}
690 #endif
691 
692 		/* DMA info initialization */
693 		rc = ecore_dmae_info_alloc(p_hwfn);
694 		if (rc) {
695 			DP_NOTICE(p_hwfn, true,
696 				  "Failed to allocate memory for dmae_info structure\n");
697 			goto alloc_err;
698 		}
699 
700 		/* DCBX initialization */
701 		rc = ecore_dcbx_info_alloc(p_hwfn);
702 		if (rc) {
703 			DP_NOTICE(p_hwfn, true,
704 				  "Failed to allocate memory for dcbx structure\n");
705 			goto alloc_err;
706 		}
707 	}
708 
709 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
710 					 sizeof(struct ecore_eth_stats));
711 	if (!p_dev->reset_stats) {
712 		DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
713 		goto alloc_no_mem;
714 	}
715 
716 	return ECORE_SUCCESS;
717 
718  alloc_no_mem:
719 	rc = ECORE_NOMEM;
720  alloc_err:
721 	ecore_resc_free(p_dev);
722 	return rc;
723 }
724 
725 void ecore_resc_setup(struct ecore_dev *p_dev)
726 {
727 	int i;
728 
729 	if (IS_VF(p_dev))
730 		return;
731 
732 	for_each_hwfn(p_dev, i) {
733 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
734 
735 		ecore_cxt_mngr_setup(p_hwfn);
736 		ecore_spq_setup(p_hwfn);
737 		ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
738 		ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
739 
740 		/* Read shadow of current MFW mailbox */
741 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
742 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
743 			    p_hwfn->mcp_info->mfw_mb_cur,
744 			    p_hwfn->mcp_info->mfw_mb_length);
745 
746 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
747 
748 		ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
749 #ifdef CONFIG_ECORE_LL2
750 		if (p_hwfn->using_ll2)
751 			ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
752 #endif
753 	}
754 }
755 
756 #define FINAL_CLEANUP_POLL_CNT	(100)
757 #define FINAL_CLEANUP_POLL_TIME	(10)
758 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
759 					 struct ecore_ptt *p_ptt,
760 					 u16 id, bool is_vf)
761 {
762 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
763 	enum _ecore_status_t rc = ECORE_TIMEOUT;
764 
765 #ifndef ASIC_ONLY
766 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
767 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
768 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
769 		return ECORE_SUCCESS;
770 	}
771 #endif
772 
773 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
774 	    USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
775 
776 	if (is_vf)
777 		id += 0x10;
778 
779 	command |= X_FINAL_CLEANUP_AGG_INT <<
780 	    SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
781 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
782 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
783 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
784 
785 /* Make sure notification is not set before initiating final cleanup */
786 
787 	if (REG_RD(p_hwfn, addr)) {
788 		DP_NOTICE(p_hwfn, false,
789 			  "Unexpected; Found final cleanup notification");
790 		DP_NOTICE(p_hwfn, false,
791 			  " before initiating final cleanup\n");
792 		REG_WR(p_hwfn, addr, 0);
793 	}
794 
795 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
796 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
797 		   id, OSAL_CPU_TO_LE32(command));
798 
799 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
800 		 OSAL_CPU_TO_LE32(command));
801 
802 	/* Poll until completion */
803 	while (!REG_RD(p_hwfn, addr) && count--)
804 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
805 
806 	if (REG_RD(p_hwfn, addr))
807 		rc = ECORE_SUCCESS;
808 	else
809 		DP_NOTICE(p_hwfn, true,
810 			  "Failed to receive FW final cleanup notification\n");
811 
812 	/* Cleanup afterwards */
813 	REG_WR(p_hwfn, addr, 0);
814 
815 	return rc;
816 }
817 
818 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
819 {
820 	int hw_mode = 0;
821 
822 	if (ECORE_IS_BB_A0(p_hwfn->p_dev)) {
823 		hw_mode |= 1 << MODE_BB_A0;
824 	} else if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
825 		hw_mode |= 1 << MODE_BB_B0;
826 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
827 		hw_mode |= 1 << MODE_K2;
828 	} else {
829 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
830 			  p_hwfn->p_dev->type);
831 		return ECORE_INVAL;
832 	}
833 
834 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
835 	switch (p_hwfn->p_dev->num_ports_in_engines) {
836 	case 1:
837 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
838 		break;
839 	case 2:
840 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
841 		break;
842 	case 4:
843 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
844 		break;
845 	default:
846 		DP_NOTICE(p_hwfn, true,
847 			  "num_ports_in_engine = %d not supported\n",
848 			  p_hwfn->p_dev->num_ports_in_engines);
849 		return ECORE_INVAL;
850 	}
851 
852 	switch (p_hwfn->p_dev->mf_mode) {
853 	case ECORE_MF_DEFAULT:
854 	case ECORE_MF_NPAR:
855 		hw_mode |= 1 << MODE_MF_SI;
856 		break;
857 	case ECORE_MF_OVLAN:
858 		hw_mode |= 1 << MODE_MF_SD;
859 		break;
860 	default:
861 		DP_NOTICE(p_hwfn, true,
862 			  "Unsupported MF mode, init as DEFAULT\n");
863 		hw_mode |= 1 << MODE_MF_SI;
864 	}
865 
866 #ifndef ASIC_ONLY
867 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
868 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
869 			hw_mode |= 1 << MODE_FPGA;
870 		} else {
871 			if (p_hwfn->p_dev->b_is_emul_full)
872 				hw_mode |= 1 << MODE_EMUL_FULL;
873 			else
874 				hw_mode |= 1 << MODE_EMUL_REDUCED;
875 		}
876 	} else
877 #endif
878 		hw_mode |= 1 << MODE_ASIC;
879 
880 #ifndef REAL_ASIC_ONLY
881 	if (ENABLE_EAGLE_ENG1_WORKAROUND(p_hwfn))
882 		hw_mode |= 1 << MODE_EAGLE_ENG1_WORKAROUND;
883 #endif
884 
885 	if (p_hwfn->p_dev->num_hwfns > 1)
886 		hw_mode |= 1 << MODE_100G;
887 
888 	p_hwfn->hw_info.hw_mode = hw_mode;
889 
890 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
891 		   "Configuring function for hw_mode: 0x%08x\n",
892 		   p_hwfn->hw_info.hw_mode);
893 
894 	return ECORE_SUCCESS;
895 }
896 
897 #ifndef ASIC_ONLY
898 /* MFW-replacement initializations for non-ASIC */
899 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
900 					       struct ecore_ptt *p_ptt)
901 {
902 	u32 pl_hv = 1;
903 	int i;
904 
905 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
906 		pl_hv |= 0x600;
907 
908 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
909 
910 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
911 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
912 
913 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
914 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
915 	if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
916 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
917 
918 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
919 		/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
920 		ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
921 			 (p_hwfn->p_dev->num_ports_in_engines >> 1));
922 
923 		ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
924 			 p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
925 	}
926 
927 	/* Poll on RBC */
928 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
929 	for (i = 0; i < 100; i++) {
930 		OSAL_UDELAY(50);
931 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
932 			break;
933 	}
934 	if (i == 100)
935 		DP_NOTICE(p_hwfn, true,
936 			  "RBC done failed to complete in PSWRQ2\n");
937 
938 	return ECORE_SUCCESS;
939 }
940 #endif
941 
942 /* Init run time data for all PFs and their VFs on an engine.
943  * TBD - for VFs - Once we have parent PF info for each VF in
944  * shmem available as CAU requires knowledge of parent PF for each VF.
945  */
946 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
947 {
948 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
949 	int i, sb_id;
950 
951 	for_each_hwfn(p_dev, i) {
952 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
953 		struct ecore_igu_info *p_igu_info;
954 		struct ecore_igu_block *p_block;
955 		struct cau_sb_entry sb_entry;
956 
957 		p_igu_info = p_hwfn->hw_info.p_igu_info;
958 
959 		for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
960 		     sb_id++) {
961 			p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
962 
963 			if (!p_block->is_pf)
964 				continue;
965 
966 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
967 						p_block->function_id, 0, 0);
968 			STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
969 		}
970 	}
971 }
972 
973 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
974 						 struct ecore_ptt *p_ptt,
975 						 int hw_mode)
976 {
977 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
978 	struct ecore_dev *p_dev = p_hwfn->p_dev;
979 	u8 vf_id, max_num_vfs;
980 	u16 num_pfs, pf_id;
981 	u32 concrete_fid;
982 	enum _ecore_status_t rc = ECORE_SUCCESS;
983 
984 	ecore_init_cau_rt_data(p_dev);
985 
986 	/* Program GTT windows */
987 	ecore_gtt_init(p_hwfn);
988 
989 #ifndef ASIC_ONLY
990 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
991 		rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
992 		if (rc != ECORE_SUCCESS)
993 			return rc;
994 	}
995 #endif
996 
997 	if (p_hwfn->mcp_info) {
998 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
999 			qm_info->pf_rl_en = 1;
1000 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1001 			qm_info->pf_wfq_en = 1;
1002 	}
1003 
1004 	ecore_qm_common_rt_init(p_hwfn,
1005 				p_hwfn->p_dev->num_ports_in_engines,
1006 				qm_info->max_phys_tcs_per_port,
1007 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1008 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1009 				qm_info->qm_port_params);
1010 
1011 	ecore_cxt_hw_init_common(p_hwfn);
1012 
1013 	/* Close gate from NIG to BRB/Storm; By default they are open, but
1014 	 * we close them to prevent NIG from passing data to reset blocks.
1015 	 * Should have been done in the ENGINE phase, but init-tool lacks
1016 	 * proper port-pretend capabilities.
1017 	 */
1018 	ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1019 	ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1020 	ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
1021 	ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1022 	ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1023 	ecore_port_unpretend(p_hwfn, p_ptt);
1024 
1025 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1026 	if (rc != ECORE_SUCCESS)
1027 		return rc;
1028 
1029 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1030 	 * need to decide with which value, maybe runtime
1031 	 */
1032 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1033 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1034 
1035 	if (ECORE_IS_BB(p_hwfn->p_dev)) {
1036 		/* Workaround clears ROCE search for all functions to prevent
1037 		 * involving non initialized function in processing ROCE packet.
1038 		 */
1039 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->p_dev);
1040 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1041 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1042 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1043 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1044 		}
1045 		/* pretend to original PF */
1046 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1047 	}
1048 
1049 	/* Workaround for avoiding CCFC execution error when getting packets
1050 	 * with CRC errors, and allowing instead the invoking of the FW error
1051 	 * handler.
1052 	 * This is not done inside the init tool since it currently can't
1053 	 * perform a pretending to VFs.
1054 	 */
1055 	max_num_vfs = ECORE_IS_AH(p_hwfn->p_dev) ? MAX_NUM_VFS_K2
1056 	    : MAX_NUM_VFS_BB;
1057 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1058 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1059 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1060 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1061 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1062 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1063 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1064 	}
1065 	/* pretend to original PF */
1066 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1067 
1068 	return rc;
1069 }
1070 
1071 #ifndef ASIC_ONLY
1072 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1073 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1074 
1075 #define PMEG_IF_BYTE_COUNT	8
1076 
1077 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1078 			     struct ecore_ptt *p_ptt,
1079 			     u32 addr, u64 data, u8 reg_type, u8 port)
1080 {
1081 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1082 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1083 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
1084 		   (8 << PMEG_IF_BYTE_COUNT),
1085 		   (reg_type << 25) | (addr << 8) | port,
1086 		   (u32)((data >> 32) & 0xffffffff),
1087 		   (u32)(data & 0xffffffff));
1088 
1089 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
1090 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
1091 		  0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1092 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
1093 		 (reg_type << 25) | (addr << 8) | port);
1094 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1095 		 data & 0xffffffff);
1096 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1097 		 (data >> 32) & 0xffffffff);
1098 }
1099 
1100 #define XLPORT_MODE_REG	(0x20a)
1101 #define XLPORT_MAC_CONTROL (0x210)
1102 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1103 #define XLPORT_ENABLE_REG (0x20b)
1104 
1105 #define XLMAC_CTRL (0x600)
1106 #define XLMAC_MODE (0x601)
1107 #define XLMAC_RX_MAX_SIZE (0x608)
1108 #define XLMAC_TX_CTRL (0x604)
1109 #define XLMAC_PAUSE_CTRL (0x60d)
1110 #define XLMAC_PFC_CTRL (0x60e)
1111 
1112 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
1113 				    struct ecore_ptt *p_ptt)
1114 {
1115 	u8 port = p_hwfn->port_id;
1116 	u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
1117 
1118 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
1119 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
1120 		 (port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
1121 		 | (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
1122 
1123 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
1124 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
1125 
1126 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
1127 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
1128 
1129 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
1130 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
1131 
1132 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
1133 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
1134 
1135 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
1136 		 (0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
1137 		 (8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
1138 
1139 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
1140 }
1141 
1142 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1143 				 struct ecore_ptt *p_ptt)
1144 {
1145 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1146 
1147 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1148 
1149 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
1150 		ecore_emul_link_init_ah(p_hwfn, p_ptt);
1151 		return;
1152 	}
1153 
1154 	/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1155 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1156 			 port);
1157 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1158 	/* XLMAC: SOFT RESET */
1159 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1160 	/* XLMAC: Port Speed >= 10Gbps */
1161 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1162 	/* XLMAC: Max Size */
1163 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1164 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1165 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1166 			 0, port);
1167 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1168 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1169 			 0x30ffffc000ULL, 0, port);
1170 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1171 			 port);	/* XLMAC: TX_EN, RX_EN */
1172 	/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1173 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1174 			 0x1003 | (loopback << 2), 0, port);
1175 	/* Enabled Parallel PFC interface */
1176 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1177 
1178 	/* XLPORT port enable */
1179 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1180 }
1181 
1182 static void ecore_link_init(struct ecore_hwfn *p_hwfn,
1183 			    struct ecore_ptt *p_ptt, u8 port)
1184 {
1185 	int port_offset = port ? 0x800 : 0;
1186 	u32 xmac_rxctrl = 0;
1187 
1188 	/* Reset of XMAC */
1189 	/* FIXME: move to common start */
1190 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1191 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Clear */
1192 	OSAL_MSLEEP(1);
1193 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1194 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Set */
1195 
1196 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
1197 
1198 	/* Set the number of ports on the Warp Core to 10G */
1199 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
1200 
1201 	/* Soft reset of XMAC */
1202 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1203 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1204 	OSAL_MSLEEP(1);
1205 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1206 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1207 
1208 	/* FIXME: move to common end */
1209 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1210 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
1211 
1212 	/* Set Max packet size: initialize XMAC block register for port 0 */
1213 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
1214 
1215 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1216 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
1217 
1218 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1219 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
1220 		 XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
1221 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
1222 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
1223 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
1224 }
1225 #endif
1226 
1227 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1228 					       struct ecore_ptt *p_ptt,
1229 					       int hw_mode)
1230 {
1231 	enum _ecore_status_t rc = ECORE_SUCCESS;
1232 
1233 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1234 			    hw_mode);
1235 	if (rc != ECORE_SUCCESS)
1236 		return rc;
1237 #ifndef ASIC_ONLY
1238 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1239 		return ECORE_SUCCESS;
1240 
1241 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1242 		if (ECORE_IS_AH(p_hwfn->p_dev))
1243 			return ECORE_SUCCESS;
1244 		ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
1245 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1246 		if (p_hwfn->p_dev->num_hwfns > 1) {
1247 			/* Activate OPTE in CMT */
1248 			u32 val;
1249 
1250 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1251 			val |= 0x10;
1252 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1253 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1254 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1255 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1256 			ecore_wr(p_hwfn, p_ptt,
1257 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1258 			ecore_wr(p_hwfn, p_ptt,
1259 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1260 			ecore_wr(p_hwfn, p_ptt,
1261 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1262 				 0x55555555);
1263 		}
1264 
1265 		ecore_emul_link_init(p_hwfn, p_ptt);
1266 	} else {
1267 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1268 	}
1269 #endif
1270 
1271 	return rc;
1272 }
1273 
1274 static enum _ecore_status_t
1275 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1276 		       struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1277 {
1278 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1279 	u32 dpi_bit_shift, dpi_count;
1280 	u32 min_dpis;
1281 
1282 	/* Calculate DPI size
1283 	 * ------------------
1284 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1285 	 * the kernel for, e.g, L2. The others are free to be used by non-
1286 	 * trusted applications, typically from user space. Each page, called a
1287 	 * doorbell page is sectioned into windows that allow doorbells to be
1288 	 * issued in parallel by the kernel/application. The size of such a
1289 	 * window (a.k.a. WID) is 1kB.
1290 	 * Summary:
1291 	 *    1kB WID x N WIDS = DPI page size
1292 	 *    DPI page size x N DPIs = PWM region size
1293 	 * Notes:
1294 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1295 	 * in order to ensure that two applications won't share the same page.
1296 	 * It also must contain at least one WID per CPU to allow parallelism.
1297 	 * It also must be a power of 2, since it is stored as a bit shift.
1298 	 *
1299 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1300 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1301 	 * containing 4 WIDs.
1302 	 */
1303 	dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1304 	dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1305 	dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1306 	dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1307 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1308 
1309 	dpi_count = pwm_region_size / dpi_page_size;
1310 
1311 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1312 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1313 
1314 	/* Update hwfn */
1315 	p_hwfn->dpi_size = dpi_page_size;
1316 	p_hwfn->dpi_count = dpi_count;
1317 
1318 	/* Update registers */
1319 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1320 
1321 	if (dpi_count < min_dpis)
1322 		return ECORE_NORESOURCES;
1323 
1324 	return ECORE_SUCCESS;
1325 }
1326 
1327 enum ECORE_ROCE_EDPM_MODE {
1328 	ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1329 	ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1330 	ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1331 };
1332 
1333 static enum _ecore_status_t
1334 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1335 			      struct ecore_ptt *p_ptt)
1336 {
1337 	u32 pwm_regsize, norm_regsize;
1338 	u32 non_pwm_conn, min_addr_reg1;
1339 	u32 db_bar_size, n_cpus;
1340 	u32 roce_edpm_mode;
1341 	u32 pf_dems_shift;
1342 	int rc = ECORE_SUCCESS;
1343 	u8 cond;
1344 
1345 	db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1346 	if (p_hwfn->p_dev->num_hwfns > 1)
1347 		db_bar_size /= 2;
1348 
1349 	/* Calculate doorbell regions
1350 	 * -----------------------------------
1351 	 * The doorbell BAR is made of two regions. The first is called normal
1352 	 * region and the second is called PWM region. In the normal region
1353 	 * each ICID has its own set of addresses so that writing to that
1354 	 * specific address identifies the ICID. In the Process Window Mode
1355 	 * region the ICID is given in the data written to the doorbell. The
1356 	 * above per PF register denotes the offset in the doorbell BAR in which
1357 	 * the PWM region begins.
1358 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1359 	 * non-PWM connection. The calculation below computes the total non-PWM
1360 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1361 	 * in units of 4,096 bytes.
1362 	 */
1363 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1364 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1365 					  OSAL_NULL) +
1366 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1367 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1368 	min_addr_reg1 = norm_regsize / 4096;
1369 	pwm_regsize = db_bar_size - norm_regsize;
1370 
1371 	/* Check that the normal and PWM sizes are valid */
1372 	if (db_bar_size < norm_regsize) {
1373 		DP_ERR(p_hwfn->p_dev,
1374 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1375 		       db_bar_size, norm_regsize);
1376 		return ECORE_NORESOURCES;
1377 	}
1378 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1379 		DP_ERR(p_hwfn->p_dev,
1380 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1381 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1382 		       norm_regsize);
1383 		return ECORE_NORESOURCES;
1384 	}
1385 
1386 	/* Calculate number of DPIs */
1387 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1388 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1389 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1390 		/* Either EDPM is mandatory, or we are attempting to allocate a
1391 		 * WID per CPU.
1392 		 */
1393 		n_cpus = OSAL_NUM_ACTIVE_CPU();
1394 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1395 	}
1396 
1397 	cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1398 	    (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1399 	if (cond || p_hwfn->dcbx_no_edpm) {
1400 		/* Either EDPM is disabled from user configuration, or it is
1401 		 * disabled via DCBx, or it is not mandatory and we failed to
1402 		 * allocated a WID per CPU.
1403 		 */
1404 		n_cpus = 1;
1405 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1406 
1407 		/* If we entered this flow due to DCBX then the DPM register is
1408 		 * already configured.
1409 		 */
1410 	}
1411 
1412 	DP_INFO(p_hwfn,
1413 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1414 		norm_regsize, pwm_regsize);
1415 	DP_INFO(p_hwfn,
1416 		" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1417 		p_hwfn->dpi_size, p_hwfn->dpi_count,
1418 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1419 		"disabled" : "enabled");
1420 
1421 	/* Check return codes from above calls */
1422 	if (rc) {
1423 		DP_ERR(p_hwfn,
1424 		       "Failed to allocate enough DPIs\n");
1425 		return ECORE_NORESOURCES;
1426 	}
1427 
1428 	/* Update hwfn */
1429 	p_hwfn->dpi_start_offset = norm_regsize;
1430 
1431 	/* Update registers */
1432 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1433 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1434 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1435 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1436 
1437 	return ECORE_SUCCESS;
1438 }
1439 
1440 static enum _ecore_status_t
1441 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1442 		 struct ecore_ptt *p_ptt,
1443 		 struct ecore_tunn_start_params *p_tunn,
1444 		 int hw_mode,
1445 		 bool b_hw_start,
1446 		 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1447 {
1448 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1449 	u32 prs_reg;
1450 	enum _ecore_status_t rc = ECORE_SUCCESS;
1451 	u16 ctrl;
1452 	int pos;
1453 
1454 	if (p_hwfn->mcp_info) {
1455 		struct ecore_mcp_function_info *p_info;
1456 
1457 		p_info = &p_hwfn->mcp_info->func_info;
1458 		if (p_info->bandwidth_min)
1459 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1460 
1461 		/* Update rate limit once we'll actually have a link */
1462 		p_hwfn->qm_info.pf_rl = 100000;
1463 	}
1464 	ecore_cxt_hw_init_pf(p_hwfn);
1465 
1466 	ecore_int_igu_init_rt(p_hwfn);
1467 
1468 	/* Set VLAN in NIG if needed */
1469 	if (hw_mode & (1 << MODE_MF_SD)) {
1470 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1471 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1472 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1473 			     p_hwfn->hw_info.ovlan);
1474 	}
1475 
1476 	/* Enable classification by MAC if needed */
1477 	if (hw_mode & (1 << MODE_MF_SI)) {
1478 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1479 			   "Configuring TAGMAC_CLS_TYPE\n");
1480 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1481 			     1);
1482 	}
1483 
1484 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
1485 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1486 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1487 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1488 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1489 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1490 
1491 	/* perform debug configuration when chip is out of reset */
1492 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1493 
1494 	/* Cleanup chip from previous driver if such remains exist */
1495 	rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1496 	if (rc != ECORE_SUCCESS) {
1497 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1498 		return rc;
1499 	}
1500 
1501 	/* PF Init sequence */
1502 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1503 	if (rc)
1504 		return rc;
1505 
1506 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1507 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1508 	if (rc)
1509 		return rc;
1510 
1511 	/* Pure runtime initializations - directly to the HW  */
1512 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1513 
1514 	/* PCI relaxed ordering causes a decrease in the performance on some
1515 	 * systems. Till a root cause is found, disable this attribute in the
1516 	 * PCI config space.
1517 	 */
1518 	/* Not in use @DPDK
1519 	* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1520 	* if (!pos) {
1521 	*	DP_NOTICE(p_hwfn, true,
1522 	*		  "Failed to find the PCIe Cap\n");
1523 	*	return ECORE_IO;
1524 	* }
1525 	* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1526 	* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1527 	* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1528 	*/
1529 
1530 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1531 	if (rc)
1532 		return rc;
1533 	if (b_hw_start) {
1534 		/* enable interrupts */
1535 		ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1536 
1537 		/* send function start command */
1538 		rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1539 				       allow_npar_tx_switch);
1540 		if (rc) {
1541 			DP_NOTICE(p_hwfn, true,
1542 				  "Function start ramrod failed\n");
1543 		} else {
1544 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1545 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1546 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1547 
1548 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1549 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1550 					 (1 << 2));
1551 				ecore_wr(p_hwfn, p_ptt,
1552 				    PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1553 				    0x100);
1554 			}
1555 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1556 				   "PRS_REG_SEARCH registers after start PFn\n");
1557 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1558 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1559 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1560 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1561 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1562 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1563 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1564 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1565 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1566 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1567 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1568 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1569 			prs_reg = ecore_rd(p_hwfn, p_ptt,
1570 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
1571 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1572 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1573 				   prs_reg);
1574 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1575 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1576 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1577 		}
1578 	}
1579 	return rc;
1580 }
1581 
1582 static enum _ecore_status_t
1583 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1584 		      struct ecore_ptt *p_ptt, u8 enable)
1585 {
1586 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1587 
1588 	/* Change PF in PXP */
1589 	ecore_wr(p_hwfn, p_ptt,
1590 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1591 
1592 	/* wait until value is set - try for 1 second every 50us */
1593 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1594 		val = ecore_rd(p_hwfn, p_ptt,
1595 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1596 		if (val == set_val)
1597 			break;
1598 
1599 		OSAL_UDELAY(50);
1600 	}
1601 
1602 	if (val != set_val) {
1603 		DP_NOTICE(p_hwfn, true,
1604 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
1605 		return ECORE_UNKNOWN_ERROR;
1606 	}
1607 
1608 	return ECORE_SUCCESS;
1609 }
1610 
1611 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1612 				  struct ecore_ptt *p_main_ptt)
1613 {
1614 	/* Read shadow of current MFW mailbox */
1615 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1616 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1617 		    p_hwfn->mcp_info->mfw_mb_cur,
1618 		    p_hwfn->mcp_info->mfw_mb_length);
1619 }
1620 
1621 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1622 				   struct ecore_hw_init_params *p_params)
1623 {
1624 	enum _ecore_status_t rc, mfw_rc;
1625 	u32 load_code, param;
1626 	int i, j;
1627 
1628 	if (p_params->int_mode == ECORE_INT_MODE_MSI && p_dev->num_hwfns > 1) {
1629 		DP_NOTICE(p_dev, false,
1630 			  "MSI mode is not supported for CMT devices\n");
1631 		return ECORE_INVAL;
1632 	}
1633 
1634 	if (IS_PF(p_dev)) {
1635 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1636 		if (rc != ECORE_SUCCESS)
1637 			return rc;
1638 	}
1639 
1640 	for_each_hwfn(p_dev, i) {
1641 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1642 
1643 		if (IS_VF(p_dev)) {
1644 			p_hwfn->b_int_enabled = 1;
1645 			continue;
1646 		}
1647 
1648 		/* Enable DMAE in PXP */
1649 		rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1650 		if (rc != ECORE_SUCCESS)
1651 			return rc;
1652 
1653 		rc = ecore_calc_hw_mode(p_hwfn);
1654 		if (rc != ECORE_SUCCESS)
1655 			return rc;
1656 
1657 		/* @@@TBD need to add here:
1658 		 * Check for fan failure
1659 		 * Prev_unload
1660 		 */
1661 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1662 		if (rc) {
1663 			DP_NOTICE(p_hwfn, true,
1664 				  "Failed sending LOAD_REQ command\n");
1665 			return rc;
1666 		}
1667 
1668 		/* CQ75580:
1669 		 * When coming back from hiberbate state, the registers from
1670 		 * which shadow is read initially are not initialized. It turns
1671 		 * out that these registers get initialized during the call to
1672 		 * ecore_mcp_load_req request. So we need to reread them here
1673 		 * to get the proper shadow register value.
1674 		 * Note: This is a workaround for the missinginig MFW
1675 		 * initialization. It may be removed once the implementation
1676 		 * is done.
1677 		 */
1678 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1679 
1680 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1681 			   "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1682 			   rc, load_code);
1683 
1684 		/* Only relevant for recovery:
1685 		 * Clear the indication after the LOAD_REQ command is responded
1686 		 * by the MFW.
1687 		 */
1688 		p_dev->recov_in_prog = false;
1689 
1690 		p_hwfn->first_on_engine = (load_code ==
1691 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1692 
1693 		if (!qm_lock_init) {
1694 			OSAL_SPIN_LOCK_INIT(&qm_lock);
1695 			qm_lock_init = true;
1696 		}
1697 
1698 		switch (load_code) {
1699 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1700 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1701 						  p_hwfn->hw_info.hw_mode);
1702 			if (rc)
1703 				break;
1704 			/* Fall into */
1705 		case FW_MSG_CODE_DRV_LOAD_PORT:
1706 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1707 						p_hwfn->hw_info.hw_mode);
1708 			if (rc)
1709 				break;
1710 
1711 #ifndef REAL_ASIC_ONLY
1712 			if (ENABLE_EAGLE_ENG1_WORKAROUND(p_hwfn)) {
1713 				struct init_nig_pri_tc_map_req tc_map;
1714 
1715 				OSAL_MEM_ZERO(&tc_map, sizeof(tc_map));
1716 
1717 				/* remove this once flow control is
1718 				 * implemented
1719 				 */
1720 				for (j = 0; j < NUM_OF_VLAN_PRIORITIES; j++) {
1721 					tc_map.pri[j].tc_id = 0;
1722 					tc_map.pri[j].valid = 1;
1723 				}
1724 				ecore_init_nig_pri_tc_map(p_hwfn,
1725 							  p_hwfn->p_main_ptt,
1726 							  &tc_map);
1727 			}
1728 #endif
1729 			/* Fall into */
1730 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1731 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1732 					      p_params->p_tunn,
1733 					      p_hwfn->hw_info.hw_mode,
1734 					      p_params->b_hw_start,
1735 					      p_params->int_mode,
1736 					      p_params->allow_npar_tx_switch);
1737 			break;
1738 		default:
1739 			rc = ECORE_NOTIMPL;
1740 			break;
1741 		}
1742 
1743 		if (rc != ECORE_SUCCESS)
1744 			DP_NOTICE(p_hwfn, true,
1745 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1746 				  load_code, rc);
1747 
1748 		/* ACK mfw regardless of success or failure of initialization */
1749 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1750 				       DRV_MSG_CODE_LOAD_DONE,
1751 				       0, &load_code, &param);
1752 		if (rc != ECORE_SUCCESS)
1753 			return rc;
1754 		if (mfw_rc != ECORE_SUCCESS) {
1755 			DP_NOTICE(p_hwfn, true,
1756 				  "Failed sending LOAD_DONE command\n");
1757 			return mfw_rc;
1758 		}
1759 
1760 		ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt);
1761 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
1762 					   p_params->epoch);
1763 
1764 		/* send DCBX attention request command */
1765 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
1766 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1767 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1768 				       DRV_MSG_CODE_SET_DCBX,
1769 				       1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1770 				       &load_code, &param);
1771 		if (mfw_rc != ECORE_SUCCESS) {
1772 			DP_NOTICE(p_hwfn, true,
1773 				  "Failed to send DCBX attention request\n");
1774 			return mfw_rc;
1775 		}
1776 
1777 		p_hwfn->hw_init_done = true;
1778 	}
1779 
1780 	return ECORE_SUCCESS;
1781 }
1782 
1783 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
1784 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
1785 				 struct ecore_hwfn *p_hwfn,
1786 				 struct ecore_ptt *p_ptt)
1787 {
1788 	int i;
1789 
1790 	/* close timers */
1791 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1792 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1793 	for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
1794 									i++) {
1795 		if ((!ecore_rd(p_hwfn, p_ptt,
1796 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1797 		    (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1798 			break;
1799 
1800 		/* Dependent on number of connection/tasks, possibly
1801 		 * 1ms sleep is required between polls
1802 		 */
1803 		OSAL_MSLEEP(1);
1804 	}
1805 	if (i == ECORE_HW_STOP_RETRY_LIMIT)
1806 		DP_NOTICE(p_hwfn, true,
1807 			  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1808 			  (u8)ecore_rd(p_hwfn, p_ptt,
1809 					TM_REG_PF_SCAN_ACTIVE_CONN),
1810 			  (u8)ecore_rd(p_hwfn, p_ptt,
1811 					TM_REG_PF_SCAN_ACTIVE_TASK));
1812 }
1813 
1814 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
1815 {
1816 	int j;
1817 
1818 	for_each_hwfn(p_dev, j) {
1819 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1820 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1821 
1822 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1823 	}
1824 }
1825 
1826 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
1827 {
1828 	enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
1829 	int j;
1830 
1831 	for_each_hwfn(p_dev, j) {
1832 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1833 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1834 
1835 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
1836 
1837 		if (IS_VF(p_dev)) {
1838 			ecore_vf_pf_int_cleanup(p_hwfn);
1839 			continue;
1840 		}
1841 
1842 		/* mark the hw as uninitialized... */
1843 		p_hwfn->hw_init_done = false;
1844 
1845 		rc = ecore_sp_pf_stop(p_hwfn);
1846 		if (rc)
1847 			DP_NOTICE(p_hwfn, true,
1848 				  "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1849 
1850 		/* perform debug action after PF stop was sent */
1851 		OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
1852 
1853 		/* close NIG to BRB gate */
1854 		ecore_wr(p_hwfn, p_ptt,
1855 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1856 
1857 		/* close parser */
1858 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1859 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1860 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1861 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1862 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1863 
1864 		/* @@@TBD - clean transmission queues (5.b) */
1865 		/* @@@TBD - clean BTB (5.c) */
1866 
1867 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1868 
1869 		/* @@@TBD - verify DMAE requests are done (8) */
1870 
1871 		/* Disable Attention Generation */
1872 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
1873 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1874 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1875 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1876 		/* Need to wait 1ms to guarantee SBs are cleared */
1877 		OSAL_MSLEEP(1);
1878 	}
1879 
1880 	if (IS_PF(p_dev)) {
1881 		/* Disable DMAE in PXP - in CMT, this should only be done for
1882 		 * first hw-function, and only after all transactions have
1883 		 * stopped for all active hw-functions.
1884 		 */
1885 		t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
1886 					     p_dev->hwfns[0].p_main_ptt, false);
1887 		if (t_rc != ECORE_SUCCESS)
1888 			rc = t_rc;
1889 	}
1890 
1891 	return rc;
1892 }
1893 
1894 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
1895 {
1896 	int j;
1897 
1898 	for_each_hwfn(p_dev, j) {
1899 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1900 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1901 
1902 		if (IS_VF(p_dev)) {
1903 			ecore_vf_pf_int_cleanup(p_hwfn);
1904 			continue;
1905 		}
1906 
1907 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1908 			   "Shutting down the fastpath\n");
1909 
1910 		ecore_wr(p_hwfn, p_ptt,
1911 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1912 
1913 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1914 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1915 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1916 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1917 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1918 
1919 		/* @@@TBD - clean transmission queues (5.b) */
1920 		/* @@@TBD - clean BTB (5.c) */
1921 
1922 		/* @@@TBD - verify DMAE requests are done (8) */
1923 
1924 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1925 		/* Need to wait 1ms to guarantee SBs are cleared */
1926 		OSAL_MSLEEP(1);
1927 	}
1928 }
1929 
1930 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
1931 {
1932 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1933 
1934 	if (IS_VF(p_hwfn->p_dev))
1935 		return;
1936 
1937 	/* If roce info is allocated it means roce is initialized and should
1938 	 * be enabled in searcher.
1939 	 */
1940 	if (p_hwfn->p_rdma_info) {
1941 		if (p_hwfn->b_rdma_enabled_in_prs)
1942 			ecore_wr(p_hwfn, p_ptt,
1943 				 p_hwfn->rdma_prs_search_reg, 0x1);
1944 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
1945 	}
1946 
1947 	/* Re-open incoming traffic */
1948 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
1949 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1950 }
1951 
1952 static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
1953 					     struct ecore_ptt *p_ptt, u32 reg,
1954 					     bool expected)
1955 {
1956 	u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
1957 
1958 	if (assert_val != expected) {
1959 		DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
1960 			  reg, expected);
1961 		return ECORE_UNKNOWN_ERROR;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
1968 {
1969 	enum _ecore_status_t rc = ECORE_SUCCESS;
1970 	u32 unload_resp, unload_param;
1971 	int i;
1972 
1973 	for_each_hwfn(p_dev, i) {
1974 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1975 
1976 		if (IS_VF(p_dev)) {
1977 			rc = ecore_vf_pf_reset(p_hwfn);
1978 			if (rc)
1979 				return rc;
1980 			continue;
1981 		}
1982 
1983 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
1984 
1985 		/* Check for incorrect states */
1986 		if (!p_dev->recov_in_prog) {
1987 			ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1988 					 QM_REG_USG_CNT_PF_TX, 0);
1989 			ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1990 					 QM_REG_USG_CNT_PF_OTHER, 0);
1991 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
1992 		}
1993 
1994 		/* Disable PF in HW blocks */
1995 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1996 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1997 
1998 		if (p_dev->recov_in_prog) {
1999 			DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2000 				   "Recovery is in progress -> skip sending unload_req/done\n");
2001 			break;
2002 		}
2003 
2004 		/* Send unload command to MCP */
2005 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2006 				   DRV_MSG_CODE_UNLOAD_REQ,
2007 				   DRV_MB_PARAM_UNLOAD_WOL_MCP,
2008 				   &unload_resp, &unload_param);
2009 		if (rc != ECORE_SUCCESS) {
2010 			DP_NOTICE(p_hwfn, true,
2011 				  "ecore_hw_reset: UNLOAD_REQ failed\n");
2012 			/* @@TBD - what to do? for now, assume ENG. */
2013 			unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
2014 		}
2015 
2016 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2017 				   DRV_MSG_CODE_UNLOAD_DONE,
2018 				   0, &unload_resp, &unload_param);
2019 		if (rc != ECORE_SUCCESS) {
2020 			DP_NOTICE(p_hwfn,
2021 				  true, "ecore_hw_reset: UNLOAD_DONE failed\n");
2022 			/* @@@TBD - Should it really ASSERT here ? */
2023 			return rc;
2024 		}
2025 	}
2026 
2027 	return rc;
2028 }
2029 
2030 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2031 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2032 {
2033 	ecore_ptt_pool_free(p_hwfn);
2034 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2035 }
2036 
2037 /* Setup bar access */
2038 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2039 {
2040 	/* clear indirect access */
2041 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
2042 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2043 			 PGLUE_B_REG_PGL_ADDR_E8_F0, 0);
2044 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2045 			 PGLUE_B_REG_PGL_ADDR_EC_F0, 0);
2046 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2047 			 PGLUE_B_REG_PGL_ADDR_F0_F0, 0);
2048 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2049 			 PGLUE_B_REG_PGL_ADDR_F4_F0, 0);
2050 	} else {
2051 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2052 			 PGLUE_B_REG_PGL_ADDR_88_F0, 0);
2053 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2054 			 PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
2055 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2056 			 PGLUE_B_REG_PGL_ADDR_90_F0, 0);
2057 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2058 			 PGLUE_B_REG_PGL_ADDR_94_F0, 0);
2059 	}
2060 
2061 	/* Clean Previous errors if such exist */
2062 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2063 		 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2064 
2065 	/* enable internal target-read */
2066 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2067 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2068 }
2069 
2070 static void get_function_id(struct ecore_hwfn *p_hwfn)
2071 {
2072 	/* ME Register */
2073 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2074 						  PXP_PF_ME_OPAQUE_ADDR);
2075 
2076 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2077 
2078 	/* Bits 16-19 from the ME registers are the pf_num */
2079 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2080 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2081 				      PXP_CONCRETE_FID_PFID);
2082 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2083 				    PXP_CONCRETE_FID_PORT);
2084 
2085 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2086 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2087 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2088 }
2089 
2090 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2091 {
2092 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2093 	int num_features = 1;
2094 
2095 	/* L2 Queues require each: 1 status block. 1 L2 queue */
2096 	feat_num[ECORE_PF_L2_QUE] =
2097 	    OSAL_MIN_T(u32,
2098 		       RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2099 		       RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2100 
2101 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2102 		   "#PF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
2103 		   feat_num[ECORE_PF_L2_QUE],
2104 		   feat_num[ECORE_RDMA_CNQ],
2105 		   RESC_NUM(p_hwfn, ECORE_SB), num_features);
2106 }
2107 
2108 static enum resource_id_enum
2109 ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
2110 {
2111 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2112 
2113 	switch (res_id) {
2114 	case ECORE_SB:
2115 		mfw_res_id = RESOURCE_NUM_SB_E;
2116 		break;
2117 	case ECORE_L2_QUEUE:
2118 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2119 		break;
2120 	case ECORE_VPORT:
2121 		mfw_res_id = RESOURCE_NUM_VPORT_E;
2122 		break;
2123 	case ECORE_RSS_ENG:
2124 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2125 		break;
2126 	case ECORE_PQ:
2127 		mfw_res_id = RESOURCE_NUM_PQ_E;
2128 		break;
2129 	case ECORE_RL:
2130 		mfw_res_id = RESOURCE_NUM_RL_E;
2131 		break;
2132 	case ECORE_MAC:
2133 	case ECORE_VLAN:
2134 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2135 		mfw_res_id = RESOURCE_VFC_FILTER_E;
2136 		break;
2137 	case ECORE_ILT:
2138 		mfw_res_id = RESOURCE_ILT_E;
2139 		break;
2140 	case ECORE_LL2_QUEUE:
2141 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
2142 		break;
2143 	case ECORE_RDMA_CNQ_RAM:
2144 	case ECORE_CMDQS_CQS:
2145 		/* CNQ/CMDQS are the same resource */
2146 		mfw_res_id = RESOURCE_CQS_E;
2147 		break;
2148 	case ECORE_RDMA_STATS_QUEUE:
2149 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2150 		break;
2151 	default:
2152 		break;
2153 	}
2154 
2155 	return mfw_res_id;
2156 }
2157 
2158 static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
2159 				      enum ecore_resources res_id)
2160 {
2161 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2162 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2163 	struct ecore_sb_cnt_info sb_cnt_info;
2164 	u32 dflt_resc_num = 0;
2165 
2166 	switch (res_id) {
2167 	case ECORE_SB:
2168 		OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2169 		ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2170 		dflt_resc_num = sb_cnt_info.sb_cnt;
2171 		break;
2172 	case ECORE_L2_QUEUE:
2173 		dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2174 				 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2175 		break;
2176 	case ECORE_VPORT:
2177 		dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2178 				 MAX_NUM_VPORTS_BB) / num_funcs;
2179 		break;
2180 	case ECORE_RSS_ENG:
2181 		dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2182 				 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2183 		break;
2184 	case ECORE_PQ:
2185 		dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2186 				 MAX_QM_TX_QUEUES_BB) / num_funcs;
2187 		break;
2188 	case ECORE_RL:
2189 		dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2190 		break;
2191 	case ECORE_MAC:
2192 	case ECORE_VLAN:
2193 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2194 		dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2195 		break;
2196 	case ECORE_ILT:
2197 		dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2198 				 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2199 		break;
2200 	case ECORE_LL2_QUEUE:
2201 		dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2202 		break;
2203 	case ECORE_RDMA_CNQ_RAM:
2204 	case ECORE_CMDQS_CQS:
2205 		/* CNQ/CMDQS are the same resource */
2206 		/* @DPDK */
2207 		dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2208 		break;
2209 	case ECORE_RDMA_STATS_QUEUE:
2210 		/* @DPDK */
2211 		dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2212 				 MAX_NUM_VPORTS_BB) / num_funcs;
2213 		break;
2214 	default:
2215 		break;
2216 	}
2217 
2218 	return dflt_resc_num;
2219 }
2220 
2221 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2222 						   enum ecore_resources res_id,
2223 						   bool drv_resc_alloc)
2224 {
2225 	u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
2226 	u32 *p_resc_num, *p_resc_start;
2227 	struct resource_info resc_info;
2228 	enum _ecore_status_t rc;
2229 
2230 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
2231 	p_resc_start = &RESC_START(p_hwfn, res_id);
2232 
2233 	dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
2234 	if (!dflt_resc_num) {
2235 		DP_ERR(p_hwfn, "Failed to get default amount for resource %d\n",
2236 		       res_id);
2237 		return ECORE_INVAL;
2238 	}
2239 	dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
2240 
2241 #ifndef ASIC_ONLY
2242 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2243 		*p_resc_num = dflt_resc_num;
2244 		*p_resc_start = dflt_resc_start;
2245 		goto out;
2246 	}
2247 #endif
2248 
2249 	OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
2250 	resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
2251 	if (resc_info.res_id == RESOURCE_NUM_INVALID) {
2252 		DP_ERR(p_hwfn,
2253 		       "Failed to match resource %d with MFW resources\n",
2254 		       res_id);
2255 		return ECORE_INVAL;
2256 	}
2257 
2258 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
2259 				     &mcp_resp, &mcp_param);
2260 	if (rc != ECORE_SUCCESS) {
2261 		DP_NOTICE(p_hwfn, true,
2262 			  "MFW resp failure for a resc alloc req [res_id %d]\n",
2263 			  res_id);
2264 		return rc;
2265 	}
2266 
2267 	/* Default driver values are applied in the following cases:
2268 	 * - The resource allocation MB command is not supported by the MFW
2269 	 * - There is an internal error in the MFW while processing the request
2270 	 * - The resource ID is unknown to the MFW
2271 	 */
2272 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
2273 	    mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
2274 		/* @DPDK */
2275 		DP_INFO(p_hwfn,
2276 			  "No allocation info for resc %d [mcp_resp 0x%x].",
2277 			  res_id, mcp_resp);
2278 		DP_INFO(p_hwfn,
2279 			  "Applying default values [num %d, start %d].\n",
2280 			  dflt_resc_num, dflt_resc_start);
2281 
2282 		*p_resc_num = dflt_resc_num;
2283 		*p_resc_start = dflt_resc_start;
2284 		goto out;
2285 	}
2286 
2287 	/* TBD - remove this when revising the handling of the SB resource */
2288 	if (res_id == ECORE_SB) {
2289 		/* Excluding the slowpath SB */
2290 		resc_info.size -= 1;
2291 		resc_info.offset -= p_hwfn->enabled_func_idx;
2292 	}
2293 
2294 	*p_resc_num = resc_info.size;
2295 	*p_resc_start = resc_info.offset;
2296 
2297 	if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2298 		DP_NOTICE(p_hwfn, false,
2299 			  "Resource %d: MFW allocation [num %d, start %d]",
2300 			  res_id, *p_resc_num, *p_resc_start);
2301 		DP_NOTICE(p_hwfn, false,
2302 			  "differs from default values [num %d, start %d]%s\n",
2303 			  dflt_resc_num,
2304 			  dflt_resc_start,
2305 			  drv_resc_alloc ? " - applying default values" : "");
2306 		if (drv_resc_alloc) {
2307 			*p_resc_num = dflt_resc_num;
2308 			*p_resc_start = dflt_resc_start;
2309 		}
2310 	}
2311  out:
2312 	return ECORE_SUCCESS;
2313 }
2314 
2315 static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2316 {
2317 	switch (res_id) {
2318 	case ECORE_SB:
2319 		return "SB";
2320 	case ECORE_L2_QUEUE:
2321 		return "L2_QUEUE";
2322 	case ECORE_VPORT:
2323 		return "VPORT";
2324 	case ECORE_RSS_ENG:
2325 		return "RSS_ENG";
2326 	case ECORE_PQ:
2327 		return "PQ";
2328 	case ECORE_RL:
2329 		return "RL";
2330 	case ECORE_MAC:
2331 		return "MAC";
2332 	case ECORE_VLAN:
2333 		return "VLAN";
2334 	case ECORE_RDMA_CNQ_RAM:
2335 		return "RDMA_CNQ_RAM";
2336 	case ECORE_ILT:
2337 		return "ILT";
2338 	case ECORE_LL2_QUEUE:
2339 		return "LL2_QUEUE";
2340 	case ECORE_CMDQS_CQS:
2341 		return "CMDQS_CQS";
2342 	case ECORE_RDMA_STATS_QUEUE:
2343 		return "RDMA_STATS_QUEUE";
2344 	default:
2345 		return "UNKNOWN_RESOURCE";
2346 	}
2347 }
2348 
2349 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2350 					      bool drv_resc_alloc)
2351 {
2352 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2353 	enum _ecore_status_t rc;
2354 	u8 res_id;
2355 #ifndef ASIC_ONLY
2356 	u32 *resc_start = p_hwfn->hw_info.resc_start;
2357 	u32 *resc_num = p_hwfn->hw_info.resc_num;
2358 	/* For AH, an equal share of the ILT lines between the maximal number of
2359 	 * PFs is not enough for RoCE. This would be solved by the future
2360 	 * resource allocation scheme, but isn't currently present for
2361 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2362 	 * to work - the BB number of ILT lines divided by its max PFs number.
2363 	 */
2364 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2365 #endif
2366 
2367 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2368 		rc = ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
2369 		if (rc != ECORE_SUCCESS)
2370 			return rc;
2371 	}
2372 
2373 #ifndef ASIC_ONLY
2374 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2375 		/* Reduced build contains less PQs */
2376 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
2377 			resc_num[ECORE_PQ] = 32;
2378 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2379 			    p_hwfn->enabled_func_idx;
2380 		}
2381 
2382 		/* For AH emulation, since we have a possible maximal number of
2383 		 * 16 enabled PFs, in case there are not enough ILT lines -
2384 		 * allocate only first PF as RoCE and have all the other ETH
2385 		 * only with less ILT lines.
2386 		 */
2387 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2388 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2389 							 resc_num[ECORE_ILT],
2390 							 roce_min_ilt_lines);
2391 	}
2392 
2393 	/* Correct the common ILT calculation if PF0 has more */
2394 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2395 	    p_hwfn->p_dev->b_is_emul_full &&
2396 	    p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2397 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
2398 		    resc_num[ECORE_ILT];
2399 #endif
2400 
2401 	/* Sanity for ILT */
2402 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2403 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2404 		DP_NOTICE(p_hwfn, true,
2405 			  "Can't assign ILT pages [%08x,...,%08x]\n",
2406 			  RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2407 								  ECORE_ILT) -
2408 			  1);
2409 		return ECORE_INVAL;
2410 	}
2411 
2412 	ecore_hw_set_feat(p_hwfn);
2413 
2414 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2415 		   "The numbers for each resource are:\n");
2416 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2417 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2418 			   ecore_hw_get_resc_name(res_id),
2419 			   RESC_NUM(p_hwfn, res_id),
2420 			   RESC_START(p_hwfn, res_id));
2421 
2422 	return ECORE_SUCCESS;
2423 }
2424 
2425 static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2426 						  struct ecore_ptt *p_ptt)
2427 {
2428 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
2429 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2430 	struct ecore_mcp_link_params *link;
2431 
2432 	/* Read global nvm_cfg address */
2433 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2434 
2435 	/* Verify MCP has initialized it */
2436 	if (!nvm_cfg_addr) {
2437 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2438 		return ECORE_INVAL;
2439 	}
2440 
2441 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2442 
2443 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2444 
2445 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2446 	    OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2447 						       core_cfg);
2448 
2449 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2450 
2451 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2452 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2453 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2454 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2455 		break;
2456 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2457 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2458 		break;
2459 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2460 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2461 		break;
2462 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2463 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2464 		break;
2465 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2466 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2467 		break;
2468 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2469 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2470 		break;
2471 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2472 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2473 		break;
2474 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2475 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2476 		break;
2477 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2478 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2479 		break;
2480 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2481 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2482 		break;
2483 	default:
2484 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2485 			  core_cfg);
2486 		break;
2487 	}
2488 
2489 	/* Read default link configuration */
2490 	link = &p_hwfn->mcp_info->link_input;
2491 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2492 	    OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2493 	link_temp = ecore_rd(p_hwfn, p_ptt,
2494 			     port_cfg_addr +
2495 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2496 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2497 	link->speed.advertised_speeds = link_temp;
2498 
2499 	link_temp = link->speed.advertised_speeds;
2500 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2501 
2502 	link_temp = ecore_rd(p_hwfn, p_ptt,
2503 			     port_cfg_addr +
2504 			     OFFSETOF(struct nvm_cfg1_port, link_settings));
2505 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2506 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2507 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2508 		link->speed.autoneg = true;
2509 		break;
2510 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2511 		link->speed.forced_speed = 1000;
2512 		break;
2513 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2514 		link->speed.forced_speed = 10000;
2515 		break;
2516 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2517 		link->speed.forced_speed = 25000;
2518 		break;
2519 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2520 		link->speed.forced_speed = 40000;
2521 		break;
2522 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2523 		link->speed.forced_speed = 50000;
2524 		break;
2525 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2526 		link->speed.forced_speed = 100000;
2527 		break;
2528 	default:
2529 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2530 	}
2531 
2532 	p_hwfn->mcp_info->link_capabilities.default_speed =
2533 	    link->speed.forced_speed;
2534 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2535 	    link->speed.autoneg;
2536 
2537 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2538 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2539 	link->pause.autoneg = !!(link_temp &
2540 				  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2541 	link->pause.forced_rx = !!(link_temp &
2542 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2543 	link->pause.forced_tx = !!(link_temp &
2544 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2545 	link->loopback_mode = 0;
2546 
2547 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2548 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2549 		   link->speed.forced_speed, link->speed.advertised_speeds,
2550 		   link->speed.autoneg, link->pause.autoneg);
2551 
2552 	/* Read Multi-function information from shmem */
2553 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2554 	    OFFSETOF(struct nvm_cfg1, glob) +
2555 	    OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
2556 
2557 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
2558 
2559 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2560 	    NVM_CFG1_GLOB_MF_MODE_OFFSET;
2561 
2562 	switch (mf_mode) {
2563 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2564 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
2565 		break;
2566 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2567 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
2568 		break;
2569 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2570 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
2571 		break;
2572 	}
2573 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2574 		p_hwfn->p_dev->mf_mode);
2575 
2576 	/* Read Multi-function information from shmem */
2577 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2578 	    OFFSETOF(struct nvm_cfg1, glob) +
2579 	    OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
2580 
2581 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
2582 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2583 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
2584 			     &p_hwfn->hw_info.device_capabilities);
2585 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2586 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
2587 			     &p_hwfn->hw_info.device_capabilities);
2588 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2589 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
2590 			     &p_hwfn->hw_info.device_capabilities);
2591 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2592 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
2593 			     &p_hwfn->hw_info.device_capabilities);
2594 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
2595 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
2596 			     &p_hwfn->hw_info.device_capabilities);
2597 
2598 	return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2599 }
2600 
2601 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
2602 				struct ecore_ptt *p_ptt)
2603 {
2604 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2605 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2606 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2607 
2608 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2609 
2610 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2611 	 * in the other bits are selected.
2612 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
2613 	 * '0' only for enabled functions (function 0 always exists and
2614 	 * enabled).
2615 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
2616 	 * the number of functions for both hwfns is learnt from the same bits.
2617 	 */
2618 	reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2619 
2620 	if (reg_function_hide & 0x1) {
2621 		if (ECORE_IS_BB(p_dev)) {
2622 			if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
2623 				num_funcs = 0;
2624 				eng_mask = 0xaaaa;
2625 			} else {
2626 				num_funcs = 1;
2627 				eng_mask = 0x5554;
2628 			}
2629 		} else {
2630 			num_funcs = 1;
2631 			eng_mask = 0xfffe;
2632 		}
2633 
2634 		/* Get the number of the enabled functions on the engine */
2635 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2636 		while (tmp) {
2637 			if (tmp & 0x1)
2638 				num_funcs++;
2639 			tmp >>= 0x1;
2640 		}
2641 
2642 		/* Get the PF index within the enabled functions */
2643 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2644 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
2645 		while (tmp) {
2646 			if (tmp & 0x1)
2647 				enabled_func_idx--;
2648 			tmp >>= 0x1;
2649 		}
2650 	}
2651 
2652 	p_hwfn->num_funcs_on_engine = num_funcs;
2653 	p_hwfn->enabled_func_idx = enabled_func_idx;
2654 
2655 #ifndef ASIC_ONLY
2656 	if (CHIP_REV_IS_FPGA(p_dev)) {
2657 		DP_NOTICE(p_hwfn, false,
2658 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
2659 		p_hwfn->num_funcs_on_engine = 4;
2660 	}
2661 #endif
2662 
2663 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2664 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2665 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
2666 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2667 }
2668 
2669 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
2670 				      struct ecore_ptt *p_ptt)
2671 {
2672 	u32 port_mode;
2673 
2674 #ifndef ASIC_ONLY
2675 	/* Read the port mode */
2676 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
2677 		port_mode = 4;
2678 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
2679 		 (p_hwfn->p_dev->num_hwfns > 1))
2680 		/* In CMT on emulation, assume 1 port */
2681 		port_mode = 1;
2682 	else
2683 #endif
2684 		port_mode = ecore_rd(p_hwfn, p_ptt,
2685 				     CNIG_REG_NW_PORT_MODE_BB_B0);
2686 
2687 	if (port_mode < 3) {
2688 		p_hwfn->p_dev->num_ports_in_engines = 1;
2689 	} else if (port_mode <= 5) {
2690 		p_hwfn->p_dev->num_ports_in_engines = 2;
2691 	} else {
2692 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
2693 			  p_hwfn->p_dev->num_ports_in_engines);
2694 
2695 		/* Default num_ports_in_engines to something */
2696 		p_hwfn->p_dev->num_ports_in_engines = 1;
2697 	}
2698 }
2699 
2700 static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
2701 				      struct ecore_ptt *p_ptt)
2702 {
2703 	u32 port;
2704 	int i;
2705 
2706 	p_hwfn->p_dev->num_ports_in_engines = 0;
2707 
2708 #ifndef ASIC_ONLY
2709 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2710 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
2711 		switch ((port & 0xf000) >> 12) {
2712 		case 1:
2713 			p_hwfn->p_dev->num_ports_in_engines = 1;
2714 			break;
2715 		case 3:
2716 			p_hwfn->p_dev->num_ports_in_engines = 2;
2717 			break;
2718 		case 0xf:
2719 			p_hwfn->p_dev->num_ports_in_engines = 4;
2720 			break;
2721 		default:
2722 			DP_NOTICE(p_hwfn, false,
2723 				  "Unknown port mode in ECO_RESERVED %08x\n",
2724 				  port);
2725 		}
2726 	} else
2727 #endif
2728 		for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2729 			port = ecore_rd(p_hwfn, p_ptt,
2730 					CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2731 			if (port & 1)
2732 				p_hwfn->p_dev->num_ports_in_engines++;
2733 		}
2734 }
2735 
2736 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
2737 				   struct ecore_ptt *p_ptt)
2738 {
2739 	if (ECORE_IS_BB(p_hwfn->p_dev))
2740 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
2741 	else
2742 		ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
2743 }
2744 
2745 static enum _ecore_status_t
2746 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2747 		  enum ecore_pci_personality personality, bool drv_resc_alloc)
2748 {
2749 	enum _ecore_status_t rc;
2750 
2751 	/* Since all information is common, only first hwfns should do this */
2752 	if (IS_LEAD_HWFN(p_hwfn)) {
2753 		rc = ecore_iov_hw_info(p_hwfn);
2754 		if (rc)
2755 			return rc;
2756 	}
2757 
2758 	/* TODO In get_hw_info, amoungst others:
2759 	 * Get MCP FW revision and determine according to it the supported
2760 	 * featrues (e.g. DCB)
2761 	 * Get boot mode
2762 	 * ecore_get_pcie_width_speed, WOL capability.
2763 	 * Number of global CQ-s (for storage
2764 	 */
2765 	ecore_hw_info_port_num(p_hwfn, p_ptt);
2766 
2767 #ifndef ASIC_ONLY
2768 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
2769 #endif
2770 		ecore_hw_get_nvm_info(p_hwfn, p_ptt);
2771 
2772 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
2773 	if (rc)
2774 		return rc;
2775 
2776 #ifndef ASIC_ONLY
2777 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
2778 #endif
2779 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
2780 			    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
2781 #ifndef ASIC_ONLY
2782 	} else {
2783 		static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
2784 
2785 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
2786 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
2787 	}
2788 #endif
2789 
2790 	if (ecore_mcp_is_init(p_hwfn)) {
2791 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
2792 			p_hwfn->hw_info.ovlan =
2793 			    p_hwfn->mcp_info->func_info.ovlan;
2794 
2795 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
2796 	}
2797 
2798 	if (personality != ECORE_PCI_DEFAULT)
2799 		p_hwfn->hw_info.personality = personality;
2800 	else if (ecore_mcp_is_init(p_hwfn))
2801 		p_hwfn->hw_info.personality =
2802 		    p_hwfn->mcp_info->func_info.protocol;
2803 
2804 #ifndef ASIC_ONLY
2805 	/* To overcome ILT lack for emulation, until at least until we'll have
2806 	 * a definite answer from system about it, allow only PF0 to be RoCE.
2807 	 */
2808 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
2809 		if (!p_hwfn->rel_pf_id)
2810 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2811 		else
2812 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2813 	}
2814 #endif
2815 
2816 	/* although in BB some constellations may support more than 4 tcs,
2817 	 * that can result in performance penalty in some cases. 4
2818 	 * represents a good tradeoff between performance and flexibility.
2819 	 */
2820 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2821 
2822 	/* start out with a single active tc. This can be increased either
2823 	 * by dcbx negotiation or by upper layer driver
2824 	 */
2825 	p_hwfn->hw_info.num_active_tc = 1;
2826 
2827 	ecore_get_num_funcs(p_hwfn, p_ptt);
2828 
2829 	/* In case of forcing the driver's default resource allocation, calling
2830 	 * ecore_hw_get_resc() should come after initializing the personality
2831 	 * and after getting the number of functions, since the calculation of
2832 	 * the resources/features depends on them.
2833 	 * This order is not harmful if not forcing.
2834 	 */
2835 	return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
2836 }
2837 
2838 #define ECORE_DEV_ID_MASK	0xff00
2839 #define ECORE_DEV_ID_MASK_BB	0x1600
2840 #define ECORE_DEV_ID_MASK_AH	0x8000
2841 
2842 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
2843 {
2844 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2845 	u32 tmp;
2846 
2847 	/* Read Vendor Id / Device Id */
2848 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
2849 				  &p_dev->vendor_id);
2850 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
2851 				  &p_dev->device_id);
2852 
2853 	/* Determine type */
2854 	if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
2855 		p_dev->type = ECORE_DEV_TYPE_AH;
2856 	else
2857 		p_dev->type = ECORE_DEV_TYPE_BB;
2858 
2859 	p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2860 					 MISCS_REG_CHIP_NUM);
2861 	p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2862 					 MISCS_REG_CHIP_REV);
2863 
2864 	MASK_FIELD(CHIP_REV, p_dev->chip_rev);
2865 
2866 	/* Learn number of HW-functions */
2867 	tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2868 		       MISCS_REG_CMT_ENABLED_FOR_PAIR);
2869 
2870 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
2871 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
2872 		p_dev->num_hwfns = 2;
2873 	} else {
2874 		p_dev->num_hwfns = 1;
2875 	}
2876 
2877 #ifndef ASIC_ONLY
2878 	if (CHIP_REV_IS_EMUL(p_dev)) {
2879 		/* For some reason we have problems with this register
2880 		 * in B0 emulation; Simply assume no CMT
2881 		 */
2882 		DP_NOTICE(p_dev->hwfns, false,
2883 			  "device on emul - assume no CMT\n");
2884 		p_dev->num_hwfns = 1;
2885 	}
2886 #endif
2887 
2888 	p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2889 				       MISCS_REG_CHIP_TEST_REG) >> 4;
2890 	MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
2891 	p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2892 					   MISCS_REG_CHIP_METAL);
2893 	MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
2894 	DP_INFO(p_dev->hwfns,
2895 		"Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2896 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
2897 		CHIP_REV_IS_A0(p_dev) ? 0 : 1,
2898 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
2899 		p_dev->chip_metal);
2900 
2901 	if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
2902 		DP_NOTICE(p_dev->hwfns, false,
2903 			  "The chip type/rev (BB A0) is not supported!\n");
2904 		return ECORE_ABORTED;
2905 	}
2906 #ifndef ASIC_ONLY
2907 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
2908 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2909 			 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
2910 
2911 	if (CHIP_REV_IS_EMUL(p_dev)) {
2912 		tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2913 			       MISCS_REG_ECO_RESERVED);
2914 		if (tmp & (1 << 29)) {
2915 			DP_NOTICE(p_hwfn, false,
2916 				  "Emulation: Running on a FULL build\n");
2917 			p_dev->b_is_emul_full = true;
2918 		} else {
2919 			DP_NOTICE(p_hwfn, false,
2920 				  "Emulation: Running on a REDUCED build\n");
2921 		}
2922 	}
2923 #endif
2924 
2925 	return ECORE_SUCCESS;
2926 }
2927 
2928 #ifndef LINUX_REMOVE
2929 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
2930 {
2931 	int j;
2932 
2933 	if (IS_VF(p_dev))
2934 		return;
2935 
2936 	for_each_hwfn(p_dev, j) {
2937 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2938 
2939 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2940 			   "Mark hw/fw uninitialized\n");
2941 
2942 		p_hwfn->hw_init_done = false;
2943 		p_hwfn->first_on_engine = false;
2944 
2945 		ecore_ptt_invalidate(p_hwfn);
2946 	}
2947 }
2948 #endif
2949 
2950 static enum _ecore_status_t
2951 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
2952 			void OSAL_IOMEM *p_doorbells,
2953 			struct ecore_hw_prepare_params *p_params)
2954 {
2955 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2956 	enum _ecore_status_t rc = ECORE_SUCCESS;
2957 
2958 	/* Split PCI bars evenly between hwfns */
2959 	p_hwfn->regview = p_regview;
2960 	p_hwfn->doorbells = p_doorbells;
2961 
2962 	if (IS_VF(p_dev))
2963 		return ecore_vf_hw_prepare(p_hwfn);
2964 
2965 	/* Validate that chip access is feasible */
2966 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2967 		DP_ERR(p_hwfn,
2968 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
2969 		return ECORE_INVAL;
2970 	}
2971 
2972 	get_function_id(p_hwfn);
2973 
2974 	/* Allocate PTT pool */
2975 	rc = ecore_ptt_pool_alloc(p_hwfn);
2976 	if (rc) {
2977 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
2978 		goto err0;
2979 	}
2980 
2981 	/* Allocate the main PTT */
2982 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2983 
2984 	/* First hwfn learns basic information, e.g., number of hwfns */
2985 	if (!p_hwfn->my_id) {
2986 		rc = ecore_get_dev_info(p_dev);
2987 		if (rc != ECORE_SUCCESS)
2988 			goto err1;
2989 	}
2990 
2991 	ecore_hw_hwfn_prepare(p_hwfn);
2992 
2993 	/* Initialize MCP structure */
2994 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
2995 	if (rc) {
2996 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
2997 		goto err1;
2998 	}
2999 
3000 	if (p_hwfn == ECORE_LEADING_HWFN(p_dev) && !p_dev->recov_in_prog) {
3001 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3002 		if (rc != ECORE_SUCCESS)
3003 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3004 	}
3005 
3006 	/* Read the device configuration information from the HW and SHMEM */
3007 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3008 			       p_params->personality, p_params->drv_resc_alloc);
3009 	if (rc) {
3010 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3011 		goto err2;
3012 	}
3013 
3014 	/* Allocate the init RT array and initialize the init-ops engine */
3015 	rc = ecore_init_alloc(p_hwfn);
3016 	if (rc) {
3017 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3018 		goto err2;
3019 	}
3020 #ifndef ASIC_ONLY
3021 	if (CHIP_REV_IS_FPGA(p_dev)) {
3022 		DP_NOTICE(p_hwfn, false,
3023 			  "FPGA: workaround; Prevent DMAE parities\n");
3024 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
3025 
3026 		DP_NOTICE(p_hwfn, false,
3027 			  "FPGA: workaround: Set VF bar0 size\n");
3028 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3029 			 PGLUE_B_REG_VF_BAR0_SIZE, 4);
3030 	}
3031 #endif
3032 
3033 	return rc;
3034  err2:
3035 	if (IS_LEAD_HWFN(p_hwfn))
3036 		ecore_iov_free_hw_info(p_dev);
3037 	ecore_mcp_free(p_hwfn);
3038  err1:
3039 	ecore_hw_hwfn_free(p_hwfn);
3040  err0:
3041 	return rc;
3042 }
3043 
3044 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3045 				      struct ecore_hw_prepare_params *p_params)
3046 {
3047 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3048 	enum _ecore_status_t rc;
3049 
3050 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3051 
3052 	/* Store the precompiled init data ptrs */
3053 	if (IS_PF(p_dev))
3054 		ecore_init_iro_array(p_dev);
3055 
3056 	/* Initialize the first hwfn - will learn number of hwfns */
3057 	rc = ecore_hw_prepare_single(p_hwfn,
3058 				     p_dev->regview,
3059 				     p_dev->doorbells, p_params);
3060 	if (rc != ECORE_SUCCESS)
3061 		return rc;
3062 
3063 	p_params->personality = p_hwfn->hw_info.personality;
3064 
3065 	/* initilalize 2nd hwfn if necessary */
3066 	if (p_dev->num_hwfns > 1) {
3067 		void OSAL_IOMEM *p_regview, *p_doorbell;
3068 		u8 OSAL_IOMEM *addr;
3069 
3070 		/* adjust bar offset for second engine */
3071 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
3072 		    ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3073 		p_regview = (void OSAL_IOMEM *)addr;
3074 
3075 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3076 		    ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3077 		p_doorbell = (void OSAL_IOMEM *)addr;
3078 
3079 		/* prepare second hw function */
3080 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3081 					     p_doorbell, p_params);
3082 
3083 		/* in case of error, need to free the previously
3084 		 * initiliazed hwfn 0.
3085 		 */
3086 		if (rc != ECORE_SUCCESS) {
3087 			if (IS_PF(p_dev)) {
3088 				ecore_init_free(p_hwfn);
3089 				ecore_mcp_free(p_hwfn);
3090 				ecore_hw_hwfn_free(p_hwfn);
3091 			} else {
3092 				DP_NOTICE(p_dev, true,
3093 					  "What do we need to free when VF hwfn1 init fails\n");
3094 			}
3095 			return rc;
3096 		}
3097 	}
3098 
3099 	return ECORE_SUCCESS;
3100 }
3101 
3102 void ecore_hw_remove(struct ecore_dev *p_dev)
3103 {
3104 	int i;
3105 
3106 	for_each_hwfn(p_dev, i) {
3107 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3108 
3109 		if (IS_VF(p_dev)) {
3110 			ecore_vf_pf_release(p_hwfn);
3111 			continue;
3112 		}
3113 
3114 		ecore_init_free(p_hwfn);
3115 		ecore_hw_hwfn_free(p_hwfn);
3116 		ecore_mcp_free(p_hwfn);
3117 
3118 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3119 	}
3120 
3121 	ecore_iov_free_hw_info(p_dev);
3122 }
3123 
3124 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3125 				      struct ecore_chain *p_chain)
3126 {
3127 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3128 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3129 	struct ecore_chain_next *p_next;
3130 	u32 size, i;
3131 
3132 	if (!p_virt)
3133 		return;
3134 
3135 	size = p_chain->elem_size * p_chain->usable_per_page;
3136 
3137 	for (i = 0; i < p_chain->page_cnt; i++) {
3138 		if (!p_virt)
3139 			break;
3140 
3141 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3142 		p_virt_next = p_next->next_virt;
3143 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3144 
3145 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3146 				       ECORE_CHAIN_PAGE_SIZE);
3147 
3148 		p_virt = p_virt_next;
3149 		p_phys = p_phys_next;
3150 	}
3151 }
3152 
3153 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3154 				    struct ecore_chain *p_chain)
3155 {
3156 	if (!p_chain->p_virt_addr)
3157 		return;
3158 
3159 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3160 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3161 }
3162 
3163 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3164 				 struct ecore_chain *p_chain)
3165 {
3166 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3167 	u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
3168 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3169 
3170 	if (!pp_virt_addr_tbl)
3171 		return;
3172 
3173 	if (!p_chain->pbl.p_virt_table)
3174 		goto out;
3175 
3176 	for (i = 0; i < page_cnt; i++) {
3177 		if (!pp_virt_addr_tbl[i])
3178 			break;
3179 
3180 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3181 				       *(dma_addr_t *)p_pbl_virt,
3182 				       ECORE_CHAIN_PAGE_SIZE);
3183 
3184 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3185 	}
3186 
3187 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3188 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
3189 			       p_chain->pbl.p_phys_table, pbl_size);
3190  out:
3191 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3192 }
3193 
3194 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3195 {
3196 	switch (p_chain->mode) {
3197 	case ECORE_CHAIN_MODE_NEXT_PTR:
3198 		ecore_chain_free_next_ptr(p_dev, p_chain);
3199 		break;
3200 	case ECORE_CHAIN_MODE_SINGLE:
3201 		ecore_chain_free_single(p_dev, p_chain);
3202 		break;
3203 	case ECORE_CHAIN_MODE_PBL:
3204 		ecore_chain_free_pbl(p_dev, p_chain);
3205 		break;
3206 	}
3207 }
3208 
3209 static enum _ecore_status_t
3210 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3211 			       enum ecore_chain_cnt_type cnt_type,
3212 			       osal_size_t elem_size, u32 page_cnt)
3213 {
3214 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3215 
3216 	/* The actual chain size can be larger than the maximal possible value
3217 	 * after rounding up the requested elements number to pages, and after
3218 	 * taking into acount the unusuable elements (next-ptr elements).
3219 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3220 	 * size/capacity fields are of a u32 type.
3221 	 */
3222 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3223 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3224 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3225 	     chain_size > ECORE_U32_MAX)) {
3226 		DP_NOTICE(p_dev, true,
3227 			  "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3228 			  (unsigned long)chain_size);
3229 		return ECORE_INVAL;
3230 	}
3231 
3232 	return ECORE_SUCCESS;
3233 }
3234 
3235 static enum _ecore_status_t
3236 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3237 {
3238 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3239 	dma_addr_t p_phys = 0;
3240 	u32 i;
3241 
3242 	for (i = 0; i < p_chain->page_cnt; i++) {
3243 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3244 						 ECORE_CHAIN_PAGE_SIZE);
3245 		if (!p_virt) {
3246 			DP_NOTICE(p_dev, true,
3247 				  "Failed to allocate chain memory\n");
3248 			return ECORE_NOMEM;
3249 		}
3250 
3251 		if (i == 0) {
3252 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
3253 			ecore_chain_reset(p_chain);
3254 		} else {
3255 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3256 						       p_virt, p_phys);
3257 		}
3258 
3259 		p_virt_prev = p_virt;
3260 	}
3261 	/* Last page's next element should point to the beginning of the
3262 	 * chain.
3263 	 */
3264 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3265 				       p_chain->p_virt_addr,
3266 				       p_chain->p_phys_addr);
3267 
3268 	return ECORE_SUCCESS;
3269 }
3270 
3271 static enum _ecore_status_t
3272 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3273 {
3274 	void *p_virt = OSAL_NULL;
3275 	dma_addr_t p_phys = 0;
3276 
3277 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3278 	if (!p_virt) {
3279 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3280 		return ECORE_NOMEM;
3281 	}
3282 
3283 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
3284 	ecore_chain_reset(p_chain);
3285 
3286 	return ECORE_SUCCESS;
3287 }
3288 
3289 static enum _ecore_status_t ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3290 						  struct ecore_chain *p_chain)
3291 {
3292 	void *p_virt = OSAL_NULL;
3293 	u8 *p_pbl_virt = OSAL_NULL;
3294 	void **pp_virt_addr_tbl = OSAL_NULL;
3295 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
3296 	u32 page_cnt = p_chain->page_cnt, size, i;
3297 
3298 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
3299 	pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
3300 	if (!pp_virt_addr_tbl) {
3301 		DP_NOTICE(p_dev, true,
3302 			  "Failed to allocate memory for the chain virtual addresses table\n");
3303 		return ECORE_NOMEM;
3304 	}
3305 	OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
3306 
3307 	/* The allocation of the PBL table is done with its full size, since it
3308 	 * is expected to be successive.
3309 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3310 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
3311 	 * should be saved to allow its freeing during the error flow.
3312 	 */
3313 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3314 	p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3315 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3316 				 pp_virt_addr_tbl);
3317 	if (!p_pbl_virt) {
3318 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3319 		return ECORE_NOMEM;
3320 	}
3321 
3322 	for (i = 0; i < page_cnt; i++) {
3323 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3324 						 ECORE_CHAIN_PAGE_SIZE);
3325 		if (!p_virt) {
3326 			DP_NOTICE(p_dev, true,
3327 				  "Failed to allocate chain memory\n");
3328 			return ECORE_NOMEM;
3329 		}
3330 
3331 		if (i == 0) {
3332 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
3333 			ecore_chain_reset(p_chain);
3334 		}
3335 
3336 		/* Fill the PBL table with the physical address of the page */
3337 		*(dma_addr_t *)p_pbl_virt = p_phys;
3338 		/* Keep the virtual address of the page */
3339 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3340 
3341 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3342 	}
3343 
3344 	return ECORE_SUCCESS;
3345 }
3346 
3347 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3348 				       enum ecore_chain_use_mode intended_use,
3349 				       enum ecore_chain_mode mode,
3350 				       enum ecore_chain_cnt_type cnt_type,
3351 				       u32 num_elems, osal_size_t elem_size,
3352 				       struct ecore_chain *p_chain)
3353 {
3354 	u32 page_cnt;
3355 	enum _ecore_status_t rc = ECORE_SUCCESS;
3356 
3357 	if (mode == ECORE_CHAIN_MODE_SINGLE)
3358 		page_cnt = 1;
3359 	else
3360 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3361 
3362 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3363 					    page_cnt);
3364 	if (rc) {
3365 		DP_NOTICE(p_dev, true,
3366 			  "Cannot allocate a chain with the given arguments:\n"
3367 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3368 			  intended_use, mode, cnt_type, num_elems, elem_size);
3369 		return rc;
3370 	}
3371 
3372 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3373 				mode, cnt_type, p_dev->dp_ctx);
3374 
3375 	switch (mode) {
3376 	case ECORE_CHAIN_MODE_NEXT_PTR:
3377 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3378 		break;
3379 	case ECORE_CHAIN_MODE_SINGLE:
3380 		rc = ecore_chain_alloc_single(p_dev, p_chain);
3381 		break;
3382 	case ECORE_CHAIN_MODE_PBL:
3383 		rc = ecore_chain_alloc_pbl(p_dev, p_chain);
3384 		break;
3385 	}
3386 	if (rc)
3387 		goto nomem;
3388 
3389 	return ECORE_SUCCESS;
3390 
3391  nomem:
3392 	ecore_chain_free(p_dev, p_chain);
3393 	return rc;
3394 }
3395 
3396 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3397 				       u16 src_id, u16 *dst_id)
3398 {
3399 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3400 		u16 min, max;
3401 
3402 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3403 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3404 		DP_NOTICE(p_hwfn, true,
3405 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3406 			  src_id, min, max);
3407 
3408 		return ECORE_INVAL;
3409 	}
3410 
3411 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3412 
3413 	return ECORE_SUCCESS;
3414 }
3415 
3416 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3417 				    u8 src_id, u8 *dst_id)
3418 {
3419 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3420 		u8 min, max;
3421 
3422 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3423 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3424 		DP_NOTICE(p_hwfn, true,
3425 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
3426 			  src_id, min, max);
3427 
3428 		return ECORE_INVAL;
3429 	}
3430 
3431 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3432 
3433 	return ECORE_SUCCESS;
3434 }
3435 
3436 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3437 				      u8 src_id, u8 *dst_id)
3438 {
3439 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3440 		u8 min, max;
3441 
3442 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3443 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3444 		DP_NOTICE(p_hwfn, true,
3445 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3446 			  src_id, min, max);
3447 
3448 		return ECORE_INVAL;
3449 	}
3450 
3451 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3452 
3453 	return ECORE_SUCCESS;
3454 }
3455 
3456 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3457 					      struct ecore_ptt *p_ptt,
3458 					      u8 *p_filter)
3459 {
3460 	u32 high, low, en;
3461 	int i;
3462 
3463 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3464 		return ECORE_SUCCESS;
3465 
3466 	high = p_filter[1] | (p_filter[0] << 8);
3467 	low = p_filter[5] | (p_filter[4] << 8) |
3468 	    (p_filter[3] << 16) | (p_filter[2] << 24);
3469 
3470 	/* Find a free entry and utilize it */
3471 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3472 		en = ecore_rd(p_hwfn, p_ptt,
3473 			      NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3474 		if (en)
3475 			continue;
3476 		ecore_wr(p_hwfn, p_ptt,
3477 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3478 			 2 * i * sizeof(u32), low);
3479 		ecore_wr(p_hwfn, p_ptt,
3480 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3481 			 (2 * i + 1) * sizeof(u32), high);
3482 		ecore_wr(p_hwfn, p_ptt,
3483 			 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3484 		ecore_wr(p_hwfn, p_ptt,
3485 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3486 			 i * sizeof(u32), 0);
3487 		ecore_wr(p_hwfn, p_ptt,
3488 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3489 		break;
3490 	}
3491 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3492 		DP_NOTICE(p_hwfn, false,
3493 			  "Failed to find an empty LLH filter to utilize\n");
3494 		return ECORE_INVAL;
3495 	}
3496 
3497 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3498 		   "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
3499 		   p_filter[0], p_filter[1], p_filter[2],
3500 		   p_filter[3], p_filter[4], p_filter[5], i);
3501 
3502 	return ECORE_SUCCESS;
3503 }
3504 
3505 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
3506 				 struct ecore_ptt *p_ptt, u8 *p_filter)
3507 {
3508 	u32 high, low;
3509 	int i;
3510 
3511 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3512 		return;
3513 
3514 	high = p_filter[1] | (p_filter[0] << 8);
3515 	low = p_filter[5] | (p_filter[4] << 8) |
3516 	    (p_filter[3] << 16) | (p_filter[2] << 24);
3517 
3518 	/* Find the entry and clean it */
3519 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3520 		if (ecore_rd(p_hwfn, p_ptt,
3521 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3522 			     2 * i * sizeof(u32)) != low)
3523 			continue;
3524 		if (ecore_rd(p_hwfn, p_ptt,
3525 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3526 			     (2 * i + 1) * sizeof(u32)) != high)
3527 			continue;
3528 
3529 		ecore_wr(p_hwfn, p_ptt,
3530 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3531 		ecore_wr(p_hwfn, p_ptt,
3532 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3533 			 2 * i * sizeof(u32), 0);
3534 		ecore_wr(p_hwfn, p_ptt,
3535 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3536 			 (2 * i + 1) * sizeof(u32), 0);
3537 		break;
3538 	}
3539 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3540 		DP_NOTICE(p_hwfn, false,
3541 			  "Tried to remove a non-configured filter\n");
3542 }
3543 
3544 enum _ecore_status_t
3545 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
3546 			      struct ecore_ptt *p_ptt,
3547 			      u16 source_port_or_eth_type,
3548 			      u16 dest_port,
3549 			      enum ecore_llh_port_filter_type_t type)
3550 {
3551 	u32 high, low, en;
3552 	int i;
3553 
3554 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3555 		return ECORE_SUCCESS;
3556 
3557 	high = 0;
3558 	low = 0;
3559 	switch (type) {
3560 	case ECORE_LLH_FILTER_ETHERTYPE:
3561 		high = source_port_or_eth_type;
3562 		break;
3563 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
3564 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
3565 		low = source_port_or_eth_type << 16;
3566 		break;
3567 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
3568 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
3569 		low = dest_port;
3570 		break;
3571 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3572 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3573 		low = (source_port_or_eth_type << 16) | dest_port;
3574 		break;
3575 	default:
3576 		DP_NOTICE(p_hwfn, true,
3577 			  "Non valid LLH protocol filter type %d\n", type);
3578 		return ECORE_INVAL;
3579 	}
3580 	/* Find a free entry and utilize it */
3581 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3582 		en = ecore_rd(p_hwfn, p_ptt,
3583 			      NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3584 		if (en)
3585 			continue;
3586 		ecore_wr(p_hwfn, p_ptt,
3587 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3588 			 2 * i * sizeof(u32), low);
3589 		ecore_wr(p_hwfn, p_ptt,
3590 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3591 			 (2 * i + 1) * sizeof(u32), high);
3592 		ecore_wr(p_hwfn, p_ptt,
3593 			 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3594 		ecore_wr(p_hwfn, p_ptt,
3595 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3596 			 i * sizeof(u32), 1 << type);
3597 		ecore_wr(p_hwfn, p_ptt,
3598 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3599 		break;
3600 	}
3601 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3602 		DP_NOTICE(p_hwfn, false,
3603 			  "Failed to find an empty LLH filter to utilize\n");
3604 		return ECORE_NORESOURCES;
3605 	}
3606 	switch (type) {
3607 	case ECORE_LLH_FILTER_ETHERTYPE:
3608 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3609 			   "ETH type %x is added at %d\n",
3610 			   source_port_or_eth_type, i);
3611 		break;
3612 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
3613 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3614 			   "TCP src port %x is added at %d\n",
3615 			   source_port_or_eth_type, i);
3616 		break;
3617 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
3618 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3619 			   "UDP src port %x is added at %d\n",
3620 			   source_port_or_eth_type, i);
3621 		break;
3622 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
3623 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3624 			   "TCP dst port %x is added at %d\n", dest_port, i);
3625 		break;
3626 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
3627 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3628 			   "UDP dst port %x is added at %d\n", dest_port, i);
3629 		break;
3630 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3631 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3632 			   "TCP src/dst ports %x/%x are added at %d\n",
3633 			   source_port_or_eth_type, dest_port, i);
3634 		break;
3635 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3636 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3637 			   "UDP src/dst ports %x/%x are added at %d\n",
3638 			   source_port_or_eth_type, dest_port, i);
3639 		break;
3640 	}
3641 	return ECORE_SUCCESS;
3642 }
3643 
3644 void
3645 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
3646 				 struct ecore_ptt *p_ptt,
3647 				 u16 source_port_or_eth_type,
3648 				 u16 dest_port,
3649 				 enum ecore_llh_port_filter_type_t type)
3650 {
3651 	u32 high, low;
3652 	int i;
3653 
3654 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3655 		return;
3656 
3657 	high = 0;
3658 	low = 0;
3659 	switch (type) {
3660 	case ECORE_LLH_FILTER_ETHERTYPE:
3661 		high = source_port_or_eth_type;
3662 		break;
3663 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
3664 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
3665 		low = source_port_or_eth_type << 16;
3666 		break;
3667 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
3668 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
3669 		low = dest_port;
3670 		break;
3671 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3672 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3673 		low = (source_port_or_eth_type << 16) | dest_port;
3674 		break;
3675 	default:
3676 		DP_NOTICE(p_hwfn, true,
3677 			  "Non valid LLH protocol filter type %d\n", type);
3678 		return;
3679 	}
3680 
3681 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3682 		if (!ecore_rd(p_hwfn, p_ptt,
3683 			      NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3684 			continue;
3685 		if (!ecore_rd(p_hwfn, p_ptt,
3686 			      NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3687 			continue;
3688 		if (!(ecore_rd(p_hwfn, p_ptt,
3689 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3690 			       i * sizeof(u32)) & (1 << type)))
3691 			continue;
3692 		if (ecore_rd(p_hwfn, p_ptt,
3693 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3694 			     2 * i * sizeof(u32)) != low)
3695 			continue;
3696 		if (ecore_rd(p_hwfn, p_ptt,
3697 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3698 			     (2 * i + 1) * sizeof(u32)) != high)
3699 			continue;
3700 
3701 		ecore_wr(p_hwfn, p_ptt,
3702 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3703 		ecore_wr(p_hwfn, p_ptt,
3704 			 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3705 		ecore_wr(p_hwfn, p_ptt,
3706 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3707 			 i * sizeof(u32), 0);
3708 		ecore_wr(p_hwfn, p_ptt,
3709 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3710 			 2 * i * sizeof(u32), 0);
3711 		ecore_wr(p_hwfn, p_ptt,
3712 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3713 			 (2 * i + 1) * sizeof(u32), 0);
3714 		break;
3715 	}
3716 
3717 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3718 		DP_NOTICE(p_hwfn, false,
3719 			  "Tried to remove a non-configured filter\n");
3720 }
3721 
3722 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
3723 				 struct ecore_ptt *p_ptt)
3724 {
3725 	int i;
3726 
3727 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3728 		return;
3729 
3730 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3731 		ecore_wr(p_hwfn, p_ptt,
3732 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3733 		ecore_wr(p_hwfn, p_ptt,
3734 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3735 			 2 * i * sizeof(u32), 0);
3736 		ecore_wr(p_hwfn, p_ptt,
3737 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3738 			 (2 * i + 1) * sizeof(u32), 0);
3739 	}
3740 }
3741 
3742 enum _ecore_status_t
3743 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
3744 				  struct ecore_ptt *p_ptt)
3745 {
3746 	if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
3747 		ecore_wr(p_hwfn, p_ptt,
3748 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
3749 			 1 << p_hwfn->abs_pf_id / 2);
3750 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
3751 		return ECORE_SUCCESS;
3752 	}
3753 
3754 	DP_NOTICE(p_hwfn, false,
3755 		  "This function can't be set as default\n");
3756 	return ECORE_INVAL;
3757 }
3758 
3759 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
3760 					       struct ecore_ptt *p_ptt,
3761 					       u32 hw_addr, void *p_eth_qzone,
3762 					       osal_size_t eth_qzone_size,
3763 					       u8 timeset)
3764 {
3765 	struct coalescing_timeset *p_coal_timeset;
3766 
3767 	if (IS_VF(p_hwfn->p_dev)) {
3768 		DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
3769 		return ECORE_INVAL;
3770 	}
3771 
3772 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
3773 		DP_NOTICE(p_hwfn, true,
3774 			  "Coalescing configuration not enabled\n");
3775 		return ECORE_INVAL;
3776 	}
3777 
3778 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
3779 	p_coal_timeset = p_eth_qzone;
3780 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3781 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3782 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3783 
3784 	return ECORE_SUCCESS;
3785 }
3786 
3787 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
3788 					    struct ecore_ptt *p_ptt,
3789 					    u16 coalesce, u8 qid, u16 sb_id)
3790 {
3791 	struct ustorm_eth_queue_zone eth_qzone;
3792 	u16 fw_qid = 0;
3793 	u32 address;
3794 	enum _ecore_status_t rc;
3795 	u8 timeset, timer_res;
3796 
3797 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3798 	if (coalesce <= 0x7F) {
3799 		timer_res = 0;
3800 	} else if (coalesce <= 0xFF) {
3801 		timer_res = 1;
3802 	} else if (coalesce <= 0x1FF) {
3803 		timer_res = 2;
3804 	} else {
3805 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3806 		return ECORE_INVAL;
3807 	}
3808 	timeset = (u8)(coalesce >> timer_res);
3809 
3810 	rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3811 	if (rc != ECORE_SUCCESS)
3812 		return rc;
3813 
3814 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3815 	if (rc != ECORE_SUCCESS)
3816 		goto out;
3817 
3818 	address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3819 
3820 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3821 				sizeof(struct ustorm_eth_queue_zone), timeset);
3822 	if (rc != ECORE_SUCCESS)
3823 		goto out;
3824 
3825 	p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
3826  out:
3827 	return rc;
3828 }
3829 
3830 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
3831 					    struct ecore_ptt *p_ptt,
3832 					    u16 coalesce, u8 qid, u16 sb_id)
3833 {
3834 	struct xstorm_eth_queue_zone eth_qzone;
3835 	u16 fw_qid = 0;
3836 	u32 address;
3837 	enum _ecore_status_t rc;
3838 	u8 timeset, timer_res;
3839 
3840 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3841 	if (coalesce <= 0x7F) {
3842 		timer_res = 0;
3843 	} else if (coalesce <= 0xFF) {
3844 		timer_res = 1;
3845 	} else if (coalesce <= 0x1FF) {
3846 		timer_res = 2;
3847 	} else {
3848 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3849 		return ECORE_INVAL;
3850 	}
3851 
3852 	timeset = (u8)(coalesce >> timer_res);
3853 
3854 	rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3855 	if (rc != ECORE_SUCCESS)
3856 		return rc;
3857 
3858 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3859 	if (rc != ECORE_SUCCESS)
3860 		goto out;
3861 
3862 	address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3863 
3864 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3865 				sizeof(struct xstorm_eth_queue_zone), timeset);
3866 	if (rc != ECORE_SUCCESS)
3867 		goto out;
3868 
3869 	p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
3870  out:
3871 	return rc;
3872 }
3873 
3874 /* Calculate final WFQ values for all vports and configure it.
3875  * After this configuration each vport must have
3876  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
3877  */
3878 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3879 					       struct ecore_ptt *p_ptt,
3880 					       u32 min_pf_rate)
3881 {
3882 	struct init_qm_vport_params *vport_params;
3883 	int i;
3884 
3885 	vport_params = p_hwfn->qm_info.qm_vport_params;
3886 
3887 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3888 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3889 
3890 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
3891 		    min_pf_rate;
3892 		ecore_init_vport_wfq(p_hwfn, p_ptt,
3893 				     vport_params[i].first_tx_pq_id,
3894 				     vport_params[i].vport_wfq);
3895 	}
3896 }
3897 
3898 static void
3899 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
3900 {
3901 	int i;
3902 
3903 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3904 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3905 }
3906 
3907 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3908 					     struct ecore_ptt *p_ptt,
3909 					     u32 min_pf_rate)
3910 {
3911 	struct init_qm_vport_params *vport_params;
3912 	int i;
3913 
3914 	vport_params = p_hwfn->qm_info.qm_vport_params;
3915 
3916 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3917 		ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
3918 		ecore_init_vport_wfq(p_hwfn, p_ptt,
3919 				     vport_params[i].first_tx_pq_id,
3920 				     vport_params[i].vport_wfq);
3921 	}
3922 }
3923 
3924 /* This function performs several validations for WFQ
3925  * configuration and required min rate for a given vport
3926  * 1. req_rate must be greater than one percent of min_pf_rate.
3927  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3928  *    rates to get less than one percent of min_pf_rate.
3929  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3930  */
3931 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
3932 						 u16 vport_id, u32 req_rate,
3933 						 u32 min_pf_rate)
3934 {
3935 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3936 	int non_requested_count = 0, req_count = 0, i, num_vports;
3937 
3938 	num_vports = p_hwfn->qm_info.num_vports;
3939 
3940 /* Accounting for the vports which are configured for WFQ explicitly */
3941 
3942 	for (i = 0; i < num_vports; i++) {
3943 		u32 tmp_speed;
3944 
3945 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
3946 			req_count++;
3947 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3948 			total_req_min_rate += tmp_speed;
3949 		}
3950 	}
3951 
3952 	/* Include current vport data as well */
3953 	req_count++;
3954 	total_req_min_rate += req_rate;
3955 	non_requested_count = num_vports - req_count;
3956 
3957 	/* validate possible error cases */
3958 	if (req_rate > min_pf_rate) {
3959 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3960 			   "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3961 			   vport_id, req_rate, min_pf_rate);
3962 		return ECORE_INVAL;
3963 	}
3964 
3965 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
3966 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3967 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3968 			   vport_id, req_rate, min_pf_rate);
3969 		return ECORE_INVAL;
3970 	}
3971 
3972 	/* TBD - for number of vports greater than 100 */
3973 	if (num_vports > ECORE_WFQ_UNIT) {
3974 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3975 			   "Number of vports is greater than %d\n",
3976 			   ECORE_WFQ_UNIT);
3977 		return ECORE_INVAL;
3978 	}
3979 
3980 	if (total_req_min_rate > min_pf_rate) {
3981 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3982 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3983 			   total_req_min_rate, min_pf_rate);
3984 		return ECORE_INVAL;
3985 	}
3986 
3987 	/* Data left for non requested vports */
3988 	total_left_rate = min_pf_rate - total_req_min_rate;
3989 	left_rate_per_vp = total_left_rate / non_requested_count;
3990 
3991 	/* validate if non requested get < 1% of min bw */
3992 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
3993 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3994 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3995 			   left_rate_per_vp, min_pf_rate);
3996 		return ECORE_INVAL;
3997 	}
3998 
3999 	/* now req_rate for given vport passes all scenarios.
4000 	 * assign final wfq rates to all vports.
4001 	 */
4002 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4003 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4004 
4005 	for (i = 0; i < num_vports; i++) {
4006 		if (p_hwfn->qm_info.wfq_data[i].configured)
4007 			continue;
4008 
4009 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4010 	}
4011 
4012 	return ECORE_SUCCESS;
4013 }
4014 
4015 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4016 				       struct ecore_ptt *p_ptt,
4017 				       u16 vp_id, u32 rate)
4018 {
4019 	struct ecore_mcp_link_state *p_link;
4020 	int rc = ECORE_SUCCESS;
4021 
4022 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4023 
4024 	if (!p_link->min_pf_rate) {
4025 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4026 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4027 		return rc;
4028 	}
4029 
4030 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4031 
4032 	if (rc == ECORE_SUCCESS)
4033 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4034 						   p_link->min_pf_rate);
4035 	else
4036 		DP_NOTICE(p_hwfn, false,
4037 			  "Validation failed while configuring min rate\n");
4038 
4039 	return rc;
4040 }
4041 
4042 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4043 						   struct ecore_ptt *p_ptt,
4044 						   u32 min_pf_rate)
4045 {
4046 	bool use_wfq = false;
4047 	int rc = ECORE_SUCCESS;
4048 	u16 i;
4049 
4050 	/* Validate all pre configured vports for wfq */
4051 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4052 		u32 rate;
4053 
4054 		if (!p_hwfn->qm_info.wfq_data[i].configured)
4055 			continue;
4056 
4057 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4058 		use_wfq = true;
4059 
4060 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4061 		if (rc != ECORE_SUCCESS) {
4062 			DP_NOTICE(p_hwfn, false,
4063 				  "WFQ validation failed while configuring min rate\n");
4064 			break;
4065 		}
4066 	}
4067 
4068 	if (rc == ECORE_SUCCESS && use_wfq)
4069 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4070 	else
4071 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4072 
4073 	return rc;
4074 }
4075 
4076 /* Main API for ecore clients to configure vport min rate.
4077  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4078  * rate - Speed in Mbps needs to be assigned to a given vport.
4079  */
4080 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4081 {
4082 	int i, rc = ECORE_INVAL;
4083 
4084 	/* TBD - for multiple hardware functions - that is 100 gig */
4085 	if (p_dev->num_hwfns > 1) {
4086 		DP_NOTICE(p_dev, false,
4087 			  "WFQ configuration is not supported for this device\n");
4088 		return rc;
4089 	}
4090 
4091 	for_each_hwfn(p_dev, i) {
4092 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4093 		struct ecore_ptt *p_ptt;
4094 
4095 		p_ptt = ecore_ptt_acquire(p_hwfn);
4096 		if (!p_ptt)
4097 			return ECORE_TIMEOUT;
4098 
4099 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4100 
4101 		if (rc != ECORE_SUCCESS) {
4102 			ecore_ptt_release(p_hwfn, p_ptt);
4103 			return rc;
4104 		}
4105 
4106 		ecore_ptt_release(p_hwfn, p_ptt);
4107 	}
4108 
4109 	return rc;
4110 }
4111 
4112 /* API to configure WFQ from mcp link change */
4113 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4114 					   u32 min_pf_rate)
4115 {
4116 	int i;
4117 
4118 	/* TBD - for multiple hardware functions - that is 100 gig */
4119 	if (p_dev->num_hwfns > 1) {
4120 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4121 			   "WFQ configuration is not supported for this device\n");
4122 		return;
4123 	}
4124 
4125 	for_each_hwfn(p_dev, i) {
4126 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4127 
4128 		__ecore_configure_vp_wfq_on_link_change(p_hwfn,
4129 							p_hwfn->p_dpc_ptt,
4130 							min_pf_rate);
4131 	}
4132 }
4133 
4134 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4135 				       struct ecore_ptt *p_ptt,
4136 				       struct ecore_mcp_link_state *p_link,
4137 				       u8 max_bw)
4138 {
4139 	int rc = ECORE_SUCCESS;
4140 
4141 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4142 
4143 	if (!p_link->line_speed && (max_bw != 100))
4144 		return rc;
4145 
4146 	p_link->speed = (p_link->line_speed * max_bw) / 100;
4147 	p_hwfn->qm_info.pf_rl = p_link->speed;
4148 
4149 	/* Since the limiter also affects Tx-switched traffic, we don't want it
4150 	 * to limit such traffic in case there's no actual limit.
4151 	 * In that case, set limit to imaginary high boundary.
4152 	 */
4153 	if (max_bw == 100)
4154 		p_hwfn->qm_info.pf_rl = 100000;
4155 
4156 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4157 			      p_hwfn->qm_info.pf_rl);
4158 
4159 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4160 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
4161 		   p_link->speed);
4162 
4163 	return rc;
4164 }
4165 
4166 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4167 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4168 {
4169 	int i, rc = ECORE_INVAL;
4170 
4171 	if (max_bw < 1 || max_bw > 100) {
4172 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4173 		return rc;
4174 	}
4175 
4176 	for_each_hwfn(p_dev, i) {
4177 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4178 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4179 		struct ecore_mcp_link_state *p_link;
4180 		struct ecore_ptt *p_ptt;
4181 
4182 		p_link = &p_lead->mcp_info->link_output;
4183 
4184 		p_ptt = ecore_ptt_acquire(p_hwfn);
4185 		if (!p_ptt)
4186 			return ECORE_TIMEOUT;
4187 
4188 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4189 							p_link, max_bw);
4190 
4191 		ecore_ptt_release(p_hwfn, p_ptt);
4192 
4193 		if (rc != ECORE_SUCCESS)
4194 			break;
4195 	}
4196 
4197 	return rc;
4198 }
4199 
4200 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4201 				       struct ecore_ptt *p_ptt,
4202 				       struct ecore_mcp_link_state *p_link,
4203 				       u8 min_bw)
4204 {
4205 	int rc = ECORE_SUCCESS;
4206 
4207 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4208 	p_hwfn->qm_info.pf_wfq = min_bw;
4209 
4210 	if (!p_link->line_speed)
4211 		return rc;
4212 
4213 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4214 
4215 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4216 
4217 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4218 		   "Configured MIN bandwidth to be %d Mb/sec\n",
4219 		   p_link->min_pf_rate);
4220 
4221 	return rc;
4222 }
4223 
4224 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4225 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4226 {
4227 	int i, rc = ECORE_INVAL;
4228 
4229 	if (min_bw < 1 || min_bw > 100) {
4230 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4231 		return rc;
4232 	}
4233 
4234 	for_each_hwfn(p_dev, i) {
4235 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4236 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4237 		struct ecore_mcp_link_state *p_link;
4238 		struct ecore_ptt *p_ptt;
4239 
4240 		p_link = &p_lead->mcp_info->link_output;
4241 
4242 		p_ptt = ecore_ptt_acquire(p_hwfn);
4243 		if (!p_ptt)
4244 			return ECORE_TIMEOUT;
4245 
4246 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4247 							p_link, min_bw);
4248 		if (rc != ECORE_SUCCESS) {
4249 			ecore_ptt_release(p_hwfn, p_ptt);
4250 			return rc;
4251 		}
4252 
4253 		if (p_link->min_pf_rate) {
4254 			u32 min_rate = p_link->min_pf_rate;
4255 
4256 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4257 								     p_ptt,
4258 								     min_rate);
4259 		}
4260 
4261 		ecore_ptt_release(p_hwfn, p_ptt);
4262 	}
4263 
4264 	return rc;
4265 }
4266 
4267 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4268 {
4269 	struct ecore_mcp_link_state *p_link;
4270 
4271 	p_link = &p_hwfn->mcp_info->link_output;
4272 
4273 	if (p_link->min_pf_rate)
4274 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4275 						 p_link->min_pf_rate);
4276 
4277 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4278 		    sizeof(*p_hwfn->qm_info.wfq_data) *
4279 		    p_hwfn->qm_info.num_vports);
4280 }
4281 
4282 int ecore_device_num_engines(struct ecore_dev *p_dev)
4283 {
4284 	return ECORE_IS_BB(p_dev) ? 2 : 1;
4285 }
4286 
4287 int ecore_device_num_ports(struct ecore_dev *p_dev)
4288 {
4289 	/* in CMT always only one port */
4290 	if (p_dev->num_hwfns > 1)
4291 		return 1;
4292 
4293 	return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4294 }
4295