1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (c) 2016 - 2018 Cavium Inc. 3 * All rights reserved. 4 * www.cavium.com 5 */ 6 7 #include "bcm_osal.h" 8 #include "reg_addr.h" 9 #include "ecore_gtt_reg_addr.h" 10 #include "ecore.h" 11 #include "ecore_chain.h" 12 #include "ecore_status.h" 13 #include "ecore_hw.h" 14 #include "ecore_rt_defs.h" 15 #include "ecore_init_ops.h" 16 #include "ecore_int.h" 17 #include "ecore_cxt.h" 18 #include "ecore_spq.h" 19 #include "ecore_init_fw_funcs.h" 20 #include "ecore_sp_commands.h" 21 #include "ecore_dev_api.h" 22 #include "ecore_sriov.h" 23 #include "ecore_vf.h" 24 #include "ecore_mcp.h" 25 #include "ecore_hw_defs.h" 26 #include "mcp_public.h" 27 #include "ecore_iro.h" 28 #include "nvm_cfg.h" 29 #include "ecore_dcbx.h" 30 #include "ecore_l2.h" 31 32 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM 33 * registers involved are not split and thus configuration is a race where 34 * some of the PFs configuration might be lost. 35 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration 36 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where 37 * there's more than a single compiled ecore component in system]. 38 */ 39 static osal_spinlock_t qm_lock; 40 static u32 qm_lock_ref_cnt; 41 42 /******************** Doorbell Recovery *******************/ 43 /* The doorbell recovery mechanism consists of a list of entries which represent 44 * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each 45 * entity needs to register with the mechanism and provide the parameters 46 * describing it's doorbell, including a location where last used doorbell data 47 * can be found. The doorbell execute function will traverse the list and 48 * doorbell all of the registered entries. 49 */ 50 struct ecore_db_recovery_entry { 51 osal_list_entry_t list_entry; 52 void OSAL_IOMEM *db_addr; 53 void *db_data; 54 enum ecore_db_rec_width db_width; 55 enum ecore_db_rec_space db_space; 56 u8 hwfn_idx; 57 }; 58 59 /* display a single doorbell recovery entry */ 60 void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn, 61 struct ecore_db_recovery_entry *db_entry, 62 const char *action) 63 { 64 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n", 65 action, db_entry, db_entry->db_addr, db_entry->db_data, 66 db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b", 67 db_entry->db_space == DB_REC_USER ? "user" : "kernel", 68 db_entry->hwfn_idx); 69 } 70 71 /* doorbell address sanity (address within doorbell bar range) */ 72 bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr, 73 void *db_data) 74 { 75 /* make sure doorbell address is within the doorbell bar */ 76 if (db_addr < p_dev->doorbells || (u8 *)db_addr > 77 (u8 *)p_dev->doorbells + p_dev->db_size) { 78 OSAL_WARN(true, 79 "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n", 80 db_addr, p_dev->doorbells, 81 (u8 *)p_dev->doorbells + p_dev->db_size); 82 return false; 83 } 84 85 /* make sure doorbell data pointer is not null */ 86 if (!db_data) { 87 OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data); 88 return false; 89 } 90 91 return true; 92 } 93 94 /* find hwfn according to the doorbell address */ 95 struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev, 96 void OSAL_IOMEM *db_addr) 97 { 98 struct ecore_hwfn *p_hwfn; 99 100 /* In CMT doorbell bar is split down the middle between engine 0 and 101 * enigne 1 102 */ 103 if (ECORE_IS_CMT(p_dev)) 104 p_hwfn = db_addr < p_dev->hwfns[1].doorbells ? 105 &p_dev->hwfns[0] : &p_dev->hwfns[1]; 106 else 107 p_hwfn = ECORE_LEADING_HWFN(p_dev); 108 109 return p_hwfn; 110 } 111 112 /* add a new entry to the doorbell recovery mechanism */ 113 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev, 114 void OSAL_IOMEM *db_addr, 115 void *db_data, 116 enum ecore_db_rec_width db_width, 117 enum ecore_db_rec_space db_space) 118 { 119 struct ecore_db_recovery_entry *db_entry; 120 struct ecore_hwfn *p_hwfn; 121 122 /* shortcircuit VFs, for now */ 123 if (IS_VF(p_dev)) { 124 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n"); 125 return ECORE_SUCCESS; 126 } 127 128 /* sanitize doorbell address */ 129 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data)) 130 return ECORE_INVAL; 131 132 /* obtain hwfn from doorbell address */ 133 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr); 134 135 /* create entry */ 136 db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry)); 137 if (!db_entry) { 138 DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n"); 139 return ECORE_NOMEM; 140 } 141 142 /* populate entry */ 143 db_entry->db_addr = db_addr; 144 db_entry->db_data = db_data; 145 db_entry->db_width = db_width; 146 db_entry->db_space = db_space; 147 db_entry->hwfn_idx = p_hwfn->my_id; 148 149 /* display */ 150 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding"); 151 152 /* protect the list */ 153 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 154 OSAL_LIST_PUSH_TAIL(&db_entry->list_entry, 155 &p_hwfn->db_recovery_info.list); 156 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 157 158 return ECORE_SUCCESS; 159 } 160 161 /* remove an entry from the doorbell recovery mechanism */ 162 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev, 163 void OSAL_IOMEM *db_addr, 164 void *db_data) 165 { 166 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 167 enum _ecore_status_t rc = ECORE_INVAL; 168 struct ecore_hwfn *p_hwfn; 169 170 /* shortcircuit VFs, for now */ 171 if (IS_VF(p_dev)) { 172 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n"); 173 return ECORE_SUCCESS; 174 } 175 176 /* sanitize doorbell address */ 177 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data)) 178 return ECORE_INVAL; 179 180 /* obtain hwfn from doorbell address */ 181 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr); 182 183 /* protect the list */ 184 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 185 OSAL_LIST_FOR_EACH_ENTRY(db_entry, 186 &p_hwfn->db_recovery_info.list, 187 list_entry, 188 struct ecore_db_recovery_entry) { 189 /* search according to db_data addr since db_addr is not unique 190 * (roce) 191 */ 192 if (db_entry->db_data == db_data) { 193 ecore_db_recovery_dp_entry(p_hwfn, db_entry, 194 "Deleting"); 195 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry, 196 &p_hwfn->db_recovery_info.list); 197 rc = ECORE_SUCCESS; 198 break; 199 } 200 } 201 202 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 203 204 if (rc == ECORE_INVAL) 205 /*OSAL_WARN(true,*/ 206 DP_NOTICE(p_hwfn, false, 207 "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n", 208 db_data, db_addr); 209 else 210 OSAL_FREE(p_dev, db_entry); 211 212 return rc; 213 } 214 215 /* initialize the doorbell recovery mechanism */ 216 enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn) 217 { 218 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n"); 219 220 /* make sure db_size was set in p_dev */ 221 if (!p_hwfn->p_dev->db_size) { 222 DP_ERR(p_hwfn->p_dev, "db_size not set\n"); 223 return ECORE_INVAL; 224 } 225 226 OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list); 227 #ifdef CONFIG_ECORE_LOCK_ALLOC 228 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock)) 229 return ECORE_NOMEM; 230 #endif 231 OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock); 232 p_hwfn->db_recovery_info.db_recovery_counter = 0; 233 234 return ECORE_SUCCESS; 235 } 236 237 /* destroy the doorbell recovery mechanism */ 238 void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn) 239 { 240 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 241 242 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n"); 243 if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) { 244 DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n"); 245 while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) { 246 db_entry = OSAL_LIST_FIRST_ENTRY( 247 &p_hwfn->db_recovery_info.list, 248 struct ecore_db_recovery_entry, 249 list_entry); 250 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging"); 251 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry, 252 &p_hwfn->db_recovery_info.list); 253 OSAL_FREE(p_hwfn->p_dev, db_entry); 254 } 255 } 256 #ifdef CONFIG_ECORE_LOCK_ALLOC 257 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock); 258 #endif 259 p_hwfn->db_recovery_info.db_recovery_counter = 0; 260 } 261 262 /* print the content of the doorbell recovery mechanism */ 263 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn) 264 { 265 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 266 267 DP_NOTICE(p_hwfn, false, 268 "Dispalying doorbell recovery database. Counter was %d\n", 269 p_hwfn->db_recovery_info.db_recovery_counter); 270 271 /* protect the list */ 272 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 273 OSAL_LIST_FOR_EACH_ENTRY(db_entry, 274 &p_hwfn->db_recovery_info.list, 275 list_entry, 276 struct ecore_db_recovery_entry) { 277 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing"); 278 } 279 280 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 281 } 282 283 /* ring the doorbell of a single doorbell recovery entry */ 284 void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn, 285 struct ecore_db_recovery_entry *db_entry, 286 enum ecore_db_rec_exec db_exec) 287 { 288 /* Print according to width */ 289 if (db_entry->db_width == DB_REC_WIDTH_32B) 290 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %x\n", 291 db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing", 292 db_entry->db_addr, *(u32 *)db_entry->db_data); 293 else 294 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %lx\n", 295 db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing", 296 db_entry->db_addr, 297 *(unsigned long *)(db_entry->db_data)); 298 299 /* Sanity */ 300 if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr, 301 db_entry->db_data)) 302 return; 303 304 /* Flush the write combined buffer. Since there are multiple doorbelling 305 * entities using the same address, if we don't flush, a transaction 306 * could be lost. 307 */ 308 OSAL_WMB(p_hwfn->p_dev); 309 310 /* Ring the doorbell */ 311 if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) { 312 if (db_entry->db_width == DB_REC_WIDTH_32B) 313 DIRECT_REG_WR(p_hwfn, db_entry->db_addr, 314 *(u32 *)(db_entry->db_data)); 315 else 316 DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, 317 *(u64 *)(db_entry->db_data)); 318 } 319 320 /* Flush the write combined buffer. Next doorbell may come from a 321 * different entity to the same address... 322 */ 323 OSAL_WMB(p_hwfn->p_dev); 324 } 325 326 /* traverse the doorbell recovery entry list and ring all the doorbells */ 327 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn, 328 enum ecore_db_rec_exec db_exec) 329 { 330 struct ecore_db_recovery_entry *db_entry = OSAL_NULL; 331 332 if (db_exec != DB_REC_ONCE) { 333 DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n", 334 p_hwfn->db_recovery_info.db_recovery_counter); 335 336 /* track amount of times recovery was executed */ 337 p_hwfn->db_recovery_info.db_recovery_counter++; 338 } 339 340 /* protect the list */ 341 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock); 342 OSAL_LIST_FOR_EACH_ENTRY(db_entry, 343 &p_hwfn->db_recovery_info.list, 344 list_entry, 345 struct ecore_db_recovery_entry) { 346 ecore_db_recovery_ring(p_hwfn, db_entry, db_exec); 347 if (db_exec == DB_REC_ONCE) 348 break; 349 } 350 351 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock); 352 } 353 /******************** Doorbell Recovery end ****************/ 354 355 /********************************** NIG LLH ***********************************/ 356 357 enum ecore_llh_filter_type { 358 ECORE_LLH_FILTER_TYPE_MAC, 359 ECORE_LLH_FILTER_TYPE_PROTOCOL, 360 }; 361 362 struct ecore_llh_mac_filter { 363 u8 addr[ETH_ALEN]; 364 }; 365 366 struct ecore_llh_protocol_filter { 367 enum ecore_llh_prot_filter_type_t type; 368 u16 source_port_or_eth_type; 369 u16 dest_port; 370 }; 371 372 union ecore_llh_filter { 373 struct ecore_llh_mac_filter mac; 374 struct ecore_llh_protocol_filter protocol; 375 }; 376 377 struct ecore_llh_filter_info { 378 bool b_enabled; 379 u32 ref_cnt; 380 enum ecore_llh_filter_type type; 381 union ecore_llh_filter filter; 382 }; 383 384 struct ecore_llh_info { 385 /* Number of LLH filters banks */ 386 u8 num_ppfid; 387 388 #define MAX_NUM_PPFID 8 389 u8 ppfid_array[MAX_NUM_PPFID]; 390 391 /* Array of filters arrays: 392 * "num_ppfid" elements of filters banks, where each is an array of 393 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters. 394 */ 395 struct ecore_llh_filter_info **pp_filters; 396 }; 397 398 static void ecore_llh_free(struct ecore_dev *p_dev) 399 { 400 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 401 u32 i; 402 403 if (p_llh_info != OSAL_NULL) { 404 if (p_llh_info->pp_filters != OSAL_NULL) { 405 for (i = 0; i < p_llh_info->num_ppfid; i++) 406 OSAL_FREE(p_dev, p_llh_info->pp_filters[i]); 407 } 408 409 OSAL_FREE(p_dev, p_llh_info->pp_filters); 410 } 411 412 OSAL_FREE(p_dev, p_llh_info); 413 p_dev->p_llh_info = OSAL_NULL; 414 } 415 416 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev) 417 { 418 struct ecore_llh_info *p_llh_info; 419 u32 size; 420 u8 i; 421 422 p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info)); 423 if (!p_llh_info) 424 return ECORE_NOMEM; 425 p_dev->p_llh_info = p_llh_info; 426 427 for (i = 0; i < MAX_NUM_PPFID; i++) { 428 if (!(p_dev->ppfid_bitmap & (0x1 << i))) 429 continue; 430 431 p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i; 432 DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n", 433 p_llh_info->num_ppfid, i); 434 p_llh_info->num_ppfid++; 435 } 436 437 size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters); 438 p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size); 439 if (!p_llh_info->pp_filters) 440 return ECORE_NOMEM; 441 442 size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE * 443 sizeof(**p_llh_info->pp_filters); 444 for (i = 0; i < p_llh_info->num_ppfid; i++) { 445 p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL, 446 size); 447 if (!p_llh_info->pp_filters[i]) 448 return ECORE_NOMEM; 449 } 450 451 return ECORE_SUCCESS; 452 } 453 454 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev, 455 u8 ppfid, u8 filter_idx, 456 const char *action) 457 { 458 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 459 460 if (ppfid >= p_llh_info->num_ppfid) { 461 DP_NOTICE(p_dev, false, 462 "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n", 463 action, ppfid, p_llh_info->num_ppfid); 464 return ECORE_INVAL; 465 } 466 467 if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { 468 DP_NOTICE(p_dev, false, 469 "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n", 470 action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE); 471 return ECORE_INVAL; 472 } 473 474 return ECORE_SUCCESS; 475 } 476 477 #define ECORE_LLH_INVALID_FILTER_IDX 0xff 478 479 static enum _ecore_status_t 480 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid, 481 union ecore_llh_filter *p_filter, 482 u8 *p_filter_idx) 483 { 484 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 485 struct ecore_llh_filter_info *p_filters; 486 enum _ecore_status_t rc; 487 u8 i; 488 489 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search"); 490 if (rc != ECORE_SUCCESS) 491 return rc; 492 493 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX; 494 495 p_filters = p_llh_info->pp_filters[ppfid]; 496 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 497 if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter, 498 sizeof(*p_filter))) { 499 *p_filter_idx = i; 500 break; 501 } 502 } 503 504 return ECORE_SUCCESS; 505 } 506 507 static enum _ecore_status_t 508 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid, 509 u8 *p_filter_idx) 510 { 511 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 512 struct ecore_llh_filter_info *p_filters; 513 enum _ecore_status_t rc; 514 u8 i; 515 516 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx"); 517 if (rc != ECORE_SUCCESS) 518 return rc; 519 520 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX; 521 522 p_filters = p_llh_info->pp_filters[ppfid]; 523 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { 524 if (!p_filters[i].b_enabled) { 525 *p_filter_idx = i; 526 break; 527 } 528 } 529 530 return ECORE_SUCCESS; 531 } 532 533 static enum _ecore_status_t 534 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx, 535 enum ecore_llh_filter_type type, 536 union ecore_llh_filter *p_filter, u32 *p_ref_cnt) 537 { 538 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 539 struct ecore_llh_filter_info *p_filters; 540 enum _ecore_status_t rc; 541 542 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add"); 543 if (rc != ECORE_SUCCESS) 544 return rc; 545 546 p_filters = p_llh_info->pp_filters[ppfid]; 547 if (!p_filters[filter_idx].ref_cnt) { 548 p_filters[filter_idx].b_enabled = true; 549 p_filters[filter_idx].type = type; 550 OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter, 551 sizeof(p_filters[filter_idx].filter)); 552 } 553 554 *p_ref_cnt = ++p_filters[filter_idx].ref_cnt; 555 556 return ECORE_SUCCESS; 557 } 558 559 static enum _ecore_status_t 560 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, 561 enum ecore_llh_filter_type type, 562 union ecore_llh_filter *p_filter, 563 u8 *p_filter_idx, u32 *p_ref_cnt) 564 { 565 enum _ecore_status_t rc; 566 567 /* Check if the same filter already exist */ 568 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter, 569 p_filter_idx); 570 if (rc != ECORE_SUCCESS) 571 return rc; 572 573 /* Find a new entry in case of a new filter */ 574 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) { 575 rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx); 576 if (rc != ECORE_SUCCESS) 577 return rc; 578 } 579 580 /* No free entry was found */ 581 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) { 582 DP_NOTICE(p_dev, false, 583 "Failed to find an empty LLH filter to utilize [ppfid %d]\n", 584 ppfid); 585 return ECORE_NORESOURCES; 586 } 587 588 return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type, 589 p_filter, p_ref_cnt); 590 } 591 592 static enum _ecore_status_t 593 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid, 594 u8 filter_idx, u32 *p_ref_cnt) 595 { 596 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 597 struct ecore_llh_filter_info *p_filters; 598 enum _ecore_status_t rc; 599 600 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove"); 601 if (rc != ECORE_SUCCESS) 602 return rc; 603 604 p_filters = p_llh_info->pp_filters[ppfid]; 605 if (!p_filters[filter_idx].ref_cnt) { 606 DP_NOTICE(p_dev, false, 607 "LLH shadow: trying to remove a filter with ref_cnt=0\n"); 608 return ECORE_INVAL; 609 } 610 611 *p_ref_cnt = --p_filters[filter_idx].ref_cnt; 612 if (!p_filters[filter_idx].ref_cnt) 613 OSAL_MEM_ZERO(&p_filters[filter_idx], 614 sizeof(p_filters[filter_idx])); 615 616 return ECORE_SUCCESS; 617 } 618 619 static enum _ecore_status_t 620 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid, 621 union ecore_llh_filter *p_filter, 622 u8 *p_filter_idx, u32 *p_ref_cnt) 623 { 624 enum _ecore_status_t rc; 625 626 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter, 627 p_filter_idx); 628 if (rc != ECORE_SUCCESS) 629 return rc; 630 631 /* No matching filter was found */ 632 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) { 633 DP_NOTICE(p_dev, false, 634 "Failed to find a filter in the LLH shadow\n"); 635 return ECORE_INVAL; 636 } 637 638 return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx, 639 p_ref_cnt); 640 } 641 642 static enum _ecore_status_t 643 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid) 644 { 645 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 646 struct ecore_llh_filter_info *p_filters; 647 enum _ecore_status_t rc; 648 649 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all"); 650 if (rc != ECORE_SUCCESS) 651 return rc; 652 653 p_filters = p_llh_info->pp_filters[ppfid]; 654 OSAL_MEM_ZERO(p_filters, 655 NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters)); 656 657 return ECORE_SUCCESS; 658 } 659 660 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev, 661 u8 rel_ppfid, u8 *p_abs_ppfid) 662 { 663 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info; 664 u8 ppfids = p_llh_info->num_ppfid - 1; 665 666 if (rel_ppfid >= p_llh_info->num_ppfid) { 667 DP_NOTICE(p_dev, false, 668 "rel_ppfid %d is not valid, available indices are 0..%hhd\n", 669 rel_ppfid, ppfids); 670 return ECORE_INVAL; 671 } 672 673 *p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid]; 674 675 return ECORE_SUCCESS; 676 } 677 678 static enum _ecore_status_t 679 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt) 680 { 681 struct ecore_dev *p_dev = p_hwfn->p_dev; 682 enum ecore_eng eng; 683 u8 ppfid; 684 enum _ecore_status_t rc; 685 686 rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt); 687 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) { 688 DP_NOTICE(p_hwfn, false, 689 "Failed to get the engine affinity configuration\n"); 690 return rc; 691 } 692 693 /* RoCE PF is bound to a single engine */ 694 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) { 695 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0; 696 rc = ecore_llh_set_roce_affinity(p_dev, eng); 697 if (rc != ECORE_SUCCESS) { 698 DP_NOTICE(p_dev, false, 699 "Failed to set the RoCE engine affinity\n"); 700 return rc; 701 } 702 703 DP_VERBOSE(p_dev, ECORE_MSG_SP, 704 "LLH: Set the engine affinity of RoCE packets as %d\n", 705 eng); 706 } 707 708 /* Storage PF is bound to a single engine while L2 PF uses both */ 709 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) || 710 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) 711 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0; 712 else /* L2_PERSONALITY */ 713 eng = ECORE_BOTH_ENG; 714 715 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 716 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng); 717 if (rc != ECORE_SUCCESS) { 718 DP_NOTICE(p_dev, false, 719 "Failed to set the engine affinity of ppfid %d\n", 720 ppfid); 721 return rc; 722 } 723 } 724 725 DP_VERBOSE(p_dev, ECORE_MSG_SP, 726 "LLH: Set the engine affinity of non-RoCE packets as %d\n", 727 eng); 728 729 return ECORE_SUCCESS; 730 } 731 732 static enum _ecore_status_t 733 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 734 bool avoid_eng_affin) 735 { 736 struct ecore_dev *p_dev = p_hwfn->p_dev; 737 enum _ecore_status_t rc; 738 739 /* Backwards compatible mode: 740 * - RoCE packets - Use engine 0. 741 * - Non-RoCE packets - Use connection based classification for L2 PFs, 742 * and engine 0 otherwise. 743 */ 744 if (avoid_eng_affin) { 745 enum ecore_eng eng; 746 u8 ppfid; 747 748 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) { 749 eng = ECORE_ENG0; 750 rc = ecore_llh_set_roce_affinity(p_dev, eng); 751 if (rc != ECORE_SUCCESS) { 752 DP_NOTICE(p_dev, false, 753 "Failed to set the RoCE engine affinity\n"); 754 return rc; 755 } 756 757 DP_VERBOSE(p_dev, ECORE_MSG_SP, 758 "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n", 759 eng); 760 } 761 762 eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) || 763 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0 764 : ECORE_BOTH_ENG; 765 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 766 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng); 767 if (rc != ECORE_SUCCESS) { 768 DP_NOTICE(p_dev, false, 769 "Failed to set the engine affinity of ppfid %d\n", 770 ppfid); 771 return rc; 772 } 773 } 774 775 DP_VERBOSE(p_dev, ECORE_MSG_SP, 776 "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n", 777 eng); 778 779 return ECORE_SUCCESS; 780 } 781 782 return __ecore_llh_set_engine_affin(p_hwfn, p_ptt); 783 } 784 785 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn, 786 struct ecore_ptt *p_ptt, 787 bool avoid_eng_affin) 788 { 789 struct ecore_dev *p_dev = p_hwfn->p_dev; 790 u8 ppfid, abs_ppfid; 791 enum _ecore_status_t rc; 792 793 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 794 u32 addr; 795 796 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 797 if (rc != ECORE_SUCCESS) 798 return rc; 799 800 addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4; 801 ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id); 802 } 803 804 if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) && 805 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) { 806 rc = ecore_llh_add_mac_filter(p_dev, 0, 807 p_hwfn->hw_info.hw_mac_addr); 808 if (rc != ECORE_SUCCESS) 809 DP_NOTICE(p_dev, false, 810 "Failed to add an LLH filter with the primary MAC\n"); 811 } 812 813 if (ECORE_IS_CMT(p_dev)) { 814 rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin); 815 if (rc != ECORE_SUCCESS) 816 return rc; 817 } 818 819 return ECORE_SUCCESS; 820 } 821 822 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev) 823 { 824 return p_dev->p_llh_info->num_ppfid; 825 } 826 827 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev) 828 { 829 return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0; 830 } 831 832 /* TBD - should be removed when these definitions are available in reg_addr.h */ 833 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3 834 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0 835 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3 836 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2 837 838 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev, 839 u8 ppfid, enum ecore_eng eng) 840 { 841 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 842 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 843 u32 addr, val, eng_sel; 844 enum _ecore_status_t rc = ECORE_SUCCESS; 845 u8 abs_ppfid; 846 847 if (p_ptt == OSAL_NULL) 848 return ECORE_AGAIN; 849 850 if (!ECORE_IS_CMT(p_dev)) 851 goto out; 852 853 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 854 if (rc != ECORE_SUCCESS) 855 goto out; 856 857 switch (eng) { 858 case ECORE_ENG0: 859 eng_sel = 0; 860 break; 861 case ECORE_ENG1: 862 eng_sel = 1; 863 break; 864 case ECORE_BOTH_ENG: 865 eng_sel = 2; 866 break; 867 default: 868 DP_NOTICE(p_dev, false, 869 "Invalid affinity value for ppfid [%d]\n", eng); 870 rc = ECORE_INVAL; 871 goto out; 872 } 873 874 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; 875 val = ecore_rd(p_hwfn, p_ptt, addr); 876 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel); 877 ecore_wr(p_hwfn, p_ptt, addr, val); 878 879 /* The iWARP affinity is set as the affinity of ppfid 0 */ 880 if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn)) 881 p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0; 882 out: 883 ecore_ptt_release(p_hwfn, p_ptt); 884 885 return rc; 886 } 887 888 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev, 889 enum ecore_eng eng) 890 { 891 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 892 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 893 u32 addr, val, eng_sel; 894 enum _ecore_status_t rc = ECORE_SUCCESS; 895 u8 ppfid, abs_ppfid; 896 897 if (p_ptt == OSAL_NULL) 898 return ECORE_AGAIN; 899 900 if (!ECORE_IS_CMT(p_dev)) 901 goto out; 902 903 switch (eng) { 904 case ECORE_ENG0: 905 eng_sel = 0; 906 break; 907 case ECORE_ENG1: 908 eng_sel = 1; 909 break; 910 case ECORE_BOTH_ENG: 911 eng_sel = 2; 912 ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL, 913 0xf /* QP bit 15 */); 914 break; 915 default: 916 DP_NOTICE(p_dev, false, 917 "Invalid affinity value for RoCE [%d]\n", eng); 918 rc = ECORE_INVAL; 919 goto out; 920 } 921 922 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 923 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 924 if (rc != ECORE_SUCCESS) 925 goto out; 926 927 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; 928 val = ecore_rd(p_hwfn, p_ptt, addr); 929 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel); 930 ecore_wr(p_hwfn, p_ptt, addr, val); 931 } 932 out: 933 ecore_ptt_release(p_hwfn, p_ptt); 934 935 return rc; 936 } 937 938 struct ecore_llh_filter_e4_details { 939 u64 value; 940 u32 mode; 941 u32 protocol_type; 942 u32 hdr_sel; 943 u32 enable; 944 }; 945 946 static enum _ecore_status_t 947 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn, 948 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx, 949 struct ecore_llh_filter_e4_details *p_details, 950 bool b_write_access) 951 { 952 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid); 953 struct ecore_dmae_params params; 954 enum _ecore_status_t rc; 955 u32 addr; 956 957 /* The NIG/LLH registers that are accessed in this function have only 16 958 * rows which are exposed to a PF. I.e. only the 16 filters of its 959 * default ppfid 960 * Accessing filters of other ppfids requires pretending to other PFs, 961 * and thus the usage of the ecore_ppfid_rd/wr() functions. 962 */ 963 964 /* Filter enable - should be done first when removing a filter */ 965 if (b_write_access && !p_details->enable) { 966 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4; 967 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 968 p_details->enable); 969 } 970 971 /* Filter value */ 972 addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4; 973 OSAL_MEMSET(¶ms, 0, sizeof(params)); 974 975 if (b_write_access) { 976 params.flags = ECORE_DMAE_FLAG_PF_DST; 977 params.dst_pfid = pfid; 978 rc = ecore_dmae_host2grc(p_hwfn, p_ptt, 979 (u64)(osal_uintptr_t)&p_details->value, 980 addr, 2 /* size_in_dwords */, ¶ms); 981 } else { 982 params.flags = ECORE_DMAE_FLAG_PF_SRC | 983 ECORE_DMAE_FLAG_COMPLETION_DST; 984 params.src_pfid = pfid; 985 rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr, 986 (u64)(osal_uintptr_t)&p_details->value, 987 2 /* size_in_dwords */, ¶ms); 988 } 989 990 if (rc != ECORE_SUCCESS) 991 return rc; 992 993 /* Filter mode */ 994 addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4; 995 if (b_write_access) 996 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode); 997 else 998 p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid, 999 addr); 1000 1001 /* Filter protocol type */ 1002 addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4; 1003 if (b_write_access) 1004 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 1005 p_details->protocol_type); 1006 else 1007 p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt, 1008 abs_ppfid, addr); 1009 1010 /* Filter header select */ 1011 addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4; 1012 if (b_write_access) 1013 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 1014 p_details->hdr_sel); 1015 else 1016 p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid, 1017 addr); 1018 1019 /* Filter enable - should be done last when adding a filter */ 1020 if (!b_write_access || p_details->enable) { 1021 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4; 1022 if (b_write_access) 1023 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, 1024 p_details->enable); 1025 else 1026 p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt, 1027 abs_ppfid, addr); 1028 } 1029 1030 return ECORE_SUCCESS; 1031 } 1032 1033 static enum _ecore_status_t 1034 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 1035 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, 1036 u32 high, u32 low) 1037 { 1038 struct ecore_llh_filter_e4_details filter_details; 1039 1040 filter_details.enable = 1; 1041 filter_details.value = ((u64)high << 32) | low; 1042 filter_details.hdr_sel = 1043 OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits) ? 1044 1 : /* inner/encapsulated header */ 1045 0; /* outer/tunnel header */ 1046 filter_details.protocol_type = filter_prot_type; 1047 filter_details.mode = filter_prot_type ? 1048 1 : /* protocol-based classification */ 1049 0; /* MAC-address based classification */ 1050 1051 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1052 &filter_details, 1053 true /* write access */); 1054 } 1055 1056 static enum _ecore_status_t 1057 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn, 1058 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx) 1059 { 1060 struct ecore_llh_filter_e4_details filter_details; 1061 1062 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details)); 1063 1064 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1065 &filter_details, 1066 true /* write access */); 1067 } 1068 1069 static enum _ecore_status_t 1070 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 1071 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high, 1072 u32 low) 1073 { 1074 return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid, 1075 filter_idx, filter_prot_type, 1076 high, low); 1077 } 1078 1079 static enum _ecore_status_t 1080 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 1081 u8 abs_ppfid, u8 filter_idx) 1082 { 1083 return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid, 1084 filter_idx); 1085 } 1086 1087 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid, 1088 u8 mac_addr[ETH_ALEN]) 1089 { 1090 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1091 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1092 union ecore_llh_filter filter; 1093 u8 filter_idx, abs_ppfid; 1094 u32 high, low, ref_cnt; 1095 enum _ecore_status_t rc = ECORE_SUCCESS; 1096 1097 if (p_ptt == OSAL_NULL) 1098 return ECORE_AGAIN; 1099 1100 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1101 goto out; 1102 1103 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1104 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN); 1105 rc = ecore_llh_shadow_add_filter(p_dev, ppfid, 1106 ECORE_LLH_FILTER_TYPE_MAC, 1107 &filter, &filter_idx, &ref_cnt); 1108 if (rc != ECORE_SUCCESS) 1109 goto err; 1110 1111 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1112 if (rc != ECORE_SUCCESS) 1113 goto err; 1114 1115 /* Configure the LLH only in case of a new the filter */ 1116 if (ref_cnt == 1) { 1117 high = mac_addr[1] | (mac_addr[0] << 8); 1118 low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) | 1119 (mac_addr[2] << 24); 1120 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1121 0, high, low); 1122 if (rc != ECORE_SUCCESS) 1123 goto err; 1124 } 1125 1126 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1127 "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1128 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1129 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx, 1130 ref_cnt); 1131 1132 goto out; 1133 1134 err: 1135 DP_NOTICE(p_dev, false, 1136 "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n", 1137 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1138 mac_addr[4], mac_addr[5], ppfid); 1139 out: 1140 ecore_ptt_release(p_hwfn, p_ptt); 1141 1142 return rc; 1143 } 1144 1145 static enum _ecore_status_t 1146 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev, 1147 enum ecore_llh_prot_filter_type_t type, 1148 u16 source_port_or_eth_type, u16 dest_port, 1149 char *str, osal_size_t str_len) 1150 { 1151 switch (type) { 1152 case ECORE_LLH_FILTER_ETHERTYPE: 1153 OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x", 1154 source_port_or_eth_type); 1155 break; 1156 case ECORE_LLH_FILTER_TCP_SRC_PORT: 1157 OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x", 1158 source_port_or_eth_type); 1159 break; 1160 case ECORE_LLH_FILTER_UDP_SRC_PORT: 1161 OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x", 1162 source_port_or_eth_type); 1163 break; 1164 case ECORE_LLH_FILTER_TCP_DEST_PORT: 1165 OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port); 1166 break; 1167 case ECORE_LLH_FILTER_UDP_DEST_PORT: 1168 OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port); 1169 break; 1170 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 1171 OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x", 1172 source_port_or_eth_type, dest_port); 1173 break; 1174 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 1175 OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x", 1176 source_port_or_eth_type, dest_port); 1177 break; 1178 default: 1179 DP_NOTICE(p_dev, true, 1180 "Non valid LLH protocol filter type %d\n", type); 1181 return ECORE_INVAL; 1182 } 1183 1184 return ECORE_SUCCESS; 1185 } 1186 1187 static enum _ecore_status_t 1188 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev, 1189 enum ecore_llh_prot_filter_type_t type, 1190 u16 source_port_or_eth_type, u16 dest_port, 1191 u32 *p_high, u32 *p_low) 1192 { 1193 *p_high = 0; 1194 *p_low = 0; 1195 1196 switch (type) { 1197 case ECORE_LLH_FILTER_ETHERTYPE: 1198 *p_high = source_port_or_eth_type; 1199 break; 1200 case ECORE_LLH_FILTER_TCP_SRC_PORT: 1201 case ECORE_LLH_FILTER_UDP_SRC_PORT: 1202 *p_low = source_port_or_eth_type << 16; 1203 break; 1204 case ECORE_LLH_FILTER_TCP_DEST_PORT: 1205 case ECORE_LLH_FILTER_UDP_DEST_PORT: 1206 *p_low = dest_port; 1207 break; 1208 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT: 1209 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT: 1210 *p_low = (source_port_or_eth_type << 16) | dest_port; 1211 break; 1212 default: 1213 DP_NOTICE(p_dev, true, 1214 "Non valid LLH protocol filter type %d\n", type); 1215 return ECORE_INVAL; 1216 } 1217 1218 return ECORE_SUCCESS; 1219 } 1220 1221 enum _ecore_status_t 1222 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid, 1223 enum ecore_llh_prot_filter_type_t type, 1224 u16 source_port_or_eth_type, u16 dest_port) 1225 { 1226 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1227 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1228 u8 filter_idx, abs_ppfid, type_bitmap; 1229 char str[32]; 1230 union ecore_llh_filter filter; 1231 u32 high, low, ref_cnt; 1232 enum _ecore_status_t rc = ECORE_SUCCESS; 1233 1234 if (p_ptt == OSAL_NULL) 1235 return ECORE_AGAIN; 1236 1237 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits)) 1238 goto out; 1239 1240 rc = ecore_llh_protocol_filter_stringify(p_dev, type, 1241 source_port_or_eth_type, 1242 dest_port, str, sizeof(str)); 1243 if (rc != ECORE_SUCCESS) 1244 goto err; 1245 1246 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1247 filter.protocol.type = type; 1248 filter.protocol.source_port_or_eth_type = source_port_or_eth_type; 1249 filter.protocol.dest_port = dest_port; 1250 rc = ecore_llh_shadow_add_filter(p_dev, ppfid, 1251 ECORE_LLH_FILTER_TYPE_PROTOCOL, 1252 &filter, &filter_idx, &ref_cnt); 1253 if (rc != ECORE_SUCCESS) 1254 goto err; 1255 1256 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1257 if (rc != ECORE_SUCCESS) 1258 goto err; 1259 1260 /* Configure the LLH only in case of a new the filter */ 1261 if (ref_cnt == 1) { 1262 rc = ecore_llh_protocol_filter_to_hilo(p_dev, type, 1263 source_port_or_eth_type, 1264 dest_port, &high, &low); 1265 if (rc != ECORE_SUCCESS) 1266 goto err; 1267 1268 type_bitmap = 0x1 << type; 1269 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 1270 type_bitmap, high, low); 1271 if (rc != ECORE_SUCCESS) 1272 goto err; 1273 } 1274 1275 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1276 "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1277 str, ppfid, abs_ppfid, filter_idx, ref_cnt); 1278 1279 goto out; 1280 1281 err: 1282 DP_NOTICE(p_hwfn, false, 1283 "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n", 1284 str, ppfid); 1285 out: 1286 ecore_ptt_release(p_hwfn, p_ptt); 1287 1288 return rc; 1289 } 1290 1291 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid, 1292 u8 mac_addr[ETH_ALEN]) 1293 { 1294 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1295 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1296 union ecore_llh_filter filter; 1297 u8 filter_idx, abs_ppfid; 1298 enum _ecore_status_t rc = ECORE_SUCCESS; 1299 u32 ref_cnt; 1300 1301 if (p_ptt == OSAL_NULL) 1302 return; 1303 1304 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1305 goto out; 1306 1307 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1308 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN); 1309 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx, 1310 &ref_cnt); 1311 if (rc != ECORE_SUCCESS) 1312 goto err; 1313 1314 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1315 if (rc != ECORE_SUCCESS) 1316 goto err; 1317 1318 /* Remove from the LLH in case the filter is not in use */ 1319 if (!ref_cnt) { 1320 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, 1321 filter_idx); 1322 if (rc != ECORE_SUCCESS) 1323 goto err; 1324 } 1325 1326 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1327 "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1328 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1329 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx, 1330 ref_cnt); 1331 1332 goto out; 1333 1334 err: 1335 DP_NOTICE(p_dev, false, 1336 "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n", 1337 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], 1338 mac_addr[4], mac_addr[5], ppfid); 1339 out: 1340 ecore_ptt_release(p_hwfn, p_ptt); 1341 } 1342 1343 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid, 1344 enum ecore_llh_prot_filter_type_t type, 1345 u16 source_port_or_eth_type, 1346 u16 dest_port) 1347 { 1348 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1349 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1350 u8 filter_idx, abs_ppfid; 1351 char str[32]; 1352 union ecore_llh_filter filter; 1353 enum _ecore_status_t rc = ECORE_SUCCESS; 1354 u32 ref_cnt; 1355 1356 if (p_ptt == OSAL_NULL) 1357 return; 1358 1359 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits)) 1360 goto out; 1361 1362 rc = ecore_llh_protocol_filter_stringify(p_dev, type, 1363 source_port_or_eth_type, 1364 dest_port, str, sizeof(str)); 1365 if (rc != ECORE_SUCCESS) 1366 goto err; 1367 1368 OSAL_MEM_ZERO(&filter, sizeof(filter)); 1369 filter.protocol.type = type; 1370 filter.protocol.source_port_or_eth_type = source_port_or_eth_type; 1371 filter.protocol.dest_port = dest_port; 1372 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx, 1373 &ref_cnt); 1374 if (rc != ECORE_SUCCESS) 1375 goto err; 1376 1377 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1378 if (rc != ECORE_SUCCESS) 1379 goto err; 1380 1381 /* Remove from the LLH in case the filter is not in use */ 1382 if (!ref_cnt) { 1383 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, 1384 filter_idx); 1385 if (rc != ECORE_SUCCESS) 1386 goto err; 1387 } 1388 1389 DP_VERBOSE(p_dev, ECORE_MSG_SP, 1390 "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", 1391 str, ppfid, abs_ppfid, filter_idx, ref_cnt); 1392 1393 goto out; 1394 1395 err: 1396 DP_NOTICE(p_dev, false, 1397 "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n", 1398 str, ppfid); 1399 out: 1400 ecore_ptt_release(p_hwfn, p_ptt); 1401 } 1402 1403 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid) 1404 { 1405 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1406 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1407 u8 filter_idx, abs_ppfid; 1408 enum _ecore_status_t rc = ECORE_SUCCESS; 1409 1410 if (p_ptt == OSAL_NULL) 1411 return; 1412 1413 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) && 1414 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1415 goto out; 1416 1417 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1418 if (rc != ECORE_SUCCESS) 1419 goto out; 1420 1421 rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid); 1422 if (rc != ECORE_SUCCESS) 1423 goto out; 1424 1425 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; 1426 filter_idx++) { 1427 rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt, 1428 abs_ppfid, filter_idx); 1429 if (rc != ECORE_SUCCESS) 1430 goto out; 1431 } 1432 out: 1433 ecore_ptt_release(p_hwfn, p_ptt); 1434 } 1435 1436 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev) 1437 { 1438 u8 ppfid; 1439 1440 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) && 1441 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits)) 1442 return; 1443 1444 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) 1445 ecore_llh_clear_ppfid_filters(p_dev, ppfid); 1446 } 1447 1448 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn, 1449 struct ecore_ptt *p_ptt, u32 addr, 1450 u32 val) 1451 { 1452 struct ecore_dev *p_dev = p_hwfn->p_dev; 1453 u8 ppfid, abs_ppfid; 1454 enum _ecore_status_t rc; 1455 1456 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 1457 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid); 1458 if (rc != ECORE_SUCCESS) 1459 return rc; 1460 1461 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val); 1462 } 1463 1464 return ECORE_SUCCESS; 1465 } 1466 1467 static enum _ecore_status_t 1468 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 1469 u8 ppfid) 1470 { 1471 struct ecore_llh_filter_e4_details filter_details; 1472 u8 abs_ppfid, filter_idx; 1473 u32 addr; 1474 enum _ecore_status_t rc; 1475 1476 rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid); 1477 if (rc != ECORE_SUCCESS) 1478 return rc; 1479 1480 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; 1481 DP_NOTICE(p_hwfn, false, 1482 "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n", 1483 p_hwfn->rel_pf_id, ppfid, abs_ppfid, 1484 ecore_rd(p_hwfn, p_ptt, addr)); 1485 1486 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; 1487 filter_idx++) { 1488 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details)); 1489 rc = ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, 1490 filter_idx, &filter_details, 1491 false /* read access */); 1492 if (rc != ECORE_SUCCESS) 1493 return rc; 1494 1495 DP_NOTICE(p_hwfn, false, 1496 "filter %2hhd: enable %d, value 0x%016lx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n", 1497 filter_idx, filter_details.enable, 1498 (unsigned long)filter_details.value, 1499 filter_details.mode, 1500 filter_details.protocol_type, filter_details.hdr_sel); 1501 } 1502 1503 return ECORE_SUCCESS; 1504 } 1505 1506 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid) 1507 { 1508 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 1509 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn); 1510 enum _ecore_status_t rc; 1511 1512 if (p_ptt == OSAL_NULL) 1513 return ECORE_AGAIN; 1514 1515 rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid); 1516 1517 ecore_ptt_release(p_hwfn, p_ptt); 1518 1519 return rc; 1520 } 1521 1522 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev) 1523 { 1524 u8 ppfid; 1525 enum _ecore_status_t rc; 1526 1527 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) { 1528 rc = ecore_llh_dump_ppfid(p_dev, ppfid); 1529 if (rc != ECORE_SUCCESS) 1530 return rc; 1531 } 1532 1533 return ECORE_SUCCESS; 1534 } 1535 1536 /******************************* NIG LLH - End ********************************/ 1537 1538 /* Configurable */ 1539 #define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to 1540 * load the driver. The number was 1541 * arbitrarily set. 1542 */ 1543 1544 /* Derived */ 1545 #define ECORE_MIN_PWM_REGION (ECORE_WID_SIZE * ECORE_MIN_DPIS) 1546 1547 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, 1548 struct ecore_ptt *p_ptt, 1549 enum BAR_ID bar_id) 1550 { 1551 u32 bar_reg = (bar_id == BAR_ID_0 ? 1552 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); 1553 u32 val; 1554 1555 if (IS_VF(p_hwfn->p_dev)) 1556 return ecore_vf_hw_bar_size(p_hwfn, bar_id); 1557 1558 val = ecore_rd(p_hwfn, p_ptt, bar_reg); 1559 if (val) 1560 return 1 << (val + 15); 1561 1562 /* The above registers were updated in the past only in CMT mode. Since 1563 * they were found to be useful MFW started updating them from 8.7.7.0. 1564 * In older MFW versions they are set to 0 which means disabled. 1565 */ 1566 if (ECORE_IS_CMT(p_hwfn->p_dev)) { 1567 DP_INFO(p_hwfn, 1568 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); 1569 val = BAR_ID_0 ? 256 * 1024 : 512 * 1024; 1570 } else { 1571 DP_INFO(p_hwfn, 1572 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); 1573 val = 512 * 1024; 1574 } 1575 1576 return val; 1577 } 1578 1579 void ecore_init_dp(struct ecore_dev *p_dev, 1580 u32 dp_module, u8 dp_level, void *dp_ctx) 1581 { 1582 u32 i; 1583 1584 p_dev->dp_level = dp_level; 1585 p_dev->dp_module = dp_module; 1586 p_dev->dp_ctx = dp_ctx; 1587 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 1588 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 1589 1590 p_hwfn->dp_level = dp_level; 1591 p_hwfn->dp_module = dp_module; 1592 p_hwfn->dp_ctx = dp_ctx; 1593 } 1594 } 1595 1596 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev) 1597 { 1598 u8 i; 1599 1600 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { 1601 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 1602 1603 p_hwfn->p_dev = p_dev; 1604 p_hwfn->my_id = i; 1605 p_hwfn->b_active = false; 1606 1607 #ifdef CONFIG_ECORE_LOCK_ALLOC 1608 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock)) 1609 goto handle_err; 1610 #endif 1611 OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock); 1612 } 1613 1614 /* hwfn 0 is always active */ 1615 p_dev->hwfns[0].b_active = true; 1616 1617 /* set the default cache alignment to 128 (may be overridden later) */ 1618 p_dev->cache_shift = 7; 1619 return ECORE_SUCCESS; 1620 #ifdef CONFIG_ECORE_LOCK_ALLOC 1621 handle_err: 1622 while (--i) { 1623 struct ecore_hwfn *p_hwfn = OSAL_NULL; 1624 1625 p_hwfn = &p_dev->hwfns[i]; 1626 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock); 1627 } 1628 return ECORE_NOMEM; 1629 #endif 1630 } 1631 1632 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn) 1633 { 1634 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1635 1636 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params); 1637 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params); 1638 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params); 1639 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data); 1640 } 1641 1642 static void ecore_dbg_user_data_free(struct ecore_hwfn *p_hwfn) 1643 { 1644 OSAL_FREE(p_hwfn->p_dev, p_hwfn->dbg_user_info); 1645 p_hwfn->dbg_user_info = OSAL_NULL; 1646 } 1647 1648 void ecore_resc_free(struct ecore_dev *p_dev) 1649 { 1650 int i; 1651 1652 if (IS_VF(p_dev)) { 1653 for_each_hwfn(p_dev, i) 1654 ecore_l2_free(&p_dev->hwfns[i]); 1655 return; 1656 } 1657 1658 OSAL_FREE(p_dev, p_dev->fw_data); 1659 1660 OSAL_FREE(p_dev, p_dev->reset_stats); 1661 1662 ecore_llh_free(p_dev); 1663 1664 for_each_hwfn(p_dev, i) { 1665 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 1666 1667 ecore_cxt_mngr_free(p_hwfn); 1668 ecore_qm_info_free(p_hwfn); 1669 ecore_spq_free(p_hwfn); 1670 ecore_eq_free(p_hwfn); 1671 ecore_consq_free(p_hwfn); 1672 ecore_int_free(p_hwfn); 1673 ecore_iov_free(p_hwfn); 1674 ecore_l2_free(p_hwfn); 1675 ecore_dmae_info_free(p_hwfn); 1676 ecore_dcbx_info_free(p_hwfn); 1677 ecore_dbg_user_data_free(p_hwfn); 1678 /* @@@TBD Flush work-queue ? */ 1679 1680 /* destroy doorbell recovery mechanism */ 1681 ecore_db_recovery_teardown(p_hwfn); 1682 } 1683 } 1684 1685 /******************** QM initialization *******************/ 1686 1687 /* bitmaps for indicating active traffic classes. 1688 * Special case for Arrowhead 4 port 1689 */ 1690 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */ 1691 #define ACTIVE_TCS_BMAP 0x9f 1692 /* 0..3 actually used, OOO and high priority stuff all use 3 */ 1693 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf 1694 1695 /* determines the physical queue flags for a given PF. */ 1696 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn) 1697 { 1698 u32 flags; 1699 1700 /* common flags */ 1701 flags = PQ_FLAGS_LB; 1702 1703 /* feature flags */ 1704 if (IS_ECORE_SRIOV(p_hwfn->p_dev)) 1705 flags |= PQ_FLAGS_VFS; 1706 if (IS_ECORE_PACING(p_hwfn)) 1707 flags |= PQ_FLAGS_RLS; 1708 1709 /* protocol flags */ 1710 switch (p_hwfn->hw_info.personality) { 1711 case ECORE_PCI_ETH: 1712 if (!IS_ECORE_PACING(p_hwfn)) 1713 flags |= PQ_FLAGS_MCOS; 1714 break; 1715 case ECORE_PCI_FCOE: 1716 flags |= PQ_FLAGS_OFLD; 1717 break; 1718 case ECORE_PCI_ISCSI: 1719 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 1720 break; 1721 case ECORE_PCI_ETH_ROCE: 1722 flags |= PQ_FLAGS_OFLD | PQ_FLAGS_LLT; 1723 if (!IS_ECORE_PACING(p_hwfn)) 1724 flags |= PQ_FLAGS_MCOS; 1725 break; 1726 case ECORE_PCI_ETH_IWARP: 1727 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; 1728 if (!IS_ECORE_PACING(p_hwfn)) 1729 flags |= PQ_FLAGS_MCOS; 1730 break; 1731 default: 1732 DP_ERR(p_hwfn, "unknown personality %d\n", 1733 p_hwfn->hw_info.personality); 1734 return 0; 1735 } 1736 return flags; 1737 } 1738 1739 /* Getters for resource amounts necessary for qm initialization */ 1740 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn) 1741 { 1742 return p_hwfn->hw_info.num_hw_tc; 1743 } 1744 1745 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn) 1746 { 1747 return IS_ECORE_SRIOV(p_hwfn->p_dev) ? 1748 p_hwfn->p_dev->p_iov_info->total_vfs : 0; 1749 } 1750 1751 #define NUM_DEFAULT_RLS 1 1752 1753 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn) 1754 { 1755 u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn); 1756 1757 /* num RLs can't exceed resource amount of rls or vports or the 1758 * dcqcn qps 1759 */ 1760 num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL), 1761 RESC_NUM(p_hwfn, ECORE_VPORT)); 1762 1763 /* make sure after we reserve the default and VF rls we'll have 1764 * something left 1765 */ 1766 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) { 1767 DP_NOTICE(p_hwfn, false, 1768 "no rate limiters left for PF rate limiting" 1769 " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs); 1770 return 0; 1771 } 1772 1773 /* subtract rls necessary for VFs and one default one for the PF */ 1774 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; 1775 1776 return num_pf_rls; 1777 } 1778 1779 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn) 1780 { 1781 u32 pq_flags = ecore_get_pq_flags(p_hwfn); 1782 1783 /* all pqs share the same vport (hence the 1 below), except for vfs 1784 * and pf_rl pqs 1785 */ 1786 return (!!(PQ_FLAGS_RLS & pq_flags)) * 1787 ecore_init_qm_get_num_pf_rls(p_hwfn) + 1788 (!!(PQ_FLAGS_VFS & pq_flags)) * 1789 ecore_init_qm_get_num_vfs(p_hwfn) + 1; 1790 } 1791 1792 /* calc amount of PQs according to the requested flags */ 1793 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn) 1794 { 1795 u32 pq_flags = ecore_get_pq_flags(p_hwfn); 1796 1797 return (!!(PQ_FLAGS_RLS & pq_flags)) * 1798 ecore_init_qm_get_num_pf_rls(p_hwfn) + 1799 (!!(PQ_FLAGS_MCOS & pq_flags)) * 1800 ecore_init_qm_get_num_tcs(p_hwfn) + 1801 (!!(PQ_FLAGS_LB & pq_flags)) + 1802 (!!(PQ_FLAGS_OOO & pq_flags)) + 1803 (!!(PQ_FLAGS_ACK & pq_flags)) + 1804 (!!(PQ_FLAGS_OFLD & pq_flags)) + 1805 (!!(PQ_FLAGS_VFS & pq_flags)) * 1806 ecore_init_qm_get_num_vfs(p_hwfn); 1807 } 1808 1809 /* initialize the top level QM params */ 1810 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn) 1811 { 1812 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1813 bool four_port; 1814 1815 /* pq and vport bases for this PF */ 1816 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ); 1817 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT); 1818 1819 /* rate limiting and weighted fair queueing are always enabled */ 1820 qm_info->vport_rl_en = 1; 1821 qm_info->vport_wfq_en = 1; 1822 1823 /* TC config is different for AH 4 port */ 1824 four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2; 1825 1826 /* in AH 4 port we have fewer TCs per port */ 1827 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : 1828 NUM_OF_PHYS_TCS; 1829 1830 /* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 1831 * 4 otherwise 1832 */ 1833 if (!qm_info->ooo_tc) 1834 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : 1835 DCBX_TCP_OOO_TC; 1836 } 1837 1838 /* initialize qm vport params */ 1839 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn) 1840 { 1841 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1842 u8 i; 1843 1844 /* all vports participate in weighted fair queueing */ 1845 for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++) 1846 qm_info->qm_vport_params[i].vport_wfq = 1; 1847 } 1848 1849 /* initialize qm port params */ 1850 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn) 1851 { 1852 /* Initialize qm port parameters */ 1853 u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine; 1854 1855 /* indicate how ooo and high pri traffic is dealt with */ 1856 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? 1857 ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP; 1858 1859 for (i = 0; i < num_ports; i++) { 1860 struct init_qm_port_params *p_qm_port = 1861 &p_hwfn->qm_info.qm_port_params[i]; 1862 1863 p_qm_port->active = 1; 1864 p_qm_port->active_phys_tcs = active_phys_tcs; 1865 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports; 1866 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; 1867 } 1868 } 1869 1870 /* Reset the params which must be reset for qm init. QM init may be called as 1871 * a result of flows other than driver load (e.g. dcbx renegotiation). Other 1872 * params may be affected by the init but would simply recalculate to the same 1873 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not 1874 * affected as these amounts stay the same. 1875 */ 1876 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn) 1877 { 1878 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1879 1880 qm_info->num_pqs = 0; 1881 qm_info->num_vports = 0; 1882 qm_info->num_pf_rls = 0; 1883 qm_info->num_vf_pqs = 0; 1884 qm_info->first_vf_pq = 0; 1885 qm_info->first_mcos_pq = 0; 1886 qm_info->first_rl_pq = 0; 1887 } 1888 1889 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn) 1890 { 1891 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1892 1893 qm_info->num_vports++; 1894 1895 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn)) 1896 DP_ERR(p_hwfn, 1897 "vport overflow! qm_info->num_vports %d," 1898 " qm_init_get_num_vports() %d\n", 1899 qm_info->num_vports, 1900 ecore_init_qm_get_num_vports(p_hwfn)); 1901 } 1902 1903 /* initialize a single pq and manage qm_info resources accounting. 1904 * The pq_init_flags param determines whether the PQ is rate limited 1905 * (for VF or PF) 1906 * and whether a new vport is allocated to the pq or not (i.e. vport will be 1907 * shared) 1908 */ 1909 1910 /* flags for pq init */ 1911 #define PQ_INIT_SHARE_VPORT (1 << 0) 1912 #define PQ_INIT_PF_RL (1 << 1) 1913 #define PQ_INIT_VF_RL (1 << 2) 1914 1915 /* defines for pq init */ 1916 #define PQ_INIT_DEFAULT_WRR_GROUP 1 1917 #define PQ_INIT_DEFAULT_TC 0 1918 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc) 1919 1920 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn, 1921 struct ecore_qm_info *qm_info, 1922 u8 tc, u32 pq_init_flags) 1923 { 1924 u16 pq_idx = qm_info->num_pqs, max_pq = 1925 ecore_init_qm_get_num_pqs(p_hwfn); 1926 1927 if (pq_idx > max_pq) 1928 DP_ERR(p_hwfn, 1929 "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); 1930 1931 /* init pq params */ 1932 qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; 1933 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + 1934 qm_info->num_vports; 1935 qm_info->qm_pq_params[pq_idx].tc_id = tc; 1936 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; 1937 qm_info->qm_pq_params[pq_idx].rl_valid = 1938 (pq_init_flags & PQ_INIT_PF_RL || 1939 pq_init_flags & PQ_INIT_VF_RL); 1940 1941 /* qm params accounting */ 1942 qm_info->num_pqs++; 1943 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) 1944 qm_info->num_vports++; 1945 1946 if (pq_init_flags & PQ_INIT_PF_RL) 1947 qm_info->num_pf_rls++; 1948 1949 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn)) 1950 DP_ERR(p_hwfn, 1951 "vport overflow! qm_info->num_vports %d," 1952 " qm_init_get_num_vports() %d\n", 1953 qm_info->num_vports, 1954 ecore_init_qm_get_num_vports(p_hwfn)); 1955 1956 if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn)) 1957 DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d," 1958 " qm_init_get_num_pf_rls() %d\n", 1959 qm_info->num_pf_rls, 1960 ecore_init_qm_get_num_pf_rls(p_hwfn)); 1961 } 1962 1963 /* get pq index according to PQ_FLAGS */ 1964 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn, 1965 u32 pq_flags) 1966 { 1967 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 1968 1969 /* Can't have multiple flags set here */ 1970 if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, 1971 sizeof(pq_flags)) > 1) 1972 goto err; 1973 1974 switch (pq_flags) { 1975 case PQ_FLAGS_RLS: 1976 return &qm_info->first_rl_pq; 1977 case PQ_FLAGS_MCOS: 1978 return &qm_info->first_mcos_pq; 1979 case PQ_FLAGS_LB: 1980 return &qm_info->pure_lb_pq; 1981 case PQ_FLAGS_OOO: 1982 return &qm_info->ooo_pq; 1983 case PQ_FLAGS_ACK: 1984 return &qm_info->pure_ack_pq; 1985 case PQ_FLAGS_OFLD: 1986 return &qm_info->offload_pq; 1987 case PQ_FLAGS_VFS: 1988 return &qm_info->first_vf_pq; 1989 default: 1990 goto err; 1991 } 1992 1993 err: 1994 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags); 1995 return OSAL_NULL; 1996 } 1997 1998 /* save pq index in qm info */ 1999 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn, 2000 u32 pq_flags, u16 pq_val) 2001 { 2002 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 2003 2004 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; 2005 } 2006 2007 /* get tx pq index, with the PQ TX base already set (ready for context init) */ 2008 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags) 2009 { 2010 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags); 2011 2012 return *base_pq_idx + CM_TX_PQ_BASE; 2013 } 2014 2015 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc) 2016 { 2017 u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn); 2018 2019 if (tc > max_tc) 2020 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); 2021 2022 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc); 2023 } 2024 2025 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf) 2026 { 2027 u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn); 2028 2029 if (vf > max_vf) 2030 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); 2031 2032 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf); 2033 } 2034 2035 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl) 2036 { 2037 u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn); 2038 2039 /* for rate limiters, it is okay to use the modulo behavior - no 2040 * DP_ERR 2041 */ 2042 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + (rl % max_rl); 2043 } 2044 2045 u16 ecore_get_qm_vport_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl) 2046 { 2047 u16 start_pq, pq, qm_pq_idx; 2048 2049 pq = ecore_get_cm_pq_idx_rl(p_hwfn, rl); 2050 start_pq = p_hwfn->qm_info.start_pq; 2051 qm_pq_idx = pq - start_pq - CM_TX_PQ_BASE; 2052 2053 if (qm_pq_idx > p_hwfn->qm_info.num_pqs) { 2054 DP_ERR(p_hwfn, 2055 "qm_pq_idx %d must be smaller than %d\n", 2056 qm_pq_idx, p_hwfn->qm_info.num_pqs); 2057 } 2058 2059 return p_hwfn->qm_info.qm_pq_params[qm_pq_idx].vport_id; 2060 } 2061 2062 /* Functions for creating specific types of pqs */ 2063 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn) 2064 { 2065 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2066 2067 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) 2068 return; 2069 2070 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); 2071 ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); 2072 } 2073 2074 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn) 2075 { 2076 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2077 2078 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) 2079 return; 2080 2081 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); 2082 ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); 2083 } 2084 2085 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn) 2086 { 2087 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2088 2089 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) 2090 return; 2091 2092 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); 2093 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 2094 } 2095 2096 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn) 2097 { 2098 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2099 2100 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) 2101 return; 2102 2103 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); 2104 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT); 2105 } 2106 2107 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn) 2108 { 2109 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2110 u8 tc_idx; 2111 2112 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) 2113 return; 2114 2115 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); 2116 for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++) 2117 ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); 2118 } 2119 2120 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn) 2121 { 2122 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2123 u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn); 2124 2125 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) 2126 return; 2127 2128 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); 2129 2130 qm_info->num_vf_pqs = num_vfs; 2131 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) 2132 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, 2133 PQ_INIT_VF_RL); 2134 } 2135 2136 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn) 2137 { 2138 u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn); 2139 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2140 2141 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) 2142 return; 2143 2144 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); 2145 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) 2146 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, 2147 PQ_INIT_PF_RL); 2148 } 2149 2150 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn) 2151 { 2152 /* rate limited pqs, must come first (FW assumption) */ 2153 ecore_init_qm_rl_pqs(p_hwfn); 2154 2155 /* pqs for multi cos */ 2156 ecore_init_qm_mcos_pqs(p_hwfn); 2157 2158 /* pure loopback pq */ 2159 ecore_init_qm_lb_pq(p_hwfn); 2160 2161 /* out of order pq */ 2162 ecore_init_qm_ooo_pq(p_hwfn); 2163 2164 /* pure ack pq */ 2165 ecore_init_qm_pure_ack_pq(p_hwfn); 2166 2167 /* pq for offloaded protocol */ 2168 ecore_init_qm_offload_pq(p_hwfn); 2169 2170 /* done sharing vports */ 2171 ecore_init_qm_advance_vport(p_hwfn); 2172 2173 /* pqs for vfs */ 2174 ecore_init_qm_vf_pqs(p_hwfn); 2175 } 2176 2177 /* compare values of getters against resources amounts */ 2178 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn) 2179 { 2180 if (ecore_init_qm_get_num_vports(p_hwfn) > 2181 RESC_NUM(p_hwfn, ECORE_VPORT)) { 2182 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); 2183 return ECORE_INVAL; 2184 } 2185 2186 if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) { 2187 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); 2188 return ECORE_INVAL; 2189 } 2190 2191 return ECORE_SUCCESS; 2192 } 2193 2194 /* 2195 * Function for verbose printing of the qm initialization results 2196 */ 2197 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn) 2198 { 2199 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2200 struct init_qm_vport_params *vport; 2201 struct init_qm_port_params *port; 2202 struct init_qm_pq_params *pq; 2203 int i, tc; 2204 2205 /* top level params */ 2206 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2207 "qm init top level params: start_pq %d, start_vport %d," 2208 " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n", 2209 qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, 2210 qm_info->offload_pq, qm_info->pure_ack_pq); 2211 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2212 "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d," 2213 " num_vports %d, max_phys_tcs_per_port %d\n", 2214 qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, 2215 qm_info->num_vf_pqs, qm_info->num_vports, 2216 qm_info->max_phys_tcs_per_port); 2217 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2218 "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d," 2219 " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", 2220 qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, 2221 qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, 2222 qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn)); 2223 2224 /* port table */ 2225 for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) { 2226 port = &qm_info->qm_port_params[i]; 2227 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2228 "port idx %d, active %d, active_phys_tcs %d," 2229 " num_pbf_cmd_lines %d, num_btb_blocks %d," 2230 " reserved %d\n", 2231 i, port->active, port->active_phys_tcs, 2232 port->num_pbf_cmd_lines, port->num_btb_blocks, 2233 port->reserved); 2234 } 2235 2236 /* vport table */ 2237 for (i = 0; i < qm_info->num_vports; i++) { 2238 vport = &qm_info->qm_vport_params[i]; 2239 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2240 "vport idx %d, vport_rl %d, wfq %d," 2241 " first_tx_pq_id [ ", 2242 qm_info->start_vport + i, vport->vport_rl, 2243 vport->vport_wfq); 2244 for (tc = 0; tc < NUM_OF_TCS; tc++) 2245 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", 2246 vport->first_tx_pq_id[tc]); 2247 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n"); 2248 } 2249 2250 /* pq table */ 2251 for (i = 0; i < qm_info->num_pqs; i++) { 2252 pq = &qm_info->qm_pq_params[i]; 2253 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 2254 "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n", 2255 qm_info->start_pq + i, pq->port_id, pq->vport_id, 2256 pq->tc_id, pq->wrr_group, pq->rl_valid); 2257 } 2258 } 2259 2260 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn) 2261 { 2262 /* reset params required for init run */ 2263 ecore_init_qm_reset_params(p_hwfn); 2264 2265 /* init QM top level params */ 2266 ecore_init_qm_params(p_hwfn); 2267 2268 /* init QM port params */ 2269 ecore_init_qm_port_params(p_hwfn); 2270 2271 /* init QM vport params */ 2272 ecore_init_qm_vport_params(p_hwfn); 2273 2274 /* init QM physical queue params */ 2275 ecore_init_qm_pq_params(p_hwfn); 2276 2277 /* display all that init */ 2278 ecore_dp_init_qm_params(p_hwfn); 2279 } 2280 2281 /* This function reconfigures the QM pf on the fly. 2282 * For this purpose we: 2283 * 1. reconfigure the QM database 2284 * 2. set new values to runtime array 2285 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM 2286 * 4. activate init tool in QM_PF stage 2287 * 5. send an sdm_qm_cmd through rbc interface to release the QM 2288 */ 2289 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn, 2290 struct ecore_ptt *p_ptt) 2291 { 2292 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2293 bool b_rc; 2294 enum _ecore_status_t rc; 2295 2296 /* initialize ecore's qm data structure */ 2297 ecore_init_qm_info(p_hwfn); 2298 2299 /* stop PF's qm queues */ 2300 OSAL_SPIN_LOCK(&qm_lock); 2301 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, 2302 qm_info->start_pq, qm_info->num_pqs); 2303 OSAL_SPIN_UNLOCK(&qm_lock); 2304 if (!b_rc) 2305 return ECORE_INVAL; 2306 2307 /* clear the QM_PF runtime phase leftovers from previous init */ 2308 ecore_init_clear_rt_data(p_hwfn); 2309 2310 /* prepare QM portion of runtime array */ 2311 ecore_qm_init_pf(p_hwfn, p_ptt, false); 2312 2313 /* activate init tool on runtime array */ 2314 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, 2315 p_hwfn->hw_info.hw_mode); 2316 if (rc != ECORE_SUCCESS) 2317 return rc; 2318 2319 /* start PF's qm queues */ 2320 OSAL_SPIN_LOCK(&qm_lock); 2321 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, 2322 qm_info->start_pq, qm_info->num_pqs); 2323 OSAL_SPIN_UNLOCK(&qm_lock); 2324 if (!b_rc) 2325 return ECORE_INVAL; 2326 2327 return ECORE_SUCCESS; 2328 } 2329 2330 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn) 2331 { 2332 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2333 enum _ecore_status_t rc; 2334 2335 rc = ecore_init_qm_sanity(p_hwfn); 2336 if (rc != ECORE_SUCCESS) 2337 goto alloc_err; 2338 2339 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2340 sizeof(struct init_qm_pq_params) * 2341 ecore_init_qm_get_num_pqs(p_hwfn)); 2342 if (!qm_info->qm_pq_params) 2343 goto alloc_err; 2344 2345 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2346 sizeof(struct init_qm_vport_params) * 2347 ecore_init_qm_get_num_vports(p_hwfn)); 2348 if (!qm_info->qm_vport_params) 2349 goto alloc_err; 2350 2351 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2352 sizeof(struct init_qm_port_params) * 2353 p_hwfn->p_dev->num_ports_in_engine); 2354 if (!qm_info->qm_port_params) 2355 goto alloc_err; 2356 2357 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, 2358 sizeof(struct ecore_wfq_data) * 2359 ecore_init_qm_get_num_vports(p_hwfn)); 2360 if (!qm_info->wfq_data) 2361 goto alloc_err; 2362 2363 return ECORE_SUCCESS; 2364 2365 alloc_err: 2366 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n"); 2367 ecore_qm_info_free(p_hwfn); 2368 return ECORE_NOMEM; 2369 } 2370 /******************** End QM initialization ***************/ 2371 2372 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev) 2373 { 2374 enum _ecore_status_t rc = ECORE_SUCCESS; 2375 int i; 2376 2377 if (IS_VF(p_dev)) { 2378 for_each_hwfn(p_dev, i) { 2379 rc = ecore_l2_alloc(&p_dev->hwfns[i]); 2380 if (rc != ECORE_SUCCESS) 2381 return rc; 2382 } 2383 return rc; 2384 } 2385 2386 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL, 2387 sizeof(*p_dev->fw_data)); 2388 if (!p_dev->fw_data) 2389 return ECORE_NOMEM; 2390 2391 for_each_hwfn(p_dev, i) { 2392 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 2393 u32 n_eqes, num_cons; 2394 2395 /* initialize the doorbell recovery mechanism */ 2396 rc = ecore_db_recovery_setup(p_hwfn); 2397 if (rc) 2398 goto alloc_err; 2399 2400 /* First allocate the context manager structure */ 2401 rc = ecore_cxt_mngr_alloc(p_hwfn); 2402 if (rc) 2403 goto alloc_err; 2404 2405 /* Set the HW cid/tid numbers (in the context manager) 2406 * Must be done prior to any further computations. 2407 */ 2408 rc = ecore_cxt_set_pf_params(p_hwfn); 2409 if (rc) 2410 goto alloc_err; 2411 2412 rc = ecore_alloc_qm_data(p_hwfn); 2413 if (rc) 2414 goto alloc_err; 2415 2416 /* init qm info */ 2417 ecore_init_qm_info(p_hwfn); 2418 2419 /* Compute the ILT client partition */ 2420 rc = ecore_cxt_cfg_ilt_compute(p_hwfn); 2421 if (rc) 2422 goto alloc_err; 2423 2424 /* CID map / ILT shadow table / T2 2425 * The talbes sizes are determined by the computations above 2426 */ 2427 rc = ecore_cxt_tables_alloc(p_hwfn); 2428 if (rc) 2429 goto alloc_err; 2430 2431 /* SPQ, must follow ILT because initializes SPQ context */ 2432 rc = ecore_spq_alloc(p_hwfn); 2433 if (rc) 2434 goto alloc_err; 2435 2436 /* SP status block allocation */ 2437 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn, 2438 RESERVED_PTT_DPC); 2439 2440 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt); 2441 if (rc) 2442 goto alloc_err; 2443 2444 rc = ecore_iov_alloc(p_hwfn); 2445 if (rc) 2446 goto alloc_err; 2447 2448 /* EQ */ 2449 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain); 2450 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) { 2451 /* Calculate the EQ size 2452 * --------------------- 2453 * Each ICID may generate up to one event at a time i.e. 2454 * the event must be handled/cleared before a new one 2455 * can be generated. We calculate the sum of events per 2456 * protocol and create an EQ deep enough to handle the 2457 * worst case: 2458 * - Core - according to SPQ. 2459 * - RoCE - per QP there are a couple of ICIDs, one 2460 * responder and one requester, each can 2461 * generate an EQE => n_eqes_qp = 2 * n_qp. 2462 * Each CQ can generate an EQE. There are 2 CQs 2463 * per QP => n_eqes_cq = 2 * n_qp. 2464 * Hence the RoCE total is 4 * n_qp or 2465 * 2 * num_cons. 2466 * - ENet - There can be up to two events per VF. One 2467 * for VF-PF channel and another for VF FLR 2468 * initial cleanup. The number of VFs is 2469 * bounded by MAX_NUM_VFS_BB, and is much 2470 * smaller than RoCE's so we avoid exact 2471 * calculation. 2472 */ 2473 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) { 2474 num_cons = 2475 ecore_cxt_get_proto_cid_count( 2476 p_hwfn, 2477 PROTOCOLID_ROCE, 2478 OSAL_NULL); 2479 num_cons *= 2; 2480 } else { 2481 num_cons = ecore_cxt_get_proto_cid_count( 2482 p_hwfn, 2483 PROTOCOLID_IWARP, 2484 OSAL_NULL); 2485 } 2486 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; 2487 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) { 2488 num_cons = 2489 ecore_cxt_get_proto_cid_count(p_hwfn, 2490 PROTOCOLID_ISCSI, 2491 OSAL_NULL); 2492 n_eqes += 2 * num_cons; 2493 } 2494 2495 if (n_eqes > 0xFFFF) { 2496 DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements." 2497 "The maximum of a u16 chain is 0x%x\n", 2498 n_eqes, 0xFFFF); 2499 goto alloc_no_mem; 2500 } 2501 2502 rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes); 2503 if (rc) 2504 goto alloc_err; 2505 2506 rc = ecore_consq_alloc(p_hwfn); 2507 if (rc) 2508 goto alloc_err; 2509 2510 rc = ecore_l2_alloc(p_hwfn); 2511 if (rc != ECORE_SUCCESS) 2512 goto alloc_err; 2513 2514 /* DMA info initialization */ 2515 rc = ecore_dmae_info_alloc(p_hwfn); 2516 if (rc) { 2517 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for dmae_info structure\n"); 2518 goto alloc_err; 2519 } 2520 2521 /* DCBX initialization */ 2522 rc = ecore_dcbx_info_alloc(p_hwfn); 2523 if (rc) { 2524 DP_NOTICE(p_hwfn, false, 2525 "Failed to allocate memory for dcbx structure\n"); 2526 goto alloc_err; 2527 } 2528 2529 rc = OSAL_DBG_ALLOC_USER_DATA(p_hwfn, &p_hwfn->dbg_user_info); 2530 if (rc) { 2531 DP_NOTICE(p_hwfn, false, 2532 "Failed to allocate dbg user info structure\n"); 2533 goto alloc_err; 2534 } 2535 } /* hwfn loop */ 2536 2537 rc = ecore_llh_alloc(p_dev); 2538 if (rc != ECORE_SUCCESS) { 2539 DP_NOTICE(p_dev, true, 2540 "Failed to allocate memory for the llh_info structure\n"); 2541 goto alloc_err; 2542 } 2543 2544 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL, 2545 sizeof(*p_dev->reset_stats)); 2546 if (!p_dev->reset_stats) { 2547 DP_NOTICE(p_dev, false, "Failed to allocate reset statistics\n"); 2548 goto alloc_no_mem; 2549 } 2550 2551 return ECORE_SUCCESS; 2552 2553 alloc_no_mem: 2554 rc = ECORE_NOMEM; 2555 alloc_err: 2556 ecore_resc_free(p_dev); 2557 return rc; 2558 } 2559 2560 void ecore_resc_setup(struct ecore_dev *p_dev) 2561 { 2562 int i; 2563 2564 if (IS_VF(p_dev)) { 2565 for_each_hwfn(p_dev, i) 2566 ecore_l2_setup(&p_dev->hwfns[i]); 2567 return; 2568 } 2569 2570 for_each_hwfn(p_dev, i) { 2571 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 2572 2573 ecore_cxt_mngr_setup(p_hwfn); 2574 ecore_spq_setup(p_hwfn); 2575 ecore_eq_setup(p_hwfn); 2576 ecore_consq_setup(p_hwfn); 2577 2578 /* Read shadow of current MFW mailbox */ 2579 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); 2580 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow, 2581 p_hwfn->mcp_info->mfw_mb_cur, 2582 p_hwfn->mcp_info->mfw_mb_length); 2583 2584 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt); 2585 2586 ecore_l2_setup(p_hwfn); 2587 ecore_iov_setup(p_hwfn); 2588 } 2589 } 2590 2591 #define FINAL_CLEANUP_POLL_CNT (100) 2592 #define FINAL_CLEANUP_POLL_TIME (10) 2593 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn, 2594 struct ecore_ptt *p_ptt, 2595 u16 id, bool is_vf) 2596 { 2597 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; 2598 enum _ecore_status_t rc = ECORE_TIMEOUT; 2599 2600 #ifndef ASIC_ONLY 2601 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) || 2602 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 2603 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n"); 2604 return ECORE_SUCCESS; 2605 } 2606 #endif 2607 2608 addr = GTT_BAR0_MAP_REG_USDM_RAM + 2609 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); 2610 2611 if (is_vf) 2612 id += 0x10; 2613 2614 command |= X_FINAL_CLEANUP_AGG_INT << 2615 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; 2616 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; 2617 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; 2618 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; 2619 2620 /* Make sure notification is not set before initiating final cleanup */ 2621 2622 if (REG_RD(p_hwfn, addr)) { 2623 DP_NOTICE(p_hwfn, false, 2624 "Unexpected; Found final cleanup notification"); 2625 DP_NOTICE(p_hwfn, false, 2626 " before initiating final cleanup\n"); 2627 REG_WR(p_hwfn, addr, 0); 2628 } 2629 2630 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV, 2631 "Sending final cleanup for PFVF[%d] [Command %08x]\n", 2632 id, command); 2633 2634 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); 2635 2636 /* Poll until completion */ 2637 while (!REG_RD(p_hwfn, addr) && count--) 2638 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME); 2639 2640 if (REG_RD(p_hwfn, addr)) 2641 rc = ECORE_SUCCESS; 2642 else 2643 DP_NOTICE(p_hwfn, true, 2644 "Failed to receive FW final cleanup notification\n"); 2645 2646 /* Cleanup afterwards */ 2647 REG_WR(p_hwfn, addr, 0); 2648 2649 return rc; 2650 } 2651 2652 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn) 2653 { 2654 int hw_mode = 0; 2655 2656 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) { 2657 hw_mode |= 1 << MODE_BB; 2658 } else if (ECORE_IS_AH(p_hwfn->p_dev)) { 2659 hw_mode |= 1 << MODE_K2; 2660 } else { 2661 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n", 2662 p_hwfn->p_dev->type); 2663 return ECORE_INVAL; 2664 } 2665 2666 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */ 2667 switch (p_hwfn->p_dev->num_ports_in_engine) { 2668 case 1: 2669 hw_mode |= 1 << MODE_PORTS_PER_ENG_1; 2670 break; 2671 case 2: 2672 hw_mode |= 1 << MODE_PORTS_PER_ENG_2; 2673 break; 2674 case 4: 2675 hw_mode |= 1 << MODE_PORTS_PER_ENG_4; 2676 break; 2677 default: 2678 DP_NOTICE(p_hwfn, true, 2679 "num_ports_in_engine = %d not supported\n", 2680 p_hwfn->p_dev->num_ports_in_engine); 2681 return ECORE_INVAL; 2682 } 2683 2684 if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits)) 2685 hw_mode |= 1 << MODE_MF_SD; 2686 else 2687 hw_mode |= 1 << MODE_MF_SI; 2688 2689 #ifndef ASIC_ONLY 2690 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 2691 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) { 2692 hw_mode |= 1 << MODE_FPGA; 2693 } else { 2694 if (p_hwfn->p_dev->b_is_emul_full) 2695 hw_mode |= 1 << MODE_EMUL_FULL; 2696 else 2697 hw_mode |= 1 << MODE_EMUL_REDUCED; 2698 } 2699 } else 2700 #endif 2701 hw_mode |= 1 << MODE_ASIC; 2702 2703 if (ECORE_IS_CMT(p_hwfn->p_dev)) 2704 hw_mode |= 1 << MODE_100G; 2705 2706 p_hwfn->hw_info.hw_mode = hw_mode; 2707 2708 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP), 2709 "Configuring function for hw_mode: 0x%08x\n", 2710 p_hwfn->hw_info.hw_mode); 2711 2712 return ECORE_SUCCESS; 2713 } 2714 2715 #ifndef ASIC_ONLY 2716 /* MFW-replacement initializations for non-ASIC */ 2717 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn, 2718 struct ecore_ptt *p_ptt) 2719 { 2720 struct ecore_dev *p_dev = p_hwfn->p_dev; 2721 u32 pl_hv = 1; 2722 int i; 2723 2724 if (CHIP_REV_IS_EMUL(p_dev)) { 2725 if (ECORE_IS_AH(p_dev)) 2726 pl_hv |= 0x600; 2727 } 2728 2729 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv); 2730 2731 if (CHIP_REV_IS_EMUL(p_dev) && 2732 (ECORE_IS_AH(p_dev))) 2733 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5, 2734 0x3ffffff); 2735 2736 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */ 2737 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */ 2738 if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev)) 2739 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4); 2740 2741 if (CHIP_REV_IS_EMUL(p_dev)) { 2742 if (ECORE_IS_AH(p_dev)) { 2743 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */ 2744 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE, 2745 (p_dev->num_ports_in_engine >> 1)); 2746 2747 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN, 2748 p_dev->num_ports_in_engine == 4 ? 0 : 3); 2749 } 2750 } 2751 2752 /* Poll on RBC */ 2753 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1); 2754 for (i = 0; i < 100; i++) { 2755 OSAL_UDELAY(50); 2756 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1) 2757 break; 2758 } 2759 if (i == 100) 2760 DP_NOTICE(p_hwfn, true, 2761 "RBC done failed to complete in PSWRQ2\n"); 2762 2763 return ECORE_SUCCESS; 2764 } 2765 #endif 2766 2767 /* Init run time data for all PFs and their VFs on an engine. 2768 * TBD - for VFs - Once we have parent PF info for each VF in 2769 * shmem available as CAU requires knowledge of parent PF for each VF. 2770 */ 2771 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev) 2772 { 2773 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; 2774 int i, igu_sb_id; 2775 2776 for_each_hwfn(p_dev, i) { 2777 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 2778 struct ecore_igu_info *p_igu_info; 2779 struct ecore_igu_block *p_block; 2780 struct cau_sb_entry sb_entry; 2781 2782 p_igu_info = p_hwfn->hw_info.p_igu_info; 2783 2784 for (igu_sb_id = 0; 2785 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev); 2786 igu_sb_id++) { 2787 p_block = &p_igu_info->entry[igu_sb_id]; 2788 2789 if (!p_block->is_pf) 2790 continue; 2791 2792 ecore_init_cau_sb_entry(p_hwfn, &sb_entry, 2793 p_block->function_id, 0, 0); 2794 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, 2795 sb_entry); 2796 } 2797 } 2798 } 2799 2800 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn, 2801 struct ecore_ptt *p_ptt) 2802 { 2803 u32 val, wr_mbs, cache_line_size; 2804 2805 val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); 2806 switch (val) { 2807 case 0: 2808 wr_mbs = 128; 2809 break; 2810 case 1: 2811 wr_mbs = 256; 2812 break; 2813 case 2: 2814 wr_mbs = 512; 2815 break; 2816 default: 2817 DP_INFO(p_hwfn, 2818 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 2819 val); 2820 return; 2821 } 2822 2823 cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs); 2824 switch (cache_line_size) { 2825 case 32: 2826 val = 0; 2827 break; 2828 case 64: 2829 val = 1; 2830 break; 2831 case 128: 2832 val = 2; 2833 break; 2834 case 256: 2835 val = 3; 2836 break; 2837 default: 2838 DP_INFO(p_hwfn, 2839 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", 2840 cache_line_size); 2841 } 2842 2843 if (wr_mbs < OSAL_CACHE_LINE_SIZE) 2844 DP_INFO(p_hwfn, 2845 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", 2846 OSAL_CACHE_LINE_SIZE, wr_mbs); 2847 2848 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); 2849 if (val > 0) { 2850 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); 2851 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); 2852 } 2853 } 2854 2855 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn, 2856 struct ecore_ptt *p_ptt, 2857 int hw_mode) 2858 { 2859 struct ecore_qm_info *qm_info = &p_hwfn->qm_info; 2860 struct ecore_dev *p_dev = p_hwfn->p_dev; 2861 u8 vf_id, max_num_vfs; 2862 u16 num_pfs, pf_id; 2863 u32 concrete_fid; 2864 enum _ecore_status_t rc = ECORE_SUCCESS; 2865 2866 ecore_init_cau_rt_data(p_dev); 2867 2868 /* Program GTT windows */ 2869 ecore_gtt_init(p_hwfn, p_ptt); 2870 2871 #ifndef ASIC_ONLY 2872 if (CHIP_REV_IS_EMUL(p_dev)) { 2873 rc = ecore_hw_init_chip(p_hwfn, p_ptt); 2874 if (rc != ECORE_SUCCESS) 2875 return rc; 2876 } 2877 #endif 2878 2879 if (p_hwfn->mcp_info) { 2880 if (p_hwfn->mcp_info->func_info.bandwidth_max) 2881 qm_info->pf_rl_en = 1; 2882 if (p_hwfn->mcp_info->func_info.bandwidth_min) 2883 qm_info->pf_wfq_en = 1; 2884 } 2885 2886 ecore_qm_common_rt_init(p_hwfn, 2887 p_dev->num_ports_in_engine, 2888 qm_info->max_phys_tcs_per_port, 2889 qm_info->pf_rl_en, qm_info->pf_wfq_en, 2890 qm_info->vport_rl_en, qm_info->vport_wfq_en, 2891 qm_info->qm_port_params); 2892 2893 ecore_cxt_hw_init_common(p_hwfn); 2894 2895 ecore_init_cache_line_size(p_hwfn, p_ptt); 2896 2897 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn), 2898 hw_mode); 2899 if (rc != ECORE_SUCCESS) 2900 return rc; 2901 2902 /* @@TBD MichalK - should add VALIDATE_VFID to init tool... 2903 * need to decide with which value, maybe runtime 2904 */ 2905 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); 2906 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); 2907 2908 if (ECORE_IS_BB(p_dev)) { 2909 /* Workaround clears ROCE search for all functions to prevent 2910 * involving non initialized function in processing ROCE packet. 2911 */ 2912 num_pfs = NUM_OF_ENG_PFS(p_dev); 2913 for (pf_id = 0; pf_id < num_pfs; pf_id++) { 2914 ecore_fid_pretend(p_hwfn, p_ptt, pf_id); 2915 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 2916 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 2917 } 2918 /* pretend to original PF */ 2919 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 2920 } 2921 2922 /* Workaround for avoiding CCFC execution error when getting packets 2923 * with CRC errors, and allowing instead the invoking of the FW error 2924 * handler. 2925 * This is not done inside the init tool since it currently can't 2926 * perform a pretending to VFs. 2927 */ 2928 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; 2929 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { 2930 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id); 2931 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid); 2932 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); 2933 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); 2934 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); 2935 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); 2936 } 2937 /* pretend to original PF */ 2938 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); 2939 2940 return rc; 2941 } 2942 2943 #ifndef ASIC_ONLY 2944 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4) 2945 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5) 2946 2947 #define PMEG_IF_BYTE_COUNT 8 2948 2949 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn, 2950 struct ecore_ptt *p_ptt, 2951 u32 addr, u64 data, u8 reg_type, u8 port) 2952 { 2953 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 2954 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n", 2955 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) | 2956 (8 << PMEG_IF_BYTE_COUNT), 2957 (reg_type << 25) | (addr << 8) | port, 2958 (u32)((data >> 32) & 0xffffffff), 2959 (u32)(data & 0xffffffff)); 2960 2961 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB, 2962 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) & 2963 0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT)); 2964 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB, 2965 (reg_type << 25) | (addr << 8) | port); 2966 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff); 2967 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, 2968 (data >> 32) & 0xffffffff); 2969 } 2970 2971 #define XLPORT_MODE_REG (0x20a) 2972 #define XLPORT_MAC_CONTROL (0x210) 2973 #define XLPORT_FLOW_CONTROL_CONFIG (0x207) 2974 #define XLPORT_ENABLE_REG (0x20b) 2975 2976 #define XLMAC_CTRL (0x600) 2977 #define XLMAC_MODE (0x601) 2978 #define XLMAC_RX_MAX_SIZE (0x608) 2979 #define XLMAC_TX_CTRL (0x604) 2980 #define XLMAC_PAUSE_CTRL (0x60d) 2981 #define XLMAC_PFC_CTRL (0x60e) 2982 2983 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn, 2984 struct ecore_ptt *p_ptt) 2985 { 2986 u8 loopback = 0, port = p_hwfn->port_id * 2; 2987 2988 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port); 2989 2990 /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */ 2991 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1, 2992 port); 2993 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port); 2994 /* XLMAC: SOFT RESET */ 2995 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port); 2996 /* XLMAC: Port Speed >= 10Gbps */ 2997 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port); 2998 /* XLMAC: Max Size */ 2999 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port); 3000 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL, 3001 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38), 3002 0, port); 3003 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port); 3004 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL, 3005 0x30ffffc000ULL, 0, port); 3006 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0, 3007 port); /* XLMAC: TX_EN, RX_EN */ 3008 /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */ 3009 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 3010 0x1003 | (loopback << 2), 0, port); 3011 /* Enabled Parallel PFC interface */ 3012 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port); 3013 3014 /* XLPORT port enable */ 3015 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port); 3016 } 3017 3018 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn, 3019 struct ecore_ptt *p_ptt) 3020 { 3021 u8 port = p_hwfn->port_id; 3022 u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE; 3023 3024 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port); 3025 3026 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2), 3027 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) | 3028 (port << 3029 CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) | 3030 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT)); 3031 3032 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5, 3033 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT); 3034 3035 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5, 3036 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT); 3037 3038 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5, 3039 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT); 3040 3041 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5, 3042 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT); 3043 3044 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5, 3045 (0xA << 3046 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) | 3047 (8 << 3048 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT)); 3049 3050 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5, 3051 0xa853); 3052 } 3053 3054 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn, 3055 struct ecore_ptt *p_ptt) 3056 { 3057 if (ECORE_IS_AH(p_hwfn->p_dev)) 3058 ecore_emul_link_init_ah_e5(p_hwfn, p_ptt); 3059 else /* BB */ 3060 ecore_emul_link_init_bb(p_hwfn, p_ptt); 3061 } 3062 3063 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn, 3064 struct ecore_ptt *p_ptt, u8 port) 3065 { 3066 int port_offset = port ? 0x800 : 0; 3067 u32 xmac_rxctrl = 0; 3068 3069 /* Reset of XMAC */ 3070 /* FIXME: move to common start */ 3071 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32), 3072 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */ 3073 OSAL_MSLEEP(1); 3074 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32), 3075 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */ 3076 3077 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1); 3078 3079 /* Set the number of ports on the Warp Core to 10G */ 3080 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3); 3081 3082 /* Soft reset of XMAC */ 3083 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32), 3084 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT); 3085 OSAL_MSLEEP(1); 3086 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32), 3087 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT); 3088 3089 /* FIXME: move to common end */ 3090 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) 3091 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20); 3092 3093 /* Set Max packet size: initialize XMAC block register for port 0 */ 3094 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710); 3095 3096 /* CRC append for Tx packets: init XMAC block register for port 1 */ 3097 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800); 3098 3099 /* Enable TX and RX: initialize XMAC block register for port 1 */ 3100 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset, 3101 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB); 3102 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, 3103 XMAC_REG_RX_CTRL_BB + port_offset); 3104 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB; 3105 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl); 3106 } 3107 #endif 3108 3109 static enum _ecore_status_t 3110 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn, 3111 struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) 3112 { 3113 u32 dpi_bit_shift, dpi_count, dpi_page_size; 3114 u32 min_dpis; 3115 u32 n_wids; 3116 3117 /* Calculate DPI size 3118 * ------------------ 3119 * The PWM region contains Doorbell Pages. The first is reserverd for 3120 * the kernel for, e.g, L2. The others are free to be used by non- 3121 * trusted applications, typically from user space. Each page, called a 3122 * doorbell page is sectioned into windows that allow doorbells to be 3123 * issued in parallel by the kernel/application. The size of such a 3124 * window (a.k.a. WID) is 1kB. 3125 * Summary: 3126 * 1kB WID x N WIDS = DPI page size 3127 * DPI page size x N DPIs = PWM region size 3128 * Notes: 3129 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE 3130 * in order to ensure that two applications won't share the same page. 3131 * It also must contain at least one WID per CPU to allow parallelism. 3132 * It also must be a power of 2, since it is stored as a bit shift. 3133 * 3134 * The DPI page size is stored in a register as 'dpi_bit_shift' so that 3135 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096 3136 * containing 4 WIDs. 3137 */ 3138 n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus); 3139 dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids); 3140 dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & 3141 ~(OSAL_PAGE_SIZE - 1); 3142 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096); 3143 dpi_count = pwm_region_size / dpi_page_size; 3144 3145 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; 3146 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis); 3147 3148 /* Update hwfn */ 3149 p_hwfn->dpi_size = dpi_page_size; 3150 p_hwfn->dpi_count = dpi_count; 3151 3152 /* Update registers */ 3153 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); 3154 3155 if (dpi_count < min_dpis) 3156 return ECORE_NORESOURCES; 3157 3158 return ECORE_SUCCESS; 3159 } 3160 3161 enum ECORE_ROCE_EDPM_MODE { 3162 ECORE_ROCE_EDPM_MODE_ENABLE = 0, 3163 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1, 3164 ECORE_ROCE_EDPM_MODE_DISABLE = 2, 3165 }; 3166 3167 bool ecore_edpm_enabled(struct ecore_hwfn *p_hwfn) 3168 { 3169 if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm) 3170 return false; 3171 3172 return true; 3173 } 3174 3175 static enum _ecore_status_t 3176 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn, 3177 struct ecore_ptt *p_ptt) 3178 { 3179 u32 pwm_regsize, norm_regsize; 3180 u32 non_pwm_conn, min_addr_reg1; 3181 u32 db_bar_size, n_cpus; 3182 u32 roce_edpm_mode; 3183 u32 pf_dems_shift; 3184 enum _ecore_status_t rc = ECORE_SUCCESS; 3185 u8 cond; 3186 3187 db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); 3188 if (ECORE_IS_CMT(p_hwfn->p_dev)) 3189 db_bar_size /= 2; 3190 3191 /* Calculate doorbell regions 3192 * ----------------------------------- 3193 * The doorbell BAR is made of two regions. The first is called normal 3194 * region and the second is called PWM region. In the normal region 3195 * each ICID has its own set of addresses so that writing to that 3196 * specific address identifies the ICID. In the Process Window Mode 3197 * region the ICID is given in the data written to the doorbell. The 3198 * above per PF register denotes the offset in the doorbell BAR in which 3199 * the PWM region begins. 3200 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per 3201 * non-PWM connection. The calculation below computes the total non-PWM 3202 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is 3203 * in units of 4,096 bytes. 3204 */ 3205 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + 3206 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, 3207 OSAL_NULL) + 3208 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL); 3209 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 3210 OSAL_PAGE_SIZE); 3211 min_addr_reg1 = norm_regsize / 4096; 3212 pwm_regsize = db_bar_size - norm_regsize; 3213 3214 /* Check that the normal and PWM sizes are valid */ 3215 if (db_bar_size < norm_regsize) { 3216 DP_ERR(p_hwfn->p_dev, 3217 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", 3218 db_bar_size, norm_regsize); 3219 return ECORE_NORESOURCES; 3220 } 3221 if (pwm_regsize < ECORE_MIN_PWM_REGION) { 3222 DP_ERR(p_hwfn->p_dev, 3223 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", 3224 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size, 3225 norm_regsize); 3226 return ECORE_NORESOURCES; 3227 } 3228 3229 /* Calculate number of DPIs */ 3230 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; 3231 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) || 3232 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) { 3233 /* Either EDPM is mandatory, or we are attempting to allocate a 3234 * WID per CPU. 3235 */ 3236 n_cpus = OSAL_NUM_CPUS(); 3237 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 3238 } 3239 3240 cond = ((rc != ECORE_SUCCESS) && 3241 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) || 3242 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE); 3243 if (cond || p_hwfn->dcbx_no_edpm) { 3244 /* Either EDPM is disabled from user configuration, or it is 3245 * disabled via DCBx, or it is not mandatory and we failed to 3246 * allocated a WID per CPU. 3247 */ 3248 n_cpus = 1; 3249 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); 3250 3251 /* If we entered this flow due to DCBX then the DPM register is 3252 * already configured. 3253 */ 3254 } 3255 3256 DP_INFO(p_hwfn, 3257 "doorbell bar: normal_region_size=%d, pwm_region_size=%d", 3258 norm_regsize, pwm_regsize); 3259 DP_INFO(p_hwfn, 3260 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", 3261 p_hwfn->dpi_size, p_hwfn->dpi_count, 3262 (!ecore_edpm_enabled(p_hwfn)) ? 3263 "disabled" : "enabled"); 3264 3265 /* Check return codes from above calls */ 3266 if (rc != ECORE_SUCCESS) { 3267 DP_ERR(p_hwfn, 3268 "Failed to allocate enough DPIs\n"); 3269 return ECORE_NORESOURCES; 3270 } 3271 3272 /* Update hwfn */ 3273 p_hwfn->dpi_start_offset = norm_regsize; 3274 3275 /* Update registers */ 3276 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ 3277 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4); 3278 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); 3279 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); 3280 3281 return ECORE_SUCCESS; 3282 } 3283 3284 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn, 3285 struct ecore_ptt *p_ptt, 3286 int hw_mode) 3287 { 3288 enum _ecore_status_t rc = ECORE_SUCCESS; 3289 3290 /* In CMT the gate should be cleared by the 2nd hwfn */ 3291 if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn)) 3292 STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0); 3293 3294 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, 3295 hw_mode); 3296 if (rc != ECORE_SUCCESS) 3297 return rc; 3298 3299 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); 3300 3301 #ifndef ASIC_ONLY 3302 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) 3303 return ECORE_SUCCESS; 3304 3305 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) { 3306 if (ECORE_IS_AH(p_hwfn->p_dev)) 3307 return ECORE_SUCCESS; 3308 else if (ECORE_IS_BB(p_hwfn->p_dev)) 3309 ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id); 3310 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) { 3311 if (ECORE_IS_CMT(p_hwfn->p_dev)) { 3312 /* Activate OPTE in CMT */ 3313 u32 val; 3314 3315 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV); 3316 val |= 0x10; 3317 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val); 3318 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1); 3319 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1); 3320 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1); 3321 ecore_wr(p_hwfn, p_ptt, 3322 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1); 3323 ecore_wr(p_hwfn, p_ptt, 3324 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555); 3325 ecore_wr(p_hwfn, p_ptt, 3326 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4, 3327 0x55555555); 3328 } 3329 3330 ecore_emul_link_init(p_hwfn, p_ptt); 3331 } else { 3332 DP_INFO(p_hwfn->p_dev, "link is not being configured\n"); 3333 } 3334 #endif 3335 3336 return rc; 3337 } 3338 3339 static enum _ecore_status_t 3340 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 3341 int hw_mode, struct ecore_hw_init_params *p_params) 3342 { 3343 u8 rel_pf_id = p_hwfn->rel_pf_id; 3344 u32 prs_reg; 3345 enum _ecore_status_t rc = ECORE_SUCCESS; 3346 u16 ctrl; 3347 int pos; 3348 3349 if (p_hwfn->mcp_info) { 3350 struct ecore_mcp_function_info *p_info; 3351 3352 p_info = &p_hwfn->mcp_info->func_info; 3353 if (p_info->bandwidth_min) 3354 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; 3355 3356 /* Update rate limit once we'll actually have a link */ 3357 p_hwfn->qm_info.pf_rl = 100000; 3358 } 3359 ecore_cxt_hw_init_pf(p_hwfn, p_ptt); 3360 3361 ecore_int_igu_init_rt(p_hwfn); 3362 3363 /* Set VLAN in NIG if needed */ 3364 if (hw_mode & (1 << MODE_MF_SD)) { 3365 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n"); 3366 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); 3367 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, 3368 p_hwfn->hw_info.ovlan); 3369 3370 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 3371 "Configuring LLH_FUNC_FILTER_HDR_SEL\n"); 3372 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET, 3373 1); 3374 } 3375 3376 /* Enable classification by MAC if needed */ 3377 if (hw_mode & (1 << MODE_MF_SI)) { 3378 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, 3379 "Configuring TAGMAC_CLS_TYPE\n"); 3380 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 3381 1); 3382 } 3383 3384 /* Protocl Configuration - @@@TBD - should we set 0 otherwise? */ 3385 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 3386 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0); 3387 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 3388 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0); 3389 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); 3390 3391 /* perform debug configuration when chip is out of reset */ 3392 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id); 3393 3394 /* Sanity check before the PF init sequence that uses DMAE */ 3395 rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); 3396 if (rc) 3397 return rc; 3398 3399 /* PF Init sequence */ 3400 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); 3401 if (rc) 3402 return rc; 3403 3404 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ 3405 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); 3406 if (rc) 3407 return rc; 3408 3409 /* Pure runtime initializations - directly to the HW */ 3410 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); 3411 3412 /* PCI relaxed ordering causes a decrease in the performance on some 3413 * systems. Till a root cause is found, disable this attribute in the 3414 * PCI config space. 3415 */ 3416 /* Not in use @DPDK 3417 * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP); 3418 * if (!pos) { 3419 * DP_NOTICE(p_hwfn, true, 3420 * "Failed to find the PCIe Cap\n"); 3421 * return ECORE_IO; 3422 * } 3423 * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl); 3424 * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN; 3425 * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl); 3426 */ 3427 3428 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); 3429 if (rc != ECORE_SUCCESS) 3430 return rc; 3431 3432 if (p_params->b_hw_start) { 3433 /* enable interrupts */ 3434 rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode); 3435 if (rc != ECORE_SUCCESS) 3436 return rc; 3437 3438 /* send function start command */ 3439 rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn, 3440 p_params->allow_npar_tx_switch); 3441 if (rc) { 3442 DP_NOTICE(p_hwfn, true, 3443 "Function start ramrod failed\n"); 3444 } else { 3445 return rc; 3446 } 3447 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1); 3448 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3449 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg); 3450 3451 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) { 3452 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, 3453 (1 << 2)); 3454 ecore_wr(p_hwfn, p_ptt, 3455 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 3456 0x100); 3457 } 3458 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3459 "PRS_REG_SEARCH registers after start PFn\n"); 3460 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP); 3461 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3462 "PRS_REG_SEARCH_TCP: %x\n", prs_reg); 3463 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP); 3464 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3465 "PRS_REG_SEARCH_UDP: %x\n", prs_reg); 3466 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE); 3467 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3468 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg); 3469 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE); 3470 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3471 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg); 3472 prs_reg = ecore_rd(p_hwfn, p_ptt, 3473 PRS_REG_SEARCH_TCP_FIRST_FRAG); 3474 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3475 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n", 3476 prs_reg); 3477 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1); 3478 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE, 3479 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg); 3480 } 3481 return ECORE_SUCCESS; 3482 } 3483 3484 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn, 3485 struct ecore_ptt *p_ptt, 3486 bool b_enable) 3487 { 3488 u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0; 3489 3490 /* Configure the PF's internal FID_enable for master transactions */ 3491 ecore_wr(p_hwfn, p_ptt, 3492 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); 3493 3494 /* Wait until value is set - try for 1 second every 50us */ 3495 for (delay_idx = 0; delay_idx < 20000; delay_idx++) { 3496 val = ecore_rd(p_hwfn, p_ptt, 3497 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 3498 if (val == set_val) 3499 break; 3500 3501 OSAL_UDELAY(50); 3502 } 3503 3504 if (val != set_val) { 3505 DP_NOTICE(p_hwfn, true, 3506 "PFID_ENABLE_MASTER wasn't changed after a second\n"); 3507 return ECORE_UNKNOWN_ERROR; 3508 } 3509 3510 return ECORE_SUCCESS; 3511 } 3512 3513 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn, 3514 struct ecore_ptt *p_main_ptt) 3515 { 3516 /* Read shadow of current MFW mailbox */ 3517 ecore_mcp_read_mb(p_hwfn, p_main_ptt); 3518 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow, 3519 p_hwfn->mcp_info->mfw_mb_cur, 3520 p_hwfn->mcp_info->mfw_mb_length); 3521 } 3522 3523 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn, 3524 struct ecore_ptt *p_ptt) 3525 { 3526 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 3527 1 << p_hwfn->abs_pf_id); 3528 } 3529 3530 static enum _ecore_status_t 3531 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn, 3532 struct ecore_load_req_params *p_load_req, 3533 struct ecore_drv_load_params *p_drv_load) 3534 { 3535 /* Make sure that if ecore-client didn't provide inputs, all the 3536 * expected defaults are indeed zero. 3537 */ 3538 OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0); 3539 OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0); 3540 OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0); 3541 3542 OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req)); 3543 3544 if (p_drv_load == OSAL_NULL) 3545 goto out; 3546 3547 p_load_req->drv_role = p_drv_load->is_crash_kernel ? 3548 ECORE_DRV_ROLE_KDUMP : 3549 ECORE_DRV_ROLE_OS; 3550 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; 3551 p_load_req->override_force_load = p_drv_load->override_force_load; 3552 3553 /* Old MFW versions don't support timeout values other than default and 3554 * none, so these values are replaced according to the fall-back action. 3555 */ 3556 3557 if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT || 3558 p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE || 3559 (p_hwfn->mcp_info->capabilities & 3560 FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) { 3561 p_load_req->timeout_val = p_drv_load->mfw_timeout_val; 3562 goto out; 3563 } 3564 3565 switch (p_drv_load->mfw_timeout_fallback) { 3566 case ECORE_TO_FALLBACK_TO_NONE: 3567 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE; 3568 break; 3569 case ECORE_TO_FALLBACK_TO_DEFAULT: 3570 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT; 3571 break; 3572 case ECORE_TO_FALLBACK_FAIL_LOAD: 3573 DP_NOTICE(p_hwfn, false, 3574 "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n", 3575 p_drv_load->mfw_timeout_val, 3576 ECORE_LOAD_REQ_LOCK_TO_DEFAULT, 3577 ECORE_LOAD_REQ_LOCK_TO_NONE); 3578 return ECORE_ABORTED; 3579 } 3580 3581 DP_INFO(p_hwfn, 3582 "Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n", 3583 p_drv_load->mfw_timeout_val, 3584 (p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ? 3585 "default" : "none", 3586 p_load_req->timeout_val); 3587 out: 3588 return ECORE_SUCCESS; 3589 } 3590 3591 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn, 3592 struct ecore_hw_init_params *p_params) 3593 { 3594 if (p_params->p_tunn) { 3595 ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn); 3596 ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); 3597 } 3598 3599 p_hwfn->b_int_enabled = 1; 3600 3601 return ECORE_SUCCESS; 3602 } 3603 3604 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev, 3605 struct ecore_hw_init_params *p_params) 3606 { 3607 struct ecore_load_req_params load_req_params; 3608 u32 load_code, resp, param, drv_mb_param; 3609 bool b_default_mtu = true; 3610 struct ecore_hwfn *p_hwfn; 3611 enum _ecore_status_t rc = ECORE_SUCCESS; 3612 u16 ether_type; 3613 int i; 3614 3615 if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) { 3616 DP_NOTICE(p_dev, false, 3617 "MSI mode is not supported for CMT devices\n"); 3618 return ECORE_INVAL; 3619 } 3620 3621 if (IS_PF(p_dev)) { 3622 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data); 3623 if (rc != ECORE_SUCCESS) 3624 return rc; 3625 } 3626 3627 for_each_hwfn(p_dev, i) { 3628 p_hwfn = &p_dev->hwfns[i]; 3629 3630 /* If management didn't provide a default, set one of our own */ 3631 if (!p_hwfn->hw_info.mtu) { 3632 p_hwfn->hw_info.mtu = 1500; 3633 b_default_mtu = false; 3634 } 3635 3636 if (IS_VF(p_dev)) { 3637 ecore_vf_start(p_hwfn, p_params); 3638 continue; 3639 } 3640 3641 rc = ecore_calc_hw_mode(p_hwfn); 3642 if (rc != ECORE_SUCCESS) 3643 return rc; 3644 3645 if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING, 3646 &p_dev->mf_bits) || 3647 OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING, 3648 &p_dev->mf_bits))) { 3649 if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING, 3650 &p_dev->mf_bits)) 3651 ether_type = ETHER_TYPE_VLAN; 3652 else 3653 ether_type = ETHER_TYPE_QINQ; 3654 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, 3655 ether_type); 3656 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, 3657 ether_type); 3658 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, 3659 ether_type); 3660 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, 3661 ether_type); 3662 } 3663 3664 ecore_set_spq_block_timeout(p_hwfn, p_params->spq_timeout_ms); 3665 3666 rc = ecore_fill_load_req_params(p_hwfn, &load_req_params, 3667 p_params->p_drv_load_params); 3668 if (rc != ECORE_SUCCESS) 3669 return rc; 3670 3671 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, 3672 &load_req_params); 3673 if (rc != ECORE_SUCCESS) { 3674 DP_NOTICE(p_hwfn, false, 3675 "Failed sending a LOAD_REQ command\n"); 3676 return rc; 3677 } 3678 3679 load_code = load_req_params.load_code; 3680 DP_VERBOSE(p_hwfn, ECORE_MSG_SP, 3681 "Load request was sent. Load code: 0x%x\n", 3682 load_code); 3683 3684 ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); 3685 3686 /* CQ75580: 3687 * When coming back from hiberbate state, the registers from 3688 * which shadow is read initially are not initialized. It turns 3689 * out that these registers get initialized during the call to 3690 * ecore_mcp_load_req request. So we need to reread them here 3691 * to get the proper shadow register value. 3692 * Note: This is a workaround for the missing MFW 3693 * initialization. It may be removed once the implementation 3694 * is done. 3695 */ 3696 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); 3697 3698 /* Only relevant for recovery: 3699 * Clear the indication after the LOAD_REQ command is responded 3700 * by the MFW. 3701 */ 3702 p_dev->recov_in_prog = false; 3703 3704 p_hwfn->first_on_engine = (load_code == 3705 FW_MSG_CODE_DRV_LOAD_ENGINE); 3706 3707 if (!qm_lock_ref_cnt) { 3708 #ifdef CONFIG_ECORE_LOCK_ALLOC 3709 rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock); 3710 if (rc) { 3711 DP_ERR(p_hwfn, "qm_lock allocation failed\n"); 3712 goto qm_lock_fail; 3713 } 3714 #endif 3715 OSAL_SPIN_LOCK_INIT(&qm_lock); 3716 } 3717 ++qm_lock_ref_cnt; 3718 3719 /* Clean up chip from previous driver if such remains exist. 3720 * This is not needed when the PF is the first one on the 3721 * engine, since afterwards we are going to init the FW. 3722 */ 3723 if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) { 3724 rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt, 3725 p_hwfn->rel_pf_id, false); 3726 if (rc != ECORE_SUCCESS) { 3727 ecore_hw_err_notify(p_hwfn, 3728 ECORE_HW_ERR_RAMROD_FAIL); 3729 goto load_err; 3730 } 3731 } 3732 3733 /* Log and clear previous pglue_b errors if such exist */ 3734 ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt, true); 3735 3736 /* Enable the PF's internal FID_enable in the PXP */ 3737 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt, 3738 true); 3739 if (rc != ECORE_SUCCESS) 3740 goto load_err; 3741 3742 /* Clear the pglue_b was_error indication. 3743 * In E4 it must be done after the BME and the internal 3744 * FID_enable for the PF are set, since VDMs may cause the 3745 * indication to be set again. 3746 */ 3747 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); 3748 3749 switch (load_code) { 3750 case FW_MSG_CODE_DRV_LOAD_ENGINE: 3751 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, 3752 p_hwfn->hw_info.hw_mode); 3753 if (rc != ECORE_SUCCESS) 3754 break; 3755 /* Fall into */ 3756 case FW_MSG_CODE_DRV_LOAD_PORT: 3757 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, 3758 p_hwfn->hw_info.hw_mode); 3759 if (rc != ECORE_SUCCESS) 3760 break; 3761 /* Fall into */ 3762 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 3763 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, 3764 p_hwfn->hw_info.hw_mode, 3765 p_params); 3766 break; 3767 default: 3768 DP_NOTICE(p_hwfn, false, 3769 "Unexpected load code [0x%08x]", load_code); 3770 rc = ECORE_NOTIMPL; 3771 break; 3772 } 3773 3774 if (rc != ECORE_SUCCESS) { 3775 DP_NOTICE(p_hwfn, false, 3776 "init phase failed for loadcode 0x%x (rc %d)\n", 3777 load_code, rc); 3778 goto load_err; 3779 } 3780 3781 rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); 3782 if (rc != ECORE_SUCCESS) { 3783 DP_NOTICE(p_hwfn, false, 3784 "Sending load done failed, rc = %d\n", rc); 3785 if (rc == ECORE_NOMEM) { 3786 DP_NOTICE(p_hwfn, false, 3787 "Sending load done was failed due to memory allocation failure\n"); 3788 goto load_err; 3789 } 3790 return rc; 3791 } 3792 3793 /* send DCBX attention request command */ 3794 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB, 3795 "sending phony dcbx set command to trigger DCBx attention handling\n"); 3796 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3797 DRV_MSG_CODE_SET_DCBX, 3798 1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp, 3799 ¶m); 3800 if (rc != ECORE_SUCCESS) { 3801 DP_NOTICE(p_hwfn, false, 3802 "Failed to send DCBX attention request\n"); 3803 return rc; 3804 } 3805 3806 p_hwfn->hw_init_done = true; 3807 } 3808 3809 if (IS_PF(p_dev)) { 3810 /* Get pre-negotiated values for stag, bandwidth etc. */ 3811 p_hwfn = ECORE_LEADING_HWFN(p_dev); 3812 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, 3813 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); 3814 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3815 DRV_MSG_CODE_GET_OEM_UPDATES, 3816 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET, 3817 &resp, ¶m); 3818 if (rc != ECORE_SUCCESS) 3819 DP_NOTICE(p_hwfn, false, 3820 "Failed to send GET_OEM_UPDATES attention request\n"); 3821 } 3822 3823 if (IS_PF(p_dev)) { 3824 /* Get pre-negotiated values for stag, bandwidth etc. */ 3825 p_hwfn = ECORE_LEADING_HWFN(p_dev); 3826 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, 3827 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); 3828 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3829 DRV_MSG_CODE_GET_OEM_UPDATES, 3830 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET, 3831 &resp, ¶m); 3832 if (rc != ECORE_SUCCESS) 3833 DP_NOTICE(p_hwfn, false, 3834 "Failed to send GET_OEM_UPDATES attention request\n"); 3835 } 3836 3837 if (IS_PF(p_dev)) { 3838 p_hwfn = ECORE_LEADING_HWFN(p_dev); 3839 drv_mb_param = STORM_FW_VERSION; 3840 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, 3841 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, 3842 drv_mb_param, &resp, ¶m); 3843 if (rc != ECORE_SUCCESS) 3844 DP_INFO(p_hwfn, "Failed to update firmware version\n"); 3845 3846 if (!b_default_mtu) { 3847 rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, 3848 p_hwfn->hw_info.mtu); 3849 if (rc != ECORE_SUCCESS) 3850 DP_INFO(p_hwfn, "Failed to update default mtu\n"); 3851 } 3852 3853 rc = ecore_mcp_ov_update_driver_state(p_hwfn, 3854 p_hwfn->p_main_ptt, 3855 ECORE_OV_DRIVER_STATE_DISABLED); 3856 if (rc != ECORE_SUCCESS) 3857 DP_INFO(p_hwfn, "Failed to update driver state\n"); 3858 3859 rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, 3860 ECORE_OV_ESWITCH_NONE); 3861 if (rc != ECORE_SUCCESS) 3862 DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); 3863 } 3864 3865 return rc; 3866 3867 load_err: 3868 --qm_lock_ref_cnt; 3869 #ifdef CONFIG_ECORE_LOCK_ALLOC 3870 if (!qm_lock_ref_cnt) 3871 OSAL_SPIN_LOCK_DEALLOC(&qm_lock); 3872 qm_lock_fail: 3873 #endif 3874 /* The MFW load lock should be released regardless of success or failure 3875 * of initialization. 3876 * TODO: replace this with an attempt to send cancel_load. 3877 */ 3878 ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); 3879 return rc; 3880 } 3881 3882 #define ECORE_HW_STOP_RETRY_LIMIT (10) 3883 static void ecore_hw_timers_stop(struct ecore_dev *p_dev, 3884 struct ecore_hwfn *p_hwfn, 3885 struct ecore_ptt *p_ptt) 3886 { 3887 int i; 3888 3889 /* close timers */ 3890 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); 3891 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); 3892 for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog; 3893 i++) { 3894 if ((!ecore_rd(p_hwfn, p_ptt, 3895 TM_REG_PF_SCAN_ACTIVE_CONN)) && 3896 (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) 3897 break; 3898 3899 /* Dependent on number of connection/tasks, possibly 3900 * 1ms sleep is required between polls 3901 */ 3902 OSAL_MSLEEP(1); 3903 } 3904 3905 if (i < ECORE_HW_STOP_RETRY_LIMIT) 3906 return; 3907 3908 DP_NOTICE(p_hwfn, false, 3909 "Timers linear scans are not over [Connection %02x Tasks %02x]\n", 3910 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), 3911 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); 3912 } 3913 3914 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev) 3915 { 3916 int j; 3917 3918 for_each_hwfn(p_dev, j) { 3919 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j]; 3920 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt; 3921 3922 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt); 3923 } 3924 } 3925 3926 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn, 3927 struct ecore_ptt *p_ptt, 3928 u32 addr, u32 expected_val) 3929 { 3930 u32 val = ecore_rd(p_hwfn, p_ptt, addr); 3931 3932 if (val != expected_val) { 3933 DP_NOTICE(p_hwfn, true, 3934 "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n", 3935 addr, val, expected_val); 3936 return ECORE_UNKNOWN_ERROR; 3937 } 3938 3939 return ECORE_SUCCESS; 3940 } 3941 3942 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev) 3943 { 3944 struct ecore_hwfn *p_hwfn; 3945 struct ecore_ptt *p_ptt; 3946 enum _ecore_status_t rc, rc2 = ECORE_SUCCESS; 3947 int j; 3948 3949 for_each_hwfn(p_dev, j) { 3950 p_hwfn = &p_dev->hwfns[j]; 3951 p_ptt = p_hwfn->p_main_ptt; 3952 3953 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n"); 3954 3955 if (IS_VF(p_dev)) { 3956 ecore_vf_pf_int_cleanup(p_hwfn); 3957 rc = ecore_vf_pf_reset(p_hwfn); 3958 if (rc != ECORE_SUCCESS) { 3959 DP_NOTICE(p_hwfn, true, 3960 "ecore_vf_pf_reset failed. rc = %d.\n", 3961 rc); 3962 rc2 = ECORE_UNKNOWN_ERROR; 3963 } 3964 continue; 3965 } 3966 3967 /* mark the hw as uninitialized... */ 3968 p_hwfn->hw_init_done = false; 3969 3970 /* Send unload command to MCP */ 3971 if (!p_dev->recov_in_prog) { 3972 rc = ecore_mcp_unload_req(p_hwfn, p_ptt); 3973 if (rc != ECORE_SUCCESS) { 3974 DP_NOTICE(p_hwfn, false, 3975 "Failed sending a UNLOAD_REQ command. rc = %d.\n", 3976 rc); 3977 rc2 = ECORE_UNKNOWN_ERROR; 3978 } 3979 } 3980 3981 OSAL_DPC_SYNC(p_hwfn); 3982 3983 /* After this point no MFW attentions are expected, e.g. prevent 3984 * race between pf stop and dcbx pf update. 3985 */ 3986 3987 rc = ecore_sp_pf_stop(p_hwfn); 3988 if (rc != ECORE_SUCCESS) { 3989 DP_NOTICE(p_hwfn, false, 3990 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", 3991 rc); 3992 rc2 = ECORE_UNKNOWN_ERROR; 3993 } 3994 3995 OSAL_DPC_SYNC(p_hwfn); 3996 3997 /* After this point we don't expect the FW to send us async 3998 * events 3999 */ 4000 4001 /* perform debug action after PF stop was sent */ 4002 OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id); 4003 4004 /* close NIG to BRB gate */ 4005 ecore_wr(p_hwfn, p_ptt, 4006 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 4007 4008 /* close parser */ 4009 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 4010 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 4011 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 4012 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 4013 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 4014 4015 /* @@@TBD - clean transmission queues (5.b) */ 4016 /* @@@TBD - clean BTB (5.c) */ 4017 4018 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt); 4019 4020 /* @@@TBD - verify DMAE requests are done (8) */ 4021 4022 /* Disable Attention Generation */ 4023 ecore_int_igu_disable_int(p_hwfn, p_ptt); 4024 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); 4025 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); 4026 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); 4027 rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt); 4028 if (rc != ECORE_SUCCESS) { 4029 DP_NOTICE(p_hwfn, true, 4030 "Failed to return IGU CAM to default\n"); 4031 rc2 = ECORE_UNKNOWN_ERROR; 4032 } 4033 4034 /* Need to wait 1ms to guarantee SBs are cleared */ 4035 OSAL_MSLEEP(1); 4036 4037 if (IS_LEAD_HWFN(p_hwfn) && 4038 OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) && 4039 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) 4040 ecore_llh_remove_mac_filter(p_dev, 0, 4041 p_hwfn->hw_info.hw_mac_addr); 4042 4043 if (!p_dev->recov_in_prog) { 4044 ecore_verify_reg_val(p_hwfn, p_ptt, 4045 QM_REG_USG_CNT_PF_TX, 0); 4046 ecore_verify_reg_val(p_hwfn, p_ptt, 4047 QM_REG_USG_CNT_PF_OTHER, 0); 4048 /* @@@TBD - assert on incorrect xCFC values (10.b) */ 4049 } 4050 4051 /* Disable PF in HW blocks */ 4052 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); 4053 ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); 4054 4055 --qm_lock_ref_cnt; 4056 #ifdef CONFIG_ECORE_LOCK_ALLOC 4057 if (!qm_lock_ref_cnt) 4058 OSAL_SPIN_LOCK_DEALLOC(&qm_lock); 4059 #endif 4060 4061 if (!p_dev->recov_in_prog) { 4062 rc = ecore_mcp_unload_done(p_hwfn, p_ptt); 4063 if (rc == ECORE_NOMEM) { 4064 DP_NOTICE(p_hwfn, false, 4065 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n"); 4066 rc = ecore_mcp_unload_done(p_hwfn, p_ptt); 4067 } 4068 if (rc != ECORE_SUCCESS) { 4069 DP_NOTICE(p_hwfn, false, 4070 "Failed sending a UNLOAD_DONE command. rc = %d.\n", 4071 rc); 4072 rc2 = ECORE_UNKNOWN_ERROR; 4073 } 4074 } 4075 } /* hwfn loop */ 4076 4077 if (IS_PF(p_dev) && !p_dev->recov_in_prog) { 4078 p_hwfn = ECORE_LEADING_HWFN(p_dev); 4079 p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt; 4080 4081 /* Clear the PF's internal FID_enable in the PXP. 4082 * In CMT this should only be done for first hw-function, and 4083 * only after all transactions have stopped for all active 4084 * hw-functions. 4085 */ 4086 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt, 4087 false); 4088 if (rc != ECORE_SUCCESS) { 4089 DP_NOTICE(p_hwfn, true, 4090 "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n", 4091 rc); 4092 rc2 = ECORE_UNKNOWN_ERROR; 4093 } 4094 } 4095 4096 return rc2; 4097 } 4098 4099 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev) 4100 { 4101 int j; 4102 4103 for_each_hwfn(p_dev, j) { 4104 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j]; 4105 struct ecore_ptt *p_ptt; 4106 4107 if (IS_VF(p_dev)) { 4108 ecore_vf_pf_int_cleanup(p_hwfn); 4109 continue; 4110 } 4111 p_ptt = ecore_ptt_acquire(p_hwfn); 4112 if (!p_ptt) 4113 return ECORE_AGAIN; 4114 4115 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, 4116 "Shutting down the fastpath\n"); 4117 4118 ecore_wr(p_hwfn, p_ptt, 4119 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); 4120 4121 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); 4122 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); 4123 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); 4124 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); 4125 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); 4126 4127 /* @@@TBD - clean transmission queues (5.b) */ 4128 /* @@@TBD - clean BTB (5.c) */ 4129 4130 /* @@@TBD - verify DMAE requests are done (8) */ 4131 4132 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); 4133 /* Need to wait 1ms to guarantee SBs are cleared */ 4134 OSAL_MSLEEP(1); 4135 ecore_ptt_release(p_hwfn, p_ptt); 4136 } 4137 4138 return ECORE_SUCCESS; 4139 } 4140 4141 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn) 4142 { 4143 struct ecore_ptt *p_ptt; 4144 4145 if (IS_VF(p_hwfn->p_dev)) 4146 return ECORE_SUCCESS; 4147 4148 p_ptt = ecore_ptt_acquire(p_hwfn); 4149 if (!p_ptt) 4150 return ECORE_AGAIN; 4151 4152 /* If roce info is allocated it means roce is initialized and should 4153 * be enabled in searcher. 4154 */ 4155 if (p_hwfn->p_rdma_info) { 4156 if (p_hwfn->b_rdma_enabled_in_prs) 4157 ecore_wr(p_hwfn, p_ptt, 4158 p_hwfn->rdma_prs_search_reg, 0x1); 4159 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1); 4160 } 4161 4162 /* Re-open incoming traffic */ 4163 ecore_wr(p_hwfn, p_ptt, 4164 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); 4165 ecore_ptt_release(p_hwfn, p_ptt); 4166 4167 return ECORE_SUCCESS; 4168 } 4169 4170 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ 4171 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn) 4172 { 4173 ecore_ptt_pool_free(p_hwfn); 4174 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info); 4175 } 4176 4177 /* Setup bar access */ 4178 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn) 4179 { 4180 /* clear indirect access */ 4181 if (ECORE_IS_AH(p_hwfn->p_dev)) { 4182 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4183 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0); 4184 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4185 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0); 4186 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4187 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0); 4188 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4189 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0); 4190 } else { 4191 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4192 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); 4193 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4194 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); 4195 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4196 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); 4197 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4198 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); 4199 } 4200 4201 /* Clean previous pglue_b errors if such exist */ 4202 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); 4203 4204 /* enable internal target-read */ 4205 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 4206 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 4207 } 4208 4209 static void get_function_id(struct ecore_hwfn *p_hwfn) 4210 { 4211 /* ME Register */ 4212 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, 4213 PXP_PF_ME_OPAQUE_ADDR); 4214 4215 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); 4216 4217 /* Bits 16-19 from the ME registers are the pf_num */ 4218 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; 4219 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 4220 PXP_CONCRETE_FID_PFID); 4221 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, 4222 PXP_CONCRETE_FID_PORT); 4223 4224 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 4225 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", 4226 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); 4227 } 4228 4229 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn) 4230 { 4231 u32 *feat_num = p_hwfn->hw_info.feat_num; 4232 struct ecore_sb_cnt_info sb_cnt; 4233 u32 non_l2_sbs = 0; 4234 4235 OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt)); 4236 ecore_int_get_num_sbs(p_hwfn, &sb_cnt); 4237 4238 /* L2 Queues require each: 1 status block. 1 L2 queue */ 4239 if (ECORE_IS_L2_PERSONALITY(p_hwfn)) { 4240 /* Start by allocating VF queues, then PF's */ 4241 feat_num[ECORE_VF_L2_QUE] = 4242 OSAL_MIN_T(u32, 4243 RESC_NUM(p_hwfn, ECORE_L2_QUEUE), 4244 sb_cnt.iov_cnt); 4245 feat_num[ECORE_PF_L2_QUE] = 4246 OSAL_MIN_T(u32, 4247 sb_cnt.cnt - non_l2_sbs, 4248 RESC_NUM(p_hwfn, ECORE_L2_QUEUE) - 4249 FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE)); 4250 } 4251 4252 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) || 4253 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) { 4254 u32 *p_storage_feat = ECORE_IS_FCOE_PERSONALITY(p_hwfn) ? 4255 &feat_num[ECORE_FCOE_CQ] : 4256 &feat_num[ECORE_ISCSI_CQ]; 4257 u32 limit = sb_cnt.cnt; 4258 4259 /* The number of queues should not exceed the number of FP SBs. 4260 * In storage target, the queues are divided into pairs of a CQ 4261 * and a CmdQ, and each pair uses a single SB. The limit in 4262 * this case should allow a max ratio of 2:1 instead of 1:1. 4263 */ 4264 if (p_hwfn->p_dev->b_is_target) 4265 limit *= 2; 4266 *p_storage_feat = OSAL_MIN_T(u32, limit, 4267 RESC_NUM(p_hwfn, ECORE_CMDQS_CQS)); 4268 4269 /* @DPDK */ 4270 /* The size of "cq_cmdq_sb_num_arr" in the fcoe/iscsi init 4271 * ramrod is limited to "NUM_OF_GLOBAL_QUEUES / 2". 4272 */ 4273 *p_storage_feat = OSAL_MIN_T(u32, *p_storage_feat, 4274 (NUM_OF_GLOBAL_QUEUES / 2)); 4275 } 4276 4277 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 4278 "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n", 4279 (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE), 4280 (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE), 4281 (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ), 4282 (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ), 4283 (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ), 4284 (int)sb_cnt.cnt); 4285 } 4286 4287 const char *ecore_hw_get_resc_name(enum ecore_resources res_id) 4288 { 4289 switch (res_id) { 4290 case ECORE_L2_QUEUE: 4291 return "L2_QUEUE"; 4292 case ECORE_VPORT: 4293 return "VPORT"; 4294 case ECORE_RSS_ENG: 4295 return "RSS_ENG"; 4296 case ECORE_PQ: 4297 return "PQ"; 4298 case ECORE_RL: 4299 return "RL"; 4300 case ECORE_MAC: 4301 return "MAC"; 4302 case ECORE_VLAN: 4303 return "VLAN"; 4304 case ECORE_RDMA_CNQ_RAM: 4305 return "RDMA_CNQ_RAM"; 4306 case ECORE_ILT: 4307 return "ILT"; 4308 case ECORE_LL2_QUEUE: 4309 return "LL2_QUEUE"; 4310 case ECORE_CMDQS_CQS: 4311 return "CMDQS_CQS"; 4312 case ECORE_RDMA_STATS_QUEUE: 4313 return "RDMA_STATS_QUEUE"; 4314 case ECORE_BDQ: 4315 return "BDQ"; 4316 case ECORE_SB: 4317 return "SB"; 4318 default: 4319 return "UNKNOWN_RESOURCE"; 4320 } 4321 } 4322 4323 static enum _ecore_status_t 4324 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn, 4325 struct ecore_ptt *p_ptt, 4326 enum ecore_resources res_id, 4327 u32 resc_max_val, 4328 u32 *p_mcp_resp) 4329 { 4330 enum _ecore_status_t rc; 4331 4332 rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, 4333 resc_max_val, p_mcp_resp); 4334 if (rc != ECORE_SUCCESS) { 4335 DP_NOTICE(p_hwfn, false, 4336 "MFW response failure for a max value setting of resource %d [%s]\n", 4337 res_id, ecore_hw_get_resc_name(res_id)); 4338 return rc; 4339 } 4340 4341 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) 4342 DP_INFO(p_hwfn, 4343 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", 4344 res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp); 4345 4346 return ECORE_SUCCESS; 4347 } 4348 4349 static enum _ecore_status_t 4350 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn, 4351 struct ecore_ptt *p_ptt) 4352 { 4353 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev); 4354 u32 resc_max_val, mcp_resp; 4355 u8 res_id; 4356 enum _ecore_status_t rc; 4357 4358 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) { 4359 /* @DPDK */ 4360 switch (res_id) { 4361 case ECORE_LL2_QUEUE: 4362 case ECORE_RDMA_CNQ_RAM: 4363 case ECORE_RDMA_STATS_QUEUE: 4364 case ECORE_BDQ: 4365 resc_max_val = 0; 4366 break; 4367 default: 4368 continue; 4369 } 4370 4371 rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, 4372 resc_max_val, &mcp_resp); 4373 if (rc != ECORE_SUCCESS) 4374 return rc; 4375 4376 /* There's no point to continue to the next resource if the 4377 * command is not supported by the MFW. 4378 * We do continue if the command is supported but the resource 4379 * is unknown to the MFW. Such a resource will be later 4380 * configured with the default allocation values. 4381 */ 4382 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) 4383 return ECORE_NOTIMPL; 4384 } 4385 4386 return ECORE_SUCCESS; 4387 } 4388 4389 static 4390 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn, 4391 enum ecore_resources res_id, 4392 u32 *p_resc_num, u32 *p_resc_start) 4393 { 4394 u8 num_funcs = p_hwfn->num_funcs_on_engine; 4395 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev); 4396 4397 switch (res_id) { 4398 case ECORE_L2_QUEUE: 4399 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 : 4400 MAX_NUM_L2_QUEUES_BB) / num_funcs; 4401 break; 4402 case ECORE_VPORT: 4403 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : 4404 MAX_NUM_VPORTS_BB) / num_funcs; 4405 break; 4406 case ECORE_RSS_ENG: 4407 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 : 4408 ETH_RSS_ENGINE_NUM_BB) / num_funcs; 4409 break; 4410 case ECORE_PQ: 4411 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 : 4412 MAX_QM_TX_QUEUES_BB) / num_funcs; 4413 break; 4414 case ECORE_RL: 4415 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs; 4416 break; 4417 case ECORE_MAC: 4418 case ECORE_VLAN: 4419 /* Each VFC resource can accommodate both a MAC and a VLAN */ 4420 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; 4421 break; 4422 case ECORE_ILT: 4423 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 : 4424 PXP_NUM_ILT_RECORDS_BB) / num_funcs; 4425 break; 4426 case ECORE_LL2_QUEUE: 4427 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs; 4428 break; 4429 case ECORE_RDMA_CNQ_RAM: 4430 case ECORE_CMDQS_CQS: 4431 /* CNQ/CMDQS are the same resource */ 4432 /* @DPDK */ 4433 *p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs; 4434 break; 4435 case ECORE_RDMA_STATS_QUEUE: 4436 /* @DPDK */ 4437 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 : 4438 MAX_NUM_VPORTS_BB) / num_funcs; 4439 break; 4440 case ECORE_BDQ: 4441 /* @DPDK */ 4442 *p_resc_num = 0; 4443 break; 4444 default: 4445 break; 4446 } 4447 4448 4449 switch (res_id) { 4450 case ECORE_BDQ: 4451 if (!*p_resc_num) 4452 *p_resc_start = 0; 4453 break; 4454 case ECORE_SB: 4455 /* Since we want its value to reflect whether MFW supports 4456 * the new scheme, have a default of 0. 4457 */ 4458 *p_resc_num = 0; 4459 break; 4460 default: 4461 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; 4462 break; 4463 } 4464 4465 return ECORE_SUCCESS; 4466 } 4467 4468 static enum _ecore_status_t 4469 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id, 4470 bool drv_resc_alloc) 4471 { 4472 u32 dflt_resc_num = 0, dflt_resc_start = 0; 4473 u32 mcp_resp, *p_resc_num, *p_resc_start; 4474 enum _ecore_status_t rc; 4475 4476 p_resc_num = &RESC_NUM(p_hwfn, res_id); 4477 p_resc_start = &RESC_START(p_hwfn, res_id); 4478 4479 rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, 4480 &dflt_resc_start); 4481 if (rc != ECORE_SUCCESS) { 4482 DP_ERR(p_hwfn, 4483 "Failed to get default amount for resource %d [%s]\n", 4484 res_id, ecore_hw_get_resc_name(res_id)); 4485 return rc; 4486 } 4487 4488 #ifndef ASIC_ONLY 4489 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 4490 *p_resc_num = dflt_resc_num; 4491 *p_resc_start = dflt_resc_start; 4492 goto out; 4493 } 4494 #endif 4495 4496 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, 4497 &mcp_resp, p_resc_num, p_resc_start); 4498 if (rc != ECORE_SUCCESS) { 4499 DP_NOTICE(p_hwfn, true, 4500 "MFW response failure for an allocation request for" 4501 " resource %d [%s]\n", 4502 res_id, ecore_hw_get_resc_name(res_id)); 4503 return rc; 4504 } 4505 4506 /* Default driver values are applied in the following cases: 4507 * - The resource allocation MB command is not supported by the MFW 4508 * - There is an internal error in the MFW while processing the request 4509 * - The resource ID is unknown to the MFW 4510 */ 4511 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { 4512 DP_INFO(p_hwfn, 4513 "Failed to receive allocation info for resource %d [%s]." 4514 " mcp_resp = 0x%x. Applying default values" 4515 " [%d,%d].\n", 4516 res_id, ecore_hw_get_resc_name(res_id), mcp_resp, 4517 dflt_resc_num, dflt_resc_start); 4518 4519 *p_resc_num = dflt_resc_num; 4520 *p_resc_start = dflt_resc_start; 4521 goto out; 4522 } 4523 4524 if ((*p_resc_num != dflt_resc_num || 4525 *p_resc_start != dflt_resc_start) && 4526 res_id != ECORE_SB) { 4527 DP_INFO(p_hwfn, 4528 "MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n", 4529 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num, 4530 *p_resc_start, dflt_resc_num, dflt_resc_start, 4531 drv_resc_alloc ? " - Applying default values" : ""); 4532 if (drv_resc_alloc) { 4533 *p_resc_num = dflt_resc_num; 4534 *p_resc_start = dflt_resc_start; 4535 } 4536 } 4537 out: 4538 return ECORE_SUCCESS; 4539 } 4540 4541 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, 4542 bool drv_resc_alloc) 4543 { 4544 enum _ecore_status_t rc; 4545 u8 res_id; 4546 4547 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) { 4548 rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc); 4549 if (rc != ECORE_SUCCESS) 4550 return rc; 4551 } 4552 4553 return ECORE_SUCCESS; 4554 } 4555 4556 #define ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS 0xaa 4557 #define ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS 0x55 4558 #define ECORE_NONUSED_PPFID_MASK_AH_4P 0xf0 4559 4560 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn, 4561 struct ecore_ptt *p_ptt) 4562 { 4563 u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn), new_bitmap; 4564 struct ecore_dev *p_dev = p_hwfn->p_dev; 4565 enum _ecore_status_t rc; 4566 4567 rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt); 4568 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) 4569 return rc; 4570 else if (rc == ECORE_NOTIMPL) 4571 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx; 4572 4573 /* 4-ports mode has limitations that should be enforced: 4574 * - BB: the MFW can access only PPFIDs which their corresponding PFIDs 4575 * belong to this certain port. 4576 * - AH/E5: only 4 PPFIDs per port are available. 4577 */ 4578 if (ecore_device_num_ports(p_dev) == 4) { 4579 u8 mask; 4580 4581 if (ECORE_IS_BB(p_dev)) 4582 mask = MFW_PORT(p_hwfn) > 1 ? 4583 ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS : 4584 ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS; 4585 else 4586 mask = ECORE_NONUSED_PPFID_MASK_AH_4P; 4587 4588 if (p_dev->ppfid_bitmap & mask) { 4589 new_bitmap = p_dev->ppfid_bitmap & ~mask; 4590 DP_INFO(p_hwfn, 4591 "Fix the PPFID bitmap for 4-ports mode: 0x%hhx -> 0x%hhx\n", 4592 p_dev->ppfid_bitmap, new_bitmap); 4593 p_dev->ppfid_bitmap = new_bitmap; 4594 } 4595 } 4596 4597 /* The native PPFID is expected to be part of the allocated bitmap */ 4598 if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) { 4599 new_bitmap = 0x1 << native_ppfid_idx; 4600 DP_INFO(p_hwfn, 4601 "Fix the PPFID bitmap to inculde the native PPFID: %hhd -> 0x%hhx\n", 4602 p_dev->ppfid_bitmap, new_bitmap); 4603 p_dev->ppfid_bitmap = new_bitmap; 4604 } 4605 4606 return ECORE_SUCCESS; 4607 } 4608 4609 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn, 4610 struct ecore_ptt *p_ptt, 4611 bool drv_resc_alloc) 4612 { 4613 struct ecore_resc_unlock_params resc_unlock_params; 4614 struct ecore_resc_lock_params resc_lock_params; 4615 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev); 4616 u8 res_id; 4617 enum _ecore_status_t rc; 4618 #ifndef ASIC_ONLY 4619 u32 *resc_start = p_hwfn->hw_info.resc_start; 4620 u32 *resc_num = p_hwfn->hw_info.resc_num; 4621 /* For AH, an equal share of the ILT lines between the maximal number of 4622 * PFs is not enough for RoCE. This would be solved by the future 4623 * resource allocation scheme, but isn't currently present for 4624 * FPGA/emulation. For now we keep a number that is sufficient for RoCE 4625 * to work - the BB number of ILT lines divided by its max PFs number. 4626 */ 4627 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB; 4628 #endif 4629 4630 /* Setting the max values of the soft resources and the following 4631 * resources allocation queries should be atomic. Since several PFs can 4632 * run in parallel - a resource lock is needed. 4633 * If either the resource lock or resource set value commands are not 4634 * supported - skip the max values setting, release the lock if 4635 * needed, and proceed to the queries. Other failures, including a 4636 * failure to acquire the lock, will cause this function to fail. 4637 * Old drivers that don't acquire the lock can run in parallel, and 4638 * their allocation values won't be affected by the updated max values. 4639 */ 4640 ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, 4641 ECORE_RESC_LOCK_RESC_ALLOC, false); 4642 4643 rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); 4644 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) { 4645 return rc; 4646 } else if (rc == ECORE_NOTIMPL) { 4647 DP_INFO(p_hwfn, 4648 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); 4649 } else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) { 4650 DP_NOTICE(p_hwfn, false, 4651 "Failed to acquire the resource lock for the resource allocation commands\n"); 4652 rc = ECORE_BUSY; 4653 goto unlock_and_exit; 4654 } else { 4655 rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt); 4656 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) { 4657 DP_NOTICE(p_hwfn, false, 4658 "Failed to set the max values of the soft resources\n"); 4659 goto unlock_and_exit; 4660 } else if (rc == ECORE_NOTIMPL) { 4661 DP_INFO(p_hwfn, 4662 "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); 4663 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt, 4664 &resc_unlock_params); 4665 if (rc != ECORE_SUCCESS) 4666 DP_INFO(p_hwfn, 4667 "Failed to release the resource lock for the resource allocation commands\n"); 4668 } 4669 } 4670 4671 rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc); 4672 if (rc != ECORE_SUCCESS) 4673 goto unlock_and_exit; 4674 4675 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { 4676 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt, 4677 &resc_unlock_params); 4678 if (rc != ECORE_SUCCESS) 4679 DP_INFO(p_hwfn, 4680 "Failed to release the resource lock for the resource allocation commands\n"); 4681 } 4682 4683 /* PPFID bitmap */ 4684 if (IS_LEAD_HWFN(p_hwfn)) { 4685 rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt); 4686 if (rc != ECORE_SUCCESS) 4687 return rc; 4688 } 4689 4690 #ifndef ASIC_ONLY 4691 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { 4692 /* Reduced build contains less PQs */ 4693 if (!(p_hwfn->p_dev->b_is_emul_full)) { 4694 resc_num[ECORE_PQ] = 32; 4695 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] * 4696 p_hwfn->enabled_func_idx; 4697 } 4698 4699 /* For AH emulation, since we have a possible maximal number of 4700 * 16 enabled PFs, in case there are not enough ILT lines - 4701 * allocate only first PF as RoCE and have all the other ETH 4702 * only with less ILT lines. 4703 */ 4704 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full) 4705 resc_num[ECORE_ILT] = OSAL_MAX_T(u32, 4706 resc_num[ECORE_ILT], 4707 roce_min_ilt_lines); 4708 } 4709 4710 /* Correct the common ILT calculation if PF0 has more */ 4711 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) && 4712 p_hwfn->p_dev->b_is_emul_full && 4713 p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines) 4714 resc_start[ECORE_ILT] += roce_min_ilt_lines - 4715 resc_num[ECORE_ILT]; 4716 #endif 4717 4718 /* Sanity for ILT */ 4719 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) || 4720 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) { 4721 DP_NOTICE(p_hwfn, true, 4722 "Can't assign ILT pages [%08x,...,%08x]\n", 4723 RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn, 4724 ECORE_ILT) - 4725 1); 4726 return ECORE_INVAL; 4727 } 4728 4729 /* This will also learn the number of SBs from MFW */ 4730 if (ecore_int_igu_reset_cam(p_hwfn, p_ptt)) 4731 return ECORE_INVAL; 4732 4733 ecore_hw_set_feat(p_hwfn); 4734 4735 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 4736 "The numbers for each resource are:\n"); 4737 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) 4738 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n", 4739 ecore_hw_get_resc_name(res_id), 4740 RESC_NUM(p_hwfn, res_id), 4741 RESC_START(p_hwfn, res_id)); 4742 4743 return ECORE_SUCCESS; 4744 4745 unlock_and_exit: 4746 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) 4747 ecore_mcp_resc_unlock(p_hwfn, p_ptt, 4748 &resc_unlock_params); 4749 return rc; 4750 } 4751 4752 static enum _ecore_status_t 4753 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn, 4754 struct ecore_ptt *p_ptt, 4755 struct ecore_hw_prepare_params *p_params) 4756 { 4757 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode; 4758 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; 4759 struct ecore_mcp_link_capabilities *p_caps; 4760 struct ecore_mcp_link_params *link; 4761 enum _ecore_status_t rc; 4762 4763 /* Read global nvm_cfg address */ 4764 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 4765 4766 /* Verify MCP has initialized it */ 4767 if (!nvm_cfg_addr) { 4768 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n"); 4769 if (p_params->b_relaxed_probe) 4770 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM; 4771 return ECORE_INVAL; 4772 } 4773 4774 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ 4775 4776 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 4777 4778 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4779 OFFSETOF(struct nvm_cfg1, glob) + 4780 OFFSETOF(struct nvm_cfg1_glob, core_cfg); 4781 4782 core_cfg = ecore_rd(p_hwfn, p_ptt, addr); 4783 4784 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> 4785 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { 4786 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: 4787 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G; 4788 break; 4789 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: 4790 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G; 4791 break; 4792 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: 4793 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G; 4794 break; 4795 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: 4796 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F; 4797 break; 4798 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: 4799 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E; 4800 break; 4801 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: 4802 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G; 4803 break; 4804 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: 4805 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G; 4806 break; 4807 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: 4808 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G; 4809 break; 4810 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: 4811 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G; 4812 break; 4813 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: 4814 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G; 4815 break; 4816 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: 4817 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G; 4818 break; 4819 default: 4820 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n", 4821 core_cfg); 4822 break; 4823 } 4824 4825 /* Read DCBX configuration */ 4826 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4827 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 4828 dcbx_mode = ecore_rd(p_hwfn, p_ptt, 4829 port_cfg_addr + 4830 OFFSETOF(struct nvm_cfg1_port, generic_cont0)); 4831 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK) 4832 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET; 4833 switch (dcbx_mode) { 4834 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC: 4835 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC; 4836 break; 4837 case NVM_CFG1_PORT_DCBX_MODE_CEE: 4838 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE; 4839 break; 4840 case NVM_CFG1_PORT_DCBX_MODE_IEEE: 4841 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE; 4842 break; 4843 default: 4844 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED; 4845 } 4846 4847 /* Read default link configuration */ 4848 link = &p_hwfn->mcp_info->link_input; 4849 p_caps = &p_hwfn->mcp_info->link_capabilities; 4850 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4851 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 4852 link_temp = ecore_rd(p_hwfn, p_ptt, 4853 port_cfg_addr + 4854 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask)); 4855 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; 4856 link->speed.advertised_speeds = link_temp; 4857 p_caps->speed_capabilities = link->speed.advertised_speeds; 4858 4859 link_temp = ecore_rd(p_hwfn, p_ptt, 4860 port_cfg_addr + 4861 OFFSETOF(struct nvm_cfg1_port, link_settings)); 4862 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> 4863 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { 4864 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: 4865 link->speed.autoneg = true; 4866 break; 4867 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: 4868 link->speed.forced_speed = 1000; 4869 break; 4870 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: 4871 link->speed.forced_speed = 10000; 4872 break; 4873 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: 4874 link->speed.forced_speed = 25000; 4875 break; 4876 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: 4877 link->speed.forced_speed = 40000; 4878 break; 4879 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: 4880 link->speed.forced_speed = 50000; 4881 break; 4882 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: 4883 link->speed.forced_speed = 100000; 4884 break; 4885 default: 4886 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp); 4887 } 4888 4889 p_caps->default_speed = link->speed.forced_speed; 4890 p_caps->default_speed_autoneg = link->speed.autoneg; 4891 4892 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; 4893 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; 4894 link->pause.autoneg = !!(link_temp & 4895 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); 4896 link->pause.forced_rx = !!(link_temp & 4897 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); 4898 link->pause.forced_tx = !!(link_temp & 4899 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); 4900 link->loopback_mode = 0; 4901 4902 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { 4903 link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr + 4904 OFFSETOF(struct nvm_cfg1_port, ext_phy)); 4905 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; 4906 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; 4907 p_caps->default_eee = ECORE_MCP_EEE_ENABLED; 4908 link->eee.enable = true; 4909 switch (link_temp) { 4910 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: 4911 p_caps->default_eee = ECORE_MCP_EEE_DISABLED; 4912 link->eee.enable = false; 4913 break; 4914 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: 4915 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; 4916 break; 4917 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: 4918 p_caps->eee_lpi_timer = 4919 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; 4920 break; 4921 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: 4922 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; 4923 break; 4924 } 4925 4926 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; 4927 link->eee.tx_lpi_enable = link->eee.enable; 4928 link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV; 4929 } else { 4930 p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED; 4931 } 4932 4933 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 4934 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n EEE: %02x [%08x usec]", 4935 link->speed.forced_speed, link->speed.advertised_speeds, 4936 link->speed.autoneg, link->pause.autoneg, 4937 p_caps->default_eee, p_caps->eee_lpi_timer); 4938 4939 /* Read Multi-function information from shmem */ 4940 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 4941 OFFSETOF(struct nvm_cfg1, glob) + 4942 OFFSETOF(struct nvm_cfg1_glob, generic_cont0); 4943 4944 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr); 4945 4946 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> 4947 NVM_CFG1_GLOB_MF_MODE_OFFSET; 4948 4949 switch (mf_mode) { 4950 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 4951 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS; 4952 break; 4953 case NVM_CFG1_GLOB_MF_MODE_UFP: 4954 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS | 4955 1 << ECORE_MF_UFP_SPECIFIC | 4956 1 << ECORE_MF_8021Q_TAGGING; 4957 break; 4958 case NVM_CFG1_GLOB_MF_MODE_BD: 4959 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS | 4960 1 << ECORE_MF_LLH_PROTO_CLSS | 4961 1 << ECORE_MF_8021AD_TAGGING | 4962 1 << ECORE_MF_FIP_SPECIAL; 4963 break; 4964 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 4965 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS | 4966 1 << ECORE_MF_LLH_PROTO_CLSS | 4967 1 << ECORE_MF_LL2_NON_UNICAST | 4968 1 << ECORE_MF_INTER_PF_SWITCH | 4969 1 << ECORE_MF_DISABLE_ARFS; 4970 break; 4971 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 4972 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS | 4973 1 << ECORE_MF_LLH_PROTO_CLSS | 4974 1 << ECORE_MF_LL2_NON_UNICAST; 4975 if (ECORE_IS_BB(p_hwfn->p_dev)) 4976 p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF; 4977 break; 4978 } 4979 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", 4980 p_hwfn->p_dev->mf_bits); 4981 4982 if (ECORE_IS_CMT(p_hwfn->p_dev)) 4983 p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS); 4984 4985 /* It's funny since we have another switch, but it's easier 4986 * to throw this away in linux this way. Long term, it might be 4987 * better to have have getters for needed ECORE_MF_* fields, 4988 * convert client code and eliminate this. 4989 */ 4990 switch (mf_mode) { 4991 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: 4992 case NVM_CFG1_GLOB_MF_MODE_BD: 4993 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN; 4994 break; 4995 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: 4996 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR; 4997 break; 4998 case NVM_CFG1_GLOB_MF_MODE_DEFAULT: 4999 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT; 5000 break; 5001 case NVM_CFG1_GLOB_MF_MODE_UFP: 5002 p_hwfn->p_dev->mf_mode = ECORE_MF_UFP; 5003 break; 5004 } 5005 5006 /* Read Multi-function information from shmem */ 5007 addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 5008 OFFSETOF(struct nvm_cfg1, glob) + 5009 OFFSETOF(struct nvm_cfg1_glob, device_capabilities); 5010 5011 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr); 5012 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) 5013 OSAL_SET_BIT(ECORE_DEV_CAP_ETH, 5014 &p_hwfn->hw_info.device_capabilities); 5015 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) 5016 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE, 5017 &p_hwfn->hw_info.device_capabilities); 5018 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) 5019 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI, 5020 &p_hwfn->hw_info.device_capabilities); 5021 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) 5022 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE, 5023 &p_hwfn->hw_info.device_capabilities); 5024 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP) 5025 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP, 5026 &p_hwfn->hw_info.device_capabilities); 5027 5028 rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt); 5029 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) { 5030 rc = ECORE_SUCCESS; 5031 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP; 5032 } 5033 5034 return rc; 5035 } 5036 5037 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn, 5038 struct ecore_ptt *p_ptt) 5039 { 5040 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; 5041 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; 5042 struct ecore_dev *p_dev = p_hwfn->p_dev; 5043 5044 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; 5045 5046 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values 5047 * in the other bits are selected. 5048 * Bits 1-15 are for functions 1-15, respectively, and their value is 5049 * '0' only for enabled functions (function 0 always exists and 5050 * enabled). 5051 * In case of CMT in BB, only the "even" functions are enabled, and thus 5052 * the number of functions for both hwfns is learnt from the same bits. 5053 */ 5054 if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) { 5055 reg_function_hide = ecore_rd(p_hwfn, p_ptt, 5056 MISCS_REG_FUNCTION_HIDE_BB_K2); 5057 } else { /* E5 */ 5058 reg_function_hide = 0; 5059 } 5060 5061 if (reg_function_hide & 0x1) { 5062 if (ECORE_IS_BB(p_dev)) { 5063 if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) { 5064 num_funcs = 0; 5065 eng_mask = 0xaaaa; 5066 } else { 5067 num_funcs = 1; 5068 eng_mask = 0x5554; 5069 } 5070 } else { 5071 num_funcs = 1; 5072 eng_mask = 0xfffe; 5073 } 5074 5075 /* Get the number of the enabled functions on the engine */ 5076 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; 5077 while (tmp) { 5078 if (tmp & 0x1) 5079 num_funcs++; 5080 tmp >>= 0x1; 5081 } 5082 5083 /* Get the PF index within the enabled functions */ 5084 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; 5085 tmp = reg_function_hide & eng_mask & low_pfs_mask; 5086 while (tmp) { 5087 if (tmp & 0x1) 5088 enabled_func_idx--; 5089 tmp >>= 0x1; 5090 } 5091 } 5092 5093 p_hwfn->num_funcs_on_engine = num_funcs; 5094 p_hwfn->enabled_func_idx = enabled_func_idx; 5095 5096 #ifndef ASIC_ONLY 5097 if (CHIP_REV_IS_FPGA(p_dev)) { 5098 DP_NOTICE(p_hwfn, false, 5099 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n"); 5100 p_hwfn->num_funcs_on_engine = 4; 5101 } 5102 #endif 5103 5104 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, 5105 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", 5106 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id, 5107 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); 5108 } 5109 5110 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn, 5111 struct ecore_ptt *p_ptt) 5112 { 5113 struct ecore_dev *p_dev = p_hwfn->p_dev; 5114 u32 port_mode; 5115 5116 #ifndef ASIC_ONLY 5117 /* Read the port mode */ 5118 if (CHIP_REV_IS_FPGA(p_dev)) 5119 port_mode = 4; 5120 else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev)) 5121 /* In CMT on emulation, assume 1 port */ 5122 port_mode = 1; 5123 else 5124 #endif 5125 port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB); 5126 5127 if (port_mode < 3) { 5128 p_dev->num_ports_in_engine = 1; 5129 } else if (port_mode <= 5) { 5130 p_dev->num_ports_in_engine = 2; 5131 } else { 5132 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n", 5133 p_dev->num_ports_in_engine); 5134 5135 /* Default num_ports_in_engine to something */ 5136 p_dev->num_ports_in_engine = 1; 5137 } 5138 } 5139 5140 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn, 5141 struct ecore_ptt *p_ptt) 5142 { 5143 struct ecore_dev *p_dev = p_hwfn->p_dev; 5144 u32 port; 5145 int i; 5146 5147 p_dev->num_ports_in_engine = 0; 5148 5149 #ifndef ASIC_ONLY 5150 if (CHIP_REV_IS_EMUL(p_dev)) { 5151 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED); 5152 switch ((port & 0xf000) >> 12) { 5153 case 1: 5154 p_dev->num_ports_in_engine = 1; 5155 break; 5156 case 3: 5157 p_dev->num_ports_in_engine = 2; 5158 break; 5159 case 0xf: 5160 p_dev->num_ports_in_engine = 4; 5161 break; 5162 default: 5163 DP_NOTICE(p_hwfn, false, 5164 "Unknown port mode in ECO_RESERVED %08x\n", 5165 port); 5166 } 5167 } else 5168 #endif 5169 for (i = 0; i < MAX_NUM_PORTS_K2; i++) { 5170 port = ecore_rd(p_hwfn, p_ptt, 5171 CNIG_REG_NIG_PORT0_CONF_K2_E5 + 5172 (i * 4)); 5173 if (port & 1) 5174 p_dev->num_ports_in_engine++; 5175 } 5176 5177 if (!p_dev->num_ports_in_engine) { 5178 DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n"); 5179 5180 /* Default num_ports_in_engine to something */ 5181 p_dev->num_ports_in_engine = 1; 5182 } 5183 } 5184 5185 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn, 5186 struct ecore_ptt *p_ptt) 5187 { 5188 struct ecore_dev *p_dev = p_hwfn->p_dev; 5189 5190 /* Determine the number of ports per engine */ 5191 if (ECORE_IS_BB(p_dev)) 5192 ecore_hw_info_port_num_bb(p_hwfn, p_ptt); 5193 else 5194 ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt); 5195 5196 /* Get the total number of ports of the device */ 5197 if (ECORE_IS_CMT(p_dev)) { 5198 /* In CMT there is always only one port */ 5199 p_dev->num_ports = 1; 5200 #ifndef ASIC_ONLY 5201 } else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) { 5202 p_dev->num_ports = p_dev->num_ports_in_engine * 5203 ecore_device_num_engines(p_dev); 5204 #endif 5205 } else { 5206 u32 addr, global_offsize, global_addr; 5207 5208 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 5209 PUBLIC_GLOBAL); 5210 global_offsize = ecore_rd(p_hwfn, p_ptt, addr); 5211 global_addr = SECTION_ADDR(global_offsize, 0); 5212 addr = global_addr + OFFSETOF(struct public_global, max_ports); 5213 p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr); 5214 } 5215 } 5216 5217 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn, 5218 struct ecore_ptt *p_ptt) 5219 { 5220 struct ecore_mcp_link_capabilities *p_caps; 5221 u32 eee_status; 5222 5223 p_caps = &p_hwfn->mcp_info->link_capabilities; 5224 if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED) 5225 return; 5226 5227 p_caps->eee_speed_caps = 0; 5228 eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 5229 OFFSETOF(struct public_port, eee_status)); 5230 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> 5231 EEE_SUPPORTED_SPEED_OFFSET; 5232 if (eee_status & EEE_1G_SUPPORTED) 5233 p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV; 5234 if (eee_status & EEE_10G_ADV) 5235 p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV; 5236 } 5237 5238 static enum _ecore_status_t 5239 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, 5240 enum ecore_pci_personality personality, 5241 struct ecore_hw_prepare_params *p_params) 5242 { 5243 bool drv_resc_alloc = p_params->drv_resc_alloc; 5244 enum _ecore_status_t rc; 5245 5246 if (IS_ECORE_PACING(p_hwfn)) { 5247 DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_IOV, 5248 "Skipping IOV as packet pacing is requested\n"); 5249 } 5250 5251 /* Since all information is common, only first hwfns should do this */ 5252 if (IS_LEAD_HWFN(p_hwfn) && !IS_ECORE_PACING(p_hwfn)) { 5253 rc = ecore_iov_hw_info(p_hwfn); 5254 if (rc != ECORE_SUCCESS) { 5255 if (p_params->b_relaxed_probe) 5256 p_params->p_relaxed_res = 5257 ECORE_HW_PREPARE_BAD_IOV; 5258 else 5259 return rc; 5260 } 5261 } 5262 5263 if (IS_LEAD_HWFN(p_hwfn)) 5264 ecore_hw_info_port_num(p_hwfn, p_ptt); 5265 5266 ecore_mcp_get_capabilities(p_hwfn, p_ptt); 5267 5268 #ifndef ASIC_ONLY 5269 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) { 5270 #endif 5271 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params); 5272 if (rc != ECORE_SUCCESS) 5273 return rc; 5274 #ifndef ASIC_ONLY 5275 } 5276 #endif 5277 5278 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt); 5279 if (rc != ECORE_SUCCESS) { 5280 if (p_params->b_relaxed_probe) 5281 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU; 5282 else 5283 return rc; 5284 } 5285 5286 #ifndef ASIC_ONLY 5287 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) { 5288 #endif 5289 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, 5290 p_hwfn->mcp_info->func_info.mac, ETH_ALEN); 5291 #ifndef ASIC_ONLY 5292 } else { 5293 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 }; 5294 5295 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN); 5296 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id; 5297 } 5298 #endif 5299 5300 if (ecore_mcp_is_init(p_hwfn)) { 5301 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET) 5302 p_hwfn->hw_info.ovlan = 5303 p_hwfn->mcp_info->func_info.ovlan; 5304 5305 ecore_mcp_cmd_port_init(p_hwfn, p_ptt); 5306 5307 ecore_mcp_get_eee_caps(p_hwfn, p_ptt); 5308 5309 ecore_mcp_read_ufp_config(p_hwfn, p_ptt); 5310 } 5311 5312 if (personality != ECORE_PCI_DEFAULT) { 5313 p_hwfn->hw_info.personality = personality; 5314 } else if (ecore_mcp_is_init(p_hwfn)) { 5315 enum ecore_pci_personality protocol; 5316 5317 protocol = p_hwfn->mcp_info->func_info.protocol; 5318 p_hwfn->hw_info.personality = protocol; 5319 } 5320 5321 #ifndef ASIC_ONLY 5322 /* To overcome ILT lack for emulation, until at least until we'll have 5323 * a definite answer from system about it, allow only PF0 to be RoCE. 5324 */ 5325 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) { 5326 if (!p_hwfn->rel_pf_id) 5327 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; 5328 else 5329 p_hwfn->hw_info.personality = ECORE_PCI_ETH; 5330 } 5331 #endif 5332 5333 /* although in BB some constellations may support more than 4 tcs, 5334 * that can result in performance penalty in some cases. 4 5335 * represents a good tradeoff between performance and flexibility. 5336 */ 5337 if (IS_ECORE_PACING(p_hwfn)) 5338 p_hwfn->hw_info.num_hw_tc = 1; 5339 else 5340 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; 5341 5342 /* start out with a single active tc. This can be increased either 5343 * by dcbx negotiation or by upper layer driver 5344 */ 5345 p_hwfn->hw_info.num_active_tc = 1; 5346 5347 ecore_get_num_funcs(p_hwfn, p_ptt); 5348 5349 if (ecore_mcp_is_init(p_hwfn)) 5350 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; 5351 5352 /* In case of forcing the driver's default resource allocation, calling 5353 * ecore_hw_get_resc() should come after initializing the personality 5354 * and after getting the number of functions, since the calculation of 5355 * the resources/features depends on them. 5356 * This order is not harmful if not forcing. 5357 */ 5358 rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc); 5359 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) { 5360 rc = ECORE_SUCCESS; 5361 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP; 5362 } 5363 5364 return rc; 5365 } 5366 5367 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn, 5368 struct ecore_ptt *p_ptt) 5369 { 5370 struct ecore_dev *p_dev = p_hwfn->p_dev; 5371 u16 device_id_mask; 5372 u32 tmp; 5373 5374 /* Read Vendor Id / Device Id */ 5375 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET, 5376 &p_dev->vendor_id); 5377 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET, 5378 &p_dev->device_id); 5379 5380 /* Determine type */ 5381 device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK; 5382 switch (device_id_mask) { 5383 case ECORE_DEV_ID_MASK_BB: 5384 p_dev->type = ECORE_DEV_TYPE_BB; 5385 break; 5386 case ECORE_DEV_ID_MASK_AH: 5387 p_dev->type = ECORE_DEV_TYPE_AH; 5388 break; 5389 default: 5390 DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n", 5391 p_dev->device_id); 5392 return ECORE_ABORTED; 5393 } 5394 5395 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); 5396 p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM); 5397 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); 5398 p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV); 5399 5400 /* Learn number of HW-functions */ 5401 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); 5402 5403 if (tmp & (1 << p_hwfn->rel_pf_id)) { 5404 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n"); 5405 p_dev->num_hwfns = 2; 5406 } else { 5407 p_dev->num_hwfns = 1; 5408 } 5409 5410 #ifndef ASIC_ONLY 5411 if (CHIP_REV_IS_EMUL(p_dev)) { 5412 /* For some reason we have problems with this register 5413 * in B0 emulation; Simply assume no CMT 5414 */ 5415 DP_NOTICE(p_dev->hwfns, false, 5416 "device on emul - assume no CMT\n"); 5417 p_dev->num_hwfns = 1; 5418 } 5419 #endif 5420 5421 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG); 5422 p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID); 5423 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); 5424 p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL); 5425 5426 DP_INFO(p_dev->hwfns, 5427 "Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n", 5428 ECORE_IS_BB(p_dev) ? "BB" : "AH", 5429 'A' + p_dev->chip_rev, (int)p_dev->chip_metal, 5430 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id, 5431 p_dev->chip_metal); 5432 5433 if (ECORE_IS_BB_A0(p_dev)) { 5434 DP_NOTICE(p_dev->hwfns, false, 5435 "The chip type/rev (BB A0) is not supported!\n"); 5436 return ECORE_ABORTED; 5437 } 5438 #ifndef ASIC_ONLY 5439 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev)) 5440 ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1); 5441 5442 if (CHIP_REV_IS_EMUL(p_dev)) { 5443 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED); 5444 if (tmp & (1 << 29)) { 5445 DP_NOTICE(p_hwfn, false, 5446 "Emulation: Running on a FULL build\n"); 5447 p_dev->b_is_emul_full = true; 5448 } else { 5449 DP_NOTICE(p_hwfn, false, 5450 "Emulation: Running on a REDUCED build\n"); 5451 } 5452 } 5453 #endif 5454 5455 return ECORE_SUCCESS; 5456 } 5457 5458 #ifndef LINUX_REMOVE 5459 void ecore_prepare_hibernate(struct ecore_dev *p_dev) 5460 { 5461 int j; 5462 5463 if (IS_VF(p_dev)) 5464 return; 5465 5466 for_each_hwfn(p_dev, j) { 5467 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j]; 5468 5469 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, 5470 "Mark hw/fw uninitialized\n"); 5471 5472 p_hwfn->hw_init_done = false; 5473 5474 ecore_ptt_invalidate(p_hwfn); 5475 } 5476 } 5477 #endif 5478 5479 static enum _ecore_status_t 5480 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview, 5481 void OSAL_IOMEM *p_doorbells, u64 db_phys_addr, 5482 struct ecore_hw_prepare_params *p_params) 5483 { 5484 struct ecore_mdump_retain_data mdump_retain; 5485 struct ecore_dev *p_dev = p_hwfn->p_dev; 5486 struct ecore_mdump_info mdump_info; 5487 enum _ecore_status_t rc = ECORE_SUCCESS; 5488 5489 /* Split PCI bars evenly between hwfns */ 5490 p_hwfn->regview = p_regview; 5491 p_hwfn->doorbells = p_doorbells; 5492 p_hwfn->db_phys_addr = db_phys_addr; 5493 5494 if (IS_VF(p_dev)) 5495 return ecore_vf_hw_prepare(p_hwfn); 5496 5497 /* Validate that chip access is feasible */ 5498 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { 5499 DP_ERR(p_hwfn, 5500 "Reading the ME register returns all Fs; Preventing further chip access\n"); 5501 if (p_params->b_relaxed_probe) 5502 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME; 5503 return ECORE_INVAL; 5504 } 5505 5506 get_function_id(p_hwfn); 5507 5508 /* Allocate PTT pool */ 5509 rc = ecore_ptt_pool_alloc(p_hwfn); 5510 if (rc) { 5511 DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n"); 5512 if (p_params->b_relaxed_probe) 5513 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM; 5514 goto err0; 5515 } 5516 5517 /* Allocate the main PTT */ 5518 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); 5519 5520 /* First hwfn learns basic information, e.g., number of hwfns */ 5521 if (!p_hwfn->my_id) { 5522 rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); 5523 if (rc != ECORE_SUCCESS) { 5524 if (p_params->b_relaxed_probe) 5525 p_params->p_relaxed_res = 5526 ECORE_HW_PREPARE_FAILED_DEV; 5527 goto err1; 5528 } 5529 } 5530 5531 ecore_hw_hwfn_prepare(p_hwfn); 5532 5533 /* Initialize MCP structure */ 5534 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); 5535 if (rc) { 5536 DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n"); 5537 if (p_params->b_relaxed_probe) 5538 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM; 5539 goto err1; 5540 } 5541 5542 /* Read the device configuration information from the HW and SHMEM */ 5543 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, 5544 p_params->personality, p_params); 5545 if (rc) { 5546 DP_NOTICE(p_hwfn, false, "Failed to get HW information\n"); 5547 goto err2; 5548 } 5549 5550 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is 5551 * called, since among others it sets the ports number in an engine. 5552 */ 5553 if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) && 5554 !p_dev->recov_in_prog) { 5555 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); 5556 if (rc != ECORE_SUCCESS) 5557 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n"); 5558 5559 /* Workaround for MFW issue where PF FLR does not cleanup 5560 * IGU block 5561 */ 5562 if (!(p_hwfn->mcp_info->capabilities & 5563 FW_MB_PARAM_FEATURE_SUPPORT_IGU_CLEANUP)) 5564 ecore_pf_flr_igu_cleanup(p_hwfn); 5565 } 5566 5567 /* Check if mdump logs/data are present and update the epoch value */ 5568 if (IS_LEAD_HWFN(p_hwfn)) { 5569 #ifndef ASIC_ONLY 5570 if (!CHIP_REV_IS_EMUL(p_dev)) { 5571 #endif 5572 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt, 5573 &mdump_info); 5574 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs) 5575 DP_NOTICE(p_hwfn, false, 5576 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n"); 5577 5578 rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt, 5579 &mdump_retain); 5580 if (rc == ECORE_SUCCESS && mdump_retain.valid) 5581 DP_NOTICE(p_hwfn, false, 5582 "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n", 5583 mdump_retain.epoch, mdump_retain.pf, 5584 mdump_retain.status); 5585 5586 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt, 5587 p_params->epoch); 5588 #ifndef ASIC_ONLY 5589 } 5590 #endif 5591 } 5592 5593 /* Allocate the init RT array and initialize the init-ops engine */ 5594 rc = ecore_init_alloc(p_hwfn); 5595 if (rc) { 5596 DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n"); 5597 if (p_params->b_relaxed_probe) 5598 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM; 5599 goto err2; 5600 } 5601 #ifndef ASIC_ONLY 5602 if (CHIP_REV_IS_FPGA(p_dev)) { 5603 DP_NOTICE(p_hwfn, false, 5604 "FPGA: workaround; Prevent DMAE parities\n"); 5605 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5, 5606 7); 5607 5608 DP_NOTICE(p_hwfn, false, 5609 "FPGA: workaround: Set VF bar0 size\n"); 5610 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, 5611 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4); 5612 } 5613 #endif 5614 5615 return rc; 5616 err2: 5617 if (IS_LEAD_HWFN(p_hwfn)) 5618 ecore_iov_free_hw_info(p_dev); 5619 ecore_mcp_free(p_hwfn); 5620 err1: 5621 ecore_hw_hwfn_free(p_hwfn); 5622 err0: 5623 return rc; 5624 } 5625 5626 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev, 5627 struct ecore_hw_prepare_params *p_params) 5628 { 5629 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 5630 enum _ecore_status_t rc; 5631 5632 p_dev->chk_reg_fifo = p_params->chk_reg_fifo; 5633 p_dev->allow_mdump = p_params->allow_mdump; 5634 p_hwfn->b_en_pacing = p_params->b_en_pacing; 5635 p_dev->b_is_target = p_params->b_is_target; 5636 5637 if (p_params->b_relaxed_probe) 5638 p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS; 5639 5640 /* Store the precompiled init data ptrs */ 5641 if (IS_PF(p_dev)) 5642 ecore_init_iro_array(p_dev); 5643 5644 /* Initialize the first hwfn - will learn number of hwfns */ 5645 rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview, 5646 p_dev->doorbells, p_dev->db_phys_addr, 5647 p_params); 5648 if (rc != ECORE_SUCCESS) 5649 return rc; 5650 5651 p_params->personality = p_hwfn->hw_info.personality; 5652 5653 /* initilalize 2nd hwfn if necessary */ 5654 if (ECORE_IS_CMT(p_dev)) { 5655 void OSAL_IOMEM *p_regview, *p_doorbell; 5656 u8 OSAL_IOMEM *addr; 5657 u64 db_phys_addr; 5658 u32 offset; 5659 5660 /* adjust bar offset for second engine */ 5661 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 5662 BAR_ID_0) / 2; 5663 addr = (u8 OSAL_IOMEM *)p_dev->regview + offset; 5664 p_regview = (void OSAL_IOMEM *)addr; 5665 5666 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, 5667 BAR_ID_1) / 2; 5668 addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset; 5669 p_doorbell = (void OSAL_IOMEM *)addr; 5670 db_phys_addr = p_dev->db_phys_addr + offset; 5671 5672 p_dev->hwfns[1].b_en_pacing = p_params->b_en_pacing; 5673 /* prepare second hw function */ 5674 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview, 5675 p_doorbell, db_phys_addr, 5676 p_params); 5677 5678 /* in case of error, need to free the previously 5679 * initiliazed hwfn 0. 5680 */ 5681 if (rc != ECORE_SUCCESS) { 5682 if (p_params->b_relaxed_probe) 5683 p_params->p_relaxed_res = 5684 ECORE_HW_PREPARE_FAILED_ENG2; 5685 5686 if (IS_PF(p_dev)) { 5687 ecore_init_free(p_hwfn); 5688 ecore_mcp_free(p_hwfn); 5689 ecore_hw_hwfn_free(p_hwfn); 5690 } else { 5691 DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n"); 5692 } 5693 return rc; 5694 } 5695 } 5696 5697 return rc; 5698 } 5699 5700 void ecore_hw_remove(struct ecore_dev *p_dev) 5701 { 5702 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev); 5703 int i; 5704 5705 if (IS_PF(p_dev)) 5706 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, 5707 ECORE_OV_DRIVER_STATE_NOT_LOADED); 5708 5709 for_each_hwfn(p_dev, i) { 5710 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 5711 5712 if (IS_VF(p_dev)) { 5713 ecore_vf_pf_release(p_hwfn); 5714 continue; 5715 } 5716 5717 ecore_init_free(p_hwfn); 5718 ecore_hw_hwfn_free(p_hwfn); 5719 ecore_mcp_free(p_hwfn); 5720 5721 #ifdef CONFIG_ECORE_LOCK_ALLOC 5722 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock); 5723 #endif 5724 } 5725 5726 ecore_iov_free_hw_info(p_dev); 5727 } 5728 5729 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev, 5730 struct ecore_chain *p_chain) 5731 { 5732 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL; 5733 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; 5734 struct ecore_chain_next *p_next; 5735 u32 size, i; 5736 5737 if (!p_virt) 5738 return; 5739 5740 size = p_chain->elem_size * p_chain->usable_per_page; 5741 5742 for (i = 0; i < p_chain->page_cnt; i++) { 5743 if (!p_virt) 5744 break; 5745 5746 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size); 5747 p_virt_next = p_next->next_virt; 5748 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); 5749 5750 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys, 5751 ECORE_CHAIN_PAGE_SIZE); 5752 5753 p_virt = p_virt_next; 5754 p_phys = p_phys_next; 5755 } 5756 } 5757 5758 static void ecore_chain_free_single(struct ecore_dev *p_dev, 5759 struct ecore_chain *p_chain) 5760 { 5761 if (!p_chain->p_virt_addr) 5762 return; 5763 5764 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr, 5765 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE); 5766 } 5767 5768 static void ecore_chain_free_pbl(struct ecore_dev *p_dev, 5769 struct ecore_chain *p_chain) 5770 { 5771 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; 5772 u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table; 5773 u32 page_cnt = p_chain->page_cnt, i, pbl_size; 5774 5775 if (!pp_virt_addr_tbl) 5776 return; 5777 5778 if (!p_pbl_virt) 5779 goto out; 5780 5781 for (i = 0; i < page_cnt; i++) { 5782 if (!pp_virt_addr_tbl[i]) 5783 break; 5784 5785 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i], 5786 *(dma_addr_t *)p_pbl_virt, 5787 ECORE_CHAIN_PAGE_SIZE); 5788 5789 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE; 5790 } 5791 5792 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE; 5793 5794 if (!p_chain->b_external_pbl) 5795 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table, 5796 p_chain->pbl_sp.p_phys_table, pbl_size); 5797 out: 5798 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl); 5799 } 5800 5801 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain) 5802 { 5803 switch (p_chain->mode) { 5804 case ECORE_CHAIN_MODE_NEXT_PTR: 5805 ecore_chain_free_next_ptr(p_dev, p_chain); 5806 break; 5807 case ECORE_CHAIN_MODE_SINGLE: 5808 ecore_chain_free_single(p_dev, p_chain); 5809 break; 5810 case ECORE_CHAIN_MODE_PBL: 5811 ecore_chain_free_pbl(p_dev, p_chain); 5812 break; 5813 } 5814 } 5815 5816 static enum _ecore_status_t 5817 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev, 5818 enum ecore_chain_cnt_type cnt_type, 5819 osal_size_t elem_size, u32 page_cnt) 5820 { 5821 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; 5822 5823 /* The actual chain size can be larger than the maximal possible value 5824 * after rounding up the requested elements number to pages, and after 5825 * taking into acount the unusuable elements (next-ptr elements). 5826 * The size of a "u16" chain can be (U16_MAX + 1) since the chain 5827 * size/capacity fields are of a u32 type. 5828 */ 5829 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 && 5830 chain_size > ((u32)ECORE_U16_MAX + 1)) || 5831 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 && 5832 chain_size > ECORE_U32_MAX)) { 5833 DP_NOTICE(p_dev, true, 5834 "The actual chain size (0x%lx) is larger than the maximal possible value\n", 5835 (unsigned long)chain_size); 5836 return ECORE_INVAL; 5837 } 5838 5839 return ECORE_SUCCESS; 5840 } 5841 5842 static enum _ecore_status_t 5843 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain) 5844 { 5845 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL; 5846 dma_addr_t p_phys = 0; 5847 u32 i; 5848 5849 for (i = 0; i < p_chain->page_cnt; i++) { 5850 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, 5851 ECORE_CHAIN_PAGE_SIZE); 5852 if (!p_virt) { 5853 DP_NOTICE(p_dev, false, 5854 "Failed to allocate chain memory\n"); 5855 return ECORE_NOMEM; 5856 } 5857 5858 if (i == 0) { 5859 ecore_chain_init_mem(p_chain, p_virt, p_phys); 5860 ecore_chain_reset(p_chain); 5861 } else { 5862 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev, 5863 p_virt, p_phys); 5864 } 5865 5866 p_virt_prev = p_virt; 5867 } 5868 /* Last page's next element should point to the beginning of the 5869 * chain. 5870 */ 5871 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev, 5872 p_chain->p_virt_addr, 5873 p_chain->p_phys_addr); 5874 5875 return ECORE_SUCCESS; 5876 } 5877 5878 static enum _ecore_status_t 5879 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain) 5880 { 5881 dma_addr_t p_phys = 0; 5882 void *p_virt = OSAL_NULL; 5883 5884 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE); 5885 if (!p_virt) { 5886 DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n"); 5887 return ECORE_NOMEM; 5888 } 5889 5890 ecore_chain_init_mem(p_chain, p_virt, p_phys); 5891 ecore_chain_reset(p_chain); 5892 5893 return ECORE_SUCCESS; 5894 } 5895 5896 static enum _ecore_status_t 5897 ecore_chain_alloc_pbl(struct ecore_dev *p_dev, 5898 struct ecore_chain *p_chain, 5899 struct ecore_chain_ext_pbl *ext_pbl) 5900 { 5901 u32 page_cnt = p_chain->page_cnt, size, i; 5902 dma_addr_t p_phys = 0, p_pbl_phys = 0; 5903 void **pp_virt_addr_tbl = OSAL_NULL; 5904 u8 *p_pbl_virt = OSAL_NULL; 5905 void *p_virt = OSAL_NULL; 5906 5907 size = page_cnt * sizeof(*pp_virt_addr_tbl); 5908 pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size); 5909 if (!pp_virt_addr_tbl) { 5910 DP_NOTICE(p_dev, false, 5911 "Failed to allocate memory for the chain virtual addresses table\n"); 5912 return ECORE_NOMEM; 5913 } 5914 5915 /* The allocation of the PBL table is done with its full size, since it 5916 * is expected to be successive. 5917 * ecore_chain_init_pbl_mem() is called even in a case of an allocation 5918 * failure, since pp_virt_addr_tbl was previously allocated, and it 5919 * should be saved to allow its freeing during the error flow. 5920 */ 5921 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE; 5922 5923 if (ext_pbl == OSAL_NULL) { 5924 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size); 5925 } else { 5926 p_pbl_virt = ext_pbl->p_pbl_virt; 5927 p_pbl_phys = ext_pbl->p_pbl_phys; 5928 p_chain->b_external_pbl = true; 5929 } 5930 5931 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, 5932 pp_virt_addr_tbl); 5933 if (!p_pbl_virt) { 5934 DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n"); 5935 return ECORE_NOMEM; 5936 } 5937 5938 for (i = 0; i < page_cnt; i++) { 5939 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, 5940 ECORE_CHAIN_PAGE_SIZE); 5941 if (!p_virt) { 5942 DP_NOTICE(p_dev, false, 5943 "Failed to allocate chain memory\n"); 5944 return ECORE_NOMEM; 5945 } 5946 5947 if (i == 0) { 5948 ecore_chain_init_mem(p_chain, p_virt, p_phys); 5949 ecore_chain_reset(p_chain); 5950 } 5951 5952 /* Fill the PBL table with the physical address of the page */ 5953 *(dma_addr_t *)p_pbl_virt = p_phys; 5954 /* Keep the virtual address of the page */ 5955 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; 5956 5957 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE; 5958 } 5959 5960 return ECORE_SUCCESS; 5961 } 5962 5963 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev, 5964 enum ecore_chain_use_mode intended_use, 5965 enum ecore_chain_mode mode, 5966 enum ecore_chain_cnt_type cnt_type, 5967 u32 num_elems, osal_size_t elem_size, 5968 struct ecore_chain *p_chain, 5969 struct ecore_chain_ext_pbl *ext_pbl) 5970 { 5971 u32 page_cnt; 5972 enum _ecore_status_t rc = ECORE_SUCCESS; 5973 5974 if (mode == ECORE_CHAIN_MODE_SINGLE) 5975 page_cnt = 1; 5976 else 5977 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode); 5978 5979 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size, 5980 page_cnt); 5981 if (rc) { 5982 DP_NOTICE(p_dev, false, 5983 "Cannot allocate a chain with the given arguments:\n" 5984 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", 5985 intended_use, mode, cnt_type, num_elems, elem_size); 5986 return rc; 5987 } 5988 5989 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use, 5990 mode, cnt_type, p_dev->dp_ctx); 5991 5992 switch (mode) { 5993 case ECORE_CHAIN_MODE_NEXT_PTR: 5994 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain); 5995 break; 5996 case ECORE_CHAIN_MODE_SINGLE: 5997 rc = ecore_chain_alloc_single(p_dev, p_chain); 5998 break; 5999 case ECORE_CHAIN_MODE_PBL: 6000 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl); 6001 break; 6002 } 6003 if (rc) 6004 goto nomem; 6005 6006 return ECORE_SUCCESS; 6007 6008 nomem: 6009 ecore_chain_free(p_dev, p_chain); 6010 return rc; 6011 } 6012 6013 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn, 6014 u16 src_id, u16 *dst_id) 6015 { 6016 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) { 6017 u16 min, max; 6018 6019 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE); 6020 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE); 6021 DP_NOTICE(p_hwfn, true, 6022 "l2_queue id [%d] is not valid, available indices [%d - %d]\n", 6023 src_id, min, max); 6024 6025 return ECORE_INVAL; 6026 } 6027 6028 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id; 6029 6030 return ECORE_SUCCESS; 6031 } 6032 6033 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn, 6034 u8 src_id, u8 *dst_id) 6035 { 6036 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) { 6037 u8 min, max; 6038 6039 min = (u8)RESC_START(p_hwfn, ECORE_VPORT); 6040 max = min + RESC_NUM(p_hwfn, ECORE_VPORT); 6041 DP_NOTICE(p_hwfn, true, 6042 "vport id [%d] is not valid, available indices [%d - %d]\n", 6043 src_id, min, max); 6044 6045 return ECORE_INVAL; 6046 } 6047 6048 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id; 6049 6050 return ECORE_SUCCESS; 6051 } 6052 6053 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn, 6054 u8 src_id, u8 *dst_id) 6055 { 6056 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) { 6057 u8 min, max; 6058 6059 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG); 6060 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG); 6061 DP_NOTICE(p_hwfn, true, 6062 "rss_eng id [%d] is not valid, available indices [%d - %d]\n", 6063 src_id, min, max); 6064 6065 return ECORE_INVAL; 6066 } 6067 6068 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id; 6069 6070 return ECORE_SUCCESS; 6071 } 6072 6073 enum _ecore_status_t 6074 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn, 6075 struct ecore_ptt *p_ptt) 6076 { 6077 if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) { 6078 ecore_wr(p_hwfn, p_ptt, 6079 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 6080 1 << p_hwfn->abs_pf_id / 2); 6081 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0); 6082 return ECORE_SUCCESS; 6083 } 6084 6085 DP_NOTICE(p_hwfn, false, 6086 "This function can't be set as default\n"); 6087 return ECORE_INVAL; 6088 } 6089 6090 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn, 6091 struct ecore_ptt *p_ptt, 6092 u32 hw_addr, void *p_eth_qzone, 6093 osal_size_t eth_qzone_size, 6094 u8 timeset) 6095 { 6096 struct coalescing_timeset *p_coal_timeset; 6097 6098 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) { 6099 DP_NOTICE(p_hwfn, true, 6100 "Coalescing configuration not enabled\n"); 6101 return ECORE_INVAL; 6102 } 6103 6104 p_coal_timeset = p_eth_qzone; 6105 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size); 6106 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); 6107 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); 6108 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); 6109 6110 return ECORE_SUCCESS; 6111 } 6112 6113 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn, 6114 u16 rx_coal, u16 tx_coal, 6115 void *p_handle) 6116 { 6117 struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle; 6118 enum _ecore_status_t rc = ECORE_SUCCESS; 6119 struct ecore_ptt *p_ptt; 6120 6121 /* TODO - Configuring a single queue's coalescing but 6122 * claiming all queues are abiding same configuration 6123 * for PF and VF both. 6124 */ 6125 6126 if (IS_VF(p_hwfn->p_dev)) 6127 return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal, 6128 tx_coal, p_cid); 6129 6130 p_ptt = ecore_ptt_acquire(p_hwfn); 6131 if (!p_ptt) 6132 return ECORE_AGAIN; 6133 6134 if (rx_coal) { 6135 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 6136 if (rc) 6137 goto out; 6138 p_hwfn->p_dev->rx_coalesce_usecs = rx_coal; 6139 } 6140 6141 if (tx_coal) { 6142 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); 6143 if (rc) 6144 goto out; 6145 p_hwfn->p_dev->tx_coalesce_usecs = tx_coal; 6146 } 6147 out: 6148 ecore_ptt_release(p_hwfn, p_ptt); 6149 6150 return rc; 6151 } 6152 6153 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn, 6154 struct ecore_ptt *p_ptt, 6155 u16 coalesce, 6156 struct ecore_queue_cid *p_cid) 6157 { 6158 struct ustorm_eth_queue_zone eth_qzone; 6159 u8 timeset, timer_res; 6160 u32 address; 6161 enum _ecore_status_t rc; 6162 6163 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 6164 if (coalesce <= 0x7F) { 6165 timer_res = 0; 6166 } else if (coalesce <= 0xFF) { 6167 timer_res = 1; 6168 } else if (coalesce <= 0x1FF) { 6169 timer_res = 2; 6170 } else { 6171 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 6172 return ECORE_INVAL; 6173 } 6174 timeset = (u8)(coalesce >> timer_res); 6175 6176 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, 6177 p_cid->sb_igu_id, false); 6178 if (rc != ECORE_SUCCESS) 6179 goto out; 6180 6181 address = BAR0_MAP_REG_USDM_RAM + 6182 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 6183 6184 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 6185 sizeof(struct ustorm_eth_queue_zone), timeset); 6186 if (rc != ECORE_SUCCESS) 6187 goto out; 6188 6189 out: 6190 return rc; 6191 } 6192 6193 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn, 6194 struct ecore_ptt *p_ptt, 6195 u16 coalesce, 6196 struct ecore_queue_cid *p_cid) 6197 { 6198 struct xstorm_eth_queue_zone eth_qzone; 6199 u8 timeset, timer_res; 6200 u32 address; 6201 enum _ecore_status_t rc; 6202 6203 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ 6204 if (coalesce <= 0x7F) { 6205 timer_res = 0; 6206 } else if (coalesce <= 0xFF) { 6207 timer_res = 1; 6208 } else if (coalesce <= 0x1FF) { 6209 timer_res = 2; 6210 } else { 6211 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); 6212 return ECORE_INVAL; 6213 } 6214 6215 timeset = (u8)(coalesce >> timer_res); 6216 6217 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, 6218 p_cid->sb_igu_id, true); 6219 if (rc != ECORE_SUCCESS) 6220 goto out; 6221 6222 address = BAR0_MAP_REG_XSDM_RAM + 6223 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); 6224 6225 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, 6226 sizeof(struct xstorm_eth_queue_zone), timeset); 6227 out: 6228 return rc; 6229 } 6230 6231 /* Calculate final WFQ values for all vports and configure it. 6232 * After this configuration each vport must have 6233 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT 6234 */ 6235 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn, 6236 struct ecore_ptt *p_ptt, 6237 u32 min_pf_rate) 6238 { 6239 struct init_qm_vport_params *vport_params; 6240 int i; 6241 6242 vport_params = p_hwfn->qm_info.qm_vport_params; 6243 6244 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 6245 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 6246 6247 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) / 6248 min_pf_rate; 6249 ecore_init_vport_wfq(p_hwfn, p_ptt, 6250 vport_params[i].first_tx_pq_id, 6251 vport_params[i].vport_wfq); 6252 } 6253 } 6254 6255 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn) 6256 { 6257 int i; 6258 6259 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) 6260 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; 6261 } 6262 6263 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn, 6264 struct ecore_ptt *p_ptt) 6265 { 6266 struct init_qm_vport_params *vport_params; 6267 int i; 6268 6269 vport_params = p_hwfn->qm_info.qm_vport_params; 6270 6271 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 6272 ecore_init_wfq_default_param(p_hwfn); 6273 ecore_init_vport_wfq(p_hwfn, p_ptt, 6274 vport_params[i].first_tx_pq_id, 6275 vport_params[i].vport_wfq); 6276 } 6277 } 6278 6279 /* This function performs several validations for WFQ 6280 * configuration and required min rate for a given vport 6281 * 1. req_rate must be greater than one percent of min_pf_rate. 6282 * 2. req_rate should not cause other vports [not configured for WFQ explicitly] 6283 * rates to get less than one percent of min_pf_rate. 6284 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. 6285 */ 6286 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn, 6287 u16 vport_id, u32 req_rate, 6288 u32 min_pf_rate) 6289 { 6290 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; 6291 int non_requested_count = 0, req_count = 0, i, num_vports; 6292 6293 num_vports = p_hwfn->qm_info.num_vports; 6294 6295 /* Accounting for the vports which are configured for WFQ explicitly */ 6296 6297 for (i = 0; i < num_vports; i++) { 6298 u32 tmp_speed; 6299 6300 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) { 6301 req_count++; 6302 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; 6303 total_req_min_rate += tmp_speed; 6304 } 6305 } 6306 6307 /* Include current vport data as well */ 6308 req_count++; 6309 total_req_min_rate += req_rate; 6310 non_requested_count = num_vports - req_count; 6311 6312 /* validate possible error cases */ 6313 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) { 6314 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6315 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 6316 vport_id, req_rate, min_pf_rate); 6317 return ECORE_INVAL; 6318 } 6319 6320 /* TBD - for number of vports greater than 100 */ 6321 if (num_vports > ECORE_WFQ_UNIT) { 6322 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6323 "Number of vports is greater than %d\n", 6324 ECORE_WFQ_UNIT); 6325 return ECORE_INVAL; 6326 } 6327 6328 if (total_req_min_rate > min_pf_rate) { 6329 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6330 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", 6331 total_req_min_rate, min_pf_rate); 6332 return ECORE_INVAL; 6333 } 6334 6335 /* Data left for non requested vports */ 6336 total_left_rate = min_pf_rate - total_req_min_rate; 6337 left_rate_per_vp = total_left_rate / non_requested_count; 6338 6339 /* validate if non requested get < 1% of min bw */ 6340 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) { 6341 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6342 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", 6343 left_rate_per_vp, min_pf_rate); 6344 return ECORE_INVAL; 6345 } 6346 6347 /* now req_rate for given vport passes all scenarios. 6348 * assign final wfq rates to all vports. 6349 */ 6350 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; 6351 p_hwfn->qm_info.wfq_data[vport_id].configured = true; 6352 6353 for (i = 0; i < num_vports; i++) { 6354 if (p_hwfn->qm_info.wfq_data[i].configured) 6355 continue; 6356 6357 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; 6358 } 6359 6360 return ECORE_SUCCESS; 6361 } 6362 6363 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn, 6364 struct ecore_ptt *p_ptt, 6365 u16 vp_id, u32 rate) 6366 { 6367 struct ecore_mcp_link_state *p_link; 6368 int rc = ECORE_SUCCESS; 6369 6370 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output; 6371 6372 if (!p_link->min_pf_rate) { 6373 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; 6374 p_hwfn->qm_info.wfq_data[vp_id].configured = true; 6375 return rc; 6376 } 6377 6378 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); 6379 6380 if (rc == ECORE_SUCCESS) 6381 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, 6382 p_link->min_pf_rate); 6383 else 6384 DP_NOTICE(p_hwfn, false, 6385 "Validation failed while configuring min rate\n"); 6386 6387 return rc; 6388 } 6389 6390 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn, 6391 struct ecore_ptt *p_ptt, 6392 u32 min_pf_rate) 6393 { 6394 bool use_wfq = false; 6395 int rc = ECORE_SUCCESS; 6396 u16 i; 6397 6398 /* Validate all pre configured vports for wfq */ 6399 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { 6400 u32 rate; 6401 6402 if (!p_hwfn->qm_info.wfq_data[i].configured) 6403 continue; 6404 6405 rate = p_hwfn->qm_info.wfq_data[i].min_speed; 6406 use_wfq = true; 6407 6408 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate); 6409 if (rc != ECORE_SUCCESS) { 6410 DP_NOTICE(p_hwfn, false, 6411 "WFQ validation failed while configuring min rate\n"); 6412 break; 6413 } 6414 } 6415 6416 if (rc == ECORE_SUCCESS && use_wfq) 6417 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); 6418 else 6419 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt); 6420 6421 return rc; 6422 } 6423 6424 /* Main API for ecore clients to configure vport min rate. 6425 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] 6426 * rate - Speed in Mbps needs to be assigned to a given vport. 6427 */ 6428 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate) 6429 { 6430 int i, rc = ECORE_INVAL; 6431 6432 /* TBD - for multiple hardware functions - that is 100 gig */ 6433 if (ECORE_IS_CMT(p_dev)) { 6434 DP_NOTICE(p_dev, false, 6435 "WFQ configuration is not supported for this device\n"); 6436 return rc; 6437 } 6438 6439 for_each_hwfn(p_dev, i) { 6440 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6441 struct ecore_ptt *p_ptt; 6442 6443 p_ptt = ecore_ptt_acquire(p_hwfn); 6444 if (!p_ptt) 6445 return ECORE_TIMEOUT; 6446 6447 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); 6448 6449 if (rc != ECORE_SUCCESS) { 6450 ecore_ptt_release(p_hwfn, p_ptt); 6451 return rc; 6452 } 6453 6454 ecore_ptt_release(p_hwfn, p_ptt); 6455 } 6456 6457 return rc; 6458 } 6459 6460 /* API to configure WFQ from mcp link change */ 6461 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev, 6462 struct ecore_ptt *p_ptt, 6463 u32 min_pf_rate) 6464 { 6465 int i; 6466 6467 /* TBD - for multiple hardware functions - that is 100 gig */ 6468 if (ECORE_IS_CMT(p_dev)) { 6469 DP_VERBOSE(p_dev, ECORE_MSG_LINK, 6470 "WFQ configuration is not supported for this device\n"); 6471 return; 6472 } 6473 6474 for_each_hwfn(p_dev, i) { 6475 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6476 6477 __ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, 6478 min_pf_rate); 6479 } 6480 } 6481 6482 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn, 6483 struct ecore_ptt *p_ptt, 6484 struct ecore_mcp_link_state *p_link, 6485 u8 max_bw) 6486 { 6487 int rc = ECORE_SUCCESS; 6488 6489 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; 6490 6491 if (!p_link->line_speed && (max_bw != 100)) 6492 return rc; 6493 6494 p_link->speed = (p_link->line_speed * max_bw) / 100; 6495 p_hwfn->qm_info.pf_rl = p_link->speed; 6496 6497 /* Since the limiter also affects Tx-switched traffic, we don't want it 6498 * to limit such traffic in case there's no actual limit. 6499 * In that case, set limit to imaginary high boundary. 6500 */ 6501 if (max_bw == 100) 6502 p_hwfn->qm_info.pf_rl = 100000; 6503 6504 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, 6505 p_hwfn->qm_info.pf_rl); 6506 6507 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6508 "Configured MAX bandwidth to be %08x Mb/sec\n", 6509 p_link->speed); 6510 6511 return rc; 6512 } 6513 6514 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ 6515 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw) 6516 { 6517 int i, rc = ECORE_INVAL; 6518 6519 if (max_bw < 1 || max_bw > 100) { 6520 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n"); 6521 return rc; 6522 } 6523 6524 for_each_hwfn(p_dev, i) { 6525 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6526 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev); 6527 struct ecore_mcp_link_state *p_link; 6528 struct ecore_ptt *p_ptt; 6529 6530 p_link = &p_lead->mcp_info->link_output; 6531 6532 p_ptt = ecore_ptt_acquire(p_hwfn); 6533 if (!p_ptt) 6534 return ECORE_TIMEOUT; 6535 6536 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt, 6537 p_link, max_bw); 6538 6539 ecore_ptt_release(p_hwfn, p_ptt); 6540 6541 if (rc != ECORE_SUCCESS) 6542 break; 6543 } 6544 6545 return rc; 6546 } 6547 6548 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn, 6549 struct ecore_ptt *p_ptt, 6550 struct ecore_mcp_link_state *p_link, 6551 u8 min_bw) 6552 { 6553 int rc = ECORE_SUCCESS; 6554 6555 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; 6556 p_hwfn->qm_info.pf_wfq = min_bw; 6557 6558 if (!p_link->line_speed) 6559 return rc; 6560 6561 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; 6562 6563 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); 6564 6565 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK, 6566 "Configured MIN bandwidth to be %d Mb/sec\n", 6567 p_link->min_pf_rate); 6568 6569 return rc; 6570 } 6571 6572 /* Main API to configure PF min bandwidth where bw range is [1-100] */ 6573 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw) 6574 { 6575 int i, rc = ECORE_INVAL; 6576 6577 if (min_bw < 1 || min_bw > 100) { 6578 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n"); 6579 return rc; 6580 } 6581 6582 for_each_hwfn(p_dev, i) { 6583 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i]; 6584 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev); 6585 struct ecore_mcp_link_state *p_link; 6586 struct ecore_ptt *p_ptt; 6587 6588 p_link = &p_lead->mcp_info->link_output; 6589 6590 p_ptt = ecore_ptt_acquire(p_hwfn); 6591 if (!p_ptt) 6592 return ECORE_TIMEOUT; 6593 6594 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt, 6595 p_link, min_bw); 6596 if (rc != ECORE_SUCCESS) { 6597 ecore_ptt_release(p_hwfn, p_ptt); 6598 return rc; 6599 } 6600 6601 if (p_link->min_pf_rate) { 6602 u32 min_rate = p_link->min_pf_rate; 6603 6604 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn, 6605 p_ptt, 6606 min_rate); 6607 } 6608 6609 ecore_ptt_release(p_hwfn, p_ptt); 6610 } 6611 6612 return rc; 6613 } 6614 6615 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt) 6616 { 6617 struct ecore_mcp_link_state *p_link; 6618 6619 p_link = &p_hwfn->mcp_info->link_output; 6620 6621 if (p_link->min_pf_rate) 6622 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt); 6623 6624 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0, 6625 sizeof(*p_hwfn->qm_info.wfq_data) * 6626 p_hwfn->qm_info.num_vports); 6627 } 6628 6629 int ecore_device_num_engines(struct ecore_dev *p_dev) 6630 { 6631 return ECORE_IS_BB(p_dev) ? 2 : 1; 6632 } 6633 6634 int ecore_device_num_ports(struct ecore_dev *p_dev) 6635 { 6636 return p_dev->num_ports; 6637 } 6638 6639 void ecore_set_fw_mac_addr(__le16 *fw_msb, 6640 __le16 *fw_mid, 6641 __le16 *fw_lsb, 6642 u8 *mac) 6643 { 6644 ((u8 *)fw_msb)[0] = mac[1]; 6645 ((u8 *)fw_msb)[1] = mac[0]; 6646 ((u8 *)fw_mid)[0] = mac[3]; 6647 ((u8 *)fw_mid)[1] = mac[2]; 6648 ((u8 *)fw_lsb)[0] = mac[5]; 6649 ((u8 *)fw_lsb)[1] = mac[4]; 6650 } 6651 6652 bool ecore_is_mf_fip_special(struct ecore_dev *p_dev) 6653 { 6654 return !!OSAL_TEST_BIT(ECORE_MF_FIP_SPECIAL, &p_dev->mf_bits); 6655 } 6656