xref: /dpdk/drivers/net/qede/base/ecore_dev.c (revision 1aa94d0536fce839acb00794027158cb7d3cfa68)
1 /*
2  * Copyright (c) 2016 QLogic Corporation.
3  * All rights reserved.
4  * www.qlogic.com
5  *
6  * See LICENSE.qede_pmd for copyright and licensing details.
7  */
8 
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
33 
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35  * registers involved are not split and thus configuration is a race where
36  * some of the PFs configuration might be lost.
37  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39  * there's more than a single compiled ecore component in system].
40  */
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
43 
44 /* Configurable */
45 #define ECORE_MIN_DPIS		(4)	/* The minimal num of DPIs required to
46 					 * load the driver. The number was
47 					 * arbitrarily set.
48 					 */
49 
50 /* Derived */
51 #define ECORE_MIN_PWM_REGION	((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
52 
53 enum BAR_ID {
54 	BAR_ID_0,		/* used for GRC */
55 	BAR_ID_1		/* Used for doorbells */
56 };
57 
58 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
59 {
60 	u32 bar_reg = (bar_id == BAR_ID_0 ?
61 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
62 	u32 val;
63 
64 	if (IS_VF(p_hwfn->p_dev)) {
65 		/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
66 		 * read from actual register, but we're currently not using
67 		 * it for actual doorbelling.
68 		 */
69 		return 1 << 17;
70 	}
71 
72 	val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
73 	if (val)
74 		return 1 << (val + 15);
75 
76 	/* The above registers were updated in the past only in CMT mode. Since
77 	 * they were found to be useful MFW started updating them from 8.7.7.0.
78 	 * In older MFW versions they are set to 0 which means disabled.
79 	 */
80 	if (p_hwfn->p_dev->num_hwfns > 1) {
81 		DP_NOTICE(p_hwfn, false,
82 			  "BAR size not configured. Assuming BAR size of 256kB"
83 			  " for GRC and 512kB for DB\n");
84 		val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
85 	} else {
86 		DP_NOTICE(p_hwfn, false,
87 			  "BAR size not configured. Assuming BAR size of 512kB"
88 			  " for GRC and 512kB for DB\n");
89 		val = 512 * 1024;
90 	}
91 
92 	return val;
93 }
94 
95 void ecore_init_dp(struct ecore_dev *p_dev,
96 		   u32 dp_module, u8 dp_level, void *dp_ctx)
97 {
98 	u32 i;
99 
100 	p_dev->dp_level = dp_level;
101 	p_dev->dp_module = dp_module;
102 	p_dev->dp_ctx = dp_ctx;
103 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
104 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
105 
106 		p_hwfn->dp_level = dp_level;
107 		p_hwfn->dp_module = dp_module;
108 		p_hwfn->dp_ctx = dp_ctx;
109 	}
110 }
111 
112 void ecore_init_struct(struct ecore_dev *p_dev)
113 {
114 	u8 i;
115 
116 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
117 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
118 
119 		p_hwfn->p_dev = p_dev;
120 		p_hwfn->my_id = i;
121 		p_hwfn->b_active = false;
122 
123 		OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
124 		OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
125 	}
126 
127 	/* hwfn 0 is always active */
128 	p_dev->hwfns[0].b_active = true;
129 
130 	/* set the default cache alignment to 128 (may be overridden later) */
131 	p_dev->cache_shift = 7;
132 }
133 
134 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
135 {
136 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
137 
138 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
139 	qm_info->qm_pq_params = OSAL_NULL;
140 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
141 	qm_info->qm_vport_params = OSAL_NULL;
142 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
143 	qm_info->qm_port_params = OSAL_NULL;
144 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
145 	qm_info->wfq_data = OSAL_NULL;
146 }
147 
148 void ecore_resc_free(struct ecore_dev *p_dev)
149 {
150 	int i;
151 
152 	if (IS_VF(p_dev))
153 		return;
154 
155 	OSAL_FREE(p_dev, p_dev->fw_data);
156 	p_dev->fw_data = OSAL_NULL;
157 
158 	OSAL_FREE(p_dev, p_dev->reset_stats);
159 
160 	for_each_hwfn(p_dev, i) {
161 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
162 
163 		OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
164 		p_hwfn->p_tx_cids = OSAL_NULL;
165 		OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
166 		p_hwfn->p_rx_cids = OSAL_NULL;
167 	}
168 
169 	for_each_hwfn(p_dev, i) {
170 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
171 
172 		ecore_cxt_mngr_free(p_hwfn);
173 		ecore_qm_info_free(p_hwfn);
174 		ecore_spq_free(p_hwfn);
175 		ecore_eq_free(p_hwfn, p_hwfn->p_eq);
176 		ecore_consq_free(p_hwfn, p_hwfn->p_consq);
177 		ecore_int_free(p_hwfn);
178 #ifdef CONFIG_ECORE_LL2
179 		ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
180 #endif
181 		ecore_iov_free(p_hwfn);
182 		ecore_dmae_info_free(p_hwfn);
183 		ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
184 		/* @@@TBD Flush work-queue ? */
185 	}
186 }
187 
188 static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
189 					       bool b_sleepable)
190 {
191 	u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
192 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
193 	struct init_qm_port_params *p_qm_port;
194 	bool init_rdma_offload_pq = false;
195 	bool init_pure_ack_pq = false;
196 	bool init_ooo_pq = false;
197 	u16 num_pqs, protocol_pqs;
198 	u16 num_pf_rls = 0;
199 	u16 num_vfs = 0;
200 	u32 pf_rl;
201 	u8 pf_wfq;
202 
203 	/* @TMP - saving the existing min/max bw config before resetting the
204 	 * qm_info to restore them.
205 	 */
206 	pf_rl = qm_info->pf_rl;
207 	pf_wfq = qm_info->pf_wfq;
208 
209 #ifdef CONFIG_ECORE_SRIOV
210 	if (p_hwfn->p_dev->p_iov_info)
211 		num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
212 #endif
213 	OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
214 
215 #ifndef ASIC_ONLY
216 	/* @TMP - Don't allocate QM queues for VFs on emulation */
217 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
218 		DP_NOTICE(p_hwfn, false,
219 			  "Emulation - skip configuring QM queues for VFs\n");
220 		num_vfs = 0;
221 	}
222 #endif
223 
224 	/* ethernet PFs require a pq per tc. Even if only a subset of the TCs
225 	 * active, we want physical queues allocated for all of them, since we
226 	 * don't have a good recycle flow. Non ethernet PFs require only a
227 	 * single physical queue.
228 	 */
229 	if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
230 	    p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
231 	    p_hwfn->hw_info.personality == ECORE_PCI_ETH)
232 		protocol_pqs = p_hwfn->hw_info.num_hw_tc;
233 	else
234 		protocol_pqs = 1;
235 
236 	num_pqs = protocol_pqs + num_vfs + 1;	/* The '1' is for pure-LB */
237 	num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
238 
239 	if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
240 		num_pqs++;	/* for RoCE queue */
241 		init_rdma_offload_pq = true;
242 		if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
243 			/* Due to FW assumption that rl==vport, we limit the
244 			 * number of rate limiters by the minimum between its
245 			 * allocated number and the allocated number of vports.
246 			 * Another limitation is the number of supported qps
247 			 * with rate limiters in FW.
248 			 */
249 			num_pf_rls =
250 			    (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
251 					     RESC_NUM(p_hwfn, ECORE_VPORT));
252 
253 			/* we subtract num_vfs because each one requires a rate
254 			 * limiter, and one default rate limiter.
255 			 */
256 			if (num_pf_rls < num_vfs + 1) {
257 				DP_ERR(p_hwfn, "No RL for DCQCN");
258 				DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
259 				       num_pf_rls, num_vfs);
260 				return ECORE_INVAL;
261 			}
262 			num_pf_rls -= num_vfs + 1;
263 		}
264 
265 		num_pqs += num_pf_rls;
266 		qm_info->num_pf_rls = (u8)num_pf_rls;
267 	}
268 
269 	if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
270 		num_pqs += 3;	/* for iwarp queue / pure-ack / ooo */
271 		init_rdma_offload_pq = true;
272 		init_pure_ack_pq = true;
273 		init_ooo_pq = true;
274 	}
275 
276 	if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
277 		num_pqs += 2;	/* for iSCSI pure-ACK / OOO queue */
278 		init_pure_ack_pq = true;
279 		init_ooo_pq = true;
280 	}
281 
282 	/* Sanity checking that setup requires legal number of resources */
283 	if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
284 		DP_ERR(p_hwfn,
285 		       "Need too many Physical queues - 0x%04x avail %04x",
286 		       num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
287 		return ECORE_INVAL;
288 	}
289 
290 	/* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
291 	 * then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
292 	 */
293 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
294 					    b_sleepable ? GFP_KERNEL :
295 					    GFP_ATOMIC,
296 					    sizeof(struct init_qm_pq_params) *
297 					    num_pqs);
298 	if (!qm_info->qm_pq_params)
299 		goto alloc_err;
300 
301 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
302 					       b_sleepable ? GFP_KERNEL :
303 					       GFP_ATOMIC,
304 					       sizeof(struct
305 						      init_qm_vport_params) *
306 					       num_vports);
307 	if (!qm_info->qm_vport_params)
308 		goto alloc_err;
309 
310 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
311 					      b_sleepable ? GFP_KERNEL :
312 					      GFP_ATOMIC,
313 					      sizeof(struct init_qm_port_params)
314 					      * MAX_NUM_PORTS);
315 	if (!qm_info->qm_port_params)
316 		goto alloc_err;
317 
318 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
319 					b_sleepable ? GFP_KERNEL :
320 					GFP_ATOMIC,
321 					sizeof(struct ecore_wfq_data) *
322 					num_vports);
323 
324 	if (!qm_info->wfq_data)
325 		goto alloc_err;
326 
327 	vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
328 
329 	/* First init rate limited queues ( Due to RoCE assumption of
330 	 * qpid=rlid )
331 	 */
332 	for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
333 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
334 		qm_info->qm_pq_params[curr_queue].tc_id =
335 		    p_hwfn->hw_info.offload_tc;
336 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
337 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
338 	};
339 
340 	/* Protocol PQs */
341 	for (i = 0; i < protocol_pqs; i++) {
342 		struct init_qm_pq_params *params =
343 		    &qm_info->qm_pq_params[curr_queue++];
344 
345 		if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
346 		    p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
347 		    p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
348 			params->vport_id = vport_id;
349 			params->tc_id = i;
350 			/* Note: this assumes that if we had a configuration
351 			 * with N tcs and subsequently another configuration
352 			 * With Fewer TCs, the in flight traffic (in QM queues,
353 			 * in FW, from driver to FW) will still trickle out and
354 			 * not get "stuck" in the QM. This is determined by the
355 			 * NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
356 			 * supposed to be cleared in this map, allowing traffic
357 			 * to flush out. If this is not the case, we would need
358 			 * to set the TC of unused queues to 0, and reconfigure
359 			 * QM every time num of TCs changes. Unused queues in
360 			 * this context would mean those intended for TCs where
361 			 * tc_id > hw_info.num_active_tcs.
362 			 */
363 			params->wrr_group = 1;	/* @@@TBD ECORE_WRR_MEDIUM */
364 		} else {
365 			params->vport_id = vport_id;
366 			params->tc_id = p_hwfn->hw_info.offload_tc;
367 			params->wrr_group = 1;	/* @@@TBD ECORE_WRR_MEDIUM */
368 		}
369 	}
370 
371 	/* Then init pure-LB PQ */
372 	qm_info->pure_lb_pq = curr_queue;
373 	qm_info->qm_pq_params[curr_queue].vport_id =
374 	    (u8)RESC_START(p_hwfn, ECORE_VPORT);
375 	qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
376 	qm_info->qm_pq_params[curr_queue].wrr_group = 1;
377 	curr_queue++;
378 
379 	qm_info->offload_pq = 0;	/* Already initialized for iSCSI/FCoE */
380 	if (init_rdma_offload_pq) {
381 		qm_info->offload_pq = curr_queue;
382 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
383 		qm_info->qm_pq_params[curr_queue].tc_id =
384 		    p_hwfn->hw_info.offload_tc;
385 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
386 		curr_queue++;
387 	}
388 
389 	if (init_pure_ack_pq) {
390 		qm_info->pure_ack_pq = curr_queue;
391 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
392 		qm_info->qm_pq_params[curr_queue].tc_id =
393 		    p_hwfn->hw_info.offload_tc;
394 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
395 		curr_queue++;
396 	}
397 
398 	if (init_ooo_pq) {
399 		qm_info->ooo_pq = curr_queue;
400 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
401 		qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
402 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
403 		curr_queue++;
404 	}
405 
406 	/* Then init per-VF PQs */
407 	vf_offset = curr_queue;
408 	for (i = 0; i < num_vfs; i++) {
409 		/* First vport is used by the PF */
410 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
411 		/* @@@TBD VF Multi-cos */
412 		qm_info->qm_pq_params[curr_queue].tc_id = 0;
413 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
414 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
415 		curr_queue++;
416 	};
417 
418 	qm_info->vf_queues_offset = vf_offset;
419 	qm_info->num_pqs = num_pqs;
420 	qm_info->num_vports = num_vports;
421 
422 	/* Initialize qm port parameters */
423 	num_ports = p_hwfn->p_dev->num_ports_in_engines;
424 	for (i = 0; i < num_ports; i++) {
425 		p_qm_port = &qm_info->qm_port_params[i];
426 		p_qm_port->active = 1;
427 		/* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
428 		 * be in place
429 		 */
430 		if (num_ports == 4)
431 			p_qm_port->active_phys_tcs = 0xf;
432 		else
433 			p_qm_port->active_phys_tcs = 0x9f;
434 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
435 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
436 	}
437 
438 	if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
439 		qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
440 	else
441 		qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
442 
443 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
444 
445 	qm_info->num_vf_pqs = num_vfs;
446 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
447 
448 	for (i = 0; i < qm_info->num_vports; i++)
449 		qm_info->qm_vport_params[i].vport_wfq = 1;
450 
451 	qm_info->vport_rl_en = 1;
452 	qm_info->vport_wfq_en = 1;
453 	qm_info->pf_rl = pf_rl;
454 	qm_info->pf_wfq = pf_wfq;
455 
456 	return ECORE_SUCCESS;
457 
458  alloc_err:
459 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
460 	ecore_qm_info_free(p_hwfn);
461 	return ECORE_NOMEM;
462 }
463 
464 /* This function reconfigures the QM pf on the fly.
465  * For this purpose we:
466  * 1. reconfigure the QM database
467  * 2. set new values to runtime arrat
468  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
469  * 4. activate init tool in QM_PF stage
470  * 5. send an sdm_qm_cmd through rbc interface to release the QM
471  */
472 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
473 				     struct ecore_ptt *p_ptt)
474 {
475 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
476 	bool b_rc;
477 	enum _ecore_status_t rc;
478 
479 	/* qm_info is allocated in ecore_init_qm_info() which is already called
480 	 * from ecore_resc_alloc() or previous call of ecore_qm_reconf().
481 	 * The allocated size may change each init, so we free it before next
482 	 * allocation.
483 	 */
484 	ecore_qm_info_free(p_hwfn);
485 
486 	/* initialize ecore's qm data structure */
487 	rc = ecore_init_qm_info(p_hwfn, false);
488 	if (rc != ECORE_SUCCESS)
489 		return rc;
490 
491 	/* stop PF's qm queues */
492 	OSAL_SPIN_LOCK(&qm_lock);
493 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
494 				      qm_info->start_pq, qm_info->num_pqs);
495 	OSAL_SPIN_UNLOCK(&qm_lock);
496 	if (!b_rc)
497 		return ECORE_INVAL;
498 
499 	/* clear the QM_PF runtime phase leftovers from previous init */
500 	ecore_init_clear_rt_data(p_hwfn);
501 
502 	/* prepare QM portion of runtime array */
503 	ecore_qm_init_pf(p_hwfn);
504 
505 	/* activate init tool on runtime array */
506 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
507 			    p_hwfn->hw_info.hw_mode);
508 	if (rc != ECORE_SUCCESS)
509 		return rc;
510 
511 	/* start PF's qm queues */
512 	OSAL_SPIN_LOCK(&qm_lock);
513 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
514 				      qm_info->start_pq, qm_info->num_pqs);
515 	OSAL_SPIN_UNLOCK(&qm_lock);
516 	if (!b_rc)
517 		return ECORE_INVAL;
518 
519 	return ECORE_SUCCESS;
520 }
521 
522 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
523 {
524 	struct ecore_consq *p_consq;
525 	struct ecore_eq *p_eq;
526 #ifdef	CONFIG_ECORE_LL2
527 	struct ecore_ll2_info *p_ll2_info;
528 #endif
529 	enum _ecore_status_t rc = ECORE_SUCCESS;
530 	int i;
531 
532 	if (IS_VF(p_dev))
533 		return rc;
534 
535 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
536 				     sizeof(*p_dev->fw_data));
537 	if (!p_dev->fw_data)
538 		return ECORE_NOMEM;
539 
540 	/* Allocate Memory for the Queue->CID mapping */
541 	for_each_hwfn(p_dev, i) {
542 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
543 		u32 num_tx_conns = RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
544 		int tx_size, rx_size;
545 
546 		/* @@@TMP - resc management, change to actual required size */
547 		if (p_hwfn->pf_params.eth_pf_params.num_cons > num_tx_conns)
548 			num_tx_conns = p_hwfn->pf_params.eth_pf_params.num_cons;
549 		tx_size = sizeof(struct ecore_hw_cid_data) * num_tx_conns;
550 		rx_size = sizeof(struct ecore_hw_cid_data) *
551 		    RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
552 
553 		p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
554 						tx_size);
555 		if (!p_hwfn->p_tx_cids) {
556 			DP_NOTICE(p_hwfn, true,
557 				  "Failed to allocate memory for Tx Cids\n");
558 			goto alloc_no_mem;
559 		}
560 
561 		p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
562 						rx_size);
563 		if (!p_hwfn->p_rx_cids) {
564 			DP_NOTICE(p_hwfn, true,
565 				  "Failed to allocate memory for Rx Cids\n");
566 			goto alloc_no_mem;
567 		}
568 	}
569 
570 	for_each_hwfn(p_dev, i) {
571 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
572 		u32 n_eqes, num_cons;
573 
574 		/* First allocate the context manager structure */
575 		rc = ecore_cxt_mngr_alloc(p_hwfn);
576 		if (rc)
577 			goto alloc_err;
578 
579 		/* Set the HW cid/tid numbers (in the contest manager)
580 		 * Must be done prior to any further computations.
581 		 */
582 		rc = ecore_cxt_set_pf_params(p_hwfn);
583 		if (rc)
584 			goto alloc_err;
585 
586 		/* Prepare and process QM requirements */
587 		rc = ecore_init_qm_info(p_hwfn, true);
588 		if (rc)
589 			goto alloc_err;
590 
591 		/* Compute the ILT client partition */
592 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
593 		if (rc)
594 			goto alloc_err;
595 
596 		/* CID map / ILT shadow table / T2
597 		 * The talbes sizes are determined by the computations above
598 		 */
599 		rc = ecore_cxt_tables_alloc(p_hwfn);
600 		if (rc)
601 			goto alloc_err;
602 
603 		/* SPQ, must follow ILT because initializes SPQ context */
604 		rc = ecore_spq_alloc(p_hwfn);
605 		if (rc)
606 			goto alloc_err;
607 
608 		/* SP status block allocation */
609 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
610 							   RESERVED_PTT_DPC);
611 
612 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
613 		if (rc)
614 			goto alloc_err;
615 
616 		rc = ecore_iov_alloc(p_hwfn);
617 		if (rc)
618 			goto alloc_err;
619 
620 		/* EQ */
621 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
622 		if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
623 		    (p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
624 			/* Calculate the EQ size
625 			 * ---------------------
626 			 * Each ICID may generate up to one event at a time i.e.
627 			 * the event must be handled/cleared before a new one
628 			 * can be generated. We calculate the sum of events per
629 			 * protocol and create an EQ deep enough to handle the
630 			 * worst case:
631 			 * - Core - according to SPQ.
632 			 * - RoCE - per QP there are a couple of ICIDs, one
633 			 *          responder and one requester, each can
634 			 *          generate an EQE => n_eqes_qp = 2 * n_qp.
635 			 *          Each CQ can generate an EQE. There are 2 CQs
636 			 *          per QP => n_eqes_cq = 2 * n_qp.
637 			 *          Hence the RoCE total is 4 * n_qp or
638 			 *          2 * num_cons.
639 			 * - ENet - There can be up to two events per VF. One
640 			 *          for VF-PF channel and another for VF FLR
641 			 *          initial cleanup. The number of VFs is
642 			 *          bounded by MAX_NUM_VFS_BB, and is much
643 			 *          smaller than RoCE's so we avoid exact
644 			 *          calculation.
645 			 */
646 			if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
647 				num_cons =
648 				    ecore_cxt_get_proto_cid_count(
649 						p_hwfn,
650 						PROTOCOLID_ROCE,
651 						0);
652 				num_cons *= 2;
653 			} else {
654 				num_cons = ecore_cxt_get_proto_cid_count(
655 						p_hwfn,
656 						PROTOCOLID_IWARP,
657 						0);
658 			}
659 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
660 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
661 			num_cons =
662 			    ecore_cxt_get_proto_cid_count(p_hwfn,
663 							  PROTOCOLID_ISCSI, 0);
664 			n_eqes += 2 * num_cons;
665 		}
666 
667 		if (n_eqes > 0xFFFF) {
668 			DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
669 				       "The maximum of a u16 chain is 0x%x\n",
670 			       n_eqes, 0xFFFF);
671 			rc = ECORE_INVAL;
672 			goto alloc_err;
673 		}
674 
675 		p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
676 		if (!p_eq)
677 			goto alloc_no_mem;
678 		p_hwfn->p_eq = p_eq;
679 
680 		p_consq = ecore_consq_alloc(p_hwfn);
681 		if (!p_consq)
682 			goto alloc_no_mem;
683 		p_hwfn->p_consq = p_consq;
684 
685 #ifdef CONFIG_ECORE_LL2
686 		if (p_hwfn->using_ll2) {
687 			p_ll2_info = ecore_ll2_alloc(p_hwfn);
688 			if (!p_ll2_info)
689 				goto alloc_no_mem;
690 			p_hwfn->p_ll2_info = p_ll2_info;
691 		}
692 #endif
693 
694 		/* DMA info initialization */
695 		rc = ecore_dmae_info_alloc(p_hwfn);
696 		if (rc) {
697 			DP_NOTICE(p_hwfn, true,
698 				  "Failed to allocate memory for dmae_info structure\n");
699 			goto alloc_err;
700 		}
701 
702 		/* DCBX initialization */
703 		rc = ecore_dcbx_info_alloc(p_hwfn);
704 		if (rc) {
705 			DP_NOTICE(p_hwfn, true,
706 				  "Failed to allocate memory for dcbx structure\n");
707 			goto alloc_err;
708 		}
709 	}
710 
711 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
712 					 sizeof(*p_dev->reset_stats));
713 	if (!p_dev->reset_stats) {
714 		DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
715 		goto alloc_no_mem;
716 	}
717 
718 	return ECORE_SUCCESS;
719 
720  alloc_no_mem:
721 	rc = ECORE_NOMEM;
722  alloc_err:
723 	ecore_resc_free(p_dev);
724 	return rc;
725 }
726 
727 void ecore_resc_setup(struct ecore_dev *p_dev)
728 {
729 	int i;
730 
731 	if (IS_VF(p_dev))
732 		return;
733 
734 	for_each_hwfn(p_dev, i) {
735 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
736 
737 		ecore_cxt_mngr_setup(p_hwfn);
738 		ecore_spq_setup(p_hwfn);
739 		ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
740 		ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
741 
742 		/* Read shadow of current MFW mailbox */
743 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
744 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
745 			    p_hwfn->mcp_info->mfw_mb_cur,
746 			    p_hwfn->mcp_info->mfw_mb_length);
747 
748 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
749 
750 		ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
751 #ifdef CONFIG_ECORE_LL2
752 		if (p_hwfn->using_ll2)
753 			ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
754 #endif
755 	}
756 }
757 
758 #define FINAL_CLEANUP_POLL_CNT	(100)
759 #define FINAL_CLEANUP_POLL_TIME	(10)
760 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
761 					 struct ecore_ptt *p_ptt,
762 					 u16 id, bool is_vf)
763 {
764 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
765 	enum _ecore_status_t rc = ECORE_TIMEOUT;
766 
767 #ifndef ASIC_ONLY
768 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
769 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
770 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
771 		return ECORE_SUCCESS;
772 	}
773 #endif
774 
775 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
776 	    USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
777 
778 	if (is_vf)
779 		id += 0x10;
780 
781 	command |= X_FINAL_CLEANUP_AGG_INT <<
782 	    SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
783 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
784 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
785 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
786 
787 /* Make sure notification is not set before initiating final cleanup */
788 
789 	if (REG_RD(p_hwfn, addr)) {
790 		DP_NOTICE(p_hwfn, false,
791 			  "Unexpected; Found final cleanup notification");
792 		DP_NOTICE(p_hwfn, false,
793 			  " before initiating final cleanup\n");
794 		REG_WR(p_hwfn, addr, 0);
795 	}
796 
797 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
798 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
799 		   id, OSAL_CPU_TO_LE32(command));
800 
801 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
802 		 OSAL_CPU_TO_LE32(command));
803 
804 	/* Poll until completion */
805 	while (!REG_RD(p_hwfn, addr) && count--)
806 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
807 
808 	if (REG_RD(p_hwfn, addr))
809 		rc = ECORE_SUCCESS;
810 	else
811 		DP_NOTICE(p_hwfn, true,
812 			  "Failed to receive FW final cleanup notification\n");
813 
814 	/* Cleanup afterwards */
815 	REG_WR(p_hwfn, addr, 0);
816 
817 	return rc;
818 }
819 
820 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
821 {
822 	int hw_mode = 0;
823 
824 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
825 		hw_mode |= 1 << MODE_BB_B0;
826 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
827 		hw_mode |= 1 << MODE_K2;
828 	} else {
829 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
830 			  p_hwfn->p_dev->type);
831 		return ECORE_INVAL;
832 	}
833 
834 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
835 	switch (p_hwfn->p_dev->num_ports_in_engines) {
836 	case 1:
837 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
838 		break;
839 	case 2:
840 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
841 		break;
842 	case 4:
843 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
844 		break;
845 	default:
846 		DP_NOTICE(p_hwfn, true,
847 			  "num_ports_in_engine = %d not supported\n",
848 			  p_hwfn->p_dev->num_ports_in_engines);
849 		return ECORE_INVAL;
850 	}
851 
852 	switch (p_hwfn->p_dev->mf_mode) {
853 	case ECORE_MF_DEFAULT:
854 	case ECORE_MF_NPAR:
855 		hw_mode |= 1 << MODE_MF_SI;
856 		break;
857 	case ECORE_MF_OVLAN:
858 		hw_mode |= 1 << MODE_MF_SD;
859 		break;
860 	default:
861 		DP_NOTICE(p_hwfn, true,
862 			  "Unsupported MF mode, init as DEFAULT\n");
863 		hw_mode |= 1 << MODE_MF_SI;
864 	}
865 
866 #ifndef ASIC_ONLY
867 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
868 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
869 			hw_mode |= 1 << MODE_FPGA;
870 		} else {
871 			if (p_hwfn->p_dev->b_is_emul_full)
872 				hw_mode |= 1 << MODE_EMUL_FULL;
873 			else
874 				hw_mode |= 1 << MODE_EMUL_REDUCED;
875 		}
876 	} else
877 #endif
878 		hw_mode |= 1 << MODE_ASIC;
879 
880 	if (p_hwfn->p_dev->num_hwfns > 1)
881 		hw_mode |= 1 << MODE_100G;
882 
883 	p_hwfn->hw_info.hw_mode = hw_mode;
884 
885 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
886 		   "Configuring function for hw_mode: 0x%08x\n",
887 		   p_hwfn->hw_info.hw_mode);
888 
889 	return ECORE_SUCCESS;
890 }
891 
892 #ifndef ASIC_ONLY
893 /* MFW-replacement initializations for non-ASIC */
894 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
895 					       struct ecore_ptt *p_ptt)
896 {
897 	u32 pl_hv = 1;
898 	int i;
899 
900 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
901 		pl_hv |= 0x600;
902 
903 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
904 
905 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
906 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
907 
908 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
909 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
910 	if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
911 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
912 
913 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
914 		/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
915 		ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
916 			 (p_hwfn->p_dev->num_ports_in_engines >> 1));
917 
918 		ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
919 			 p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
920 	}
921 
922 	/* Poll on RBC */
923 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
924 	for (i = 0; i < 100; i++) {
925 		OSAL_UDELAY(50);
926 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
927 			break;
928 	}
929 	if (i == 100)
930 		DP_NOTICE(p_hwfn, true,
931 			  "RBC done failed to complete in PSWRQ2\n");
932 
933 	return ECORE_SUCCESS;
934 }
935 #endif
936 
937 /* Init run time data for all PFs and their VFs on an engine.
938  * TBD - for VFs - Once we have parent PF info for each VF in
939  * shmem available as CAU requires knowledge of parent PF for each VF.
940  */
941 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
942 {
943 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
944 	int i, sb_id;
945 
946 	for_each_hwfn(p_dev, i) {
947 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
948 		struct ecore_igu_info *p_igu_info;
949 		struct ecore_igu_block *p_block;
950 		struct cau_sb_entry sb_entry;
951 
952 		p_igu_info = p_hwfn->hw_info.p_igu_info;
953 
954 		for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
955 		     sb_id++) {
956 			p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
957 
958 			if (!p_block->is_pf)
959 				continue;
960 
961 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
962 						p_block->function_id, 0, 0);
963 			STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
964 		}
965 	}
966 }
967 
968 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
969 						 struct ecore_ptt *p_ptt,
970 						 int hw_mode)
971 {
972 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
973 	struct ecore_dev *p_dev = p_hwfn->p_dev;
974 	u8 vf_id, max_num_vfs;
975 	u16 num_pfs, pf_id;
976 	u32 concrete_fid;
977 	enum _ecore_status_t rc = ECORE_SUCCESS;
978 
979 	ecore_init_cau_rt_data(p_dev);
980 
981 	/* Program GTT windows */
982 	ecore_gtt_init(p_hwfn);
983 
984 #ifndef ASIC_ONLY
985 	if (CHIP_REV_IS_EMUL(p_dev)) {
986 		rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
987 		if (rc != ECORE_SUCCESS)
988 			return rc;
989 	}
990 #endif
991 
992 	if (p_hwfn->mcp_info) {
993 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
994 			qm_info->pf_rl_en = 1;
995 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
996 			qm_info->pf_wfq_en = 1;
997 	}
998 
999 	ecore_qm_common_rt_init(p_hwfn,
1000 				p_dev->num_ports_in_engines,
1001 				qm_info->max_phys_tcs_per_port,
1002 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
1003 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
1004 				qm_info->qm_port_params);
1005 
1006 	ecore_cxt_hw_init_common(p_hwfn);
1007 
1008 	/* Close gate from NIG to BRB/Storm; By default they are open, but
1009 	 * we close them to prevent NIG from passing data to reset blocks.
1010 	 * Should have been done in the ENGINE phase, but init-tool lacks
1011 	 * proper port-pretend capabilities.
1012 	 */
1013 	ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1014 	ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1015 	ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
1016 	ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1017 	ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1018 	ecore_port_unpretend(p_hwfn, p_ptt);
1019 
1020 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1021 	if (rc != ECORE_SUCCESS)
1022 		return rc;
1023 
1024 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1025 	 * need to decide with which value, maybe runtime
1026 	 */
1027 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1028 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1029 
1030 	if (ECORE_IS_BB(p_dev)) {
1031 		/* Workaround clears ROCE search for all functions to prevent
1032 		 * involving non initialized function in processing ROCE packet.
1033 		 */
1034 		num_pfs = NUM_OF_ENG_PFS(p_dev);
1035 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1036 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1037 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1038 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1039 		}
1040 		/* pretend to original PF */
1041 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1042 	}
1043 
1044 	/* Workaround for avoiding CCFC execution error when getting packets
1045 	 * with CRC errors, and allowing instead the invoking of the FW error
1046 	 * handler.
1047 	 * This is not done inside the init tool since it currently can't
1048 	 * perform a pretending to VFs.
1049 	 */
1050 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1051 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1052 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1053 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1054 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1055 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1056 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1057 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1058 	}
1059 	/* pretend to original PF */
1060 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1061 
1062 	return rc;
1063 }
1064 
1065 #ifndef ASIC_ONLY
1066 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1067 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1068 
1069 #define PMEG_IF_BYTE_COUNT	8
1070 
1071 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1072 			     struct ecore_ptt *p_ptt,
1073 			     u32 addr, u64 data, u8 reg_type, u8 port)
1074 {
1075 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1076 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1077 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
1078 		   (8 << PMEG_IF_BYTE_COUNT),
1079 		   (reg_type << 25) | (addr << 8) | port,
1080 		   (u32)((data >> 32) & 0xffffffff),
1081 		   (u32)(data & 0xffffffff));
1082 
1083 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
1084 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
1085 		  0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1086 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
1087 		 (reg_type << 25) | (addr << 8) | port);
1088 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1089 		 data & 0xffffffff);
1090 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1091 		 (data >> 32) & 0xffffffff);
1092 }
1093 
1094 #define XLPORT_MODE_REG	(0x20a)
1095 #define XLPORT_MAC_CONTROL (0x210)
1096 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1097 #define XLPORT_ENABLE_REG (0x20b)
1098 
1099 #define XLMAC_CTRL (0x600)
1100 #define XLMAC_MODE (0x601)
1101 #define XLMAC_RX_MAX_SIZE (0x608)
1102 #define XLMAC_TX_CTRL (0x604)
1103 #define XLMAC_PAUSE_CTRL (0x60d)
1104 #define XLMAC_PFC_CTRL (0x60e)
1105 
1106 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
1107 				    struct ecore_ptt *p_ptt)
1108 {
1109 	u8 port = p_hwfn->port_id;
1110 	u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
1111 
1112 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
1113 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
1114 		 (port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
1115 		 | (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
1116 
1117 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
1118 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
1119 
1120 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
1121 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
1122 
1123 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
1124 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
1125 
1126 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
1127 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
1128 
1129 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
1130 		 (0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
1131 		 (8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
1132 
1133 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
1134 }
1135 
1136 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1137 				 struct ecore_ptt *p_ptt)
1138 {
1139 	u8 loopback = 0, port = p_hwfn->port_id * 2;
1140 
1141 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1142 
1143 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
1144 		ecore_emul_link_init_ah(p_hwfn, p_ptt);
1145 		return;
1146 	}
1147 
1148 	/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1149 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1150 			 port);
1151 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1152 	/* XLMAC: SOFT RESET */
1153 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1154 	/* XLMAC: Port Speed >= 10Gbps */
1155 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1156 	/* XLMAC: Max Size */
1157 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1158 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1159 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1160 			 0, port);
1161 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1162 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1163 			 0x30ffffc000ULL, 0, port);
1164 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1165 			 port);	/* XLMAC: TX_EN, RX_EN */
1166 	/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1167 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1168 			 0x1003 | (loopback << 2), 0, port);
1169 	/* Enabled Parallel PFC interface */
1170 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1171 
1172 	/* XLPORT port enable */
1173 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1174 }
1175 
1176 static void ecore_link_init(struct ecore_hwfn *p_hwfn,
1177 			    struct ecore_ptt *p_ptt, u8 port)
1178 {
1179 	int port_offset = port ? 0x800 : 0;
1180 	u32 xmac_rxctrl = 0;
1181 
1182 	/* Reset of XMAC */
1183 	/* FIXME: move to common start */
1184 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1185 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Clear */
1186 	OSAL_MSLEEP(1);
1187 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1188 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Set */
1189 
1190 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
1191 
1192 	/* Set the number of ports on the Warp Core to 10G */
1193 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
1194 
1195 	/* Soft reset of XMAC */
1196 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1197 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1198 	OSAL_MSLEEP(1);
1199 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1200 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1201 
1202 	/* FIXME: move to common end */
1203 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1204 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
1205 
1206 	/* Set Max packet size: initialize XMAC block register for port 0 */
1207 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
1208 
1209 	/* CRC append for Tx packets: init XMAC block register for port 1 */
1210 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
1211 
1212 	/* Enable TX and RX: initialize XMAC block register for port 1 */
1213 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
1214 		 XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
1215 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
1216 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
1217 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
1218 }
1219 #endif
1220 
1221 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1222 					       struct ecore_ptt *p_ptt,
1223 					       int hw_mode)
1224 {
1225 	enum _ecore_status_t rc = ECORE_SUCCESS;
1226 
1227 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1228 			    hw_mode);
1229 	if (rc != ECORE_SUCCESS)
1230 		return rc;
1231 #ifndef ASIC_ONLY
1232 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1233 		return ECORE_SUCCESS;
1234 
1235 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1236 		if (ECORE_IS_AH(p_hwfn->p_dev))
1237 			return ECORE_SUCCESS;
1238 		ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
1239 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1240 		if (p_hwfn->p_dev->num_hwfns > 1) {
1241 			/* Activate OPTE in CMT */
1242 			u32 val;
1243 
1244 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1245 			val |= 0x10;
1246 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1247 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1248 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1249 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1250 			ecore_wr(p_hwfn, p_ptt,
1251 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1252 			ecore_wr(p_hwfn, p_ptt,
1253 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1254 			ecore_wr(p_hwfn, p_ptt,
1255 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1256 				 0x55555555);
1257 		}
1258 
1259 		ecore_emul_link_init(p_hwfn, p_ptt);
1260 	} else {
1261 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1262 	}
1263 #endif
1264 
1265 	return rc;
1266 }
1267 
1268 static enum _ecore_status_t
1269 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1270 		       struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1271 {
1272 	u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1273 	u32 dpi_bit_shift, dpi_count;
1274 	u32 min_dpis;
1275 
1276 	/* Calculate DPI size
1277 	 * ------------------
1278 	 * The PWM region contains Doorbell Pages. The first is reserverd for
1279 	 * the kernel for, e.g, L2. The others are free to be used by non-
1280 	 * trusted applications, typically from user space. Each page, called a
1281 	 * doorbell page is sectioned into windows that allow doorbells to be
1282 	 * issued in parallel by the kernel/application. The size of such a
1283 	 * window (a.k.a. WID) is 1kB.
1284 	 * Summary:
1285 	 *    1kB WID x N WIDS = DPI page size
1286 	 *    DPI page size x N DPIs = PWM region size
1287 	 * Notes:
1288 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1289 	 * in order to ensure that two applications won't share the same page.
1290 	 * It also must contain at least one WID per CPU to allow parallelism.
1291 	 * It also must be a power of 2, since it is stored as a bit shift.
1292 	 *
1293 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1294 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1295 	 * containing 4 WIDs.
1296 	 */
1297 	dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1298 	dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1299 	dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1300 	dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1301 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1302 
1303 	dpi_count = pwm_region_size / dpi_page_size;
1304 
1305 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1306 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1307 
1308 	/* Update hwfn */
1309 	p_hwfn->dpi_size = dpi_page_size;
1310 	p_hwfn->dpi_count = dpi_count;
1311 
1312 	/* Update registers */
1313 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1314 
1315 	if (dpi_count < min_dpis)
1316 		return ECORE_NORESOURCES;
1317 
1318 	return ECORE_SUCCESS;
1319 }
1320 
1321 enum ECORE_ROCE_EDPM_MODE {
1322 	ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1323 	ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1324 	ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1325 };
1326 
1327 static enum _ecore_status_t
1328 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1329 			      struct ecore_ptt *p_ptt)
1330 {
1331 	u32 pwm_regsize, norm_regsize;
1332 	u32 non_pwm_conn, min_addr_reg1;
1333 	u32 db_bar_size, n_cpus;
1334 	u32 roce_edpm_mode;
1335 	u32 pf_dems_shift;
1336 	int rc = ECORE_SUCCESS;
1337 	u8 cond;
1338 
1339 	db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1340 	if (p_hwfn->p_dev->num_hwfns > 1)
1341 		db_bar_size /= 2;
1342 
1343 	/* Calculate doorbell regions
1344 	 * -----------------------------------
1345 	 * The doorbell BAR is made of two regions. The first is called normal
1346 	 * region and the second is called PWM region. In the normal region
1347 	 * each ICID has its own set of addresses so that writing to that
1348 	 * specific address identifies the ICID. In the Process Window Mode
1349 	 * region the ICID is given in the data written to the doorbell. The
1350 	 * above per PF register denotes the offset in the doorbell BAR in which
1351 	 * the PWM region begins.
1352 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1353 	 * non-PWM connection. The calculation below computes the total non-PWM
1354 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1355 	 * in units of 4,096 bytes.
1356 	 */
1357 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1358 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1359 					  OSAL_NULL) +
1360 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1361 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1362 	min_addr_reg1 = norm_regsize / 4096;
1363 	pwm_regsize = db_bar_size - norm_regsize;
1364 
1365 	/* Check that the normal and PWM sizes are valid */
1366 	if (db_bar_size < norm_regsize) {
1367 		DP_ERR(p_hwfn->p_dev,
1368 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1369 		       db_bar_size, norm_regsize);
1370 		return ECORE_NORESOURCES;
1371 	}
1372 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1373 		DP_ERR(p_hwfn->p_dev,
1374 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1375 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1376 		       norm_regsize);
1377 		return ECORE_NORESOURCES;
1378 	}
1379 
1380 	/* Calculate number of DPIs */
1381 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1382 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1383 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1384 		/* Either EDPM is mandatory, or we are attempting to allocate a
1385 		 * WID per CPU.
1386 		 */
1387 		n_cpus = OSAL_NUM_ACTIVE_CPU();
1388 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1389 	}
1390 
1391 	cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1392 	    (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1393 	if (cond || p_hwfn->dcbx_no_edpm) {
1394 		/* Either EDPM is disabled from user configuration, or it is
1395 		 * disabled via DCBx, or it is not mandatory and we failed to
1396 		 * allocated a WID per CPU.
1397 		 */
1398 		n_cpus = 1;
1399 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1400 
1401 		/* If we entered this flow due to DCBX then the DPM register is
1402 		 * already configured.
1403 		 */
1404 	}
1405 
1406 	DP_INFO(p_hwfn,
1407 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1408 		norm_regsize, pwm_regsize);
1409 	DP_INFO(p_hwfn,
1410 		" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1411 		p_hwfn->dpi_size, p_hwfn->dpi_count,
1412 		((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1413 		"disabled" : "enabled");
1414 
1415 	/* Check return codes from above calls */
1416 	if (rc) {
1417 		DP_ERR(p_hwfn,
1418 		       "Failed to allocate enough DPIs\n");
1419 		return ECORE_NORESOURCES;
1420 	}
1421 
1422 	/* Update hwfn */
1423 	p_hwfn->dpi_start_offset = norm_regsize;
1424 
1425 	/* Update registers */
1426 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1427 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1428 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1429 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1430 
1431 	return ECORE_SUCCESS;
1432 }
1433 
1434 static enum _ecore_status_t
1435 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1436 		 struct ecore_ptt *p_ptt,
1437 		 struct ecore_tunn_start_params *p_tunn,
1438 		 int hw_mode,
1439 		 bool b_hw_start,
1440 		 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1441 {
1442 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1443 	u32 prs_reg;
1444 	enum _ecore_status_t rc = ECORE_SUCCESS;
1445 	u16 ctrl;
1446 	int pos;
1447 
1448 	if (p_hwfn->mcp_info) {
1449 		struct ecore_mcp_function_info *p_info;
1450 
1451 		p_info = &p_hwfn->mcp_info->func_info;
1452 		if (p_info->bandwidth_min)
1453 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1454 
1455 		/* Update rate limit once we'll actually have a link */
1456 		p_hwfn->qm_info.pf_rl = 100000;
1457 	}
1458 	ecore_cxt_hw_init_pf(p_hwfn);
1459 
1460 	ecore_int_igu_init_rt(p_hwfn);
1461 
1462 	/* Set VLAN in NIG if needed */
1463 	if (hw_mode & (1 << MODE_MF_SD)) {
1464 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1465 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1466 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1467 			     p_hwfn->hw_info.ovlan);
1468 	}
1469 
1470 	/* Enable classification by MAC if needed */
1471 	if (hw_mode & (1 << MODE_MF_SI)) {
1472 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1473 			   "Configuring TAGMAC_CLS_TYPE\n");
1474 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1475 			     1);
1476 	}
1477 
1478 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
1479 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1480 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1481 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1482 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1483 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1484 
1485 	/* perform debug configuration when chip is out of reset */
1486 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1487 
1488 	/* Cleanup chip from previous driver if such remains exist */
1489 	rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1490 	if (rc != ECORE_SUCCESS) {
1491 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1492 		return rc;
1493 	}
1494 
1495 	/* PF Init sequence */
1496 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1497 	if (rc)
1498 		return rc;
1499 
1500 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1501 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1502 	if (rc)
1503 		return rc;
1504 
1505 	/* Pure runtime initializations - directly to the HW  */
1506 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1507 
1508 	/* PCI relaxed ordering causes a decrease in the performance on some
1509 	 * systems. Till a root cause is found, disable this attribute in the
1510 	 * PCI config space.
1511 	 */
1512 	/* Not in use @DPDK
1513 	* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1514 	* if (!pos) {
1515 	*	DP_NOTICE(p_hwfn, true,
1516 	*		  "Failed to find the PCIe Cap\n");
1517 	*	return ECORE_IO;
1518 	* }
1519 	* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1520 	* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1521 	* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1522 	*/
1523 
1524 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1525 	if (rc)
1526 		return rc;
1527 	if (b_hw_start) {
1528 		/* enable interrupts */
1529 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1530 		if (rc != ECORE_SUCCESS)
1531 			return rc;
1532 
1533 		/* send function start command */
1534 		rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1535 				       allow_npar_tx_switch);
1536 		if (rc) {
1537 			DP_NOTICE(p_hwfn, true,
1538 				  "Function start ramrod failed\n");
1539 		} else {
1540 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1541 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1542 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1543 
1544 			if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1545 				ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1546 					 (1 << 2));
1547 				ecore_wr(p_hwfn, p_ptt,
1548 				    PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1549 				    0x100);
1550 			}
1551 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1552 				   "PRS_REG_SEARCH registers after start PFn\n");
1553 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1554 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1555 				   "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1556 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1557 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1558 				   "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1559 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1560 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1561 				   "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1562 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1563 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1564 				   "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1565 			prs_reg = ecore_rd(p_hwfn, p_ptt,
1566 					   PRS_REG_SEARCH_TCP_FIRST_FRAG);
1567 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1568 				   "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1569 				   prs_reg);
1570 			prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1571 			DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1572 				   "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1573 		}
1574 	}
1575 	return rc;
1576 }
1577 
1578 static enum _ecore_status_t
1579 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1580 		      struct ecore_ptt *p_ptt, u8 enable)
1581 {
1582 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1583 
1584 	/* Change PF in PXP */
1585 	ecore_wr(p_hwfn, p_ptt,
1586 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1587 
1588 	/* wait until value is set - try for 1 second every 50us */
1589 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1590 		val = ecore_rd(p_hwfn, p_ptt,
1591 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1592 		if (val == set_val)
1593 			break;
1594 
1595 		OSAL_UDELAY(50);
1596 	}
1597 
1598 	if (val != set_val) {
1599 		DP_NOTICE(p_hwfn, true,
1600 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
1601 		return ECORE_UNKNOWN_ERROR;
1602 	}
1603 
1604 	return ECORE_SUCCESS;
1605 }
1606 
1607 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1608 				  struct ecore_ptt *p_main_ptt)
1609 {
1610 	/* Read shadow of current MFW mailbox */
1611 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1612 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1613 		    p_hwfn->mcp_info->mfw_mb_cur,
1614 		    p_hwfn->mcp_info->mfw_mb_length);
1615 }
1616 
1617 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1618 				   struct ecore_hw_init_params *p_params)
1619 {
1620 	enum _ecore_status_t rc, mfw_rc;
1621 	u32 load_code, param;
1622 	int i;
1623 
1624 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
1625 	    (p_dev->num_hwfns > 1)) {
1626 		DP_NOTICE(p_dev, false,
1627 			  "MSI mode is not supported for CMT devices\n");
1628 		return ECORE_INVAL;
1629 	}
1630 
1631 	if (IS_PF(p_dev)) {
1632 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1633 		if (rc != ECORE_SUCCESS)
1634 			return rc;
1635 	}
1636 
1637 	for_each_hwfn(p_dev, i) {
1638 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1639 
1640 		if (IS_VF(p_dev)) {
1641 			p_hwfn->b_int_enabled = 1;
1642 			continue;
1643 		}
1644 
1645 		/* Enable DMAE in PXP */
1646 		rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1647 		if (rc != ECORE_SUCCESS)
1648 			return rc;
1649 
1650 		rc = ecore_calc_hw_mode(p_hwfn);
1651 		if (rc != ECORE_SUCCESS)
1652 			return rc;
1653 
1654 		/* @@@TBD need to add here:
1655 		 * Check for fan failure
1656 		 * Prev_unload
1657 		 */
1658 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1659 		if (rc) {
1660 			DP_NOTICE(p_hwfn, true,
1661 				  "Failed sending LOAD_REQ command\n");
1662 			return rc;
1663 		}
1664 
1665 		/* CQ75580:
1666 		 * When coming back from hiberbate state, the registers from
1667 		 * which shadow is read initially are not initialized. It turns
1668 		 * out that these registers get initialized during the call to
1669 		 * ecore_mcp_load_req request. So we need to reread them here
1670 		 * to get the proper shadow register value.
1671 		 * Note: This is a workaround for the missinginig MFW
1672 		 * initialization. It may be removed once the implementation
1673 		 * is done.
1674 		 */
1675 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1676 
1677 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1678 			   "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1679 			   rc, load_code);
1680 
1681 		/* Only relevant for recovery:
1682 		 * Clear the indication after the LOAD_REQ command is responded
1683 		 * by the MFW.
1684 		 */
1685 		p_dev->recov_in_prog = false;
1686 
1687 		p_hwfn->first_on_engine = (load_code ==
1688 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1689 
1690 		if (!qm_lock_init) {
1691 			OSAL_SPIN_LOCK_INIT(&qm_lock);
1692 			qm_lock_init = true;
1693 		}
1694 
1695 		switch (load_code) {
1696 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1697 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1698 						  p_hwfn->hw_info.hw_mode);
1699 			if (rc)
1700 				break;
1701 			/* Fall into */
1702 		case FW_MSG_CODE_DRV_LOAD_PORT:
1703 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1704 						p_hwfn->hw_info.hw_mode);
1705 			if (rc)
1706 				break;
1707 			/* Fall into */
1708 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1709 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1710 					      p_params->p_tunn,
1711 					      p_hwfn->hw_info.hw_mode,
1712 					      p_params->b_hw_start,
1713 					      p_params->int_mode,
1714 					      p_params->allow_npar_tx_switch);
1715 			break;
1716 		default:
1717 			rc = ECORE_NOTIMPL;
1718 			break;
1719 		}
1720 
1721 		if (rc != ECORE_SUCCESS)
1722 			DP_NOTICE(p_hwfn, true,
1723 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1724 				  load_code, rc);
1725 
1726 		/* ACK mfw regardless of success or failure of initialization */
1727 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1728 				       DRV_MSG_CODE_LOAD_DONE,
1729 				       0, &load_code, &param);
1730 		if (rc != ECORE_SUCCESS)
1731 			return rc;
1732 		if (mfw_rc != ECORE_SUCCESS) {
1733 			DP_NOTICE(p_hwfn, true,
1734 				  "Failed sending LOAD_DONE command\n");
1735 			return mfw_rc;
1736 		}
1737 
1738 		/* send DCBX attention request command */
1739 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
1740 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1741 		mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1742 				       DRV_MSG_CODE_SET_DCBX,
1743 				       1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1744 				       &load_code, &param);
1745 		if (mfw_rc != ECORE_SUCCESS) {
1746 			DP_NOTICE(p_hwfn, true,
1747 				  "Failed to send DCBX attention request\n");
1748 			return mfw_rc;
1749 		}
1750 
1751 		p_hwfn->hw_init_done = true;
1752 	}
1753 
1754 	return ECORE_SUCCESS;
1755 }
1756 
1757 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
1758 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
1759 				 struct ecore_hwfn *p_hwfn,
1760 				 struct ecore_ptt *p_ptt)
1761 {
1762 	int i;
1763 
1764 	/* close timers */
1765 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1766 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1767 	for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
1768 									i++) {
1769 		if ((!ecore_rd(p_hwfn, p_ptt,
1770 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1771 		    (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1772 			break;
1773 
1774 		/* Dependent on number of connection/tasks, possibly
1775 		 * 1ms sleep is required between polls
1776 		 */
1777 		OSAL_MSLEEP(1);
1778 	}
1779 
1780 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
1781 		return;
1782 
1783 	DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
1784 		  " [Connection %02x Tasks %02x]\n",
1785 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1786 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1787 }
1788 
1789 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
1790 {
1791 	int j;
1792 
1793 	for_each_hwfn(p_dev, j) {
1794 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1795 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1796 
1797 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1798 	}
1799 }
1800 
1801 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
1802 {
1803 	enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
1804 	int j;
1805 
1806 	for_each_hwfn(p_dev, j) {
1807 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1808 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1809 
1810 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
1811 
1812 		if (IS_VF(p_dev)) {
1813 			ecore_vf_pf_int_cleanup(p_hwfn);
1814 			continue;
1815 		}
1816 
1817 		/* mark the hw as uninitialized... */
1818 		p_hwfn->hw_init_done = false;
1819 
1820 		rc = ecore_sp_pf_stop(p_hwfn);
1821 		if (rc)
1822 			DP_NOTICE(p_hwfn, true,
1823 				  "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1824 
1825 		/* perform debug action after PF stop was sent */
1826 		OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
1827 
1828 		/* close NIG to BRB gate */
1829 		ecore_wr(p_hwfn, p_ptt,
1830 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1831 
1832 		/* close parser */
1833 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1834 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1835 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1836 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1837 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1838 
1839 		/* @@@TBD - clean transmission queues (5.b) */
1840 		/* @@@TBD - clean BTB (5.c) */
1841 
1842 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1843 
1844 		/* @@@TBD - verify DMAE requests are done (8) */
1845 
1846 		/* Disable Attention Generation */
1847 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
1848 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1849 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1850 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1851 		/* Need to wait 1ms to guarantee SBs are cleared */
1852 		OSAL_MSLEEP(1);
1853 	}
1854 
1855 	if (IS_PF(p_dev)) {
1856 		/* Disable DMAE in PXP - in CMT, this should only be done for
1857 		 * first hw-function, and only after all transactions have
1858 		 * stopped for all active hw-functions.
1859 		 */
1860 		t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
1861 					     p_dev->hwfns[0].p_main_ptt, false);
1862 		if (t_rc != ECORE_SUCCESS)
1863 			rc = t_rc;
1864 	}
1865 
1866 	return rc;
1867 }
1868 
1869 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
1870 {
1871 	int j;
1872 
1873 	for_each_hwfn(p_dev, j) {
1874 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1875 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1876 
1877 		if (IS_VF(p_dev)) {
1878 			ecore_vf_pf_int_cleanup(p_hwfn);
1879 			continue;
1880 		}
1881 
1882 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1883 			   "Shutting down the fastpath\n");
1884 
1885 		ecore_wr(p_hwfn, p_ptt,
1886 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1887 
1888 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1889 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1890 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1891 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1892 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1893 
1894 		/* @@@TBD - clean transmission queues (5.b) */
1895 		/* @@@TBD - clean BTB (5.c) */
1896 
1897 		/* @@@TBD - verify DMAE requests are done (8) */
1898 
1899 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1900 		/* Need to wait 1ms to guarantee SBs are cleared */
1901 		OSAL_MSLEEP(1);
1902 	}
1903 }
1904 
1905 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
1906 {
1907 	struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1908 
1909 	if (IS_VF(p_hwfn->p_dev))
1910 		return;
1911 
1912 	/* If roce info is allocated it means roce is initialized and should
1913 	 * be enabled in searcher.
1914 	 */
1915 	if (p_hwfn->p_rdma_info) {
1916 		if (p_hwfn->b_rdma_enabled_in_prs)
1917 			ecore_wr(p_hwfn, p_ptt,
1918 				 p_hwfn->rdma_prs_search_reg, 0x1);
1919 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
1920 	}
1921 
1922 	/* Re-open incoming traffic */
1923 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
1924 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1925 }
1926 
1927 static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
1928 					     struct ecore_ptt *p_ptt, u32 reg,
1929 					     bool expected)
1930 {
1931 	u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
1932 
1933 	if (assert_val != expected) {
1934 		DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
1935 			  reg, expected);
1936 		return ECORE_UNKNOWN_ERROR;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
1943 {
1944 	enum _ecore_status_t rc = ECORE_SUCCESS;
1945 	u32 unload_resp, unload_param;
1946 	int i;
1947 
1948 	for_each_hwfn(p_dev, i) {
1949 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1950 
1951 		if (IS_VF(p_dev)) {
1952 			rc = ecore_vf_pf_reset(p_hwfn);
1953 			if (rc)
1954 				return rc;
1955 			continue;
1956 		}
1957 
1958 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
1959 
1960 		/* Check for incorrect states */
1961 		if (!p_dev->recov_in_prog) {
1962 			ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1963 					 QM_REG_USG_CNT_PF_TX, 0);
1964 			ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1965 					 QM_REG_USG_CNT_PF_OTHER, 0);
1966 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
1967 		}
1968 
1969 		/* Disable PF in HW blocks */
1970 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1971 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1972 
1973 		if (p_dev->recov_in_prog) {
1974 			DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1975 				   "Recovery is in progress -> skip sending unload_req/done\n");
1976 			break;
1977 		}
1978 
1979 		/* Send unload command to MCP */
1980 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1981 				   DRV_MSG_CODE_UNLOAD_REQ,
1982 				   DRV_MB_PARAM_UNLOAD_WOL_MCP,
1983 				   &unload_resp, &unload_param);
1984 		if (rc != ECORE_SUCCESS) {
1985 			DP_NOTICE(p_hwfn, true,
1986 				  "ecore_hw_reset: UNLOAD_REQ failed\n");
1987 			/* @@TBD - what to do? for now, assume ENG. */
1988 			unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1989 		}
1990 
1991 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1992 				   DRV_MSG_CODE_UNLOAD_DONE,
1993 				   0, &unload_resp, &unload_param);
1994 		if (rc != ECORE_SUCCESS) {
1995 			DP_NOTICE(p_hwfn,
1996 				  true, "ecore_hw_reset: UNLOAD_DONE failed\n");
1997 			/* @@@TBD - Should it really ASSERT here ? */
1998 			return rc;
1999 		}
2000 	}
2001 
2002 	return rc;
2003 }
2004 
2005 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2006 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2007 {
2008 	ecore_ptt_pool_free(p_hwfn);
2009 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2010 }
2011 
2012 /* Setup bar access */
2013 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2014 {
2015 	/* clear indirect access */
2016 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
2017 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2018 			 PGLUE_B_REG_PGL_ADDR_E8_F0, 0);
2019 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2020 			 PGLUE_B_REG_PGL_ADDR_EC_F0, 0);
2021 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2022 			 PGLUE_B_REG_PGL_ADDR_F0_F0, 0);
2023 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2024 			 PGLUE_B_REG_PGL_ADDR_F4_F0, 0);
2025 	} else {
2026 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2027 			 PGLUE_B_REG_PGL_ADDR_88_F0, 0);
2028 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2029 			 PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
2030 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2031 			 PGLUE_B_REG_PGL_ADDR_90_F0, 0);
2032 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2033 			 PGLUE_B_REG_PGL_ADDR_94_F0, 0);
2034 	}
2035 
2036 	/* Clean Previous errors if such exist */
2037 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2038 		 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2039 
2040 	/* enable internal target-read */
2041 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2042 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2043 }
2044 
2045 static void get_function_id(struct ecore_hwfn *p_hwfn)
2046 {
2047 	/* ME Register */
2048 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2049 						  PXP_PF_ME_OPAQUE_ADDR);
2050 
2051 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2052 
2053 	/* Bits 16-19 from the ME registers are the pf_num */
2054 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2055 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2056 				      PXP_CONCRETE_FID_PFID);
2057 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2058 				    PXP_CONCRETE_FID_PORT);
2059 
2060 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2061 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2062 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2063 }
2064 
2065 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2066 {
2067 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2068 	int num_features = 1;
2069 
2070 	/* L2 Queues require each: 1 status block. 1 L2 queue */
2071 	feat_num[ECORE_PF_L2_QUE] =
2072 	    OSAL_MIN_T(u32,
2073 		       RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2074 		       RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2075 
2076 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2077 		   "#PF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
2078 		   feat_num[ECORE_PF_L2_QUE],
2079 		   feat_num[ECORE_RDMA_CNQ],
2080 		   RESC_NUM(p_hwfn, ECORE_SB), num_features);
2081 }
2082 
2083 static enum resource_id_enum
2084 ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
2085 {
2086 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2087 
2088 	switch (res_id) {
2089 	case ECORE_SB:
2090 		mfw_res_id = RESOURCE_NUM_SB_E;
2091 		break;
2092 	case ECORE_L2_QUEUE:
2093 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2094 		break;
2095 	case ECORE_VPORT:
2096 		mfw_res_id = RESOURCE_NUM_VPORT_E;
2097 		break;
2098 	case ECORE_RSS_ENG:
2099 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2100 		break;
2101 	case ECORE_PQ:
2102 		mfw_res_id = RESOURCE_NUM_PQ_E;
2103 		break;
2104 	case ECORE_RL:
2105 		mfw_res_id = RESOURCE_NUM_RL_E;
2106 		break;
2107 	case ECORE_MAC:
2108 	case ECORE_VLAN:
2109 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2110 		mfw_res_id = RESOURCE_VFC_FILTER_E;
2111 		break;
2112 	case ECORE_ILT:
2113 		mfw_res_id = RESOURCE_ILT_E;
2114 		break;
2115 	case ECORE_LL2_QUEUE:
2116 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
2117 		break;
2118 	case ECORE_RDMA_CNQ_RAM:
2119 	case ECORE_CMDQS_CQS:
2120 		/* CNQ/CMDQS are the same resource */
2121 		mfw_res_id = RESOURCE_CQS_E;
2122 		break;
2123 	case ECORE_RDMA_STATS_QUEUE:
2124 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2125 		break;
2126 	default:
2127 		break;
2128 	}
2129 
2130 	return mfw_res_id;
2131 }
2132 
2133 static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
2134 				      enum ecore_resources res_id)
2135 {
2136 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2137 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2138 	struct ecore_sb_cnt_info sb_cnt_info;
2139 	u32 dflt_resc_num = 0;
2140 
2141 	switch (res_id) {
2142 	case ECORE_SB:
2143 		OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2144 		ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2145 		dflt_resc_num = sb_cnt_info.sb_cnt;
2146 		break;
2147 	case ECORE_L2_QUEUE:
2148 		dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2149 				 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2150 		break;
2151 	case ECORE_VPORT:
2152 		dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2153 				 MAX_NUM_VPORTS_BB) / num_funcs;
2154 		break;
2155 	case ECORE_RSS_ENG:
2156 		dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2157 				 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2158 		break;
2159 	case ECORE_PQ:
2160 		dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2161 				 MAX_QM_TX_QUEUES_BB) / num_funcs;
2162 		break;
2163 	case ECORE_RL:
2164 		dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2165 		break;
2166 	case ECORE_MAC:
2167 	case ECORE_VLAN:
2168 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2169 		dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2170 		break;
2171 	case ECORE_ILT:
2172 		dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2173 				 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2174 		break;
2175 	case ECORE_LL2_QUEUE:
2176 		dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2177 		break;
2178 	case ECORE_RDMA_CNQ_RAM:
2179 	case ECORE_CMDQS_CQS:
2180 		/* CNQ/CMDQS are the same resource */
2181 		/* @DPDK */
2182 		dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2183 		break;
2184 	case ECORE_RDMA_STATS_QUEUE:
2185 		/* @DPDK */
2186 		dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2187 				 MAX_NUM_VPORTS_BB) / num_funcs;
2188 		break;
2189 	default:
2190 		break;
2191 	}
2192 
2193 	return dflt_resc_num;
2194 }
2195 
2196 static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2197 {
2198 	switch (res_id) {
2199 	case ECORE_SB:
2200 		return "SB";
2201 	case ECORE_L2_QUEUE:
2202 		return "L2_QUEUE";
2203 	case ECORE_VPORT:
2204 		return "VPORT";
2205 	case ECORE_RSS_ENG:
2206 		return "RSS_ENG";
2207 	case ECORE_PQ:
2208 		return "PQ";
2209 	case ECORE_RL:
2210 		return "RL";
2211 	case ECORE_MAC:
2212 		return "MAC";
2213 	case ECORE_VLAN:
2214 		return "VLAN";
2215 	case ECORE_RDMA_CNQ_RAM:
2216 		return "RDMA_CNQ_RAM";
2217 	case ECORE_ILT:
2218 		return "ILT";
2219 	case ECORE_LL2_QUEUE:
2220 		return "LL2_QUEUE";
2221 	case ECORE_CMDQS_CQS:
2222 		return "CMDQS_CQS";
2223 	case ECORE_RDMA_STATS_QUEUE:
2224 		return "RDMA_STATS_QUEUE";
2225 	default:
2226 		return "UNKNOWN_RESOURCE";
2227 	}
2228 }
2229 
2230 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2231 						   enum ecore_resources res_id,
2232 						   bool drv_resc_alloc)
2233 {
2234 	u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
2235 	u32 *p_resc_num, *p_resc_start;
2236 	struct resource_info resc_info;
2237 	enum _ecore_status_t rc;
2238 
2239 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
2240 	p_resc_start = &RESC_START(p_hwfn, res_id);
2241 
2242 	dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
2243 	if (!dflt_resc_num) {
2244 		DP_ERR(p_hwfn,
2245 		       "Failed to get default amount for resource %d [%s]\n",
2246 			res_id, ecore_hw_get_resc_name(res_id));
2247 		return ECORE_INVAL;
2248 	}
2249 	dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
2250 
2251 #ifndef ASIC_ONLY
2252 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2253 		*p_resc_num = dflt_resc_num;
2254 		*p_resc_start = dflt_resc_start;
2255 		goto out;
2256 	}
2257 #endif
2258 
2259 	OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
2260 	resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
2261 	if (resc_info.res_id == RESOURCE_NUM_INVALID) {
2262 		DP_ERR(p_hwfn,
2263 		       "Failed to match resource %d with MFW resources\n",
2264 		       res_id);
2265 		return ECORE_INVAL;
2266 	}
2267 
2268 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
2269 				     &mcp_resp, &mcp_param);
2270 	if (rc != ECORE_SUCCESS) {
2271 		DP_NOTICE(p_hwfn, true,
2272 			  "MFW response failure for an allocation request for"
2273 			  " resource %d [%s]\n",
2274 			  res_id, ecore_hw_get_resc_name(res_id));
2275 		return rc;
2276 	}
2277 
2278 	/* Default driver values are applied in the following cases:
2279 	 * - The resource allocation MB command is not supported by the MFW
2280 	 * - There is an internal error in the MFW while processing the request
2281 	 * - The resource ID is unknown to the MFW
2282 	 */
2283 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
2284 	    mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
2285 		/* @DPDK */
2286 		DP_INFO(p_hwfn,
2287 			"Resource %d [%s]: No allocation info was received"
2288 			" [mcp_resp 0x%x]. Applying default values"
2289 			" [num %d, start %d].\n",
2290 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
2291 			dflt_resc_num, dflt_resc_start);
2292 
2293 		*p_resc_num = dflt_resc_num;
2294 		*p_resc_start = dflt_resc_start;
2295 		goto out;
2296 	}
2297 
2298 	/* TBD - remove this when revising the handling of the SB resource */
2299 	if (res_id == ECORE_SB) {
2300 		/* Excluding the slowpath SB */
2301 		resc_info.size -= 1;
2302 		resc_info.offset -= p_hwfn->enabled_func_idx;
2303 	}
2304 
2305 	*p_resc_num = resc_info.size;
2306 	*p_resc_start = resc_info.offset;
2307 
2308 	if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2309 		DP_NOTICE(p_hwfn, false,
2310 			  "Resource %d [%s]: MFW allocation [num %d, start %d]"
2311 			  " differs from default values [num %d, start %d]%s\n",
2312 			  res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
2313 			  *p_resc_start, dflt_resc_num, dflt_resc_start,
2314 			  drv_resc_alloc ? " - Applying default values" : "");
2315 		if (drv_resc_alloc) {
2316 			*p_resc_num = dflt_resc_num;
2317 			*p_resc_start = dflt_resc_start;
2318 		}
2319 	}
2320  out:
2321 	return ECORE_SUCCESS;
2322 }
2323 
2324 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2325 					      bool drv_resc_alloc)
2326 {
2327 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2328 	enum _ecore_status_t rc;
2329 	u8 res_id;
2330 #ifndef ASIC_ONLY
2331 	u32 *resc_start = p_hwfn->hw_info.resc_start;
2332 	u32 *resc_num = p_hwfn->hw_info.resc_num;
2333 	/* For AH, an equal share of the ILT lines between the maximal number of
2334 	 * PFs is not enough for RoCE. This would be solved by the future
2335 	 * resource allocation scheme, but isn't currently present for
2336 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2337 	 * to work - the BB number of ILT lines divided by its max PFs number.
2338 	 */
2339 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2340 #endif
2341 
2342 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2343 		/* @@@TMP for AH:
2344 		 * Force the driver's default resource allocation in case there
2345 		 * is a diff with the MFW allocation value.
2346 		 */
2347 		rc = ecore_hw_set_resc_info(p_hwfn, res_id,
2348 					    b_ah || drv_resc_alloc);
2349 		if (rc != ECORE_SUCCESS)
2350 			return rc;
2351 	}
2352 
2353 #ifndef ASIC_ONLY
2354 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2355 		/* Reduced build contains less PQs */
2356 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
2357 			resc_num[ECORE_PQ] = 32;
2358 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2359 			    p_hwfn->enabled_func_idx;
2360 		}
2361 
2362 		/* For AH emulation, since we have a possible maximal number of
2363 		 * 16 enabled PFs, in case there are not enough ILT lines -
2364 		 * allocate only first PF as RoCE and have all the other ETH
2365 		 * only with less ILT lines.
2366 		 */
2367 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2368 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2369 							 resc_num[ECORE_ILT],
2370 							 roce_min_ilt_lines);
2371 	}
2372 
2373 	/* Correct the common ILT calculation if PF0 has more */
2374 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2375 	    p_hwfn->p_dev->b_is_emul_full &&
2376 	    p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2377 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
2378 		    resc_num[ECORE_ILT];
2379 #endif
2380 
2381 	/* Sanity for ILT */
2382 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2383 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2384 		DP_NOTICE(p_hwfn, true,
2385 			  "Can't assign ILT pages [%08x,...,%08x]\n",
2386 			  RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2387 								  ECORE_ILT) -
2388 			  1);
2389 		return ECORE_INVAL;
2390 	}
2391 
2392 	ecore_hw_set_feat(p_hwfn);
2393 
2394 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2395 		   "The numbers for each resource are:\n");
2396 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2397 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2398 			   ecore_hw_get_resc_name(res_id),
2399 			   RESC_NUM(p_hwfn, res_id),
2400 			   RESC_START(p_hwfn, res_id));
2401 
2402 	return ECORE_SUCCESS;
2403 }
2404 
2405 static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2406 						  struct ecore_ptt *p_ptt)
2407 {
2408 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
2409 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2410 	struct ecore_mcp_link_params *link;
2411 
2412 	/* Read global nvm_cfg address */
2413 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2414 
2415 	/* Verify MCP has initialized it */
2416 	if (!nvm_cfg_addr) {
2417 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2418 		return ECORE_INVAL;
2419 	}
2420 
2421 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2422 
2423 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2424 
2425 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2426 	    OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2427 						       core_cfg);
2428 
2429 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2430 
2431 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2432 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2433 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2434 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2435 		break;
2436 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2437 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2438 		break;
2439 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2440 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2441 		break;
2442 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2443 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2444 		break;
2445 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2446 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2447 		break;
2448 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2449 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2450 		break;
2451 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2452 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2453 		break;
2454 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2455 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2456 		break;
2457 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
2458 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
2459 		break;
2460 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2461 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2462 		break;
2463 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2464 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2465 		break;
2466 	default:
2467 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2468 			  core_cfg);
2469 		break;
2470 	}
2471 
2472 	/* Read DCBX configuration */
2473 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2474 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2475 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
2476 			     port_cfg_addr +
2477 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
2478 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
2479 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
2480 	switch (dcbx_mode) {
2481 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
2482 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
2483 		break;
2484 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
2485 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
2486 		break;
2487 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
2488 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
2489 		break;
2490 	default:
2491 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
2492 	}
2493 
2494 	/* Read default link configuration */
2495 	link = &p_hwfn->mcp_info->link_input;
2496 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2497 	    OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2498 	link_temp = ecore_rd(p_hwfn, p_ptt,
2499 			     port_cfg_addr +
2500 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2501 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2502 	link->speed.advertised_speeds = link_temp;
2503 
2504 	link_temp = link->speed.advertised_speeds;
2505 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2506 
2507 	link_temp = ecore_rd(p_hwfn, p_ptt,
2508 			     port_cfg_addr +
2509 			     OFFSETOF(struct nvm_cfg1_port, link_settings));
2510 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2511 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2512 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2513 		link->speed.autoneg = true;
2514 		break;
2515 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2516 		link->speed.forced_speed = 1000;
2517 		break;
2518 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2519 		link->speed.forced_speed = 10000;
2520 		break;
2521 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2522 		link->speed.forced_speed = 25000;
2523 		break;
2524 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2525 		link->speed.forced_speed = 40000;
2526 		break;
2527 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2528 		link->speed.forced_speed = 50000;
2529 		break;
2530 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2531 		link->speed.forced_speed = 100000;
2532 		break;
2533 	default:
2534 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2535 	}
2536 
2537 	p_hwfn->mcp_info->link_capabilities.default_speed =
2538 	    link->speed.forced_speed;
2539 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2540 	    link->speed.autoneg;
2541 
2542 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2543 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2544 	link->pause.autoneg = !!(link_temp &
2545 				  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2546 	link->pause.forced_rx = !!(link_temp &
2547 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2548 	link->pause.forced_tx = !!(link_temp &
2549 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2550 	link->loopback_mode = 0;
2551 
2552 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2553 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2554 		   link->speed.forced_speed, link->speed.advertised_speeds,
2555 		   link->speed.autoneg, link->pause.autoneg);
2556 
2557 	/* Read Multi-function information from shmem */
2558 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2559 	    OFFSETOF(struct nvm_cfg1, glob) +
2560 	    OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
2561 
2562 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
2563 
2564 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2565 	    NVM_CFG1_GLOB_MF_MODE_OFFSET;
2566 
2567 	switch (mf_mode) {
2568 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2569 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
2570 		break;
2571 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2572 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
2573 		break;
2574 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2575 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
2576 		break;
2577 	}
2578 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2579 		p_hwfn->p_dev->mf_mode);
2580 
2581 	/* Read Multi-function information from shmem */
2582 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2583 	    OFFSETOF(struct nvm_cfg1, glob) +
2584 	    OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
2585 
2586 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
2587 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2588 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
2589 			     &p_hwfn->hw_info.device_capabilities);
2590 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2591 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
2592 			     &p_hwfn->hw_info.device_capabilities);
2593 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2594 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
2595 			     &p_hwfn->hw_info.device_capabilities);
2596 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2597 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
2598 			     &p_hwfn->hw_info.device_capabilities);
2599 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
2600 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
2601 			     &p_hwfn->hw_info.device_capabilities);
2602 
2603 	return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2604 }
2605 
2606 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
2607 				struct ecore_ptt *p_ptt)
2608 {
2609 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2610 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2611 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2612 
2613 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2614 
2615 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2616 	 * in the other bits are selected.
2617 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
2618 	 * '0' only for enabled functions (function 0 always exists and
2619 	 * enabled).
2620 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
2621 	 * the number of functions for both hwfns is learnt from the same bits.
2622 	 */
2623 	reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2624 
2625 	if (reg_function_hide & 0x1) {
2626 		if (ECORE_IS_BB(p_dev)) {
2627 			if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
2628 				num_funcs = 0;
2629 				eng_mask = 0xaaaa;
2630 			} else {
2631 				num_funcs = 1;
2632 				eng_mask = 0x5554;
2633 			}
2634 		} else {
2635 			num_funcs = 1;
2636 			eng_mask = 0xfffe;
2637 		}
2638 
2639 		/* Get the number of the enabled functions on the engine */
2640 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2641 		while (tmp) {
2642 			if (tmp & 0x1)
2643 				num_funcs++;
2644 			tmp >>= 0x1;
2645 		}
2646 
2647 		/* Get the PF index within the enabled functions */
2648 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2649 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
2650 		while (tmp) {
2651 			if (tmp & 0x1)
2652 				enabled_func_idx--;
2653 			tmp >>= 0x1;
2654 		}
2655 	}
2656 
2657 	p_hwfn->num_funcs_on_engine = num_funcs;
2658 	p_hwfn->enabled_func_idx = enabled_func_idx;
2659 
2660 #ifndef ASIC_ONLY
2661 	if (CHIP_REV_IS_FPGA(p_dev)) {
2662 		DP_NOTICE(p_hwfn, false,
2663 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
2664 		p_hwfn->num_funcs_on_engine = 4;
2665 	}
2666 #endif
2667 
2668 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2669 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2670 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
2671 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2672 }
2673 
2674 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
2675 				      struct ecore_ptt *p_ptt)
2676 {
2677 	u32 port_mode;
2678 
2679 #ifndef ASIC_ONLY
2680 	/* Read the port mode */
2681 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
2682 		port_mode = 4;
2683 	else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
2684 		 (p_hwfn->p_dev->num_hwfns > 1))
2685 		/* In CMT on emulation, assume 1 port */
2686 		port_mode = 1;
2687 	else
2688 #endif
2689 		port_mode = ecore_rd(p_hwfn, p_ptt,
2690 				     CNIG_REG_NW_PORT_MODE_BB_B0);
2691 
2692 	if (port_mode < 3) {
2693 		p_hwfn->p_dev->num_ports_in_engines = 1;
2694 	} else if (port_mode <= 5) {
2695 		p_hwfn->p_dev->num_ports_in_engines = 2;
2696 	} else {
2697 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
2698 			  p_hwfn->p_dev->num_ports_in_engines);
2699 
2700 		/* Default num_ports_in_engines to something */
2701 		p_hwfn->p_dev->num_ports_in_engines = 1;
2702 	}
2703 }
2704 
2705 static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
2706 				      struct ecore_ptt *p_ptt)
2707 {
2708 	u32 port;
2709 	int i;
2710 
2711 	p_hwfn->p_dev->num_ports_in_engines = 0;
2712 
2713 #ifndef ASIC_ONLY
2714 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2715 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
2716 		switch ((port & 0xf000) >> 12) {
2717 		case 1:
2718 			p_hwfn->p_dev->num_ports_in_engines = 1;
2719 			break;
2720 		case 3:
2721 			p_hwfn->p_dev->num_ports_in_engines = 2;
2722 			break;
2723 		case 0xf:
2724 			p_hwfn->p_dev->num_ports_in_engines = 4;
2725 			break;
2726 		default:
2727 			DP_NOTICE(p_hwfn, false,
2728 				  "Unknown port mode in ECO_RESERVED %08x\n",
2729 				  port);
2730 		}
2731 	} else
2732 #endif
2733 		for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2734 			port = ecore_rd(p_hwfn, p_ptt,
2735 					CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2736 			if (port & 1)
2737 				p_hwfn->p_dev->num_ports_in_engines++;
2738 		}
2739 }
2740 
2741 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
2742 				   struct ecore_ptt *p_ptt)
2743 {
2744 	if (ECORE_IS_BB(p_hwfn->p_dev))
2745 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
2746 	else
2747 		ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
2748 }
2749 
2750 static enum _ecore_status_t
2751 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2752 		  enum ecore_pci_personality personality, bool drv_resc_alloc)
2753 {
2754 	enum _ecore_status_t rc;
2755 
2756 	/* Since all information is common, only first hwfns should do this */
2757 	if (IS_LEAD_HWFN(p_hwfn)) {
2758 		rc = ecore_iov_hw_info(p_hwfn);
2759 		if (rc != ECORE_SUCCESS)
2760 			return rc;
2761 	}
2762 
2763 	/* TODO In get_hw_info, amoungst others:
2764 	 * Get MCP FW revision and determine according to it the supported
2765 	 * featrues (e.g. DCB)
2766 	 * Get boot mode
2767 	 * ecore_get_pcie_width_speed, WOL capability.
2768 	 * Number of global CQ-s (for storage
2769 	 */
2770 	ecore_hw_info_port_num(p_hwfn, p_ptt);
2771 
2772 #ifndef ASIC_ONLY
2773 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
2774 #endif
2775 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt);
2776 	if (rc != ECORE_SUCCESS)
2777 		return rc;
2778 #ifndef ASIC_ONLY
2779 	}
2780 #endif
2781 
2782 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
2783 	if (rc != ECORE_SUCCESS)
2784 		return rc;
2785 
2786 #ifndef ASIC_ONLY
2787 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
2788 #endif
2789 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
2790 			    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
2791 #ifndef ASIC_ONLY
2792 	} else {
2793 		static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
2794 
2795 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
2796 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
2797 	}
2798 #endif
2799 
2800 	if (ecore_mcp_is_init(p_hwfn)) {
2801 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
2802 			p_hwfn->hw_info.ovlan =
2803 			    p_hwfn->mcp_info->func_info.ovlan;
2804 
2805 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
2806 	}
2807 
2808 	if (personality != ECORE_PCI_DEFAULT) {
2809 		p_hwfn->hw_info.personality = personality;
2810 	} else if (ecore_mcp_is_init(p_hwfn)) {
2811 		enum ecore_pci_personality protocol;
2812 
2813 		protocol = p_hwfn->mcp_info->func_info.protocol;
2814 		p_hwfn->hw_info.personality = protocol;
2815 	}
2816 
2817 #ifndef ASIC_ONLY
2818 	/* To overcome ILT lack for emulation, until at least until we'll have
2819 	 * a definite answer from system about it, allow only PF0 to be RoCE.
2820 	 */
2821 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
2822 		if (!p_hwfn->rel_pf_id)
2823 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2824 		else
2825 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2826 	}
2827 #endif
2828 
2829 	/* although in BB some constellations may support more than 4 tcs,
2830 	 * that can result in performance penalty in some cases. 4
2831 	 * represents a good tradeoff between performance and flexibility.
2832 	 */
2833 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2834 
2835 	/* start out with a single active tc. This can be increased either
2836 	 * by dcbx negotiation or by upper layer driver
2837 	 */
2838 	p_hwfn->hw_info.num_active_tc = 1;
2839 
2840 	ecore_get_num_funcs(p_hwfn, p_ptt);
2841 
2842 	/* In case of forcing the driver's default resource allocation, calling
2843 	 * ecore_hw_get_resc() should come after initializing the personality
2844 	 * and after getting the number of functions, since the calculation of
2845 	 * the resources/features depends on them.
2846 	 * This order is not harmful if not forcing.
2847 	 */
2848 	return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
2849 }
2850 
2851 #define ECORE_DEV_ID_MASK	0xff00
2852 #define ECORE_DEV_ID_MASK_BB	0x1600
2853 #define ECORE_DEV_ID_MASK_AH	0x8000
2854 
2855 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
2856 {
2857 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2858 	u32 tmp;
2859 
2860 	/* Read Vendor Id / Device Id */
2861 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
2862 				  &p_dev->vendor_id);
2863 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
2864 				  &p_dev->device_id);
2865 
2866 	/* Determine type */
2867 	if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
2868 		p_dev->type = ECORE_DEV_TYPE_AH;
2869 	else
2870 		p_dev->type = ECORE_DEV_TYPE_BB;
2871 
2872 	p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2873 					 MISCS_REG_CHIP_NUM);
2874 	p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2875 					 MISCS_REG_CHIP_REV);
2876 
2877 	MASK_FIELD(CHIP_REV, p_dev->chip_rev);
2878 
2879 	/* Learn number of HW-functions */
2880 	tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2881 		       MISCS_REG_CMT_ENABLED_FOR_PAIR);
2882 
2883 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
2884 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
2885 		p_dev->num_hwfns = 2;
2886 	} else {
2887 		p_dev->num_hwfns = 1;
2888 	}
2889 
2890 #ifndef ASIC_ONLY
2891 	if (CHIP_REV_IS_EMUL(p_dev)) {
2892 		/* For some reason we have problems with this register
2893 		 * in B0 emulation; Simply assume no CMT
2894 		 */
2895 		DP_NOTICE(p_dev->hwfns, false,
2896 			  "device on emul - assume no CMT\n");
2897 		p_dev->num_hwfns = 1;
2898 	}
2899 #endif
2900 
2901 	p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2902 				       MISCS_REG_CHIP_TEST_REG) >> 4;
2903 	MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
2904 	p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2905 					   MISCS_REG_CHIP_METAL);
2906 	MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
2907 	DP_INFO(p_dev->hwfns,
2908 		"Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2909 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
2910 		CHIP_REV_IS_A0(p_dev) ? 0 : 1,
2911 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
2912 		p_dev->chip_metal);
2913 
2914 	if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
2915 		DP_NOTICE(p_dev->hwfns, false,
2916 			  "The chip type/rev (BB A0) is not supported!\n");
2917 		return ECORE_ABORTED;
2918 	}
2919 #ifndef ASIC_ONLY
2920 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
2921 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2922 			 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
2923 
2924 	if (CHIP_REV_IS_EMUL(p_dev)) {
2925 		tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2926 			       MISCS_REG_ECO_RESERVED);
2927 		if (tmp & (1 << 29)) {
2928 			DP_NOTICE(p_hwfn, false,
2929 				  "Emulation: Running on a FULL build\n");
2930 			p_dev->b_is_emul_full = true;
2931 		} else {
2932 			DP_NOTICE(p_hwfn, false,
2933 				  "Emulation: Running on a REDUCED build\n");
2934 		}
2935 	}
2936 #endif
2937 
2938 	return ECORE_SUCCESS;
2939 }
2940 
2941 #ifndef LINUX_REMOVE
2942 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
2943 {
2944 	int j;
2945 
2946 	if (IS_VF(p_dev))
2947 		return;
2948 
2949 	for_each_hwfn(p_dev, j) {
2950 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2951 
2952 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2953 			   "Mark hw/fw uninitialized\n");
2954 
2955 		p_hwfn->hw_init_done = false;
2956 		p_hwfn->first_on_engine = false;
2957 
2958 		ecore_ptt_invalidate(p_hwfn);
2959 	}
2960 }
2961 #endif
2962 
2963 static enum _ecore_status_t
2964 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
2965 			void OSAL_IOMEM * p_regview,
2966 			void OSAL_IOMEM * p_doorbells,
2967 			struct ecore_hw_prepare_params *p_params)
2968 {
2969 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2970 	struct ecore_mdump_info mdump_info;
2971 	enum _ecore_status_t rc = ECORE_SUCCESS;
2972 
2973 	/* Split PCI bars evenly between hwfns */
2974 	p_hwfn->regview = p_regview;
2975 	p_hwfn->doorbells = p_doorbells;
2976 
2977 	if (IS_VF(p_dev))
2978 		return ecore_vf_hw_prepare(p_hwfn);
2979 
2980 	/* Validate that chip access is feasible */
2981 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2982 		DP_ERR(p_hwfn,
2983 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
2984 		return ECORE_INVAL;
2985 	}
2986 
2987 	get_function_id(p_hwfn);
2988 
2989 	/* Allocate PTT pool */
2990 	rc = ecore_ptt_pool_alloc(p_hwfn);
2991 	if (rc) {
2992 		DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
2993 		goto err0;
2994 	}
2995 
2996 	/* Allocate the main PTT */
2997 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2998 
2999 	/* First hwfn learns basic information, e.g., number of hwfns */
3000 	if (!p_hwfn->my_id) {
3001 		rc = ecore_get_dev_info(p_dev);
3002 		if (rc != ECORE_SUCCESS)
3003 			goto err1;
3004 	}
3005 
3006 	ecore_hw_hwfn_prepare(p_hwfn);
3007 
3008 	/* Initialize MCP structure */
3009 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3010 	if (rc) {
3011 		DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
3012 		goto err1;
3013 	}
3014 
3015 	/* Read the device configuration information from the HW and SHMEM */
3016 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3017 			       p_params->personality, p_params->drv_resc_alloc);
3018 	if (rc) {
3019 		DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3020 		goto err2;
3021 	}
3022 
3023 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
3024 	 * called, since among others it sets the ports number in an engine.
3025 	 */
3026 	if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
3027 	    !p_dev->recov_in_prog) {
3028 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3029 		if (rc != ECORE_SUCCESS)
3030 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3031 	}
3032 
3033 	/* Check if mdump logs are present and update the epoch value */
3034 	if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
3035 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
3036 					      &mdump_info);
3037 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
3038 			DP_NOTICE(p_hwfn, false,
3039 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
3040 		}
3041 
3042 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
3043 					   p_params->epoch);
3044 	}
3045 
3046 	/* Allocate the init RT array and initialize the init-ops engine */
3047 	rc = ecore_init_alloc(p_hwfn);
3048 	if (rc) {
3049 		DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3050 		goto err2;
3051 	}
3052 #ifndef ASIC_ONLY
3053 	if (CHIP_REV_IS_FPGA(p_dev)) {
3054 		DP_NOTICE(p_hwfn, false,
3055 			  "FPGA: workaround; Prevent DMAE parities\n");
3056 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
3057 
3058 		DP_NOTICE(p_hwfn, false,
3059 			  "FPGA: workaround: Set VF bar0 size\n");
3060 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3061 			 PGLUE_B_REG_VF_BAR0_SIZE, 4);
3062 	}
3063 #endif
3064 
3065 	return rc;
3066  err2:
3067 	if (IS_LEAD_HWFN(p_hwfn))
3068 		ecore_iov_free_hw_info(p_dev);
3069 	ecore_mcp_free(p_hwfn);
3070  err1:
3071 	ecore_hw_hwfn_free(p_hwfn);
3072  err0:
3073 	return rc;
3074 }
3075 
3076 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3077 				      struct ecore_hw_prepare_params *p_params)
3078 {
3079 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3080 	enum _ecore_status_t rc;
3081 
3082 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3083 
3084 	/* Store the precompiled init data ptrs */
3085 	if (IS_PF(p_dev))
3086 		ecore_init_iro_array(p_dev);
3087 
3088 	/* Initialize the first hwfn - will learn number of hwfns */
3089 	rc = ecore_hw_prepare_single(p_hwfn,
3090 				     p_dev->regview,
3091 				     p_dev->doorbells, p_params);
3092 	if (rc != ECORE_SUCCESS)
3093 		return rc;
3094 
3095 	p_params->personality = p_hwfn->hw_info.personality;
3096 
3097 	/* initilalize 2nd hwfn if necessary */
3098 	if (p_dev->num_hwfns > 1) {
3099 		void OSAL_IOMEM *p_regview, *p_doorbell;
3100 		u8 OSAL_IOMEM *addr;
3101 
3102 		/* adjust bar offset for second engine */
3103 		addr = (u8 OSAL_IOMEM *)p_dev->regview +
3104 		    ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3105 		p_regview = (void OSAL_IOMEM *)addr;
3106 
3107 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3108 		    ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3109 		p_doorbell = (void OSAL_IOMEM *)addr;
3110 
3111 		/* prepare second hw function */
3112 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3113 					     p_doorbell, p_params);
3114 
3115 		/* in case of error, need to free the previously
3116 		 * initiliazed hwfn 0.
3117 		 */
3118 		if (rc != ECORE_SUCCESS) {
3119 			if (IS_PF(p_dev)) {
3120 				ecore_init_free(p_hwfn);
3121 				ecore_mcp_free(p_hwfn);
3122 				ecore_hw_hwfn_free(p_hwfn);
3123 			} else {
3124 				DP_NOTICE(p_dev, true,
3125 					  "What do we need to free when VF hwfn1 init fails\n");
3126 			}
3127 			return rc;
3128 		}
3129 	}
3130 
3131 	return rc;
3132 }
3133 
3134 void ecore_hw_remove(struct ecore_dev *p_dev)
3135 {
3136 	int i;
3137 
3138 	for_each_hwfn(p_dev, i) {
3139 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3140 
3141 		if (IS_VF(p_dev)) {
3142 			ecore_vf_pf_release(p_hwfn);
3143 			continue;
3144 		}
3145 
3146 		ecore_init_free(p_hwfn);
3147 		ecore_hw_hwfn_free(p_hwfn);
3148 		ecore_mcp_free(p_hwfn);
3149 
3150 		OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3151 	}
3152 
3153 	ecore_iov_free_hw_info(p_dev);
3154 }
3155 
3156 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3157 				      struct ecore_chain *p_chain)
3158 {
3159 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3160 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3161 	struct ecore_chain_next *p_next;
3162 	u32 size, i;
3163 
3164 	if (!p_virt)
3165 		return;
3166 
3167 	size = p_chain->elem_size * p_chain->usable_per_page;
3168 
3169 	for (i = 0; i < p_chain->page_cnt; i++) {
3170 		if (!p_virt)
3171 			break;
3172 
3173 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3174 		p_virt_next = p_next->next_virt;
3175 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3176 
3177 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3178 				       ECORE_CHAIN_PAGE_SIZE);
3179 
3180 		p_virt = p_virt_next;
3181 		p_phys = p_phys_next;
3182 	}
3183 }
3184 
3185 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3186 				    struct ecore_chain *p_chain)
3187 {
3188 	if (!p_chain->p_virt_addr)
3189 		return;
3190 
3191 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3192 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3193 }
3194 
3195 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3196 				 struct ecore_chain *p_chain)
3197 {
3198 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3199 	u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
3200 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3201 
3202 	if (!pp_virt_addr_tbl)
3203 		return;
3204 
3205 	if (!p_chain->pbl.p_virt_table)
3206 		goto out;
3207 
3208 	for (i = 0; i < page_cnt; i++) {
3209 		if (!pp_virt_addr_tbl[i])
3210 			break;
3211 
3212 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3213 				       *(dma_addr_t *)p_pbl_virt,
3214 				       ECORE_CHAIN_PAGE_SIZE);
3215 
3216 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3217 	}
3218 
3219 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3220 
3221 	if (!p_chain->pbl.external)
3222 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
3223 				       p_chain->pbl.p_phys_table, pbl_size);
3224  out:
3225 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3226 }
3227 
3228 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3229 {
3230 	switch (p_chain->mode) {
3231 	case ECORE_CHAIN_MODE_NEXT_PTR:
3232 		ecore_chain_free_next_ptr(p_dev, p_chain);
3233 		break;
3234 	case ECORE_CHAIN_MODE_SINGLE:
3235 		ecore_chain_free_single(p_dev, p_chain);
3236 		break;
3237 	case ECORE_CHAIN_MODE_PBL:
3238 		ecore_chain_free_pbl(p_dev, p_chain);
3239 		break;
3240 	}
3241 }
3242 
3243 static enum _ecore_status_t
3244 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3245 			       enum ecore_chain_cnt_type cnt_type,
3246 			       osal_size_t elem_size, u32 page_cnt)
3247 {
3248 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3249 
3250 	/* The actual chain size can be larger than the maximal possible value
3251 	 * after rounding up the requested elements number to pages, and after
3252 	 * taking into acount the unusuable elements (next-ptr elements).
3253 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3254 	 * size/capacity fields are of a u32 type.
3255 	 */
3256 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3257 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3258 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3259 	     chain_size > ECORE_U32_MAX)) {
3260 		DP_NOTICE(p_dev, true,
3261 			  "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3262 			  (unsigned long)chain_size);
3263 		return ECORE_INVAL;
3264 	}
3265 
3266 	return ECORE_SUCCESS;
3267 }
3268 
3269 static enum _ecore_status_t
3270 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3271 {
3272 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3273 	dma_addr_t p_phys = 0;
3274 	u32 i;
3275 
3276 	for (i = 0; i < p_chain->page_cnt; i++) {
3277 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3278 						 ECORE_CHAIN_PAGE_SIZE);
3279 		if (!p_virt) {
3280 			DP_NOTICE(p_dev, true,
3281 				  "Failed to allocate chain memory\n");
3282 			return ECORE_NOMEM;
3283 		}
3284 
3285 		if (i == 0) {
3286 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
3287 			ecore_chain_reset(p_chain);
3288 		} else {
3289 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3290 						       p_virt, p_phys);
3291 		}
3292 
3293 		p_virt_prev = p_virt;
3294 	}
3295 	/* Last page's next element should point to the beginning of the
3296 	 * chain.
3297 	 */
3298 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3299 				       p_chain->p_virt_addr,
3300 				       p_chain->p_phys_addr);
3301 
3302 	return ECORE_SUCCESS;
3303 }
3304 
3305 static enum _ecore_status_t
3306 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3307 {
3308 	dma_addr_t p_phys = 0;
3309 	void *p_virt = OSAL_NULL;
3310 
3311 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3312 	if (!p_virt) {
3313 		DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3314 		return ECORE_NOMEM;
3315 	}
3316 
3317 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
3318 	ecore_chain_reset(p_chain);
3319 
3320 	return ECORE_SUCCESS;
3321 }
3322 
3323 static enum _ecore_status_t
3324 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3325 		      struct ecore_chain *p_chain,
3326 		      struct ecore_chain_ext_pbl *ext_pbl)
3327 {
3328 	void *p_virt = OSAL_NULL;
3329 	u8 *p_pbl_virt = OSAL_NULL;
3330 	void **pp_virt_addr_tbl = OSAL_NULL;
3331 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
3332 	u32 page_cnt = p_chain->page_cnt, size, i;
3333 
3334 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
3335 	pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
3336 	if (!pp_virt_addr_tbl) {
3337 		DP_NOTICE(p_dev, true,
3338 			  "Failed to allocate memory for the chain virtual addresses table\n");
3339 		return ECORE_NOMEM;
3340 	}
3341 	OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
3342 
3343 	/* The allocation of the PBL table is done with its full size, since it
3344 	 * is expected to be successive.
3345 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3346 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
3347 	 * should be saved to allow its freeing during the error flow.
3348 	 */
3349 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3350 
3351 	if (ext_pbl == OSAL_NULL) {
3352 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3353 	} else {
3354 		p_pbl_virt = ext_pbl->p_pbl_virt;
3355 		p_pbl_phys = ext_pbl->p_pbl_phys;
3356 		p_chain->pbl.external = true;
3357 	}
3358 
3359 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3360 				 pp_virt_addr_tbl);
3361 	if (!p_pbl_virt) {
3362 		DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3363 		return ECORE_NOMEM;
3364 	}
3365 
3366 	for (i = 0; i < page_cnt; i++) {
3367 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3368 						 ECORE_CHAIN_PAGE_SIZE);
3369 		if (!p_virt) {
3370 			DP_NOTICE(p_dev, true,
3371 				  "Failed to allocate chain memory\n");
3372 			return ECORE_NOMEM;
3373 		}
3374 
3375 		if (i == 0) {
3376 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
3377 			ecore_chain_reset(p_chain);
3378 		}
3379 
3380 		/* Fill the PBL table with the physical address of the page */
3381 		*(dma_addr_t *)p_pbl_virt = p_phys;
3382 		/* Keep the virtual address of the page */
3383 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3384 
3385 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3386 	}
3387 
3388 	return ECORE_SUCCESS;
3389 }
3390 
3391 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3392 				       enum ecore_chain_use_mode intended_use,
3393 				       enum ecore_chain_mode mode,
3394 				       enum ecore_chain_cnt_type cnt_type,
3395 				       u32 num_elems, osal_size_t elem_size,
3396 				       struct ecore_chain *p_chain,
3397 				       struct ecore_chain_ext_pbl *ext_pbl)
3398 {
3399 	u32 page_cnt;
3400 	enum _ecore_status_t rc = ECORE_SUCCESS;
3401 
3402 	if (mode == ECORE_CHAIN_MODE_SINGLE)
3403 		page_cnt = 1;
3404 	else
3405 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3406 
3407 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3408 					    page_cnt);
3409 	if (rc) {
3410 		DP_NOTICE(p_dev, true,
3411 			  "Cannot allocate a chain with the given arguments:\n"
3412 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3413 			  intended_use, mode, cnt_type, num_elems, elem_size);
3414 		return rc;
3415 	}
3416 
3417 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3418 				mode, cnt_type, p_dev->dp_ctx);
3419 
3420 	switch (mode) {
3421 	case ECORE_CHAIN_MODE_NEXT_PTR:
3422 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3423 		break;
3424 	case ECORE_CHAIN_MODE_SINGLE:
3425 		rc = ecore_chain_alloc_single(p_dev, p_chain);
3426 		break;
3427 	case ECORE_CHAIN_MODE_PBL:
3428 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
3429 		break;
3430 	}
3431 	if (rc)
3432 		goto nomem;
3433 
3434 	return ECORE_SUCCESS;
3435 
3436  nomem:
3437 	ecore_chain_free(p_dev, p_chain);
3438 	return rc;
3439 }
3440 
3441 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3442 				       u16 src_id, u16 *dst_id)
3443 {
3444 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3445 		u16 min, max;
3446 
3447 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3448 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3449 		DP_NOTICE(p_hwfn, true,
3450 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3451 			  src_id, min, max);
3452 
3453 		return ECORE_INVAL;
3454 	}
3455 
3456 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3457 
3458 	return ECORE_SUCCESS;
3459 }
3460 
3461 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3462 				    u8 src_id, u8 *dst_id)
3463 {
3464 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3465 		u8 min, max;
3466 
3467 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3468 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3469 		DP_NOTICE(p_hwfn, true,
3470 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
3471 			  src_id, min, max);
3472 
3473 		return ECORE_INVAL;
3474 	}
3475 
3476 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3477 
3478 	return ECORE_SUCCESS;
3479 }
3480 
3481 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3482 				      u8 src_id, u8 *dst_id)
3483 {
3484 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3485 		u8 min, max;
3486 
3487 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3488 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3489 		DP_NOTICE(p_hwfn, true,
3490 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3491 			  src_id, min, max);
3492 
3493 		return ECORE_INVAL;
3494 	}
3495 
3496 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3497 
3498 	return ECORE_SUCCESS;
3499 }
3500 
3501 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3502 					      struct ecore_ptt *p_ptt,
3503 					      u8 *p_filter)
3504 {
3505 	u32 high, low, en;
3506 	int i;
3507 
3508 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3509 		return ECORE_SUCCESS;
3510 
3511 	high = p_filter[1] | (p_filter[0] << 8);
3512 	low = p_filter[5] | (p_filter[4] << 8) |
3513 	    (p_filter[3] << 16) | (p_filter[2] << 24);
3514 
3515 	/* Find a free entry and utilize it */
3516 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3517 		en = ecore_rd(p_hwfn, p_ptt,
3518 			      NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3519 		if (en)
3520 			continue;
3521 		ecore_wr(p_hwfn, p_ptt,
3522 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3523 			 2 * i * sizeof(u32), low);
3524 		ecore_wr(p_hwfn, p_ptt,
3525 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3526 			 (2 * i + 1) * sizeof(u32), high);
3527 		ecore_wr(p_hwfn, p_ptt,
3528 			 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3529 		ecore_wr(p_hwfn, p_ptt,
3530 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3531 			 i * sizeof(u32), 0);
3532 		ecore_wr(p_hwfn, p_ptt,
3533 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3534 		break;
3535 	}
3536 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3537 		DP_NOTICE(p_hwfn, false,
3538 			  "Failed to find an empty LLH filter to utilize\n");
3539 		return ECORE_INVAL;
3540 	}
3541 
3542 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3543 		   "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
3544 		   p_filter[0], p_filter[1], p_filter[2],
3545 		   p_filter[3], p_filter[4], p_filter[5], i);
3546 
3547 	return ECORE_SUCCESS;
3548 }
3549 
3550 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
3551 				 struct ecore_ptt *p_ptt, u8 *p_filter)
3552 {
3553 	u32 high, low;
3554 	int i;
3555 
3556 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3557 		return;
3558 
3559 	high = p_filter[1] | (p_filter[0] << 8);
3560 	low = p_filter[5] | (p_filter[4] << 8) |
3561 	    (p_filter[3] << 16) | (p_filter[2] << 24);
3562 
3563 	/* Find the entry and clean it */
3564 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3565 		if (ecore_rd(p_hwfn, p_ptt,
3566 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3567 			     2 * i * sizeof(u32)) != low)
3568 			continue;
3569 		if (ecore_rd(p_hwfn, p_ptt,
3570 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3571 			     (2 * i + 1) * sizeof(u32)) != high)
3572 			continue;
3573 
3574 		ecore_wr(p_hwfn, p_ptt,
3575 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3576 		ecore_wr(p_hwfn, p_ptt,
3577 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3578 			 2 * i * sizeof(u32), 0);
3579 		ecore_wr(p_hwfn, p_ptt,
3580 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3581 			 (2 * i + 1) * sizeof(u32), 0);
3582 		break;
3583 	}
3584 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3585 		DP_NOTICE(p_hwfn, false,
3586 			  "Tried to remove a non-configured filter\n");
3587 }
3588 
3589 enum _ecore_status_t
3590 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
3591 			      struct ecore_ptt *p_ptt,
3592 			      u16 source_port_or_eth_type,
3593 			      u16 dest_port,
3594 			      enum ecore_llh_port_filter_type_t type)
3595 {
3596 	u32 high, low, en;
3597 	int i;
3598 
3599 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3600 		return ECORE_SUCCESS;
3601 
3602 	high = 0;
3603 	low = 0;
3604 	switch (type) {
3605 	case ECORE_LLH_FILTER_ETHERTYPE:
3606 		high = source_port_or_eth_type;
3607 		break;
3608 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
3609 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
3610 		low = source_port_or_eth_type << 16;
3611 		break;
3612 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
3613 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
3614 		low = dest_port;
3615 		break;
3616 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3617 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3618 		low = (source_port_or_eth_type << 16) | dest_port;
3619 		break;
3620 	default:
3621 		DP_NOTICE(p_hwfn, true,
3622 			  "Non valid LLH protocol filter type %d\n", type);
3623 		return ECORE_INVAL;
3624 	}
3625 	/* Find a free entry and utilize it */
3626 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3627 		en = ecore_rd(p_hwfn, p_ptt,
3628 			      NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3629 		if (en)
3630 			continue;
3631 		ecore_wr(p_hwfn, p_ptt,
3632 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3633 			 2 * i * sizeof(u32), low);
3634 		ecore_wr(p_hwfn, p_ptt,
3635 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3636 			 (2 * i + 1) * sizeof(u32), high);
3637 		ecore_wr(p_hwfn, p_ptt,
3638 			 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3639 		ecore_wr(p_hwfn, p_ptt,
3640 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3641 			 i * sizeof(u32), 1 << type);
3642 		ecore_wr(p_hwfn, p_ptt,
3643 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3644 		break;
3645 	}
3646 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3647 		DP_NOTICE(p_hwfn, false,
3648 			  "Failed to find an empty LLH filter to utilize\n");
3649 		return ECORE_NORESOURCES;
3650 	}
3651 	switch (type) {
3652 	case ECORE_LLH_FILTER_ETHERTYPE:
3653 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3654 			   "ETH type %x is added at %d\n",
3655 			   source_port_or_eth_type, i);
3656 		break;
3657 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
3658 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3659 			   "TCP src port %x is added at %d\n",
3660 			   source_port_or_eth_type, i);
3661 		break;
3662 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
3663 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3664 			   "UDP src port %x is added at %d\n",
3665 			   source_port_or_eth_type, i);
3666 		break;
3667 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
3668 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3669 			   "TCP dst port %x is added at %d\n", dest_port, i);
3670 		break;
3671 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
3672 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3673 			   "UDP dst port %x is added at %d\n", dest_port, i);
3674 		break;
3675 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3676 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3677 			   "TCP src/dst ports %x/%x are added at %d\n",
3678 			   source_port_or_eth_type, dest_port, i);
3679 		break;
3680 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3681 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3682 			   "UDP src/dst ports %x/%x are added at %d\n",
3683 			   source_port_or_eth_type, dest_port, i);
3684 		break;
3685 	}
3686 	return ECORE_SUCCESS;
3687 }
3688 
3689 void
3690 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
3691 				 struct ecore_ptt *p_ptt,
3692 				 u16 source_port_or_eth_type,
3693 				 u16 dest_port,
3694 				 enum ecore_llh_port_filter_type_t type)
3695 {
3696 	u32 high, low;
3697 	int i;
3698 
3699 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3700 		return;
3701 
3702 	high = 0;
3703 	low = 0;
3704 	switch (type) {
3705 	case ECORE_LLH_FILTER_ETHERTYPE:
3706 		high = source_port_or_eth_type;
3707 		break;
3708 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
3709 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
3710 		low = source_port_or_eth_type << 16;
3711 		break;
3712 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
3713 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
3714 		low = dest_port;
3715 		break;
3716 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3717 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3718 		low = (source_port_or_eth_type << 16) | dest_port;
3719 		break;
3720 	default:
3721 		DP_NOTICE(p_hwfn, true,
3722 			  "Non valid LLH protocol filter type %d\n", type);
3723 		return;
3724 	}
3725 
3726 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3727 		if (!ecore_rd(p_hwfn, p_ptt,
3728 			      NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3729 			continue;
3730 		if (!ecore_rd(p_hwfn, p_ptt,
3731 			      NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3732 			continue;
3733 		if (!(ecore_rd(p_hwfn, p_ptt,
3734 			       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3735 			       i * sizeof(u32)) & (1 << type)))
3736 			continue;
3737 		if (ecore_rd(p_hwfn, p_ptt,
3738 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3739 			     2 * i * sizeof(u32)) != low)
3740 			continue;
3741 		if (ecore_rd(p_hwfn, p_ptt,
3742 			     NIG_REG_LLH_FUNC_FILTER_VALUE +
3743 			     (2 * i + 1) * sizeof(u32)) != high)
3744 			continue;
3745 
3746 		ecore_wr(p_hwfn, p_ptt,
3747 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3748 		ecore_wr(p_hwfn, p_ptt,
3749 			 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3750 		ecore_wr(p_hwfn, p_ptt,
3751 			 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3752 			 i * sizeof(u32), 0);
3753 		ecore_wr(p_hwfn, p_ptt,
3754 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3755 			 2 * i * sizeof(u32), 0);
3756 		ecore_wr(p_hwfn, p_ptt,
3757 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3758 			 (2 * i + 1) * sizeof(u32), 0);
3759 		break;
3760 	}
3761 
3762 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3763 		DP_NOTICE(p_hwfn, false,
3764 			  "Tried to remove a non-configured filter\n");
3765 }
3766 
3767 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
3768 				 struct ecore_ptt *p_ptt)
3769 {
3770 	int i;
3771 
3772 	if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3773 		return;
3774 
3775 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3776 		ecore_wr(p_hwfn, p_ptt,
3777 			 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3778 		ecore_wr(p_hwfn, p_ptt,
3779 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3780 			 2 * i * sizeof(u32), 0);
3781 		ecore_wr(p_hwfn, p_ptt,
3782 			 NIG_REG_LLH_FUNC_FILTER_VALUE +
3783 			 (2 * i + 1) * sizeof(u32), 0);
3784 	}
3785 }
3786 
3787 enum _ecore_status_t
3788 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
3789 				  struct ecore_ptt *p_ptt)
3790 {
3791 	if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
3792 		ecore_wr(p_hwfn, p_ptt,
3793 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
3794 			 1 << p_hwfn->abs_pf_id / 2);
3795 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
3796 		return ECORE_SUCCESS;
3797 	}
3798 
3799 	DP_NOTICE(p_hwfn, false,
3800 		  "This function can't be set as default\n");
3801 	return ECORE_INVAL;
3802 }
3803 
3804 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
3805 					       struct ecore_ptt *p_ptt,
3806 					       u32 hw_addr, void *p_eth_qzone,
3807 					       osal_size_t eth_qzone_size,
3808 					       u8 timeset)
3809 {
3810 	struct coalescing_timeset *p_coal_timeset;
3811 
3812 	if (IS_VF(p_hwfn->p_dev)) {
3813 		DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
3814 		return ECORE_INVAL;
3815 	}
3816 
3817 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
3818 		DP_NOTICE(p_hwfn, true,
3819 			  "Coalescing configuration not enabled\n");
3820 		return ECORE_INVAL;
3821 	}
3822 
3823 	p_coal_timeset = p_eth_qzone;
3824 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
3825 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3826 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3827 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3828 
3829 	return ECORE_SUCCESS;
3830 }
3831 
3832 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
3833 					    struct ecore_ptt *p_ptt,
3834 					    u16 coalesce, u8 qid, u16 sb_id)
3835 {
3836 	struct ustorm_eth_queue_zone eth_qzone;
3837 	u8 timeset, timer_res;
3838 	u16 fw_qid = 0;
3839 	u32 address;
3840 	enum _ecore_status_t rc;
3841 
3842 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3843 	if (coalesce <= 0x7F) {
3844 		timer_res = 0;
3845 	} else if (coalesce <= 0xFF) {
3846 		timer_res = 1;
3847 	} else if (coalesce <= 0x1FF) {
3848 		timer_res = 2;
3849 	} else {
3850 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3851 		return ECORE_INVAL;
3852 	}
3853 	timeset = (u8)(coalesce >> timer_res);
3854 
3855 	rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3856 	if (rc != ECORE_SUCCESS)
3857 		return rc;
3858 
3859 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3860 	if (rc != ECORE_SUCCESS)
3861 		goto out;
3862 
3863 	address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3864 
3865 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3866 				sizeof(struct ustorm_eth_queue_zone), timeset);
3867 	if (rc != ECORE_SUCCESS)
3868 		goto out;
3869 
3870 	p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
3871  out:
3872 	return rc;
3873 }
3874 
3875 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
3876 					    struct ecore_ptt *p_ptt,
3877 					    u16 coalesce, u8 qid, u16 sb_id)
3878 {
3879 	struct xstorm_eth_queue_zone eth_qzone;
3880 	u8 timeset, timer_res;
3881 	u16 fw_qid = 0;
3882 	u32 address;
3883 	enum _ecore_status_t rc;
3884 
3885 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3886 	if (coalesce <= 0x7F) {
3887 		timer_res = 0;
3888 	} else if (coalesce <= 0xFF) {
3889 		timer_res = 1;
3890 	} else if (coalesce <= 0x1FF) {
3891 		timer_res = 2;
3892 	} else {
3893 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3894 		return ECORE_INVAL;
3895 	}
3896 
3897 	timeset = (u8)(coalesce >> timer_res);
3898 
3899 	rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3900 	if (rc != ECORE_SUCCESS)
3901 		return rc;
3902 
3903 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3904 	if (rc != ECORE_SUCCESS)
3905 		goto out;
3906 
3907 	address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3908 
3909 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3910 				sizeof(struct xstorm_eth_queue_zone), timeset);
3911 	if (rc != ECORE_SUCCESS)
3912 		goto out;
3913 
3914 	p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
3915  out:
3916 	return rc;
3917 }
3918 
3919 /* Calculate final WFQ values for all vports and configure it.
3920  * After this configuration each vport must have
3921  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
3922  */
3923 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3924 					       struct ecore_ptt *p_ptt,
3925 					       u32 min_pf_rate)
3926 {
3927 	struct init_qm_vport_params *vport_params;
3928 	int i;
3929 
3930 	vport_params = p_hwfn->qm_info.qm_vport_params;
3931 
3932 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3933 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3934 
3935 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
3936 		    min_pf_rate;
3937 		ecore_init_vport_wfq(p_hwfn, p_ptt,
3938 				     vport_params[i].first_tx_pq_id,
3939 				     vport_params[i].vport_wfq);
3940 	}
3941 }
3942 
3943 static void
3944 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
3945 {
3946 	int i;
3947 
3948 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3949 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3950 }
3951 
3952 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3953 					     struct ecore_ptt *p_ptt,
3954 					     u32 min_pf_rate)
3955 {
3956 	struct init_qm_vport_params *vport_params;
3957 	int i;
3958 
3959 	vport_params = p_hwfn->qm_info.qm_vport_params;
3960 
3961 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3962 		ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
3963 		ecore_init_vport_wfq(p_hwfn, p_ptt,
3964 				     vport_params[i].first_tx_pq_id,
3965 				     vport_params[i].vport_wfq);
3966 	}
3967 }
3968 
3969 /* This function performs several validations for WFQ
3970  * configuration and required min rate for a given vport
3971  * 1. req_rate must be greater than one percent of min_pf_rate.
3972  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3973  *    rates to get less than one percent of min_pf_rate.
3974  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3975  */
3976 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
3977 						 u16 vport_id, u32 req_rate,
3978 						 u32 min_pf_rate)
3979 {
3980 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3981 	int non_requested_count = 0, req_count = 0, i, num_vports;
3982 
3983 	num_vports = p_hwfn->qm_info.num_vports;
3984 
3985 /* Accounting for the vports which are configured for WFQ explicitly */
3986 
3987 	for (i = 0; i < num_vports; i++) {
3988 		u32 tmp_speed;
3989 
3990 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
3991 			req_count++;
3992 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3993 			total_req_min_rate += tmp_speed;
3994 		}
3995 	}
3996 
3997 	/* Include current vport data as well */
3998 	req_count++;
3999 	total_req_min_rate += req_rate;
4000 	non_requested_count = num_vports - req_count;
4001 
4002 	/* validate possible error cases */
4003 	if (req_rate > min_pf_rate) {
4004 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4005 			   "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4006 			   vport_id, req_rate, min_pf_rate);
4007 		return ECORE_INVAL;
4008 	}
4009 
4010 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
4011 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4012 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4013 			   vport_id, req_rate, min_pf_rate);
4014 		return ECORE_INVAL;
4015 	}
4016 
4017 	/* TBD - for number of vports greater than 100 */
4018 	if (num_vports > ECORE_WFQ_UNIT) {
4019 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4020 			   "Number of vports is greater than %d\n",
4021 			   ECORE_WFQ_UNIT);
4022 		return ECORE_INVAL;
4023 	}
4024 
4025 	if (total_req_min_rate > min_pf_rate) {
4026 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4027 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4028 			   total_req_min_rate, min_pf_rate);
4029 		return ECORE_INVAL;
4030 	}
4031 
4032 	/* Data left for non requested vports */
4033 	total_left_rate = min_pf_rate - total_req_min_rate;
4034 	left_rate_per_vp = total_left_rate / non_requested_count;
4035 
4036 	/* validate if non requested get < 1% of min bw */
4037 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
4038 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4039 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4040 			   left_rate_per_vp, min_pf_rate);
4041 		return ECORE_INVAL;
4042 	}
4043 
4044 	/* now req_rate for given vport passes all scenarios.
4045 	 * assign final wfq rates to all vports.
4046 	 */
4047 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4048 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4049 
4050 	for (i = 0; i < num_vports; i++) {
4051 		if (p_hwfn->qm_info.wfq_data[i].configured)
4052 			continue;
4053 
4054 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4055 	}
4056 
4057 	return ECORE_SUCCESS;
4058 }
4059 
4060 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4061 				       struct ecore_ptt *p_ptt,
4062 				       u16 vp_id, u32 rate)
4063 {
4064 	struct ecore_mcp_link_state *p_link;
4065 	int rc = ECORE_SUCCESS;
4066 
4067 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4068 
4069 	if (!p_link->min_pf_rate) {
4070 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4071 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4072 		return rc;
4073 	}
4074 
4075 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4076 
4077 	if (rc == ECORE_SUCCESS)
4078 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4079 						   p_link->min_pf_rate);
4080 	else
4081 		DP_NOTICE(p_hwfn, false,
4082 			  "Validation failed while configuring min rate\n");
4083 
4084 	return rc;
4085 }
4086 
4087 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4088 						   struct ecore_ptt *p_ptt,
4089 						   u32 min_pf_rate)
4090 {
4091 	bool use_wfq = false;
4092 	int rc = ECORE_SUCCESS;
4093 	u16 i;
4094 
4095 	/* Validate all pre configured vports for wfq */
4096 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4097 		u32 rate;
4098 
4099 		if (!p_hwfn->qm_info.wfq_data[i].configured)
4100 			continue;
4101 
4102 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4103 		use_wfq = true;
4104 
4105 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4106 		if (rc != ECORE_SUCCESS) {
4107 			DP_NOTICE(p_hwfn, false,
4108 				  "WFQ validation failed while configuring min rate\n");
4109 			break;
4110 		}
4111 	}
4112 
4113 	if (rc == ECORE_SUCCESS && use_wfq)
4114 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4115 	else
4116 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4117 
4118 	return rc;
4119 }
4120 
4121 /* Main API for ecore clients to configure vport min rate.
4122  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4123  * rate - Speed in Mbps needs to be assigned to a given vport.
4124  */
4125 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4126 {
4127 	int i, rc = ECORE_INVAL;
4128 
4129 	/* TBD - for multiple hardware functions - that is 100 gig */
4130 	if (p_dev->num_hwfns > 1) {
4131 		DP_NOTICE(p_dev, false,
4132 			  "WFQ configuration is not supported for this device\n");
4133 		return rc;
4134 	}
4135 
4136 	for_each_hwfn(p_dev, i) {
4137 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4138 		struct ecore_ptt *p_ptt;
4139 
4140 		p_ptt = ecore_ptt_acquire(p_hwfn);
4141 		if (!p_ptt)
4142 			return ECORE_TIMEOUT;
4143 
4144 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4145 
4146 		if (rc != ECORE_SUCCESS) {
4147 			ecore_ptt_release(p_hwfn, p_ptt);
4148 			return rc;
4149 		}
4150 
4151 		ecore_ptt_release(p_hwfn, p_ptt);
4152 	}
4153 
4154 	return rc;
4155 }
4156 
4157 /* API to configure WFQ from mcp link change */
4158 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4159 					   u32 min_pf_rate)
4160 {
4161 	int i;
4162 
4163 	/* TBD - for multiple hardware functions - that is 100 gig */
4164 	if (p_dev->num_hwfns > 1) {
4165 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4166 			   "WFQ configuration is not supported for this device\n");
4167 		return;
4168 	}
4169 
4170 	for_each_hwfn(p_dev, i) {
4171 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4172 
4173 		__ecore_configure_vp_wfq_on_link_change(p_hwfn,
4174 							p_hwfn->p_dpc_ptt,
4175 							min_pf_rate);
4176 	}
4177 }
4178 
4179 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4180 				       struct ecore_ptt *p_ptt,
4181 				       struct ecore_mcp_link_state *p_link,
4182 				       u8 max_bw)
4183 {
4184 	int rc = ECORE_SUCCESS;
4185 
4186 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4187 
4188 	if (!p_link->line_speed && (max_bw != 100))
4189 		return rc;
4190 
4191 	p_link->speed = (p_link->line_speed * max_bw) / 100;
4192 	p_hwfn->qm_info.pf_rl = p_link->speed;
4193 
4194 	/* Since the limiter also affects Tx-switched traffic, we don't want it
4195 	 * to limit such traffic in case there's no actual limit.
4196 	 * In that case, set limit to imaginary high boundary.
4197 	 */
4198 	if (max_bw == 100)
4199 		p_hwfn->qm_info.pf_rl = 100000;
4200 
4201 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4202 			      p_hwfn->qm_info.pf_rl);
4203 
4204 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4205 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
4206 		   p_link->speed);
4207 
4208 	return rc;
4209 }
4210 
4211 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4212 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4213 {
4214 	int i, rc = ECORE_INVAL;
4215 
4216 	if (max_bw < 1 || max_bw > 100) {
4217 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4218 		return rc;
4219 	}
4220 
4221 	for_each_hwfn(p_dev, i) {
4222 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4223 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4224 		struct ecore_mcp_link_state *p_link;
4225 		struct ecore_ptt *p_ptt;
4226 
4227 		p_link = &p_lead->mcp_info->link_output;
4228 
4229 		p_ptt = ecore_ptt_acquire(p_hwfn);
4230 		if (!p_ptt)
4231 			return ECORE_TIMEOUT;
4232 
4233 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4234 							p_link, max_bw);
4235 
4236 		ecore_ptt_release(p_hwfn, p_ptt);
4237 
4238 		if (rc != ECORE_SUCCESS)
4239 			break;
4240 	}
4241 
4242 	return rc;
4243 }
4244 
4245 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4246 				       struct ecore_ptt *p_ptt,
4247 				       struct ecore_mcp_link_state *p_link,
4248 				       u8 min_bw)
4249 {
4250 	int rc = ECORE_SUCCESS;
4251 
4252 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4253 	p_hwfn->qm_info.pf_wfq = min_bw;
4254 
4255 	if (!p_link->line_speed)
4256 		return rc;
4257 
4258 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4259 
4260 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4261 
4262 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4263 		   "Configured MIN bandwidth to be %d Mb/sec\n",
4264 		   p_link->min_pf_rate);
4265 
4266 	return rc;
4267 }
4268 
4269 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4270 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4271 {
4272 	int i, rc = ECORE_INVAL;
4273 
4274 	if (min_bw < 1 || min_bw > 100) {
4275 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4276 		return rc;
4277 	}
4278 
4279 	for_each_hwfn(p_dev, i) {
4280 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4281 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4282 		struct ecore_mcp_link_state *p_link;
4283 		struct ecore_ptt *p_ptt;
4284 
4285 		p_link = &p_lead->mcp_info->link_output;
4286 
4287 		p_ptt = ecore_ptt_acquire(p_hwfn);
4288 		if (!p_ptt)
4289 			return ECORE_TIMEOUT;
4290 
4291 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4292 							p_link, min_bw);
4293 		if (rc != ECORE_SUCCESS) {
4294 			ecore_ptt_release(p_hwfn, p_ptt);
4295 			return rc;
4296 		}
4297 
4298 		if (p_link->min_pf_rate) {
4299 			u32 min_rate = p_link->min_pf_rate;
4300 
4301 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4302 								     p_ptt,
4303 								     min_rate);
4304 		}
4305 
4306 		ecore_ptt_release(p_hwfn, p_ptt);
4307 	}
4308 
4309 	return rc;
4310 }
4311 
4312 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4313 {
4314 	struct ecore_mcp_link_state *p_link;
4315 
4316 	p_link = &p_hwfn->mcp_info->link_output;
4317 
4318 	if (p_link->min_pf_rate)
4319 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4320 						 p_link->min_pf_rate);
4321 
4322 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4323 		    sizeof(*p_hwfn->qm_info.wfq_data) *
4324 		    p_hwfn->qm_info.num_vports);
4325 }
4326 
4327 int ecore_device_num_engines(struct ecore_dev *p_dev)
4328 {
4329 	return ECORE_IS_BB(p_dev) ? 2 : 1;
4330 }
4331 
4332 int ecore_device_num_ports(struct ecore_dev *p_dev)
4333 {
4334 	/* in CMT always only one port */
4335 	if (p_dev->num_hwfns > 1)
4336 		return 1;
4337 
4338 	return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4339 }
4340 
4341 void ecore_set_fw_mac_addr(__le16 *fw_msb,
4342 			  __le16 *fw_mid,
4343 			  __le16 *fw_lsb,
4344 			  u8 *mac)
4345 {
4346 	((u8 *)fw_msb)[0] = mac[1];
4347 	((u8 *)fw_msb)[1] = mac[0];
4348 	((u8 *)fw_mid)[0] = mac[3];
4349 	((u8 *)fw_mid)[1] = mac[2];
4350 	((u8 *)fw_lsb)[0] = mac[5];
4351 	((u8 *)fw_lsb)[1] = mac[4];
4352 }
4353