xref: /dpdk/drivers/net/qede/base/ecore_dev.c (revision 14ad4f01845331a0ae98c681efa3086eeed3343a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2016 - 2018 Cavium Inc.
3  * All rights reserved.
4  * www.cavium.com
5  */
6 
7 #include "bcm_osal.h"
8 #include "reg_addr.h"
9 #include "ecore_gtt_reg_addr.h"
10 #include "ecore.h"
11 #include "ecore_chain.h"
12 #include "ecore_status.h"
13 #include "ecore_hw.h"
14 #include "ecore_rt_defs.h"
15 #include "ecore_init_ops.h"
16 #include "ecore_int.h"
17 #include "ecore_cxt.h"
18 #include "ecore_spq.h"
19 #include "ecore_init_fw_funcs.h"
20 #include "ecore_sp_commands.h"
21 #include "ecore_dev_api.h"
22 #include "ecore_sriov.h"
23 #include "ecore_vf.h"
24 #include "ecore_mcp.h"
25 #include "ecore_hw_defs.h"
26 #include "mcp_public.h"
27 #include "ecore_iro.h"
28 #include "nvm_cfg.h"
29 #include "ecore_dcbx.h"
30 #include "ecore_l2.h"
31 
32 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
33  * registers involved are not split and thus configuration is a race where
34  * some of the PFs configuration might be lost.
35  * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
36  * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
37  * there's more than a single compiled ecore component in system].
38  */
39 static osal_spinlock_t qm_lock;
40 static u32 qm_lock_ref_cnt;
41 
42 /******************** Doorbell Recovery *******************/
43 /* The doorbell recovery mechanism consists of a list of entries which represent
44  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
45  * entity needs to register with the mechanism and provide the parameters
46  * describing it's doorbell, including a location where last used doorbell data
47  * can be found. The doorbell execute function will traverse the list and
48  * doorbell all of the registered entries.
49  */
50 struct ecore_db_recovery_entry {
51 	osal_list_entry_t	list_entry;
52 	void OSAL_IOMEM		*db_addr;
53 	void			*db_data;
54 	enum ecore_db_rec_width	db_width;
55 	enum ecore_db_rec_space	db_space;
56 	u8			hwfn_idx;
57 };
58 
59 /* display a single doorbell recovery entry */
60 void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
61 				struct ecore_db_recovery_entry *db_entry,
62 				const char *action)
63 {
64 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
65 		   action, db_entry, db_entry->db_addr, db_entry->db_data,
66 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
67 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
68 		   db_entry->hwfn_idx);
69 }
70 
71 /* doorbell address sanity (address within doorbell bar range) */
72 bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
73 			 void *db_data)
74 {
75 	/* make sure doorbell address  is within the doorbell bar */
76 	if (db_addr < p_dev->doorbells || (u8 *)db_addr >
77 			(u8 *)p_dev->doorbells + p_dev->db_size) {
78 		OSAL_WARN(true,
79 			  "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
80 			  db_addr, p_dev->doorbells,
81 			  (u8 *)p_dev->doorbells + p_dev->db_size);
82 		return false;
83 	}
84 
85 	/* make sure doorbell data pointer is not null */
86 	if (!db_data) {
87 		OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
88 		return false;
89 	}
90 
91 	return true;
92 }
93 
94 /* find hwfn according to the doorbell address */
95 struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
96 					  void OSAL_IOMEM *db_addr)
97 {
98 	struct ecore_hwfn *p_hwfn;
99 
100 	/* In CMT doorbell bar is split down the middle between engine 0 and
101 	 * enigne 1
102 	 */
103 	if (ECORE_IS_CMT(p_dev))
104 		p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
105 			&p_dev->hwfns[0] : &p_dev->hwfns[1];
106 	else
107 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
108 
109 	return p_hwfn;
110 }
111 
112 /* add a new entry to the doorbell recovery mechanism */
113 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
114 					   void OSAL_IOMEM *db_addr,
115 					   void *db_data,
116 					   enum ecore_db_rec_width db_width,
117 					   enum ecore_db_rec_space db_space)
118 {
119 	struct ecore_db_recovery_entry *db_entry;
120 	struct ecore_hwfn *p_hwfn;
121 
122 	/* shortcircuit VFs, for now */
123 	if (IS_VF(p_dev)) {
124 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
125 		return ECORE_SUCCESS;
126 	}
127 
128 	/* sanitize doorbell address */
129 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
130 		return ECORE_INVAL;
131 
132 	/* obtain hwfn from doorbell address */
133 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
134 
135 	/* create entry */
136 	db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
137 	if (!db_entry) {
138 		DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
139 		return ECORE_NOMEM;
140 	}
141 
142 	/* populate entry */
143 	db_entry->db_addr = db_addr;
144 	db_entry->db_data = db_data;
145 	db_entry->db_width = db_width;
146 	db_entry->db_space = db_space;
147 	db_entry->hwfn_idx = p_hwfn->my_id;
148 
149 	/* display */
150 	ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
151 
152 	/* protect the list */
153 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
154 	OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
155 			    &p_hwfn->db_recovery_info.list);
156 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
157 
158 	return ECORE_SUCCESS;
159 }
160 
161 /* remove an entry from the doorbell recovery mechanism */
162 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
163 					   void OSAL_IOMEM *db_addr,
164 					   void *db_data)
165 {
166 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
167 	enum _ecore_status_t rc = ECORE_INVAL;
168 	struct ecore_hwfn *p_hwfn;
169 
170 	/* shortcircuit VFs, for now */
171 	if (IS_VF(p_dev)) {
172 		DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
173 		return ECORE_SUCCESS;
174 	}
175 
176 	/* sanitize doorbell address */
177 	if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
178 		return ECORE_INVAL;
179 
180 	/* obtain hwfn from doorbell address */
181 	p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
182 
183 	/* protect the list */
184 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
185 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
186 				 &p_hwfn->db_recovery_info.list,
187 				 list_entry,
188 				 struct ecore_db_recovery_entry) {
189 		/* search according to db_data addr since db_addr is not unique
190 		 * (roce)
191 		 */
192 		if (db_entry->db_data == db_data) {
193 			ecore_db_recovery_dp_entry(p_hwfn, db_entry,
194 						   "Deleting");
195 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
196 					       &p_hwfn->db_recovery_info.list);
197 			rc = ECORE_SUCCESS;
198 			break;
199 		}
200 	}
201 
202 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
203 
204 	if (rc == ECORE_INVAL)
205 		/*OSAL_WARN(true,*/
206 		DP_NOTICE(p_hwfn, false,
207 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
208 			  db_data, db_addr);
209 	else
210 		OSAL_FREE(p_dev, db_entry);
211 
212 	return rc;
213 }
214 
215 /* initialize the doorbell recovery mechanism */
216 enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
217 {
218 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
219 
220 	/* make sure db_size was set in p_dev */
221 	if (!p_hwfn->p_dev->db_size) {
222 		DP_ERR(p_hwfn->p_dev, "db_size not set\n");
223 		return ECORE_INVAL;
224 	}
225 
226 	OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
227 #ifdef CONFIG_ECORE_LOCK_ALLOC
228 	if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
229 		return ECORE_NOMEM;
230 #endif
231 	OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
232 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
233 
234 	return ECORE_SUCCESS;
235 }
236 
237 /* destroy the doorbell recovery mechanism */
238 void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
239 {
240 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
241 
242 	DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
243 	if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
244 		DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
245 		while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
246 			db_entry = OSAL_LIST_FIRST_ENTRY(
247 						&p_hwfn->db_recovery_info.list,
248 						struct ecore_db_recovery_entry,
249 						list_entry);
250 			ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
251 			OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
252 					       &p_hwfn->db_recovery_info.list);
253 			OSAL_FREE(p_hwfn->p_dev, db_entry);
254 		}
255 	}
256 #ifdef CONFIG_ECORE_LOCK_ALLOC
257 	OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
258 #endif
259 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
260 }
261 
262 /* print the content of the doorbell recovery mechanism */
263 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
264 {
265 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
266 
267 	DP_NOTICE(p_hwfn, false,
268 		  "Dispalying doorbell recovery database. Counter was %d\n",
269 		  p_hwfn->db_recovery_info.db_recovery_counter);
270 
271 	/* protect the list */
272 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
273 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
274 				 &p_hwfn->db_recovery_info.list,
275 				 list_entry,
276 				 struct ecore_db_recovery_entry) {
277 		ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
278 	}
279 
280 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
281 }
282 
283 /* ring the doorbell of a single doorbell recovery entry */
284 void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
285 			    struct ecore_db_recovery_entry *db_entry,
286 			    enum ecore_db_rec_exec db_exec)
287 {
288 	/* Print according to width */
289 	if (db_entry->db_width == DB_REC_WIDTH_32B)
290 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %x\n",
291 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
292 			   db_entry->db_addr, *(u32 *)db_entry->db_data);
293 	else
294 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "%s doorbell address %p data %lx\n",
295 			   db_exec == DB_REC_DRY_RUN ? "would have rung" : "ringing",
296 			   db_entry->db_addr,
297 			   *(unsigned long *)(db_entry->db_data));
298 
299 	/* Sanity */
300 	if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
301 				 db_entry->db_data))
302 		return;
303 
304 	/* Flush the write combined buffer. Since there are multiple doorbelling
305 	 * entities using the same address, if we don't flush, a transaction
306 	 * could be lost.
307 	 */
308 	OSAL_WMB(p_hwfn->p_dev);
309 
310 	/* Ring the doorbell */
311 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
312 		if (db_entry->db_width == DB_REC_WIDTH_32B)
313 			DIRECT_REG_WR(p_hwfn, db_entry->db_addr,
314 				      *(u32 *)(db_entry->db_data));
315 		else
316 			DIRECT_REG_WR64(p_hwfn, db_entry->db_addr,
317 					*(u64 *)(db_entry->db_data));
318 	}
319 
320 	/* Flush the write combined buffer. Next doorbell may come from a
321 	 * different entity to the same address...
322 	 */
323 	OSAL_WMB(p_hwfn->p_dev);
324 }
325 
326 /* traverse the doorbell recovery entry list and ring all the doorbells */
327 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
328 			       enum ecore_db_rec_exec db_exec)
329 {
330 	struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
331 
332 	if (db_exec != DB_REC_ONCE) {
333 		DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
334 			  p_hwfn->db_recovery_info.db_recovery_counter);
335 
336 		/* track amount of times recovery was executed */
337 		p_hwfn->db_recovery_info.db_recovery_counter++;
338 	}
339 
340 	/* protect the list */
341 	OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
342 	OSAL_LIST_FOR_EACH_ENTRY(db_entry,
343 				 &p_hwfn->db_recovery_info.list,
344 				 list_entry,
345 				 struct ecore_db_recovery_entry) {
346 		ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
347 		if (db_exec == DB_REC_ONCE)
348 			break;
349 	}
350 
351 	OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
352 }
353 /******************** Doorbell Recovery end ****************/
354 
355 /********************************** NIG LLH ***********************************/
356 
357 enum ecore_llh_filter_type {
358 	ECORE_LLH_FILTER_TYPE_MAC,
359 	ECORE_LLH_FILTER_TYPE_PROTOCOL,
360 };
361 
362 struct ecore_llh_mac_filter {
363 	u8 addr[ETH_ALEN];
364 };
365 
366 struct ecore_llh_protocol_filter {
367 	enum ecore_llh_prot_filter_type_t type;
368 	u16 source_port_or_eth_type;
369 	u16 dest_port;
370 };
371 
372 union ecore_llh_filter {
373 	struct ecore_llh_mac_filter mac;
374 	struct ecore_llh_protocol_filter protocol;
375 };
376 
377 struct ecore_llh_filter_info {
378 	bool b_enabled;
379 	u32 ref_cnt;
380 	enum ecore_llh_filter_type type;
381 	union ecore_llh_filter filter;
382 };
383 
384 struct ecore_llh_info {
385 	/* Number of LLH filters banks */
386 	u8 num_ppfid;
387 
388 #define MAX_NUM_PPFID	8
389 	u8 ppfid_array[MAX_NUM_PPFID];
390 
391 	/* Array of filters arrays:
392 	 * "num_ppfid" elements of filters banks, where each is an array of
393 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
394 	 */
395 	struct ecore_llh_filter_info **pp_filters;
396 };
397 
398 static void ecore_llh_free(struct ecore_dev *p_dev)
399 {
400 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
401 	u32 i;
402 
403 	if (p_llh_info != OSAL_NULL) {
404 		if (p_llh_info->pp_filters != OSAL_NULL) {
405 			for (i = 0; i < p_llh_info->num_ppfid; i++)
406 				OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
407 		}
408 
409 		OSAL_FREE(p_dev, p_llh_info->pp_filters);
410 	}
411 
412 	OSAL_FREE(p_dev, p_llh_info);
413 	p_dev->p_llh_info = OSAL_NULL;
414 }
415 
416 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
417 {
418 	struct ecore_llh_info *p_llh_info;
419 	u32 size;
420 	u8 i;
421 
422 	p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
423 	if (!p_llh_info)
424 		return ECORE_NOMEM;
425 	p_dev->p_llh_info = p_llh_info;
426 
427 	for (i = 0; i < MAX_NUM_PPFID; i++) {
428 		if (!(p_dev->ppfid_bitmap & (0x1 << i)))
429 			continue;
430 
431 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
432 		DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
433 			   p_llh_info->num_ppfid, i);
434 		p_llh_info->num_ppfid++;
435 	}
436 
437 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
438 	p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
439 	if (!p_llh_info->pp_filters)
440 		return ECORE_NOMEM;
441 
442 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
443 	       sizeof(**p_llh_info->pp_filters);
444 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
445 		p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
446 							size);
447 		if (!p_llh_info->pp_filters[i])
448 			return ECORE_NOMEM;
449 	}
450 
451 	return ECORE_SUCCESS;
452 }
453 
454 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
455 						    u8 ppfid, u8 filter_idx,
456 						    const char *action)
457 {
458 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
459 
460 	if (ppfid >= p_llh_info->num_ppfid) {
461 		DP_NOTICE(p_dev, false,
462 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
463 			  action, ppfid, p_llh_info->num_ppfid);
464 		return ECORE_INVAL;
465 	}
466 
467 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
468 		DP_NOTICE(p_dev, false,
469 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
470 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
471 		return ECORE_INVAL;
472 	}
473 
474 	return ECORE_SUCCESS;
475 }
476 
477 #define ECORE_LLH_INVALID_FILTER_IDX	0xff
478 
479 static enum _ecore_status_t
480 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
481 			       union ecore_llh_filter *p_filter,
482 			       u8 *p_filter_idx)
483 {
484 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
485 	struct ecore_llh_filter_info *p_filters;
486 	enum _ecore_status_t rc;
487 	u8 i;
488 
489 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
490 	if (rc != ECORE_SUCCESS)
491 		return rc;
492 
493 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
494 
495 	p_filters = p_llh_info->pp_filters[ppfid];
496 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
497 		if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
498 				 sizeof(*p_filter))) {
499 			*p_filter_idx = i;
500 			break;
501 		}
502 	}
503 
504 	return ECORE_SUCCESS;
505 }
506 
507 static enum _ecore_status_t
508 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
509 			      u8 *p_filter_idx)
510 {
511 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
512 	struct ecore_llh_filter_info *p_filters;
513 	enum _ecore_status_t rc;
514 	u8 i;
515 
516 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
517 	if (rc != ECORE_SUCCESS)
518 		return rc;
519 
520 	*p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
521 
522 	p_filters = p_llh_info->pp_filters[ppfid];
523 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
524 		if (!p_filters[i].b_enabled) {
525 			*p_filter_idx = i;
526 			break;
527 		}
528 	}
529 
530 	return ECORE_SUCCESS;
531 }
532 
533 static enum _ecore_status_t
534 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
535 			      enum ecore_llh_filter_type type,
536 			      union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
537 {
538 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
539 	struct ecore_llh_filter_info *p_filters;
540 	enum _ecore_status_t rc;
541 
542 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
543 	if (rc != ECORE_SUCCESS)
544 		return rc;
545 
546 	p_filters = p_llh_info->pp_filters[ppfid];
547 	if (!p_filters[filter_idx].ref_cnt) {
548 		p_filters[filter_idx].b_enabled = true;
549 		p_filters[filter_idx].type = type;
550 		OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
551 			    sizeof(p_filters[filter_idx].filter));
552 	}
553 
554 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
555 
556 	return ECORE_SUCCESS;
557 }
558 
559 static enum _ecore_status_t
560 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
561 			    enum ecore_llh_filter_type type,
562 			    union ecore_llh_filter *p_filter,
563 			    u8 *p_filter_idx, u32 *p_ref_cnt)
564 {
565 	enum _ecore_status_t rc;
566 
567 	/* Check if the same filter already exist */
568 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
569 					    p_filter_idx);
570 	if (rc != ECORE_SUCCESS)
571 		return rc;
572 
573 	/* Find a new entry in case of a new filter */
574 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
575 		rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
576 		if (rc != ECORE_SUCCESS)
577 			return rc;
578 	}
579 
580 	/* No free entry was found */
581 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
582 		DP_NOTICE(p_dev, false,
583 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
584 			  ppfid);
585 		return ECORE_NORESOURCES;
586 	}
587 
588 	return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
589 					     p_filter, p_ref_cnt);
590 }
591 
592 static enum _ecore_status_t
593 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
594 				 u8 filter_idx, u32 *p_ref_cnt)
595 {
596 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
597 	struct ecore_llh_filter_info *p_filters;
598 	enum _ecore_status_t rc;
599 
600 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
601 	if (rc != ECORE_SUCCESS)
602 		return rc;
603 
604 	p_filters = p_llh_info->pp_filters[ppfid];
605 	if (!p_filters[filter_idx].ref_cnt) {
606 		DP_NOTICE(p_dev, false,
607 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
608 		return ECORE_INVAL;
609 	}
610 
611 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
612 	if (!p_filters[filter_idx].ref_cnt)
613 		OSAL_MEM_ZERO(&p_filters[filter_idx],
614 			      sizeof(p_filters[filter_idx]));
615 
616 	return ECORE_SUCCESS;
617 }
618 
619 static enum _ecore_status_t
620 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
621 			       union ecore_llh_filter *p_filter,
622 			       u8 *p_filter_idx, u32 *p_ref_cnt)
623 {
624 	enum _ecore_status_t rc;
625 
626 	rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
627 					    p_filter_idx);
628 	if (rc != ECORE_SUCCESS)
629 		return rc;
630 
631 	/* No matching filter was found */
632 	if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
633 		DP_NOTICE(p_dev, false,
634 			  "Failed to find a filter in the LLH shadow\n");
635 		return ECORE_INVAL;
636 	}
637 
638 	return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
639 						p_ref_cnt);
640 }
641 
642 static enum _ecore_status_t
643 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
644 {
645 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
646 	struct ecore_llh_filter_info *p_filters;
647 	enum _ecore_status_t rc;
648 
649 	rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
650 	if (rc != ECORE_SUCCESS)
651 		return rc;
652 
653 	p_filters = p_llh_info->pp_filters[ppfid];
654 	OSAL_MEM_ZERO(p_filters,
655 		      NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
656 
657 	return ECORE_SUCCESS;
658 }
659 
660 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
661 					    u8 rel_ppfid, u8 *p_abs_ppfid)
662 {
663 	struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
664 	u8 ppfids = p_llh_info->num_ppfid - 1;
665 
666 	if (rel_ppfid >= p_llh_info->num_ppfid) {
667 		DP_NOTICE(p_dev, false,
668 			  "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
669 			  rel_ppfid, ppfids);
670 		return ECORE_INVAL;
671 	}
672 
673 	*p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
674 
675 	return ECORE_SUCCESS;
676 }
677 
678 static enum _ecore_status_t
679 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
680 {
681 	struct ecore_dev *p_dev = p_hwfn->p_dev;
682 	enum ecore_eng eng;
683 	u8 ppfid;
684 	enum _ecore_status_t rc;
685 
686 	rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
687 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
688 		DP_NOTICE(p_hwfn, false,
689 			  "Failed to get the engine affinity configuration\n");
690 		return rc;
691 	}
692 
693 	/* RoCE PF is bound to a single engine */
694 	if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
695 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
696 		rc = ecore_llh_set_roce_affinity(p_dev, eng);
697 		if (rc != ECORE_SUCCESS) {
698 			DP_NOTICE(p_dev, false,
699 				  "Failed to set the RoCE engine affinity\n");
700 			return rc;
701 		}
702 
703 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
704 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
705 			   eng);
706 	}
707 
708 	/* Storage PF is bound to a single engine while L2 PF uses both */
709 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
710 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
711 		eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
712 	else /* L2_PERSONALITY */
713 		eng = ECORE_BOTH_ENG;
714 
715 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
716 		rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
717 		if (rc != ECORE_SUCCESS) {
718 			DP_NOTICE(p_dev, false,
719 				  "Failed to set the engine affinity of ppfid %d\n",
720 				  ppfid);
721 			return rc;
722 		}
723 	}
724 
725 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
726 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
727 		   eng);
728 
729 	return ECORE_SUCCESS;
730 }
731 
732 static enum _ecore_status_t
733 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
734 			   bool avoid_eng_affin)
735 {
736 	struct ecore_dev *p_dev = p_hwfn->p_dev;
737 	enum _ecore_status_t rc;
738 
739 	/* Backwards compatible mode:
740 	 * - RoCE packets     - Use engine 0.
741 	 * - Non-RoCE packets - Use connection based classification for L2 PFs,
742 	 *                      and engine 0 otherwise.
743 	 */
744 	if (avoid_eng_affin) {
745 		enum ecore_eng eng;
746 		u8 ppfid;
747 
748 		if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
749 			eng = ECORE_ENG0;
750 			rc = ecore_llh_set_roce_affinity(p_dev, eng);
751 			if (rc != ECORE_SUCCESS) {
752 				DP_NOTICE(p_dev, false,
753 					  "Failed to set the RoCE engine affinity\n");
754 				return rc;
755 			}
756 
757 			DP_VERBOSE(p_dev, ECORE_MSG_SP,
758 				   "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
759 				   eng);
760 		}
761 
762 		eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
763 		       ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
764 							   : ECORE_BOTH_ENG;
765 		for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
766 			rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
767 			if (rc != ECORE_SUCCESS) {
768 				DP_NOTICE(p_dev, false,
769 					  "Failed to set the engine affinity of ppfid %d\n",
770 					  ppfid);
771 				return rc;
772 			}
773 		}
774 
775 		DP_VERBOSE(p_dev, ECORE_MSG_SP,
776 			   "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
777 			   eng);
778 
779 		return ECORE_SUCCESS;
780 	}
781 
782 	return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
783 }
784 
785 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
786 						 struct ecore_ptt *p_ptt,
787 						 bool avoid_eng_affin)
788 {
789 	struct ecore_dev *p_dev = p_hwfn->p_dev;
790 	u8 ppfid, abs_ppfid;
791 	enum _ecore_status_t rc;
792 
793 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
794 		u32 addr;
795 
796 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
797 		if (rc != ECORE_SUCCESS)
798 			return rc;
799 
800 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
801 		ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
802 	}
803 
804 	if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
805 	    !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
806 		rc = ecore_llh_add_mac_filter(p_dev, 0,
807 					      p_hwfn->hw_info.hw_mac_addr);
808 		if (rc != ECORE_SUCCESS)
809 			DP_NOTICE(p_dev, false,
810 				  "Failed to add an LLH filter with the primary MAC\n");
811 	}
812 
813 	if (ECORE_IS_CMT(p_dev)) {
814 		rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
815 		if (rc != ECORE_SUCCESS)
816 			return rc;
817 	}
818 
819 	return ECORE_SUCCESS;
820 }
821 
822 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
823 {
824 	return p_dev->p_llh_info->num_ppfid;
825 }
826 
827 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
828 {
829 	return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
830 }
831 
832 /* TBD - should be removed when these definitions are available in reg_addr.h */
833 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK		0x3
834 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT		0
835 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK		0x3
836 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT	2
837 
838 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
839 						  u8 ppfid, enum ecore_eng eng)
840 {
841 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
842 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
843 	u32 addr, val, eng_sel;
844 	enum _ecore_status_t rc = ECORE_SUCCESS;
845 	u8 abs_ppfid;
846 
847 	if (p_ptt == OSAL_NULL)
848 		return ECORE_AGAIN;
849 
850 	if (!ECORE_IS_CMT(p_dev))
851 		goto out;
852 
853 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
854 	if (rc != ECORE_SUCCESS)
855 		goto out;
856 
857 	switch (eng) {
858 	case ECORE_ENG0:
859 		eng_sel = 0;
860 		break;
861 	case ECORE_ENG1:
862 		eng_sel = 1;
863 		break;
864 	case ECORE_BOTH_ENG:
865 		eng_sel = 2;
866 		break;
867 	default:
868 		DP_NOTICE(p_dev, false,
869 			  "Invalid affinity value for ppfid [%d]\n", eng);
870 		rc = ECORE_INVAL;
871 		goto out;
872 	}
873 
874 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
875 	val = ecore_rd(p_hwfn, p_ptt, addr);
876 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
877 	ecore_wr(p_hwfn, p_ptt, addr, val);
878 
879 	/* The iWARP affinity is set as the affinity of ppfid 0 */
880 	if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
881 		p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
882 out:
883 	ecore_ptt_release(p_hwfn, p_ptt);
884 
885 	return rc;
886 }
887 
888 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
889 						 enum ecore_eng eng)
890 {
891 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
892 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
893 	u32 addr, val, eng_sel;
894 	enum _ecore_status_t rc = ECORE_SUCCESS;
895 	u8 ppfid, abs_ppfid;
896 
897 	if (p_ptt == OSAL_NULL)
898 		return ECORE_AGAIN;
899 
900 	if (!ECORE_IS_CMT(p_dev))
901 		goto out;
902 
903 	switch (eng) {
904 	case ECORE_ENG0:
905 		eng_sel = 0;
906 		break;
907 	case ECORE_ENG1:
908 		eng_sel = 1;
909 		break;
910 	case ECORE_BOTH_ENG:
911 		eng_sel = 2;
912 		ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
913 			 0xf /* QP bit 15 */);
914 		break;
915 	default:
916 		DP_NOTICE(p_dev, false,
917 			  "Invalid affinity value for RoCE [%d]\n", eng);
918 		rc = ECORE_INVAL;
919 		goto out;
920 	}
921 
922 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
923 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
924 		if (rc != ECORE_SUCCESS)
925 			goto out;
926 
927 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
928 		val = ecore_rd(p_hwfn, p_ptt, addr);
929 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
930 		ecore_wr(p_hwfn, p_ptt, addr, val);
931 	}
932 out:
933 	ecore_ptt_release(p_hwfn, p_ptt);
934 
935 	return rc;
936 }
937 
938 struct ecore_llh_filter_e4_details {
939 	u64 value;
940 	u32 mode;
941 	u32 protocol_type;
942 	u32 hdr_sel;
943 	u32 enable;
944 };
945 
946 static enum _ecore_status_t
947 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
948 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
949 			   struct ecore_llh_filter_e4_details *p_details,
950 			   bool b_write_access)
951 {
952 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
953 	struct ecore_dmae_params params;
954 	enum _ecore_status_t rc;
955 	u32 addr;
956 
957 	/* The NIG/LLH registers that are accessed in this function have only 16
958 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
959 	 * default ppfid
960 	 * Accessing filters of other ppfids requires pretending to other PFs,
961 	 * and thus the usage of the ecore_ppfid_rd/wr() functions.
962 	 */
963 
964 	/* Filter enable - should be done first when removing a filter */
965 	if (b_write_access && !p_details->enable) {
966 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
967 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
968 			       p_details->enable);
969 	}
970 
971 	/* Filter value */
972 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
973 	OSAL_MEMSET(&params, 0, sizeof(params));
974 
975 	if (b_write_access) {
976 		params.flags = ECORE_DMAE_FLAG_PF_DST;
977 		params.dst_pfid = pfid;
978 		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
979 					 (u64)(osal_uintptr_t)&p_details->value,
980 					 addr, 2 /* size_in_dwords */, &params);
981 	} else {
982 		params.flags = ECORE_DMAE_FLAG_PF_SRC |
983 			       ECORE_DMAE_FLAG_COMPLETION_DST;
984 		params.src_pfid = pfid;
985 		rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
986 					 (u64)(osal_uintptr_t)&p_details->value,
987 					 2 /* size_in_dwords */, &params);
988 	}
989 
990 	if (rc != ECORE_SUCCESS)
991 		return rc;
992 
993 	/* Filter mode */
994 	addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
995 	if (b_write_access)
996 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
997 	else
998 		p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
999 						 addr);
1000 
1001 	/* Filter protocol type */
1002 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1003 	if (b_write_access)
1004 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1005 			       p_details->protocol_type);
1006 	else
1007 		p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1008 							  abs_ppfid, addr);
1009 
1010 	/* Filter header select */
1011 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1012 	if (b_write_access)
1013 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1014 			       p_details->hdr_sel);
1015 	else
1016 		p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1017 						    addr);
1018 
1019 	/* Filter enable - should be done last when adding a filter */
1020 	if (!b_write_access || p_details->enable) {
1021 		addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1022 		if (b_write_access)
1023 			ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1024 				       p_details->enable);
1025 		else
1026 			p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1027 							   abs_ppfid, addr);
1028 	}
1029 
1030 	return ECORE_SUCCESS;
1031 }
1032 
1033 static enum _ecore_status_t
1034 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1035 			u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1036 			u32 high, u32 low)
1037 {
1038 	struct ecore_llh_filter_e4_details filter_details;
1039 
1040 	filter_details.enable = 1;
1041 	filter_details.value = ((u64)high << 32) | low;
1042 	filter_details.hdr_sel =
1043 		OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits) ?
1044 		1 : /* inner/encapsulated header */
1045 		0;  /* outer/tunnel header */
1046 	filter_details.protocol_type = filter_prot_type;
1047 	filter_details.mode = filter_prot_type ?
1048 			      1 : /* protocol-based classification */
1049 			      0;  /* MAC-address based classification */
1050 
1051 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1052 					  &filter_details,
1053 					  true /* write access */);
1054 }
1055 
1056 static enum _ecore_status_t
1057 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1058 			   struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1059 {
1060 	struct ecore_llh_filter_e4_details filter_details;
1061 
1062 	OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1063 
1064 	return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1065 					  &filter_details,
1066 					  true /* write access */);
1067 }
1068 
1069 static enum _ecore_status_t
1070 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1071 		     u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1072 		     u32 low)
1073 {
1074 	return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1075 				       filter_idx, filter_prot_type,
1076 				       high, low);
1077 }
1078 
1079 static enum _ecore_status_t
1080 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1081 			u8 abs_ppfid, u8 filter_idx)
1082 {
1083 	return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1084 					  filter_idx);
1085 }
1086 
1087 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1088 					      u8 mac_addr[ETH_ALEN])
1089 {
1090 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1091 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1092 	union ecore_llh_filter filter;
1093 	u8 filter_idx, abs_ppfid;
1094 	u32 high, low, ref_cnt;
1095 	enum _ecore_status_t rc = ECORE_SUCCESS;
1096 
1097 	if (p_ptt == OSAL_NULL)
1098 		return ECORE_AGAIN;
1099 
1100 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1101 		goto out;
1102 
1103 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1104 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1105 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1106 					 ECORE_LLH_FILTER_TYPE_MAC,
1107 					 &filter, &filter_idx, &ref_cnt);
1108 	if (rc != ECORE_SUCCESS)
1109 		goto err;
1110 
1111 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1112 	if (rc != ECORE_SUCCESS)
1113 		goto err;
1114 
1115 	/* Configure the LLH only in case of a new the filter */
1116 	if (ref_cnt == 1) {
1117 		high = mac_addr[1] | (mac_addr[0] << 8);
1118 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1119 		      (mac_addr[2] << 24);
1120 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1121 					  0, high, low);
1122 		if (rc != ECORE_SUCCESS)
1123 			goto err;
1124 	}
1125 
1126 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1127 		   "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1128 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1129 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1130 		   ref_cnt);
1131 
1132 	goto out;
1133 
1134 err:
1135 	DP_NOTICE(p_dev, false,
1136 		  "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1137 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1138 		  mac_addr[4], mac_addr[5], ppfid);
1139 out:
1140 	ecore_ptt_release(p_hwfn, p_ptt);
1141 
1142 	return rc;
1143 }
1144 
1145 static enum _ecore_status_t
1146 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1147 				    enum ecore_llh_prot_filter_type_t type,
1148 				    u16 source_port_or_eth_type, u16 dest_port,
1149 				    char *str, osal_size_t str_len)
1150 {
1151 	switch (type) {
1152 	case ECORE_LLH_FILTER_ETHERTYPE:
1153 		OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1154 			      source_port_or_eth_type);
1155 		break;
1156 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1157 		OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1158 			      source_port_or_eth_type);
1159 		break;
1160 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1161 		OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1162 			      source_port_or_eth_type);
1163 		break;
1164 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1165 		OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1166 		break;
1167 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1168 		OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1169 		break;
1170 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1171 		OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1172 			      source_port_or_eth_type, dest_port);
1173 		break;
1174 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1175 		OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1176 			      source_port_or_eth_type, dest_port);
1177 		break;
1178 	default:
1179 		DP_NOTICE(p_dev, true,
1180 			  "Non valid LLH protocol filter type %d\n", type);
1181 		return ECORE_INVAL;
1182 	}
1183 
1184 	return ECORE_SUCCESS;
1185 }
1186 
1187 static enum _ecore_status_t
1188 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1189 				  enum ecore_llh_prot_filter_type_t type,
1190 				  u16 source_port_or_eth_type, u16 dest_port,
1191 				  u32 *p_high, u32 *p_low)
1192 {
1193 	*p_high = 0;
1194 	*p_low = 0;
1195 
1196 	switch (type) {
1197 	case ECORE_LLH_FILTER_ETHERTYPE:
1198 		*p_high = source_port_or_eth_type;
1199 		break;
1200 	case ECORE_LLH_FILTER_TCP_SRC_PORT:
1201 	case ECORE_LLH_FILTER_UDP_SRC_PORT:
1202 		*p_low = source_port_or_eth_type << 16;
1203 		break;
1204 	case ECORE_LLH_FILTER_TCP_DEST_PORT:
1205 	case ECORE_LLH_FILTER_UDP_DEST_PORT:
1206 		*p_low = dest_port;
1207 		break;
1208 	case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1209 	case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1210 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1211 		break;
1212 	default:
1213 		DP_NOTICE(p_dev, true,
1214 			  "Non valid LLH protocol filter type %d\n", type);
1215 		return ECORE_INVAL;
1216 	}
1217 
1218 	return ECORE_SUCCESS;
1219 }
1220 
1221 enum _ecore_status_t
1222 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1223 			      enum ecore_llh_prot_filter_type_t type,
1224 			      u16 source_port_or_eth_type, u16 dest_port)
1225 {
1226 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1227 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1228 	u8 filter_idx, abs_ppfid, type_bitmap;
1229 	char str[32];
1230 	union ecore_llh_filter filter;
1231 	u32 high, low, ref_cnt;
1232 	enum _ecore_status_t rc = ECORE_SUCCESS;
1233 
1234 	if (p_ptt == OSAL_NULL)
1235 		return ECORE_AGAIN;
1236 
1237 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1238 		goto out;
1239 
1240 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1241 						 source_port_or_eth_type,
1242 						 dest_port, str, sizeof(str));
1243 	if (rc != ECORE_SUCCESS)
1244 		goto err;
1245 
1246 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1247 	filter.protocol.type = type;
1248 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1249 	filter.protocol.dest_port = dest_port;
1250 	rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1251 					 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1252 					 &filter, &filter_idx, &ref_cnt);
1253 	if (rc != ECORE_SUCCESS)
1254 		goto err;
1255 
1256 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1257 	if (rc != ECORE_SUCCESS)
1258 		goto err;
1259 
1260 	/* Configure the LLH only in case of a new the filter */
1261 	if (ref_cnt == 1) {
1262 		rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1263 						       source_port_or_eth_type,
1264 						       dest_port, &high, &low);
1265 		if (rc != ECORE_SUCCESS)
1266 			goto err;
1267 
1268 		type_bitmap = 0x1 << type;
1269 		rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1270 					  type_bitmap, high, low);
1271 		if (rc != ECORE_SUCCESS)
1272 			goto err;
1273 	}
1274 
1275 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1276 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1277 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1278 
1279 	goto out;
1280 
1281 err:
1282 	DP_NOTICE(p_hwfn, false,
1283 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1284 		  str, ppfid);
1285 out:
1286 	ecore_ptt_release(p_hwfn, p_ptt);
1287 
1288 	return rc;
1289 }
1290 
1291 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1292 				 u8 mac_addr[ETH_ALEN])
1293 {
1294 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1295 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1296 	union ecore_llh_filter filter;
1297 	u8 filter_idx, abs_ppfid;
1298 	enum _ecore_status_t rc = ECORE_SUCCESS;
1299 	u32 ref_cnt;
1300 
1301 	if (p_ptt == OSAL_NULL)
1302 		return;
1303 
1304 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1305 		goto out;
1306 
1307 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1308 	OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1309 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1310 					    &ref_cnt);
1311 	if (rc != ECORE_SUCCESS)
1312 		goto err;
1313 
1314 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1315 	if (rc != ECORE_SUCCESS)
1316 		goto err;
1317 
1318 	/* Remove from the LLH in case the filter is not in use */
1319 	if (!ref_cnt) {
1320 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1321 					     filter_idx);
1322 		if (rc != ECORE_SUCCESS)
1323 			goto err;
1324 	}
1325 
1326 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1327 		   "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1328 		   mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1329 		   mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1330 		   ref_cnt);
1331 
1332 	goto out;
1333 
1334 err:
1335 	DP_NOTICE(p_dev, false,
1336 		  "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1337 		  mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1338 		  mac_addr[4], mac_addr[5], ppfid);
1339 out:
1340 	ecore_ptt_release(p_hwfn, p_ptt);
1341 }
1342 
1343 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1344 				      enum ecore_llh_prot_filter_type_t type,
1345 				      u16 source_port_or_eth_type,
1346 				      u16 dest_port)
1347 {
1348 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1349 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1350 	u8 filter_idx, abs_ppfid;
1351 	char str[32];
1352 	union ecore_llh_filter filter;
1353 	enum _ecore_status_t rc = ECORE_SUCCESS;
1354 	u32 ref_cnt;
1355 
1356 	if (p_ptt == OSAL_NULL)
1357 		return;
1358 
1359 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1360 		goto out;
1361 
1362 	rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1363 						 source_port_or_eth_type,
1364 						 dest_port, str, sizeof(str));
1365 	if (rc != ECORE_SUCCESS)
1366 		goto err;
1367 
1368 	OSAL_MEM_ZERO(&filter, sizeof(filter));
1369 	filter.protocol.type = type;
1370 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1371 	filter.protocol.dest_port = dest_port;
1372 	rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1373 					    &ref_cnt);
1374 	if (rc != ECORE_SUCCESS)
1375 		goto err;
1376 
1377 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1378 	if (rc != ECORE_SUCCESS)
1379 		goto err;
1380 
1381 	/* Remove from the LLH in case the filter is not in use */
1382 	if (!ref_cnt) {
1383 		rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1384 					     filter_idx);
1385 		if (rc != ECORE_SUCCESS)
1386 			goto err;
1387 	}
1388 
1389 	DP_VERBOSE(p_dev, ECORE_MSG_SP,
1390 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1391 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1392 
1393 	goto out;
1394 
1395 err:
1396 	DP_NOTICE(p_dev, false,
1397 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1398 		  str, ppfid);
1399 out:
1400 	ecore_ptt_release(p_hwfn, p_ptt);
1401 }
1402 
1403 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1404 {
1405 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1406 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1407 	u8 filter_idx, abs_ppfid;
1408 	enum _ecore_status_t rc = ECORE_SUCCESS;
1409 
1410 	if (p_ptt == OSAL_NULL)
1411 		return;
1412 
1413 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1414 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1415 		goto out;
1416 
1417 	rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1418 	if (rc != ECORE_SUCCESS)
1419 		goto out;
1420 
1421 	rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1422 	if (rc != ECORE_SUCCESS)
1423 		goto out;
1424 
1425 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1426 	     filter_idx++) {
1427 		rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1428 						abs_ppfid, filter_idx);
1429 		if (rc != ECORE_SUCCESS)
1430 			goto out;
1431 	}
1432 out:
1433 	ecore_ptt_release(p_hwfn, p_ptt);
1434 }
1435 
1436 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1437 {
1438 	u8 ppfid;
1439 
1440 	if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1441 	    !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1442 		return;
1443 
1444 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1445 		ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1446 }
1447 
1448 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1449 					 struct ecore_ptt *p_ptt, u32 addr,
1450 					 u32 val)
1451 {
1452 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1453 	u8 ppfid, abs_ppfid;
1454 	enum _ecore_status_t rc;
1455 
1456 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1457 		rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1458 		if (rc != ECORE_SUCCESS)
1459 			return rc;
1460 
1461 		ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1462 	}
1463 
1464 	return ECORE_SUCCESS;
1465 }
1466 
1467 static enum _ecore_status_t
1468 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1469 			u8 ppfid)
1470 {
1471 	struct ecore_llh_filter_e4_details filter_details;
1472 	u8 abs_ppfid, filter_idx;
1473 	u32 addr;
1474 	enum _ecore_status_t rc;
1475 
1476 	rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1477 	if (rc != ECORE_SUCCESS)
1478 		return rc;
1479 
1480 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1481 	DP_NOTICE(p_hwfn, false,
1482 		  "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1483 		  p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1484 		  ecore_rd(p_hwfn, p_ptt, addr));
1485 
1486 	for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1487 	     filter_idx++) {
1488 		OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1489 		rc =  ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1490 						 filter_idx, &filter_details,
1491 						 false /* read access */);
1492 		if (rc != ECORE_SUCCESS)
1493 			return rc;
1494 
1495 		DP_NOTICE(p_hwfn, false,
1496 			  "filter %2hhd: enable %d, value 0x%016lx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1497 			  filter_idx, filter_details.enable,
1498 			  (unsigned long)filter_details.value,
1499 			  filter_details.mode,
1500 			  filter_details.protocol_type, filter_details.hdr_sel);
1501 	}
1502 
1503 	return ECORE_SUCCESS;
1504 }
1505 
1506 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1507 {
1508 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1509 	struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1510 	enum _ecore_status_t rc;
1511 
1512 	if (p_ptt == OSAL_NULL)
1513 		return ECORE_AGAIN;
1514 
1515 	rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1516 
1517 	ecore_ptt_release(p_hwfn, p_ptt);
1518 
1519 	return rc;
1520 }
1521 
1522 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1523 {
1524 	u8 ppfid;
1525 	enum _ecore_status_t rc;
1526 
1527 	for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1528 		rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1529 		if (rc != ECORE_SUCCESS)
1530 			return rc;
1531 	}
1532 
1533 	return ECORE_SUCCESS;
1534 }
1535 
1536 /******************************* NIG LLH - End ********************************/
1537 
1538 /* Configurable */
1539 #define ECORE_MIN_DPIS		(4)	/* The minimal num of DPIs required to
1540 					 * load the driver. The number was
1541 					 * arbitrarily set.
1542 					 */
1543 
1544 /* Derived */
1545 #define ECORE_MIN_PWM_REGION	(ECORE_WID_SIZE * ECORE_MIN_DPIS)
1546 
1547 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1548 			     struct ecore_ptt *p_ptt,
1549 			     enum BAR_ID bar_id)
1550 {
1551 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1552 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1553 	u32 val;
1554 
1555 	if (IS_VF(p_hwfn->p_dev))
1556 		return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1557 
1558 	val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1559 	if (val)
1560 		return 1 << (val + 15);
1561 
1562 	/* The above registers were updated in the past only in CMT mode. Since
1563 	 * they were found to be useful MFW started updating them from 8.7.7.0.
1564 	 * In older MFW versions they are set to 0 which means disabled.
1565 	 */
1566 	if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1567 		DP_INFO(p_hwfn,
1568 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1569 		val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1570 	} else {
1571 		DP_INFO(p_hwfn,
1572 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1573 		val = 512 * 1024;
1574 	}
1575 
1576 	return val;
1577 }
1578 
1579 void ecore_init_dp(struct ecore_dev *p_dev,
1580 		   u32 dp_module, u8 dp_level, void *dp_ctx)
1581 {
1582 	u32 i;
1583 
1584 	p_dev->dp_level = dp_level;
1585 	p_dev->dp_module = dp_module;
1586 	p_dev->dp_ctx = dp_ctx;
1587 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1588 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1589 
1590 		p_hwfn->dp_level = dp_level;
1591 		p_hwfn->dp_module = dp_module;
1592 		p_hwfn->dp_ctx = dp_ctx;
1593 	}
1594 }
1595 
1596 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1597 {
1598 	u8 i;
1599 
1600 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1601 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1602 
1603 		p_hwfn->p_dev = p_dev;
1604 		p_hwfn->my_id = i;
1605 		p_hwfn->b_active = false;
1606 
1607 #ifdef CONFIG_ECORE_LOCK_ALLOC
1608 		if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1609 			goto handle_err;
1610 #endif
1611 		OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1612 	}
1613 
1614 	/* hwfn 0 is always active */
1615 	p_dev->hwfns[0].b_active = true;
1616 
1617 	/* set the default cache alignment to 128 (may be overridden later) */
1618 	p_dev->cache_shift = 7;
1619 	return ECORE_SUCCESS;
1620 #ifdef CONFIG_ECORE_LOCK_ALLOC
1621 handle_err:
1622 	while (--i) {
1623 		struct ecore_hwfn *p_hwfn = OSAL_NULL;
1624 
1625 		p_hwfn = &p_dev->hwfns[i];
1626 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1627 	}
1628 	return ECORE_NOMEM;
1629 #endif
1630 }
1631 
1632 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1633 {
1634 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1635 
1636 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1637 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1638 	OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1639 	OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1640 }
1641 
1642 static void ecore_dbg_user_data_free(struct ecore_hwfn *p_hwfn)
1643 {
1644 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->dbg_user_info);
1645 	p_hwfn->dbg_user_info = OSAL_NULL;
1646 }
1647 
1648 void ecore_resc_free(struct ecore_dev *p_dev)
1649 {
1650 	int i;
1651 
1652 	if (IS_VF(p_dev)) {
1653 		for_each_hwfn(p_dev, i)
1654 			ecore_l2_free(&p_dev->hwfns[i]);
1655 		return;
1656 	}
1657 
1658 	OSAL_FREE(p_dev, p_dev->fw_data);
1659 
1660 	OSAL_FREE(p_dev, p_dev->reset_stats);
1661 
1662 	ecore_llh_free(p_dev);
1663 
1664 	for_each_hwfn(p_dev, i) {
1665 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1666 
1667 		ecore_cxt_mngr_free(p_hwfn);
1668 		ecore_qm_info_free(p_hwfn);
1669 		ecore_spq_free(p_hwfn);
1670 		ecore_eq_free(p_hwfn);
1671 		ecore_consq_free(p_hwfn);
1672 		ecore_int_free(p_hwfn);
1673 		ecore_iov_free(p_hwfn);
1674 		ecore_l2_free(p_hwfn);
1675 		ecore_dmae_info_free(p_hwfn);
1676 		ecore_dcbx_info_free(p_hwfn);
1677 		ecore_dbg_user_data_free(p_hwfn);
1678 		/* @@@TBD Flush work-queue ? */
1679 
1680 		/* destroy doorbell recovery mechanism */
1681 		ecore_db_recovery_teardown(p_hwfn);
1682 	}
1683 }
1684 
1685 /******************** QM initialization *******************/
1686 
1687 /* bitmaps for indicating active traffic classes.
1688  * Special case for Arrowhead 4 port
1689  */
1690 /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1691 #define ACTIVE_TCS_BMAP 0x9f
1692 /* 0..3 actually used, OOO and high priority stuff all use 3 */
1693 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
1694 
1695 /* determines the physical queue flags for a given PF. */
1696 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1697 {
1698 	u32 flags;
1699 
1700 	/* common flags */
1701 	flags = PQ_FLAGS_LB;
1702 
1703 	/* feature flags */
1704 	if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1705 		flags |= PQ_FLAGS_VFS;
1706 	if (IS_ECORE_PACING(p_hwfn))
1707 		flags |= PQ_FLAGS_RLS;
1708 
1709 	/* protocol flags */
1710 	switch (p_hwfn->hw_info.personality) {
1711 	case ECORE_PCI_ETH:
1712 		if (!IS_ECORE_PACING(p_hwfn))
1713 			flags |= PQ_FLAGS_MCOS;
1714 		break;
1715 	case ECORE_PCI_FCOE:
1716 		flags |= PQ_FLAGS_OFLD;
1717 		break;
1718 	case ECORE_PCI_ISCSI:
1719 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1720 		break;
1721 	case ECORE_PCI_ETH_ROCE:
1722 		flags |= PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1723 		if (!IS_ECORE_PACING(p_hwfn))
1724 			flags |= PQ_FLAGS_MCOS;
1725 		break;
1726 	case ECORE_PCI_ETH_IWARP:
1727 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1728 		if (!IS_ECORE_PACING(p_hwfn))
1729 			flags |= PQ_FLAGS_MCOS;
1730 		break;
1731 	default:
1732 		DP_ERR(p_hwfn, "unknown personality %d\n",
1733 		       p_hwfn->hw_info.personality);
1734 		return 0;
1735 	}
1736 	return flags;
1737 }
1738 
1739 /* Getters for resource amounts necessary for qm initialization */
1740 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1741 {
1742 	return p_hwfn->hw_info.num_hw_tc;
1743 }
1744 
1745 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1746 {
1747 	return IS_ECORE_SRIOV(p_hwfn->p_dev) ?
1748 			p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1749 }
1750 
1751 #define NUM_DEFAULT_RLS 1
1752 
1753 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1754 {
1755 	u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1756 
1757 	/* num RLs can't exceed resource amount of rls or vports or the
1758 	 * dcqcn qps
1759 	 */
1760 	num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1761 				     RESC_NUM(p_hwfn, ECORE_VPORT));
1762 
1763 	/* make sure after we reserve the default and VF rls we'll have
1764 	 * something left
1765 	 */
1766 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1767 		DP_NOTICE(p_hwfn, false,
1768 			  "no rate limiters left for PF rate limiting"
1769 			  " [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1770 		return 0;
1771 	}
1772 
1773 	/* subtract rls necessary for VFs and one default one for the PF */
1774 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1775 
1776 	return num_pf_rls;
1777 }
1778 
1779 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1780 {
1781 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1782 
1783 	/* all pqs share the same vport (hence the 1 below), except for vfs
1784 	 * and pf_rl pqs
1785 	 */
1786 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1787 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
1788 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
1789 		ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1790 }
1791 
1792 /* calc amount of PQs according to the requested flags */
1793 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1794 {
1795 	u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1796 
1797 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1798 		ecore_init_qm_get_num_pf_rls(p_hwfn) +
1799 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
1800 		ecore_init_qm_get_num_tcs(p_hwfn) +
1801 	       (!!(PQ_FLAGS_LB & pq_flags)) +
1802 	       (!!(PQ_FLAGS_OOO & pq_flags)) +
1803 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1804 	       (!!(PQ_FLAGS_OFLD & pq_flags)) +
1805 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
1806 		ecore_init_qm_get_num_vfs(p_hwfn);
1807 }
1808 
1809 /* initialize the top level QM params */
1810 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1811 {
1812 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1813 	bool four_port;
1814 
1815 	/* pq and vport bases for this PF */
1816 	qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1817 	qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1818 
1819 	/* rate limiting and weighted fair queueing are always enabled */
1820 	qm_info->vport_rl_en = 1;
1821 	qm_info->vport_wfq_en = 1;
1822 
1823 	/* TC config is different for AH 4 port */
1824 	four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1825 
1826 	/* in AH 4 port we have fewer TCs per port */
1827 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
1828 						     NUM_OF_PHYS_TCS;
1829 
1830 	/* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and
1831 	 * 4 otherwise
1832 	 */
1833 	if (!qm_info->ooo_tc)
1834 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
1835 					      DCBX_TCP_OOO_TC;
1836 }
1837 
1838 /* initialize qm vport params */
1839 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1840 {
1841 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1842 	u8 i;
1843 
1844 	/* all vports participate in weighted fair queueing */
1845 	for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1846 		qm_info->qm_vport_params[i].vport_wfq = 1;
1847 }
1848 
1849 /* initialize qm port params */
1850 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1851 {
1852 	/* Initialize qm port parameters */
1853 	u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1854 
1855 	/* indicate how ooo and high pri traffic is dealt with */
1856 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1857 		ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1858 
1859 	for (i = 0; i < num_ports; i++) {
1860 		struct init_qm_port_params *p_qm_port =
1861 			&p_hwfn->qm_info.qm_port_params[i];
1862 
1863 		p_qm_port->active = 1;
1864 		p_qm_port->active_phys_tcs = active_phys_tcs;
1865 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1866 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1867 	}
1868 }
1869 
1870 /* Reset the params which must be reset for qm init. QM init may be called as
1871  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1872  * params may be affected by the init but would simply recalculate to the same
1873  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1874  * affected as these amounts stay the same.
1875  */
1876 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1877 {
1878 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1879 
1880 	qm_info->num_pqs = 0;
1881 	qm_info->num_vports = 0;
1882 	qm_info->num_pf_rls = 0;
1883 	qm_info->num_vf_pqs = 0;
1884 	qm_info->first_vf_pq = 0;
1885 	qm_info->first_mcos_pq = 0;
1886 	qm_info->first_rl_pq = 0;
1887 }
1888 
1889 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1890 {
1891 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1892 
1893 	qm_info->num_vports++;
1894 
1895 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1896 		DP_ERR(p_hwfn,
1897 		       "vport overflow! qm_info->num_vports %d,"
1898 		       " qm_init_get_num_vports() %d\n",
1899 		       qm_info->num_vports,
1900 		       ecore_init_qm_get_num_vports(p_hwfn));
1901 }
1902 
1903 /* initialize a single pq and manage qm_info resources accounting.
1904  * The pq_init_flags param determines whether the PQ is rate limited
1905  * (for VF or PF)
1906  * and whether a new vport is allocated to the pq or not (i.e. vport will be
1907  * shared)
1908  */
1909 
1910 /* flags for pq init */
1911 #define PQ_INIT_SHARE_VPORT	(1 << 0)
1912 #define PQ_INIT_PF_RL		(1 << 1)
1913 #define PQ_INIT_VF_RL		(1 << 2)
1914 
1915 /* defines for pq init */
1916 #define PQ_INIT_DEFAULT_WRR_GROUP	1
1917 #define PQ_INIT_DEFAULT_TC		0
1918 #define PQ_INIT_OFLD_TC			(p_hwfn->hw_info.offload_tc)
1919 
1920 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
1921 			     struct ecore_qm_info *qm_info,
1922 			     u8 tc, u32 pq_init_flags)
1923 {
1924 	u16 pq_idx = qm_info->num_pqs, max_pq =
1925 					ecore_init_qm_get_num_pqs(p_hwfn);
1926 
1927 	if (pq_idx > max_pq)
1928 		DP_ERR(p_hwfn,
1929 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
1930 
1931 	/* init pq params */
1932 	qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
1933 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
1934 						 qm_info->num_vports;
1935 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
1936 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
1937 	qm_info->qm_pq_params[pq_idx].rl_valid =
1938 		(pq_init_flags & PQ_INIT_PF_RL ||
1939 		 pq_init_flags & PQ_INIT_VF_RL);
1940 
1941 	/* qm params accounting */
1942 	qm_info->num_pqs++;
1943 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
1944 		qm_info->num_vports++;
1945 
1946 	if (pq_init_flags & PQ_INIT_PF_RL)
1947 		qm_info->num_pf_rls++;
1948 
1949 	if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1950 		DP_ERR(p_hwfn,
1951 		       "vport overflow! qm_info->num_vports %d,"
1952 		       " qm_init_get_num_vports() %d\n",
1953 		       qm_info->num_vports,
1954 		       ecore_init_qm_get_num_vports(p_hwfn));
1955 
1956 	if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
1957 		DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d,"
1958 		       " qm_init_get_num_pf_rls() %d\n",
1959 		       qm_info->num_pf_rls,
1960 		       ecore_init_qm_get_num_pf_rls(p_hwfn));
1961 }
1962 
1963 /* get pq index according to PQ_FLAGS */
1964 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
1965 					     u32 pq_flags)
1966 {
1967 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1968 
1969 	/* Can't have multiple flags set here */
1970 	if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags,
1971 				sizeof(pq_flags)) > 1)
1972 		goto err;
1973 
1974 	switch (pq_flags) {
1975 	case PQ_FLAGS_RLS:
1976 		return &qm_info->first_rl_pq;
1977 	case PQ_FLAGS_MCOS:
1978 		return &qm_info->first_mcos_pq;
1979 	case PQ_FLAGS_LB:
1980 		return &qm_info->pure_lb_pq;
1981 	case PQ_FLAGS_OOO:
1982 		return &qm_info->ooo_pq;
1983 	case PQ_FLAGS_ACK:
1984 		return &qm_info->pure_ack_pq;
1985 	case PQ_FLAGS_OFLD:
1986 		return &qm_info->offload_pq;
1987 	case PQ_FLAGS_VFS:
1988 		return &qm_info->first_vf_pq;
1989 	default:
1990 		goto err;
1991 	}
1992 
1993 err:
1994 	DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
1995 	return OSAL_NULL;
1996 }
1997 
1998 /* save pq index in qm info */
1999 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2000 				  u32 pq_flags, u16 pq_val)
2001 {
2002 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2003 
2004 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2005 }
2006 
2007 /* get tx pq index, with the PQ TX base already set (ready for context init) */
2008 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2009 {
2010 	u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2011 
2012 	return *base_pq_idx + CM_TX_PQ_BASE;
2013 }
2014 
2015 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2016 {
2017 	u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2018 
2019 	if (tc > max_tc)
2020 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2021 
2022 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
2023 }
2024 
2025 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2026 {
2027 	u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2028 
2029 	if (vf > max_vf)
2030 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2031 
2032 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
2033 }
2034 
2035 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl)
2036 {
2037 	u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2038 
2039 	/* for rate limiters, it is okay to use the modulo behavior - no
2040 	 * DP_ERR
2041 	 */
2042 	return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + (rl % max_rl);
2043 }
2044 
2045 u16 ecore_get_qm_vport_idx_rl(struct ecore_hwfn *p_hwfn, u16 rl)
2046 {
2047 	u16 start_pq, pq, qm_pq_idx;
2048 
2049 	pq = ecore_get_cm_pq_idx_rl(p_hwfn, rl);
2050 	start_pq = p_hwfn->qm_info.start_pq;
2051 	qm_pq_idx = pq - start_pq - CM_TX_PQ_BASE;
2052 
2053 	if (qm_pq_idx > p_hwfn->qm_info.num_pqs) {
2054 		DP_ERR(p_hwfn,
2055 		       "qm_pq_idx %d must be smaller than %d\n",
2056 			qm_pq_idx, p_hwfn->qm_info.num_pqs);
2057 	}
2058 
2059 	return p_hwfn->qm_info.qm_pq_params[qm_pq_idx].vport_id;
2060 }
2061 
2062 /* Functions for creating specific types of pqs */
2063 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2064 {
2065 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2066 
2067 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2068 		return;
2069 
2070 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2071 	ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2072 }
2073 
2074 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2075 {
2076 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2077 
2078 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2079 		return;
2080 
2081 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2082 	ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2083 }
2084 
2085 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2086 {
2087 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2088 
2089 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2090 		return;
2091 
2092 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2093 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2094 }
2095 
2096 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2097 {
2098 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2099 
2100 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2101 		return;
2102 
2103 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2104 	ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2105 }
2106 
2107 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2108 {
2109 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2110 	u8 tc_idx;
2111 
2112 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2113 		return;
2114 
2115 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2116 	for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2117 		ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2118 }
2119 
2120 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2121 {
2122 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2123 	u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2124 
2125 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2126 		return;
2127 
2128 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2129 
2130 	qm_info->num_vf_pqs = num_vfs;
2131 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2132 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC,
2133 				 PQ_INIT_VF_RL);
2134 }
2135 
2136 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2137 {
2138 	u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2139 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2140 
2141 	if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2142 		return;
2143 
2144 	ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2145 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2146 		ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC,
2147 				 PQ_INIT_PF_RL);
2148 }
2149 
2150 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2151 {
2152 	/* rate limited pqs, must come first (FW assumption) */
2153 	ecore_init_qm_rl_pqs(p_hwfn);
2154 
2155 	/* pqs for multi cos */
2156 	ecore_init_qm_mcos_pqs(p_hwfn);
2157 
2158 	/* pure loopback pq */
2159 	ecore_init_qm_lb_pq(p_hwfn);
2160 
2161 	/* out of order pq */
2162 	ecore_init_qm_ooo_pq(p_hwfn);
2163 
2164 	/* pure ack pq */
2165 	ecore_init_qm_pure_ack_pq(p_hwfn);
2166 
2167 	/* pq for offloaded protocol */
2168 	ecore_init_qm_offload_pq(p_hwfn);
2169 
2170 	/* done sharing vports */
2171 	ecore_init_qm_advance_vport(p_hwfn);
2172 
2173 	/* pqs for vfs */
2174 	ecore_init_qm_vf_pqs(p_hwfn);
2175 }
2176 
2177 /* compare values of getters against resources amounts */
2178 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2179 {
2180 	if (ecore_init_qm_get_num_vports(p_hwfn) >
2181 	    RESC_NUM(p_hwfn, ECORE_VPORT)) {
2182 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2183 		return ECORE_INVAL;
2184 	}
2185 
2186 	if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2187 		DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2188 		return ECORE_INVAL;
2189 	}
2190 
2191 	return ECORE_SUCCESS;
2192 }
2193 
2194 /*
2195  * Function for verbose printing of the qm initialization results
2196  */
2197 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2198 {
2199 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2200 	struct init_qm_vport_params *vport;
2201 	struct init_qm_port_params *port;
2202 	struct init_qm_pq_params *pq;
2203 	int i, tc;
2204 
2205 	/* top level params */
2206 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2207 		   "qm init top level params: start_pq %d, start_vport %d,"
2208 		   " pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2209 		   qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq,
2210 		   qm_info->offload_pq, qm_info->pure_ack_pq);
2211 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2212 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d,"
2213 		   " num_vports %d, max_phys_tcs_per_port %d\n",
2214 		   qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs,
2215 		   qm_info->num_vf_pqs, qm_info->num_vports,
2216 		   qm_info->max_phys_tcs_per_port);
2217 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2218 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d,"
2219 		   " pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2220 		   qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en,
2221 		   qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl,
2222 		   qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2223 
2224 	/* port table */
2225 	for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2226 		port = &qm_info->qm_port_params[i];
2227 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2228 			   "port idx %d, active %d, active_phys_tcs %d,"
2229 			   " num_pbf_cmd_lines %d, num_btb_blocks %d,"
2230 			   " reserved %d\n",
2231 			   i, port->active, port->active_phys_tcs,
2232 			   port->num_pbf_cmd_lines, port->num_btb_blocks,
2233 			   port->reserved);
2234 	}
2235 
2236 	/* vport table */
2237 	for (i = 0; i < qm_info->num_vports; i++) {
2238 		vport = &qm_info->qm_vport_params[i];
2239 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2240 			   "vport idx %d, vport_rl %d, wfq %d,"
2241 			   " first_tx_pq_id [ ",
2242 			   qm_info->start_vport + i, vport->vport_rl,
2243 			   vport->vport_wfq);
2244 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2245 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ",
2246 				   vport->first_tx_pq_id[tc]);
2247 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2248 	}
2249 
2250 	/* pq table */
2251 	for (i = 0; i < qm_info->num_pqs; i++) {
2252 		pq = &qm_info->qm_pq_params[i];
2253 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
2254 			   "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2255 			   qm_info->start_pq + i, pq->port_id, pq->vport_id,
2256 			   pq->tc_id, pq->wrr_group, pq->rl_valid);
2257 	}
2258 }
2259 
2260 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2261 {
2262 	/* reset params required for init run */
2263 	ecore_init_qm_reset_params(p_hwfn);
2264 
2265 	/* init QM top level params */
2266 	ecore_init_qm_params(p_hwfn);
2267 
2268 	/* init QM port params */
2269 	ecore_init_qm_port_params(p_hwfn);
2270 
2271 	/* init QM vport params */
2272 	ecore_init_qm_vport_params(p_hwfn);
2273 
2274 	/* init QM physical queue params */
2275 	ecore_init_qm_pq_params(p_hwfn);
2276 
2277 	/* display all that init */
2278 	ecore_dp_init_qm_params(p_hwfn);
2279 }
2280 
2281 /* This function reconfigures the QM pf on the fly.
2282  * For this purpose we:
2283  * 1. reconfigure the QM database
2284  * 2. set new values to runtime array
2285  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2286  * 4. activate init tool in QM_PF stage
2287  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2288  */
2289 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2290 				     struct ecore_ptt *p_ptt)
2291 {
2292 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2293 	bool b_rc;
2294 	enum _ecore_status_t rc;
2295 
2296 	/* initialize ecore's qm data structure */
2297 	ecore_init_qm_info(p_hwfn);
2298 
2299 	/* stop PF's qm queues */
2300 	OSAL_SPIN_LOCK(&qm_lock);
2301 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2302 				      qm_info->start_pq, qm_info->num_pqs);
2303 	OSAL_SPIN_UNLOCK(&qm_lock);
2304 	if (!b_rc)
2305 		return ECORE_INVAL;
2306 
2307 	/* clear the QM_PF runtime phase leftovers from previous init */
2308 	ecore_init_clear_rt_data(p_hwfn);
2309 
2310 	/* prepare QM portion of runtime array */
2311 	ecore_qm_init_pf(p_hwfn, p_ptt, false);
2312 
2313 	/* activate init tool on runtime array */
2314 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2315 			    p_hwfn->hw_info.hw_mode);
2316 	if (rc != ECORE_SUCCESS)
2317 		return rc;
2318 
2319 	/* start PF's qm queues */
2320 	OSAL_SPIN_LOCK(&qm_lock);
2321 	b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2322 				      qm_info->start_pq, qm_info->num_pqs);
2323 	OSAL_SPIN_UNLOCK(&qm_lock);
2324 	if (!b_rc)
2325 		return ECORE_INVAL;
2326 
2327 	return ECORE_SUCCESS;
2328 }
2329 
2330 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2331 {
2332 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2333 	enum _ecore_status_t rc;
2334 
2335 	rc = ecore_init_qm_sanity(p_hwfn);
2336 	if (rc != ECORE_SUCCESS)
2337 		goto alloc_err;
2338 
2339 	qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2340 					    sizeof(struct init_qm_pq_params) *
2341 					    ecore_init_qm_get_num_pqs(p_hwfn));
2342 	if (!qm_info->qm_pq_params)
2343 		goto alloc_err;
2344 
2345 	qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2346 				       sizeof(struct init_qm_vport_params) *
2347 				       ecore_init_qm_get_num_vports(p_hwfn));
2348 	if (!qm_info->qm_vport_params)
2349 		goto alloc_err;
2350 
2351 	qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2352 				      sizeof(struct init_qm_port_params) *
2353 				      p_hwfn->p_dev->num_ports_in_engine);
2354 	if (!qm_info->qm_port_params)
2355 		goto alloc_err;
2356 
2357 	qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2358 					sizeof(struct ecore_wfq_data) *
2359 					ecore_init_qm_get_num_vports(p_hwfn));
2360 	if (!qm_info->wfq_data)
2361 		goto alloc_err;
2362 
2363 	return ECORE_SUCCESS;
2364 
2365 alloc_err:
2366 	DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2367 	ecore_qm_info_free(p_hwfn);
2368 	return ECORE_NOMEM;
2369 }
2370 /******************** End QM initialization ***************/
2371 
2372 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2373 {
2374 	enum _ecore_status_t rc = ECORE_SUCCESS;
2375 	int i;
2376 
2377 	if (IS_VF(p_dev)) {
2378 		for_each_hwfn(p_dev, i) {
2379 			rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2380 			if (rc != ECORE_SUCCESS)
2381 				return rc;
2382 		}
2383 		return rc;
2384 	}
2385 
2386 	p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2387 				     sizeof(*p_dev->fw_data));
2388 	if (!p_dev->fw_data)
2389 		return ECORE_NOMEM;
2390 
2391 	for_each_hwfn(p_dev, i) {
2392 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2393 		u32 n_eqes, num_cons;
2394 
2395 		/* initialize the doorbell recovery mechanism */
2396 		rc = ecore_db_recovery_setup(p_hwfn);
2397 		if (rc)
2398 			goto alloc_err;
2399 
2400 		/* First allocate the context manager structure */
2401 		rc = ecore_cxt_mngr_alloc(p_hwfn);
2402 		if (rc)
2403 			goto alloc_err;
2404 
2405 		/* Set the HW cid/tid numbers (in the context manager)
2406 		 * Must be done prior to any further computations.
2407 		 */
2408 		rc = ecore_cxt_set_pf_params(p_hwfn);
2409 		if (rc)
2410 			goto alloc_err;
2411 
2412 		rc = ecore_alloc_qm_data(p_hwfn);
2413 		if (rc)
2414 			goto alloc_err;
2415 
2416 		/* init qm info */
2417 		ecore_init_qm_info(p_hwfn);
2418 
2419 		/* Compute the ILT client partition */
2420 		rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
2421 		if (rc)
2422 			goto alloc_err;
2423 
2424 		/* CID map / ILT shadow table / T2
2425 		 * The talbes sizes are determined by the computations above
2426 		 */
2427 		rc = ecore_cxt_tables_alloc(p_hwfn);
2428 		if (rc)
2429 			goto alloc_err;
2430 
2431 		/* SPQ, must follow ILT because initializes SPQ context */
2432 		rc = ecore_spq_alloc(p_hwfn);
2433 		if (rc)
2434 			goto alloc_err;
2435 
2436 		/* SP status block allocation */
2437 		p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2438 							   RESERVED_PTT_DPC);
2439 
2440 		rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2441 		if (rc)
2442 			goto alloc_err;
2443 
2444 		rc = ecore_iov_alloc(p_hwfn);
2445 		if (rc)
2446 			goto alloc_err;
2447 
2448 		/* EQ */
2449 		n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2450 		if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2451 			/* Calculate the EQ size
2452 			 * ---------------------
2453 			 * Each ICID may generate up to one event at a time i.e.
2454 			 * the event must be handled/cleared before a new one
2455 			 * can be generated. We calculate the sum of events per
2456 			 * protocol and create an EQ deep enough to handle the
2457 			 * worst case:
2458 			 * - Core - according to SPQ.
2459 			 * - RoCE - per QP there are a couple of ICIDs, one
2460 			 *	  responder and one requester, each can
2461 			 *	  generate an EQE => n_eqes_qp = 2 * n_qp.
2462 			 *	  Each CQ can generate an EQE. There are 2 CQs
2463 			 *	  per QP => n_eqes_cq = 2 * n_qp.
2464 			 *	  Hence the RoCE total is 4 * n_qp or
2465 			 *	  2 * num_cons.
2466 			 * - ENet - There can be up to two events per VF. One
2467 			 *	  for VF-PF channel and another for VF FLR
2468 			 *	  initial cleanup. The number of VFs is
2469 			 *	  bounded by MAX_NUM_VFS_BB, and is much
2470 			 *	  smaller than RoCE's so we avoid exact
2471 			 *	  calculation.
2472 			 */
2473 			if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
2474 				num_cons =
2475 				    ecore_cxt_get_proto_cid_count(
2476 						p_hwfn,
2477 						PROTOCOLID_ROCE,
2478 						OSAL_NULL);
2479 				num_cons *= 2;
2480 			} else {
2481 				num_cons = ecore_cxt_get_proto_cid_count(
2482 						p_hwfn,
2483 						PROTOCOLID_IWARP,
2484 						OSAL_NULL);
2485 			}
2486 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
2487 		} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2488 			num_cons =
2489 			    ecore_cxt_get_proto_cid_count(p_hwfn,
2490 							  PROTOCOLID_ISCSI,
2491 							  OSAL_NULL);
2492 			n_eqes += 2 * num_cons;
2493 		}
2494 
2495 		if (n_eqes > 0xFFFF) {
2496 			DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
2497 				       "The maximum of a u16 chain is 0x%x\n",
2498 			       n_eqes, 0xFFFF);
2499 			goto alloc_no_mem;
2500 		}
2501 
2502 		rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2503 		if (rc)
2504 			goto alloc_err;
2505 
2506 		rc = ecore_consq_alloc(p_hwfn);
2507 		if (rc)
2508 			goto alloc_err;
2509 
2510 		rc = ecore_l2_alloc(p_hwfn);
2511 		if (rc != ECORE_SUCCESS)
2512 			goto alloc_err;
2513 
2514 		/* DMA info initialization */
2515 		rc = ecore_dmae_info_alloc(p_hwfn);
2516 		if (rc) {
2517 			DP_NOTICE(p_hwfn, false, "Failed to allocate memory for dmae_info structure\n");
2518 			goto alloc_err;
2519 		}
2520 
2521 		/* DCBX initialization */
2522 		rc = ecore_dcbx_info_alloc(p_hwfn);
2523 		if (rc) {
2524 			DP_NOTICE(p_hwfn, false,
2525 				  "Failed to allocate memory for dcbx structure\n");
2526 			goto alloc_err;
2527 		}
2528 
2529 		rc = OSAL_DBG_ALLOC_USER_DATA(p_hwfn, &p_hwfn->dbg_user_info);
2530 		if (rc) {
2531 			DP_NOTICE(p_hwfn, false,
2532 				  "Failed to allocate dbg user info structure\n");
2533 			goto alloc_err;
2534 		}
2535 	} /* hwfn loop */
2536 
2537 	rc = ecore_llh_alloc(p_dev);
2538 	if (rc != ECORE_SUCCESS) {
2539 		DP_NOTICE(p_dev, true,
2540 			  "Failed to allocate memory for the llh_info structure\n");
2541 		goto alloc_err;
2542 	}
2543 
2544 	p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2545 					 sizeof(*p_dev->reset_stats));
2546 	if (!p_dev->reset_stats) {
2547 		DP_NOTICE(p_dev, false, "Failed to allocate reset statistics\n");
2548 		goto alloc_no_mem;
2549 	}
2550 
2551 	return ECORE_SUCCESS;
2552 
2553 alloc_no_mem:
2554 	rc = ECORE_NOMEM;
2555 alloc_err:
2556 	ecore_resc_free(p_dev);
2557 	return rc;
2558 }
2559 
2560 void ecore_resc_setup(struct ecore_dev *p_dev)
2561 {
2562 	int i;
2563 
2564 	if (IS_VF(p_dev)) {
2565 		for_each_hwfn(p_dev, i)
2566 			ecore_l2_setup(&p_dev->hwfns[i]);
2567 		return;
2568 	}
2569 
2570 	for_each_hwfn(p_dev, i) {
2571 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2572 
2573 		ecore_cxt_mngr_setup(p_hwfn);
2574 		ecore_spq_setup(p_hwfn);
2575 		ecore_eq_setup(p_hwfn);
2576 		ecore_consq_setup(p_hwfn);
2577 
2578 		/* Read shadow of current MFW mailbox */
2579 		ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2580 		OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2581 			    p_hwfn->mcp_info->mfw_mb_cur,
2582 			    p_hwfn->mcp_info->mfw_mb_length);
2583 
2584 		ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2585 
2586 		ecore_l2_setup(p_hwfn);
2587 		ecore_iov_setup(p_hwfn);
2588 	}
2589 }
2590 
2591 #define FINAL_CLEANUP_POLL_CNT	(100)
2592 #define FINAL_CLEANUP_POLL_TIME	(10)
2593 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2594 					 struct ecore_ptt *p_ptt,
2595 					 u16 id, bool is_vf)
2596 {
2597 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2598 	enum _ecore_status_t rc = ECORE_TIMEOUT;
2599 
2600 #ifndef ASIC_ONLY
2601 	if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2602 	    CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2603 		DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2604 		return ECORE_SUCCESS;
2605 	}
2606 #endif
2607 
2608 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2609 	    USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2610 
2611 	if (is_vf)
2612 		id += 0x10;
2613 
2614 	command |= X_FINAL_CLEANUP_AGG_INT <<
2615 	    SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2616 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2617 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2618 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2619 
2620 /* Make sure notification is not set before initiating final cleanup */
2621 
2622 	if (REG_RD(p_hwfn, addr)) {
2623 		DP_NOTICE(p_hwfn, false,
2624 			  "Unexpected; Found final cleanup notification");
2625 		DP_NOTICE(p_hwfn, false,
2626 			  " before initiating final cleanup\n");
2627 		REG_WR(p_hwfn, addr, 0);
2628 	}
2629 
2630 	DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2631 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2632 		   id, command);
2633 
2634 	ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2635 
2636 	/* Poll until completion */
2637 	while (!REG_RD(p_hwfn, addr) && count--)
2638 		OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2639 
2640 	if (REG_RD(p_hwfn, addr))
2641 		rc = ECORE_SUCCESS;
2642 	else
2643 		DP_NOTICE(p_hwfn, true,
2644 			  "Failed to receive FW final cleanup notification\n");
2645 
2646 	/* Cleanup afterwards */
2647 	REG_WR(p_hwfn, addr, 0);
2648 
2649 	return rc;
2650 }
2651 
2652 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2653 {
2654 	int hw_mode = 0;
2655 
2656 	if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2657 		hw_mode |= 1 << MODE_BB;
2658 	} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2659 		hw_mode |= 1 << MODE_K2;
2660 	} else {
2661 		DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2662 			  p_hwfn->p_dev->type);
2663 		return ECORE_INVAL;
2664 	}
2665 
2666 	/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
2667 	switch (p_hwfn->p_dev->num_ports_in_engine) {
2668 	case 1:
2669 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2670 		break;
2671 	case 2:
2672 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2673 		break;
2674 	case 4:
2675 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2676 		break;
2677 	default:
2678 		DP_NOTICE(p_hwfn, true,
2679 			  "num_ports_in_engine = %d not supported\n",
2680 			  p_hwfn->p_dev->num_ports_in_engine);
2681 		return ECORE_INVAL;
2682 	}
2683 
2684 	if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS, &p_hwfn->p_dev->mf_bits))
2685 		hw_mode |= 1 << MODE_MF_SD;
2686 	else
2687 		hw_mode |= 1 << MODE_MF_SI;
2688 
2689 #ifndef ASIC_ONLY
2690 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2691 		if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2692 			hw_mode |= 1 << MODE_FPGA;
2693 		} else {
2694 			if (p_hwfn->p_dev->b_is_emul_full)
2695 				hw_mode |= 1 << MODE_EMUL_FULL;
2696 			else
2697 				hw_mode |= 1 << MODE_EMUL_REDUCED;
2698 		}
2699 	} else
2700 #endif
2701 		hw_mode |= 1 << MODE_ASIC;
2702 
2703 	if (ECORE_IS_CMT(p_hwfn->p_dev))
2704 		hw_mode |= 1 << MODE_100G;
2705 
2706 	p_hwfn->hw_info.hw_mode = hw_mode;
2707 
2708 	DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2709 		   "Configuring function for hw_mode: 0x%08x\n",
2710 		   p_hwfn->hw_info.hw_mode);
2711 
2712 	return ECORE_SUCCESS;
2713 }
2714 
2715 #ifndef ASIC_ONLY
2716 /* MFW-replacement initializations for non-ASIC */
2717 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2718 					       struct ecore_ptt *p_ptt)
2719 {
2720 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2721 	u32 pl_hv = 1;
2722 	int i;
2723 
2724 	if (CHIP_REV_IS_EMUL(p_dev)) {
2725 		if (ECORE_IS_AH(p_dev))
2726 			pl_hv |= 0x600;
2727 	}
2728 
2729 	ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2730 
2731 	if (CHIP_REV_IS_EMUL(p_dev) &&
2732 	    (ECORE_IS_AH(p_dev)))
2733 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2734 			 0x3ffffff);
2735 
2736 	/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2737 	/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2738 	if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2739 		ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2740 
2741 	if (CHIP_REV_IS_EMUL(p_dev)) {
2742 		if (ECORE_IS_AH(p_dev)) {
2743 			/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2744 			ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2745 				 (p_dev->num_ports_in_engine >> 1));
2746 
2747 			ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2748 				 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2749 		}
2750 	}
2751 
2752 	/* Poll on RBC */
2753 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2754 	for (i = 0; i < 100; i++) {
2755 		OSAL_UDELAY(50);
2756 		if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2757 			break;
2758 	}
2759 	if (i == 100)
2760 		DP_NOTICE(p_hwfn, true,
2761 			  "RBC done failed to complete in PSWRQ2\n");
2762 
2763 	return ECORE_SUCCESS;
2764 }
2765 #endif
2766 
2767 /* Init run time data for all PFs and their VFs on an engine.
2768  * TBD - for VFs - Once we have parent PF info for each VF in
2769  * shmem available as CAU requires knowledge of parent PF for each VF.
2770  */
2771 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2772 {
2773 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2774 	int i, igu_sb_id;
2775 
2776 	for_each_hwfn(p_dev, i) {
2777 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2778 		struct ecore_igu_info *p_igu_info;
2779 		struct ecore_igu_block *p_block;
2780 		struct cau_sb_entry sb_entry;
2781 
2782 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2783 
2784 		for (igu_sb_id = 0;
2785 		     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2786 		     igu_sb_id++) {
2787 			p_block = &p_igu_info->entry[igu_sb_id];
2788 
2789 			if (!p_block->is_pf)
2790 				continue;
2791 
2792 			ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2793 						p_block->function_id, 0, 0);
2794 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2795 					 sb_entry);
2796 		}
2797 	}
2798 }
2799 
2800 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2801 				       struct ecore_ptt *p_ptt)
2802 {
2803 	u32 val, wr_mbs, cache_line_size;
2804 
2805 	val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2806 	switch (val) {
2807 	case 0:
2808 		wr_mbs = 128;
2809 		break;
2810 	case 1:
2811 		wr_mbs = 256;
2812 		break;
2813 	case 2:
2814 		wr_mbs = 512;
2815 		break;
2816 	default:
2817 		DP_INFO(p_hwfn,
2818 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2819 			val);
2820 		return;
2821 	}
2822 
2823 	cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2824 	switch (cache_line_size) {
2825 	case 32:
2826 		val = 0;
2827 		break;
2828 	case 64:
2829 		val = 1;
2830 		break;
2831 	case 128:
2832 		val = 2;
2833 		break;
2834 	case 256:
2835 		val = 3;
2836 		break;
2837 	default:
2838 		DP_INFO(p_hwfn,
2839 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2840 			cache_line_size);
2841 	}
2842 
2843 	if (wr_mbs < OSAL_CACHE_LINE_SIZE)
2844 		DP_INFO(p_hwfn,
2845 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2846 			OSAL_CACHE_LINE_SIZE, wr_mbs);
2847 
2848 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2849 	if (val > 0) {
2850 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2851 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2852 	}
2853 }
2854 
2855 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2856 						 struct ecore_ptt *p_ptt,
2857 						 int hw_mode)
2858 {
2859 	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2860 	struct ecore_dev *p_dev = p_hwfn->p_dev;
2861 	u8 vf_id, max_num_vfs;
2862 	u16 num_pfs, pf_id;
2863 	u32 concrete_fid;
2864 	enum _ecore_status_t rc = ECORE_SUCCESS;
2865 
2866 	ecore_init_cau_rt_data(p_dev);
2867 
2868 	/* Program GTT windows */
2869 	ecore_gtt_init(p_hwfn, p_ptt);
2870 
2871 #ifndef ASIC_ONLY
2872 	if (CHIP_REV_IS_EMUL(p_dev)) {
2873 		rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2874 		if (rc != ECORE_SUCCESS)
2875 			return rc;
2876 	}
2877 #endif
2878 
2879 	if (p_hwfn->mcp_info) {
2880 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2881 			qm_info->pf_rl_en = 1;
2882 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2883 			qm_info->pf_wfq_en = 1;
2884 	}
2885 
2886 	ecore_qm_common_rt_init(p_hwfn,
2887 				p_dev->num_ports_in_engine,
2888 				qm_info->max_phys_tcs_per_port,
2889 				qm_info->pf_rl_en, qm_info->pf_wfq_en,
2890 				qm_info->vport_rl_en, qm_info->vport_wfq_en,
2891 				qm_info->qm_port_params);
2892 
2893 	ecore_cxt_hw_init_common(p_hwfn);
2894 
2895 	ecore_init_cache_line_size(p_hwfn, p_ptt);
2896 
2897 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
2898 			    hw_mode);
2899 	if (rc != ECORE_SUCCESS)
2900 		return rc;
2901 
2902 	/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
2903 	 * need to decide with which value, maybe runtime
2904 	 */
2905 	ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
2906 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
2907 
2908 	if (ECORE_IS_BB(p_dev)) {
2909 		/* Workaround clears ROCE search for all functions to prevent
2910 		 * involving non initialized function in processing ROCE packet.
2911 		 */
2912 		num_pfs = NUM_OF_ENG_PFS(p_dev);
2913 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
2914 			ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
2915 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2916 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2917 		}
2918 		/* pretend to original PF */
2919 		ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2920 	}
2921 
2922 	/* Workaround for avoiding CCFC execution error when getting packets
2923 	 * with CRC errors, and allowing instead the invoking of the FW error
2924 	 * handler.
2925 	 * This is not done inside the init tool since it currently can't
2926 	 * perform a pretending to VFs.
2927 	 */
2928 	max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
2929 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
2930 		concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
2931 		ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
2932 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
2933 		ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
2934 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
2935 		ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
2936 	}
2937 	/* pretend to original PF */
2938 	ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2939 
2940 	return rc;
2941 }
2942 
2943 #ifndef ASIC_ONLY
2944 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
2945 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
2946 
2947 #define PMEG_IF_BYTE_COUNT	8
2948 
2949 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
2950 			     struct ecore_ptt *p_ptt,
2951 			     u32 addr, u64 data, u8 reg_type, u8 port)
2952 {
2953 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2954 		   "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
2955 		   ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
2956 		   (8 << PMEG_IF_BYTE_COUNT),
2957 		   (reg_type << 25) | (addr << 8) | port,
2958 		   (u32)((data >> 32) & 0xffffffff),
2959 		   (u32)(data & 0xffffffff));
2960 
2961 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
2962 		 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
2963 		  0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
2964 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
2965 		 (reg_type << 25) | (addr << 8) | port);
2966 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
2967 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
2968 		 (data >> 32) & 0xffffffff);
2969 }
2970 
2971 #define XLPORT_MODE_REG	(0x20a)
2972 #define XLPORT_MAC_CONTROL (0x210)
2973 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
2974 #define XLPORT_ENABLE_REG (0x20b)
2975 
2976 #define XLMAC_CTRL (0x600)
2977 #define XLMAC_MODE (0x601)
2978 #define XLMAC_RX_MAX_SIZE (0x608)
2979 #define XLMAC_TX_CTRL (0x604)
2980 #define XLMAC_PAUSE_CTRL (0x60d)
2981 #define XLMAC_PFC_CTRL (0x60e)
2982 
2983 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
2984 				    struct ecore_ptt *p_ptt)
2985 {
2986 	u8 loopback = 0, port = p_hwfn->port_id * 2;
2987 
2988 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
2989 
2990 	/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
2991 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
2992 			 port);
2993 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
2994 	/* XLMAC: SOFT RESET */
2995 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
2996 	/* XLMAC: Port Speed >= 10Gbps */
2997 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
2998 	/* XLMAC: Max Size */
2999 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
3000 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3001 			 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3002 			 0, port);
3003 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
3004 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3005 			 0x30ffffc000ULL, 0, port);
3006 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
3007 			 port);	/* XLMAC: TX_EN, RX_EN */
3008 	/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3009 	ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3010 			 0x1003 | (loopback << 2), 0, port);
3011 	/* Enabled Parallel PFC interface */
3012 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
3013 
3014 	/* XLPORT port enable */
3015 	ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
3016 }
3017 
3018 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3019 				       struct ecore_ptt *p_ptt)
3020 {
3021 	u8 port = p_hwfn->port_id;
3022 	u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3023 
3024 	DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3025 
3026 	ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3027 		 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3028 		 (port <<
3029 		  CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3030 		 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3031 
3032 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3033 		 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3034 
3035 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3036 		 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3037 
3038 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3039 		 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3040 
3041 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3042 		 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3043 
3044 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3045 		 (0xA <<
3046 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3047 		 (8 <<
3048 		  ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3049 
3050 	ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3051 		 0xa853);
3052 }
3053 
3054 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3055 				 struct ecore_ptt *p_ptt)
3056 {
3057 	if (ECORE_IS_AH(p_hwfn->p_dev))
3058 		ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3059 	else /* BB */
3060 		ecore_emul_link_init_bb(p_hwfn, p_ptt);
3061 }
3062 
3063 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3064 			       struct ecore_ptt *p_ptt,  u8 port)
3065 {
3066 	int port_offset = port ? 0x800 : 0;
3067 	u32 xmac_rxctrl = 0;
3068 
3069 	/* Reset of XMAC */
3070 	/* FIXME: move to common start */
3071 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3072 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Clear */
3073 	OSAL_MSLEEP(1);
3074 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3075 		 MISC_REG_RESET_REG_2_XMAC_BIT);	/* Set */
3076 
3077 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3078 
3079 	/* Set the number of ports on the Warp Core to 10G */
3080 	ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3081 
3082 	/* Soft reset of XMAC */
3083 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3084 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3085 	OSAL_MSLEEP(1);
3086 	ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3087 		 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3088 
3089 	/* FIXME: move to common end */
3090 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3091 		ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3092 
3093 	/* Set Max packet size: initialize XMAC block register for port 0 */
3094 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3095 
3096 	/* CRC append for Tx packets: init XMAC block register for port 1 */
3097 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3098 
3099 	/* Enable TX and RX: initialize XMAC block register for port 1 */
3100 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3101 		 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3102 	xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3103 			       XMAC_REG_RX_CTRL_BB + port_offset);
3104 	xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3105 	ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3106 }
3107 #endif
3108 
3109 static enum _ecore_status_t
3110 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3111 		       struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
3112 {
3113 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
3114 	u32 min_dpis;
3115 	u32 n_wids;
3116 
3117 	/* Calculate DPI size
3118 	 * ------------------
3119 	 * The PWM region contains Doorbell Pages. The first is reserverd for
3120 	 * the kernel for, e.g, L2. The others are free to be used by non-
3121 	 * trusted applications, typically from user space. Each page, called a
3122 	 * doorbell page is sectioned into windows that allow doorbells to be
3123 	 * issued in parallel by the kernel/application. The size of such a
3124 	 * window (a.k.a. WID) is 1kB.
3125 	 * Summary:
3126 	 *    1kB WID x N WIDS = DPI page size
3127 	 *    DPI page size x N DPIs = PWM region size
3128 	 * Notes:
3129 	 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3130 	 * in order to ensure that two applications won't share the same page.
3131 	 * It also must contain at least one WID per CPU to allow parallelism.
3132 	 * It also must be a power of 2, since it is stored as a bit shift.
3133 	 *
3134 	 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3135 	 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3136 	 * containing 4 WIDs.
3137 	 */
3138 	n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3139 	dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3140 	dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) &
3141 			~(OSAL_PAGE_SIZE - 1);
3142 	dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3143 	dpi_count = pwm_region_size / dpi_page_size;
3144 
3145 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3146 	min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3147 
3148 	/* Update hwfn */
3149 	p_hwfn->dpi_size = dpi_page_size;
3150 	p_hwfn->dpi_count = dpi_count;
3151 
3152 	/* Update registers */
3153 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3154 
3155 	if (dpi_count < min_dpis)
3156 		return ECORE_NORESOURCES;
3157 
3158 	return ECORE_SUCCESS;
3159 }
3160 
3161 enum ECORE_ROCE_EDPM_MODE {
3162 	ECORE_ROCE_EDPM_MODE_ENABLE = 0,
3163 	ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
3164 	ECORE_ROCE_EDPM_MODE_DISABLE = 2,
3165 };
3166 
3167 bool ecore_edpm_enabled(struct ecore_hwfn *p_hwfn)
3168 {
3169 	if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
3170 		return false;
3171 
3172 	return true;
3173 }
3174 
3175 static enum _ecore_status_t
3176 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3177 			      struct ecore_ptt *p_ptt)
3178 {
3179 	u32 pwm_regsize, norm_regsize;
3180 	u32 non_pwm_conn, min_addr_reg1;
3181 	u32 db_bar_size, n_cpus;
3182 	u32 roce_edpm_mode;
3183 	u32 pf_dems_shift;
3184 	enum _ecore_status_t rc = ECORE_SUCCESS;
3185 	u8 cond;
3186 
3187 	db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3188 	if (ECORE_IS_CMT(p_hwfn->p_dev))
3189 		db_bar_size /= 2;
3190 
3191 	/* Calculate doorbell regions
3192 	 * -----------------------------------
3193 	 * The doorbell BAR is made of two regions. The first is called normal
3194 	 * region and the second is called PWM region. In the normal region
3195 	 * each ICID has its own set of addresses so that writing to that
3196 	 * specific address identifies the ICID. In the Process Window Mode
3197 	 * region the ICID is given in the data written to the doorbell. The
3198 	 * above per PF register denotes the offset in the doorbell BAR in which
3199 	 * the PWM region begins.
3200 	 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3201 	 * non-PWM connection. The calculation below computes the total non-PWM
3202 	 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3203 	 * in units of 4,096 bytes.
3204 	 */
3205 	non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3206 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3207 					  OSAL_NULL) +
3208 	    ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
3209 	norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn,
3210 			       OSAL_PAGE_SIZE);
3211 	min_addr_reg1 = norm_regsize / 4096;
3212 	pwm_regsize = db_bar_size - norm_regsize;
3213 
3214 	/* Check that the normal and PWM sizes are valid */
3215 	if (db_bar_size < norm_regsize) {
3216 		DP_ERR(p_hwfn->p_dev,
3217 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3218 		       db_bar_size, norm_regsize);
3219 		return ECORE_NORESOURCES;
3220 	}
3221 	if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3222 		DP_ERR(p_hwfn->p_dev,
3223 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3224 		       pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3225 		       norm_regsize);
3226 		return ECORE_NORESOURCES;
3227 	}
3228 
3229 	/* Calculate number of DPIs */
3230 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
3231 	if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3232 	    ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3233 		/* Either EDPM is mandatory, or we are attempting to allocate a
3234 		 * WID per CPU.
3235 		 */
3236 		n_cpus = OSAL_NUM_CPUS();
3237 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3238 	}
3239 
3240 	cond = ((rc != ECORE_SUCCESS) &&
3241 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3242 		(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3243 	if (cond || p_hwfn->dcbx_no_edpm) {
3244 		/* Either EDPM is disabled from user configuration, or it is
3245 		 * disabled via DCBx, or it is not mandatory and we failed to
3246 		 * allocated a WID per CPU.
3247 		 */
3248 		n_cpus = 1;
3249 		rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3250 
3251 		/* If we entered this flow due to DCBX then the DPM register is
3252 		 * already configured.
3253 		 */
3254 	}
3255 
3256 	DP_INFO(p_hwfn,
3257 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
3258 		norm_regsize, pwm_regsize);
3259 	DP_INFO(p_hwfn,
3260 		" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
3261 		p_hwfn->dpi_size, p_hwfn->dpi_count,
3262 		(!ecore_edpm_enabled(p_hwfn)) ?
3263 		"disabled" : "enabled");
3264 
3265 	/* Check return codes from above calls */
3266 	if (rc != ECORE_SUCCESS) {
3267 		DP_ERR(p_hwfn,
3268 		       "Failed to allocate enough DPIs\n");
3269 		return ECORE_NORESOURCES;
3270 	}
3271 
3272 	/* Update hwfn */
3273 	p_hwfn->dpi_start_offset = norm_regsize;
3274 
3275 	/* Update registers */
3276 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3277 	pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3278 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3279 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3280 
3281 	return ECORE_SUCCESS;
3282 }
3283 
3284 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3285 					       struct ecore_ptt *p_ptt,
3286 					       int hw_mode)
3287 {
3288 	enum _ecore_status_t rc	= ECORE_SUCCESS;
3289 
3290 	/* In CMT the gate should be cleared by the 2nd hwfn */
3291 	if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3292 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3293 
3294 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3295 			    hw_mode);
3296 	if (rc != ECORE_SUCCESS)
3297 		return rc;
3298 
3299 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3300 
3301 #ifndef ASIC_ONLY
3302 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3303 		return ECORE_SUCCESS;
3304 
3305 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3306 		if (ECORE_IS_AH(p_hwfn->p_dev))
3307 			return ECORE_SUCCESS;
3308 		else if (ECORE_IS_BB(p_hwfn->p_dev))
3309 			ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3310 	} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3311 		if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3312 			/* Activate OPTE in CMT */
3313 			u32 val;
3314 
3315 			val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3316 			val |= 0x10;
3317 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3318 			ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3319 			ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3320 			ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3321 			ecore_wr(p_hwfn, p_ptt,
3322 				 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3323 			ecore_wr(p_hwfn, p_ptt,
3324 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3325 			ecore_wr(p_hwfn, p_ptt,
3326 				 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3327 				 0x55555555);
3328 		}
3329 
3330 		ecore_emul_link_init(p_hwfn, p_ptt);
3331 	} else {
3332 		DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3333 	}
3334 #endif
3335 
3336 	return rc;
3337 }
3338 
3339 static enum _ecore_status_t
3340 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3341 		 int hw_mode, struct ecore_hw_init_params *p_params)
3342 {
3343 	u8 rel_pf_id = p_hwfn->rel_pf_id;
3344 	u32 prs_reg;
3345 	enum _ecore_status_t rc = ECORE_SUCCESS;
3346 	u16 ctrl;
3347 	int pos;
3348 
3349 	if (p_hwfn->mcp_info) {
3350 		struct ecore_mcp_function_info *p_info;
3351 
3352 		p_info = &p_hwfn->mcp_info->func_info;
3353 		if (p_info->bandwidth_min)
3354 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3355 
3356 		/* Update rate limit once we'll actually have a link */
3357 		p_hwfn->qm_info.pf_rl = 100000;
3358 	}
3359 	ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3360 
3361 	ecore_int_igu_init_rt(p_hwfn);
3362 
3363 	/* Set VLAN in NIG if needed */
3364 	if (hw_mode & (1 << MODE_MF_SD)) {
3365 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3366 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3367 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3368 			     p_hwfn->hw_info.ovlan);
3369 
3370 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3371 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3372 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3373 			     1);
3374 	}
3375 
3376 	/* Enable classification by MAC if needed */
3377 	if (hw_mode & (1 << MODE_MF_SI)) {
3378 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3379 			   "Configuring TAGMAC_CLS_TYPE\n");
3380 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
3381 			     1);
3382 	}
3383 
3384 	/* Protocl Configuration  - @@@TBD - should we set 0 otherwise? */
3385 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3386 		     (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3387 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3388 		     (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3389 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3390 
3391 	/* perform debug configuration when chip is out of reset */
3392 	OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3393 
3394 	/* Sanity check before the PF init sequence that uses DMAE */
3395 	rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3396 	if (rc)
3397 		return rc;
3398 
3399 	/* PF Init sequence */
3400 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3401 	if (rc)
3402 		return rc;
3403 
3404 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3405 	rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3406 	if (rc)
3407 		return rc;
3408 
3409 	/* Pure runtime initializations - directly to the HW  */
3410 	ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3411 
3412 	/* PCI relaxed ordering causes a decrease in the performance on some
3413 	 * systems. Till a root cause is found, disable this attribute in the
3414 	 * PCI config space.
3415 	 */
3416 	/* Not in use @DPDK
3417 	* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3418 	* if (!pos) {
3419 	*	DP_NOTICE(p_hwfn, true,
3420 	*		  "Failed to find the PCIe Cap\n");
3421 	*	return ECORE_IO;
3422 	* }
3423 	* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3424 	* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3425 	* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
3426 	*/
3427 
3428 	rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3429 	if (rc != ECORE_SUCCESS)
3430 		return rc;
3431 
3432 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
3433 	if (IS_LEAD_HWFN(p_hwfn)) {
3434 		rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3435 					p_params->avoid_eng_affin);
3436 		if (rc)
3437 			return rc;
3438 	}
3439 
3440 	if (p_params->b_hw_start) {
3441 		/* enable interrupts */
3442 		rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3443 		if (rc != ECORE_SUCCESS)
3444 			return rc;
3445 
3446 		/* send function start command */
3447 		rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3448 				       p_params->allow_npar_tx_switch);
3449 		if (rc) {
3450 			DP_NOTICE(p_hwfn, true,
3451 				  "Function start ramrod failed\n");
3452 		} else {
3453 			return rc;
3454 		}
3455 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3456 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3457 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3458 
3459 		if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
3460 			ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3461 					(1 << 2));
3462 			ecore_wr(p_hwfn, p_ptt,
3463 				 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3464 				 0x100);
3465 		}
3466 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3467 				"PRS_REG_SEARCH registers after start PFn\n");
3468 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3469 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3470 				"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3471 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3472 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3473 				"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3474 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3475 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3476 				"PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3477 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3478 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3479 				"PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3480 		prs_reg = ecore_rd(p_hwfn, p_ptt,
3481 				PRS_REG_SEARCH_TCP_FIRST_FRAG);
3482 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3483 				"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3484 				prs_reg);
3485 		prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3486 		DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3487 				"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3488 	}
3489 	return ECORE_SUCCESS;
3490 }
3491 
3492 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3493 						  struct ecore_ptt *p_ptt,
3494 						  bool b_enable)
3495 {
3496 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3497 
3498 	/* Configure the PF's internal FID_enable for master transactions */
3499 	ecore_wr(p_hwfn, p_ptt,
3500 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3501 
3502 	/* Wait until value is set - try for 1 second every 50us */
3503 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3504 		val = ecore_rd(p_hwfn, p_ptt,
3505 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3506 		if (val == set_val)
3507 			break;
3508 
3509 		OSAL_UDELAY(50);
3510 	}
3511 
3512 	if (val != set_val) {
3513 		DP_NOTICE(p_hwfn, true,
3514 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
3515 		return ECORE_UNKNOWN_ERROR;
3516 	}
3517 
3518 	return ECORE_SUCCESS;
3519 }
3520 
3521 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3522 				  struct ecore_ptt *p_main_ptt)
3523 {
3524 	/* Read shadow of current MFW mailbox */
3525 	ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3526 	OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3527 		    p_hwfn->mcp_info->mfw_mb_cur,
3528 		    p_hwfn->mcp_info->mfw_mb_length);
3529 }
3530 
3531 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3532 				   struct ecore_ptt *p_ptt)
3533 {
3534 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3535 		 1 << p_hwfn->abs_pf_id);
3536 }
3537 
3538 static enum _ecore_status_t
3539 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3540 			   struct ecore_load_req_params *p_load_req,
3541 			   struct ecore_drv_load_params *p_drv_load)
3542 {
3543 	/* Make sure that if ecore-client didn't provide inputs, all the
3544 	 * expected defaults are indeed zero.
3545 	 */
3546 	OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3547 	OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3548 	OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3549 
3550 	OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3551 
3552 	if (p_drv_load == OSAL_NULL)
3553 		goto out;
3554 
3555 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3556 			       ECORE_DRV_ROLE_KDUMP :
3557 			       ECORE_DRV_ROLE_OS;
3558 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3559 	p_load_req->override_force_load = p_drv_load->override_force_load;
3560 
3561 	/* Old MFW versions don't support timeout values other than default and
3562 	 * none, so these values are replaced according to the fall-back action.
3563 	 */
3564 
3565 	if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3566 	    p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3567 	    (p_hwfn->mcp_info->capabilities &
3568 	     FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3569 		p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3570 		goto out;
3571 	}
3572 
3573 	switch (p_drv_load->mfw_timeout_fallback) {
3574 	case ECORE_TO_FALLBACK_TO_NONE:
3575 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3576 		break;
3577 	case ECORE_TO_FALLBACK_TO_DEFAULT:
3578 		p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3579 		break;
3580 	case ECORE_TO_FALLBACK_FAIL_LOAD:
3581 		DP_NOTICE(p_hwfn, false,
3582 			  "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3583 			  p_drv_load->mfw_timeout_val,
3584 			  ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3585 			  ECORE_LOAD_REQ_LOCK_TO_NONE);
3586 		return ECORE_ABORTED;
3587 	}
3588 
3589 	DP_INFO(p_hwfn,
3590 		"Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3591 		p_drv_load->mfw_timeout_val,
3592 		(p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3593 		"default" : "none",
3594 		p_load_req->timeout_val);
3595 out:
3596 	return ECORE_SUCCESS;
3597 }
3598 
3599 enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3600 				    struct ecore_hw_init_params *p_params)
3601 {
3602 	if (p_params->p_tunn) {
3603 		ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3604 		ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3605 	}
3606 
3607 	p_hwfn->b_int_enabled = 1;
3608 
3609 	return ECORE_SUCCESS;
3610 }
3611 
3612 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3613 				   struct ecore_hw_init_params *p_params)
3614 {
3615 	struct ecore_load_req_params load_req_params;
3616 	u32 load_code, resp, param, drv_mb_param;
3617 	bool b_default_mtu = true;
3618 	struct ecore_hwfn *p_hwfn;
3619 	enum _ecore_status_t rc = ECORE_SUCCESS;
3620 	u16 ether_type;
3621 	int i;
3622 
3623 	if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3624 		DP_NOTICE(p_dev, false,
3625 			  "MSI mode is not supported for CMT devices\n");
3626 		return ECORE_INVAL;
3627 	}
3628 
3629 	if (IS_PF(p_dev)) {
3630 		rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3631 		if (rc != ECORE_SUCCESS)
3632 			return rc;
3633 	}
3634 
3635 	for_each_hwfn(p_dev, i) {
3636 		p_hwfn = &p_dev->hwfns[i];
3637 
3638 		/* If management didn't provide a default, set one of our own */
3639 		if (!p_hwfn->hw_info.mtu) {
3640 			p_hwfn->hw_info.mtu = 1500;
3641 			b_default_mtu = false;
3642 		}
3643 
3644 		if (IS_VF(p_dev)) {
3645 			ecore_vf_start(p_hwfn, p_params);
3646 			continue;
3647 		}
3648 
3649 		rc = ecore_calc_hw_mode(p_hwfn);
3650 		if (rc != ECORE_SUCCESS)
3651 			return rc;
3652 
3653 		if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3654 						   &p_dev->mf_bits) ||
3655 				     OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3656 						   &p_dev->mf_bits))) {
3657 			if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3658 					  &p_dev->mf_bits))
3659 				ether_type = ETHER_TYPE_VLAN;
3660 			else
3661 				ether_type = ETHER_TYPE_QINQ;
3662 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3663 				     ether_type);
3664 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3665 				     ether_type);
3666 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3667 				     ether_type);
3668 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3669 				     ether_type);
3670 		}
3671 
3672 		ecore_set_spq_block_timeout(p_hwfn, p_params->spq_timeout_ms);
3673 
3674 		rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3675 						p_params->p_drv_load_params);
3676 		if (rc != ECORE_SUCCESS)
3677 			return rc;
3678 
3679 		rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3680 					&load_req_params);
3681 		if (rc != ECORE_SUCCESS) {
3682 			DP_NOTICE(p_hwfn, false,
3683 				  "Failed sending a LOAD_REQ command\n");
3684 			return rc;
3685 		}
3686 
3687 		load_code = load_req_params.load_code;
3688 		DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3689 			   "Load request was sent. Load code: 0x%x\n",
3690 			   load_code);
3691 
3692 		ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3693 
3694 		/* CQ75580:
3695 		 * When coming back from hiberbate state, the registers from
3696 		 * which shadow is read initially are not initialized. It turns
3697 		 * out that these registers get initialized during the call to
3698 		 * ecore_mcp_load_req request. So we need to reread them here
3699 		 * to get the proper shadow register value.
3700 		 * Note: This is a workaround for the missing MFW
3701 		 * initialization. It may be removed once the implementation
3702 		 * is done.
3703 		 */
3704 		ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3705 
3706 		/* Only relevant for recovery:
3707 		 * Clear the indication after the LOAD_REQ command is responded
3708 		 * by the MFW.
3709 		 */
3710 		p_dev->recov_in_prog = false;
3711 
3712 		p_hwfn->first_on_engine = (load_code ==
3713 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
3714 
3715 		if (!qm_lock_ref_cnt) {
3716 #ifdef CONFIG_ECORE_LOCK_ALLOC
3717 			rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3718 			if (rc) {
3719 				DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3720 				goto qm_lock_fail;
3721 			}
3722 #endif
3723 			OSAL_SPIN_LOCK_INIT(&qm_lock);
3724 		}
3725 		++qm_lock_ref_cnt;
3726 
3727 		/* Clean up chip from previous driver if such remains exist.
3728 		 * This is not needed when the PF is the first one on the
3729 		 * engine, since afterwards we are going to init the FW.
3730 		 */
3731 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3732 			rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3733 						 p_hwfn->rel_pf_id, false);
3734 			if (rc != ECORE_SUCCESS) {
3735 				ecore_hw_err_notify(p_hwfn,
3736 						    ECORE_HW_ERR_RAMROD_FAIL);
3737 				goto load_err;
3738 			}
3739 		}
3740 
3741 		/* Log and clear previous pglue_b errors if such exist */
3742 		ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt, true);
3743 
3744 		/* Enable the PF's internal FID_enable in the PXP */
3745 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3746 						  true);
3747 		if (rc != ECORE_SUCCESS)
3748 			goto load_err;
3749 
3750 		/* Clear the pglue_b was_error indication.
3751 		 * In E4 it must be done after the BME and the internal
3752 		 * FID_enable for the PF are set, since VDMs may cause the
3753 		 * indication to be set again.
3754 		 */
3755 		ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3756 
3757 		switch (load_code) {
3758 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3759 			rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3760 						  p_hwfn->hw_info.hw_mode);
3761 			if (rc != ECORE_SUCCESS)
3762 				break;
3763 			/* Fall into */
3764 		case FW_MSG_CODE_DRV_LOAD_PORT:
3765 			rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3766 						p_hwfn->hw_info.hw_mode);
3767 			if (rc != ECORE_SUCCESS)
3768 				break;
3769 			/* Fall into */
3770 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3771 			rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3772 					      p_hwfn->hw_info.hw_mode,
3773 					      p_params);
3774 			break;
3775 		default:
3776 			DP_NOTICE(p_hwfn, false,
3777 				  "Unexpected load code [0x%08x]", load_code);
3778 			rc = ECORE_NOTIMPL;
3779 			break;
3780 		}
3781 
3782 		if (rc != ECORE_SUCCESS) {
3783 			DP_NOTICE(p_hwfn, false,
3784 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3785 				  load_code, rc);
3786 			goto load_err;
3787 		}
3788 
3789 		rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3790 		if (rc != ECORE_SUCCESS) {
3791 			DP_NOTICE(p_hwfn, false,
3792 				  "Sending load done failed, rc = %d\n", rc);
3793 			if (rc == ECORE_NOMEM) {
3794 				DP_NOTICE(p_hwfn, false,
3795 					  "Sending load done was failed due to memory allocation failure\n");
3796 				goto load_err;
3797 			}
3798 			return rc;
3799 		}
3800 
3801 		/* send DCBX attention request command */
3802 		DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3803 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3804 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3805 				   DRV_MSG_CODE_SET_DCBX,
3806 				   1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3807 				   &param);
3808 		if (rc != ECORE_SUCCESS) {
3809 			DP_NOTICE(p_hwfn, false,
3810 				  "Failed to send DCBX attention request\n");
3811 			return rc;
3812 		}
3813 
3814 		p_hwfn->hw_init_done = true;
3815 	}
3816 
3817 	if (IS_PF(p_dev)) {
3818 		/* Get pre-negotiated values for stag, bandwidth etc. */
3819 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3820 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3821 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3822 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3823 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3824 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3825 				   &resp, &param);
3826 		if (rc != ECORE_SUCCESS)
3827 			DP_NOTICE(p_hwfn, false,
3828 				  "Failed to send GET_OEM_UPDATES attention request\n");
3829 	}
3830 
3831 	if (IS_PF(p_dev)) {
3832 		/* Get pre-negotiated values for stag, bandwidth etc. */
3833 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3834 		DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3835 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3836 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3837 				   DRV_MSG_CODE_GET_OEM_UPDATES,
3838 				   1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3839 				   &resp, &param);
3840 		if (rc != ECORE_SUCCESS)
3841 			DP_NOTICE(p_hwfn, false,
3842 				  "Failed to send GET_OEM_UPDATES attention request\n");
3843 	}
3844 
3845 	if (IS_PF(p_dev)) {
3846 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
3847 		drv_mb_param = STORM_FW_VERSION;
3848 		rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3849 				   DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3850 				   drv_mb_param, &resp, &param);
3851 		if (rc != ECORE_SUCCESS)
3852 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3853 
3854 		if (!b_default_mtu) {
3855 			rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3856 						      p_hwfn->hw_info.mtu);
3857 			if (rc != ECORE_SUCCESS)
3858 				DP_INFO(p_hwfn, "Failed to update default mtu\n");
3859 		}
3860 
3861 		rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3862 						      p_hwfn->p_main_ptt,
3863 						ECORE_OV_DRIVER_STATE_DISABLED);
3864 		if (rc != ECORE_SUCCESS)
3865 			DP_INFO(p_hwfn, "Failed to update driver state\n");
3866 
3867 		rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3868 						 ECORE_OV_ESWITCH_NONE);
3869 		if (rc != ECORE_SUCCESS)
3870 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
3871 	}
3872 
3873 	return rc;
3874 
3875 load_err:
3876 	--qm_lock_ref_cnt;
3877 #ifdef CONFIG_ECORE_LOCK_ALLOC
3878 	if (!qm_lock_ref_cnt)
3879 		OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
3880 qm_lock_fail:
3881 #endif
3882 	/* The MFW load lock should be released regardless of success or failure
3883 	 * of initialization.
3884 	 * TODO: replace this with an attempt to send cancel_load.
3885 	 */
3886 	ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3887 	return rc;
3888 }
3889 
3890 #define ECORE_HW_STOP_RETRY_LIMIT	(10)
3891 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
3892 				 struct ecore_hwfn *p_hwfn,
3893 				 struct ecore_ptt *p_ptt)
3894 {
3895 	int i;
3896 
3897 	/* close timers */
3898 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
3899 	ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
3900 	for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
3901 									i++) {
3902 		if ((!ecore_rd(p_hwfn, p_ptt,
3903 			       TM_REG_PF_SCAN_ACTIVE_CONN)) &&
3904 		    (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
3905 			break;
3906 
3907 		/* Dependent on number of connection/tasks, possibly
3908 		 * 1ms sleep is required between polls
3909 		 */
3910 		OSAL_MSLEEP(1);
3911 	}
3912 
3913 	if (i < ECORE_HW_STOP_RETRY_LIMIT)
3914 		return;
3915 
3916 	DP_NOTICE(p_hwfn, false,
3917 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
3918 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
3919 		  (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
3920 }
3921 
3922 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
3923 {
3924 	int j;
3925 
3926 	for_each_hwfn(p_dev, j) {
3927 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
3928 		struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
3929 
3930 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
3931 	}
3932 }
3933 
3934 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
3935 						 struct ecore_ptt *p_ptt,
3936 						 u32 addr, u32 expected_val)
3937 {
3938 	u32 val = ecore_rd(p_hwfn, p_ptt, addr);
3939 
3940 	if (val != expected_val) {
3941 		DP_NOTICE(p_hwfn, true,
3942 			  "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
3943 			  addr, val, expected_val);
3944 		return ECORE_UNKNOWN_ERROR;
3945 	}
3946 
3947 	return ECORE_SUCCESS;
3948 }
3949 
3950 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
3951 {
3952 	struct ecore_hwfn *p_hwfn;
3953 	struct ecore_ptt *p_ptt;
3954 	enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
3955 	int j;
3956 
3957 	for_each_hwfn(p_dev, j) {
3958 		p_hwfn = &p_dev->hwfns[j];
3959 		p_ptt = p_hwfn->p_main_ptt;
3960 
3961 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
3962 
3963 		if (IS_VF(p_dev)) {
3964 			ecore_vf_pf_int_cleanup(p_hwfn);
3965 			rc = ecore_vf_pf_reset(p_hwfn);
3966 			if (rc != ECORE_SUCCESS) {
3967 				DP_NOTICE(p_hwfn, true,
3968 					  "ecore_vf_pf_reset failed. rc = %d.\n",
3969 					  rc);
3970 				rc2 = ECORE_UNKNOWN_ERROR;
3971 			}
3972 			continue;
3973 		}
3974 
3975 		/* mark the hw as uninitialized... */
3976 		p_hwfn->hw_init_done = false;
3977 
3978 		/* Send unload command to MCP */
3979 		if (!p_dev->recov_in_prog) {
3980 			rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
3981 			if (rc != ECORE_SUCCESS) {
3982 				DP_NOTICE(p_hwfn, false,
3983 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
3984 					  rc);
3985 				rc2 = ECORE_UNKNOWN_ERROR;
3986 			}
3987 		}
3988 
3989 		OSAL_DPC_SYNC(p_hwfn);
3990 
3991 		/* After this point no MFW attentions are expected, e.g. prevent
3992 		 * race between pf stop and dcbx pf update.
3993 		 */
3994 
3995 		rc = ecore_sp_pf_stop(p_hwfn);
3996 		if (rc != ECORE_SUCCESS) {
3997 			DP_NOTICE(p_hwfn, false,
3998 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
3999 				  rc);
4000 			rc2 = ECORE_UNKNOWN_ERROR;
4001 		}
4002 
4003 		OSAL_DPC_SYNC(p_hwfn);
4004 
4005 		/* After this point we don't expect the FW to send us async
4006 		 * events
4007 		 */
4008 
4009 		/* perform debug action after PF stop was sent */
4010 		OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4011 
4012 		/* close NIG to BRB gate */
4013 		ecore_wr(p_hwfn, p_ptt,
4014 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4015 
4016 		/* close parser */
4017 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4018 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4019 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4020 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4021 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4022 
4023 		/* @@@TBD - clean transmission queues (5.b) */
4024 		/* @@@TBD - clean BTB (5.c) */
4025 
4026 		ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4027 
4028 		/* @@@TBD - verify DMAE requests are done (8) */
4029 
4030 		/* Disable Attention Generation */
4031 		ecore_int_igu_disable_int(p_hwfn, p_ptt);
4032 		ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4033 		ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4034 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4035 		rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4036 		if (rc != ECORE_SUCCESS) {
4037 			DP_NOTICE(p_hwfn, true,
4038 				  "Failed to return IGU CAM to default\n");
4039 			rc2 = ECORE_UNKNOWN_ERROR;
4040 		}
4041 
4042 		/* Need to wait 1ms to guarantee SBs are cleared */
4043 		OSAL_MSLEEP(1);
4044 
4045 		if (IS_LEAD_HWFN(p_hwfn) &&
4046 		    OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4047 		    !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4048 			ecore_llh_remove_mac_filter(p_dev, 0,
4049 						   p_hwfn->hw_info.hw_mac_addr);
4050 
4051 		if (!p_dev->recov_in_prog) {
4052 			ecore_verify_reg_val(p_hwfn, p_ptt,
4053 					     QM_REG_USG_CNT_PF_TX, 0);
4054 			ecore_verify_reg_val(p_hwfn, p_ptt,
4055 					     QM_REG_USG_CNT_PF_OTHER, 0);
4056 			/* @@@TBD - assert on incorrect xCFC values (10.b) */
4057 		}
4058 
4059 		/* Disable PF in HW blocks */
4060 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4061 		ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4062 
4063 		--qm_lock_ref_cnt;
4064 #ifdef CONFIG_ECORE_LOCK_ALLOC
4065 		if (!qm_lock_ref_cnt)
4066 			OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4067 #endif
4068 
4069 		if (!p_dev->recov_in_prog) {
4070 			rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4071 			if (rc == ECORE_NOMEM) {
4072 				DP_NOTICE(p_hwfn, false,
4073 					 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4074 				rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4075 			}
4076 			if (rc != ECORE_SUCCESS) {
4077 				DP_NOTICE(p_hwfn, false,
4078 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4079 					  rc);
4080 				rc2 = ECORE_UNKNOWN_ERROR;
4081 			}
4082 		}
4083 	} /* hwfn loop */
4084 
4085 	if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4086 		p_hwfn = ECORE_LEADING_HWFN(p_dev);
4087 		p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4088 
4089 		 /* Clear the PF's internal FID_enable in the PXP.
4090 		  * In CMT this should only be done for first hw-function, and
4091 		  * only after all transactions have stopped for all active
4092 		  * hw-functions.
4093 		  */
4094 		rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4095 						  false);
4096 		if (rc != ECORE_SUCCESS) {
4097 			DP_NOTICE(p_hwfn, true,
4098 				  "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4099 				  rc);
4100 			rc2 = ECORE_UNKNOWN_ERROR;
4101 		}
4102 	}
4103 
4104 	return rc2;
4105 }
4106 
4107 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4108 {
4109 	int j;
4110 
4111 	for_each_hwfn(p_dev, j) {
4112 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4113 		struct ecore_ptt *p_ptt;
4114 
4115 		if (IS_VF(p_dev)) {
4116 			ecore_vf_pf_int_cleanup(p_hwfn);
4117 			continue;
4118 		}
4119 		p_ptt = ecore_ptt_acquire(p_hwfn);
4120 		if (!p_ptt)
4121 			return ECORE_AGAIN;
4122 
4123 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
4124 			   "Shutting down the fastpath\n");
4125 
4126 		ecore_wr(p_hwfn, p_ptt,
4127 			 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4128 
4129 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4130 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4131 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4132 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4133 		ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4134 
4135 		/* @@@TBD - clean transmission queues (5.b) */
4136 		/* @@@TBD - clean BTB (5.c) */
4137 
4138 		/* @@@TBD - verify DMAE requests are done (8) */
4139 
4140 		ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4141 		/* Need to wait 1ms to guarantee SBs are cleared */
4142 		OSAL_MSLEEP(1);
4143 		ecore_ptt_release(p_hwfn, p_ptt);
4144 	}
4145 
4146 	return ECORE_SUCCESS;
4147 }
4148 
4149 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4150 {
4151 	struct ecore_ptt *p_ptt;
4152 
4153 	if (IS_VF(p_hwfn->p_dev))
4154 		return ECORE_SUCCESS;
4155 
4156 	p_ptt = ecore_ptt_acquire(p_hwfn);
4157 	if (!p_ptt)
4158 		return ECORE_AGAIN;
4159 
4160 	/* If roce info is allocated it means roce is initialized and should
4161 	 * be enabled in searcher.
4162 	 */
4163 	if (p_hwfn->p_rdma_info) {
4164 		if (p_hwfn->b_rdma_enabled_in_prs)
4165 			ecore_wr(p_hwfn, p_ptt,
4166 				 p_hwfn->rdma_prs_search_reg, 0x1);
4167 		ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
4168 	}
4169 
4170 	/* Re-open incoming traffic */
4171 	ecore_wr(p_hwfn, p_ptt,
4172 		 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4173 	ecore_ptt_release(p_hwfn, p_ptt);
4174 
4175 	return ECORE_SUCCESS;
4176 }
4177 
4178 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
4179 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4180 {
4181 	ecore_ptt_pool_free(p_hwfn);
4182 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4183 }
4184 
4185 /* Setup bar access */
4186 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4187 {
4188 	/* clear indirect access */
4189 	if (ECORE_IS_AH(p_hwfn->p_dev)) {
4190 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4191 			 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4192 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4193 			 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4194 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4195 			 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4196 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4197 			 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4198 	} else {
4199 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4200 			 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4201 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4202 			 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4203 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4204 			 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4205 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4206 			 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4207 	}
4208 
4209 	/* Clean previous pglue_b errors if such exist */
4210 	ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4211 
4212 	/* enable internal target-read */
4213 	ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4214 		 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4215 }
4216 
4217 static void get_function_id(struct ecore_hwfn *p_hwfn)
4218 {
4219 	/* ME Register */
4220 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
4221 						  PXP_PF_ME_OPAQUE_ADDR);
4222 
4223 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4224 
4225 	/* Bits 16-19 from the ME registers are the pf_num */
4226 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4227 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4228 				      PXP_CONCRETE_FID_PFID);
4229 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4230 				    PXP_CONCRETE_FID_PORT);
4231 
4232 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4233 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4234 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4235 }
4236 
4237 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4238 {
4239 	u32 *feat_num = p_hwfn->hw_info.feat_num;
4240 	struct ecore_sb_cnt_info sb_cnt;
4241 	u32 non_l2_sbs = 0;
4242 
4243 	OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4244 	ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4245 
4246 	/* L2 Queues require each: 1 status block. 1 L2 queue */
4247 	if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4248 		/* Start by allocating VF queues, then PF's */
4249 		feat_num[ECORE_VF_L2_QUE] =
4250 			OSAL_MIN_T(u32,
4251 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4252 				   sb_cnt.iov_cnt);
4253 		feat_num[ECORE_PF_L2_QUE] =
4254 			OSAL_MIN_T(u32,
4255 				   sb_cnt.cnt - non_l2_sbs,
4256 				   RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4257 				   FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4258 	}
4259 
4260 	if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
4261 	    ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) {
4262 		u32 *p_storage_feat = ECORE_IS_FCOE_PERSONALITY(p_hwfn) ?
4263 				      &feat_num[ECORE_FCOE_CQ] :
4264 				      &feat_num[ECORE_ISCSI_CQ];
4265 		u32 limit = sb_cnt.cnt;
4266 
4267 		/* The number of queues should not exceed the number of FP SBs.
4268 		 * In storage target, the queues are divided into pairs of a CQ
4269 		 * and a CmdQ, and each pair uses a single SB. The limit in
4270 		 * this case should allow a max ratio of 2:1 instead of 1:1.
4271 		 */
4272 		if (p_hwfn->p_dev->b_is_target)
4273 			limit *= 2;
4274 		*p_storage_feat = OSAL_MIN_T(u32, limit,
4275 					     RESC_NUM(p_hwfn, ECORE_CMDQS_CQS));
4276 
4277 		/* @DPDK */
4278 		/* The size of "cq_cmdq_sb_num_arr" in the fcoe/iscsi init
4279 		 * ramrod is limited to "NUM_OF_GLOBAL_QUEUES / 2".
4280 		 */
4281 		*p_storage_feat = OSAL_MIN_T(u32, *p_storage_feat,
4282 					     (NUM_OF_GLOBAL_QUEUES / 2));
4283 	}
4284 
4285 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4286 		   "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4287 		   (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4288 		   (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4289 		   (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4290 		   (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4291 		   (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4292 		   (int)sb_cnt.cnt);
4293 }
4294 
4295 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4296 {
4297 	switch (res_id) {
4298 	case ECORE_L2_QUEUE:
4299 		return "L2_QUEUE";
4300 	case ECORE_VPORT:
4301 		return "VPORT";
4302 	case ECORE_RSS_ENG:
4303 		return "RSS_ENG";
4304 	case ECORE_PQ:
4305 		return "PQ";
4306 	case ECORE_RL:
4307 		return "RL";
4308 	case ECORE_MAC:
4309 		return "MAC";
4310 	case ECORE_VLAN:
4311 		return "VLAN";
4312 	case ECORE_RDMA_CNQ_RAM:
4313 		return "RDMA_CNQ_RAM";
4314 	case ECORE_ILT:
4315 		return "ILT";
4316 	case ECORE_LL2_QUEUE:
4317 		return "LL2_QUEUE";
4318 	case ECORE_CMDQS_CQS:
4319 		return "CMDQS_CQS";
4320 	case ECORE_RDMA_STATS_QUEUE:
4321 		return "RDMA_STATS_QUEUE";
4322 	case ECORE_BDQ:
4323 		return "BDQ";
4324 	case ECORE_SB:
4325 		return "SB";
4326 	default:
4327 		return "UNKNOWN_RESOURCE";
4328 	}
4329 }
4330 
4331 static enum _ecore_status_t
4332 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4333 			      struct ecore_ptt *p_ptt,
4334 			      enum ecore_resources res_id,
4335 			      u32 resc_max_val,
4336 			      u32 *p_mcp_resp)
4337 {
4338 	enum _ecore_status_t rc;
4339 
4340 	rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4341 					resc_max_val, p_mcp_resp);
4342 	if (rc != ECORE_SUCCESS) {
4343 		DP_NOTICE(p_hwfn, false,
4344 			  "MFW response failure for a max value setting of resource %d [%s]\n",
4345 			  res_id, ecore_hw_get_resc_name(res_id));
4346 		return rc;
4347 	}
4348 
4349 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4350 		DP_INFO(p_hwfn,
4351 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4352 			res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4353 
4354 	return ECORE_SUCCESS;
4355 }
4356 
4357 static enum _ecore_status_t
4358 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4359 			    struct ecore_ptt *p_ptt)
4360 {
4361 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4362 	u32 resc_max_val, mcp_resp;
4363 	u8 res_id;
4364 	enum _ecore_status_t rc;
4365 
4366 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4367 		/* @DPDK */
4368 		switch (res_id) {
4369 		case ECORE_LL2_QUEUE:
4370 		case ECORE_RDMA_CNQ_RAM:
4371 		case ECORE_RDMA_STATS_QUEUE:
4372 		case ECORE_BDQ:
4373 			resc_max_val = 0;
4374 			break;
4375 		default:
4376 			continue;
4377 		}
4378 
4379 		rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4380 						   resc_max_val, &mcp_resp);
4381 		if (rc != ECORE_SUCCESS)
4382 			return rc;
4383 
4384 		/* There's no point to continue to the next resource if the
4385 		 * command is not supported by the MFW.
4386 		 * We do continue if the command is supported but the resource
4387 		 * is unknown to the MFW. Such a resource will be later
4388 		 * configured with the default allocation values.
4389 		 */
4390 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4391 			return ECORE_NOTIMPL;
4392 	}
4393 
4394 	return ECORE_SUCCESS;
4395 }
4396 
4397 static
4398 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4399 					    enum ecore_resources res_id,
4400 					    u32 *p_resc_num, u32 *p_resc_start)
4401 {
4402 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
4403 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4404 
4405 	switch (res_id) {
4406 	case ECORE_L2_QUEUE:
4407 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4408 				 MAX_NUM_L2_QUEUES_BB) / num_funcs;
4409 		break;
4410 	case ECORE_VPORT:
4411 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4412 				 MAX_NUM_VPORTS_BB) / num_funcs;
4413 		break;
4414 	case ECORE_RSS_ENG:
4415 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4416 				 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4417 		break;
4418 	case ECORE_PQ:
4419 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4420 				 MAX_QM_TX_QUEUES_BB) / num_funcs;
4421 		break;
4422 	case ECORE_RL:
4423 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4424 		break;
4425 	case ECORE_MAC:
4426 	case ECORE_VLAN:
4427 		/* Each VFC resource can accommodate both a MAC and a VLAN */
4428 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4429 		break;
4430 	case ECORE_ILT:
4431 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4432 				 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4433 		break;
4434 	case ECORE_LL2_QUEUE:
4435 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4436 		break;
4437 	case ECORE_RDMA_CNQ_RAM:
4438 	case ECORE_CMDQS_CQS:
4439 		/* CNQ/CMDQS are the same resource */
4440 		/* @DPDK */
4441 		*p_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
4442 		break;
4443 	case ECORE_RDMA_STATS_QUEUE:
4444 		/* @DPDK */
4445 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4446 				 MAX_NUM_VPORTS_BB) / num_funcs;
4447 		break;
4448 	case ECORE_BDQ:
4449 		/* @DPDK */
4450 		*p_resc_num = 0;
4451 		break;
4452 	default:
4453 		break;
4454 	}
4455 
4456 
4457 	switch (res_id) {
4458 	case ECORE_BDQ:
4459 		if (!*p_resc_num)
4460 			*p_resc_start = 0;
4461 		break;
4462 	case ECORE_SB:
4463 		/* Since we want its value to reflect whether MFW supports
4464 		 * the new scheme, have a default of 0.
4465 		 */
4466 		*p_resc_num = 0;
4467 		break;
4468 	default:
4469 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4470 		break;
4471 	}
4472 
4473 	return ECORE_SUCCESS;
4474 }
4475 
4476 static enum _ecore_status_t
4477 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4478 			 bool drv_resc_alloc)
4479 {
4480 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
4481 	u32 mcp_resp, *p_resc_num, *p_resc_start;
4482 	enum _ecore_status_t rc;
4483 
4484 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
4485 	p_resc_start = &RESC_START(p_hwfn, res_id);
4486 
4487 	rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4488 				    &dflt_resc_start);
4489 	if (rc != ECORE_SUCCESS) {
4490 		DP_ERR(p_hwfn,
4491 		       "Failed to get default amount for resource %d [%s]\n",
4492 			res_id, ecore_hw_get_resc_name(res_id));
4493 		return rc;
4494 	}
4495 
4496 #ifndef ASIC_ONLY
4497 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4498 		*p_resc_num = dflt_resc_num;
4499 		*p_resc_start = dflt_resc_start;
4500 		goto out;
4501 	}
4502 #endif
4503 
4504 	rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4505 				     &mcp_resp, p_resc_num, p_resc_start);
4506 	if (rc != ECORE_SUCCESS) {
4507 		DP_NOTICE(p_hwfn, true,
4508 			  "MFW response failure for an allocation request for"
4509 			  " resource %d [%s]\n",
4510 			  res_id, ecore_hw_get_resc_name(res_id));
4511 		return rc;
4512 	}
4513 
4514 	/* Default driver values are applied in the following cases:
4515 	 * - The resource allocation MB command is not supported by the MFW
4516 	 * - There is an internal error in the MFW while processing the request
4517 	 * - The resource ID is unknown to the MFW
4518 	 */
4519 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4520 		DP_INFO(p_hwfn,
4521 			"Failed to receive allocation info for resource %d [%s]."
4522 			" mcp_resp = 0x%x. Applying default values"
4523 			" [%d,%d].\n",
4524 			res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4525 			dflt_resc_num, dflt_resc_start);
4526 
4527 		*p_resc_num = dflt_resc_num;
4528 		*p_resc_start = dflt_resc_start;
4529 		goto out;
4530 	}
4531 
4532 	if ((*p_resc_num != dflt_resc_num ||
4533 	     *p_resc_start != dflt_resc_start) &&
4534 	    res_id != ECORE_SB) {
4535 		DP_INFO(p_hwfn,
4536 			"MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4537 			res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4538 			*p_resc_start, dflt_resc_num, dflt_resc_start,
4539 			drv_resc_alloc ? " - Applying default values" : "");
4540 		if (drv_resc_alloc) {
4541 			*p_resc_num = dflt_resc_num;
4542 			*p_resc_start = dflt_resc_start;
4543 		}
4544 	}
4545 out:
4546 	return ECORE_SUCCESS;
4547 }
4548 
4549 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4550 						   bool drv_resc_alloc)
4551 {
4552 	enum _ecore_status_t rc;
4553 	u8 res_id;
4554 
4555 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4556 		rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4557 		if (rc != ECORE_SUCCESS)
4558 			return rc;
4559 	}
4560 
4561 	return ECORE_SUCCESS;
4562 }
4563 
4564 #define ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS	0xaa
4565 #define ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS	0x55
4566 #define ECORE_NONUSED_PPFID_MASK_AH_4P		0xf0
4567 
4568 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4569 						      struct ecore_ptt *p_ptt)
4570 {
4571 	u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn), new_bitmap;
4572 	struct ecore_dev *p_dev = p_hwfn->p_dev;
4573 	enum _ecore_status_t rc;
4574 
4575 	rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4576 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4577 		return rc;
4578 	else if (rc == ECORE_NOTIMPL)
4579 		p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4580 
4581 	/* 4-ports mode has limitations that should be enforced:
4582 	 * - BB: the MFW can access only PPFIDs which their corresponding PFIDs
4583 	 *       belong to this certain port.
4584 	 * - AH/E5: only 4 PPFIDs per port are available.
4585 	 */
4586 	if (ecore_device_num_ports(p_dev) == 4) {
4587 		u8 mask;
4588 
4589 		if (ECORE_IS_BB(p_dev))
4590 			mask = MFW_PORT(p_hwfn) > 1 ?
4591 			       ECORE_NONUSED_PPFID_MASK_BB_4P_HI_PORTS :
4592 			       ECORE_NONUSED_PPFID_MASK_BB_4P_LO_PORTS;
4593 		else
4594 			mask = ECORE_NONUSED_PPFID_MASK_AH_4P;
4595 
4596 		if (p_dev->ppfid_bitmap & mask) {
4597 			new_bitmap = p_dev->ppfid_bitmap & ~mask;
4598 			DP_INFO(p_hwfn,
4599 				"Fix the PPFID bitmap for 4-ports mode: 0x%hhx -> 0x%hhx\n",
4600 				p_dev->ppfid_bitmap, new_bitmap);
4601 			p_dev->ppfid_bitmap = new_bitmap;
4602 		}
4603 	}
4604 
4605 	/* The native PPFID is expected to be part of the allocated bitmap */
4606 	if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4607 		new_bitmap = 0x1 << native_ppfid_idx;
4608 		DP_INFO(p_hwfn,
4609 			"Fix the PPFID bitmap to inculde the native PPFID: %hhd -> 0x%hhx\n",
4610 			p_dev->ppfid_bitmap, new_bitmap);
4611 		p_dev->ppfid_bitmap = new_bitmap;
4612 	}
4613 
4614 	return ECORE_SUCCESS;
4615 }
4616 
4617 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4618 					      struct ecore_ptt *p_ptt,
4619 					      bool drv_resc_alloc)
4620 {
4621 	struct ecore_resc_unlock_params resc_unlock_params;
4622 	struct ecore_resc_lock_params resc_lock_params;
4623 	bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4624 	u8 res_id;
4625 	enum _ecore_status_t rc;
4626 #ifndef ASIC_ONLY
4627 	u32 *resc_start = p_hwfn->hw_info.resc_start;
4628 	u32 *resc_num = p_hwfn->hw_info.resc_num;
4629 	/* For AH, an equal share of the ILT lines between the maximal number of
4630 	 * PFs is not enough for RoCE. This would be solved by the future
4631 	 * resource allocation scheme, but isn't currently present for
4632 	 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4633 	 * to work - the BB number of ILT lines divided by its max PFs number.
4634 	 */
4635 	u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4636 #endif
4637 
4638 	/* Setting the max values of the soft resources and the following
4639 	 * resources allocation queries should be atomic. Since several PFs can
4640 	 * run in parallel - a resource lock is needed.
4641 	 * If either the resource lock or resource set value commands are not
4642 	 * supported - skip the max values setting, release the lock if
4643 	 * needed, and proceed to the queries. Other failures, including a
4644 	 * failure to acquire the lock, will cause this function to fail.
4645 	 * Old drivers that don't acquire the lock can run in parallel, and
4646 	 * their allocation values won't be affected by the updated max values.
4647 	 */
4648 	ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4649 					 ECORE_RESC_LOCK_RESC_ALLOC, false);
4650 
4651 	rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4652 	if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4653 		return rc;
4654 	} else if (rc == ECORE_NOTIMPL) {
4655 		DP_INFO(p_hwfn,
4656 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4657 	} else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4658 		DP_NOTICE(p_hwfn, false,
4659 			  "Failed to acquire the resource lock for the resource allocation commands\n");
4660 		rc = ECORE_BUSY;
4661 		goto unlock_and_exit;
4662 	} else {
4663 		rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4664 		if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4665 			DP_NOTICE(p_hwfn, false,
4666 				  "Failed to set the max values of the soft resources\n");
4667 			goto unlock_and_exit;
4668 		} else if (rc == ECORE_NOTIMPL) {
4669 			DP_INFO(p_hwfn,
4670 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4671 			rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4672 						   &resc_unlock_params);
4673 			if (rc != ECORE_SUCCESS)
4674 				DP_INFO(p_hwfn,
4675 					"Failed to release the resource lock for the resource allocation commands\n");
4676 		}
4677 	}
4678 
4679 	rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
4680 	if (rc != ECORE_SUCCESS)
4681 		goto unlock_and_exit;
4682 
4683 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
4684 		rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4685 					   &resc_unlock_params);
4686 		if (rc != ECORE_SUCCESS)
4687 			DP_INFO(p_hwfn,
4688 				"Failed to release the resource lock for the resource allocation commands\n");
4689 	}
4690 
4691 	/* PPFID bitmap */
4692 	if (IS_LEAD_HWFN(p_hwfn)) {
4693 		rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
4694 		if (rc != ECORE_SUCCESS)
4695 			return rc;
4696 	}
4697 
4698 #ifndef ASIC_ONLY
4699 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4700 		/* Reduced build contains less PQs */
4701 		if (!(p_hwfn->p_dev->b_is_emul_full)) {
4702 			resc_num[ECORE_PQ] = 32;
4703 			resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
4704 			    p_hwfn->enabled_func_idx;
4705 		}
4706 
4707 		/* For AH emulation, since we have a possible maximal number of
4708 		 * 16 enabled PFs, in case there are not enough ILT lines -
4709 		 * allocate only first PF as RoCE and have all the other ETH
4710 		 * only with less ILT lines.
4711 		 */
4712 		if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
4713 			resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
4714 							 resc_num[ECORE_ILT],
4715 							 roce_min_ilt_lines);
4716 	}
4717 
4718 	/* Correct the common ILT calculation if PF0 has more */
4719 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
4720 	    p_hwfn->p_dev->b_is_emul_full &&
4721 	    p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
4722 		resc_start[ECORE_ILT] += roce_min_ilt_lines -
4723 		    resc_num[ECORE_ILT];
4724 #endif
4725 
4726 	/* Sanity for ILT */
4727 	if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
4728 	    (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
4729 		DP_NOTICE(p_hwfn, true,
4730 			  "Can't assign ILT pages [%08x,...,%08x]\n",
4731 			  RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
4732 								  ECORE_ILT) -
4733 			  1);
4734 		return ECORE_INVAL;
4735 	}
4736 
4737 	/* This will also learn the number of SBs from MFW */
4738 	if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
4739 		return ECORE_INVAL;
4740 
4741 	ecore_hw_set_feat(p_hwfn);
4742 
4743 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4744 		   "The numbers for each resource are:\n");
4745 	for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
4746 		DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
4747 			   ecore_hw_get_resc_name(res_id),
4748 			   RESC_NUM(p_hwfn, res_id),
4749 			   RESC_START(p_hwfn, res_id));
4750 
4751 	return ECORE_SUCCESS;
4752 
4753 unlock_and_exit:
4754 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
4755 		ecore_mcp_resc_unlock(p_hwfn, p_ptt,
4756 				      &resc_unlock_params);
4757 	return rc;
4758 }
4759 
4760 static enum _ecore_status_t
4761 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
4762 		      struct ecore_ptt *p_ptt,
4763 		      struct ecore_hw_prepare_params *p_params)
4764 {
4765 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
4766 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
4767 	struct ecore_mcp_link_capabilities *p_caps;
4768 	struct ecore_mcp_link_params *link;
4769 	enum _ecore_status_t rc;
4770 
4771 	/* Read global nvm_cfg address */
4772 	nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
4773 
4774 	/* Verify MCP has initialized it */
4775 	if (!nvm_cfg_addr) {
4776 		DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
4777 		if (p_params->b_relaxed_probe)
4778 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
4779 		return ECORE_INVAL;
4780 	}
4781 
4782 /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
4783 
4784 	nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
4785 
4786 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4787 		   OFFSETOF(struct nvm_cfg1, glob) +
4788 		   OFFSETOF(struct nvm_cfg1_glob, core_cfg);
4789 
4790 	core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
4791 
4792 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
4793 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
4794 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
4795 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
4796 		break;
4797 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
4798 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
4799 		break;
4800 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
4801 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
4802 		break;
4803 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
4804 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
4805 		break;
4806 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
4807 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
4808 		break;
4809 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
4810 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
4811 		break;
4812 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
4813 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
4814 		break;
4815 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
4816 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
4817 		break;
4818 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
4819 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
4820 		break;
4821 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
4822 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
4823 		break;
4824 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
4825 		p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
4826 		break;
4827 	default:
4828 		DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
4829 			  core_cfg);
4830 		break;
4831 	}
4832 
4833 	/* Read DCBX configuration */
4834 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4835 			OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4836 	dcbx_mode = ecore_rd(p_hwfn, p_ptt,
4837 			     port_cfg_addr +
4838 			     OFFSETOF(struct nvm_cfg1_port, generic_cont0));
4839 	dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
4840 		>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
4841 	switch (dcbx_mode) {
4842 	case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
4843 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
4844 		break;
4845 	case NVM_CFG1_PORT_DCBX_MODE_CEE:
4846 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
4847 		break;
4848 	case NVM_CFG1_PORT_DCBX_MODE_IEEE:
4849 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
4850 		break;
4851 	default:
4852 		p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
4853 	}
4854 
4855 	/* Read default link configuration */
4856 	link = &p_hwfn->mcp_info->link_input;
4857 	p_caps = &p_hwfn->mcp_info->link_capabilities;
4858 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4859 	    OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4860 	link_temp = ecore_rd(p_hwfn, p_ptt,
4861 			     port_cfg_addr +
4862 			     OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
4863 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
4864 	link->speed.advertised_speeds = link_temp;
4865 	p_caps->speed_capabilities = link->speed.advertised_speeds;
4866 
4867 	link_temp = ecore_rd(p_hwfn, p_ptt,
4868 				 port_cfg_addr +
4869 				 OFFSETOF(struct nvm_cfg1_port, link_settings));
4870 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
4871 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
4872 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
4873 		link->speed.autoneg = true;
4874 		break;
4875 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
4876 		link->speed.forced_speed = 1000;
4877 		break;
4878 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
4879 		link->speed.forced_speed = 10000;
4880 		break;
4881 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
4882 		link->speed.forced_speed = 25000;
4883 		break;
4884 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
4885 		link->speed.forced_speed = 40000;
4886 		break;
4887 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
4888 		link->speed.forced_speed = 50000;
4889 		break;
4890 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
4891 		link->speed.forced_speed = 100000;
4892 		break;
4893 	default:
4894 		DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
4895 	}
4896 
4897 	p_caps->default_speed = link->speed.forced_speed;
4898 	p_caps->default_speed_autoneg = link->speed.autoneg;
4899 
4900 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
4901 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
4902 	link->pause.autoneg = !!(link_temp &
4903 				  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
4904 	link->pause.forced_rx = !!(link_temp &
4905 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
4906 	link->pause.forced_tx = !!(link_temp &
4907 				    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
4908 	link->loopback_mode = 0;
4909 
4910 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
4911 		link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
4912 				     OFFSETOF(struct nvm_cfg1_port, ext_phy));
4913 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
4914 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
4915 		p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
4916 		link->eee.enable = true;
4917 		switch (link_temp) {
4918 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
4919 			p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
4920 			link->eee.enable = false;
4921 			break;
4922 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
4923 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
4924 			break;
4925 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
4926 			p_caps->eee_lpi_timer =
4927 				EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
4928 			break;
4929 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
4930 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
4931 			break;
4932 		}
4933 
4934 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
4935 		link->eee.tx_lpi_enable = link->eee.enable;
4936 		link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
4937 	} else {
4938 		p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
4939 	}
4940 
4941 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4942 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n EEE: %02x [%08x usec]",
4943 		   link->speed.forced_speed, link->speed.advertised_speeds,
4944 		   link->speed.autoneg, link->pause.autoneg,
4945 		   p_caps->default_eee, p_caps->eee_lpi_timer);
4946 
4947 	/* Read Multi-function information from shmem */
4948 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4949 		   OFFSETOF(struct nvm_cfg1, glob) +
4950 		   OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
4951 
4952 	generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
4953 
4954 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
4955 	    NVM_CFG1_GLOB_MF_MODE_OFFSET;
4956 
4957 	switch (mf_mode) {
4958 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
4959 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
4960 		break;
4961 	case NVM_CFG1_GLOB_MF_MODE_UFP:
4962 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
4963 					 1 << ECORE_MF_UFP_SPECIFIC |
4964 					 1 << ECORE_MF_8021Q_TAGGING;
4965 		break;
4966 	case NVM_CFG1_GLOB_MF_MODE_BD:
4967 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
4968 					 1 << ECORE_MF_LLH_PROTO_CLSS |
4969 					 1 << ECORE_MF_8021AD_TAGGING |
4970 					 1 << ECORE_MF_FIP_SPECIAL;
4971 		break;
4972 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
4973 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
4974 					 1 << ECORE_MF_LLH_PROTO_CLSS |
4975 					 1 << ECORE_MF_LL2_NON_UNICAST |
4976 					 1 << ECORE_MF_INTER_PF_SWITCH |
4977 					 1 << ECORE_MF_DISABLE_ARFS;
4978 		break;
4979 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
4980 		p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
4981 					 1 << ECORE_MF_LLH_PROTO_CLSS |
4982 					 1 << ECORE_MF_LL2_NON_UNICAST;
4983 		if (ECORE_IS_BB(p_hwfn->p_dev))
4984 			p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
4985 		break;
4986 	}
4987 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4988 		p_hwfn->p_dev->mf_bits);
4989 
4990 	if (ECORE_IS_CMT(p_hwfn->p_dev))
4991 		p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
4992 
4993 	/* It's funny since we have another switch, but it's easier
4994 	 * to throw this away in linux this way. Long term, it might be
4995 	 * better to have have getters for needed ECORE_MF_* fields,
4996 	 * convert client code and eliminate this.
4997 	 */
4998 	switch (mf_mode) {
4999 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5000 	case NVM_CFG1_GLOB_MF_MODE_BD:
5001 		p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5002 		break;
5003 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5004 		p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5005 		break;
5006 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5007 		p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5008 		break;
5009 	case NVM_CFG1_GLOB_MF_MODE_UFP:
5010 		p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5011 		break;
5012 	}
5013 
5014 	/* Read Multi-function information from shmem */
5015 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5016 		   OFFSETOF(struct nvm_cfg1, glob) +
5017 		   OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5018 
5019 	device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5020 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5021 		OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5022 				&p_hwfn->hw_info.device_capabilities);
5023 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5024 		OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5025 				&p_hwfn->hw_info.device_capabilities);
5026 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5027 		OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5028 				&p_hwfn->hw_info.device_capabilities);
5029 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5030 		OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5031 				&p_hwfn->hw_info.device_capabilities);
5032 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5033 		OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5034 				&p_hwfn->hw_info.device_capabilities);
5035 
5036 	rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5037 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5038 		rc = ECORE_SUCCESS;
5039 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5040 	}
5041 
5042 	return rc;
5043 }
5044 
5045 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5046 				struct ecore_ptt *p_ptt)
5047 {
5048 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5049 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5050 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5051 
5052 	num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5053 
5054 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5055 	 * in the other bits are selected.
5056 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
5057 	 * '0' only for enabled functions (function 0 always exists and
5058 	 * enabled).
5059 	 * In case of CMT in BB, only the "even" functions are enabled, and thus
5060 	 * the number of functions for both hwfns is learnt from the same bits.
5061 	 */
5062 	if (ECORE_IS_BB(p_dev) || ECORE_IS_AH(p_dev)) {
5063 		reg_function_hide = ecore_rd(p_hwfn, p_ptt,
5064 					     MISCS_REG_FUNCTION_HIDE_BB_K2);
5065 	} else { /* E5 */
5066 		reg_function_hide = 0;
5067 	}
5068 
5069 	if (reg_function_hide & 0x1) {
5070 		if (ECORE_IS_BB(p_dev)) {
5071 			if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5072 				num_funcs = 0;
5073 				eng_mask = 0xaaaa;
5074 			} else {
5075 				num_funcs = 1;
5076 				eng_mask = 0x5554;
5077 			}
5078 		} else {
5079 			num_funcs = 1;
5080 			eng_mask = 0xfffe;
5081 		}
5082 
5083 		/* Get the number of the enabled functions on the engine */
5084 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5085 		while (tmp) {
5086 			if (tmp & 0x1)
5087 				num_funcs++;
5088 			tmp >>= 0x1;
5089 		}
5090 
5091 		/* Get the PF index within the enabled functions */
5092 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5093 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
5094 		while (tmp) {
5095 			if (tmp & 0x1)
5096 				enabled_func_idx--;
5097 			tmp >>= 0x1;
5098 		}
5099 	}
5100 
5101 	p_hwfn->num_funcs_on_engine = num_funcs;
5102 	p_hwfn->enabled_func_idx = enabled_func_idx;
5103 
5104 #ifndef ASIC_ONLY
5105 	if (CHIP_REV_IS_FPGA(p_dev)) {
5106 		DP_NOTICE(p_hwfn, false,
5107 			  "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5108 		p_hwfn->num_funcs_on_engine = 4;
5109 	}
5110 #endif
5111 
5112 	DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5113 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5114 		   p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5115 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5116 }
5117 
5118 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5119 				      struct ecore_ptt *p_ptt)
5120 {
5121 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5122 	u32 port_mode;
5123 
5124 #ifndef ASIC_ONLY
5125 	/* Read the port mode */
5126 	if (CHIP_REV_IS_FPGA(p_dev))
5127 		port_mode = 4;
5128 	else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5129 		/* In CMT on emulation, assume 1 port */
5130 		port_mode = 1;
5131 	else
5132 #endif
5133 	port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5134 
5135 	if (port_mode < 3) {
5136 		p_dev->num_ports_in_engine = 1;
5137 	} else if (port_mode <= 5) {
5138 		p_dev->num_ports_in_engine = 2;
5139 	} else {
5140 		DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5141 			  p_dev->num_ports_in_engine);
5142 
5143 		/* Default num_ports_in_engine to something */
5144 		p_dev->num_ports_in_engine = 1;
5145 	}
5146 }
5147 
5148 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5149 					 struct ecore_ptt *p_ptt)
5150 {
5151 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5152 	u32 port;
5153 	int i;
5154 
5155 	p_dev->num_ports_in_engine = 0;
5156 
5157 #ifndef ASIC_ONLY
5158 	if (CHIP_REV_IS_EMUL(p_dev)) {
5159 		port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5160 		switch ((port & 0xf000) >> 12) {
5161 		case 1:
5162 			p_dev->num_ports_in_engine = 1;
5163 			break;
5164 		case 3:
5165 			p_dev->num_ports_in_engine = 2;
5166 			break;
5167 		case 0xf:
5168 			p_dev->num_ports_in_engine = 4;
5169 			break;
5170 		default:
5171 			DP_NOTICE(p_hwfn, false,
5172 				  "Unknown port mode in ECO_RESERVED %08x\n",
5173 				  port);
5174 		}
5175 	} else
5176 #endif
5177 		for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5178 			port = ecore_rd(p_hwfn, p_ptt,
5179 					CNIG_REG_NIG_PORT0_CONF_K2_E5 +
5180 					(i * 4));
5181 			if (port & 1)
5182 				p_dev->num_ports_in_engine++;
5183 		}
5184 
5185 	if (!p_dev->num_ports_in_engine) {
5186 		DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5187 
5188 		/* Default num_ports_in_engine to something */
5189 		p_dev->num_ports_in_engine = 1;
5190 	}
5191 }
5192 
5193 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5194 				   struct ecore_ptt *p_ptt)
5195 {
5196 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5197 
5198 	/* Determine the number of ports per engine */
5199 	if (ECORE_IS_BB(p_dev))
5200 		ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5201 	else
5202 		ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5203 
5204 	/* Get the total number of ports of the device */
5205 	if (ECORE_IS_CMT(p_dev)) {
5206 		/* In CMT there is always only one port */
5207 		p_dev->num_ports = 1;
5208 #ifndef ASIC_ONLY
5209 	} else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5210 		p_dev->num_ports = p_dev->num_ports_in_engine *
5211 				   ecore_device_num_engines(p_dev);
5212 #endif
5213 	} else {
5214 		u32 addr, global_offsize, global_addr;
5215 
5216 		addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5217 					    PUBLIC_GLOBAL);
5218 		global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5219 		global_addr = SECTION_ADDR(global_offsize, 0);
5220 		addr = global_addr + OFFSETOF(struct public_global, max_ports);
5221 		p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5222 	}
5223 }
5224 
5225 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5226 				   struct ecore_ptt *p_ptt)
5227 {
5228 	struct ecore_mcp_link_capabilities *p_caps;
5229 	u32 eee_status;
5230 
5231 	p_caps = &p_hwfn->mcp_info->link_capabilities;
5232 	if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5233 		return;
5234 
5235 	p_caps->eee_speed_caps = 0;
5236 	eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5237 			      OFFSETOF(struct public_port, eee_status));
5238 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5239 			EEE_SUPPORTED_SPEED_OFFSET;
5240 	if (eee_status & EEE_1G_SUPPORTED)
5241 		p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5242 	if (eee_status & EEE_10G_ADV)
5243 		p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5244 }
5245 
5246 static enum _ecore_status_t
5247 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5248 		  enum ecore_pci_personality personality,
5249 		  struct ecore_hw_prepare_params *p_params)
5250 {
5251 	bool drv_resc_alloc = p_params->drv_resc_alloc;
5252 	enum _ecore_status_t rc;
5253 
5254 	if (IS_ECORE_PACING(p_hwfn)) {
5255 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_IOV,
5256 			   "Skipping IOV as packet pacing is requested\n");
5257 	}
5258 
5259 	/* Since all information is common, only first hwfns should do this */
5260 	if (IS_LEAD_HWFN(p_hwfn) && !IS_ECORE_PACING(p_hwfn)) {
5261 		rc = ecore_iov_hw_info(p_hwfn);
5262 		if (rc != ECORE_SUCCESS) {
5263 			if (p_params->b_relaxed_probe)
5264 				p_params->p_relaxed_res =
5265 						ECORE_HW_PREPARE_BAD_IOV;
5266 			else
5267 				return rc;
5268 		}
5269 	}
5270 
5271 	if (IS_LEAD_HWFN(p_hwfn))
5272 		ecore_hw_info_port_num(p_hwfn, p_ptt);
5273 
5274 	ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5275 
5276 #ifndef ASIC_ONLY
5277 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5278 #endif
5279 	rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5280 	if (rc != ECORE_SUCCESS)
5281 		return rc;
5282 #ifndef ASIC_ONLY
5283 	}
5284 #endif
5285 
5286 	rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5287 	if (rc != ECORE_SUCCESS) {
5288 		if (p_params->b_relaxed_probe)
5289 			p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5290 		else
5291 			return rc;
5292 	}
5293 
5294 #ifndef ASIC_ONLY
5295 	if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5296 #endif
5297 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5298 			    p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5299 #ifndef ASIC_ONLY
5300 	} else {
5301 		static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
5302 
5303 		OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5304 		p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5305 	}
5306 #endif
5307 
5308 	if (ecore_mcp_is_init(p_hwfn)) {
5309 		if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5310 			p_hwfn->hw_info.ovlan =
5311 			    p_hwfn->mcp_info->func_info.ovlan;
5312 
5313 		ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5314 
5315 		ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5316 
5317 		ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5318 	}
5319 
5320 	if (personality != ECORE_PCI_DEFAULT) {
5321 		p_hwfn->hw_info.personality = personality;
5322 	} else if (ecore_mcp_is_init(p_hwfn)) {
5323 		enum ecore_pci_personality protocol;
5324 
5325 		protocol = p_hwfn->mcp_info->func_info.protocol;
5326 		p_hwfn->hw_info.personality = protocol;
5327 	}
5328 
5329 #ifndef ASIC_ONLY
5330 	/* To overcome ILT lack for emulation, until at least until we'll have
5331 	 * a definite answer from system about it, allow only PF0 to be RoCE.
5332 	 */
5333 	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5334 		if (!p_hwfn->rel_pf_id)
5335 			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5336 		else
5337 			p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5338 	}
5339 #endif
5340 
5341 	/* although in BB some constellations may support more than 4 tcs,
5342 	 * that can result in performance penalty in some cases. 4
5343 	 * represents a good tradeoff between performance and flexibility.
5344 	 */
5345 	if (IS_ECORE_PACING(p_hwfn))
5346 		p_hwfn->hw_info.num_hw_tc = 1;
5347 	else
5348 		p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5349 
5350 	/* start out with a single active tc. This can be increased either
5351 	 * by dcbx negotiation or by upper layer driver
5352 	 */
5353 	p_hwfn->hw_info.num_active_tc = 1;
5354 
5355 	ecore_get_num_funcs(p_hwfn, p_ptt);
5356 
5357 	if (ecore_mcp_is_init(p_hwfn))
5358 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5359 
5360 	/* In case of forcing the driver's default resource allocation, calling
5361 	 * ecore_hw_get_resc() should come after initializing the personality
5362 	 * and after getting the number of functions, since the calculation of
5363 	 * the resources/features depends on them.
5364 	 * This order is not harmful if not forcing.
5365 	 */
5366 	rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5367 	if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5368 		rc = ECORE_SUCCESS;
5369 		p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5370 	}
5371 
5372 	return rc;
5373 }
5374 
5375 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5376 					       struct ecore_ptt *p_ptt)
5377 {
5378 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5379 	u16 device_id_mask;
5380 	u32 tmp;
5381 
5382 	/* Read Vendor Id / Device Id */
5383 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5384 				  &p_dev->vendor_id);
5385 	OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5386 				  &p_dev->device_id);
5387 
5388 	/* Determine type */
5389 	device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5390 	switch (device_id_mask) {
5391 	case ECORE_DEV_ID_MASK_BB:
5392 		p_dev->type = ECORE_DEV_TYPE_BB;
5393 		break;
5394 	case ECORE_DEV_ID_MASK_AH:
5395 		p_dev->type = ECORE_DEV_TYPE_AH;
5396 		break;
5397 	default:
5398 		DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5399 			  p_dev->device_id);
5400 		return ECORE_ABORTED;
5401 	}
5402 
5403 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5404 	p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5405 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5406 	p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5407 
5408 	/* Learn number of HW-functions */
5409 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5410 
5411 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
5412 		DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5413 		p_dev->num_hwfns = 2;
5414 	} else {
5415 		p_dev->num_hwfns = 1;
5416 	}
5417 
5418 #ifndef ASIC_ONLY
5419 	if (CHIP_REV_IS_EMUL(p_dev)) {
5420 		/* For some reason we have problems with this register
5421 		 * in B0 emulation; Simply assume no CMT
5422 		 */
5423 		DP_NOTICE(p_dev->hwfns, false,
5424 			  "device on emul - assume no CMT\n");
5425 		p_dev->num_hwfns = 1;
5426 	}
5427 #endif
5428 
5429 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5430 	p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5431 	tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5432 	p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5433 
5434 	DP_INFO(p_dev->hwfns,
5435 		"Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5436 		ECORE_IS_BB(p_dev) ? "BB" : "AH",
5437 		'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5438 		p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5439 		p_dev->chip_metal);
5440 
5441 	if (ECORE_IS_BB_A0(p_dev)) {
5442 		DP_NOTICE(p_dev->hwfns, false,
5443 			  "The chip type/rev (BB A0) is not supported!\n");
5444 		return ECORE_ABORTED;
5445 	}
5446 #ifndef ASIC_ONLY
5447 	if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5448 		ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5449 
5450 	if (CHIP_REV_IS_EMUL(p_dev)) {
5451 		tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5452 		if (tmp & (1 << 29)) {
5453 			DP_NOTICE(p_hwfn, false,
5454 				  "Emulation: Running on a FULL build\n");
5455 			p_dev->b_is_emul_full = true;
5456 		} else {
5457 			DP_NOTICE(p_hwfn, false,
5458 				  "Emulation: Running on a REDUCED build\n");
5459 		}
5460 	}
5461 #endif
5462 
5463 	return ECORE_SUCCESS;
5464 }
5465 
5466 #ifndef LINUX_REMOVE
5467 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
5468 {
5469 	int j;
5470 
5471 	if (IS_VF(p_dev))
5472 		return;
5473 
5474 	for_each_hwfn(p_dev, j) {
5475 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5476 
5477 		DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
5478 			   "Mark hw/fw uninitialized\n");
5479 
5480 		p_hwfn->hw_init_done = false;
5481 
5482 		ecore_ptt_invalidate(p_hwfn);
5483 	}
5484 }
5485 #endif
5486 
5487 static enum _ecore_status_t
5488 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5489 			void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5490 			struct ecore_hw_prepare_params *p_params)
5491 {
5492 	struct ecore_mdump_retain_data mdump_retain;
5493 	struct ecore_dev *p_dev = p_hwfn->p_dev;
5494 	struct ecore_mdump_info mdump_info;
5495 	enum _ecore_status_t rc = ECORE_SUCCESS;
5496 
5497 	/* Split PCI bars evenly between hwfns */
5498 	p_hwfn->regview = p_regview;
5499 	p_hwfn->doorbells = p_doorbells;
5500 	p_hwfn->db_phys_addr = db_phys_addr;
5501 
5502 	if (IS_VF(p_dev))
5503 		return ecore_vf_hw_prepare(p_hwfn);
5504 
5505 	/* Validate that chip access is feasible */
5506 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5507 		DP_ERR(p_hwfn,
5508 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
5509 		if (p_params->b_relaxed_probe)
5510 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5511 		return ECORE_INVAL;
5512 	}
5513 
5514 	get_function_id(p_hwfn);
5515 
5516 	/* Allocate PTT pool */
5517 	rc = ecore_ptt_pool_alloc(p_hwfn);
5518 	if (rc) {
5519 		DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5520 		if (p_params->b_relaxed_probe)
5521 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5522 		goto err0;
5523 	}
5524 
5525 	/* Allocate the main PTT */
5526 	p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5527 
5528 	/* First hwfn learns basic information, e.g., number of hwfns */
5529 	if (!p_hwfn->my_id) {
5530 		rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5531 		if (rc != ECORE_SUCCESS) {
5532 			if (p_params->b_relaxed_probe)
5533 				p_params->p_relaxed_res =
5534 					ECORE_HW_PREPARE_FAILED_DEV;
5535 			goto err1;
5536 		}
5537 	}
5538 
5539 	ecore_hw_hwfn_prepare(p_hwfn);
5540 
5541 	/* Initialize MCP structure */
5542 	rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5543 	if (rc) {
5544 		DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5545 		if (p_params->b_relaxed_probe)
5546 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5547 		goto err1;
5548 	}
5549 
5550 	/* Read the device configuration information from the HW and SHMEM */
5551 	rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5552 			       p_params->personality, p_params);
5553 	if (rc) {
5554 		DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5555 		goto err2;
5556 	}
5557 
5558 	/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5559 	 * called, since among others it sets the ports number in an engine.
5560 	 */
5561 	if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5562 	    !p_dev->recov_in_prog) {
5563 		rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5564 		if (rc != ECORE_SUCCESS)
5565 			DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5566 
5567 		/* Workaround for MFW issue where PF FLR does not cleanup
5568 		 * IGU block
5569 		 */
5570 		if (!(p_hwfn->mcp_info->capabilities &
5571 		      FW_MB_PARAM_FEATURE_SUPPORT_IGU_CLEANUP))
5572 			ecore_pf_flr_igu_cleanup(p_hwfn);
5573 	}
5574 
5575 	/* Check if mdump logs/data are present and update the epoch value */
5576 	if (IS_LEAD_HWFN(p_hwfn)) {
5577 #ifndef ASIC_ONLY
5578 		if (!CHIP_REV_IS_EMUL(p_dev)) {
5579 #endif
5580 		rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5581 					      &mdump_info);
5582 		if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5583 			DP_NOTICE(p_hwfn, false,
5584 				  "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5585 
5586 		rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5587 						&mdump_retain);
5588 		if (rc == ECORE_SUCCESS && mdump_retain.valid)
5589 			DP_NOTICE(p_hwfn, false,
5590 				  "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5591 				  mdump_retain.epoch, mdump_retain.pf,
5592 				  mdump_retain.status);
5593 
5594 		ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5595 					   p_params->epoch);
5596 #ifndef ASIC_ONLY
5597 		}
5598 #endif
5599 	}
5600 
5601 	/* Allocate the init RT array and initialize the init-ops engine */
5602 	rc = ecore_init_alloc(p_hwfn);
5603 	if (rc) {
5604 		DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5605 		if (p_params->b_relaxed_probe)
5606 			p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5607 		goto err2;
5608 	}
5609 #ifndef ASIC_ONLY
5610 	if (CHIP_REV_IS_FPGA(p_dev)) {
5611 		DP_NOTICE(p_hwfn, false,
5612 			  "FPGA: workaround; Prevent DMAE parities\n");
5613 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5614 			 7);
5615 
5616 		DP_NOTICE(p_hwfn, false,
5617 			  "FPGA: workaround: Set VF bar0 size\n");
5618 		ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5619 			 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5620 	}
5621 #endif
5622 
5623 	return rc;
5624 err2:
5625 	if (IS_LEAD_HWFN(p_hwfn))
5626 		ecore_iov_free_hw_info(p_dev);
5627 	ecore_mcp_free(p_hwfn);
5628 err1:
5629 	ecore_hw_hwfn_free(p_hwfn);
5630 err0:
5631 	return rc;
5632 }
5633 
5634 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5635 				      struct ecore_hw_prepare_params *p_params)
5636 {
5637 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5638 	enum _ecore_status_t rc;
5639 
5640 	p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5641 	p_dev->allow_mdump = p_params->allow_mdump;
5642 	p_hwfn->b_en_pacing = p_params->b_en_pacing;
5643 	p_dev->b_is_target = p_params->b_is_target;
5644 
5645 	if (p_params->b_relaxed_probe)
5646 		p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5647 
5648 	/* Store the precompiled init data ptrs */
5649 	if (IS_PF(p_dev))
5650 		ecore_init_iro_array(p_dev);
5651 
5652 	/* Initialize the first hwfn - will learn number of hwfns */
5653 	rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
5654 				     p_dev->doorbells, p_dev->db_phys_addr,
5655 				     p_params);
5656 	if (rc != ECORE_SUCCESS)
5657 		return rc;
5658 
5659 	p_params->personality = p_hwfn->hw_info.personality;
5660 
5661 	/* initilalize 2nd hwfn if necessary */
5662 	if (ECORE_IS_CMT(p_dev)) {
5663 		void OSAL_IOMEM *p_regview, *p_doorbell;
5664 		u8 OSAL_IOMEM *addr;
5665 		u64 db_phys_addr;
5666 		u32 offset;
5667 
5668 		/* adjust bar offset for second engine */
5669 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
5670 					   BAR_ID_0) / 2;
5671 		addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
5672 		p_regview = (void OSAL_IOMEM *)addr;
5673 
5674 		offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
5675 					   BAR_ID_1) / 2;
5676 		addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
5677 		p_doorbell = (void OSAL_IOMEM *)addr;
5678 		db_phys_addr = p_dev->db_phys_addr + offset;
5679 
5680 		p_dev->hwfns[1].b_en_pacing = p_params->b_en_pacing;
5681 		/* prepare second hw function */
5682 		rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
5683 					     p_doorbell, db_phys_addr,
5684 					     p_params);
5685 
5686 		/* in case of error, need to free the previously
5687 		 * initiliazed hwfn 0.
5688 		 */
5689 		if (rc != ECORE_SUCCESS) {
5690 			if (p_params->b_relaxed_probe)
5691 				p_params->p_relaxed_res =
5692 						ECORE_HW_PREPARE_FAILED_ENG2;
5693 
5694 			if (IS_PF(p_dev)) {
5695 				ecore_init_free(p_hwfn);
5696 				ecore_mcp_free(p_hwfn);
5697 				ecore_hw_hwfn_free(p_hwfn);
5698 			} else {
5699 				DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
5700 			}
5701 			return rc;
5702 		}
5703 	}
5704 
5705 	return rc;
5706 }
5707 
5708 void ecore_hw_remove(struct ecore_dev *p_dev)
5709 {
5710 	struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5711 	int i;
5712 
5713 	if (IS_PF(p_dev))
5714 		ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
5715 					ECORE_OV_DRIVER_STATE_NOT_LOADED);
5716 
5717 	for_each_hwfn(p_dev, i) {
5718 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
5719 
5720 		if (IS_VF(p_dev)) {
5721 			ecore_vf_pf_release(p_hwfn);
5722 			continue;
5723 		}
5724 
5725 		ecore_init_free(p_hwfn);
5726 		ecore_hw_hwfn_free(p_hwfn);
5727 		ecore_mcp_free(p_hwfn);
5728 
5729 #ifdef CONFIG_ECORE_LOCK_ALLOC
5730 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
5731 #endif
5732 	}
5733 
5734 	ecore_iov_free_hw_info(p_dev);
5735 }
5736 
5737 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
5738 				      struct ecore_chain *p_chain)
5739 {
5740 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
5741 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
5742 	struct ecore_chain_next *p_next;
5743 	u32 size, i;
5744 
5745 	if (!p_virt)
5746 		return;
5747 
5748 	size = p_chain->elem_size * p_chain->usable_per_page;
5749 
5750 	for (i = 0; i < p_chain->page_cnt; i++) {
5751 		if (!p_virt)
5752 			break;
5753 
5754 		p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
5755 		p_virt_next = p_next->next_virt;
5756 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
5757 
5758 		OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
5759 				       ECORE_CHAIN_PAGE_SIZE);
5760 
5761 		p_virt = p_virt_next;
5762 		p_phys = p_phys_next;
5763 	}
5764 }
5765 
5766 static void ecore_chain_free_single(struct ecore_dev *p_dev,
5767 				    struct ecore_chain *p_chain)
5768 {
5769 	if (!p_chain->p_virt_addr)
5770 		return;
5771 
5772 	OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
5773 			       p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
5774 }
5775 
5776 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
5777 				 struct ecore_chain *p_chain)
5778 {
5779 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
5780 	u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
5781 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
5782 
5783 	if (!pp_virt_addr_tbl)
5784 		return;
5785 
5786 	if (!p_pbl_virt)
5787 		goto out;
5788 
5789 	for (i = 0; i < page_cnt; i++) {
5790 		if (!pp_virt_addr_tbl[i])
5791 			break;
5792 
5793 		OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
5794 				       *(dma_addr_t *)p_pbl_virt,
5795 				       ECORE_CHAIN_PAGE_SIZE);
5796 
5797 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
5798 	}
5799 
5800 	pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
5801 
5802 	if (!p_chain->b_external_pbl)
5803 		OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
5804 				       p_chain->pbl_sp.p_phys_table, pbl_size);
5805 out:
5806 	OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
5807 }
5808 
5809 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
5810 {
5811 	switch (p_chain->mode) {
5812 	case ECORE_CHAIN_MODE_NEXT_PTR:
5813 		ecore_chain_free_next_ptr(p_dev, p_chain);
5814 		break;
5815 	case ECORE_CHAIN_MODE_SINGLE:
5816 		ecore_chain_free_single(p_dev, p_chain);
5817 		break;
5818 	case ECORE_CHAIN_MODE_PBL:
5819 		ecore_chain_free_pbl(p_dev, p_chain);
5820 		break;
5821 	}
5822 }
5823 
5824 static enum _ecore_status_t
5825 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
5826 			       enum ecore_chain_cnt_type cnt_type,
5827 			       osal_size_t elem_size, u32 page_cnt)
5828 {
5829 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
5830 
5831 	/* The actual chain size can be larger than the maximal possible value
5832 	 * after rounding up the requested elements number to pages, and after
5833 	 * taking into acount the unusuable elements (next-ptr elements).
5834 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
5835 	 * size/capacity fields are of a u32 type.
5836 	 */
5837 	if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
5838 	     chain_size > ((u32)ECORE_U16_MAX + 1)) ||
5839 	    (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
5840 	     chain_size > ECORE_U32_MAX)) {
5841 		DP_NOTICE(p_dev, true,
5842 			  "The actual chain size (0x%lx) is larger than the maximal possible value\n",
5843 			  (unsigned long)chain_size);
5844 		return ECORE_INVAL;
5845 	}
5846 
5847 	return ECORE_SUCCESS;
5848 }
5849 
5850 static enum _ecore_status_t
5851 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
5852 {
5853 	void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
5854 	dma_addr_t p_phys = 0;
5855 	u32 i;
5856 
5857 	for (i = 0; i < p_chain->page_cnt; i++) {
5858 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
5859 						 ECORE_CHAIN_PAGE_SIZE);
5860 		if (!p_virt) {
5861 			DP_NOTICE(p_dev, false,
5862 				  "Failed to allocate chain memory\n");
5863 			return ECORE_NOMEM;
5864 		}
5865 
5866 		if (i == 0) {
5867 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
5868 			ecore_chain_reset(p_chain);
5869 		} else {
5870 			ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
5871 						       p_virt, p_phys);
5872 		}
5873 
5874 		p_virt_prev = p_virt;
5875 	}
5876 	/* Last page's next element should point to the beginning of the
5877 	 * chain.
5878 	 */
5879 	ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
5880 				       p_chain->p_virt_addr,
5881 				       p_chain->p_phys_addr);
5882 
5883 	return ECORE_SUCCESS;
5884 }
5885 
5886 static enum _ecore_status_t
5887 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
5888 {
5889 	dma_addr_t p_phys = 0;
5890 	void *p_virt = OSAL_NULL;
5891 
5892 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
5893 	if (!p_virt) {
5894 		DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
5895 		return ECORE_NOMEM;
5896 	}
5897 
5898 	ecore_chain_init_mem(p_chain, p_virt, p_phys);
5899 	ecore_chain_reset(p_chain);
5900 
5901 	return ECORE_SUCCESS;
5902 }
5903 
5904 static enum _ecore_status_t
5905 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
5906 		      struct ecore_chain *p_chain,
5907 		      struct ecore_chain_ext_pbl *ext_pbl)
5908 {
5909 	u32 page_cnt = p_chain->page_cnt, size, i;
5910 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
5911 	void **pp_virt_addr_tbl = OSAL_NULL;
5912 	u8 *p_pbl_virt = OSAL_NULL;
5913 	void *p_virt = OSAL_NULL;
5914 
5915 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
5916 	pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
5917 	if (!pp_virt_addr_tbl) {
5918 		DP_NOTICE(p_dev, false,
5919 			  "Failed to allocate memory for the chain virtual addresses table\n");
5920 		return ECORE_NOMEM;
5921 	}
5922 
5923 	/* The allocation of the PBL table is done with its full size, since it
5924 	 * is expected to be successive.
5925 	 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
5926 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
5927 	 * should be saved to allow its freeing during the error flow.
5928 	 */
5929 	size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
5930 
5931 	if (ext_pbl == OSAL_NULL) {
5932 		p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
5933 	} else {
5934 		p_pbl_virt = ext_pbl->p_pbl_virt;
5935 		p_pbl_phys = ext_pbl->p_pbl_phys;
5936 		p_chain->b_external_pbl = true;
5937 	}
5938 
5939 	ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
5940 				 pp_virt_addr_tbl);
5941 	if (!p_pbl_virt) {
5942 		DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
5943 		return ECORE_NOMEM;
5944 	}
5945 
5946 	for (i = 0; i < page_cnt; i++) {
5947 		p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
5948 						 ECORE_CHAIN_PAGE_SIZE);
5949 		if (!p_virt) {
5950 			DP_NOTICE(p_dev, false,
5951 				  "Failed to allocate chain memory\n");
5952 			return ECORE_NOMEM;
5953 		}
5954 
5955 		if (i == 0) {
5956 			ecore_chain_init_mem(p_chain, p_virt, p_phys);
5957 			ecore_chain_reset(p_chain);
5958 		}
5959 
5960 		/* Fill the PBL table with the physical address of the page */
5961 		*(dma_addr_t *)p_pbl_virt = p_phys;
5962 		/* Keep the virtual address of the page */
5963 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
5964 
5965 		p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
5966 	}
5967 
5968 	return ECORE_SUCCESS;
5969 }
5970 
5971 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
5972 				       enum ecore_chain_use_mode intended_use,
5973 				       enum ecore_chain_mode mode,
5974 				       enum ecore_chain_cnt_type cnt_type,
5975 				       u32 num_elems, osal_size_t elem_size,
5976 				       struct ecore_chain *p_chain,
5977 				       struct ecore_chain_ext_pbl *ext_pbl)
5978 {
5979 	u32 page_cnt;
5980 	enum _ecore_status_t rc = ECORE_SUCCESS;
5981 
5982 	if (mode == ECORE_CHAIN_MODE_SINGLE)
5983 		page_cnt = 1;
5984 	else
5985 		page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
5986 
5987 	rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
5988 					    page_cnt);
5989 	if (rc) {
5990 		DP_NOTICE(p_dev, false,
5991 			  "Cannot allocate a chain with the given arguments:\n"
5992 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
5993 			  intended_use, mode, cnt_type, num_elems, elem_size);
5994 		return rc;
5995 	}
5996 
5997 	ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
5998 				mode, cnt_type, p_dev->dp_ctx);
5999 
6000 	switch (mode) {
6001 	case ECORE_CHAIN_MODE_NEXT_PTR:
6002 		rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6003 		break;
6004 	case ECORE_CHAIN_MODE_SINGLE:
6005 		rc = ecore_chain_alloc_single(p_dev, p_chain);
6006 		break;
6007 	case ECORE_CHAIN_MODE_PBL:
6008 		rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6009 		break;
6010 	}
6011 	if (rc)
6012 		goto nomem;
6013 
6014 	return ECORE_SUCCESS;
6015 
6016 nomem:
6017 	ecore_chain_free(p_dev, p_chain);
6018 	return rc;
6019 }
6020 
6021 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6022 				       u16 src_id, u16 *dst_id)
6023 {
6024 	if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6025 		u16 min, max;
6026 
6027 		min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6028 		max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6029 		DP_NOTICE(p_hwfn, true,
6030 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6031 			  src_id, min, max);
6032 
6033 		return ECORE_INVAL;
6034 	}
6035 
6036 	*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6037 
6038 	return ECORE_SUCCESS;
6039 }
6040 
6041 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6042 				    u8 src_id, u8 *dst_id)
6043 {
6044 	if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6045 		u8 min, max;
6046 
6047 		min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6048 		max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6049 		DP_NOTICE(p_hwfn, true,
6050 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
6051 			  src_id, min, max);
6052 
6053 		return ECORE_INVAL;
6054 	}
6055 
6056 	*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6057 
6058 	return ECORE_SUCCESS;
6059 }
6060 
6061 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6062 				      u8 src_id, u8 *dst_id)
6063 {
6064 	if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6065 		u8 min, max;
6066 
6067 		min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6068 		max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6069 		DP_NOTICE(p_hwfn, true,
6070 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6071 			  src_id, min, max);
6072 
6073 		return ECORE_INVAL;
6074 	}
6075 
6076 	*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6077 
6078 	return ECORE_SUCCESS;
6079 }
6080 
6081 enum _ecore_status_t
6082 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6083 				  struct ecore_ptt *p_ptt)
6084 {
6085 	if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6086 		ecore_wr(p_hwfn, p_ptt,
6087 			 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6088 			 1 << p_hwfn->abs_pf_id / 2);
6089 		ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6090 		return ECORE_SUCCESS;
6091 	}
6092 
6093 	DP_NOTICE(p_hwfn, false,
6094 		  "This function can't be set as default\n");
6095 	return ECORE_INVAL;
6096 }
6097 
6098 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6099 					       struct ecore_ptt *p_ptt,
6100 					       u32 hw_addr, void *p_eth_qzone,
6101 					       osal_size_t eth_qzone_size,
6102 					       u8 timeset)
6103 {
6104 	struct coalescing_timeset *p_coal_timeset;
6105 
6106 	if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6107 		DP_NOTICE(p_hwfn, true,
6108 			  "Coalescing configuration not enabled\n");
6109 		return ECORE_INVAL;
6110 	}
6111 
6112 	p_coal_timeset = p_eth_qzone;
6113 	OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6114 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6115 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6116 	ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6117 
6118 	return ECORE_SUCCESS;
6119 }
6120 
6121 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6122 					      u16 rx_coal, u16 tx_coal,
6123 					      void *p_handle)
6124 {
6125 	struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6126 	enum _ecore_status_t rc = ECORE_SUCCESS;
6127 	struct ecore_ptt *p_ptt;
6128 
6129 	/* TODO - Configuring a single queue's coalescing but
6130 	 * claiming all queues are abiding same configuration
6131 	 * for PF and VF both.
6132 	 */
6133 
6134 	if (IS_VF(p_hwfn->p_dev))
6135 		return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6136 						tx_coal, p_cid);
6137 
6138 	p_ptt = ecore_ptt_acquire(p_hwfn);
6139 	if (!p_ptt)
6140 		return ECORE_AGAIN;
6141 
6142 	if (rx_coal) {
6143 		rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6144 		if (rc)
6145 			goto out;
6146 		p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6147 	}
6148 
6149 	if (tx_coal) {
6150 		rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6151 		if (rc)
6152 			goto out;
6153 		p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6154 	}
6155 out:
6156 	ecore_ptt_release(p_hwfn, p_ptt);
6157 
6158 	return rc;
6159 }
6160 
6161 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6162 					    struct ecore_ptt *p_ptt,
6163 					    u16 coalesce,
6164 					    struct ecore_queue_cid *p_cid)
6165 {
6166 	struct ustorm_eth_queue_zone eth_qzone;
6167 	u8 timeset, timer_res;
6168 	u32 address;
6169 	enum _ecore_status_t rc;
6170 
6171 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6172 	if (coalesce <= 0x7F) {
6173 		timer_res = 0;
6174 	} else if (coalesce <= 0xFF) {
6175 		timer_res = 1;
6176 	} else if (coalesce <= 0x1FF) {
6177 		timer_res = 2;
6178 	} else {
6179 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6180 		return ECORE_INVAL;
6181 	}
6182 	timeset = (u8)(coalesce >> timer_res);
6183 
6184 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6185 				     p_cid->sb_igu_id, false);
6186 	if (rc != ECORE_SUCCESS)
6187 		goto out;
6188 
6189 	address = BAR0_MAP_REG_USDM_RAM +
6190 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6191 
6192 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6193 				sizeof(struct ustorm_eth_queue_zone), timeset);
6194 	if (rc != ECORE_SUCCESS)
6195 		goto out;
6196 
6197 out:
6198 	return rc;
6199 }
6200 
6201 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6202 					    struct ecore_ptt *p_ptt,
6203 					    u16 coalesce,
6204 					    struct ecore_queue_cid *p_cid)
6205 {
6206 	struct xstorm_eth_queue_zone eth_qzone;
6207 	u8 timeset, timer_res;
6208 	u32 address;
6209 	enum _ecore_status_t rc;
6210 
6211 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6212 	if (coalesce <= 0x7F) {
6213 		timer_res = 0;
6214 	} else if (coalesce <= 0xFF) {
6215 		timer_res = 1;
6216 	} else if (coalesce <= 0x1FF) {
6217 		timer_res = 2;
6218 	} else {
6219 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6220 		return ECORE_INVAL;
6221 	}
6222 
6223 	timeset = (u8)(coalesce >> timer_res);
6224 
6225 	rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6226 				     p_cid->sb_igu_id, true);
6227 	if (rc != ECORE_SUCCESS)
6228 		goto out;
6229 
6230 	address = BAR0_MAP_REG_XSDM_RAM +
6231 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6232 
6233 	rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
6234 				sizeof(struct xstorm_eth_queue_zone), timeset);
6235 out:
6236 	return rc;
6237 }
6238 
6239 /* Calculate final WFQ values for all vports and configure it.
6240  * After this configuration each vport must have
6241  * approx min rate =  vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6242  */
6243 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6244 					       struct ecore_ptt *p_ptt,
6245 					       u32 min_pf_rate)
6246 {
6247 	struct init_qm_vport_params *vport_params;
6248 	int i;
6249 
6250 	vport_params = p_hwfn->qm_info.qm_vport_params;
6251 
6252 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6253 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6254 
6255 		vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6256 		    min_pf_rate;
6257 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6258 				     vport_params[i].first_tx_pq_id,
6259 				     vport_params[i].vport_wfq);
6260 	}
6261 }
6262 
6263 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6264 {
6265 	int i;
6266 
6267 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6268 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6269 }
6270 
6271 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6272 					     struct ecore_ptt *p_ptt)
6273 {
6274 	struct init_qm_vport_params *vport_params;
6275 	int i;
6276 
6277 	vport_params = p_hwfn->qm_info.qm_vport_params;
6278 
6279 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6280 		ecore_init_wfq_default_param(p_hwfn);
6281 		ecore_init_vport_wfq(p_hwfn, p_ptt,
6282 				     vport_params[i].first_tx_pq_id,
6283 				     vport_params[i].vport_wfq);
6284 	}
6285 }
6286 
6287 /* This function performs several validations for WFQ
6288  * configuration and required min rate for a given vport
6289  * 1. req_rate must be greater than one percent of min_pf_rate.
6290  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6291  *    rates to get less than one percent of min_pf_rate.
6292  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6293  */
6294 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6295 						 u16 vport_id, u32 req_rate,
6296 						 u32 min_pf_rate)
6297 {
6298 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6299 	int non_requested_count = 0, req_count = 0, i, num_vports;
6300 
6301 	num_vports = p_hwfn->qm_info.num_vports;
6302 
6303 /* Accounting for the vports which are configured for WFQ explicitly */
6304 
6305 	for (i = 0; i < num_vports; i++) {
6306 		u32 tmp_speed;
6307 
6308 		if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6309 			req_count++;
6310 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6311 			total_req_min_rate += tmp_speed;
6312 		}
6313 	}
6314 
6315 	/* Include current vport data as well */
6316 	req_count++;
6317 	total_req_min_rate += req_rate;
6318 	non_requested_count = num_vports - req_count;
6319 
6320 	/* validate possible error cases */
6321 	if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6322 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6323 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6324 			   vport_id, req_rate, min_pf_rate);
6325 		return ECORE_INVAL;
6326 	}
6327 
6328 	/* TBD - for number of vports greater than 100 */
6329 	if (num_vports > ECORE_WFQ_UNIT) {
6330 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6331 			   "Number of vports is greater than %d\n",
6332 			   ECORE_WFQ_UNIT);
6333 		return ECORE_INVAL;
6334 	}
6335 
6336 	if (total_req_min_rate > min_pf_rate) {
6337 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6338 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6339 			   total_req_min_rate, min_pf_rate);
6340 		return ECORE_INVAL;
6341 	}
6342 
6343 	/* Data left for non requested vports */
6344 	total_left_rate = min_pf_rate - total_req_min_rate;
6345 	left_rate_per_vp = total_left_rate / non_requested_count;
6346 
6347 	/* validate if non requested get < 1% of min bw */
6348 	if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6349 		DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6350 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6351 			   left_rate_per_vp, min_pf_rate);
6352 		return ECORE_INVAL;
6353 	}
6354 
6355 	/* now req_rate for given vport passes all scenarios.
6356 	 * assign final wfq rates to all vports.
6357 	 */
6358 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6359 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6360 
6361 	for (i = 0; i < num_vports; i++) {
6362 		if (p_hwfn->qm_info.wfq_data[i].configured)
6363 			continue;
6364 
6365 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6366 	}
6367 
6368 	return ECORE_SUCCESS;
6369 }
6370 
6371 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6372 				       struct ecore_ptt *p_ptt,
6373 				       u16 vp_id, u32 rate)
6374 {
6375 	struct ecore_mcp_link_state *p_link;
6376 	int rc = ECORE_SUCCESS;
6377 
6378 	p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6379 
6380 	if (!p_link->min_pf_rate) {
6381 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6382 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6383 		return rc;
6384 	}
6385 
6386 	rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6387 
6388 	if (rc == ECORE_SUCCESS)
6389 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6390 						   p_link->min_pf_rate);
6391 	else
6392 		DP_NOTICE(p_hwfn, false,
6393 			  "Validation failed while configuring min rate\n");
6394 
6395 	return rc;
6396 }
6397 
6398 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6399 						   struct ecore_ptt *p_ptt,
6400 						   u32 min_pf_rate)
6401 {
6402 	bool use_wfq = false;
6403 	int rc = ECORE_SUCCESS;
6404 	u16 i;
6405 
6406 	/* Validate all pre configured vports for wfq */
6407 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6408 		u32 rate;
6409 
6410 		if (!p_hwfn->qm_info.wfq_data[i].configured)
6411 			continue;
6412 
6413 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6414 		use_wfq = true;
6415 
6416 		rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6417 		if (rc != ECORE_SUCCESS) {
6418 			DP_NOTICE(p_hwfn, false,
6419 				  "WFQ validation failed while configuring min rate\n");
6420 			break;
6421 		}
6422 	}
6423 
6424 	if (rc == ECORE_SUCCESS && use_wfq)
6425 		ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6426 	else
6427 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6428 
6429 	return rc;
6430 }
6431 
6432 /* Main API for ecore clients to configure vport min rate.
6433  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6434  * rate - Speed in Mbps needs to be assigned to a given vport.
6435  */
6436 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6437 {
6438 	int i, rc = ECORE_INVAL;
6439 
6440 	/* TBD - for multiple hardware functions - that is 100 gig */
6441 	if (ECORE_IS_CMT(p_dev)) {
6442 		DP_NOTICE(p_dev, false,
6443 			  "WFQ configuration is not supported for this device\n");
6444 		return rc;
6445 	}
6446 
6447 	for_each_hwfn(p_dev, i) {
6448 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6449 		struct ecore_ptt *p_ptt;
6450 
6451 		p_ptt = ecore_ptt_acquire(p_hwfn);
6452 		if (!p_ptt)
6453 			return ECORE_TIMEOUT;
6454 
6455 		rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6456 
6457 		if (rc != ECORE_SUCCESS) {
6458 			ecore_ptt_release(p_hwfn, p_ptt);
6459 			return rc;
6460 		}
6461 
6462 		ecore_ptt_release(p_hwfn, p_ptt);
6463 	}
6464 
6465 	return rc;
6466 }
6467 
6468 /* API to configure WFQ from mcp link change */
6469 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6470 					   struct ecore_ptt *p_ptt,
6471 					   u32 min_pf_rate)
6472 {
6473 	int i;
6474 
6475 	/* TBD - for multiple hardware functions - that is 100 gig */
6476 	if (ECORE_IS_CMT(p_dev)) {
6477 		DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6478 			   "WFQ configuration is not supported for this device\n");
6479 		return;
6480 	}
6481 
6482 	for_each_hwfn(p_dev, i) {
6483 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6484 
6485 		__ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6486 							min_pf_rate);
6487 	}
6488 }
6489 
6490 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6491 				       struct ecore_ptt *p_ptt,
6492 				       struct ecore_mcp_link_state *p_link,
6493 				       u8 max_bw)
6494 {
6495 	int rc = ECORE_SUCCESS;
6496 
6497 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6498 
6499 	if (!p_link->line_speed && (max_bw != 100))
6500 		return rc;
6501 
6502 	p_link->speed = (p_link->line_speed * max_bw) / 100;
6503 	p_hwfn->qm_info.pf_rl = p_link->speed;
6504 
6505 	/* Since the limiter also affects Tx-switched traffic, we don't want it
6506 	 * to limit such traffic in case there's no actual limit.
6507 	 * In that case, set limit to imaginary high boundary.
6508 	 */
6509 	if (max_bw == 100)
6510 		p_hwfn->qm_info.pf_rl = 100000;
6511 
6512 	rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6513 			      p_hwfn->qm_info.pf_rl);
6514 
6515 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6516 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
6517 		   p_link->speed);
6518 
6519 	return rc;
6520 }
6521 
6522 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
6523 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6524 {
6525 	int i, rc = ECORE_INVAL;
6526 
6527 	if (max_bw < 1 || max_bw > 100) {
6528 		DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6529 		return rc;
6530 	}
6531 
6532 	for_each_hwfn(p_dev, i) {
6533 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6534 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6535 		struct ecore_mcp_link_state *p_link;
6536 		struct ecore_ptt *p_ptt;
6537 
6538 		p_link = &p_lead->mcp_info->link_output;
6539 
6540 		p_ptt = ecore_ptt_acquire(p_hwfn);
6541 		if (!p_ptt)
6542 			return ECORE_TIMEOUT;
6543 
6544 		rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6545 							p_link, max_bw);
6546 
6547 		ecore_ptt_release(p_hwfn, p_ptt);
6548 
6549 		if (rc != ECORE_SUCCESS)
6550 			break;
6551 	}
6552 
6553 	return rc;
6554 }
6555 
6556 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6557 				       struct ecore_ptt *p_ptt,
6558 				       struct ecore_mcp_link_state *p_link,
6559 				       u8 min_bw)
6560 {
6561 	int rc = ECORE_SUCCESS;
6562 
6563 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6564 	p_hwfn->qm_info.pf_wfq = min_bw;
6565 
6566 	if (!p_link->line_speed)
6567 		return rc;
6568 
6569 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6570 
6571 	rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6572 
6573 	DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6574 		   "Configured MIN bandwidth to be %d Mb/sec\n",
6575 		   p_link->min_pf_rate);
6576 
6577 	return rc;
6578 }
6579 
6580 /* Main API to configure PF min bandwidth where bw range is [1-100] */
6581 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6582 {
6583 	int i, rc = ECORE_INVAL;
6584 
6585 	if (min_bw < 1 || min_bw > 100) {
6586 		DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6587 		return rc;
6588 	}
6589 
6590 	for_each_hwfn(p_dev, i) {
6591 		struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6592 		struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6593 		struct ecore_mcp_link_state *p_link;
6594 		struct ecore_ptt *p_ptt;
6595 
6596 		p_link = &p_lead->mcp_info->link_output;
6597 
6598 		p_ptt = ecore_ptt_acquire(p_hwfn);
6599 		if (!p_ptt)
6600 			return ECORE_TIMEOUT;
6601 
6602 		rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6603 							p_link, min_bw);
6604 		if (rc != ECORE_SUCCESS) {
6605 			ecore_ptt_release(p_hwfn, p_ptt);
6606 			return rc;
6607 		}
6608 
6609 		if (p_link->min_pf_rate) {
6610 			u32 min_rate = p_link->min_pf_rate;
6611 
6612 			rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6613 								     p_ptt,
6614 								     min_rate);
6615 		}
6616 
6617 		ecore_ptt_release(p_hwfn, p_ptt);
6618 	}
6619 
6620 	return rc;
6621 }
6622 
6623 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6624 {
6625 	struct ecore_mcp_link_state *p_link;
6626 
6627 	p_link = &p_hwfn->mcp_info->link_output;
6628 
6629 	if (p_link->min_pf_rate)
6630 		ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6631 
6632 	OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6633 		    sizeof(*p_hwfn->qm_info.wfq_data) *
6634 		    p_hwfn->qm_info.num_vports);
6635 }
6636 
6637 int ecore_device_num_engines(struct ecore_dev *p_dev)
6638 {
6639 	return ECORE_IS_BB(p_dev) ? 2 : 1;
6640 }
6641 
6642 int ecore_device_num_ports(struct ecore_dev *p_dev)
6643 {
6644 	return p_dev->num_ports;
6645 }
6646 
6647 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6648 			  __le16 *fw_mid,
6649 			  __le16 *fw_lsb,
6650 			  u8 *mac)
6651 {
6652 	((u8 *)fw_msb)[0] = mac[1];
6653 	((u8 *)fw_msb)[1] = mac[0];
6654 	((u8 *)fw_mid)[0] = mac[3];
6655 	((u8 *)fw_mid)[1] = mac[2];
6656 	((u8 *)fw_lsb)[0] = mac[5];
6657 	((u8 *)fw_lsb)[1] = mac[4];
6658 }
6659 
6660 bool ecore_is_mf_fip_special(struct ecore_dev *p_dev)
6661 {
6662 	return !!OSAL_TEST_BIT(ECORE_MF_FIP_SPECIAL, &p_dev->mf_bits);
6663 }
6664