xref: /dpdk/drivers/net/ngbe/ngbe_rxtx_vec_neon.c (revision 43fd3624fdfe3a33904a9b64d94306dd3d4f2c13)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2024 Beijing WangXun Technology Co., Ltd.
3  * Copyright(c) 2010-2015 Intel Corporation
4  */
5 
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 #include <rte_vect.h>
9 
10 #include "ngbe_type.h"
11 #include "ngbe_ethdev.h"
12 #include "ngbe_rxtx.h"
13 #include "ngbe_rxtx_vec_common.h"
14 
15 static inline void
16 ngbe_rxq_rearm(struct ngbe_rx_queue *rxq)
17 {
18 	int i;
19 	uint16_t rx_id;
20 	volatile struct ngbe_rx_desc *rxdp;
21 	struct ngbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22 	struct rte_mbuf *mb0, *mb1;
23 	uint64x2_t dma_addr0, dma_addr1;
24 	uint64x2_t zero = vdupq_n_u64(0);
25 	uint64_t paddr;
26 	uint8x8_t p;
27 
28 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
29 
30 	/* Pull 'n' more MBUFs into the software ring */
31 	if (unlikely(rte_mempool_get_bulk(rxq->mb_pool,
32 					  (void *)rxep,
33 					  RTE_NGBE_RXQ_REARM_THRESH) < 0)) {
34 		if (rxq->rxrearm_nb + RTE_NGBE_RXQ_REARM_THRESH >=
35 		    rxq->nb_rx_desc) {
36 			for (i = 0; i < RTE_NGBE_DESCS_PER_LOOP; i++) {
37 				rxep[i].mbuf = &rxq->fake_mbuf;
38 				vst1q_u64(RTE_CAST_PTR(uint64_t *, &rxdp[i]), zero);
39 			}
40 		}
41 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
42 			RTE_NGBE_RXQ_REARM_THRESH;
43 		return;
44 	}
45 
46 	p = vld1_u8((uint8_t *)&rxq->mbuf_initializer);
47 
48 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
49 	for (i = 0; i < RTE_NGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50 		mb0 = rxep[0].mbuf;
51 		mb1 = rxep[1].mbuf;
52 
53 		/*
54 		 * Flush mbuf with pkt template.
55 		 * Data to be rearmed is 6 bytes long.
56 		 */
57 		vst1_u8((uint8_t *)&mb0->rearm_data, p);
58 		paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
59 		dma_addr0 = vsetq_lane_u64(paddr, zero, 0);
60 		/* flush desc with pa dma_addr */
61 		vst1q_u64(RTE_CAST_PTR(uint64_t *, rxdp++), dma_addr0);
62 
63 		vst1_u8((uint8_t *)&mb1->rearm_data, p);
64 		paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
65 		dma_addr1 = vsetq_lane_u64(paddr, zero, 0);
66 		vst1q_u64(RTE_CAST_PTR(uint64_t *, rxdp++), dma_addr1);
67 	}
68 
69 	rxq->rxrearm_start += RTE_NGBE_RXQ_REARM_THRESH;
70 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
71 		rxq->rxrearm_start = 0;
72 
73 	rxq->rxrearm_nb -= RTE_NGBE_RXQ_REARM_THRESH;
74 
75 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
76 			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
77 
78 	/* Update the tail pointer on the NIC */
79 	ngbe_set32(rxq->rdt_reg_addr, rx_id);
80 }
81 
82 static inline void
83 desc_to_olflags_v(uint8x16x2_t sterr_tmp1, uint8x16x2_t sterr_tmp2,
84 		  uint8x16_t staterr, uint8_t vlan_flags,
85 		  struct rte_mbuf **rx_pkts)
86 {
87 	uint8x16_t ptype;
88 	uint8x16_t vtag_lo, vtag_hi, vtag;
89 	uint8x16_t temp_csum, temp_vp;
90 	uint8x16_t vtag_mask = vdupq_n_u8(0x0F);
91 	uint32x4_t csum = {0, 0, 0, 0};
92 
93 	union {
94 		uint16_t e[4];
95 		uint64_t word;
96 	} vol;
97 
98 	const uint8x16_t rsstype_msk = {
99 			0x0F, 0x0F, 0x0F, 0x0F,
100 			0x00, 0x00, 0x00, 0x00,
101 			0x00, 0x00, 0x00, 0x00,
102 			0x00, 0x00, 0x00, 0x00};
103 
104 	const uint8x16_t rss_flags = {
105 			0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
106 			0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH,
107 			RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0,
108 			0, 0, 0, RTE_MBUF_F_RX_FDIR};
109 
110 	/* mask everything except vlan present and l4/ip csum error */
111 	const uint8x16_t vlan_csum_msk = {
112 			NGBE_RXD_STAT_VLAN, NGBE_RXD_STAT_VLAN,
113 			NGBE_RXD_STAT_VLAN, NGBE_RXD_STAT_VLAN,
114 			0, 0, 0, 0,
115 			0, 0, 0, 0,
116 			(NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 24,
117 			(NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 24,
118 			(NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 24,
119 			(NGBE_RXD_ERR_L4CS | NGBE_RXD_ERR_IPCS) >> 24};
120 
121 	/* map vlan present and l4/ip csum error to ol_flags */
122 	const uint8x16_t vlan_csum_map_lo = {
123 			RTE_MBUF_F_RX_IP_CKSUM_GOOD,
124 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
125 			RTE_MBUF_F_RX_IP_CKSUM_BAD,
126 			RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
127 			0, 0, 0, 0,
128 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD,
129 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
130 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD,
131 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
132 			0, 0, 0, 0};
133 
134 	const uint8x16_t vlan_csum_map_hi = {
135 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
136 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
137 			0, 0, 0, 0,
138 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
139 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
140 			0, 0, 0, 0};
141 
142 	ptype = vzipq_u8(sterr_tmp1.val[0], sterr_tmp2.val[0]).val[0];
143 	ptype = vandq_u8(ptype, rsstype_msk);
144 	ptype = vqtbl1q_u8(rss_flags, ptype);
145 
146 	/* extract vlan_flags and csum_error from staterr */
147 	vtag = vandq_u8(staterr, vlan_csum_msk);
148 
149 	/* csum bits are in the most significant, to use shuffle we need to
150 	 * shift them. Change mask from 0xc0 to 0x03.
151 	 */
152 	temp_csum = vshrq_n_u8(vtag, 6);
153 
154 	/* Change vlan present mask from 0x20 to 0x08.
155 	 */
156 	temp_vp = vshrq_n_u8(vtag, 2);
157 
158 	/* 'OR' the most significant 32 bits containing the checksum flags with
159 	 * the vlan present flags. Then bits layout of each lane(8bits) will be
160 	 * 'xxxx,VLAN,x,ERR_IPCS,ERR_L4CS'
161 	 */
162 	csum = vsetq_lane_u32(vgetq_lane_u32(vreinterpretq_u32_u8(temp_csum), 3), csum, 0);
163 	vtag = vorrq_u8(vreinterpretq_u8_u32(csum), vtag);
164 	vtag = vorrq_u8(vtag, temp_vp);
165 	vtag = vandq_u8(vtag, vtag_mask);
166 
167 	/* convert L4 checksum correct type to vtag_hi */
168 	vtag_hi = vqtbl1q_u8(vlan_csum_map_hi, vtag);
169 	vtag_hi = vshrq_n_u8(vtag_hi, 7);
170 
171 	/* convert VP, IPE, L4E to vtag_lo */
172 	vtag_lo = vqtbl1q_u8(vlan_csum_map_lo, vtag);
173 	vtag_lo = vorrq_u8(ptype, vtag_lo);
174 
175 	vtag = vzipq_u8(vtag_lo, vtag_hi).val[0];
176 	vol.word = vgetq_lane_u64(vreinterpretq_u64_u8(vtag), 0);
177 
178 	rx_pkts[0]->ol_flags = vol.e[0];
179 	rx_pkts[1]->ol_flags = vol.e[1];
180 	rx_pkts[2]->ol_flags = vol.e[2];
181 	rx_pkts[3]->ol_flags = vol.e[3];
182 }
183 
184 #define NGBE_VPMD_DESC_EOP_MASK	0x02020202
185 #define NGBE_UINT8_BIT			(CHAR_BIT * sizeof(uint8_t))
186 
187 static inline void
188 desc_to_ptype_v(uint64x2_t descs[4], uint16_t pkt_type_mask,
189 		struct rte_mbuf **rx_pkts)
190 {
191 	uint32x4_t ptype_mask = vdupq_n_u32((uint32_t)pkt_type_mask);
192 	uint32x4_t ptype0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
193 				vreinterpretq_u32_u64(descs[2])).val[0];
194 	uint32x4_t ptype1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
195 				vreinterpretq_u32_u64(descs[3])).val[0];
196 
197 	/* interleave low 32 bits,
198 	 * now we have 4 ptypes in a NEON register
199 	 */
200 	ptype0 = vzipq_u32(ptype0, ptype1).val[0];
201 
202 	/* shift right by NGBE_RXD_PTID_SHIFT, and apply ptype mask */
203 	ptype0 = vandq_u32(vshrq_n_u32(ptype0, NGBE_RXD_PTID_SHIFT), ptype_mask);
204 
205 	rx_pkts[0]->packet_type = ngbe_decode_ptype(vgetq_lane_u32(ptype0, 0));
206 	rx_pkts[1]->packet_type = ngbe_decode_ptype(vgetq_lane_u32(ptype0, 1));
207 	rx_pkts[2]->packet_type = ngbe_decode_ptype(vgetq_lane_u32(ptype0, 2));
208 	rx_pkts[3]->packet_type = ngbe_decode_ptype(vgetq_lane_u32(ptype0, 3));
209 }
210 
211 /**
212  * vPMD raw receive routine, only accept(nb_pkts >= RTE_NGBE_DESCS_PER_LOOP)
213  *
214  * Notice:
215  * - nb_pkts < RTE_NGBE_DESCS_PER_LOOP, just return no packet
216  * - floor align nb_pkts to a RTE_NGBE_DESC_PER_LOOP power-of-two
217  */
218 static inline uint16_t
219 _recv_raw_pkts_vec(struct ngbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
220 		   uint16_t nb_pkts, uint8_t *split_packet)
221 {
222 	volatile struct ngbe_rx_desc *rxdp;
223 	struct ngbe_rx_entry *sw_ring;
224 	uint16_t nb_pkts_recd;
225 	int pos;
226 	uint8x16_t shuf_msk = {
227 		0xFF, 0xFF,
228 		0xFF, 0xFF,  /* skip 32 bits pkt_type */
229 		12, 13,      /* octet 12~13, low 16 bits pkt_len */
230 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
231 		12, 13,      /* octet 12~13, 16 bits data_len */
232 		14, 15,      /* octet 14~15, low 16 bits vlan_macip */
233 		4, 5, 6, 7  /* octet 4~7, 32bits rss */
234 		};
235 	uint16x8_t crc_adjust = {0, 0, rxq->crc_len, 0,
236 				 rxq->crc_len, 0, 0, 0};
237 	uint8_t vlan_flags;
238 
239 	/* nb_pkts has to be floor-aligned to RTE_NGBE_DESCS_PER_LOOP */
240 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_NGBE_DESCS_PER_LOOP);
241 
242 	/* Just the act of getting into the function from the application is
243 	 * going to cost about 7 cycles
244 	 */
245 	rxdp = rxq->rx_ring + rxq->rx_tail;
246 
247 	rte_prefetch_non_temporal(rxdp);
248 
249 	/* See if we need to rearm the RX queue - gives the prefetch a bit
250 	 * of time to act
251 	 */
252 	if (rxq->rxrearm_nb > RTE_NGBE_RXQ_REARM_THRESH)
253 		ngbe_rxq_rearm(rxq);
254 
255 	/* Before we start moving massive data around, check to see if
256 	 * there is actually a packet available
257 	 */
258 	if (!(rxdp->qw1.lo.status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD)))
259 		return 0;
260 
261 	/* Cache is empty -> need to scan the buffer rings, but first move
262 	 * the next 'n' mbufs into the cache
263 	 */
264 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
265 
266 	/* ensure these 2 flags are in the lower 8 bits */
267 	RTE_BUILD_BUG_ON((RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED) > UINT8_MAX);
268 	vlan_flags = rxq->vlan_flags & UINT8_MAX;
269 
270 	/* A. load 4 packet in one loop
271 	 * B. copy 4 mbuf point from swring to rx_pkts
272 	 * C. calc the number of DD bits among the 4 packets
273 	 * [C*. extract the end-of-packet bit, if requested]
274 	 * D. fill info. from desc to mbuf
275 	 */
276 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
277 			pos += RTE_NGBE_DESCS_PER_LOOP,
278 			rxdp += RTE_NGBE_DESCS_PER_LOOP) {
279 		uint64x2_t descs[RTE_NGBE_DESCS_PER_LOOP];
280 		uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
281 		uint8x16x2_t sterr_tmp1, sterr_tmp2;
282 		uint64x2_t mbp1, mbp2;
283 		uint8x16_t staterr;
284 		uint16x8_t tmp;
285 		uint32_t stat;
286 
287 		/* B.1 load 2 mbuf point */
288 		mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
289 
290 		/* B.2 copy 2 mbuf point into rx_pkts  */
291 		vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
292 
293 		/* B.1 load 2 mbuf point */
294 		mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
295 
296 		/* A. load 4 pkts descs */
297 		descs[0] =  vld1q_u64((uint64_t *)(uintptr_t)(rxdp));
298 		descs[1] =  vld1q_u64((uint64_t *)(uintptr_t)(rxdp + 1));
299 		descs[2] =  vld1q_u64((uint64_t *)(uintptr_t)(rxdp + 2));
300 		descs[3] =  vld1q_u64((uint64_t *)(uintptr_t)(rxdp + 3));
301 
302 		/* B.2 copy 2 mbuf point into rx_pkts  */
303 		vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
304 
305 		if (split_packet) {
306 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
307 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
308 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
309 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
310 		}
311 
312 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
313 		pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
314 		pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
315 
316 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
317 		pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
318 		pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
319 
320 		/* C.1 4=>2 filter staterr info only */
321 		sterr_tmp2 = vzipq_u8(vreinterpretq_u8_u64(descs[1]),
322 				      vreinterpretq_u8_u64(descs[3]));
323 		/* C.1 4=>2 filter staterr info only */
324 		sterr_tmp1 = vzipq_u8(vreinterpretq_u8_u64(descs[0]),
325 				      vreinterpretq_u8_u64(descs[2]));
326 
327 		/* C.2 get 4 pkts staterr value  */
328 		staterr = vzipq_u8(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0];
329 
330 		/* set ol_flags with vlan packet type */
331 		desc_to_olflags_v(sterr_tmp1, sterr_tmp2, staterr, vlan_flags,
332 				  &rx_pkts[pos]);
333 
334 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
335 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
336 		pkt_mb4 = vreinterpretq_u8_u16(tmp);
337 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
338 		pkt_mb3 = vreinterpretq_u8_u16(tmp);
339 
340 		/* D.3 copy final 3,4 data to rx_pkts */
341 		vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
342 			 pkt_mb4);
343 		vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
344 			 pkt_mb3);
345 
346 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
347 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
348 		pkt_mb2 = vreinterpretq_u8_u16(tmp);
349 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
350 		pkt_mb1 = vreinterpretq_u8_u16(tmp);
351 
352 		/* C* extract and record EOP bit */
353 		if (split_packet) {
354 			stat = vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
355 			/* and with mask to extract bits, flipping 1-0 */
356 			*(int *)split_packet = ~stat & NGBE_VPMD_DESC_EOP_MASK;
357 
358 			split_packet += RTE_NGBE_DESCS_PER_LOOP;
359 		}
360 
361 		/* C.4 expand DD bit to saturate UINT8 */
362 		staterr = vshlq_n_u8(staterr, NGBE_UINT8_BIT - 1);
363 		staterr = vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_u8(staterr),
364 					      NGBE_UINT8_BIT - 1));
365 		stat = ~vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
366 
367 		rte_prefetch_non_temporal(rxdp + RTE_NGBE_DESCS_PER_LOOP);
368 
369 		/* D.3 copy final 1,2 data to rx_pkts */
370 		vst1q_u8((uint8_t *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
371 			 pkt_mb2);
372 		vst1q_u8((uint8_t *)&rx_pkts[pos]->rx_descriptor_fields1,
373 			 pkt_mb1);
374 
375 		desc_to_ptype_v(descs, NGBE_PTID_MASK, &rx_pkts[pos]);
376 
377 		/* C.5 calc available number of desc */
378 		if (unlikely(stat == 0)) {
379 			nb_pkts_recd += RTE_NGBE_DESCS_PER_LOOP;
380 		} else {
381 			nb_pkts_recd += rte_ctz32(stat) / NGBE_UINT8_BIT;
382 			break;
383 		}
384 	}
385 
386 	/* Update our internal tail pointer */
387 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
388 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
389 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
390 
391 	return nb_pkts_recd;
392 }
393 
394 /**
395  * vPMD receive routine, only accept(nb_pkts >= RTE_NGBE_DESCS_PER_LOOP)
396  *
397  * Notice:
398  * - nb_pkts < RTE_NGBE_DESCS_PER_LOOP, just return no packet
399  * - floor align nb_pkts to a RTE_NGBE_DESC_PER_LOOP power-of-two
400  */
401 uint16_t
402 ngbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
403 		uint16_t nb_pkts)
404 {
405 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
406 }
407 
408 /**
409  * vPMD receive routine that reassembles scattered packets
410  *
411  * Notice:
412  * - nb_pkts < RTE_NGBE_DESCS_PER_LOOP, just return no packet
413  * - floor align nb_pkts to a RTE_NGBE_DESC_PER_LOOP power-of-two
414  */
415 static uint16_t
416 ngbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
417 			      uint16_t nb_pkts)
418 {
419 	struct ngbe_rx_queue *rxq = rx_queue;
420 	uint8_t split_flags[RTE_NGBE_MAX_RX_BURST] = {0};
421 
422 	/* get some new buffers */
423 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
424 			split_flags);
425 	if (nb_bufs == 0)
426 		return 0;
427 
428 	/* happy day case, full burst + no packets to be joined */
429 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
430 	if (rxq->pkt_first_seg == NULL &&
431 			split_fl64[0] == 0 && split_fl64[1] == 0 &&
432 			split_fl64[2] == 0 && split_fl64[3] == 0)
433 		return nb_bufs;
434 
435 	/* reassemble any packets that need reassembly*/
436 	unsigned int i = 0;
437 	if (rxq->pkt_first_seg == NULL) {
438 		/* find the first split flag, and only reassemble then*/
439 		while (i < nb_bufs && !split_flags[i])
440 			i++;
441 		if (i == nb_bufs)
442 			return nb_bufs;
443 		rxq->pkt_first_seg = rx_pkts[i];
444 	}
445 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
446 		&split_flags[i]);
447 }
448 
449 /**
450  * vPMD receive routine that reassembles scattered packets.
451  */
452 uint16_t
453 ngbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
454 			     uint16_t nb_pkts)
455 {
456 	uint16_t retval = 0;
457 
458 	while (nb_pkts > RTE_NGBE_MAX_RX_BURST) {
459 		uint16_t burst;
460 
461 		burst = ngbe_recv_scattered_burst_vec(rx_queue,
462 						      rx_pkts + retval,
463 						      RTE_NGBE_MAX_RX_BURST);
464 		retval += burst;
465 		nb_pkts -= burst;
466 		if (burst < RTE_NGBE_MAX_RX_BURST)
467 			return retval;
468 	}
469 
470 	return retval + ngbe_recv_scattered_burst_vec(rx_queue,
471 						      rx_pkts + retval,
472 						      nb_pkts);
473 }
474 
475 static inline void
476 vtx1(volatile struct ngbe_tx_desc *txdp,
477 		struct rte_mbuf *pkt, uint64_t flags)
478 {
479 	uint16_t pkt_len = pkt->data_len;
480 
481 	if (pkt_len < RTE_ETHER_HDR_LEN)
482 		pkt_len = NGBE_FRAME_SIZE_DFT;
483 
484 	uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off,
485 				(uint64_t)pkt_len << 45 | flags | pkt_len};
486 
487 	vst1q_u64(RTE_CAST_PTR(uint64_t *, txdp), descriptor);
488 }
489 
490 static inline void
491 vtx(volatile struct ngbe_tx_desc *txdp,
492 		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
493 {
494 	int i;
495 
496 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
497 		vtx1(txdp, *pkt, flags);
498 }
499 
500 uint16_t
501 ngbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
502 			  uint16_t nb_pkts)
503 {
504 	struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue;
505 	volatile struct ngbe_tx_desc *txdp;
506 	struct ngbe_tx_entry_v *txep;
507 	uint16_t n, nb_commit, tx_id;
508 	uint64_t flags = NGBE_TXD_FLAGS;
509 	uint64_t rs = NGBE_TXD_FLAGS;
510 	int i;
511 
512 	/* cross rx_thresh boundary is not allowed */
513 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_free_thresh);
514 
515 	if (txq->nb_tx_free < txq->tx_free_thresh)
516 		ngbe_tx_free_bufs(txq);
517 
518 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
519 	if (unlikely(nb_pkts == 0))
520 		return 0;
521 
522 	tx_id = txq->tx_tail;
523 	txdp = &txq->tx_ring[tx_id];
524 	txep = &txq->sw_ring_v[tx_id];
525 
526 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
527 
528 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
529 	nb_commit = nb_pkts;
530 	if (nb_commit >= n) {
531 		tx_backlog_entry(txep, tx_pkts, n);
532 
533 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
534 			vtx1(txdp, *tx_pkts, flags);
535 
536 		vtx1(txdp, *tx_pkts++, rs);
537 
538 		nb_commit = (uint16_t)(nb_commit - n);
539 
540 		tx_id = 0;
541 
542 		/* avoid reach the end of ring */
543 		txdp = &txq->tx_ring[tx_id];
544 		txep = &txq->sw_ring_v[tx_id];
545 	}
546 
547 	tx_backlog_entry(txep, tx_pkts, nb_commit);
548 
549 	vtx(txdp, tx_pkts, nb_commit, flags);
550 
551 	tx_id = (uint16_t)(tx_id + nb_commit);
552 
553 	txq->tx_tail = tx_id;
554 
555 	ngbe_set32(txq->tdt_reg_addr, txq->tx_tail);
556 
557 	return nb_pkts;
558 }
559 
560 static void __rte_cold
561 ngbe_tx_queue_release_mbufs_vec(struct ngbe_tx_queue *txq)
562 {
563 	_ngbe_tx_queue_release_mbufs_vec(txq);
564 }
565 
566 void __rte_cold
567 ngbe_rx_queue_release_mbufs_vec(struct ngbe_rx_queue *rxq)
568 {
569 	_ngbe_rx_queue_release_mbufs_vec(rxq);
570 }
571 
572 static void __rte_cold
573 ngbe_tx_free_swring(struct ngbe_tx_queue *txq)
574 {
575 	_ngbe_tx_free_swring_vec(txq);
576 }
577 
578 static void __rte_cold
579 ngbe_reset_tx_queue(struct ngbe_tx_queue *txq)
580 {
581 	_ngbe_reset_tx_queue_vec(txq);
582 }
583 
584 static const struct ngbe_txq_ops vec_txq_ops = {
585 	.release_mbufs = ngbe_tx_queue_release_mbufs_vec,
586 	.free_swring = ngbe_tx_free_swring,
587 	.reset = ngbe_reset_tx_queue,
588 };
589 
590 int __rte_cold
591 ngbe_rxq_vec_setup(struct ngbe_rx_queue *rxq)
592 {
593 	return ngbe_rxq_vec_setup_default(rxq);
594 }
595 
596 int __rte_cold
597 ngbe_txq_vec_setup(struct ngbe_tx_queue *txq)
598 {
599 	return ngbe_txq_vec_setup_default(txq, &vec_txq_ops);
600 }
601 
602 int __rte_cold
603 ngbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
604 {
605 	return ngbe_rx_vec_dev_conf_condition_check_default(dev);
606 }
607