1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2020 Mellanox Technologies, Ltd 3 */ 4 #include <fcntl.h> 5 #include <stdint.h> 6 7 #include <rte_ether.h> 8 #include <ethdev_driver.h> 9 #include <rte_interrupts.h> 10 #include <rte_alarm.h> 11 #include <rte_malloc.h> 12 #include <rte_cycles.h> 13 #include <rte_eal_paging.h> 14 15 #include <mlx5_malloc.h> 16 #include <mlx5_common_devx.h> 17 18 #include "mlx5.h" 19 #include "mlx5_rx.h" 20 #include "mlx5_tx.h" 21 #include "mlx5_common_os.h" 22 23 static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t), 24 "Wrong timestamp CQE part size"); 25 26 static const char * const mlx5_txpp_stat_names[] = { 27 "tx_pp_missed_interrupt_errors", /* Missed service interrupt. */ 28 "tx_pp_rearm_queue_errors", /* Rearm Queue errors. */ 29 "tx_pp_clock_queue_errors", /* Clock Queue errors. */ 30 "tx_pp_timestamp_past_errors", /* Timestamp in the past. */ 31 "tx_pp_timestamp_future_errors", /* Timestamp in the distant future. */ 32 "tx_pp_jitter", /* Timestamp jitter (one Clock Queue completion). */ 33 "tx_pp_wander", /* Timestamp wander (half of Clock Queue CQEs). */ 34 "tx_pp_sync_lost", /* Scheduling synchronization lost. */ 35 }; 36 37 /* Destroy Event Queue Notification Channel. */ 38 static void 39 mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh) 40 { 41 if (sh->txpp.echan) { 42 mlx5_os_devx_destroy_event_channel(sh->txpp.echan); 43 sh->txpp.echan = NULL; 44 } 45 } 46 47 /* Create Event Queue Notification Channel. */ 48 static int 49 mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh) 50 { 51 MLX5_ASSERT(!sh->txpp.echan); 52 sh->txpp.echan = mlx5_os_devx_create_event_channel(sh->cdev->ctx, 53 MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA); 54 if (!sh->txpp.echan) { 55 rte_errno = errno; 56 DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno); 57 return -rte_errno; 58 } 59 return 0; 60 } 61 62 static void 63 mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh) 64 { 65 #ifdef HAVE_MLX5DV_PP_ALLOC 66 if (sh->txpp.pp) { 67 mlx5_glue->dv_free_pp(sh->txpp.pp); 68 sh->txpp.pp = NULL; 69 sh->txpp.pp_id = 0; 70 } 71 #else 72 RTE_SET_USED(sh); 73 DRV_LOG(ERR, "Freeing pacing index is not supported."); 74 #endif 75 } 76 77 /* Allocate Packet Pacing index from kernel via mlx5dv call. */ 78 static int 79 mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh) 80 { 81 #ifdef HAVE_MLX5DV_PP_ALLOC 82 uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)]; 83 uint64_t rate; 84 85 MLX5_ASSERT(!sh->txpp.pp); 86 memset(&pp, 0, sizeof(pp)); 87 rate = NS_PER_S / sh->txpp.tick; 88 if (rate * sh->txpp.tick != NS_PER_S) 89 DRV_LOG(WARNING, "Packet pacing frequency is not precise."); 90 if (sh->txpp.test) { 91 uint32_t len; 92 93 len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE, 94 (size_t)RTE_ETHER_MIN_LEN); 95 MLX5_SET(set_pp_rate_limit_context, &pp, 96 burst_upper_bound, len); 97 MLX5_SET(set_pp_rate_limit_context, &pp, 98 typical_packet_size, len); 99 /* Convert packets per second into kilobits. */ 100 rate = (rate * len) / (1000ul / CHAR_BIT); 101 DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate); 102 } 103 MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate); 104 MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode, 105 sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE); 106 sh->txpp.pp = mlx5_glue->dv_alloc_pp 107 (sh->cdev->ctx, sizeof(pp), &pp, 108 MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX); 109 if (sh->txpp.pp == NULL) { 110 DRV_LOG(ERR, "Failed to allocate packet pacing index."); 111 rte_errno = errno; 112 return -errno; 113 } 114 if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) { 115 DRV_LOG(ERR, "Zero packet pacing index allocated."); 116 mlx5_txpp_free_pp_index(sh); 117 rte_errno = ENOTSUP; 118 return -ENOTSUP; 119 } 120 sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index; 121 return 0; 122 #else 123 RTE_SET_USED(sh); 124 DRV_LOG(ERR, "Allocating pacing index is not supported."); 125 rte_errno = ENOTSUP; 126 return -ENOTSUP; 127 #endif 128 } 129 130 static void 131 mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq) 132 { 133 mlx5_devx_sq_destroy(&wq->sq_obj); 134 mlx5_devx_cq_destroy(&wq->cq_obj); 135 memset(wq, 0, sizeof(*wq)); 136 } 137 138 static void 139 mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh) 140 { 141 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 142 143 mlx5_txpp_destroy_send_queue(wq); 144 } 145 146 static void 147 mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh) 148 { 149 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 150 151 mlx5_txpp_destroy_send_queue(wq); 152 if (sh->txpp.tsa) { 153 mlx5_free(sh->txpp.tsa); 154 sh->txpp.tsa = NULL; 155 } 156 } 157 158 static void 159 mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci) 160 { 161 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 162 struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->sq_obj.wqes; 163 union { 164 uint32_t w32[2]; 165 uint64_t w64; 166 } cs; 167 168 wq->sq_ci = ci + 1; 169 cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32 170 (wqe[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8); 171 cs.w32[1] = wqe[ci & (wq->sq_size - 1)].ctrl[1]; 172 /* Update SQ doorbell record with new SQ ci. */ 173 mlx5_doorbell_ring(&sh->tx_uar.bf_db, cs.w64, wq->sq_ci, 174 wq->sq_obj.db_rec, !sh->tx_uar.dbnc); 175 } 176 177 static void 178 mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh) 179 { 180 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 181 struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->sq_obj.wqes; 182 uint32_t i; 183 184 for (i = 0; i < wq->sq_size; i += 2) { 185 struct mlx5_wqe_cseg *cs; 186 struct mlx5_wqe_qseg *qs; 187 uint32_t index; 188 189 /* Build SEND_EN request with slave WQE index. */ 190 cs = &wqe[i + 0].cseg; 191 cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0); 192 cs->sq_ds = rte_cpu_to_be_32((wq->sq_obj.sq->id << 8) | 2); 193 cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << 194 MLX5_COMP_MODE_OFFSET); 195 cs->misc = RTE_BE32(0); 196 qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg)); 197 index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) & 198 ((1 << MLX5_WQ_INDEX_WIDTH) - 1); 199 qs->max_index = rte_cpu_to_be_32(index); 200 qs->qpn_cqn = 201 rte_cpu_to_be_32(sh->txpp.clock_queue.sq_obj.sq->id); 202 /* Build WAIT request with slave CQE index. */ 203 cs = &wqe[i + 1].cseg; 204 cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0); 205 cs->sq_ds = rte_cpu_to_be_32((wq->sq_obj.sq->id << 8) | 2); 206 cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR << 207 MLX5_COMP_MODE_OFFSET); 208 cs->misc = RTE_BE32(0); 209 qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg)); 210 index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) & 211 ((1 << MLX5_CQ_INDEX_WIDTH) - 1); 212 qs->max_index = rte_cpu_to_be_32(index); 213 qs->qpn_cqn = 214 rte_cpu_to_be_32(sh->txpp.clock_queue.cq_obj.cq->id); 215 } 216 } 217 218 /* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */ 219 static int 220 mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh) 221 { 222 struct mlx5_devx_create_sq_attr sq_attr = { 223 .cd_master = 1, 224 .state = MLX5_SQC_STATE_RST, 225 .tis_lst_sz = 1, 226 .tis_num = sh->tis[0]->id, 227 .wq_attr = (struct mlx5_devx_wq_attr){ 228 .pd = sh->cdev->pdn, 229 .uar_page = 230 mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj), 231 }, 232 .ts_format = mlx5_ts_format_conv 233 (sh->cdev->config.hca_attr.sq_ts_format), 234 }; 235 struct mlx5_devx_modify_sq_attr msq_attr = { 0 }; 236 struct mlx5_devx_cq_attr cq_attr = { 237 .uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj), 238 }; 239 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 240 int ret; 241 242 /* Create completion queue object for Rearm Queue. */ 243 ret = mlx5_devx_cq_create(sh->cdev->ctx, &wq->cq_obj, 244 log2above(MLX5_TXPP_REARM_CQ_SIZE), &cq_attr, 245 sh->numa_node); 246 if (ret) { 247 DRV_LOG(ERR, "Failed to create CQ for Rearm Queue."); 248 return ret; 249 } 250 wq->cq_ci = 0; 251 wq->arm_sn = 0; 252 wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE; 253 MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size))); 254 /* Create send queue object for Rearm Queue. */ 255 sq_attr.cqn = wq->cq_obj.cq->id; 256 /* There should be no WQE leftovers in the cyclic queue. */ 257 ret = mlx5_devx_sq_create(sh->cdev->ctx, &wq->sq_obj, 258 log2above(MLX5_TXPP_REARM_SQ_SIZE), &sq_attr, 259 sh->numa_node); 260 if (ret) { 261 rte_errno = errno; 262 DRV_LOG(ERR, "Failed to create SQ for Rearm Queue."); 263 goto error; 264 } 265 /* Build the WQEs in the Send Queue before goto Ready state. */ 266 mlx5_txpp_fill_wqe_rearm_queue(sh); 267 /* Change queue state to ready. */ 268 msq_attr.sq_state = MLX5_SQC_STATE_RST; 269 msq_attr.state = MLX5_SQC_STATE_RDY; 270 ret = mlx5_devx_cmd_modify_sq(wq->sq_obj.sq, &msq_attr); 271 if (ret) { 272 DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue."); 273 goto error; 274 } 275 return 0; 276 error: 277 ret = -rte_errno; 278 mlx5_txpp_destroy_rearm_queue(sh); 279 rte_errno = -ret; 280 return ret; 281 } 282 283 static void 284 mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh) 285 { 286 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 287 struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->sq_obj.wqes; 288 struct mlx5_wqe_cseg *cs = &wqe->cseg; 289 uint32_t wqe_size, opcode, i; 290 uint8_t *dst; 291 292 /* For test purposes fill the WQ with SEND inline packet. */ 293 if (sh->txpp.test) { 294 wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE + 295 MLX5_WQE_CSEG_SIZE + 296 2 * MLX5_WQE_ESEG_SIZE - 297 MLX5_ESEG_MIN_INLINE_SIZE, 298 MLX5_WSEG_SIZE); 299 opcode = MLX5_OPCODE_SEND; 300 } else { 301 wqe_size = MLX5_WSEG_SIZE; 302 opcode = MLX5_OPCODE_NOP; 303 } 304 cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */ 305 cs->sq_ds = rte_cpu_to_be_32((wq->sq_obj.sq->id << 8) | 306 (wqe_size / MLX5_WSEG_SIZE)); 307 cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET); 308 cs->misc = RTE_BE32(0); 309 wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE); 310 if (sh->txpp.test) { 311 struct mlx5_wqe_eseg *es = &wqe->eseg; 312 struct rte_ether_hdr *eth_hdr; 313 struct rte_ipv4_hdr *ip_hdr; 314 struct rte_udp_hdr *udp_hdr; 315 316 /* Build the inline test packet pattern. */ 317 MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX); 318 MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >= 319 (sizeof(struct rte_ether_hdr) + 320 sizeof(struct rte_ipv4_hdr))); 321 es->flags = 0; 322 es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM; 323 es->swp_offs = 0; 324 es->metadata = 0; 325 es->swp_flags = 0; 326 es->mss = 0; 327 es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE); 328 /* Build test packet L2 header (Ethernet). */ 329 dst = (uint8_t *)&es->inline_data; 330 eth_hdr = (struct rte_ether_hdr *)dst; 331 rte_eth_random_addr(ð_hdr->dst_addr.addr_bytes[0]); 332 rte_eth_random_addr(ð_hdr->src_addr.addr_bytes[0]); 333 eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); 334 /* Build test packet L3 header (IP v4). */ 335 dst += sizeof(struct rte_ether_hdr); 336 ip_hdr = (struct rte_ipv4_hdr *)dst; 337 ip_hdr->version_ihl = RTE_IPV4_VHL_DEF; 338 ip_hdr->type_of_service = 0; 339 ip_hdr->fragment_offset = 0; 340 ip_hdr->time_to_live = 64; 341 ip_hdr->next_proto_id = IPPROTO_UDP; 342 ip_hdr->packet_id = 0; 343 ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE - 344 sizeof(struct rte_ether_hdr)); 345 /* use RFC5735 / RFC2544 reserved network test addresses */ 346 ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) | 347 (0 << 8) | 1); 348 ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) | 349 (0 << 8) | 2); 350 if (MLX5_TXPP_TEST_PKT_SIZE < 351 (sizeof(struct rte_ether_hdr) + 352 sizeof(struct rte_ipv4_hdr) + 353 sizeof(struct rte_udp_hdr))) 354 goto wcopy; 355 /* Build test packet L4 header (UDP). */ 356 dst += sizeof(struct rte_ipv4_hdr); 357 udp_hdr = (struct rte_udp_hdr *)dst; 358 udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */ 359 udp_hdr->dst_port = RTE_BE16(9); 360 udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE - 361 sizeof(struct rte_ether_hdr) - 362 sizeof(struct rte_ipv4_hdr)); 363 udp_hdr->dgram_cksum = 0; 364 /* Fill the test packet data. */ 365 dst += sizeof(struct rte_udp_hdr); 366 for (i = sizeof(struct rte_ether_hdr) + 367 sizeof(struct rte_ipv4_hdr) + 368 sizeof(struct rte_udp_hdr); 369 i < MLX5_TXPP_TEST_PKT_SIZE; i++) 370 *dst++ = (uint8_t)(i & 0xFF); 371 } 372 wcopy: 373 /* Duplicate the pattern to the next WQEs. */ 374 dst = (uint8_t *)(uintptr_t)wq->sq_obj.umem_buf; 375 for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) { 376 dst += wqe_size; 377 rte_memcpy(dst, (void *)(uintptr_t)wq->sq_obj.umem_buf, 378 wqe_size); 379 } 380 } 381 382 /* Creates the Clock Queue for packet pacing, returns zero on success. */ 383 static int 384 mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh) 385 { 386 struct mlx5_devx_create_sq_attr sq_attr = { 0 }; 387 struct mlx5_devx_modify_sq_attr msq_attr = { 0 }; 388 struct mlx5_devx_cq_attr cq_attr = { 389 .use_first_only = 1, 390 .overrun_ignore = 1, 391 .uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj), 392 }; 393 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 394 int ret; 395 396 sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 397 MLX5_TXPP_REARM_SQ_SIZE * 398 sizeof(struct mlx5_txpp_ts), 399 0, sh->numa_node); 400 if (!sh->txpp.tsa) { 401 DRV_LOG(ERR, "Failed to allocate memory for CQ stats."); 402 return -ENOMEM; 403 } 404 sh->txpp.ts_p = 0; 405 sh->txpp.ts_n = 0; 406 /* Create completion queue object for Clock Queue. */ 407 ret = mlx5_devx_cq_create(sh->cdev->ctx, &wq->cq_obj, 408 log2above(MLX5_TXPP_CLKQ_SIZE), &cq_attr, 409 sh->numa_node); 410 if (ret) { 411 DRV_LOG(ERR, "Failed to create CQ for Clock Queue."); 412 goto error; 413 } 414 wq->cq_ci = 0; 415 /* Allocate memory buffer for Send Queue WQEs. */ 416 if (sh->txpp.test) { 417 wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE + 418 MLX5_WQE_CSEG_SIZE + 419 2 * MLX5_WQE_ESEG_SIZE - 420 MLX5_ESEG_MIN_INLINE_SIZE, 421 MLX5_WQE_SIZE) / MLX5_WQE_SIZE; 422 wq->sq_size *= MLX5_TXPP_CLKQ_SIZE; 423 } else { 424 wq->sq_size = MLX5_TXPP_CLKQ_SIZE; 425 } 426 /* There should not be WQE leftovers in the cyclic queue. */ 427 MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size))); 428 /* Create send queue object for Clock Queue. */ 429 if (sh->txpp.test) { 430 sq_attr.tis_lst_sz = 1; 431 sq_attr.tis_num = sh->tis[0]->id; 432 sq_attr.non_wire = 0; 433 sq_attr.static_sq_wq = 1; 434 } else { 435 sq_attr.non_wire = 1; 436 sq_attr.static_sq_wq = 1; 437 } 438 sq_attr.cqn = wq->cq_obj.cq->id; 439 sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id; 440 sq_attr.wq_attr.cd_slave = 1; 441 sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj); 442 sq_attr.wq_attr.pd = sh->cdev->pdn; 443 sq_attr.ts_format = 444 mlx5_ts_format_conv(sh->cdev->config.hca_attr.sq_ts_format); 445 ret = mlx5_devx_sq_create(sh->cdev->ctx, &wq->sq_obj, 446 log2above(wq->sq_size), 447 &sq_attr, sh->numa_node); 448 if (ret) { 449 rte_errno = errno; 450 DRV_LOG(ERR, "Failed to create SQ for Clock Queue."); 451 goto error; 452 } 453 /* Build the WQEs in the Send Queue before goto Ready state. */ 454 mlx5_txpp_fill_wqe_clock_queue(sh); 455 /* Change queue state to ready. */ 456 msq_attr.sq_state = MLX5_SQC_STATE_RST; 457 msq_attr.state = MLX5_SQC_STATE_RDY; 458 wq->sq_ci = 0; 459 ret = mlx5_devx_cmd_modify_sq(wq->sq_obj.sq, &msq_attr); 460 if (ret) { 461 DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue."); 462 goto error; 463 } 464 return 0; 465 error: 466 ret = -rte_errno; 467 mlx5_txpp_destroy_clock_queue(sh); 468 rte_errno = -ret; 469 return ret; 470 } 471 472 /* Enable notification from the Rearm Queue CQ. */ 473 static inline void 474 mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh) 475 { 476 struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue; 477 uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET; 478 uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci; 479 uint64_t db_be = 480 rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq_obj.cq->id); 481 482 mlx5_doorbell_ring(&sh->tx_uar.cq_db, db_be, db_hi, 483 &aq->cq_obj.db_rec[MLX5_CQ_ARM_DB], 0); 484 aq->arm_sn++; 485 } 486 487 #if defined(RTE_ARCH_X86_64) 488 static inline int 489 mlx5_atomic128_compare_exchange(rte_int128_t *dst, 490 rte_int128_t *exp, 491 const rte_int128_t *src) 492 { 493 uint8_t res; 494 495 asm volatile (MPLOCKED 496 "cmpxchg16b %[dst];" 497 " sete %[res]" 498 : [dst] "=m" (dst->val[0]), 499 "=a" (exp->val[0]), 500 "=d" (exp->val[1]), 501 [res] "=r" (res) 502 : "b" (src->val[0]), 503 "c" (src->val[1]), 504 "a" (exp->val[0]), 505 "d" (exp->val[1]), 506 "m" (dst->val[0]) 507 : "memory"); 508 509 return res; 510 } 511 #endif 512 513 static inline void 514 mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts) 515 { 516 /* 517 * The only CQE of Clock Queue is being continuously 518 * updated by hardware with specified rate. We must 519 * read timestamp and WQE completion index atomically. 520 */ 521 #if defined(RTE_ARCH_X86_64) 522 rte_int128_t src; 523 524 memset(&src, 0, sizeof(src)); 525 *ts = src; 526 /* if (*from == *ts) *from = *src else *ts = *from; */ 527 mlx5_atomic128_compare_exchange(from, ts, &src); 528 #else 529 uint64_t *cqe = (uint64_t *)from; 530 531 /* 532 * Power architecture does not support 16B compare-and-swap. 533 * ARM implements it in software, code below is more relevant. 534 */ 535 for (;;) { 536 uint64_t tm, op; 537 uint64_t *ps; 538 539 rte_compiler_barrier(); 540 tm = __atomic_load_n(cqe + 0, __ATOMIC_RELAXED); 541 op = __atomic_load_n(cqe + 1, __ATOMIC_RELAXED); 542 rte_compiler_barrier(); 543 if (tm != __atomic_load_n(cqe + 0, __ATOMIC_RELAXED)) 544 continue; 545 if (op != __atomic_load_n(cqe + 1, __ATOMIC_RELAXED)) 546 continue; 547 ps = (uint64_t *)ts; 548 ps[0] = tm; 549 ps[1] = op; 550 return; 551 } 552 #endif 553 } 554 555 /* Stores timestamp in the cache structure to share data with datapath. */ 556 static inline void 557 mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh, 558 uint64_t ts, uint64_t ci) 559 { 560 ci = ci << (64 - MLX5_CQ_INDEX_WIDTH); 561 ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH; 562 rte_compiler_barrier(); 563 __atomic_store_n(&sh->txpp.ts.ts, ts, __ATOMIC_RELAXED); 564 __atomic_store_n(&sh->txpp.ts.ci_ts, ci, __ATOMIC_RELAXED); 565 rte_wmb(); 566 } 567 568 /* Reads timestamp from Clock Queue CQE and stores in the cache. */ 569 static inline void 570 mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh) 571 { 572 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 573 struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cq_obj.cqes; 574 union { 575 rte_int128_t u128; 576 struct mlx5_cqe_ts cts; 577 } to; 578 uint64_t ts; 579 uint16_t ci; 580 uint8_t opcode; 581 582 mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128); 583 opcode = MLX5_CQE_OPCODE(to.cts.op_own); 584 if (opcode) { 585 if (opcode != MLX5_CQE_INVALID) { 586 /* 587 * Commit the error state if and only if 588 * we have got at least one actual completion. 589 */ 590 DRV_LOG(DEBUG, 591 "Clock Queue error sync lost (%X).", opcode); 592 __atomic_fetch_add(&sh->txpp.err_clock_queue, 593 1, __ATOMIC_RELAXED); 594 sh->txpp.sync_lost = 1; 595 } 596 return; 597 } 598 ci = rte_be_to_cpu_16(to.cts.wqe_counter); 599 ts = rte_be_to_cpu_64(to.cts.timestamp); 600 ts = mlx5_txpp_convert_rx_ts(sh, ts); 601 wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX; 602 wq->sq_ci = ci; 603 mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci); 604 } 605 606 /* Waits for the first completion on Clock Queue to init timestamp. */ 607 static inline void 608 mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh) 609 { 610 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 611 uint32_t wait; 612 613 sh->txpp.ts_p = 0; 614 sh->txpp.ts_n = 0; 615 for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) { 616 mlx5_txpp_update_timestamp(sh); 617 if (wq->sq_ci) 618 return; 619 /* Wait one millisecond and try again. */ 620 rte_delay_us_sleep(US_PER_S / MS_PER_S); 621 } 622 DRV_LOG(ERR, "Unable to initialize timestamp."); 623 sh->txpp.sync_lost = 1; 624 } 625 626 #ifdef HAVE_IBV_DEVX_EVENT 627 /* Gather statistics for timestamp from Clock Queue CQE. */ 628 static inline void 629 mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh) 630 { 631 /* Check whether we have a valid timestamp. */ 632 if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n) 633 return; 634 MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE); 635 __atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ts, 636 sh->txpp.ts.ts, __ATOMIC_RELAXED); 637 __atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ci_ts, 638 sh->txpp.ts.ci_ts, __ATOMIC_RELAXED); 639 if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE) 640 sh->txpp.ts_p = 0; 641 if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE) 642 ++sh->txpp.ts_n; 643 } 644 645 /* Handles Rearm Queue completions in periodic service. */ 646 static __rte_always_inline void 647 mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh) 648 { 649 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 650 uint32_t cq_ci = wq->cq_ci; 651 bool error = false; 652 int ret; 653 654 do { 655 volatile struct mlx5_cqe *cqe; 656 657 cqe = &wq->cq_obj.cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)]; 658 ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci); 659 switch (ret) { 660 case MLX5_CQE_STATUS_ERR: 661 error = true; 662 ++cq_ci; 663 break; 664 case MLX5_CQE_STATUS_SW_OWN: 665 wq->sq_ci += 2; 666 ++cq_ci; 667 break; 668 case MLX5_CQE_STATUS_HW_OWN: 669 break; 670 default: 671 MLX5_ASSERT(false); 672 break; 673 } 674 } while (ret != MLX5_CQE_STATUS_HW_OWN); 675 if (likely(cq_ci != wq->cq_ci)) { 676 /* Check whether we have missed interrupts. */ 677 if (cq_ci - wq->cq_ci != 1) { 678 DRV_LOG(DEBUG, "Rearm Queue missed interrupt."); 679 __atomic_fetch_add(&sh->txpp.err_miss_int, 680 1, __ATOMIC_RELAXED); 681 /* Check sync lost on wqe index. */ 682 if (cq_ci - wq->cq_ci >= 683 (((1UL << MLX5_WQ_INDEX_WIDTH) / 684 MLX5_TXPP_REARM) - 1)) 685 error = 1; 686 } 687 /* Update doorbell record to notify hardware. */ 688 rte_compiler_barrier(); 689 *wq->cq_obj.db_rec = rte_cpu_to_be_32(cq_ci); 690 rte_wmb(); 691 wq->cq_ci = cq_ci; 692 /* Fire new requests to Rearm Queue. */ 693 if (error) { 694 DRV_LOG(DEBUG, "Rearm Queue error sync lost."); 695 __atomic_fetch_add(&sh->txpp.err_rearm_queue, 696 1, __ATOMIC_RELAXED); 697 sh->txpp.sync_lost = 1; 698 } 699 } 700 } 701 702 /* Handles Clock Queue completions in periodic service. */ 703 static __rte_always_inline void 704 mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh) 705 { 706 mlx5_txpp_update_timestamp(sh); 707 mlx5_txpp_gather_timestamp(sh); 708 } 709 #endif 710 711 /* Invoked periodically on Rearm Queue completions. */ 712 void 713 mlx5_txpp_interrupt_handler(void *cb_arg) 714 { 715 #ifndef HAVE_IBV_DEVX_EVENT 716 RTE_SET_USED(cb_arg); 717 return; 718 #else 719 struct mlx5_dev_ctx_shared *sh = cb_arg; 720 union { 721 struct mlx5dv_devx_async_event_hdr event_resp; 722 uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128]; 723 } out; 724 725 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 726 /* Process events in the loop. Only rearm completions are expected. */ 727 while (mlx5_glue->devx_get_event 728 (sh->txpp.echan, 729 &out.event_resp, 730 sizeof(out.buf)) >= 731 (ssize_t)sizeof(out.event_resp.cookie)) { 732 mlx5_txpp_handle_rearm_queue(sh); 733 mlx5_txpp_handle_clock_queue(sh); 734 mlx5_txpp_cq_arm(sh); 735 mlx5_txpp_doorbell_rearm_queue 736 (sh, sh->txpp.rearm_queue.sq_ci - 1); 737 } 738 #endif /* HAVE_IBV_DEVX_ASYNC */ 739 } 740 741 static void 742 mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh) 743 { 744 if (!rte_intr_fd_get(sh->txpp.intr_handle)) 745 return; 746 mlx5_intr_callback_unregister(sh->txpp.intr_handle, 747 mlx5_txpp_interrupt_handler, sh); 748 rte_intr_instance_free(sh->txpp.intr_handle); 749 } 750 751 /* Attach interrupt handler and fires first request to Rearm Queue. */ 752 static int 753 mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh) 754 { 755 uint16_t event_nums[1] = {0}; 756 int ret; 757 int fd; 758 759 sh->txpp.err_miss_int = 0; 760 sh->txpp.err_rearm_queue = 0; 761 sh->txpp.err_clock_queue = 0; 762 sh->txpp.err_ts_past = 0; 763 sh->txpp.err_ts_future = 0; 764 /* Attach interrupt handler to process Rearm Queue completions. */ 765 fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan); 766 ret = mlx5_os_set_nonblock_channel_fd(fd); 767 if (ret) { 768 DRV_LOG(ERR, "Failed to change event channel FD."); 769 rte_errno = errno; 770 return -rte_errno; 771 } 772 sh->txpp.intr_handle = 773 rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED); 774 if (sh->txpp.intr_handle == NULL) { 775 DRV_LOG(ERR, "Fail to allocate intr_handle"); 776 return -ENOMEM; 777 } 778 fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan); 779 if (rte_intr_fd_set(sh->txpp.intr_handle, fd)) 780 return -rte_errno; 781 782 if (rte_intr_type_set(sh->txpp.intr_handle, RTE_INTR_HANDLE_EXT)) 783 return -rte_errno; 784 785 if (rte_intr_callback_register(sh->txpp.intr_handle, 786 mlx5_txpp_interrupt_handler, sh)) { 787 rte_intr_fd_set(sh->txpp.intr_handle, 0); 788 DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno); 789 return -rte_errno; 790 } 791 /* Subscribe CQ event to the event channel controlled by the driver. */ 792 ret = mlx5_os_devx_subscribe_devx_event(sh->txpp.echan, 793 sh->txpp.rearm_queue.cq_obj.cq->obj, 794 sizeof(event_nums), event_nums, 0); 795 if (ret) { 796 DRV_LOG(ERR, "Failed to subscribe CQE event."); 797 rte_errno = errno; 798 return -errno; 799 } 800 /* Enable interrupts in the CQ. */ 801 mlx5_txpp_cq_arm(sh); 802 /* Fire the first request on Rearm Queue. */ 803 mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1); 804 mlx5_txpp_init_timestamp(sh); 805 return 0; 806 } 807 808 /* 809 * The routine initializes the packet pacing infrastructure: 810 * - allocates PP context 811 * - Clock CQ/SQ 812 * - Rearm CQ/SQ 813 * - attaches rearm interrupt handler 814 * - starts Clock Queue 815 * 816 * Returns 0 on success, negative otherwise 817 */ 818 static int 819 mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv) 820 { 821 int tx_pp = priv->config.tx_pp; 822 int ret; 823 824 /* Store the requested pacing parameters. */ 825 sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp; 826 sh->txpp.test = !!(tx_pp < 0); 827 sh->txpp.skew = priv->config.tx_skew; 828 sh->txpp.freq = priv->config.hca_attr.dev_freq_khz; 829 ret = mlx5_txpp_create_event_channel(sh); 830 if (ret) 831 goto exit; 832 ret = mlx5_txpp_alloc_pp_index(sh); 833 if (ret) 834 goto exit; 835 ret = mlx5_txpp_create_clock_queue(sh); 836 if (ret) 837 goto exit; 838 ret = mlx5_txpp_create_rearm_queue(sh); 839 if (ret) 840 goto exit; 841 ret = mlx5_txpp_start_service(sh); 842 if (ret) 843 goto exit; 844 exit: 845 if (ret) { 846 mlx5_txpp_stop_service(sh); 847 mlx5_txpp_destroy_rearm_queue(sh); 848 mlx5_txpp_destroy_clock_queue(sh); 849 mlx5_txpp_free_pp_index(sh); 850 mlx5_txpp_destroy_event_channel(sh); 851 sh->txpp.tick = 0; 852 sh->txpp.test = 0; 853 sh->txpp.skew = 0; 854 } 855 return ret; 856 } 857 858 /* 859 * The routine destroys the packet pacing infrastructure: 860 * - detaches rearm interrupt handler 861 * - Rearm CQ/SQ 862 * - Clock CQ/SQ 863 * - PP context 864 */ 865 static void 866 mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh) 867 { 868 mlx5_txpp_stop_service(sh); 869 mlx5_txpp_destroy_rearm_queue(sh); 870 mlx5_txpp_destroy_clock_queue(sh); 871 mlx5_txpp_free_pp_index(sh); 872 mlx5_txpp_destroy_event_channel(sh); 873 sh->txpp.tick = 0; 874 sh->txpp.test = 0; 875 sh->txpp.skew = 0; 876 } 877 878 /** 879 * Creates and starts packet pacing infrastructure on specified device. 880 * 881 * @param dev 882 * Pointer to Ethernet device structure. 883 * 884 * @return 885 * 0 on success, a negative errno value otherwise and rte_errno is set. 886 */ 887 int 888 mlx5_txpp_start(struct rte_eth_dev *dev) 889 { 890 struct mlx5_priv *priv = dev->data->dev_private; 891 struct mlx5_dev_ctx_shared *sh = priv->sh; 892 int err = 0; 893 894 if (!priv->config.tx_pp) { 895 /* Packet pacing is not requested for the device. */ 896 MLX5_ASSERT(priv->txpp_en == 0); 897 return 0; 898 } 899 if (priv->txpp_en) { 900 /* Packet pacing is already enabled for the device. */ 901 MLX5_ASSERT(sh->txpp.refcnt); 902 return 0; 903 } 904 if (priv->config.tx_pp > 0) { 905 err = rte_mbuf_dynflag_lookup 906 (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL); 907 /* No flag registered means no service needed. */ 908 if (err < 0) 909 return 0; 910 err = 0; 911 } 912 claim_zero(pthread_mutex_lock(&sh->txpp.mutex)); 913 if (sh->txpp.refcnt) { 914 priv->txpp_en = 1; 915 ++sh->txpp.refcnt; 916 } else { 917 err = mlx5_txpp_create(sh, priv); 918 if (!err) { 919 MLX5_ASSERT(sh->txpp.tick); 920 priv->txpp_en = 1; 921 sh->txpp.refcnt = 1; 922 } else { 923 rte_errno = -err; 924 } 925 } 926 claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); 927 return err; 928 } 929 930 /** 931 * Stops and destroys packet pacing infrastructure on specified device. 932 * 933 * @param dev 934 * Pointer to Ethernet device structure. 935 * 936 * @return 937 * 0 on success, a negative errno value otherwise and rte_errno is set. 938 */ 939 void 940 mlx5_txpp_stop(struct rte_eth_dev *dev) 941 { 942 struct mlx5_priv *priv = dev->data->dev_private; 943 struct mlx5_dev_ctx_shared *sh = priv->sh; 944 945 if (!priv->txpp_en) { 946 /* Packet pacing is already disabled for the device. */ 947 return; 948 } 949 priv->txpp_en = 0; 950 claim_zero(pthread_mutex_lock(&sh->txpp.mutex)); 951 MLX5_ASSERT(sh->txpp.refcnt); 952 if (!sh->txpp.refcnt || --sh->txpp.refcnt) { 953 claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); 954 return; 955 } 956 /* No references any more, do actual destroy. */ 957 mlx5_txpp_destroy(sh); 958 claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); 959 } 960 961 /* 962 * Read the current clock counter of an Ethernet device 963 * 964 * This returns the current raw clock value of an Ethernet device. It is 965 * a raw amount of ticks, with no given time reference. 966 * The value returned here is from the same clock than the one 967 * filling timestamp field of Rx/Tx packets when using hardware timestamp 968 * offload. Therefore it can be used to compute a precise conversion of 969 * the device clock to the real time. 970 * 971 * @param dev 972 * Pointer to Ethernet device structure. 973 * @param clock 974 * Pointer to the uint64_t that holds the raw clock value. 975 * 976 * @return 977 * - 0: Success. 978 * - -ENOTSUP: The function is not supported in this mode. Requires 979 * packet pacing module configured and started (tx_pp devarg) 980 */ 981 int 982 mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp) 983 { 984 struct mlx5_priv *priv = dev->data->dev_private; 985 struct mlx5_dev_ctx_shared *sh = priv->sh; 986 int ret; 987 988 if (sh->txpp.refcnt) { 989 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 990 struct mlx5_cqe *cqe = 991 (struct mlx5_cqe *)(uintptr_t)wq->cq_obj.cqes; 992 union { 993 rte_int128_t u128; 994 struct mlx5_cqe_ts cts; 995 } to; 996 uint64_t ts; 997 998 mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128); 999 if (to.cts.op_own >> 4) { 1000 DRV_LOG(DEBUG, "Clock Queue error sync lost."); 1001 __atomic_fetch_add(&sh->txpp.err_clock_queue, 1002 1, __ATOMIC_RELAXED); 1003 sh->txpp.sync_lost = 1; 1004 return -EIO; 1005 } 1006 ts = rte_be_to_cpu_64(to.cts.timestamp); 1007 ts = mlx5_txpp_convert_rx_ts(sh, ts); 1008 *timestamp = ts; 1009 return 0; 1010 } 1011 /* Not supported in isolated mode - kernel does not see the CQEs. */ 1012 if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY) 1013 return -ENOTSUP; 1014 ret = mlx5_read_clock(dev, timestamp); 1015 return ret; 1016 } 1017 1018 /** 1019 * DPDK callback to clear device extended statistics. 1020 * 1021 * @param dev 1022 * Pointer to Ethernet device structure. 1023 * 1024 * @return 1025 * 0 on success and stats is reset, negative errno value otherwise and 1026 * rte_errno is set. 1027 */ 1028 int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev) 1029 { 1030 struct mlx5_priv *priv = dev->data->dev_private; 1031 struct mlx5_dev_ctx_shared *sh = priv->sh; 1032 1033 __atomic_store_n(&sh->txpp.err_miss_int, 0, __ATOMIC_RELAXED); 1034 __atomic_store_n(&sh->txpp.err_rearm_queue, 0, __ATOMIC_RELAXED); 1035 __atomic_store_n(&sh->txpp.err_clock_queue, 0, __ATOMIC_RELAXED); 1036 __atomic_store_n(&sh->txpp.err_ts_past, 0, __ATOMIC_RELAXED); 1037 __atomic_store_n(&sh->txpp.err_ts_future, 0, __ATOMIC_RELAXED); 1038 return 0; 1039 } 1040 1041 /** 1042 * Routine to retrieve names of extended device statistics 1043 * for packet send scheduling. It appends the specific stats names 1044 * after the parts filled by preceding modules (eth stats, etc.) 1045 * 1046 * @param dev 1047 * Pointer to Ethernet device structure. 1048 * @param[out] xstats_names 1049 * Buffer to insert names into. 1050 * @param n 1051 * Number of names. 1052 * @param n_used 1053 * Number of names filled by preceding statistics modules. 1054 * 1055 * @return 1056 * Number of xstats names. 1057 */ 1058 int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused, 1059 struct rte_eth_xstat_name *xstats_names, 1060 unsigned int n, unsigned int n_used) 1061 { 1062 unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names); 1063 unsigned int i; 1064 1065 if (n >= n_used + n_txpp && xstats_names) { 1066 for (i = 0; i < n_txpp; ++i) { 1067 strncpy(xstats_names[i + n_used].name, 1068 mlx5_txpp_stat_names[i], 1069 RTE_ETH_XSTATS_NAME_SIZE); 1070 xstats_names[i + n_used].name 1071 [RTE_ETH_XSTATS_NAME_SIZE - 1] = 0; 1072 } 1073 } 1074 return n_used + n_txpp; 1075 } 1076 1077 static inline void 1078 mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp, 1079 struct mlx5_txpp_ts *tsa, uint16_t idx) 1080 { 1081 do { 1082 uint64_t ts, ci; 1083 1084 ts = __atomic_load_n(&txpp->tsa[idx].ts, __ATOMIC_RELAXED); 1085 ci = __atomic_load_n(&txpp->tsa[idx].ci_ts, __ATOMIC_RELAXED); 1086 rte_compiler_barrier(); 1087 if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0) 1088 continue; 1089 if (__atomic_load_n(&txpp->tsa[idx].ts, 1090 __ATOMIC_RELAXED) != ts) 1091 continue; 1092 if (__atomic_load_n(&txpp->tsa[idx].ci_ts, 1093 __ATOMIC_RELAXED) != ci) 1094 continue; 1095 tsa->ts = ts; 1096 tsa->ci_ts = ci; 1097 return; 1098 } while (true); 1099 } 1100 1101 /* 1102 * Jitter reflects the clock change between 1103 * neighbours Clock Queue completions. 1104 */ 1105 static uint64_t 1106 mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp) 1107 { 1108 struct mlx5_txpp_ts tsa0, tsa1; 1109 int64_t dts, dci; 1110 uint16_t ts_p; 1111 1112 if (txpp->ts_n < 2) { 1113 /* No gathered enough reports yet. */ 1114 return 0; 1115 } 1116 do { 1117 int ts_0, ts_1; 1118 1119 ts_p = txpp->ts_p; 1120 rte_compiler_barrier(); 1121 ts_0 = ts_p - 2; 1122 if (ts_0 < 0) 1123 ts_0 += MLX5_TXPP_REARM_SQ_SIZE; 1124 ts_1 = ts_p - 1; 1125 if (ts_1 < 0) 1126 ts_1 += MLX5_TXPP_REARM_SQ_SIZE; 1127 mlx5_txpp_read_tsa(txpp, &tsa0, ts_0); 1128 mlx5_txpp_read_tsa(txpp, &tsa1, ts_1); 1129 rte_compiler_barrier(); 1130 } while (ts_p != txpp->ts_p); 1131 /* We have two neighbor reports, calculate the jitter. */ 1132 dts = tsa1.ts - tsa0.ts; 1133 dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) - 1134 (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)); 1135 if (dci < 0) 1136 dci += 1 << MLX5_CQ_INDEX_WIDTH; 1137 dci *= txpp->tick; 1138 return (dts > dci) ? dts - dci : dci - dts; 1139 } 1140 1141 /* 1142 * Wander reflects the long-term clock change 1143 * over the entire length of all Clock Queue completions. 1144 */ 1145 static uint64_t 1146 mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp) 1147 { 1148 struct mlx5_txpp_ts tsa0, tsa1; 1149 int64_t dts, dci; 1150 uint16_t ts_p; 1151 1152 if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) { 1153 /* No gathered enough reports yet. */ 1154 return 0; 1155 } 1156 do { 1157 int ts_0, ts_1; 1158 1159 ts_p = txpp->ts_p; 1160 rte_compiler_barrier(); 1161 ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1; 1162 if (ts_0 < 0) 1163 ts_0 += MLX5_TXPP_REARM_SQ_SIZE; 1164 ts_1 = ts_p - 1; 1165 if (ts_1 < 0) 1166 ts_1 += MLX5_TXPP_REARM_SQ_SIZE; 1167 mlx5_txpp_read_tsa(txpp, &tsa0, ts_0); 1168 mlx5_txpp_read_tsa(txpp, &tsa1, ts_1); 1169 rte_compiler_barrier(); 1170 } while (ts_p != txpp->ts_p); 1171 /* We have two neighbor reports, calculate the jitter. */ 1172 dts = tsa1.ts - tsa0.ts; 1173 dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) - 1174 (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)); 1175 dci += 1 << MLX5_CQ_INDEX_WIDTH; 1176 dci *= txpp->tick; 1177 return (dts > dci) ? dts - dci : dci - dts; 1178 } 1179 1180 /** 1181 * Routine to retrieve extended device statistics 1182 * for packet send scheduling. It appends the specific statistics 1183 * after the parts filled by preceding modules (eth stats, etc.) 1184 * 1185 * @param dev 1186 * Pointer to Ethernet device. 1187 * @param[out] stats 1188 * Pointer to rte extended stats table. 1189 * @param n 1190 * The size of the stats table. 1191 * @param n_used 1192 * Number of stats filled by preceding statistics modules. 1193 * 1194 * @return 1195 * Number of extended stats on success and stats is filled, 1196 * negative on error and rte_errno is set. 1197 */ 1198 int 1199 mlx5_txpp_xstats_get(struct rte_eth_dev *dev, 1200 struct rte_eth_xstat *stats, 1201 unsigned int n, unsigned int n_used) 1202 { 1203 unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names); 1204 1205 if (n >= n_used + n_txpp && stats) { 1206 struct mlx5_priv *priv = dev->data->dev_private; 1207 struct mlx5_dev_ctx_shared *sh = priv->sh; 1208 unsigned int i; 1209 1210 for (i = 0; i < n_txpp; ++i) 1211 stats[n_used + i].id = n_used + i; 1212 stats[n_used + 0].value = 1213 __atomic_load_n(&sh->txpp.err_miss_int, 1214 __ATOMIC_RELAXED); 1215 stats[n_used + 1].value = 1216 __atomic_load_n(&sh->txpp.err_rearm_queue, 1217 __ATOMIC_RELAXED); 1218 stats[n_used + 2].value = 1219 __atomic_load_n(&sh->txpp.err_clock_queue, 1220 __ATOMIC_RELAXED); 1221 stats[n_used + 3].value = 1222 __atomic_load_n(&sh->txpp.err_ts_past, 1223 __ATOMIC_RELAXED); 1224 stats[n_used + 4].value = 1225 __atomic_load_n(&sh->txpp.err_ts_future, 1226 __ATOMIC_RELAXED); 1227 stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp); 1228 stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp); 1229 stats[n_used + 7].value = sh->txpp.sync_lost; 1230 } 1231 return n_used + n_txpp; 1232 } 1233