1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2020 Mellanox Technologies, Ltd 3 */ 4 #include <fcntl.h> 5 #include <stdint.h> 6 7 #include <rte_ether.h> 8 #include <ethdev_driver.h> 9 #include <rte_interrupts.h> 10 #include <rte_alarm.h> 11 #include <rte_malloc.h> 12 #include <rte_cycles.h> 13 #include <rte_eal_paging.h> 14 15 #include <mlx5_malloc.h> 16 #include <mlx5_common_devx.h> 17 18 #include "mlx5.h" 19 #include "mlx5_rx.h" 20 #include "mlx5_tx.h" 21 #include "mlx5_common_os.h" 22 23 static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t), 24 "Wrong timestamp CQE part size"); 25 26 static const char * const mlx5_txpp_stat_names[] = { 27 "tx_pp_missed_interrupt_errors", /* Missed service interrupt. */ 28 "tx_pp_rearm_queue_errors", /* Rearm Queue errors. */ 29 "tx_pp_clock_queue_errors", /* Clock Queue errors. */ 30 "tx_pp_timestamp_past_errors", /* Timestamp in the past. */ 31 "tx_pp_timestamp_future_errors", /* Timestamp in the distant future. */ 32 "tx_pp_timestamp_order_errors", /* Timestamp not in ascending order. */ 33 "tx_pp_jitter", /* Timestamp jitter (one Clock Queue completion). */ 34 "tx_pp_wander", /* Timestamp wander (half of Clock Queue CQEs). */ 35 "tx_pp_sync_lost", /* Scheduling synchronization lost. */ 36 }; 37 38 /* Destroy Event Queue Notification Channel. */ 39 static void 40 mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh) 41 { 42 if (sh->txpp.echan) { 43 mlx5_os_devx_destroy_event_channel(sh->txpp.echan); 44 sh->txpp.echan = NULL; 45 } 46 } 47 48 /* Create Event Queue Notification Channel. */ 49 static int 50 mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh) 51 { 52 MLX5_ASSERT(!sh->txpp.echan); 53 sh->txpp.echan = mlx5_os_devx_create_event_channel(sh->cdev->ctx, 54 MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA); 55 if (!sh->txpp.echan) { 56 rte_errno = errno; 57 DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno); 58 return -rte_errno; 59 } 60 return 0; 61 } 62 63 static void 64 mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh) 65 { 66 #ifdef HAVE_MLX5DV_PP_ALLOC 67 if (sh->txpp.pp) { 68 mlx5_glue->dv_free_pp(sh->txpp.pp); 69 sh->txpp.pp = NULL; 70 sh->txpp.pp_id = 0; 71 } 72 #else 73 RTE_SET_USED(sh); 74 DRV_LOG(ERR, "Freeing pacing index is not supported."); 75 #endif 76 } 77 78 /* Allocate Packet Pacing index from kernel via mlx5dv call. */ 79 static int 80 mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh) 81 { 82 #ifdef HAVE_MLX5DV_PP_ALLOC 83 uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)]; 84 uint64_t rate; 85 86 MLX5_ASSERT(!sh->txpp.pp); 87 memset(&pp, 0, sizeof(pp)); 88 rate = NS_PER_S / sh->txpp.tick; 89 if (rate * sh->txpp.tick != NS_PER_S) 90 DRV_LOG(WARNING, "Packet pacing frequency is not precise."); 91 if (sh->txpp.test) { 92 uint32_t len; 93 94 len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE, 95 (size_t)RTE_ETHER_MIN_LEN); 96 MLX5_SET(set_pp_rate_limit_context, &pp, 97 burst_upper_bound, len); 98 MLX5_SET(set_pp_rate_limit_context, &pp, 99 typical_packet_size, len); 100 /* Convert packets per second into kilobits. */ 101 rate = (rate * len) / (1000ul / CHAR_BIT); 102 DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate); 103 } 104 MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate); 105 MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode, 106 sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE); 107 sh->txpp.pp = mlx5_glue->dv_alloc_pp 108 (sh->cdev->ctx, sizeof(pp), &pp, 109 MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX); 110 if (sh->txpp.pp == NULL) { 111 DRV_LOG(ERR, "Failed to allocate packet pacing index."); 112 rte_errno = errno; 113 return -errno; 114 } 115 if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) { 116 DRV_LOG(ERR, "Zero packet pacing index allocated."); 117 mlx5_txpp_free_pp_index(sh); 118 rte_errno = ENOTSUP; 119 return -ENOTSUP; 120 } 121 sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index; 122 return 0; 123 #else 124 RTE_SET_USED(sh); 125 DRV_LOG(ERR, "Allocating pacing index is not supported."); 126 rte_errno = ENOTSUP; 127 return -ENOTSUP; 128 #endif 129 } 130 131 static void 132 mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq) 133 { 134 mlx5_devx_sq_destroy(&wq->sq_obj); 135 mlx5_devx_cq_destroy(&wq->cq_obj); 136 memset(wq, 0, sizeof(*wq)); 137 } 138 139 static void 140 mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh) 141 { 142 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 143 144 mlx5_txpp_destroy_send_queue(wq); 145 } 146 147 static void 148 mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh) 149 { 150 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 151 152 mlx5_txpp_destroy_send_queue(wq); 153 if (sh->txpp.tsa) { 154 mlx5_free(sh->txpp.tsa); 155 sh->txpp.tsa = NULL; 156 } 157 } 158 159 static void 160 mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci) 161 { 162 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 163 struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->sq_obj.wqes; 164 union { 165 uint32_t w32[2]; 166 uint64_t w64; 167 } cs; 168 169 wq->sq_ci = ci + 1; 170 cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32 171 (wqe[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8); 172 cs.w32[1] = wqe[ci & (wq->sq_size - 1)].ctrl[1]; 173 /* Update SQ doorbell record with new SQ ci. */ 174 mlx5_doorbell_ring(&sh->tx_uar.bf_db, cs.w64, wq->sq_ci, 175 wq->sq_obj.db_rec, !sh->tx_uar.dbnc); 176 } 177 178 static void 179 mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh) 180 { 181 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 182 struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->sq_obj.wqes; 183 uint32_t i; 184 185 for (i = 0; i < wq->sq_size; i += 2) { 186 struct mlx5_wqe_cseg *cs; 187 struct mlx5_wqe_qseg *qs; 188 uint32_t index; 189 190 /* Build SEND_EN request with slave WQE index. */ 191 cs = &wqe[i + 0].cseg; 192 cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0); 193 cs->sq_ds = rte_cpu_to_be_32((wq->sq_obj.sq->id << 8) | 2); 194 cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << 195 MLX5_COMP_MODE_OFFSET); 196 cs->misc = RTE_BE32(0); 197 qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg)); 198 index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) & 199 ((1 << MLX5_WQ_INDEX_WIDTH) - 1); 200 qs->max_index = rte_cpu_to_be_32(index); 201 qs->qpn_cqn = 202 rte_cpu_to_be_32(sh->txpp.clock_queue.sq_obj.sq->id); 203 /* Build WAIT request with slave CQE index. */ 204 cs = &wqe[i + 1].cseg; 205 cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0); 206 cs->sq_ds = rte_cpu_to_be_32((wq->sq_obj.sq->id << 8) | 2); 207 cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR << 208 MLX5_COMP_MODE_OFFSET); 209 cs->misc = RTE_BE32(0); 210 qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg)); 211 index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) & 212 ((1 << MLX5_CQ_INDEX_WIDTH) - 1); 213 qs->max_index = rte_cpu_to_be_32(index); 214 qs->qpn_cqn = 215 rte_cpu_to_be_32(sh->txpp.clock_queue.cq_obj.cq->id); 216 } 217 } 218 219 /* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */ 220 static int 221 mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh) 222 { 223 struct mlx5_devx_create_sq_attr sq_attr = { 224 .cd_master = 1, 225 .state = MLX5_SQC_STATE_RST, 226 .tis_lst_sz = 1, 227 .tis_num = sh->tis[0]->id, 228 .wq_attr = (struct mlx5_devx_wq_attr){ 229 .pd = sh->cdev->pdn, 230 .uar_page = 231 mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj), 232 }, 233 .ts_format = mlx5_ts_format_conv 234 (sh->cdev->config.hca_attr.sq_ts_format), 235 }; 236 struct mlx5_devx_modify_sq_attr msq_attr = { 0 }; 237 struct mlx5_devx_cq_attr cq_attr = { 238 .uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj), 239 }; 240 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 241 int ret; 242 243 /* Create completion queue object for Rearm Queue. */ 244 ret = mlx5_devx_cq_create(sh->cdev->ctx, &wq->cq_obj, 245 log2above(MLX5_TXPP_REARM_CQ_SIZE), &cq_attr, 246 sh->numa_node); 247 if (ret) { 248 DRV_LOG(ERR, "Failed to create CQ for Rearm Queue."); 249 return ret; 250 } 251 wq->cq_ci = 0; 252 wq->arm_sn = 0; 253 wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE; 254 MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size))); 255 /* Create send queue object for Rearm Queue. */ 256 sq_attr.cqn = wq->cq_obj.cq->id; 257 /* There should be no WQE leftovers in the cyclic queue. */ 258 ret = mlx5_devx_sq_create(sh->cdev->ctx, &wq->sq_obj, 259 log2above(MLX5_TXPP_REARM_SQ_SIZE), &sq_attr, 260 sh->numa_node); 261 if (ret) { 262 rte_errno = errno; 263 DRV_LOG(ERR, "Failed to create SQ for Rearm Queue."); 264 goto error; 265 } 266 /* Build the WQEs in the Send Queue before goto Ready state. */ 267 mlx5_txpp_fill_wqe_rearm_queue(sh); 268 /* Change queue state to ready. */ 269 msq_attr.sq_state = MLX5_SQC_STATE_RST; 270 msq_attr.state = MLX5_SQC_STATE_RDY; 271 ret = mlx5_devx_cmd_modify_sq(wq->sq_obj.sq, &msq_attr); 272 if (ret) { 273 DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue."); 274 goto error; 275 } 276 return 0; 277 error: 278 ret = -rte_errno; 279 mlx5_txpp_destroy_rearm_queue(sh); 280 rte_errno = -ret; 281 return ret; 282 } 283 284 static void 285 mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh) 286 { 287 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 288 struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->sq_obj.wqes; 289 struct mlx5_wqe_cseg *cs = &wqe->cseg; 290 uint32_t wqe_size, opcode, i; 291 uint8_t *dst; 292 293 /* For test purposes fill the WQ with SEND inline packet. */ 294 if (sh->txpp.test) { 295 wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE + 296 MLX5_WQE_CSEG_SIZE + 297 2 * MLX5_WQE_ESEG_SIZE - 298 MLX5_ESEG_MIN_INLINE_SIZE, 299 MLX5_WSEG_SIZE); 300 opcode = MLX5_OPCODE_SEND; 301 } else { 302 wqe_size = MLX5_WSEG_SIZE; 303 opcode = MLX5_OPCODE_NOP; 304 } 305 cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */ 306 cs->sq_ds = rte_cpu_to_be_32((wq->sq_obj.sq->id << 8) | 307 (wqe_size / MLX5_WSEG_SIZE)); 308 cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET); 309 cs->misc = RTE_BE32(0); 310 wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE); 311 if (sh->txpp.test) { 312 struct mlx5_wqe_eseg *es = &wqe->eseg; 313 struct rte_ether_hdr *eth_hdr; 314 struct rte_ipv4_hdr *ip_hdr; 315 struct rte_udp_hdr *udp_hdr; 316 317 /* Build the inline test packet pattern. */ 318 MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX); 319 MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >= 320 (sizeof(struct rte_ether_hdr) + 321 sizeof(struct rte_ipv4_hdr))); 322 es->flags = 0; 323 es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM; 324 es->swp_offs = 0; 325 es->metadata = 0; 326 es->swp_flags = 0; 327 es->mss = 0; 328 es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE); 329 /* Build test packet L2 header (Ethernet). */ 330 dst = (uint8_t *)&es->inline_data; 331 eth_hdr = (struct rte_ether_hdr *)dst; 332 rte_eth_random_addr(ð_hdr->dst_addr.addr_bytes[0]); 333 rte_eth_random_addr(ð_hdr->src_addr.addr_bytes[0]); 334 eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); 335 /* Build test packet L3 header (IP v4). */ 336 dst += sizeof(struct rte_ether_hdr); 337 ip_hdr = (struct rte_ipv4_hdr *)dst; 338 ip_hdr->version_ihl = RTE_IPV4_VHL_DEF; 339 ip_hdr->type_of_service = 0; 340 ip_hdr->fragment_offset = 0; 341 ip_hdr->time_to_live = 64; 342 ip_hdr->next_proto_id = IPPROTO_UDP; 343 ip_hdr->packet_id = 0; 344 ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE - 345 sizeof(struct rte_ether_hdr)); 346 /* use RFC5735 / RFC2544 reserved network test addresses */ 347 ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) | 348 (0 << 8) | 1); 349 ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) | 350 (0 << 8) | 2); 351 if (MLX5_TXPP_TEST_PKT_SIZE < 352 (sizeof(struct rte_ether_hdr) + 353 sizeof(struct rte_ipv4_hdr) + 354 sizeof(struct rte_udp_hdr))) 355 goto wcopy; 356 /* Build test packet L4 header (UDP). */ 357 dst += sizeof(struct rte_ipv4_hdr); 358 udp_hdr = (struct rte_udp_hdr *)dst; 359 udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */ 360 udp_hdr->dst_port = RTE_BE16(9); 361 udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE - 362 sizeof(struct rte_ether_hdr) - 363 sizeof(struct rte_ipv4_hdr)); 364 udp_hdr->dgram_cksum = 0; 365 /* Fill the test packet data. */ 366 dst += sizeof(struct rte_udp_hdr); 367 for (i = sizeof(struct rte_ether_hdr) + 368 sizeof(struct rte_ipv4_hdr) + 369 sizeof(struct rte_udp_hdr); 370 i < MLX5_TXPP_TEST_PKT_SIZE; i++) 371 *dst++ = (uint8_t)(i & 0xFF); 372 } 373 wcopy: 374 /* Duplicate the pattern to the next WQEs. */ 375 dst = (uint8_t *)(uintptr_t)wq->sq_obj.umem_buf; 376 for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) { 377 dst += wqe_size; 378 rte_memcpy(dst, (void *)(uintptr_t)wq->sq_obj.umem_buf, 379 wqe_size); 380 } 381 } 382 383 /* Creates the Clock Queue for packet pacing, returns zero on success. */ 384 static int 385 mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh) 386 { 387 struct mlx5_devx_create_sq_attr sq_attr = { 0 }; 388 struct mlx5_devx_modify_sq_attr msq_attr = { 0 }; 389 struct mlx5_devx_cq_attr cq_attr = { 390 .use_first_only = 1, 391 .overrun_ignore = 1, 392 .uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj), 393 }; 394 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 395 int ret; 396 397 sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, 398 MLX5_TXPP_REARM_SQ_SIZE * 399 sizeof(struct mlx5_txpp_ts), 400 0, sh->numa_node); 401 if (!sh->txpp.tsa) { 402 DRV_LOG(ERR, "Failed to allocate memory for CQ stats."); 403 return -ENOMEM; 404 } 405 sh->txpp.ts_p = 0; 406 sh->txpp.ts_n = 0; 407 /* Create completion queue object for Clock Queue. */ 408 ret = mlx5_devx_cq_create(sh->cdev->ctx, &wq->cq_obj, 409 log2above(MLX5_TXPP_CLKQ_SIZE), &cq_attr, 410 sh->numa_node); 411 if (ret) { 412 DRV_LOG(ERR, "Failed to create CQ for Clock Queue."); 413 goto error; 414 } 415 wq->cq_ci = 0; 416 /* Allocate memory buffer for Send Queue WQEs. */ 417 if (sh->txpp.test) { 418 wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE + 419 MLX5_WQE_CSEG_SIZE + 420 2 * MLX5_WQE_ESEG_SIZE - 421 MLX5_ESEG_MIN_INLINE_SIZE, 422 MLX5_WQE_SIZE) / MLX5_WQE_SIZE; 423 wq->sq_size *= MLX5_TXPP_CLKQ_SIZE; 424 } else { 425 wq->sq_size = MLX5_TXPP_CLKQ_SIZE; 426 } 427 /* There should not be WQE leftovers in the cyclic queue. */ 428 MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size))); 429 /* Create send queue object for Clock Queue. */ 430 if (sh->txpp.test) { 431 sq_attr.tis_lst_sz = 1; 432 sq_attr.tis_num = sh->tis[0]->id; 433 sq_attr.non_wire = 0; 434 sq_attr.static_sq_wq = 1; 435 } else { 436 sq_attr.non_wire = 1; 437 sq_attr.static_sq_wq = 1; 438 } 439 sq_attr.cqn = wq->cq_obj.cq->id; 440 sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id; 441 sq_attr.wq_attr.cd_slave = 1; 442 sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar.obj); 443 sq_attr.wq_attr.pd = sh->cdev->pdn; 444 sq_attr.ts_format = 445 mlx5_ts_format_conv(sh->cdev->config.hca_attr.sq_ts_format); 446 ret = mlx5_devx_sq_create(sh->cdev->ctx, &wq->sq_obj, 447 log2above(wq->sq_size), 448 &sq_attr, sh->numa_node); 449 if (ret) { 450 rte_errno = errno; 451 DRV_LOG(ERR, "Failed to create SQ for Clock Queue."); 452 goto error; 453 } 454 /* Build the WQEs in the Send Queue before goto Ready state. */ 455 mlx5_txpp_fill_wqe_clock_queue(sh); 456 /* Change queue state to ready. */ 457 msq_attr.sq_state = MLX5_SQC_STATE_RST; 458 msq_attr.state = MLX5_SQC_STATE_RDY; 459 wq->sq_ci = 0; 460 ret = mlx5_devx_cmd_modify_sq(wq->sq_obj.sq, &msq_attr); 461 if (ret) { 462 DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue."); 463 goto error; 464 } 465 return 0; 466 error: 467 ret = -rte_errno; 468 mlx5_txpp_destroy_clock_queue(sh); 469 rte_errno = -ret; 470 return ret; 471 } 472 473 /* Enable notification from the Rearm Queue CQ. */ 474 static inline void 475 mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh) 476 { 477 struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue; 478 uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET; 479 uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci; 480 uint64_t db_be = 481 rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq_obj.cq->id); 482 483 mlx5_doorbell_ring(&sh->tx_uar.cq_db, db_be, db_hi, 484 &aq->cq_obj.db_rec[MLX5_CQ_ARM_DB], 0); 485 aq->arm_sn++; 486 } 487 488 #if defined(RTE_ARCH_X86_64) 489 static inline int 490 mlx5_atomic128_compare_exchange(rte_int128_t *dst, 491 rte_int128_t *exp, 492 const rte_int128_t *src) 493 { 494 uint8_t res; 495 496 asm volatile (MPLOCKED 497 "cmpxchg16b %[dst];" 498 " sete %[res]" 499 : [dst] "=m" (dst->val[0]), 500 "=a" (exp->val[0]), 501 "=d" (exp->val[1]), 502 [res] "=r" (res) 503 : "b" (src->val[0]), 504 "c" (src->val[1]), 505 "a" (exp->val[0]), 506 "d" (exp->val[1]), 507 "m" (dst->val[0]) 508 : "memory"); 509 510 return res; 511 } 512 #endif 513 514 static inline void 515 mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts) 516 { 517 /* 518 * The only CQE of Clock Queue is being continuously 519 * updated by hardware with specified rate. We must 520 * read timestamp and WQE completion index atomically. 521 */ 522 #if defined(RTE_ARCH_X86_64) 523 rte_int128_t src; 524 525 memset(&src, 0, sizeof(src)); 526 *ts = src; 527 /* if (*from == *ts) *from = *src else *ts = *from; */ 528 mlx5_atomic128_compare_exchange(from, ts, &src); 529 #else 530 uint64_t *cqe = (uint64_t *)from; 531 532 /* 533 * Power architecture does not support 16B compare-and-swap. 534 * ARM implements it in software, code below is more relevant. 535 */ 536 for (;;) { 537 uint64_t tm, op; 538 uint64_t *ps; 539 540 rte_compiler_barrier(); 541 tm = rte_atomic_load_explicit(cqe + 0, rte_memory_order_relaxed); 542 op = rte_atomic_load_explicit(cqe + 1, rte_memory_order_relaxed); 543 rte_compiler_barrier(); 544 if (tm != rte_atomic_load_explicit(cqe + 0, rte_memory_order_relaxed)) 545 continue; 546 if (op != rte_atomic_load_explicit(cqe + 1, rte_memory_order_relaxed)) 547 continue; 548 ps = (uint64_t *)ts; 549 ps[0] = tm; 550 ps[1] = op; 551 return; 552 } 553 #endif 554 } 555 556 /* Stores timestamp in the cache structure to share data with datapath. */ 557 static inline void 558 mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh, 559 uint64_t ts, uint64_t ci) 560 { 561 ci = ci << (64 - MLX5_CQ_INDEX_WIDTH); 562 ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH; 563 rte_compiler_barrier(); 564 rte_atomic_store_explicit(&sh->txpp.ts.ts, ts, rte_memory_order_relaxed); 565 rte_atomic_store_explicit(&sh->txpp.ts.ci_ts, ci, rte_memory_order_relaxed); 566 rte_wmb(); 567 } 568 569 /* Reads timestamp from Clock Queue CQE and stores in the cache. */ 570 static inline void 571 mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh) 572 { 573 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 574 struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cq_obj.cqes; 575 union { 576 rte_int128_t u128; 577 struct mlx5_cqe_ts cts; 578 } to; 579 uint64_t ts; 580 uint16_t ci; 581 uint8_t opcode; 582 583 mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128); 584 opcode = MLX5_CQE_OPCODE(to.cts.op_own); 585 if (opcode) { 586 if (opcode != MLX5_CQE_INVALID) { 587 /* 588 * Commit the error state if and only if 589 * we have got at least one actual completion. 590 */ 591 DRV_LOG(DEBUG, 592 "Clock Queue error sync lost (%X).", opcode); 593 rte_atomic_fetch_add_explicit(&sh->txpp.err_clock_queue, 594 1, rte_memory_order_relaxed); 595 sh->txpp.sync_lost = 1; 596 } 597 return; 598 } 599 ci = rte_be_to_cpu_16(to.cts.wqe_counter); 600 ts = rte_be_to_cpu_64(to.cts.timestamp); 601 ts = mlx5_txpp_convert_rx_ts(sh, ts); 602 wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX; 603 wq->sq_ci = ci; 604 mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci); 605 } 606 607 /* Waits for the first completion on Clock Queue to init timestamp. */ 608 static inline void 609 mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh) 610 { 611 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 612 uint32_t wait; 613 614 sh->txpp.ts_p = 0; 615 sh->txpp.ts_n = 0; 616 for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) { 617 mlx5_txpp_update_timestamp(sh); 618 if (wq->sq_ci) 619 return; 620 /* Wait one millisecond and try again. */ 621 rte_delay_us_sleep(US_PER_S / MS_PER_S); 622 } 623 DRV_LOG(ERR, "Unable to initialize timestamp."); 624 sh->txpp.sync_lost = 1; 625 } 626 627 #ifdef HAVE_IBV_DEVX_EVENT 628 /* Gather statistics for timestamp from Clock Queue CQE. */ 629 static inline void 630 mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh) 631 { 632 /* Check whether we have a valid timestamp. */ 633 if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n) 634 return; 635 MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE); 636 rte_atomic_store_explicit(&sh->txpp.tsa[sh->txpp.ts_p].ts, 637 sh->txpp.ts.ts, rte_memory_order_relaxed); 638 rte_atomic_store_explicit(&sh->txpp.tsa[sh->txpp.ts_p].ci_ts, 639 sh->txpp.ts.ci_ts, rte_memory_order_relaxed); 640 if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE) 641 sh->txpp.ts_p = 0; 642 if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE) 643 ++sh->txpp.ts_n; 644 } 645 646 /* Handles Rearm Queue completions in periodic service. */ 647 static __rte_always_inline void 648 mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh) 649 { 650 struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue; 651 uint32_t cq_ci = wq->cq_ci; 652 bool error = false; 653 int ret; 654 655 do { 656 volatile struct mlx5_cqe *cqe; 657 658 cqe = &wq->cq_obj.cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)]; 659 ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci); 660 switch (ret) { 661 case MLX5_CQE_STATUS_ERR: 662 error = true; 663 ++cq_ci; 664 break; 665 case MLX5_CQE_STATUS_SW_OWN: 666 wq->sq_ci += 2; 667 ++cq_ci; 668 break; 669 case MLX5_CQE_STATUS_HW_OWN: 670 break; 671 default: 672 MLX5_ASSERT(false); 673 break; 674 } 675 } while (ret != MLX5_CQE_STATUS_HW_OWN); 676 if (likely(cq_ci != wq->cq_ci)) { 677 /* Check whether we have missed interrupts. */ 678 if (cq_ci - wq->cq_ci != 1) { 679 DRV_LOG(DEBUG, "Rearm Queue missed interrupt."); 680 rte_atomic_fetch_add_explicit(&sh->txpp.err_miss_int, 681 1, rte_memory_order_relaxed); 682 /* Check sync lost on wqe index. */ 683 if (cq_ci - wq->cq_ci >= 684 (((1UL << MLX5_WQ_INDEX_WIDTH) / 685 MLX5_TXPP_REARM) - 1)) 686 error = 1; 687 } 688 /* Update doorbell record to notify hardware. */ 689 rte_compiler_barrier(); 690 *wq->cq_obj.db_rec = rte_cpu_to_be_32(cq_ci); 691 rte_wmb(); 692 wq->cq_ci = cq_ci; 693 /* Fire new requests to Rearm Queue. */ 694 if (error) { 695 DRV_LOG(DEBUG, "Rearm Queue error sync lost."); 696 rte_atomic_fetch_add_explicit(&sh->txpp.err_rearm_queue, 697 1, rte_memory_order_relaxed); 698 sh->txpp.sync_lost = 1; 699 } 700 } 701 } 702 703 /* Handles Clock Queue completions in periodic service. */ 704 static __rte_always_inline void 705 mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh) 706 { 707 mlx5_txpp_update_timestamp(sh); 708 mlx5_txpp_gather_timestamp(sh); 709 } 710 #endif 711 712 /* Invoked periodically on Rearm Queue completions. */ 713 void 714 mlx5_txpp_interrupt_handler(void *cb_arg) 715 { 716 #ifndef HAVE_IBV_DEVX_EVENT 717 RTE_SET_USED(cb_arg); 718 return; 719 #else 720 struct mlx5_dev_ctx_shared *sh = cb_arg; 721 union { 722 struct mlx5dv_devx_async_event_hdr event_resp; 723 uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128]; 724 } out; 725 726 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 727 /* Process events in the loop. Only rearm completions are expected. */ 728 while (mlx5_glue->devx_get_event 729 (sh->txpp.echan, 730 &out.event_resp, 731 sizeof(out.buf)) >= 732 (ssize_t)sizeof(out.event_resp.cookie)) { 733 mlx5_txpp_handle_rearm_queue(sh); 734 mlx5_txpp_handle_clock_queue(sh); 735 mlx5_txpp_cq_arm(sh); 736 mlx5_txpp_doorbell_rearm_queue 737 (sh, sh->txpp.rearm_queue.sq_ci - 1); 738 } 739 #endif /* HAVE_IBV_DEVX_ASYNC */ 740 } 741 742 static void 743 mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh) 744 { 745 mlx5_os_interrupt_handler_destroy(sh->txpp.intr_handle, 746 mlx5_txpp_interrupt_handler, sh); 747 } 748 749 /* Attach interrupt handler and fires first request to Rearm Queue. */ 750 static int 751 mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh) 752 { 753 uint16_t event_nums[1] = {0}; 754 int ret; 755 int fd; 756 757 sh->txpp.err_miss_int = 0; 758 sh->txpp.err_rearm_queue = 0; 759 sh->txpp.err_clock_queue = 0; 760 sh->txpp.err_ts_past = 0; 761 sh->txpp.err_ts_future = 0; 762 sh->txpp.err_ts_order = 0; 763 /* Attach interrupt handler to process Rearm Queue completions. */ 764 fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan); 765 ret = mlx5_os_set_nonblock_channel_fd(fd); 766 if (ret) { 767 DRV_LOG(ERR, "Failed to change event channel FD."); 768 rte_errno = errno; 769 return -rte_errno; 770 } 771 fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan); 772 sh->txpp.intr_handle = mlx5_os_interrupt_handler_create 773 (RTE_INTR_INSTANCE_F_SHARED, false, 774 fd, mlx5_txpp_interrupt_handler, sh); 775 if (!sh->txpp.intr_handle) { 776 DRV_LOG(ERR, "Fail to allocate intr_handle"); 777 return -rte_errno; 778 } 779 /* Subscribe CQ event to the event channel controlled by the driver. */ 780 ret = mlx5_os_devx_subscribe_devx_event(sh->txpp.echan, 781 sh->txpp.rearm_queue.cq_obj.cq->obj, 782 sizeof(event_nums), event_nums, 0); 783 if (ret) { 784 DRV_LOG(ERR, "Failed to subscribe CQE event."); 785 rte_errno = errno; 786 return -errno; 787 } 788 /* Enable interrupts in the CQ. */ 789 mlx5_txpp_cq_arm(sh); 790 /* Fire the first request on Rearm Queue. */ 791 mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1); 792 mlx5_txpp_init_timestamp(sh); 793 return 0; 794 } 795 796 /* 797 * The routine initializes the packet pacing infrastructure: 798 * - allocates PP context 799 * - Clock CQ/SQ 800 * - Rearm CQ/SQ 801 * - attaches rearm interrupt handler 802 * - starts Clock Queue 803 * 804 * Returns 0 on success, negative otherwise 805 */ 806 static int 807 mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh) 808 { 809 int tx_pp = sh->config.tx_pp; 810 int ret; 811 812 /* Store the requested pacing parameters. */ 813 sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp; 814 sh->txpp.test = !!(tx_pp < 0); 815 sh->txpp.skew = sh->config.tx_skew; 816 sh->txpp.freq = sh->cdev->config.hca_attr.dev_freq_khz; 817 ret = mlx5_txpp_create_event_channel(sh); 818 if (ret) 819 goto exit; 820 ret = mlx5_txpp_alloc_pp_index(sh); 821 if (ret) 822 goto exit; 823 ret = mlx5_txpp_create_clock_queue(sh); 824 if (ret) 825 goto exit; 826 ret = mlx5_txpp_create_rearm_queue(sh); 827 if (ret) 828 goto exit; 829 ret = mlx5_txpp_start_service(sh); 830 if (ret) 831 goto exit; 832 exit: 833 if (ret) { 834 mlx5_txpp_stop_service(sh); 835 mlx5_txpp_destroy_rearm_queue(sh); 836 mlx5_txpp_destroy_clock_queue(sh); 837 mlx5_txpp_free_pp_index(sh); 838 mlx5_txpp_destroy_event_channel(sh); 839 sh->txpp.tick = 0; 840 sh->txpp.test = 0; 841 sh->txpp.skew = 0; 842 } 843 return ret; 844 } 845 846 /* 847 * The routine destroys the packet pacing infrastructure: 848 * - detaches rearm interrupt handler 849 * - Rearm CQ/SQ 850 * - Clock CQ/SQ 851 * - PP context 852 */ 853 static void 854 mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh) 855 { 856 mlx5_txpp_stop_service(sh); 857 mlx5_txpp_destroy_rearm_queue(sh); 858 mlx5_txpp_destroy_clock_queue(sh); 859 mlx5_txpp_free_pp_index(sh); 860 mlx5_txpp_destroy_event_channel(sh); 861 sh->txpp.tick = 0; 862 sh->txpp.test = 0; 863 sh->txpp.skew = 0; 864 } 865 866 /** 867 * Creates and starts packet pacing infrastructure on specified device. 868 * 869 * @param dev 870 * Pointer to Ethernet device structure. 871 * 872 * @return 873 * 0 on success, a negative errno value otherwise and rte_errno is set. 874 */ 875 int 876 mlx5_txpp_start(struct rte_eth_dev *dev) 877 { 878 struct mlx5_priv *priv = dev->data->dev_private; 879 struct mlx5_dev_ctx_shared *sh = priv->sh; 880 int err = 0; 881 882 if (!sh->config.tx_pp) { 883 /* Packet pacing is not requested for the device. */ 884 MLX5_ASSERT(priv->txpp_en == 0); 885 return 0; 886 } 887 if (priv->txpp_en) { 888 /* Packet pacing is already enabled for the device. */ 889 MLX5_ASSERT(sh->txpp.refcnt); 890 return 0; 891 } 892 if (sh->config.tx_pp > 0) { 893 err = rte_mbuf_dynflag_lookup 894 (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL); 895 /* No flag registered means no service needed. */ 896 if (err < 0) 897 return 0; 898 err = 0; 899 } 900 claim_zero(pthread_mutex_lock(&sh->txpp.mutex)); 901 if (sh->txpp.refcnt) { 902 priv->txpp_en = 1; 903 ++sh->txpp.refcnt; 904 } else { 905 err = mlx5_txpp_create(sh); 906 if (!err) { 907 MLX5_ASSERT(sh->txpp.tick); 908 priv->txpp_en = 1; 909 sh->txpp.refcnt = 1; 910 } else { 911 rte_errno = -err; 912 } 913 } 914 claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); 915 return err; 916 } 917 918 /** 919 * Stops and destroys packet pacing infrastructure on specified device. 920 * 921 * @param dev 922 * Pointer to Ethernet device structure. 923 * 924 * @return 925 * 0 on success, a negative errno value otherwise and rte_errno is set. 926 */ 927 void 928 mlx5_txpp_stop(struct rte_eth_dev *dev) 929 { 930 struct mlx5_priv *priv = dev->data->dev_private; 931 struct mlx5_dev_ctx_shared *sh = priv->sh; 932 933 if (!priv->txpp_en) { 934 /* Packet pacing is already disabled for the device. */ 935 return; 936 } 937 priv->txpp_en = 0; 938 claim_zero(pthread_mutex_lock(&sh->txpp.mutex)); 939 MLX5_ASSERT(sh->txpp.refcnt); 940 if (!sh->txpp.refcnt || --sh->txpp.refcnt) { 941 claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); 942 return; 943 } 944 /* No references any more, do actual destroy. */ 945 mlx5_txpp_destroy(sh); 946 claim_zero(pthread_mutex_unlock(&sh->txpp.mutex)); 947 } 948 949 /* 950 * Read the current clock counter of an Ethernet device 951 * 952 * This returns the current raw clock value of an Ethernet device. It is 953 * a raw amount of ticks, with no given time reference. 954 * The value returned here is from the same clock than the one 955 * filling timestamp field of Rx/Tx packets when using hardware timestamp 956 * offload. Therefore it can be used to compute a precise conversion of 957 * the device clock to the real time. 958 * 959 * @param dev 960 * Pointer to Ethernet device structure. 961 * @param clock 962 * Pointer to the uint64_t that holds the raw clock value. 963 * 964 * @return 965 * - 0: Success. 966 * - -ENOTSUP: The function is not supported in this mode. Requires 967 * packet pacing module configured and started (tx_pp devarg) 968 */ 969 int 970 mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp) 971 { 972 struct mlx5_priv *priv = dev->data->dev_private; 973 struct mlx5_dev_ctx_shared *sh = priv->sh; 974 uint64_t ts; 975 int ret; 976 977 if (sh->txpp.refcnt) { 978 struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue; 979 struct mlx5_cqe *cqe = 980 (struct mlx5_cqe *)(uintptr_t)wq->cq_obj.cqes; 981 union { 982 rte_int128_t u128; 983 struct mlx5_cqe_ts cts; 984 } to; 985 986 mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128); 987 if (to.cts.op_own >> 4) { 988 DRV_LOG(DEBUG, "Clock Queue error sync lost."); 989 rte_atomic_fetch_add_explicit(&sh->txpp.err_clock_queue, 990 1, rte_memory_order_relaxed); 991 sh->txpp.sync_lost = 1; 992 return -EIO; 993 } 994 ts = rte_be_to_cpu_64(to.cts.timestamp); 995 ts = mlx5_txpp_convert_rx_ts(sh, ts); 996 *timestamp = ts; 997 return 0; 998 } 999 /* Check if we can read timestamp directly from hardware. */ 1000 ts = mlx5_read_pcibar_clock(dev); 1001 if (ts != 0) { 1002 *timestamp = ts; 1003 return 0; 1004 } 1005 /* Not supported in isolated mode - kernel does not see the CQEs. */ 1006 if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY) 1007 return -ENOTSUP; 1008 ret = mlx5_read_clock(dev, timestamp); 1009 return ret; 1010 } 1011 1012 /** 1013 * DPDK callback to clear device extended statistics. 1014 * 1015 * @param dev 1016 * Pointer to Ethernet device structure. 1017 * 1018 * @return 1019 * 0 on success and stats is reset, negative errno value otherwise and 1020 * rte_errno is set. 1021 */ 1022 int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev) 1023 { 1024 struct mlx5_priv *priv = dev->data->dev_private; 1025 struct mlx5_dev_ctx_shared *sh = priv->sh; 1026 1027 rte_atomic_store_explicit(&sh->txpp.err_miss_int, 0, rte_memory_order_relaxed); 1028 rte_atomic_store_explicit(&sh->txpp.err_rearm_queue, 0, rte_memory_order_relaxed); 1029 rte_atomic_store_explicit(&sh->txpp.err_clock_queue, 0, rte_memory_order_relaxed); 1030 rte_atomic_store_explicit(&sh->txpp.err_ts_past, 0, rte_memory_order_relaxed); 1031 rte_atomic_store_explicit(&sh->txpp.err_ts_future, 0, rte_memory_order_relaxed); 1032 rte_atomic_store_explicit(&sh->txpp.err_ts_order, 0, rte_memory_order_relaxed); 1033 return 0; 1034 } 1035 1036 /** 1037 * Routine to retrieve names of extended device statistics 1038 * for packet send scheduling. It appends the specific stats names 1039 * after the parts filled by preceding modules (eth stats, etc.) 1040 * 1041 * @param dev 1042 * Pointer to Ethernet device structure. 1043 * @param[out] xstats_names 1044 * Buffer to insert names into. 1045 * @param n 1046 * Number of names. 1047 * @param n_used 1048 * Number of names filled by preceding statistics modules. 1049 * 1050 * @return 1051 * Number of xstats names. 1052 */ 1053 int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused, 1054 struct rte_eth_xstat_name *xstats_names, 1055 unsigned int n, unsigned int n_used) 1056 { 1057 unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names); 1058 unsigned int i; 1059 1060 if (n >= n_used + n_txpp && xstats_names) { 1061 for (i = 0; i < n_txpp; ++i) { 1062 strlcpy(xstats_names[i + n_used].name, 1063 mlx5_txpp_stat_names[i], 1064 RTE_ETH_XSTATS_NAME_SIZE); 1065 } 1066 } 1067 return n_used + n_txpp; 1068 } 1069 1070 static inline void 1071 mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp, 1072 struct mlx5_txpp_ts *tsa, uint16_t idx) 1073 { 1074 do { 1075 uint64_t ts, ci; 1076 1077 ts = rte_atomic_load_explicit(&txpp->tsa[idx].ts, rte_memory_order_relaxed); 1078 ci = rte_atomic_load_explicit(&txpp->tsa[idx].ci_ts, rte_memory_order_relaxed); 1079 rte_compiler_barrier(); 1080 if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0) 1081 continue; 1082 if (rte_atomic_load_explicit(&txpp->tsa[idx].ts, 1083 rte_memory_order_relaxed) != ts) 1084 continue; 1085 if (rte_atomic_load_explicit(&txpp->tsa[idx].ci_ts, 1086 rte_memory_order_relaxed) != ci) 1087 continue; 1088 tsa->ts = ts; 1089 tsa->ci_ts = ci; 1090 return; 1091 } while (true); 1092 } 1093 1094 /* 1095 * Jitter reflects the clock change between 1096 * neighbours Clock Queue completions. 1097 */ 1098 static uint64_t 1099 mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp) 1100 { 1101 struct mlx5_txpp_ts tsa0, tsa1; 1102 int64_t dts, dci; 1103 uint16_t ts_p; 1104 1105 if (txpp->ts_n < 2) { 1106 /* No gathered enough reports yet. */ 1107 return 0; 1108 } 1109 do { 1110 int ts_0, ts_1; 1111 1112 ts_p = txpp->ts_p; 1113 rte_compiler_barrier(); 1114 ts_0 = ts_p - 2; 1115 if (ts_0 < 0) 1116 ts_0 += MLX5_TXPP_REARM_SQ_SIZE; 1117 ts_1 = ts_p - 1; 1118 if (ts_1 < 0) 1119 ts_1 += MLX5_TXPP_REARM_SQ_SIZE; 1120 mlx5_txpp_read_tsa(txpp, &tsa0, ts_0); 1121 mlx5_txpp_read_tsa(txpp, &tsa1, ts_1); 1122 rte_compiler_barrier(); 1123 } while (ts_p != txpp->ts_p); 1124 /* We have two neighbor reports, calculate the jitter. */ 1125 dts = tsa1.ts - tsa0.ts; 1126 dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) - 1127 (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)); 1128 if (dci < 0) 1129 dci += 1 << MLX5_CQ_INDEX_WIDTH; 1130 dci *= txpp->tick; 1131 return (dts > dci) ? dts - dci : dci - dts; 1132 } 1133 1134 /* 1135 * Wander reflects the long-term clock change 1136 * over the entire length of all Clock Queue completions. 1137 */ 1138 static uint64_t 1139 mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp) 1140 { 1141 struct mlx5_txpp_ts tsa0, tsa1; 1142 int64_t dts, dci; 1143 uint16_t ts_p; 1144 1145 if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) { 1146 /* No gathered enough reports yet. */ 1147 return 0; 1148 } 1149 do { 1150 int ts_0, ts_1; 1151 1152 ts_p = txpp->ts_p; 1153 rte_compiler_barrier(); 1154 ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1; 1155 if (ts_0 < 0) 1156 ts_0 += MLX5_TXPP_REARM_SQ_SIZE; 1157 ts_1 = ts_p - 1; 1158 if (ts_1 < 0) 1159 ts_1 += MLX5_TXPP_REARM_SQ_SIZE; 1160 mlx5_txpp_read_tsa(txpp, &tsa0, ts_0); 1161 mlx5_txpp_read_tsa(txpp, &tsa1, ts_1); 1162 rte_compiler_barrier(); 1163 } while (ts_p != txpp->ts_p); 1164 /* We have two neighbor reports, calculate the jitter. */ 1165 dts = tsa1.ts - tsa0.ts; 1166 dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) - 1167 (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)); 1168 dci += 1 << MLX5_CQ_INDEX_WIDTH; 1169 dci *= txpp->tick; 1170 return (dts > dci) ? dts - dci : dci - dts; 1171 } 1172 1173 /** 1174 * Routine to retrieve extended device statistics 1175 * for packet send scheduling. It appends the specific statistics 1176 * after the parts filled by preceding modules (eth stats, etc.) 1177 * 1178 * @param dev 1179 * Pointer to Ethernet device. 1180 * @param[out] stats 1181 * Pointer to rte extended stats table. 1182 * @param n 1183 * The size of the stats table. 1184 * @param n_used 1185 * Number of stats filled by preceding statistics modules. 1186 * 1187 * @return 1188 * Number of extended stats on success and stats is filled, 1189 * negative on error and rte_errno is set. 1190 */ 1191 int 1192 mlx5_txpp_xstats_get(struct rte_eth_dev *dev, 1193 struct rte_eth_xstat *stats, 1194 unsigned int n, unsigned int n_used) 1195 { 1196 unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names); 1197 1198 if (n >= n_used + n_txpp && stats) { 1199 struct mlx5_priv *priv = dev->data->dev_private; 1200 struct mlx5_dev_ctx_shared *sh = priv->sh; 1201 unsigned int i; 1202 1203 for (i = 0; i < n_txpp; ++i) 1204 stats[n_used + i].id = n_used + i; 1205 stats[n_used + 0].value = 1206 rte_atomic_load_explicit(&sh->txpp.err_miss_int, 1207 rte_memory_order_relaxed); 1208 stats[n_used + 1].value = 1209 rte_atomic_load_explicit(&sh->txpp.err_rearm_queue, 1210 rte_memory_order_relaxed); 1211 stats[n_used + 2].value = 1212 rte_atomic_load_explicit(&sh->txpp.err_clock_queue, 1213 rte_memory_order_relaxed); 1214 stats[n_used + 3].value = 1215 rte_atomic_load_explicit(&sh->txpp.err_ts_past, 1216 rte_memory_order_relaxed); 1217 stats[n_used + 4].value = 1218 rte_atomic_load_explicit(&sh->txpp.err_ts_future, 1219 rte_memory_order_relaxed); 1220 stats[n_used + 5].value = 1221 rte_atomic_load_explicit(&sh->txpp.err_ts_order, 1222 rte_memory_order_relaxed); 1223 stats[n_used + 6].value = mlx5_txpp_xstats_jitter(&sh->txpp); 1224 stats[n_used + 7].value = mlx5_txpp_xstats_wander(&sh->txpp); 1225 stats[n_used + 8].value = sh->txpp.sync_lost; 1226 } 1227 return n_used + n_txpp; 1228 } 1229