xref: /dpdk/drivers/net/mlx5/mlx5_txpp.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2020 Mellanox Technologies, Ltd
3  */
4 #include <fcntl.h>
5 #include <stdint.h>
6 
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_interrupts.h>
10 #include <rte_alarm.h>
11 #include <rte_malloc.h>
12 #include <rte_cycles.h>
13 #include <rte_eal_paging.h>
14 
15 #include <mlx5_malloc.h>
16 
17 #include "mlx5.h"
18 #include "mlx5_rxtx.h"
19 #include "mlx5_common_os.h"
20 
21 static const char * const mlx5_txpp_stat_names[] = {
22 	"txpp_err_miss_int", /* Missed service interrupt. */
23 	"txpp_err_rearm_queue",	/* Rearm Queue errors. */
24 	"txpp_err_clock_queue", /* Clock Queue errors. */
25 	"txpp_err_ts_past", /* Timestamp in the past. */
26 	"txpp_err_ts_future", /* Timestamp in the distant future. */
27 	"txpp_jitter", /* Timestamp jitter (one Clock Queue completion). */
28 	"txpp_wander", /* Timestamp jitter (half of Clock Queue completions). */
29 	"txpp_sync_lost", /* Scheduling synchronization lost. */
30 };
31 
32 /* Destroy Event Queue Notification Channel. */
33 static void
34 mlx5_txpp_destroy_eqn(struct mlx5_dev_ctx_shared *sh)
35 {
36 	if (sh->txpp.echan) {
37 		mlx5_glue->devx_destroy_event_channel(sh->txpp.echan);
38 		sh->txpp.echan = NULL;
39 	}
40 	sh->txpp.eqn = 0;
41 }
42 
43 /* Create Event Queue Notification Channel. */
44 static int
45 mlx5_txpp_create_eqn(struct mlx5_dev_ctx_shared *sh)
46 {
47 	uint32_t lcore;
48 
49 	MLX5_ASSERT(!sh->txpp.echan);
50 	lcore = (uint32_t)rte_lcore_to_cpu_id(-1);
51 	if (mlx5_glue->devx_query_eqn(sh->ctx, lcore, &sh->txpp.eqn)) {
52 		rte_errno = errno;
53 		DRV_LOG(ERR, "Failed to query EQ number %d.", rte_errno);
54 		sh->txpp.eqn = 0;
55 		return -rte_errno;
56 	}
57 	sh->txpp.echan = mlx5_glue->devx_create_event_channel(sh->ctx,
58 			MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA);
59 	if (!sh->txpp.echan) {
60 		sh->txpp.eqn = 0;
61 		rte_errno = errno;
62 		DRV_LOG(ERR, "Failed to create event channel %d.",
63 			rte_errno);
64 		return -rte_errno;
65 	}
66 	return 0;
67 }
68 
69 static void
70 mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh)
71 {
72 	if (sh->txpp.pp) {
73 		mlx5_glue->dv_free_pp(sh->txpp.pp);
74 		sh->txpp.pp = NULL;
75 		sh->txpp.pp_id = 0;
76 	}
77 }
78 
79 /* Allocate Packet Pacing index from kernel via mlx5dv call. */
80 static int
81 mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh)
82 {
83 #ifdef HAVE_MLX5DV_PP_ALLOC
84 	uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)];
85 	uint64_t rate;
86 
87 	MLX5_ASSERT(!sh->txpp.pp);
88 	memset(&pp, 0, sizeof(pp));
89 	rate = NS_PER_S / sh->txpp.tick;
90 	if (rate * sh->txpp.tick != NS_PER_S)
91 		DRV_LOG(WARNING, "Packet pacing frequency is not precise.");
92 	if (sh->txpp.test) {
93 		uint32_t len;
94 
95 		len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE,
96 			      (size_t)RTE_ETHER_MIN_LEN);
97 		MLX5_SET(set_pp_rate_limit_context, &pp,
98 			 burst_upper_bound, len);
99 		MLX5_SET(set_pp_rate_limit_context, &pp,
100 			 typical_packet_size, len);
101 		/* Convert packets per second into kilobits. */
102 		rate = (rate * len) / (1000ul / CHAR_BIT);
103 		DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate);
104 	}
105 	MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate);
106 	MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode,
107 		 sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE);
108 	sh->txpp.pp = mlx5_glue->dv_alloc_pp
109 				(sh->ctx, sizeof(pp), &pp,
110 				 MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX);
111 	if (sh->txpp.pp == NULL) {
112 		DRV_LOG(ERR, "Failed to allocate packet pacing index.");
113 		rte_errno = errno;
114 		return -errno;
115 	}
116 	if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) {
117 		DRV_LOG(ERR, "Zero packet pacing index allocated.");
118 		mlx5_txpp_free_pp_index(sh);
119 		rte_errno = ENOTSUP;
120 		return -ENOTSUP;
121 	}
122 	sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index;
123 	return 0;
124 #else
125 	RTE_SET_USED(sh);
126 	DRV_LOG(ERR, "Allocating pacing index is not supported.");
127 	rte_errno = ENOTSUP;
128 	return -ENOTSUP;
129 #endif
130 }
131 
132 static void
133 mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq)
134 {
135 	if (wq->sq)
136 		claim_zero(mlx5_devx_cmd_destroy(wq->sq));
137 	if (wq->sq_umem)
138 		claim_zero(mlx5_glue->devx_umem_dereg(wq->sq_umem));
139 	if (wq->sq_buf)
140 		mlx5_free((void *)(uintptr_t)wq->sq_buf);
141 	if (wq->cq)
142 		claim_zero(mlx5_devx_cmd_destroy(wq->cq));
143 	if (wq->cq_umem)
144 		claim_zero(mlx5_glue->devx_umem_dereg(wq->cq_umem));
145 	if (wq->cq_buf)
146 		mlx5_free((void *)(uintptr_t)wq->cq_buf);
147 	memset(wq, 0, sizeof(*wq));
148 }
149 
150 static void
151 mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh)
152 {
153 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
154 
155 	mlx5_txpp_destroy_send_queue(wq);
156 }
157 
158 static void
159 mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh)
160 {
161 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
162 
163 	mlx5_txpp_destroy_send_queue(wq);
164 	if (sh->txpp.tsa) {
165 		mlx5_free(sh->txpp.tsa);
166 		sh->txpp.tsa = NULL;
167 	}
168 }
169 
170 static void
171 mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci)
172 {
173 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
174 	union {
175 		uint32_t w32[2];
176 		uint64_t w64;
177 	} cs;
178 	void *reg_addr;
179 
180 	wq->sq_ci = ci + 1;
181 	cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32
182 		   (wq->wqes[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8);
183 	cs.w32[1] = wq->wqes[ci & (wq->sq_size - 1)].ctrl[1];
184 	/* Update SQ doorbell record with new SQ ci. */
185 	rte_compiler_barrier();
186 	*wq->sq_dbrec = rte_cpu_to_be_32(wq->sq_ci);
187 	/* Make sure the doorbell record is updated. */
188 	rte_wmb();
189 	/* Write to doorbel register to start processing. */
190 	reg_addr = mlx5_os_get_devx_uar_reg_addr(sh->tx_uar);
191 	__mlx5_uar_write64_relaxed(cs.w64, reg_addr, NULL);
192 	rte_wmb();
193 }
194 
195 static void
196 mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
197 {
198 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
199 	struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
200 	uint32_t i;
201 
202 	for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) {
203 		cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK;
204 		++cqe;
205 	}
206 }
207 
208 static void
209 mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
210 {
211 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
212 	struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
213 	uint32_t i;
214 
215 	for (i = 0; i < wq->sq_size; i += 2) {
216 		struct mlx5_wqe_cseg *cs;
217 		struct mlx5_wqe_qseg *qs;
218 		uint32_t index;
219 
220 		/* Build SEND_EN request with slave WQE index. */
221 		cs = &wqe[i + 0].cseg;
222 		cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0);
223 		cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
224 		cs->flags = RTE_BE32(MLX5_COMP_ALWAYS <<
225 				     MLX5_COMP_MODE_OFFSET);
226 		cs->misc = RTE_BE32(0);
227 		qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
228 		index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) &
229 			((1 << MLX5_WQ_INDEX_WIDTH) - 1);
230 		qs->max_index = rte_cpu_to_be_32(index);
231 		qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id);
232 		/* Build WAIT request with slave CQE index. */
233 		cs = &wqe[i + 1].cseg;
234 		cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0);
235 		cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
236 		cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR <<
237 				     MLX5_COMP_MODE_OFFSET);
238 		cs->misc = RTE_BE32(0);
239 		qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
240 		index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) &
241 			((1 << MLX5_CQ_INDEX_WIDTH) - 1);
242 		qs->max_index = rte_cpu_to_be_32(index);
243 		qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id);
244 	}
245 }
246 
247 /* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */
248 static int
249 mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh)
250 {
251 	struct mlx5_devx_create_sq_attr sq_attr = { 0 };
252 	struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
253 	struct mlx5_devx_cq_attr cq_attr = { 0 };
254 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
255 	size_t page_size;
256 	uint32_t umem_size, umem_dbrec;
257 	int ret;
258 
259 	page_size = rte_mem_page_size();
260 	if (page_size == (size_t)-1) {
261 		DRV_LOG(ERR, "Failed to get mem page size");
262 		return -ENOMEM;
263 	}
264 	/* Allocate memory buffer for CQEs and doorbell record. */
265 	umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE;
266 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
267 	umem_size += MLX5_DBR_SIZE;
268 	wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
269 				 page_size, sh->numa_node);
270 	if (!wq->cq_buf) {
271 		DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
272 		return -ENOMEM;
273 	}
274 	/* Register allocated buffer in user space with DevX. */
275 	wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
276 					       (void *)(uintptr_t)wq->cq_buf,
277 					       umem_size,
278 					       IBV_ACCESS_LOCAL_WRITE);
279 	if (!wq->cq_umem) {
280 		rte_errno = errno;
281 		DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
282 		goto error;
283 	}
284 	/* Create completion queue object for Rearm Queue. */
285 	cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
286 			    MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
287 	cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
288 	cq_attr.eqn = sh->txpp.eqn;
289 	cq_attr.q_umem_valid = 1;
290 	cq_attr.q_umem_offset = 0;
291 	cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
292 	cq_attr.db_umem_valid = 1;
293 	cq_attr.db_umem_offset = umem_dbrec;
294 	cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
295 	cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE);
296 	cq_attr.log_page_size = rte_log2_u32(page_size);
297 	wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
298 	if (!wq->cq) {
299 		rte_errno = errno;
300 		DRV_LOG(ERR, "Failed to create CQ for Rearm Queue.");
301 		goto error;
302 	}
303 	wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
304 	wq->cq_ci = 0;
305 	wq->arm_sn = 0;
306 	/* Mark all CQEs initially as invalid. */
307 	mlx5_txpp_fill_cqe_rearm_queue(sh);
308 	/*
309 	 * Allocate memory buffer for Send Queue WQEs.
310 	 * There should be no WQE leftovers in the cyclic queue.
311 	 */
312 	wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE;
313 	MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
314 	umem_size =  MLX5_WQE_SIZE * wq->sq_size;
315 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
316 	umem_size += MLX5_DBR_SIZE;
317 	wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
318 				 page_size, sh->numa_node);
319 	if (!wq->sq_buf) {
320 		DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
321 		rte_errno = ENOMEM;
322 		goto error;
323 	}
324 	/* Register allocated buffer in user space with DevX. */
325 	wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
326 					       (void *)(uintptr_t)wq->sq_buf,
327 					       umem_size,
328 					       IBV_ACCESS_LOCAL_WRITE);
329 	if (!wq->sq_umem) {
330 		rte_errno = errno;
331 		DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
332 		goto error;
333 	}
334 	/* Create send queue object for Rearm Queue. */
335 	sq_attr.state = MLX5_SQC_STATE_RST;
336 	sq_attr.tis_lst_sz = 1;
337 	sq_attr.tis_num = sh->tis->id;
338 	sq_attr.cqn = wq->cq->id;
339 	sq_attr.cd_master = 1;
340 	sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
341 	sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
342 	sq_attr.wq_attr.pd = sh->pdn;
343 	sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
344 	sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
345 	sq_attr.wq_attr.dbr_umem_valid = 1;
346 	sq_attr.wq_attr.dbr_addr = umem_dbrec;
347 	sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
348 	sq_attr.wq_attr.wq_umem_valid = 1;
349 	sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
350 	sq_attr.wq_attr.wq_umem_offset = 0;
351 	wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
352 	if (!wq->sq) {
353 		rte_errno = errno;
354 		DRV_LOG(ERR, "Failed to create SQ for Rearm Queue.");
355 		goto error;
356 	}
357 	wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
358 				   MLX5_SND_DBR * sizeof(uint32_t));
359 	/* Build the WQEs in the Send Queue before goto Ready state. */
360 	mlx5_txpp_fill_wqe_rearm_queue(sh);
361 	/* Change queue state to ready. */
362 	msq_attr.sq_state = MLX5_SQC_STATE_RST;
363 	msq_attr.state = MLX5_SQC_STATE_RDY;
364 	ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
365 	if (ret) {
366 		DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue.");
367 		goto error;
368 	}
369 	return 0;
370 error:
371 	ret = -rte_errno;
372 	mlx5_txpp_destroy_rearm_queue(sh);
373 	rte_errno = -ret;
374 	return ret;
375 }
376 
377 static void
378 mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh)
379 {
380 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
381 	struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
382 	struct mlx5_wqe_cseg *cs = &wqe->cseg;
383 	uint32_t wqe_size, opcode, i;
384 	uint8_t *dst;
385 
386 	/* For test purposes fill the WQ with SEND inline packet. */
387 	if (sh->txpp.test) {
388 		wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
389 				     MLX5_WQE_CSEG_SIZE +
390 				     2 * MLX5_WQE_ESEG_SIZE -
391 				     MLX5_ESEG_MIN_INLINE_SIZE,
392 				     MLX5_WSEG_SIZE);
393 		opcode = MLX5_OPCODE_SEND;
394 	} else {
395 		wqe_size = MLX5_WSEG_SIZE;
396 		opcode = MLX5_OPCODE_NOP;
397 	}
398 	cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */
399 	cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) |
400 				     (wqe_size / MLX5_WSEG_SIZE));
401 	cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET);
402 	cs->misc = RTE_BE32(0);
403 	wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE);
404 	if (sh->txpp.test) {
405 		struct mlx5_wqe_eseg *es = &wqe->eseg;
406 		struct rte_ether_hdr *eth_hdr;
407 		struct rte_ipv4_hdr *ip_hdr;
408 		struct rte_udp_hdr *udp_hdr;
409 
410 		/* Build the inline test packet pattern. */
411 		MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX);
412 		MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >=
413 				(sizeof(struct rte_ether_hdr) +
414 				 sizeof(struct rte_ipv4_hdr)));
415 		es->flags = 0;
416 		es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
417 		es->swp_offs = 0;
418 		es->metadata = 0;
419 		es->swp_flags = 0;
420 		es->mss = 0;
421 		es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE);
422 		/* Build test packet L2 header (Ethernet). */
423 		dst = (uint8_t *)&es->inline_data;
424 		eth_hdr = (struct rte_ether_hdr *)dst;
425 		rte_eth_random_addr(&eth_hdr->d_addr.addr_bytes[0]);
426 		rte_eth_random_addr(&eth_hdr->s_addr.addr_bytes[0]);
427 		eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
428 		/* Build test packet L3 header (IP v4). */
429 		dst += sizeof(struct rte_ether_hdr);
430 		ip_hdr = (struct rte_ipv4_hdr *)dst;
431 		ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
432 		ip_hdr->type_of_service = 0;
433 		ip_hdr->fragment_offset = 0;
434 		ip_hdr->time_to_live = 64;
435 		ip_hdr->next_proto_id = IPPROTO_UDP;
436 		ip_hdr->packet_id = 0;
437 		ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
438 						sizeof(struct rte_ether_hdr));
439 		/* use RFC5735 / RFC2544 reserved network test addresses */
440 		ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) |
441 					    (0 << 8) | 1);
442 		ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) |
443 					    (0 << 8) | 2);
444 		if (MLX5_TXPP_TEST_PKT_SIZE <
445 					(sizeof(struct rte_ether_hdr) +
446 					 sizeof(struct rte_ipv4_hdr) +
447 					 sizeof(struct rte_udp_hdr)))
448 			goto wcopy;
449 		/* Build test packet L4 header (UDP). */
450 		dst += sizeof(struct rte_ipv4_hdr);
451 		udp_hdr = (struct rte_udp_hdr *)dst;
452 		udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */
453 		udp_hdr->dst_port = RTE_BE16(9);
454 		udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
455 					      sizeof(struct rte_ether_hdr) -
456 					      sizeof(struct rte_ipv4_hdr));
457 		udp_hdr->dgram_cksum = 0;
458 		/* Fill the test packet data. */
459 		dst += sizeof(struct rte_udp_hdr);
460 		for (i = sizeof(struct rte_ether_hdr) +
461 			sizeof(struct rte_ipv4_hdr) +
462 			sizeof(struct rte_udp_hdr);
463 				i < MLX5_TXPP_TEST_PKT_SIZE; i++)
464 			*dst++ = (uint8_t)(i & 0xFF);
465 	}
466 wcopy:
467 	/* Duplicate the pattern to the next WQEs. */
468 	dst = (uint8_t *)(uintptr_t)wq->sq_buf;
469 	for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) {
470 		dst += wqe_size;
471 		rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size);
472 	}
473 }
474 
475 /* Creates the Clock Queue for packet pacing, returns zero on success. */
476 static int
477 mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh)
478 {
479 	struct mlx5_devx_create_sq_attr sq_attr = { 0 };
480 	struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
481 	struct mlx5_devx_cq_attr cq_attr = { 0 };
482 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
483 	size_t page_size;
484 	uint32_t umem_size, umem_dbrec;
485 	int ret;
486 
487 	page_size = rte_mem_page_size();
488 	if (page_size == (size_t)-1) {
489 		DRV_LOG(ERR, "Failed to get mem page size");
490 		return -ENOMEM;
491 	}
492 	sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
493 				   MLX5_TXPP_REARM_SQ_SIZE *
494 				   sizeof(struct mlx5_txpp_ts),
495 				   0, sh->numa_node);
496 	if (!sh->txpp.tsa) {
497 		DRV_LOG(ERR, "Failed to allocate memory for CQ stats.");
498 		return -ENOMEM;
499 	}
500 	sh->txpp.ts_p = 0;
501 	sh->txpp.ts_n = 0;
502 	/* Allocate memory buffer for CQEs and doorbell record. */
503 	umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE;
504 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
505 	umem_size += MLX5_DBR_SIZE;
506 	wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
507 					page_size, sh->numa_node);
508 	if (!wq->cq_buf) {
509 		DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
510 		return -ENOMEM;
511 	}
512 	/* Register allocated buffer in user space with DevX. */
513 	wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
514 					       (void *)(uintptr_t)wq->cq_buf,
515 					       umem_size,
516 					       IBV_ACCESS_LOCAL_WRITE);
517 	if (!wq->cq_umem) {
518 		rte_errno = errno;
519 		DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
520 		goto error;
521 	}
522 	/* Create completion queue object for Clock Queue. */
523 	cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
524 			    MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
525 	cq_attr.use_first_only = 1;
526 	cq_attr.overrun_ignore = 1;
527 	cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
528 	cq_attr.eqn = sh->txpp.eqn;
529 	cq_attr.q_umem_valid = 1;
530 	cq_attr.q_umem_offset = 0;
531 	cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
532 	cq_attr.db_umem_valid = 1;
533 	cq_attr.db_umem_offset = umem_dbrec;
534 	cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
535 	cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE);
536 	cq_attr.log_page_size = rte_log2_u32(page_size);
537 	wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
538 	if (!wq->cq) {
539 		rte_errno = errno;
540 		DRV_LOG(ERR, "Failed to create CQ for Clock Queue.");
541 		goto error;
542 	}
543 	wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
544 	wq->cq_ci = 0;
545 	/* Allocate memory buffer for Send Queue WQEs. */
546 	if (sh->txpp.test) {
547 		wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
548 					MLX5_WQE_CSEG_SIZE +
549 					2 * MLX5_WQE_ESEG_SIZE -
550 					MLX5_ESEG_MIN_INLINE_SIZE,
551 					MLX5_WQE_SIZE) / MLX5_WQE_SIZE;
552 		wq->sq_size *= MLX5_TXPP_CLKQ_SIZE;
553 	} else {
554 		wq->sq_size = MLX5_TXPP_CLKQ_SIZE;
555 	}
556 	/* There should not be WQE leftovers in the cyclic queue. */
557 	MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
558 	umem_size =  MLX5_WQE_SIZE * wq->sq_size;
559 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
560 	umem_size += MLX5_DBR_SIZE;
561 	wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
562 				 page_size, sh->numa_node);
563 	if (!wq->sq_buf) {
564 		DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
565 		rte_errno = ENOMEM;
566 		goto error;
567 	}
568 	/* Register allocated buffer in user space with DevX. */
569 	wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
570 					       (void *)(uintptr_t)wq->sq_buf,
571 					       umem_size,
572 					       IBV_ACCESS_LOCAL_WRITE);
573 	if (!wq->sq_umem) {
574 		rte_errno = errno;
575 		DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
576 		goto error;
577 	}
578 	/* Create send queue object for Clock Queue. */
579 	if (sh->txpp.test) {
580 		sq_attr.tis_lst_sz = 1;
581 		sq_attr.tis_num = sh->tis->id;
582 		sq_attr.non_wire = 0;
583 		sq_attr.static_sq_wq = 1;
584 	} else {
585 		sq_attr.non_wire = 1;
586 		sq_attr.static_sq_wq = 1;
587 	}
588 	sq_attr.state = MLX5_SQC_STATE_RST;
589 	sq_attr.cqn = wq->cq->id;
590 	sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id;
591 	sq_attr.wq_attr.cd_slave = 1;
592 	sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
593 	sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
594 	sq_attr.wq_attr.pd = sh->pdn;
595 	sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
596 	sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
597 	sq_attr.wq_attr.dbr_umem_valid = 1;
598 	sq_attr.wq_attr.dbr_addr = umem_dbrec;
599 	sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
600 	sq_attr.wq_attr.wq_umem_valid = 1;
601 	sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
602 	/* umem_offset must be zero for static_sq_wq queue. */
603 	sq_attr.wq_attr.wq_umem_offset = 0;
604 	wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
605 	if (!wq->sq) {
606 		rte_errno = errno;
607 		DRV_LOG(ERR, "Failed to create SQ for Clock Queue.");
608 		goto error;
609 	}
610 	wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
611 				   MLX5_SND_DBR * sizeof(uint32_t));
612 	/* Build the WQEs in the Send Queue before goto Ready state. */
613 	mlx5_txpp_fill_wqe_clock_queue(sh);
614 	/* Change queue state to ready. */
615 	msq_attr.sq_state = MLX5_SQC_STATE_RST;
616 	msq_attr.state = MLX5_SQC_STATE_RDY;
617 	wq->sq_ci = 0;
618 	ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
619 	if (ret) {
620 		DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue.");
621 		goto error;
622 	}
623 	return 0;
624 error:
625 	ret = -rte_errno;
626 	mlx5_txpp_destroy_clock_queue(sh);
627 	rte_errno = -ret;
628 	return ret;
629 }
630 
631 /* Enable notification from the Rearm Queue CQ. */
632 static inline void
633 mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh)
634 {
635 	void *base_addr;
636 
637 	struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue;
638 	uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET;
639 	uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci;
640 	uint64_t db_be = rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq->id);
641 	base_addr = mlx5_os_get_devx_uar_base_addr(sh->tx_uar);
642 	uint32_t *addr = RTE_PTR_ADD(base_addr, MLX5_CQ_DOORBELL);
643 
644 	rte_compiler_barrier();
645 	aq->cq_dbrec[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(db_hi);
646 	rte_wmb();
647 #ifdef RTE_ARCH_64
648 	*(uint64_t *)addr = db_be;
649 #else
650 	*(uint32_t *)addr = db_be;
651 	rte_io_wmb();
652 	*((uint32_t *)addr + 1) = db_be >> 32;
653 #endif
654 	aq->arm_sn++;
655 }
656 
657 static inline void
658 mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts)
659 {
660 	/*
661 	 * The only CQE of Clock Queue is being continuously
662 	 * update by hardware with soecified rate. We have to
663 	 * read timestump and WQE completion index atomically.
664 	 */
665 #if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64)
666 	rte_int128_t src;
667 
668 	memset(&src, 0, sizeof(src));
669 	*ts = src;
670 	/* if (*from == *ts) *from = *src else *ts = *from; */
671 	rte_atomic128_cmp_exchange(from, ts, &src, 0,
672 				   __ATOMIC_RELAXED, __ATOMIC_RELAXED);
673 #else
674 	rte_atomic64_t *cqe = (rte_atomic64_t *)from;
675 
676 	/* Power architecture does not support 16B compare-and-swap. */
677 	for (;;) {
678 		int64_t tm, op;
679 		int64_t *ps;
680 
681 		rte_compiler_barrier();
682 		tm = rte_atomic64_read(cqe + 0);
683 		op = rte_atomic64_read(cqe + 1);
684 		rte_compiler_barrier();
685 		if (tm != rte_atomic64_read(cqe + 0))
686 			continue;
687 		if (op != rte_atomic64_read(cqe + 1))
688 			continue;
689 		ps = (int64_t *)ts;
690 		ps[0] = tm;
691 		ps[1] = op;
692 		return;
693 	}
694 #endif
695 }
696 
697 /* Stores timestamp in the cache structure to share data with datapath. */
698 static inline void
699 mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh,
700 			   uint64_t ts, uint64_t ci)
701 {
702 	ci = ci << (64 - MLX5_CQ_INDEX_WIDTH);
703 	ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH;
704 	rte_compiler_barrier();
705 	rte_atomic64_set(&sh->txpp.ts.ts, ts);
706 	rte_atomic64_set(&sh->txpp.ts.ci_ts, ci);
707 	rte_wmb();
708 }
709 
710 /* Reads timestamp from Clock Queue CQE and stores in the cache. */
711 static inline void
712 mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh)
713 {
714 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
715 	struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
716 	union {
717 		rte_int128_t u128;
718 		struct mlx5_cqe_ts cts;
719 	} to;
720 	uint64_t ts;
721 	uint16_t ci;
722 
723 	static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t),
724 		      "Wrong timestamp CQE part size");
725 	mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
726 	if (to.cts.op_own >> 4) {
727 		DRV_LOG(DEBUG, "Clock Queue error sync lost.");
728 		rte_atomic32_inc(&sh->txpp.err_clock_queue);
729 		sh->txpp.sync_lost = 1;
730 		return;
731 	}
732 	ci = rte_be_to_cpu_16(to.cts.wqe_counter);
733 	ts = rte_be_to_cpu_64(to.cts.timestamp);
734 	ts = mlx5_txpp_convert_rx_ts(sh, ts);
735 	wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX;
736 	wq->sq_ci = ci;
737 	mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci);
738 }
739 
740 /* Waits for the first completion on Clock Queue to init timestamp. */
741 static inline void
742 mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh)
743 {
744 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
745 	uint32_t wait;
746 
747 	sh->txpp.ts_p = 0;
748 	sh->txpp.ts_n = 0;
749 	for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) {
750 		struct timespec onems;
751 
752 		mlx5_txpp_update_timestamp(sh);
753 		if (wq->sq_ci)
754 			return;
755 		/* Wait one millisecond and try again. */
756 		onems.tv_sec = 0;
757 		onems.tv_nsec = NS_PER_S / MS_PER_S;
758 		nanosleep(&onems, 0);
759 	}
760 	DRV_LOG(ERR, "Unable to initialize timestamp.");
761 	sh->txpp.sync_lost = 1;
762 }
763 
764 #ifdef HAVE_IBV_DEVX_EVENT
765 /* Gather statistics for timestamp from Clock Queue CQE. */
766 static inline void
767 mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh)
768 {
769 	/* Check whether we have a valid timestamp. */
770 	if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n)
771 		return;
772 	MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE);
773 	sh->txpp.tsa[sh->txpp.ts_p] = sh->txpp.ts;
774 	if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE)
775 		sh->txpp.ts_p = 0;
776 	if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE)
777 		++sh->txpp.ts_n;
778 }
779 
780 /* Handles Rearm Queue completions in periodic service. */
781 static __rte_always_inline void
782 mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh)
783 {
784 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
785 	uint32_t cq_ci = wq->cq_ci;
786 	bool error = false;
787 	int ret;
788 
789 	do {
790 		volatile struct mlx5_cqe *cqe;
791 
792 		cqe = &wq->cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)];
793 		ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci);
794 		switch (ret) {
795 		case MLX5_CQE_STATUS_ERR:
796 			error = true;
797 			++cq_ci;
798 			break;
799 		case MLX5_CQE_STATUS_SW_OWN:
800 			wq->sq_ci += 2;
801 			++cq_ci;
802 			break;
803 		case MLX5_CQE_STATUS_HW_OWN:
804 			break;
805 		default:
806 			MLX5_ASSERT(false);
807 			break;
808 		}
809 	} while (ret != MLX5_CQE_STATUS_HW_OWN);
810 	if (likely(cq_ci != wq->cq_ci)) {
811 		/* Check whether we have missed interrupts. */
812 		if (cq_ci - wq->cq_ci != 1) {
813 			DRV_LOG(DEBUG, "Rearm Queue missed interrupt.");
814 			rte_atomic32_inc(&sh->txpp.err_miss_int);
815 			/* Check sync lost on wqe index. */
816 			if (cq_ci - wq->cq_ci >=
817 				(((1UL << MLX5_WQ_INDEX_WIDTH) /
818 				  MLX5_TXPP_REARM) - 1))
819 				error = 1;
820 		}
821 		/* Update doorbell record to notify hardware. */
822 		rte_compiler_barrier();
823 		*wq->cq_dbrec = rte_cpu_to_be_32(cq_ci);
824 		rte_wmb();
825 		wq->cq_ci = cq_ci;
826 		/* Fire new requests to Rearm Queue. */
827 		if (error) {
828 			DRV_LOG(DEBUG, "Rearm Queue error sync lost.");
829 			rte_atomic32_inc(&sh->txpp.err_rearm_queue);
830 			sh->txpp.sync_lost = 1;
831 		}
832 	}
833 }
834 
835 /* Handles Clock Queue completions in periodic service. */
836 static __rte_always_inline void
837 mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh)
838 {
839 	mlx5_txpp_update_timestamp(sh);
840 	mlx5_txpp_gather_timestamp(sh);
841 }
842 #endif
843 
844 /* Invoked periodically on Rearm Queue completions. */
845 void
846 mlx5_txpp_interrupt_handler(void *cb_arg)
847 {
848 #ifndef HAVE_IBV_DEVX_EVENT
849 	RTE_SET_USED(cb_arg);
850 	return;
851 #else
852 	struct mlx5_dev_ctx_shared *sh = cb_arg;
853 	union {
854 		struct mlx5dv_devx_async_event_hdr event_resp;
855 		uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128];
856 	} out;
857 
858 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
859 	/* Process events in the loop. Only rearm completions are expected. */
860 	while (mlx5_glue->devx_get_event
861 				(sh->txpp.echan,
862 				 &out.event_resp,
863 				 sizeof(out.buf)) >=
864 				 (ssize_t)sizeof(out.event_resp.cookie)) {
865 		mlx5_txpp_handle_rearm_queue(sh);
866 		mlx5_txpp_handle_clock_queue(sh);
867 		mlx5_txpp_cq_arm(sh);
868 		mlx5_txpp_doorbell_rearm_queue
869 					(sh, sh->txpp.rearm_queue.sq_ci - 1);
870 	}
871 #endif /* HAVE_IBV_DEVX_ASYNC */
872 }
873 
874 static void
875 mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh)
876 {
877 	if (!sh->txpp.intr_handle.fd)
878 		return;
879 	mlx5_intr_callback_unregister(&sh->txpp.intr_handle,
880 				      mlx5_txpp_interrupt_handler, sh);
881 	sh->txpp.intr_handle.fd = 0;
882 }
883 
884 /* Attach interrupt handler and fires first request to Rearm Queue. */
885 static int
886 mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh)
887 {
888 	uint16_t event_nums[1] = {0};
889 	int ret;
890 	int fd;
891 
892 	rte_atomic32_set(&sh->txpp.err_miss_int, 0);
893 	rte_atomic32_set(&sh->txpp.err_rearm_queue, 0);
894 	rte_atomic32_set(&sh->txpp.err_clock_queue, 0);
895 	rte_atomic32_set(&sh->txpp.err_ts_past, 0);
896 	rte_atomic32_set(&sh->txpp.err_ts_future, 0);
897 	/* Attach interrupt handler to process Rearm Queue completions. */
898 	fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
899 	ret = mlx5_os_set_nonblock_channel_fd(fd);
900 	if (ret) {
901 		DRV_LOG(ERR, "Failed to change event channel FD.");
902 		rte_errno = errno;
903 		return -rte_errno;
904 	}
905 	memset(&sh->txpp.intr_handle, 0, sizeof(sh->txpp.intr_handle));
906 	fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
907 	sh->txpp.intr_handle.fd = fd;
908 	sh->txpp.intr_handle.type = RTE_INTR_HANDLE_EXT;
909 	if (rte_intr_callback_register(&sh->txpp.intr_handle,
910 				       mlx5_txpp_interrupt_handler, sh)) {
911 		sh->txpp.intr_handle.fd = 0;
912 		DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno);
913 		return -rte_errno;
914 	}
915 	/* Subscribe CQ event to the event channel controlled by the driver. */
916 	ret = mlx5_glue->devx_subscribe_devx_event(sh->txpp.echan,
917 						   sh->txpp.rearm_queue.cq->obj,
918 						   sizeof(event_nums),
919 						   event_nums, 0);
920 	if (ret) {
921 		DRV_LOG(ERR, "Failed to subscribe CQE event.");
922 		rte_errno = errno;
923 		return -errno;
924 	}
925 	/* Enable interrupts in the CQ. */
926 	mlx5_txpp_cq_arm(sh);
927 	/* Fire the first request on Rearm Queue. */
928 	mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1);
929 	mlx5_txpp_init_timestamp(sh);
930 	return 0;
931 }
932 
933 /*
934  * The routine initializes the packet pacing infrastructure:
935  * - allocates PP context
936  * - Clock CQ/SQ
937  * - Rearm CQ/SQ
938  * - attaches rearm interrupt handler
939  * - starts Clock Queue
940  *
941  * Returns 0 on success, negative otherwise
942  */
943 static int
944 mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv)
945 {
946 	int tx_pp = priv->config.tx_pp;
947 	int ret;
948 
949 	/* Store the requested pacing parameters. */
950 	sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp;
951 	sh->txpp.test = !!(tx_pp < 0);
952 	sh->txpp.skew = priv->config.tx_skew;
953 	sh->txpp.freq = priv->config.hca_attr.dev_freq_khz;
954 	ret = mlx5_txpp_create_eqn(sh);
955 	if (ret)
956 		goto exit;
957 	ret = mlx5_txpp_alloc_pp_index(sh);
958 	if (ret)
959 		goto exit;
960 	ret = mlx5_txpp_create_clock_queue(sh);
961 	if (ret)
962 		goto exit;
963 	ret = mlx5_txpp_create_rearm_queue(sh);
964 	if (ret)
965 		goto exit;
966 	ret = mlx5_txpp_start_service(sh);
967 	if (ret)
968 		goto exit;
969 exit:
970 	if (ret) {
971 		mlx5_txpp_stop_service(sh);
972 		mlx5_txpp_destroy_rearm_queue(sh);
973 		mlx5_txpp_destroy_clock_queue(sh);
974 		mlx5_txpp_free_pp_index(sh);
975 		mlx5_txpp_destroy_eqn(sh);
976 		sh->txpp.tick = 0;
977 		sh->txpp.test = 0;
978 		sh->txpp.skew = 0;
979 	}
980 	return ret;
981 }
982 
983 /*
984  * The routine destroys the packet pacing infrastructure:
985  * - detaches rearm interrupt handler
986  * - Rearm CQ/SQ
987  * - Clock CQ/SQ
988  * - PP context
989  */
990 static void
991 mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh)
992 {
993 	mlx5_txpp_stop_service(sh);
994 	mlx5_txpp_destroy_rearm_queue(sh);
995 	mlx5_txpp_destroy_clock_queue(sh);
996 	mlx5_txpp_free_pp_index(sh);
997 	mlx5_txpp_destroy_eqn(sh);
998 	sh->txpp.tick = 0;
999 	sh->txpp.test = 0;
1000 	sh->txpp.skew = 0;
1001 }
1002 
1003 /**
1004  * Creates and starts packet pacing infrastructure on specified device.
1005  *
1006  * @param dev
1007  *   Pointer to Ethernet device structure.
1008  *
1009  * @return
1010  *   0 on success, a negative errno value otherwise and rte_errno is set.
1011  */
1012 int
1013 mlx5_txpp_start(struct rte_eth_dev *dev)
1014 {
1015 	struct mlx5_priv *priv = dev->data->dev_private;
1016 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1017 	int err = 0;
1018 	int ret;
1019 
1020 	if (!priv->config.tx_pp) {
1021 		/* Packet pacing is not requested for the device. */
1022 		MLX5_ASSERT(priv->txpp_en == 0);
1023 		return 0;
1024 	}
1025 	if (priv->txpp_en) {
1026 		/* Packet pacing is already enabled for the device. */
1027 		MLX5_ASSERT(sh->txpp.refcnt);
1028 		return 0;
1029 	}
1030 	if (priv->config.tx_pp > 0) {
1031 		ret = rte_mbuf_dynflag_lookup
1032 				(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
1033 		if (ret < 0)
1034 			return 0;
1035 	}
1036 	ret = pthread_mutex_lock(&sh->txpp.mutex);
1037 	MLX5_ASSERT(!ret);
1038 	RTE_SET_USED(ret);
1039 	if (sh->txpp.refcnt) {
1040 		priv->txpp_en = 1;
1041 		++sh->txpp.refcnt;
1042 	} else {
1043 		err = mlx5_txpp_create(sh, priv);
1044 		if (!err) {
1045 			MLX5_ASSERT(sh->txpp.tick);
1046 			priv->txpp_en = 1;
1047 			sh->txpp.refcnt = 1;
1048 		} else {
1049 			rte_errno = -err;
1050 		}
1051 	}
1052 	ret = pthread_mutex_unlock(&sh->txpp.mutex);
1053 	MLX5_ASSERT(!ret);
1054 	RTE_SET_USED(ret);
1055 	return err;
1056 }
1057 
1058 /**
1059  * Stops and destroys packet pacing infrastructure on specified device.
1060  *
1061  * @param dev
1062  *   Pointer to Ethernet device structure.
1063  *
1064  * @return
1065  *   0 on success, a negative errno value otherwise and rte_errno is set.
1066  */
1067 void
1068 mlx5_txpp_stop(struct rte_eth_dev *dev)
1069 {
1070 	struct mlx5_priv *priv = dev->data->dev_private;
1071 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1072 	int ret;
1073 
1074 	if (!priv->txpp_en) {
1075 		/* Packet pacing is already disabled for the device. */
1076 		return;
1077 	}
1078 	priv->txpp_en = 0;
1079 	ret = pthread_mutex_lock(&sh->txpp.mutex);
1080 	MLX5_ASSERT(!ret);
1081 	RTE_SET_USED(ret);
1082 	MLX5_ASSERT(sh->txpp.refcnt);
1083 	if (!sh->txpp.refcnt || --sh->txpp.refcnt)
1084 		return;
1085 	/* No references any more, do actual destroy. */
1086 	mlx5_txpp_destroy(sh);
1087 	ret = pthread_mutex_unlock(&sh->txpp.mutex);
1088 	MLX5_ASSERT(!ret);
1089 	RTE_SET_USED(ret);
1090 }
1091 
1092 /*
1093  * Read the current clock counter of an Ethernet device
1094  *
1095  * This returns the current raw clock value of an Ethernet device. It is
1096  * a raw amount of ticks, with no given time reference.
1097  * The value returned here is from the same clock than the one
1098  * filling timestamp field of Rx/Tx packets when using hardware timestamp
1099  * offload. Therefore it can be used to compute a precise conversion of
1100  * the device clock to the real time.
1101  *
1102  * @param dev
1103  *   Pointer to Ethernet device structure.
1104  * @param clock
1105  *   Pointer to the uint64_t that holds the raw clock value.
1106  *
1107  * @return
1108  *   - 0: Success.
1109  *   - -ENOTSUP: The function is not supported in this mode. Requires
1110  *     packet pacing module configured and started (tx_pp devarg)
1111  */
1112 int
1113 mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp)
1114 {
1115 	struct mlx5_priv *priv = dev->data->dev_private;
1116 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1117 	int ret;
1118 
1119 	if (sh->txpp.refcnt) {
1120 		struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
1121 		struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
1122 		union {
1123 			rte_int128_t u128;
1124 			struct mlx5_cqe_ts cts;
1125 		} to;
1126 		uint64_t ts;
1127 
1128 		mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
1129 		if (to.cts.op_own >> 4) {
1130 			DRV_LOG(DEBUG, "Clock Queue error sync lost.");
1131 			rte_atomic32_inc(&sh->txpp.err_clock_queue);
1132 			sh->txpp.sync_lost = 1;
1133 			return -EIO;
1134 		}
1135 		ts = rte_be_to_cpu_64(to.cts.timestamp);
1136 		ts = mlx5_txpp_convert_rx_ts(sh, ts);
1137 		*timestamp = ts;
1138 		return 0;
1139 	}
1140 	/* Not supported in isolated mode - kernel does not see the CQEs. */
1141 	if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY)
1142 		return -ENOTSUP;
1143 	ret = mlx5_read_clock(dev, timestamp);
1144 	return ret;
1145 }
1146 
1147 /**
1148  * DPDK callback to clear device extended statistics.
1149  *
1150  * @param dev
1151  *   Pointer to Ethernet device structure.
1152  *
1153  * @return
1154  *   0 on success and stats is reset, negative errno value otherwise and
1155  *   rte_errno is set.
1156  */
1157 int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev)
1158 {
1159 	struct mlx5_priv *priv = dev->data->dev_private;
1160 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1161 
1162 	rte_atomic32_set(&sh->txpp.err_miss_int, 0);
1163 	rte_atomic32_set(&sh->txpp.err_rearm_queue, 0);
1164 	rte_atomic32_set(&sh->txpp.err_clock_queue, 0);
1165 	rte_atomic32_set(&sh->txpp.err_ts_past, 0);
1166 	rte_atomic32_set(&sh->txpp.err_ts_future, 0);
1167 	return 0;
1168 }
1169 
1170 /**
1171  * Routine to retrieve names of extended device statistics
1172  * for packet send scheduling. It appends the specific stats names
1173  * after the parts filled by preceding modules (eth stats, etc.)
1174  *
1175  * @param dev
1176  *   Pointer to Ethernet device structure.
1177  * @param[out] xstats_names
1178  *   Buffer to insert names into.
1179  * @param n
1180  *   Number of names.
1181  * @param n_used
1182  *   Number of names filled by preceding statistics modules.
1183  *
1184  * @return
1185  *   Number of xstats names.
1186  */
1187 int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused,
1188 			       struct rte_eth_xstat_name *xstats_names,
1189 			       unsigned int n, unsigned int n_used)
1190 {
1191 	unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
1192 	unsigned int i;
1193 
1194 	if (n >= n_used + n_txpp && xstats_names) {
1195 		for (i = 0; i < n_txpp; ++i) {
1196 			strncpy(xstats_names[i + n_used].name,
1197 				mlx5_txpp_stat_names[i],
1198 				RTE_ETH_XSTATS_NAME_SIZE);
1199 			xstats_names[i + n_used].name
1200 					[RTE_ETH_XSTATS_NAME_SIZE - 1] = 0;
1201 		}
1202 	}
1203 	return n_used + n_txpp;
1204 }
1205 
1206 static inline void
1207 mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp,
1208 		   struct mlx5_txpp_ts *tsa, uint16_t idx)
1209 {
1210 	do {
1211 		int64_t ts, ci;
1212 
1213 		ts = rte_atomic64_read(&txpp->tsa[idx].ts);
1214 		ci = rte_atomic64_read(&txpp->tsa[idx].ci_ts);
1215 		rte_compiler_barrier();
1216 		if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0)
1217 			continue;
1218 		if (rte_atomic64_read(&txpp->tsa[idx].ts) != ts)
1219 			continue;
1220 		if (rte_atomic64_read(&txpp->tsa[idx].ci_ts) != ci)
1221 			continue;
1222 		rte_atomic64_set(&tsa->ts, ts);
1223 		rte_atomic64_set(&tsa->ci_ts, ci);
1224 		return;
1225 	} while (true);
1226 }
1227 
1228 /*
1229  * Jitter reflects the clock change between
1230  * neighbours Clock Queue completions.
1231  */
1232 static uint64_t
1233 mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp)
1234 {
1235 	struct mlx5_txpp_ts tsa0, tsa1;
1236 	int64_t dts, dci;
1237 	uint16_t ts_p;
1238 
1239 	if (txpp->ts_n < 2) {
1240 		/* No gathered enough reports yet. */
1241 		return 0;
1242 	}
1243 	do {
1244 		int ts_0, ts_1;
1245 
1246 		ts_p = txpp->ts_p;
1247 		rte_compiler_barrier();
1248 		ts_0 = ts_p - 2;
1249 		if (ts_0 < 0)
1250 			ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
1251 		ts_1 = ts_p - 1;
1252 		if (ts_1 < 0)
1253 			ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
1254 		mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
1255 		mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
1256 		rte_compiler_barrier();
1257 	} while (ts_p != txpp->ts_p);
1258 	/* We have two neighbor reports, calculate the jitter. */
1259 	dts = rte_atomic64_read(&tsa1.ts) - rte_atomic64_read(&tsa0.ts);
1260 	dci = (rte_atomic64_read(&tsa1.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH)) -
1261 	      (rte_atomic64_read(&tsa0.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH));
1262 	if (dci < 0)
1263 		dci += 1 << MLX5_CQ_INDEX_WIDTH;
1264 	dci *= txpp->tick;
1265 	return (dts > dci) ? dts - dci : dci - dts;
1266 }
1267 
1268 /*
1269  * Wander reflects the long-term clock change
1270  * over the entire length of all Clock Queue completions.
1271  */
1272 static uint64_t
1273 mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp)
1274 {
1275 	struct mlx5_txpp_ts tsa0, tsa1;
1276 	int64_t dts, dci;
1277 	uint16_t ts_p;
1278 
1279 	if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) {
1280 		/* No gathered enough reports yet. */
1281 		return 0;
1282 	}
1283 	do {
1284 		int ts_0, ts_1;
1285 
1286 		ts_p = txpp->ts_p;
1287 		rte_compiler_barrier();
1288 		ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1;
1289 		if (ts_0 < 0)
1290 			ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
1291 		ts_1 = ts_p - 1;
1292 		if (ts_1 < 0)
1293 			ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
1294 		mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
1295 		mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
1296 		rte_compiler_barrier();
1297 	} while (ts_p != txpp->ts_p);
1298 	/* We have two neighbor reports, calculate the jitter. */
1299 	dts = rte_atomic64_read(&tsa1.ts) - rte_atomic64_read(&tsa0.ts);
1300 	dci = (rte_atomic64_read(&tsa1.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH)) -
1301 	      (rte_atomic64_read(&tsa0.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH));
1302 	dci += 1 << MLX5_CQ_INDEX_WIDTH;
1303 	dci *= txpp->tick;
1304 	return (dts > dci) ? dts - dci : dci - dts;
1305 }
1306 
1307 /**
1308  * Routine to retrieve extended device statistics
1309  * for packet send scheduling. It appends the specific statistics
1310  * after the parts filled by preceding modules (eth stats, etc.)
1311  *
1312  * @param dev
1313  *   Pointer to Ethernet device.
1314  * @param[out] stats
1315  *   Pointer to rte extended stats table.
1316  * @param n
1317  *   The size of the stats table.
1318  * @param n_used
1319  *   Number of stats filled by preceding statistics modules.
1320  *
1321  * @return
1322  *   Number of extended stats on success and stats is filled,
1323  *   negative on error and rte_errno is set.
1324  */
1325 int
1326 mlx5_txpp_xstats_get(struct rte_eth_dev *dev,
1327 		     struct rte_eth_xstat *stats,
1328 		     unsigned int n, unsigned int n_used)
1329 {
1330 	unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
1331 
1332 	if (n >= n_used + n_txpp && stats) {
1333 		struct mlx5_priv *priv = dev->data->dev_private;
1334 		struct mlx5_dev_ctx_shared *sh = priv->sh;
1335 		unsigned int i;
1336 
1337 		for (i = 0; i < n_txpp; ++i)
1338 			stats[n_used + i].id = n_used + i;
1339 		stats[n_used + 0].value =
1340 				rte_atomic32_read(&sh->txpp.err_miss_int);
1341 		stats[n_used + 1].value =
1342 				rte_atomic32_read(&sh->txpp.err_rearm_queue);
1343 		stats[n_used + 2].value =
1344 				rte_atomic32_read(&sh->txpp.err_clock_queue);
1345 		stats[n_used + 3].value =
1346 				rte_atomic32_read(&sh->txpp.err_ts_past);
1347 		stats[n_used + 4].value =
1348 				rte_atomic32_read(&sh->txpp.err_ts_future);
1349 		stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp);
1350 		stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp);
1351 		stats[n_used + 7].value = sh->txpp.sync_lost;
1352 	}
1353 	return n_used + n_txpp;
1354 }
1355