xref: /dpdk/drivers/net/mlx5/mlx5_txpp.c (revision 27b549c12df2ef2db6b271795b4df7b14a2d9c2c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2020 Mellanox Technologies, Ltd
3  */
4 #include <fcntl.h>
5 #include <stdint.h>
6 
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_interrupts.h>
10 #include <rte_alarm.h>
11 #include <rte_malloc.h>
12 #include <rte_cycles.h>
13 #include <rte_eal_paging.h>
14 
15 #include <mlx5_malloc.h>
16 
17 #include "mlx5.h"
18 #include "mlx5_rxtx.h"
19 #include "mlx5_common_os.h"
20 
21 static const char * const mlx5_txpp_stat_names[] = {
22 	"txpp_err_miss_int", /* Missed service interrupt. */
23 	"txpp_err_rearm_queue",	/* Rearm Queue errors. */
24 	"txpp_err_clock_queue", /* Clock Queue errors. */
25 	"txpp_err_ts_past", /* Timestamp in the past. */
26 	"txpp_err_ts_future", /* Timestamp in the distant future. */
27 	"txpp_jitter", /* Timestamp jitter (one Clock Queue completion). */
28 	"txpp_wander", /* Timestamp jitter (half of Clock Queue completions). */
29 	"txpp_sync_lost", /* Scheduling synchronization lost. */
30 };
31 
32 /* Destroy Event Queue Notification Channel. */
33 static void
34 mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh)
35 {
36 	if (sh->txpp.echan) {
37 		mlx5_glue->devx_destroy_event_channel(sh->txpp.echan);
38 		sh->txpp.echan = NULL;
39 	}
40 }
41 
42 /* Create Event Queue Notification Channel. */
43 static int
44 mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh)
45 {
46 	MLX5_ASSERT(!sh->txpp.echan);
47 	sh->txpp.echan = mlx5_glue->devx_create_event_channel(sh->ctx,
48 			MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA);
49 	if (!sh->txpp.echan) {
50 		rte_errno = errno;
51 		DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno);
52 		return -rte_errno;
53 	}
54 	return 0;
55 }
56 
57 static void
58 mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh)
59 {
60 	if (sh->txpp.pp) {
61 		mlx5_glue->dv_free_pp(sh->txpp.pp);
62 		sh->txpp.pp = NULL;
63 		sh->txpp.pp_id = 0;
64 	}
65 }
66 
67 /* Allocate Packet Pacing index from kernel via mlx5dv call. */
68 static int
69 mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh)
70 {
71 #ifdef HAVE_MLX5DV_PP_ALLOC
72 	uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)];
73 	uint64_t rate;
74 
75 	MLX5_ASSERT(!sh->txpp.pp);
76 	memset(&pp, 0, sizeof(pp));
77 	rate = NS_PER_S / sh->txpp.tick;
78 	if (rate * sh->txpp.tick != NS_PER_S)
79 		DRV_LOG(WARNING, "Packet pacing frequency is not precise.");
80 	if (sh->txpp.test) {
81 		uint32_t len;
82 
83 		len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE,
84 			      (size_t)RTE_ETHER_MIN_LEN);
85 		MLX5_SET(set_pp_rate_limit_context, &pp,
86 			 burst_upper_bound, len);
87 		MLX5_SET(set_pp_rate_limit_context, &pp,
88 			 typical_packet_size, len);
89 		/* Convert packets per second into kilobits. */
90 		rate = (rate * len) / (1000ul / CHAR_BIT);
91 		DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate);
92 	}
93 	MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate);
94 	MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode,
95 		 sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE);
96 	sh->txpp.pp = mlx5_glue->dv_alloc_pp
97 				(sh->ctx, sizeof(pp), &pp,
98 				 MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX);
99 	if (sh->txpp.pp == NULL) {
100 		DRV_LOG(ERR, "Failed to allocate packet pacing index.");
101 		rte_errno = errno;
102 		return -errno;
103 	}
104 	if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) {
105 		DRV_LOG(ERR, "Zero packet pacing index allocated.");
106 		mlx5_txpp_free_pp_index(sh);
107 		rte_errno = ENOTSUP;
108 		return -ENOTSUP;
109 	}
110 	sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index;
111 	return 0;
112 #else
113 	RTE_SET_USED(sh);
114 	DRV_LOG(ERR, "Allocating pacing index is not supported.");
115 	rte_errno = ENOTSUP;
116 	return -ENOTSUP;
117 #endif
118 }
119 
120 static void
121 mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq)
122 {
123 	if (wq->sq)
124 		claim_zero(mlx5_devx_cmd_destroy(wq->sq));
125 	if (wq->sq_umem)
126 		claim_zero(mlx5_glue->devx_umem_dereg(wq->sq_umem));
127 	if (wq->sq_buf)
128 		mlx5_free((void *)(uintptr_t)wq->sq_buf);
129 	if (wq->cq)
130 		claim_zero(mlx5_devx_cmd_destroy(wq->cq));
131 	if (wq->cq_umem)
132 		claim_zero(mlx5_glue->devx_umem_dereg(wq->cq_umem));
133 	if (wq->cq_buf)
134 		mlx5_free((void *)(uintptr_t)wq->cq_buf);
135 	memset(wq, 0, sizeof(*wq));
136 }
137 
138 static void
139 mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh)
140 {
141 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
142 
143 	mlx5_txpp_destroy_send_queue(wq);
144 }
145 
146 static void
147 mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh)
148 {
149 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
150 
151 	mlx5_txpp_destroy_send_queue(wq);
152 	if (sh->txpp.tsa) {
153 		mlx5_free(sh->txpp.tsa);
154 		sh->txpp.tsa = NULL;
155 	}
156 }
157 
158 static void
159 mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci)
160 {
161 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
162 	union {
163 		uint32_t w32[2];
164 		uint64_t w64;
165 	} cs;
166 	void *reg_addr;
167 
168 	wq->sq_ci = ci + 1;
169 	cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32
170 		   (wq->wqes[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8);
171 	cs.w32[1] = wq->wqes[ci & (wq->sq_size - 1)].ctrl[1];
172 	/* Update SQ doorbell record with new SQ ci. */
173 	rte_compiler_barrier();
174 	*wq->sq_dbrec = rte_cpu_to_be_32(wq->sq_ci);
175 	/* Make sure the doorbell record is updated. */
176 	rte_wmb();
177 	/* Write to doorbel register to start processing. */
178 	reg_addr = mlx5_os_get_devx_uar_reg_addr(sh->tx_uar);
179 	__mlx5_uar_write64_relaxed(cs.w64, reg_addr, NULL);
180 	rte_wmb();
181 }
182 
183 static void
184 mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
185 {
186 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
187 	struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
188 	uint32_t i;
189 
190 	for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) {
191 		cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK;
192 		++cqe;
193 	}
194 }
195 
196 static void
197 mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
198 {
199 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
200 	struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
201 	uint32_t i;
202 
203 	for (i = 0; i < wq->sq_size; i += 2) {
204 		struct mlx5_wqe_cseg *cs;
205 		struct mlx5_wqe_qseg *qs;
206 		uint32_t index;
207 
208 		/* Build SEND_EN request with slave WQE index. */
209 		cs = &wqe[i + 0].cseg;
210 		cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0);
211 		cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
212 		cs->flags = RTE_BE32(MLX5_COMP_ALWAYS <<
213 				     MLX5_COMP_MODE_OFFSET);
214 		cs->misc = RTE_BE32(0);
215 		qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
216 		index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) &
217 			((1 << MLX5_WQ_INDEX_WIDTH) - 1);
218 		qs->max_index = rte_cpu_to_be_32(index);
219 		qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id);
220 		/* Build WAIT request with slave CQE index. */
221 		cs = &wqe[i + 1].cseg;
222 		cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0);
223 		cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
224 		cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR <<
225 				     MLX5_COMP_MODE_OFFSET);
226 		cs->misc = RTE_BE32(0);
227 		qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
228 		index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) &
229 			((1 << MLX5_CQ_INDEX_WIDTH) - 1);
230 		qs->max_index = rte_cpu_to_be_32(index);
231 		qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id);
232 	}
233 }
234 
235 /* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */
236 static int
237 mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh)
238 {
239 	struct mlx5_devx_create_sq_attr sq_attr = { 0 };
240 	struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
241 	struct mlx5_devx_cq_attr cq_attr = { 0 };
242 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
243 	size_t page_size;
244 	uint32_t umem_size, umem_dbrec;
245 	int ret;
246 
247 	page_size = rte_mem_page_size();
248 	if (page_size == (size_t)-1) {
249 		DRV_LOG(ERR, "Failed to get mem page size");
250 		return -ENOMEM;
251 	}
252 	/* Allocate memory buffer for CQEs and doorbell record. */
253 	umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE;
254 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
255 	umem_size += MLX5_DBR_SIZE;
256 	wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
257 				 page_size, sh->numa_node);
258 	if (!wq->cq_buf) {
259 		DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
260 		return -ENOMEM;
261 	}
262 	/* Register allocated buffer in user space with DevX. */
263 	wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
264 					       (void *)(uintptr_t)wq->cq_buf,
265 					       umem_size,
266 					       IBV_ACCESS_LOCAL_WRITE);
267 	if (!wq->cq_umem) {
268 		rte_errno = errno;
269 		DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
270 		goto error;
271 	}
272 	/* Create completion queue object for Rearm Queue. */
273 	cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
274 			    MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
275 	cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
276 	cq_attr.eqn = sh->eqn;
277 	cq_attr.q_umem_valid = 1;
278 	cq_attr.q_umem_offset = 0;
279 	cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
280 	cq_attr.db_umem_valid = 1;
281 	cq_attr.db_umem_offset = umem_dbrec;
282 	cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
283 	cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE);
284 	cq_attr.log_page_size = rte_log2_u32(page_size);
285 	wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
286 	if (!wq->cq) {
287 		rte_errno = errno;
288 		DRV_LOG(ERR, "Failed to create CQ for Rearm Queue.");
289 		goto error;
290 	}
291 	wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
292 	wq->cq_ci = 0;
293 	wq->arm_sn = 0;
294 	/* Mark all CQEs initially as invalid. */
295 	mlx5_txpp_fill_cqe_rearm_queue(sh);
296 	/*
297 	 * Allocate memory buffer for Send Queue WQEs.
298 	 * There should be no WQE leftovers in the cyclic queue.
299 	 */
300 	wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE;
301 	MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
302 	umem_size =  MLX5_WQE_SIZE * wq->sq_size;
303 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
304 	umem_size += MLX5_DBR_SIZE;
305 	wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
306 				 page_size, sh->numa_node);
307 	if (!wq->sq_buf) {
308 		DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
309 		rte_errno = ENOMEM;
310 		goto error;
311 	}
312 	/* Register allocated buffer in user space with DevX. */
313 	wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
314 					       (void *)(uintptr_t)wq->sq_buf,
315 					       umem_size,
316 					       IBV_ACCESS_LOCAL_WRITE);
317 	if (!wq->sq_umem) {
318 		rte_errno = errno;
319 		DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
320 		goto error;
321 	}
322 	/* Create send queue object for Rearm Queue. */
323 	sq_attr.state = MLX5_SQC_STATE_RST;
324 	sq_attr.tis_lst_sz = 1;
325 	sq_attr.tis_num = sh->tis->id;
326 	sq_attr.cqn = wq->cq->id;
327 	sq_attr.cd_master = 1;
328 	sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
329 	sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
330 	sq_attr.wq_attr.pd = sh->pdn;
331 	sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
332 	sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
333 	sq_attr.wq_attr.dbr_umem_valid = 1;
334 	sq_attr.wq_attr.dbr_addr = umem_dbrec;
335 	sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
336 	sq_attr.wq_attr.wq_umem_valid = 1;
337 	sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
338 	sq_attr.wq_attr.wq_umem_offset = 0;
339 	wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
340 	if (!wq->sq) {
341 		rte_errno = errno;
342 		DRV_LOG(ERR, "Failed to create SQ for Rearm Queue.");
343 		goto error;
344 	}
345 	wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
346 				   MLX5_SND_DBR * sizeof(uint32_t));
347 	/* Build the WQEs in the Send Queue before goto Ready state. */
348 	mlx5_txpp_fill_wqe_rearm_queue(sh);
349 	/* Change queue state to ready. */
350 	msq_attr.sq_state = MLX5_SQC_STATE_RST;
351 	msq_attr.state = MLX5_SQC_STATE_RDY;
352 	ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
353 	if (ret) {
354 		DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue.");
355 		goto error;
356 	}
357 	return 0;
358 error:
359 	ret = -rte_errno;
360 	mlx5_txpp_destroy_rearm_queue(sh);
361 	rte_errno = -ret;
362 	return ret;
363 }
364 
365 static void
366 mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh)
367 {
368 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
369 	struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
370 	struct mlx5_wqe_cseg *cs = &wqe->cseg;
371 	uint32_t wqe_size, opcode, i;
372 	uint8_t *dst;
373 
374 	/* For test purposes fill the WQ with SEND inline packet. */
375 	if (sh->txpp.test) {
376 		wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
377 				     MLX5_WQE_CSEG_SIZE +
378 				     2 * MLX5_WQE_ESEG_SIZE -
379 				     MLX5_ESEG_MIN_INLINE_SIZE,
380 				     MLX5_WSEG_SIZE);
381 		opcode = MLX5_OPCODE_SEND;
382 	} else {
383 		wqe_size = MLX5_WSEG_SIZE;
384 		opcode = MLX5_OPCODE_NOP;
385 	}
386 	cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */
387 	cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) |
388 				     (wqe_size / MLX5_WSEG_SIZE));
389 	cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET);
390 	cs->misc = RTE_BE32(0);
391 	wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE);
392 	if (sh->txpp.test) {
393 		struct mlx5_wqe_eseg *es = &wqe->eseg;
394 		struct rte_ether_hdr *eth_hdr;
395 		struct rte_ipv4_hdr *ip_hdr;
396 		struct rte_udp_hdr *udp_hdr;
397 
398 		/* Build the inline test packet pattern. */
399 		MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX);
400 		MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >=
401 				(sizeof(struct rte_ether_hdr) +
402 				 sizeof(struct rte_ipv4_hdr)));
403 		es->flags = 0;
404 		es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
405 		es->swp_offs = 0;
406 		es->metadata = 0;
407 		es->swp_flags = 0;
408 		es->mss = 0;
409 		es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE);
410 		/* Build test packet L2 header (Ethernet). */
411 		dst = (uint8_t *)&es->inline_data;
412 		eth_hdr = (struct rte_ether_hdr *)dst;
413 		rte_eth_random_addr(&eth_hdr->d_addr.addr_bytes[0]);
414 		rte_eth_random_addr(&eth_hdr->s_addr.addr_bytes[0]);
415 		eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
416 		/* Build test packet L3 header (IP v4). */
417 		dst += sizeof(struct rte_ether_hdr);
418 		ip_hdr = (struct rte_ipv4_hdr *)dst;
419 		ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
420 		ip_hdr->type_of_service = 0;
421 		ip_hdr->fragment_offset = 0;
422 		ip_hdr->time_to_live = 64;
423 		ip_hdr->next_proto_id = IPPROTO_UDP;
424 		ip_hdr->packet_id = 0;
425 		ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
426 						sizeof(struct rte_ether_hdr));
427 		/* use RFC5735 / RFC2544 reserved network test addresses */
428 		ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) |
429 					    (0 << 8) | 1);
430 		ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) |
431 					    (0 << 8) | 2);
432 		if (MLX5_TXPP_TEST_PKT_SIZE <
433 					(sizeof(struct rte_ether_hdr) +
434 					 sizeof(struct rte_ipv4_hdr) +
435 					 sizeof(struct rte_udp_hdr)))
436 			goto wcopy;
437 		/* Build test packet L4 header (UDP). */
438 		dst += sizeof(struct rte_ipv4_hdr);
439 		udp_hdr = (struct rte_udp_hdr *)dst;
440 		udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */
441 		udp_hdr->dst_port = RTE_BE16(9);
442 		udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
443 					      sizeof(struct rte_ether_hdr) -
444 					      sizeof(struct rte_ipv4_hdr));
445 		udp_hdr->dgram_cksum = 0;
446 		/* Fill the test packet data. */
447 		dst += sizeof(struct rte_udp_hdr);
448 		for (i = sizeof(struct rte_ether_hdr) +
449 			sizeof(struct rte_ipv4_hdr) +
450 			sizeof(struct rte_udp_hdr);
451 				i < MLX5_TXPP_TEST_PKT_SIZE; i++)
452 			*dst++ = (uint8_t)(i & 0xFF);
453 	}
454 wcopy:
455 	/* Duplicate the pattern to the next WQEs. */
456 	dst = (uint8_t *)(uintptr_t)wq->sq_buf;
457 	for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) {
458 		dst += wqe_size;
459 		rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size);
460 	}
461 }
462 
463 /* Creates the Clock Queue for packet pacing, returns zero on success. */
464 static int
465 mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh)
466 {
467 	struct mlx5_devx_create_sq_attr sq_attr = { 0 };
468 	struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
469 	struct mlx5_devx_cq_attr cq_attr = { 0 };
470 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
471 	size_t page_size;
472 	uint32_t umem_size, umem_dbrec;
473 	int ret;
474 
475 	page_size = rte_mem_page_size();
476 	if (page_size == (size_t)-1) {
477 		DRV_LOG(ERR, "Failed to get mem page size");
478 		return -ENOMEM;
479 	}
480 	sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
481 				   MLX5_TXPP_REARM_SQ_SIZE *
482 				   sizeof(struct mlx5_txpp_ts),
483 				   0, sh->numa_node);
484 	if (!sh->txpp.tsa) {
485 		DRV_LOG(ERR, "Failed to allocate memory for CQ stats.");
486 		return -ENOMEM;
487 	}
488 	sh->txpp.ts_p = 0;
489 	sh->txpp.ts_n = 0;
490 	/* Allocate memory buffer for CQEs and doorbell record. */
491 	umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE;
492 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
493 	umem_size += MLX5_DBR_SIZE;
494 	wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
495 					page_size, sh->numa_node);
496 	if (!wq->cq_buf) {
497 		DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
498 		return -ENOMEM;
499 	}
500 	/* Register allocated buffer in user space with DevX. */
501 	wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
502 					       (void *)(uintptr_t)wq->cq_buf,
503 					       umem_size,
504 					       IBV_ACCESS_LOCAL_WRITE);
505 	if (!wq->cq_umem) {
506 		rte_errno = errno;
507 		DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
508 		goto error;
509 	}
510 	/* Create completion queue object for Clock Queue. */
511 	cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
512 			    MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
513 	cq_attr.use_first_only = 1;
514 	cq_attr.overrun_ignore = 1;
515 	cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
516 	cq_attr.eqn = sh->eqn;
517 	cq_attr.q_umem_valid = 1;
518 	cq_attr.q_umem_offset = 0;
519 	cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
520 	cq_attr.db_umem_valid = 1;
521 	cq_attr.db_umem_offset = umem_dbrec;
522 	cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
523 	cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE);
524 	cq_attr.log_page_size = rte_log2_u32(page_size);
525 	wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
526 	if (!wq->cq) {
527 		rte_errno = errno;
528 		DRV_LOG(ERR, "Failed to create CQ for Clock Queue.");
529 		goto error;
530 	}
531 	wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
532 	wq->cq_ci = 0;
533 	/* Allocate memory buffer for Send Queue WQEs. */
534 	if (sh->txpp.test) {
535 		wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
536 					MLX5_WQE_CSEG_SIZE +
537 					2 * MLX5_WQE_ESEG_SIZE -
538 					MLX5_ESEG_MIN_INLINE_SIZE,
539 					MLX5_WQE_SIZE) / MLX5_WQE_SIZE;
540 		wq->sq_size *= MLX5_TXPP_CLKQ_SIZE;
541 	} else {
542 		wq->sq_size = MLX5_TXPP_CLKQ_SIZE;
543 	}
544 	/* There should not be WQE leftovers in the cyclic queue. */
545 	MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
546 	umem_size =  MLX5_WQE_SIZE * wq->sq_size;
547 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
548 	umem_size += MLX5_DBR_SIZE;
549 	wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
550 				 page_size, sh->numa_node);
551 	if (!wq->sq_buf) {
552 		DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
553 		rte_errno = ENOMEM;
554 		goto error;
555 	}
556 	/* Register allocated buffer in user space with DevX. */
557 	wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
558 					       (void *)(uintptr_t)wq->sq_buf,
559 					       umem_size,
560 					       IBV_ACCESS_LOCAL_WRITE);
561 	if (!wq->sq_umem) {
562 		rte_errno = errno;
563 		DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
564 		goto error;
565 	}
566 	/* Create send queue object for Clock Queue. */
567 	if (sh->txpp.test) {
568 		sq_attr.tis_lst_sz = 1;
569 		sq_attr.tis_num = sh->tis->id;
570 		sq_attr.non_wire = 0;
571 		sq_attr.static_sq_wq = 1;
572 	} else {
573 		sq_attr.non_wire = 1;
574 		sq_attr.static_sq_wq = 1;
575 	}
576 	sq_attr.state = MLX5_SQC_STATE_RST;
577 	sq_attr.cqn = wq->cq->id;
578 	sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id;
579 	sq_attr.wq_attr.cd_slave = 1;
580 	sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
581 	sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
582 	sq_attr.wq_attr.pd = sh->pdn;
583 	sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
584 	sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
585 	sq_attr.wq_attr.dbr_umem_valid = 1;
586 	sq_attr.wq_attr.dbr_addr = umem_dbrec;
587 	sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
588 	sq_attr.wq_attr.wq_umem_valid = 1;
589 	sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
590 	/* umem_offset must be zero for static_sq_wq queue. */
591 	sq_attr.wq_attr.wq_umem_offset = 0;
592 	wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
593 	if (!wq->sq) {
594 		rte_errno = errno;
595 		DRV_LOG(ERR, "Failed to create SQ for Clock Queue.");
596 		goto error;
597 	}
598 	wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
599 				   MLX5_SND_DBR * sizeof(uint32_t));
600 	/* Build the WQEs in the Send Queue before goto Ready state. */
601 	mlx5_txpp_fill_wqe_clock_queue(sh);
602 	/* Change queue state to ready. */
603 	msq_attr.sq_state = MLX5_SQC_STATE_RST;
604 	msq_attr.state = MLX5_SQC_STATE_RDY;
605 	wq->sq_ci = 0;
606 	ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
607 	if (ret) {
608 		DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue.");
609 		goto error;
610 	}
611 	return 0;
612 error:
613 	ret = -rte_errno;
614 	mlx5_txpp_destroy_clock_queue(sh);
615 	rte_errno = -ret;
616 	return ret;
617 }
618 
619 /* Enable notification from the Rearm Queue CQ. */
620 static inline void
621 mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh)
622 {
623 	void *base_addr;
624 
625 	struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue;
626 	uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET;
627 	uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci;
628 	uint64_t db_be = rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq->id);
629 	base_addr = mlx5_os_get_devx_uar_base_addr(sh->tx_uar);
630 	uint32_t *addr = RTE_PTR_ADD(base_addr, MLX5_CQ_DOORBELL);
631 
632 	rte_compiler_barrier();
633 	aq->cq_dbrec[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(db_hi);
634 	rte_wmb();
635 #ifdef RTE_ARCH_64
636 	*(uint64_t *)addr = db_be;
637 #else
638 	*(uint32_t *)addr = db_be;
639 	rte_io_wmb();
640 	*((uint32_t *)addr + 1) = db_be >> 32;
641 #endif
642 	aq->arm_sn++;
643 }
644 
645 static inline void
646 mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts)
647 {
648 	/*
649 	 * The only CQE of Clock Queue is being continuously
650 	 * update by hardware with soecified rate. We have to
651 	 * read timestump and WQE completion index atomically.
652 	 */
653 #if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64)
654 	rte_int128_t src;
655 
656 	memset(&src, 0, sizeof(src));
657 	*ts = src;
658 	/* if (*from == *ts) *from = *src else *ts = *from; */
659 	rte_atomic128_cmp_exchange(from, ts, &src, 0,
660 				   __ATOMIC_RELAXED, __ATOMIC_RELAXED);
661 #else
662 	rte_atomic64_t *cqe = (rte_atomic64_t *)from;
663 
664 	/* Power architecture does not support 16B compare-and-swap. */
665 	for (;;) {
666 		int64_t tm, op;
667 		int64_t *ps;
668 
669 		rte_compiler_barrier();
670 		tm = rte_atomic64_read(cqe + 0);
671 		op = rte_atomic64_read(cqe + 1);
672 		rte_compiler_barrier();
673 		if (tm != rte_atomic64_read(cqe + 0))
674 			continue;
675 		if (op != rte_atomic64_read(cqe + 1))
676 			continue;
677 		ps = (int64_t *)ts;
678 		ps[0] = tm;
679 		ps[1] = op;
680 		return;
681 	}
682 #endif
683 }
684 
685 /* Stores timestamp in the cache structure to share data with datapath. */
686 static inline void
687 mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh,
688 			   uint64_t ts, uint64_t ci)
689 {
690 	ci = ci << (64 - MLX5_CQ_INDEX_WIDTH);
691 	ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH;
692 	rte_compiler_barrier();
693 	rte_atomic64_set(&sh->txpp.ts.ts, ts);
694 	rte_atomic64_set(&sh->txpp.ts.ci_ts, ci);
695 	rte_wmb();
696 }
697 
698 /* Reads timestamp from Clock Queue CQE and stores in the cache. */
699 static inline void
700 mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh)
701 {
702 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
703 	struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
704 	union {
705 		rte_int128_t u128;
706 		struct mlx5_cqe_ts cts;
707 	} to;
708 	uint64_t ts;
709 	uint16_t ci;
710 
711 	static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t),
712 		      "Wrong timestamp CQE part size");
713 	mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
714 	if (to.cts.op_own >> 4) {
715 		DRV_LOG(DEBUG, "Clock Queue error sync lost.");
716 		rte_atomic32_inc(&sh->txpp.err_clock_queue);
717 		sh->txpp.sync_lost = 1;
718 		return;
719 	}
720 	ci = rte_be_to_cpu_16(to.cts.wqe_counter);
721 	ts = rte_be_to_cpu_64(to.cts.timestamp);
722 	ts = mlx5_txpp_convert_rx_ts(sh, ts);
723 	wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX;
724 	wq->sq_ci = ci;
725 	mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci);
726 }
727 
728 /* Waits for the first completion on Clock Queue to init timestamp. */
729 static inline void
730 mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh)
731 {
732 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
733 	uint32_t wait;
734 
735 	sh->txpp.ts_p = 0;
736 	sh->txpp.ts_n = 0;
737 	for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) {
738 		struct timespec onems;
739 
740 		mlx5_txpp_update_timestamp(sh);
741 		if (wq->sq_ci)
742 			return;
743 		/* Wait one millisecond and try again. */
744 		onems.tv_sec = 0;
745 		onems.tv_nsec = NS_PER_S / MS_PER_S;
746 		nanosleep(&onems, 0);
747 	}
748 	DRV_LOG(ERR, "Unable to initialize timestamp.");
749 	sh->txpp.sync_lost = 1;
750 }
751 
752 #ifdef HAVE_IBV_DEVX_EVENT
753 /* Gather statistics for timestamp from Clock Queue CQE. */
754 static inline void
755 mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh)
756 {
757 	/* Check whether we have a valid timestamp. */
758 	if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n)
759 		return;
760 	MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE);
761 	sh->txpp.tsa[sh->txpp.ts_p] = sh->txpp.ts;
762 	if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE)
763 		sh->txpp.ts_p = 0;
764 	if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE)
765 		++sh->txpp.ts_n;
766 }
767 
768 /* Handles Rearm Queue completions in periodic service. */
769 static __rte_always_inline void
770 mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh)
771 {
772 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
773 	uint32_t cq_ci = wq->cq_ci;
774 	bool error = false;
775 	int ret;
776 
777 	do {
778 		volatile struct mlx5_cqe *cqe;
779 
780 		cqe = &wq->cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)];
781 		ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci);
782 		switch (ret) {
783 		case MLX5_CQE_STATUS_ERR:
784 			error = true;
785 			++cq_ci;
786 			break;
787 		case MLX5_CQE_STATUS_SW_OWN:
788 			wq->sq_ci += 2;
789 			++cq_ci;
790 			break;
791 		case MLX5_CQE_STATUS_HW_OWN:
792 			break;
793 		default:
794 			MLX5_ASSERT(false);
795 			break;
796 		}
797 	} while (ret != MLX5_CQE_STATUS_HW_OWN);
798 	if (likely(cq_ci != wq->cq_ci)) {
799 		/* Check whether we have missed interrupts. */
800 		if (cq_ci - wq->cq_ci != 1) {
801 			DRV_LOG(DEBUG, "Rearm Queue missed interrupt.");
802 			rte_atomic32_inc(&sh->txpp.err_miss_int);
803 			/* Check sync lost on wqe index. */
804 			if (cq_ci - wq->cq_ci >=
805 				(((1UL << MLX5_WQ_INDEX_WIDTH) /
806 				  MLX5_TXPP_REARM) - 1))
807 				error = 1;
808 		}
809 		/* Update doorbell record to notify hardware. */
810 		rte_compiler_barrier();
811 		*wq->cq_dbrec = rte_cpu_to_be_32(cq_ci);
812 		rte_wmb();
813 		wq->cq_ci = cq_ci;
814 		/* Fire new requests to Rearm Queue. */
815 		if (error) {
816 			DRV_LOG(DEBUG, "Rearm Queue error sync lost.");
817 			rte_atomic32_inc(&sh->txpp.err_rearm_queue);
818 			sh->txpp.sync_lost = 1;
819 		}
820 	}
821 }
822 
823 /* Handles Clock Queue completions in periodic service. */
824 static __rte_always_inline void
825 mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh)
826 {
827 	mlx5_txpp_update_timestamp(sh);
828 	mlx5_txpp_gather_timestamp(sh);
829 }
830 #endif
831 
832 /* Invoked periodically on Rearm Queue completions. */
833 void
834 mlx5_txpp_interrupt_handler(void *cb_arg)
835 {
836 #ifndef HAVE_IBV_DEVX_EVENT
837 	RTE_SET_USED(cb_arg);
838 	return;
839 #else
840 	struct mlx5_dev_ctx_shared *sh = cb_arg;
841 	union {
842 		struct mlx5dv_devx_async_event_hdr event_resp;
843 		uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128];
844 	} out;
845 
846 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
847 	/* Process events in the loop. Only rearm completions are expected. */
848 	while (mlx5_glue->devx_get_event
849 				(sh->txpp.echan,
850 				 &out.event_resp,
851 				 sizeof(out.buf)) >=
852 				 (ssize_t)sizeof(out.event_resp.cookie)) {
853 		mlx5_txpp_handle_rearm_queue(sh);
854 		mlx5_txpp_handle_clock_queue(sh);
855 		mlx5_txpp_cq_arm(sh);
856 		mlx5_txpp_doorbell_rearm_queue
857 					(sh, sh->txpp.rearm_queue.sq_ci - 1);
858 	}
859 #endif /* HAVE_IBV_DEVX_ASYNC */
860 }
861 
862 static void
863 mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh)
864 {
865 	if (!sh->txpp.intr_handle.fd)
866 		return;
867 	mlx5_intr_callback_unregister(&sh->txpp.intr_handle,
868 				      mlx5_txpp_interrupt_handler, sh);
869 	sh->txpp.intr_handle.fd = 0;
870 }
871 
872 /* Attach interrupt handler and fires first request to Rearm Queue. */
873 static int
874 mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh)
875 {
876 	uint16_t event_nums[1] = {0};
877 	int ret;
878 	int fd;
879 
880 	rte_atomic32_set(&sh->txpp.err_miss_int, 0);
881 	rte_atomic32_set(&sh->txpp.err_rearm_queue, 0);
882 	rte_atomic32_set(&sh->txpp.err_clock_queue, 0);
883 	rte_atomic32_set(&sh->txpp.err_ts_past, 0);
884 	rte_atomic32_set(&sh->txpp.err_ts_future, 0);
885 	/* Attach interrupt handler to process Rearm Queue completions. */
886 	fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
887 	ret = mlx5_os_set_nonblock_channel_fd(fd);
888 	if (ret) {
889 		DRV_LOG(ERR, "Failed to change event channel FD.");
890 		rte_errno = errno;
891 		return -rte_errno;
892 	}
893 	memset(&sh->txpp.intr_handle, 0, sizeof(sh->txpp.intr_handle));
894 	fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
895 	sh->txpp.intr_handle.fd = fd;
896 	sh->txpp.intr_handle.type = RTE_INTR_HANDLE_EXT;
897 	if (rte_intr_callback_register(&sh->txpp.intr_handle,
898 				       mlx5_txpp_interrupt_handler, sh)) {
899 		sh->txpp.intr_handle.fd = 0;
900 		DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno);
901 		return -rte_errno;
902 	}
903 	/* Subscribe CQ event to the event channel controlled by the driver. */
904 	ret = mlx5_glue->devx_subscribe_devx_event(sh->txpp.echan,
905 						   sh->txpp.rearm_queue.cq->obj,
906 						   sizeof(event_nums),
907 						   event_nums, 0);
908 	if (ret) {
909 		DRV_LOG(ERR, "Failed to subscribe CQE event.");
910 		rte_errno = errno;
911 		return -errno;
912 	}
913 	/* Enable interrupts in the CQ. */
914 	mlx5_txpp_cq_arm(sh);
915 	/* Fire the first request on Rearm Queue. */
916 	mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1);
917 	mlx5_txpp_init_timestamp(sh);
918 	return 0;
919 }
920 
921 /*
922  * The routine initializes the packet pacing infrastructure:
923  * - allocates PP context
924  * - Clock CQ/SQ
925  * - Rearm CQ/SQ
926  * - attaches rearm interrupt handler
927  * - starts Clock Queue
928  *
929  * Returns 0 on success, negative otherwise
930  */
931 static int
932 mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv)
933 {
934 	int tx_pp = priv->config.tx_pp;
935 	int ret;
936 
937 	/* Store the requested pacing parameters. */
938 	sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp;
939 	sh->txpp.test = !!(tx_pp < 0);
940 	sh->txpp.skew = priv->config.tx_skew;
941 	sh->txpp.freq = priv->config.hca_attr.dev_freq_khz;
942 	ret = mlx5_txpp_create_event_channel(sh);
943 	if (ret)
944 		goto exit;
945 	ret = mlx5_txpp_alloc_pp_index(sh);
946 	if (ret)
947 		goto exit;
948 	ret = mlx5_txpp_create_clock_queue(sh);
949 	if (ret)
950 		goto exit;
951 	ret = mlx5_txpp_create_rearm_queue(sh);
952 	if (ret)
953 		goto exit;
954 	ret = mlx5_txpp_start_service(sh);
955 	if (ret)
956 		goto exit;
957 exit:
958 	if (ret) {
959 		mlx5_txpp_stop_service(sh);
960 		mlx5_txpp_destroy_rearm_queue(sh);
961 		mlx5_txpp_destroy_clock_queue(sh);
962 		mlx5_txpp_free_pp_index(sh);
963 		mlx5_txpp_destroy_event_channel(sh);
964 		sh->txpp.tick = 0;
965 		sh->txpp.test = 0;
966 		sh->txpp.skew = 0;
967 	}
968 	return ret;
969 }
970 
971 /*
972  * The routine destroys the packet pacing infrastructure:
973  * - detaches rearm interrupt handler
974  * - Rearm CQ/SQ
975  * - Clock CQ/SQ
976  * - PP context
977  */
978 static void
979 mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh)
980 {
981 	mlx5_txpp_stop_service(sh);
982 	mlx5_txpp_destroy_rearm_queue(sh);
983 	mlx5_txpp_destroy_clock_queue(sh);
984 	mlx5_txpp_free_pp_index(sh);
985 	mlx5_txpp_destroy_event_channel(sh);
986 	sh->txpp.tick = 0;
987 	sh->txpp.test = 0;
988 	sh->txpp.skew = 0;
989 }
990 
991 /**
992  * Creates and starts packet pacing infrastructure on specified device.
993  *
994  * @param dev
995  *   Pointer to Ethernet device structure.
996  *
997  * @return
998  *   0 on success, a negative errno value otherwise and rte_errno is set.
999  */
1000 int
1001 mlx5_txpp_start(struct rte_eth_dev *dev)
1002 {
1003 	struct mlx5_priv *priv = dev->data->dev_private;
1004 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1005 	int err = 0;
1006 	int ret;
1007 
1008 	if (!priv->config.tx_pp) {
1009 		/* Packet pacing is not requested for the device. */
1010 		MLX5_ASSERT(priv->txpp_en == 0);
1011 		return 0;
1012 	}
1013 	if (priv->txpp_en) {
1014 		/* Packet pacing is already enabled for the device. */
1015 		MLX5_ASSERT(sh->txpp.refcnt);
1016 		return 0;
1017 	}
1018 	if (priv->config.tx_pp > 0) {
1019 		ret = rte_mbuf_dynflag_lookup
1020 				(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
1021 		if (ret < 0)
1022 			return 0;
1023 	}
1024 	ret = pthread_mutex_lock(&sh->txpp.mutex);
1025 	MLX5_ASSERT(!ret);
1026 	RTE_SET_USED(ret);
1027 	if (sh->txpp.refcnt) {
1028 		priv->txpp_en = 1;
1029 		++sh->txpp.refcnt;
1030 	} else {
1031 		err = mlx5_txpp_create(sh, priv);
1032 		if (!err) {
1033 			MLX5_ASSERT(sh->txpp.tick);
1034 			priv->txpp_en = 1;
1035 			sh->txpp.refcnt = 1;
1036 		} else {
1037 			rte_errno = -err;
1038 		}
1039 	}
1040 	ret = pthread_mutex_unlock(&sh->txpp.mutex);
1041 	MLX5_ASSERT(!ret);
1042 	RTE_SET_USED(ret);
1043 	return err;
1044 }
1045 
1046 /**
1047  * Stops and destroys packet pacing infrastructure on specified device.
1048  *
1049  * @param dev
1050  *   Pointer to Ethernet device structure.
1051  *
1052  * @return
1053  *   0 on success, a negative errno value otherwise and rte_errno is set.
1054  */
1055 void
1056 mlx5_txpp_stop(struct rte_eth_dev *dev)
1057 {
1058 	struct mlx5_priv *priv = dev->data->dev_private;
1059 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1060 	int ret;
1061 
1062 	if (!priv->txpp_en) {
1063 		/* Packet pacing is already disabled for the device. */
1064 		return;
1065 	}
1066 	priv->txpp_en = 0;
1067 	ret = pthread_mutex_lock(&sh->txpp.mutex);
1068 	MLX5_ASSERT(!ret);
1069 	RTE_SET_USED(ret);
1070 	MLX5_ASSERT(sh->txpp.refcnt);
1071 	if (!sh->txpp.refcnt || --sh->txpp.refcnt)
1072 		return;
1073 	/* No references any more, do actual destroy. */
1074 	mlx5_txpp_destroy(sh);
1075 	ret = pthread_mutex_unlock(&sh->txpp.mutex);
1076 	MLX5_ASSERT(!ret);
1077 	RTE_SET_USED(ret);
1078 }
1079 
1080 /*
1081  * Read the current clock counter of an Ethernet device
1082  *
1083  * This returns the current raw clock value of an Ethernet device. It is
1084  * a raw amount of ticks, with no given time reference.
1085  * The value returned here is from the same clock than the one
1086  * filling timestamp field of Rx/Tx packets when using hardware timestamp
1087  * offload. Therefore it can be used to compute a precise conversion of
1088  * the device clock to the real time.
1089  *
1090  * @param dev
1091  *   Pointer to Ethernet device structure.
1092  * @param clock
1093  *   Pointer to the uint64_t that holds the raw clock value.
1094  *
1095  * @return
1096  *   - 0: Success.
1097  *   - -ENOTSUP: The function is not supported in this mode. Requires
1098  *     packet pacing module configured and started (tx_pp devarg)
1099  */
1100 int
1101 mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp)
1102 {
1103 	struct mlx5_priv *priv = dev->data->dev_private;
1104 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1105 	int ret;
1106 
1107 	if (sh->txpp.refcnt) {
1108 		struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
1109 		struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
1110 		union {
1111 			rte_int128_t u128;
1112 			struct mlx5_cqe_ts cts;
1113 		} to;
1114 		uint64_t ts;
1115 
1116 		mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
1117 		if (to.cts.op_own >> 4) {
1118 			DRV_LOG(DEBUG, "Clock Queue error sync lost.");
1119 			rte_atomic32_inc(&sh->txpp.err_clock_queue);
1120 			sh->txpp.sync_lost = 1;
1121 			return -EIO;
1122 		}
1123 		ts = rte_be_to_cpu_64(to.cts.timestamp);
1124 		ts = mlx5_txpp_convert_rx_ts(sh, ts);
1125 		*timestamp = ts;
1126 		return 0;
1127 	}
1128 	/* Not supported in isolated mode - kernel does not see the CQEs. */
1129 	if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY)
1130 		return -ENOTSUP;
1131 	ret = mlx5_read_clock(dev, timestamp);
1132 	return ret;
1133 }
1134 
1135 /**
1136  * DPDK callback to clear device extended statistics.
1137  *
1138  * @param dev
1139  *   Pointer to Ethernet device structure.
1140  *
1141  * @return
1142  *   0 on success and stats is reset, negative errno value otherwise and
1143  *   rte_errno is set.
1144  */
1145 int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev)
1146 {
1147 	struct mlx5_priv *priv = dev->data->dev_private;
1148 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1149 
1150 	rte_atomic32_set(&sh->txpp.err_miss_int, 0);
1151 	rte_atomic32_set(&sh->txpp.err_rearm_queue, 0);
1152 	rte_atomic32_set(&sh->txpp.err_clock_queue, 0);
1153 	rte_atomic32_set(&sh->txpp.err_ts_past, 0);
1154 	rte_atomic32_set(&sh->txpp.err_ts_future, 0);
1155 	return 0;
1156 }
1157 
1158 /**
1159  * Routine to retrieve names of extended device statistics
1160  * for packet send scheduling. It appends the specific stats names
1161  * after the parts filled by preceding modules (eth stats, etc.)
1162  *
1163  * @param dev
1164  *   Pointer to Ethernet device structure.
1165  * @param[out] xstats_names
1166  *   Buffer to insert names into.
1167  * @param n
1168  *   Number of names.
1169  * @param n_used
1170  *   Number of names filled by preceding statistics modules.
1171  *
1172  * @return
1173  *   Number of xstats names.
1174  */
1175 int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused,
1176 			       struct rte_eth_xstat_name *xstats_names,
1177 			       unsigned int n, unsigned int n_used)
1178 {
1179 	unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
1180 	unsigned int i;
1181 
1182 	if (n >= n_used + n_txpp && xstats_names) {
1183 		for (i = 0; i < n_txpp; ++i) {
1184 			strncpy(xstats_names[i + n_used].name,
1185 				mlx5_txpp_stat_names[i],
1186 				RTE_ETH_XSTATS_NAME_SIZE);
1187 			xstats_names[i + n_used].name
1188 					[RTE_ETH_XSTATS_NAME_SIZE - 1] = 0;
1189 		}
1190 	}
1191 	return n_used + n_txpp;
1192 }
1193 
1194 static inline void
1195 mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp,
1196 		   struct mlx5_txpp_ts *tsa, uint16_t idx)
1197 {
1198 	do {
1199 		int64_t ts, ci;
1200 
1201 		ts = rte_atomic64_read(&txpp->tsa[idx].ts);
1202 		ci = rte_atomic64_read(&txpp->tsa[idx].ci_ts);
1203 		rte_compiler_barrier();
1204 		if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0)
1205 			continue;
1206 		if (rte_atomic64_read(&txpp->tsa[idx].ts) != ts)
1207 			continue;
1208 		if (rte_atomic64_read(&txpp->tsa[idx].ci_ts) != ci)
1209 			continue;
1210 		rte_atomic64_set(&tsa->ts, ts);
1211 		rte_atomic64_set(&tsa->ci_ts, ci);
1212 		return;
1213 	} while (true);
1214 }
1215 
1216 /*
1217  * Jitter reflects the clock change between
1218  * neighbours Clock Queue completions.
1219  */
1220 static uint64_t
1221 mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp)
1222 {
1223 	struct mlx5_txpp_ts tsa0, tsa1;
1224 	int64_t dts, dci;
1225 	uint16_t ts_p;
1226 
1227 	if (txpp->ts_n < 2) {
1228 		/* No gathered enough reports yet. */
1229 		return 0;
1230 	}
1231 	do {
1232 		int ts_0, ts_1;
1233 
1234 		ts_p = txpp->ts_p;
1235 		rte_compiler_barrier();
1236 		ts_0 = ts_p - 2;
1237 		if (ts_0 < 0)
1238 			ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
1239 		ts_1 = ts_p - 1;
1240 		if (ts_1 < 0)
1241 			ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
1242 		mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
1243 		mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
1244 		rte_compiler_barrier();
1245 	} while (ts_p != txpp->ts_p);
1246 	/* We have two neighbor reports, calculate the jitter. */
1247 	dts = rte_atomic64_read(&tsa1.ts) - rte_atomic64_read(&tsa0.ts);
1248 	dci = (rte_atomic64_read(&tsa1.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH)) -
1249 	      (rte_atomic64_read(&tsa0.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH));
1250 	if (dci < 0)
1251 		dci += 1 << MLX5_CQ_INDEX_WIDTH;
1252 	dci *= txpp->tick;
1253 	return (dts > dci) ? dts - dci : dci - dts;
1254 }
1255 
1256 /*
1257  * Wander reflects the long-term clock change
1258  * over the entire length of all Clock Queue completions.
1259  */
1260 static uint64_t
1261 mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp)
1262 {
1263 	struct mlx5_txpp_ts tsa0, tsa1;
1264 	int64_t dts, dci;
1265 	uint16_t ts_p;
1266 
1267 	if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) {
1268 		/* No gathered enough reports yet. */
1269 		return 0;
1270 	}
1271 	do {
1272 		int ts_0, ts_1;
1273 
1274 		ts_p = txpp->ts_p;
1275 		rte_compiler_barrier();
1276 		ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1;
1277 		if (ts_0 < 0)
1278 			ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
1279 		ts_1 = ts_p - 1;
1280 		if (ts_1 < 0)
1281 			ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
1282 		mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
1283 		mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
1284 		rte_compiler_barrier();
1285 	} while (ts_p != txpp->ts_p);
1286 	/* We have two neighbor reports, calculate the jitter. */
1287 	dts = rte_atomic64_read(&tsa1.ts) - rte_atomic64_read(&tsa0.ts);
1288 	dci = (rte_atomic64_read(&tsa1.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH)) -
1289 	      (rte_atomic64_read(&tsa0.ci_ts) >> (64 - MLX5_CQ_INDEX_WIDTH));
1290 	dci += 1 << MLX5_CQ_INDEX_WIDTH;
1291 	dci *= txpp->tick;
1292 	return (dts > dci) ? dts - dci : dci - dts;
1293 }
1294 
1295 /**
1296  * Routine to retrieve extended device statistics
1297  * for packet send scheduling. It appends the specific statistics
1298  * after the parts filled by preceding modules (eth stats, etc.)
1299  *
1300  * @param dev
1301  *   Pointer to Ethernet device.
1302  * @param[out] stats
1303  *   Pointer to rte extended stats table.
1304  * @param n
1305  *   The size of the stats table.
1306  * @param n_used
1307  *   Number of stats filled by preceding statistics modules.
1308  *
1309  * @return
1310  *   Number of extended stats on success and stats is filled,
1311  *   negative on error and rte_errno is set.
1312  */
1313 int
1314 mlx5_txpp_xstats_get(struct rte_eth_dev *dev,
1315 		     struct rte_eth_xstat *stats,
1316 		     unsigned int n, unsigned int n_used)
1317 {
1318 	unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
1319 
1320 	if (n >= n_used + n_txpp && stats) {
1321 		struct mlx5_priv *priv = dev->data->dev_private;
1322 		struct mlx5_dev_ctx_shared *sh = priv->sh;
1323 		unsigned int i;
1324 
1325 		for (i = 0; i < n_txpp; ++i)
1326 			stats[n_used + i].id = n_used + i;
1327 		stats[n_used + 0].value =
1328 				rte_atomic32_read(&sh->txpp.err_miss_int);
1329 		stats[n_used + 1].value =
1330 				rte_atomic32_read(&sh->txpp.err_rearm_queue);
1331 		stats[n_used + 2].value =
1332 				rte_atomic32_read(&sh->txpp.err_clock_queue);
1333 		stats[n_used + 3].value =
1334 				rte_atomic32_read(&sh->txpp.err_ts_past);
1335 		stats[n_used + 4].value =
1336 				rte_atomic32_read(&sh->txpp.err_ts_future);
1337 		stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp);
1338 		stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp);
1339 		stats[n_used + 7].value = sh->txpp.sync_lost;
1340 	}
1341 	return n_used + n_txpp;
1342 }
1343