xref: /dpdk/drivers/net/mlx5/mlx5_txpp.c (revision 20698c9f15f7790225d2d64cf6083a4f2c34c79c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2020 Mellanox Technologies, Ltd
3  */
4 #include <fcntl.h>
5 #include <stdint.h>
6 
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_interrupts.h>
10 #include <rte_alarm.h>
11 #include <rte_malloc.h>
12 #include <rte_cycles.h>
13 #include <rte_eal_paging.h>
14 
15 #include <mlx5_malloc.h>
16 
17 #include "mlx5.h"
18 #include "mlx5_rxtx.h"
19 #include "mlx5_common_os.h"
20 
21 static const char * const mlx5_txpp_stat_names[] = {
22 	"tx_pp_missed_interrupt_errors", /* Missed service interrupt. */
23 	"tx_pp_rearm_queue_errors", /* Rearm Queue errors. */
24 	"tx_pp_clock_queue_errors", /* Clock Queue errors. */
25 	"tx_pp_timestamp_past_errors", /* Timestamp in the past. */
26 	"tx_pp_timestamp_future_errors", /* Timestamp in the distant future. */
27 	"tx_pp_jitter", /* Timestamp jitter (one Clock Queue completion). */
28 	"tx_pp_wander", /* Timestamp wander (half of Clock Queue CQEs). */
29 	"tx_pp_sync_lost", /* Scheduling synchronization lost. */
30 };
31 
32 /* Destroy Event Queue Notification Channel. */
33 static void
34 mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh)
35 {
36 	if (sh->txpp.echan) {
37 		mlx5_glue->devx_destroy_event_channel(sh->txpp.echan);
38 		sh->txpp.echan = NULL;
39 	}
40 }
41 
42 /* Create Event Queue Notification Channel. */
43 static int
44 mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh)
45 {
46 	MLX5_ASSERT(!sh->txpp.echan);
47 	sh->txpp.echan = mlx5_glue->devx_create_event_channel(sh->ctx,
48 			MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA);
49 	if (!sh->txpp.echan) {
50 		rte_errno = errno;
51 		DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno);
52 		return -rte_errno;
53 	}
54 	return 0;
55 }
56 
57 static void
58 mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh)
59 {
60 #ifdef HAVE_MLX5DV_PP_ALLOC
61 	if (sh->txpp.pp) {
62 		mlx5_glue->dv_free_pp(sh->txpp.pp);
63 		sh->txpp.pp = NULL;
64 		sh->txpp.pp_id = 0;
65 	}
66 #else
67 	RTE_SET_USED(sh);
68 	DRV_LOG(ERR, "Freeing pacing index is not supported.");
69 #endif
70 }
71 
72 /* Allocate Packet Pacing index from kernel via mlx5dv call. */
73 static int
74 mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh)
75 {
76 #ifdef HAVE_MLX5DV_PP_ALLOC
77 	uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)];
78 	uint64_t rate;
79 
80 	MLX5_ASSERT(!sh->txpp.pp);
81 	memset(&pp, 0, sizeof(pp));
82 	rate = NS_PER_S / sh->txpp.tick;
83 	if (rate * sh->txpp.tick != NS_PER_S)
84 		DRV_LOG(WARNING, "Packet pacing frequency is not precise.");
85 	if (sh->txpp.test) {
86 		uint32_t len;
87 
88 		len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE,
89 			      (size_t)RTE_ETHER_MIN_LEN);
90 		MLX5_SET(set_pp_rate_limit_context, &pp,
91 			 burst_upper_bound, len);
92 		MLX5_SET(set_pp_rate_limit_context, &pp,
93 			 typical_packet_size, len);
94 		/* Convert packets per second into kilobits. */
95 		rate = (rate * len) / (1000ul / CHAR_BIT);
96 		DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate);
97 	}
98 	MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate);
99 	MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode,
100 		 sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE);
101 	sh->txpp.pp = mlx5_glue->dv_alloc_pp
102 				(sh->ctx, sizeof(pp), &pp,
103 				 MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX);
104 	if (sh->txpp.pp == NULL) {
105 		DRV_LOG(ERR, "Failed to allocate packet pacing index.");
106 		rte_errno = errno;
107 		return -errno;
108 	}
109 	if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) {
110 		DRV_LOG(ERR, "Zero packet pacing index allocated.");
111 		mlx5_txpp_free_pp_index(sh);
112 		rte_errno = ENOTSUP;
113 		return -ENOTSUP;
114 	}
115 	sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index;
116 	return 0;
117 #else
118 	RTE_SET_USED(sh);
119 	DRV_LOG(ERR, "Allocating pacing index is not supported.");
120 	rte_errno = ENOTSUP;
121 	return -ENOTSUP;
122 #endif
123 }
124 
125 static void
126 mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq)
127 {
128 	if (wq->sq)
129 		claim_zero(mlx5_devx_cmd_destroy(wq->sq));
130 	if (wq->sq_umem)
131 		claim_zero(mlx5_glue->devx_umem_dereg(wq->sq_umem));
132 	if (wq->sq_buf)
133 		mlx5_free((void *)(uintptr_t)wq->sq_buf);
134 	if (wq->cq)
135 		claim_zero(mlx5_devx_cmd_destroy(wq->cq));
136 	if (wq->cq_umem)
137 		claim_zero(mlx5_glue->devx_umem_dereg(wq->cq_umem));
138 	if (wq->cq_buf)
139 		mlx5_free((void *)(uintptr_t)wq->cq_buf);
140 	memset(wq, 0, sizeof(*wq));
141 }
142 
143 static void
144 mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh)
145 {
146 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
147 
148 	mlx5_txpp_destroy_send_queue(wq);
149 }
150 
151 static void
152 mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh)
153 {
154 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
155 
156 	mlx5_txpp_destroy_send_queue(wq);
157 	if (sh->txpp.tsa) {
158 		mlx5_free(sh->txpp.tsa);
159 		sh->txpp.tsa = NULL;
160 	}
161 }
162 
163 static void
164 mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci)
165 {
166 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
167 	union {
168 		uint32_t w32[2];
169 		uint64_t w64;
170 	} cs;
171 	void *reg_addr;
172 
173 	wq->sq_ci = ci + 1;
174 	cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32
175 		   (wq->wqes[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8);
176 	cs.w32[1] = wq->wqes[ci & (wq->sq_size - 1)].ctrl[1];
177 	/* Update SQ doorbell record with new SQ ci. */
178 	rte_compiler_barrier();
179 	*wq->sq_dbrec = rte_cpu_to_be_32(wq->sq_ci);
180 	/* Make sure the doorbell record is updated. */
181 	rte_wmb();
182 	/* Write to doorbel register to start processing. */
183 	reg_addr = mlx5_os_get_devx_uar_reg_addr(sh->tx_uar);
184 	__mlx5_uar_write64_relaxed(cs.w64, reg_addr, NULL);
185 	rte_wmb();
186 }
187 
188 static void
189 mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
190 {
191 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
192 	struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
193 	uint32_t i;
194 
195 	for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) {
196 		cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK;
197 		++cqe;
198 	}
199 }
200 
201 static void
202 mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
203 {
204 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
205 	struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
206 	uint32_t i;
207 
208 	for (i = 0; i < wq->sq_size; i += 2) {
209 		struct mlx5_wqe_cseg *cs;
210 		struct mlx5_wqe_qseg *qs;
211 		uint32_t index;
212 
213 		/* Build SEND_EN request with slave WQE index. */
214 		cs = &wqe[i + 0].cseg;
215 		cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0);
216 		cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
217 		cs->flags = RTE_BE32(MLX5_COMP_ALWAYS <<
218 				     MLX5_COMP_MODE_OFFSET);
219 		cs->misc = RTE_BE32(0);
220 		qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
221 		index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) &
222 			((1 << MLX5_WQ_INDEX_WIDTH) - 1);
223 		qs->max_index = rte_cpu_to_be_32(index);
224 		qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id);
225 		/* Build WAIT request with slave CQE index. */
226 		cs = &wqe[i + 1].cseg;
227 		cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0);
228 		cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
229 		cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR <<
230 				     MLX5_COMP_MODE_OFFSET);
231 		cs->misc = RTE_BE32(0);
232 		qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
233 		index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) &
234 			((1 << MLX5_CQ_INDEX_WIDTH) - 1);
235 		qs->max_index = rte_cpu_to_be_32(index);
236 		qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id);
237 	}
238 }
239 
240 /* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */
241 static int
242 mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh)
243 {
244 	struct mlx5_devx_create_sq_attr sq_attr = { 0 };
245 	struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
246 	struct mlx5_devx_cq_attr cq_attr = { 0 };
247 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
248 	size_t page_size;
249 	uint32_t umem_size, umem_dbrec;
250 	int ret;
251 
252 	page_size = rte_mem_page_size();
253 	if (page_size == (size_t)-1) {
254 		DRV_LOG(ERR, "Failed to get mem page size");
255 		return -ENOMEM;
256 	}
257 	/* Allocate memory buffer for CQEs and doorbell record. */
258 	umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE;
259 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
260 	umem_size += MLX5_DBR_SIZE;
261 	wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
262 				 page_size, sh->numa_node);
263 	if (!wq->cq_buf) {
264 		DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
265 		return -ENOMEM;
266 	}
267 	/* Register allocated buffer in user space with DevX. */
268 	wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
269 					       (void *)(uintptr_t)wq->cq_buf,
270 					       umem_size,
271 					       IBV_ACCESS_LOCAL_WRITE);
272 	if (!wq->cq_umem) {
273 		rte_errno = errno;
274 		DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
275 		goto error;
276 	}
277 	/* Create completion queue object for Rearm Queue. */
278 	cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
279 			    MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
280 	cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
281 	cq_attr.eqn = sh->eqn;
282 	cq_attr.q_umem_valid = 1;
283 	cq_attr.q_umem_offset = 0;
284 	cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
285 	cq_attr.db_umem_valid = 1;
286 	cq_attr.db_umem_offset = umem_dbrec;
287 	cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
288 	cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE);
289 	cq_attr.log_page_size = rte_log2_u32(page_size);
290 	wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
291 	if (!wq->cq) {
292 		rte_errno = errno;
293 		DRV_LOG(ERR, "Failed to create CQ for Rearm Queue.");
294 		goto error;
295 	}
296 	wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
297 	wq->cq_ci = 0;
298 	wq->arm_sn = 0;
299 	/* Mark all CQEs initially as invalid. */
300 	mlx5_txpp_fill_cqe_rearm_queue(sh);
301 	/*
302 	 * Allocate memory buffer for Send Queue WQEs.
303 	 * There should be no WQE leftovers in the cyclic queue.
304 	 */
305 	wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE;
306 	MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
307 	umem_size =  MLX5_WQE_SIZE * wq->sq_size;
308 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
309 	umem_size += MLX5_DBR_SIZE;
310 	wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
311 				 page_size, sh->numa_node);
312 	if (!wq->sq_buf) {
313 		DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
314 		rte_errno = ENOMEM;
315 		goto error;
316 	}
317 	/* Register allocated buffer in user space with DevX. */
318 	wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
319 					       (void *)(uintptr_t)wq->sq_buf,
320 					       umem_size,
321 					       IBV_ACCESS_LOCAL_WRITE);
322 	if (!wq->sq_umem) {
323 		rte_errno = errno;
324 		DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
325 		goto error;
326 	}
327 	/* Create send queue object for Rearm Queue. */
328 	sq_attr.state = MLX5_SQC_STATE_RST;
329 	sq_attr.tis_lst_sz = 1;
330 	sq_attr.tis_num = sh->tis->id;
331 	sq_attr.cqn = wq->cq->id;
332 	sq_attr.cd_master = 1;
333 	sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
334 	sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
335 	sq_attr.wq_attr.pd = sh->pdn;
336 	sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
337 	sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
338 	sq_attr.wq_attr.dbr_umem_valid = 1;
339 	sq_attr.wq_attr.dbr_addr = umem_dbrec;
340 	sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
341 	sq_attr.wq_attr.wq_umem_valid = 1;
342 	sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
343 	sq_attr.wq_attr.wq_umem_offset = 0;
344 	wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
345 	if (!wq->sq) {
346 		rte_errno = errno;
347 		DRV_LOG(ERR, "Failed to create SQ for Rearm Queue.");
348 		goto error;
349 	}
350 	wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
351 				   MLX5_SND_DBR * sizeof(uint32_t));
352 	/* Build the WQEs in the Send Queue before goto Ready state. */
353 	mlx5_txpp_fill_wqe_rearm_queue(sh);
354 	/* Change queue state to ready. */
355 	msq_attr.sq_state = MLX5_SQC_STATE_RST;
356 	msq_attr.state = MLX5_SQC_STATE_RDY;
357 	ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
358 	if (ret) {
359 		DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue.");
360 		goto error;
361 	}
362 	return 0;
363 error:
364 	ret = -rte_errno;
365 	mlx5_txpp_destroy_rearm_queue(sh);
366 	rte_errno = -ret;
367 	return ret;
368 }
369 
370 static void
371 mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh)
372 {
373 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
374 	struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
375 	struct mlx5_wqe_cseg *cs = &wqe->cseg;
376 	uint32_t wqe_size, opcode, i;
377 	uint8_t *dst;
378 
379 	/* For test purposes fill the WQ with SEND inline packet. */
380 	if (sh->txpp.test) {
381 		wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
382 				     MLX5_WQE_CSEG_SIZE +
383 				     2 * MLX5_WQE_ESEG_SIZE -
384 				     MLX5_ESEG_MIN_INLINE_SIZE,
385 				     MLX5_WSEG_SIZE);
386 		opcode = MLX5_OPCODE_SEND;
387 	} else {
388 		wqe_size = MLX5_WSEG_SIZE;
389 		opcode = MLX5_OPCODE_NOP;
390 	}
391 	cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */
392 	cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) |
393 				     (wqe_size / MLX5_WSEG_SIZE));
394 	cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET);
395 	cs->misc = RTE_BE32(0);
396 	wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE);
397 	if (sh->txpp.test) {
398 		struct mlx5_wqe_eseg *es = &wqe->eseg;
399 		struct rte_ether_hdr *eth_hdr;
400 		struct rte_ipv4_hdr *ip_hdr;
401 		struct rte_udp_hdr *udp_hdr;
402 
403 		/* Build the inline test packet pattern. */
404 		MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX);
405 		MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >=
406 				(sizeof(struct rte_ether_hdr) +
407 				 sizeof(struct rte_ipv4_hdr)));
408 		es->flags = 0;
409 		es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
410 		es->swp_offs = 0;
411 		es->metadata = 0;
412 		es->swp_flags = 0;
413 		es->mss = 0;
414 		es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE);
415 		/* Build test packet L2 header (Ethernet). */
416 		dst = (uint8_t *)&es->inline_data;
417 		eth_hdr = (struct rte_ether_hdr *)dst;
418 		rte_eth_random_addr(&eth_hdr->d_addr.addr_bytes[0]);
419 		rte_eth_random_addr(&eth_hdr->s_addr.addr_bytes[0]);
420 		eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
421 		/* Build test packet L3 header (IP v4). */
422 		dst += sizeof(struct rte_ether_hdr);
423 		ip_hdr = (struct rte_ipv4_hdr *)dst;
424 		ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
425 		ip_hdr->type_of_service = 0;
426 		ip_hdr->fragment_offset = 0;
427 		ip_hdr->time_to_live = 64;
428 		ip_hdr->next_proto_id = IPPROTO_UDP;
429 		ip_hdr->packet_id = 0;
430 		ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
431 						sizeof(struct rte_ether_hdr));
432 		/* use RFC5735 / RFC2544 reserved network test addresses */
433 		ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) |
434 					    (0 << 8) | 1);
435 		ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) |
436 					    (0 << 8) | 2);
437 		if (MLX5_TXPP_TEST_PKT_SIZE <
438 					(sizeof(struct rte_ether_hdr) +
439 					 sizeof(struct rte_ipv4_hdr) +
440 					 sizeof(struct rte_udp_hdr)))
441 			goto wcopy;
442 		/* Build test packet L4 header (UDP). */
443 		dst += sizeof(struct rte_ipv4_hdr);
444 		udp_hdr = (struct rte_udp_hdr *)dst;
445 		udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */
446 		udp_hdr->dst_port = RTE_BE16(9);
447 		udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
448 					      sizeof(struct rte_ether_hdr) -
449 					      sizeof(struct rte_ipv4_hdr));
450 		udp_hdr->dgram_cksum = 0;
451 		/* Fill the test packet data. */
452 		dst += sizeof(struct rte_udp_hdr);
453 		for (i = sizeof(struct rte_ether_hdr) +
454 			sizeof(struct rte_ipv4_hdr) +
455 			sizeof(struct rte_udp_hdr);
456 				i < MLX5_TXPP_TEST_PKT_SIZE; i++)
457 			*dst++ = (uint8_t)(i & 0xFF);
458 	}
459 wcopy:
460 	/* Duplicate the pattern to the next WQEs. */
461 	dst = (uint8_t *)(uintptr_t)wq->sq_buf;
462 	for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) {
463 		dst += wqe_size;
464 		rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size);
465 	}
466 }
467 
468 /* Creates the Clock Queue for packet pacing, returns zero on success. */
469 static int
470 mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh)
471 {
472 	struct mlx5_devx_create_sq_attr sq_attr = { 0 };
473 	struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
474 	struct mlx5_devx_cq_attr cq_attr = { 0 };
475 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
476 	size_t page_size;
477 	uint32_t umem_size, umem_dbrec;
478 	int ret;
479 
480 	page_size = rte_mem_page_size();
481 	if (page_size == (size_t)-1) {
482 		DRV_LOG(ERR, "Failed to get mem page size");
483 		return -ENOMEM;
484 	}
485 	sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
486 				   MLX5_TXPP_REARM_SQ_SIZE *
487 				   sizeof(struct mlx5_txpp_ts),
488 				   0, sh->numa_node);
489 	if (!sh->txpp.tsa) {
490 		DRV_LOG(ERR, "Failed to allocate memory for CQ stats.");
491 		return -ENOMEM;
492 	}
493 	sh->txpp.ts_p = 0;
494 	sh->txpp.ts_n = 0;
495 	/* Allocate memory buffer for CQEs and doorbell record. */
496 	umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE;
497 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
498 	umem_size += MLX5_DBR_SIZE;
499 	wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
500 					page_size, sh->numa_node);
501 	if (!wq->cq_buf) {
502 		DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
503 		return -ENOMEM;
504 	}
505 	/* Register allocated buffer in user space with DevX. */
506 	wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
507 					       (void *)(uintptr_t)wq->cq_buf,
508 					       umem_size,
509 					       IBV_ACCESS_LOCAL_WRITE);
510 	if (!wq->cq_umem) {
511 		rte_errno = errno;
512 		DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
513 		goto error;
514 	}
515 	/* Create completion queue object for Clock Queue. */
516 	cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
517 			    MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
518 	cq_attr.use_first_only = 1;
519 	cq_attr.overrun_ignore = 1;
520 	cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
521 	cq_attr.eqn = sh->eqn;
522 	cq_attr.q_umem_valid = 1;
523 	cq_attr.q_umem_offset = 0;
524 	cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
525 	cq_attr.db_umem_valid = 1;
526 	cq_attr.db_umem_offset = umem_dbrec;
527 	cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
528 	cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE);
529 	cq_attr.log_page_size = rte_log2_u32(page_size);
530 	wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
531 	if (!wq->cq) {
532 		rte_errno = errno;
533 		DRV_LOG(ERR, "Failed to create CQ for Clock Queue.");
534 		goto error;
535 	}
536 	wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
537 	wq->cq_ci = 0;
538 	/* Allocate memory buffer for Send Queue WQEs. */
539 	if (sh->txpp.test) {
540 		wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
541 					MLX5_WQE_CSEG_SIZE +
542 					2 * MLX5_WQE_ESEG_SIZE -
543 					MLX5_ESEG_MIN_INLINE_SIZE,
544 					MLX5_WQE_SIZE) / MLX5_WQE_SIZE;
545 		wq->sq_size *= MLX5_TXPP_CLKQ_SIZE;
546 	} else {
547 		wq->sq_size = MLX5_TXPP_CLKQ_SIZE;
548 	}
549 	/* There should not be WQE leftovers in the cyclic queue. */
550 	MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
551 	umem_size =  MLX5_WQE_SIZE * wq->sq_size;
552 	umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
553 	umem_size += MLX5_DBR_SIZE;
554 	wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
555 				 page_size, sh->numa_node);
556 	if (!wq->sq_buf) {
557 		DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
558 		rte_errno = ENOMEM;
559 		goto error;
560 	}
561 	/* Register allocated buffer in user space with DevX. */
562 	wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
563 					       (void *)(uintptr_t)wq->sq_buf,
564 					       umem_size,
565 					       IBV_ACCESS_LOCAL_WRITE);
566 	if (!wq->sq_umem) {
567 		rte_errno = errno;
568 		DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
569 		goto error;
570 	}
571 	/* Create send queue object for Clock Queue. */
572 	if (sh->txpp.test) {
573 		sq_attr.tis_lst_sz = 1;
574 		sq_attr.tis_num = sh->tis->id;
575 		sq_attr.non_wire = 0;
576 		sq_attr.static_sq_wq = 1;
577 	} else {
578 		sq_attr.non_wire = 1;
579 		sq_attr.static_sq_wq = 1;
580 	}
581 	sq_attr.state = MLX5_SQC_STATE_RST;
582 	sq_attr.cqn = wq->cq->id;
583 	sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id;
584 	sq_attr.wq_attr.cd_slave = 1;
585 	sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
586 	sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
587 	sq_attr.wq_attr.pd = sh->pdn;
588 	sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
589 	sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
590 	sq_attr.wq_attr.dbr_umem_valid = 1;
591 	sq_attr.wq_attr.dbr_addr = umem_dbrec;
592 	sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
593 	sq_attr.wq_attr.wq_umem_valid = 1;
594 	sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
595 	/* umem_offset must be zero for static_sq_wq queue. */
596 	sq_attr.wq_attr.wq_umem_offset = 0;
597 	wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
598 	if (!wq->sq) {
599 		rte_errno = errno;
600 		DRV_LOG(ERR, "Failed to create SQ for Clock Queue.");
601 		goto error;
602 	}
603 	wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
604 				   MLX5_SND_DBR * sizeof(uint32_t));
605 	/* Build the WQEs in the Send Queue before goto Ready state. */
606 	mlx5_txpp_fill_wqe_clock_queue(sh);
607 	/* Change queue state to ready. */
608 	msq_attr.sq_state = MLX5_SQC_STATE_RST;
609 	msq_attr.state = MLX5_SQC_STATE_RDY;
610 	wq->sq_ci = 0;
611 	ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
612 	if (ret) {
613 		DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue.");
614 		goto error;
615 	}
616 	return 0;
617 error:
618 	ret = -rte_errno;
619 	mlx5_txpp_destroy_clock_queue(sh);
620 	rte_errno = -ret;
621 	return ret;
622 }
623 
624 /* Enable notification from the Rearm Queue CQ. */
625 static inline void
626 mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh)
627 {
628 	void *base_addr;
629 
630 	struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue;
631 	uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET;
632 	uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci;
633 	uint64_t db_be = rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq->id);
634 	base_addr = mlx5_os_get_devx_uar_base_addr(sh->tx_uar);
635 	uint32_t *addr = RTE_PTR_ADD(base_addr, MLX5_CQ_DOORBELL);
636 
637 	rte_compiler_barrier();
638 	aq->cq_dbrec[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(db_hi);
639 	rte_wmb();
640 #ifdef RTE_ARCH_64
641 	*(uint64_t *)addr = db_be;
642 #else
643 	*(uint32_t *)addr = db_be;
644 	rte_io_wmb();
645 	*((uint32_t *)addr + 1) = db_be >> 32;
646 #endif
647 	aq->arm_sn++;
648 }
649 
650 #if defined(RTE_ARCH_X86_64)
651 static inline int
652 mlx5_atomic128_compare_exchange(rte_int128_t *dst,
653 				rte_int128_t *exp,
654 				const rte_int128_t *src)
655 {
656 	uint8_t res;
657 
658 	asm volatile (MPLOCKED
659 		      "cmpxchg16b %[dst];"
660 		      " sete %[res]"
661 		      : [dst] "=m" (dst->val[0]),
662 			"=a" (exp->val[0]),
663 			"=d" (exp->val[1]),
664 			[res] "=r" (res)
665 		      : "b" (src->val[0]),
666 			"c" (src->val[1]),
667 			"a" (exp->val[0]),
668 			"d" (exp->val[1]),
669 			"m" (dst->val[0])
670 		      : "memory");
671 
672 	return res;
673 }
674 #endif
675 
676 static inline void
677 mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts)
678 {
679 	/*
680 	 * The only CQE of Clock Queue is being continuously
681 	 * update by hardware with soecified rate. We have to
682 	 * read timestump and WQE completion index atomically.
683 	 */
684 #if defined(RTE_ARCH_X86_64)
685 	rte_int128_t src;
686 
687 	memset(&src, 0, sizeof(src));
688 	*ts = src;
689 	/* if (*from == *ts) *from = *src else *ts = *from; */
690 	mlx5_atomic128_compare_exchange(from, ts, &src);
691 #else
692 	uint64_t *cqe = (uint64_t *)from;
693 
694 	/*
695 	 * Power architecture does not support 16B compare-and-swap.
696 	 * ARM implements it in software, code below is more relevant.
697 	 */
698 	for (;;) {
699 		uint64_t tm, op;
700 		uint64_t *ps;
701 
702 		rte_compiler_barrier();
703 		tm = __atomic_load_n(cqe + 0, __ATOMIC_RELAXED);
704 		op = __atomic_load_n(cqe + 1, __ATOMIC_RELAXED);
705 		rte_compiler_barrier();
706 		if (tm != __atomic_load_n(cqe + 0, __ATOMIC_RELAXED))
707 			continue;
708 		if (op != __atomic_load_n(cqe + 1, __ATOMIC_RELAXED))
709 			continue;
710 		ps = (uint64_t *)ts;
711 		ps[0] = tm;
712 		ps[1] = op;
713 		return;
714 	}
715 #endif
716 }
717 
718 /* Stores timestamp in the cache structure to share data with datapath. */
719 static inline void
720 mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh,
721 			   uint64_t ts, uint64_t ci)
722 {
723 	ci = ci << (64 - MLX5_CQ_INDEX_WIDTH);
724 	ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH;
725 	rte_compiler_barrier();
726 	__atomic_store_n(&sh->txpp.ts.ts, ts, __ATOMIC_RELAXED);
727 	__atomic_store_n(&sh->txpp.ts.ci_ts, ci, __ATOMIC_RELAXED);
728 	rte_wmb();
729 }
730 
731 /* Reads timestamp from Clock Queue CQE and stores in the cache. */
732 static inline void
733 mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh)
734 {
735 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
736 	struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
737 	union {
738 		rte_int128_t u128;
739 		struct mlx5_cqe_ts cts;
740 	} to;
741 	uint64_t ts;
742 	uint16_t ci;
743 
744 	static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t),
745 		      "Wrong timestamp CQE part size");
746 	mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
747 	if (to.cts.op_own >> 4) {
748 		DRV_LOG(DEBUG, "Clock Queue error sync lost.");
749 		__atomic_fetch_add(&sh->txpp.err_clock_queue,
750 				   1, __ATOMIC_RELAXED);
751 		sh->txpp.sync_lost = 1;
752 		return;
753 	}
754 	ci = rte_be_to_cpu_16(to.cts.wqe_counter);
755 	ts = rte_be_to_cpu_64(to.cts.timestamp);
756 	ts = mlx5_txpp_convert_rx_ts(sh, ts);
757 	wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX;
758 	wq->sq_ci = ci;
759 	mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci);
760 }
761 
762 /* Waits for the first completion on Clock Queue to init timestamp. */
763 static inline void
764 mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh)
765 {
766 	struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
767 	uint32_t wait;
768 
769 	sh->txpp.ts_p = 0;
770 	sh->txpp.ts_n = 0;
771 	for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) {
772 		mlx5_txpp_update_timestamp(sh);
773 		if (wq->sq_ci)
774 			return;
775 		/* Wait one millisecond and try again. */
776 		rte_delay_us_sleep(US_PER_S / MS_PER_S);
777 	}
778 	DRV_LOG(ERR, "Unable to initialize timestamp.");
779 	sh->txpp.sync_lost = 1;
780 }
781 
782 #ifdef HAVE_IBV_DEVX_EVENT
783 /* Gather statistics for timestamp from Clock Queue CQE. */
784 static inline void
785 mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh)
786 {
787 	/* Check whether we have a valid timestamp. */
788 	if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n)
789 		return;
790 	MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE);
791 	__atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ts,
792 			 sh->txpp.ts.ts, __ATOMIC_RELAXED);
793 	__atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ci_ts,
794 			 sh->txpp.ts.ci_ts, __ATOMIC_RELAXED);
795 	if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE)
796 		sh->txpp.ts_p = 0;
797 	if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE)
798 		++sh->txpp.ts_n;
799 }
800 
801 /* Handles Rearm Queue completions in periodic service. */
802 static __rte_always_inline void
803 mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh)
804 {
805 	struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
806 	uint32_t cq_ci = wq->cq_ci;
807 	bool error = false;
808 	int ret;
809 
810 	do {
811 		volatile struct mlx5_cqe *cqe;
812 
813 		cqe = &wq->cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)];
814 		ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci);
815 		switch (ret) {
816 		case MLX5_CQE_STATUS_ERR:
817 			error = true;
818 			++cq_ci;
819 			break;
820 		case MLX5_CQE_STATUS_SW_OWN:
821 			wq->sq_ci += 2;
822 			++cq_ci;
823 			break;
824 		case MLX5_CQE_STATUS_HW_OWN:
825 			break;
826 		default:
827 			MLX5_ASSERT(false);
828 			break;
829 		}
830 	} while (ret != MLX5_CQE_STATUS_HW_OWN);
831 	if (likely(cq_ci != wq->cq_ci)) {
832 		/* Check whether we have missed interrupts. */
833 		if (cq_ci - wq->cq_ci != 1) {
834 			DRV_LOG(DEBUG, "Rearm Queue missed interrupt.");
835 			__atomic_fetch_add(&sh->txpp.err_miss_int,
836 					   1, __ATOMIC_RELAXED);
837 			/* Check sync lost on wqe index. */
838 			if (cq_ci - wq->cq_ci >=
839 				(((1UL << MLX5_WQ_INDEX_WIDTH) /
840 				  MLX5_TXPP_REARM) - 1))
841 				error = 1;
842 		}
843 		/* Update doorbell record to notify hardware. */
844 		rte_compiler_barrier();
845 		*wq->cq_dbrec = rte_cpu_to_be_32(cq_ci);
846 		rte_wmb();
847 		wq->cq_ci = cq_ci;
848 		/* Fire new requests to Rearm Queue. */
849 		if (error) {
850 			DRV_LOG(DEBUG, "Rearm Queue error sync lost.");
851 			__atomic_fetch_add(&sh->txpp.err_rearm_queue,
852 					   1, __ATOMIC_RELAXED);
853 			sh->txpp.sync_lost = 1;
854 		}
855 	}
856 }
857 
858 /* Handles Clock Queue completions in periodic service. */
859 static __rte_always_inline void
860 mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh)
861 {
862 	mlx5_txpp_update_timestamp(sh);
863 	mlx5_txpp_gather_timestamp(sh);
864 }
865 #endif
866 
867 /* Invoked periodically on Rearm Queue completions. */
868 void
869 mlx5_txpp_interrupt_handler(void *cb_arg)
870 {
871 #ifndef HAVE_IBV_DEVX_EVENT
872 	RTE_SET_USED(cb_arg);
873 	return;
874 #else
875 	struct mlx5_dev_ctx_shared *sh = cb_arg;
876 	union {
877 		struct mlx5dv_devx_async_event_hdr event_resp;
878 		uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128];
879 	} out;
880 
881 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
882 	/* Process events in the loop. Only rearm completions are expected. */
883 	while (mlx5_glue->devx_get_event
884 				(sh->txpp.echan,
885 				 &out.event_resp,
886 				 sizeof(out.buf)) >=
887 				 (ssize_t)sizeof(out.event_resp.cookie)) {
888 		mlx5_txpp_handle_rearm_queue(sh);
889 		mlx5_txpp_handle_clock_queue(sh);
890 		mlx5_txpp_cq_arm(sh);
891 		mlx5_txpp_doorbell_rearm_queue
892 					(sh, sh->txpp.rearm_queue.sq_ci - 1);
893 	}
894 #endif /* HAVE_IBV_DEVX_ASYNC */
895 }
896 
897 static void
898 mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh)
899 {
900 	if (!sh->txpp.intr_handle.fd)
901 		return;
902 	mlx5_intr_callback_unregister(&sh->txpp.intr_handle,
903 				      mlx5_txpp_interrupt_handler, sh);
904 	sh->txpp.intr_handle.fd = 0;
905 }
906 
907 /* Attach interrupt handler and fires first request to Rearm Queue. */
908 static int
909 mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh)
910 {
911 	uint16_t event_nums[1] = {0};
912 	int ret;
913 	int fd;
914 
915 	sh->txpp.err_miss_int = 0;
916 	sh->txpp.err_rearm_queue = 0;
917 	sh->txpp.err_clock_queue = 0;
918 	sh->txpp.err_ts_past = 0;
919 	sh->txpp.err_ts_future = 0;
920 	/* Attach interrupt handler to process Rearm Queue completions. */
921 	fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
922 	ret = mlx5_os_set_nonblock_channel_fd(fd);
923 	if (ret) {
924 		DRV_LOG(ERR, "Failed to change event channel FD.");
925 		rte_errno = errno;
926 		return -rte_errno;
927 	}
928 	memset(&sh->txpp.intr_handle, 0, sizeof(sh->txpp.intr_handle));
929 	fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
930 	sh->txpp.intr_handle.fd = fd;
931 	sh->txpp.intr_handle.type = RTE_INTR_HANDLE_EXT;
932 	if (rte_intr_callback_register(&sh->txpp.intr_handle,
933 				       mlx5_txpp_interrupt_handler, sh)) {
934 		sh->txpp.intr_handle.fd = 0;
935 		DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno);
936 		return -rte_errno;
937 	}
938 	/* Subscribe CQ event to the event channel controlled by the driver. */
939 	ret = mlx5_glue->devx_subscribe_devx_event(sh->txpp.echan,
940 						   sh->txpp.rearm_queue.cq->obj,
941 						   sizeof(event_nums),
942 						   event_nums, 0);
943 	if (ret) {
944 		DRV_LOG(ERR, "Failed to subscribe CQE event.");
945 		rte_errno = errno;
946 		return -errno;
947 	}
948 	/* Enable interrupts in the CQ. */
949 	mlx5_txpp_cq_arm(sh);
950 	/* Fire the first request on Rearm Queue. */
951 	mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1);
952 	mlx5_txpp_init_timestamp(sh);
953 	return 0;
954 }
955 
956 /*
957  * The routine initializes the packet pacing infrastructure:
958  * - allocates PP context
959  * - Clock CQ/SQ
960  * - Rearm CQ/SQ
961  * - attaches rearm interrupt handler
962  * - starts Clock Queue
963  *
964  * Returns 0 on success, negative otherwise
965  */
966 static int
967 mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv)
968 {
969 	int tx_pp = priv->config.tx_pp;
970 	int ret;
971 
972 	/* Store the requested pacing parameters. */
973 	sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp;
974 	sh->txpp.test = !!(tx_pp < 0);
975 	sh->txpp.skew = priv->config.tx_skew;
976 	sh->txpp.freq = priv->config.hca_attr.dev_freq_khz;
977 	ret = mlx5_txpp_create_event_channel(sh);
978 	if (ret)
979 		goto exit;
980 	ret = mlx5_txpp_alloc_pp_index(sh);
981 	if (ret)
982 		goto exit;
983 	ret = mlx5_txpp_create_clock_queue(sh);
984 	if (ret)
985 		goto exit;
986 	ret = mlx5_txpp_create_rearm_queue(sh);
987 	if (ret)
988 		goto exit;
989 	ret = mlx5_txpp_start_service(sh);
990 	if (ret)
991 		goto exit;
992 exit:
993 	if (ret) {
994 		mlx5_txpp_stop_service(sh);
995 		mlx5_txpp_destroy_rearm_queue(sh);
996 		mlx5_txpp_destroy_clock_queue(sh);
997 		mlx5_txpp_free_pp_index(sh);
998 		mlx5_txpp_destroy_event_channel(sh);
999 		sh->txpp.tick = 0;
1000 		sh->txpp.test = 0;
1001 		sh->txpp.skew = 0;
1002 	}
1003 	return ret;
1004 }
1005 
1006 /*
1007  * The routine destroys the packet pacing infrastructure:
1008  * - detaches rearm interrupt handler
1009  * - Rearm CQ/SQ
1010  * - Clock CQ/SQ
1011  * - PP context
1012  */
1013 static void
1014 mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh)
1015 {
1016 	mlx5_txpp_stop_service(sh);
1017 	mlx5_txpp_destroy_rearm_queue(sh);
1018 	mlx5_txpp_destroy_clock_queue(sh);
1019 	mlx5_txpp_free_pp_index(sh);
1020 	mlx5_txpp_destroy_event_channel(sh);
1021 	sh->txpp.tick = 0;
1022 	sh->txpp.test = 0;
1023 	sh->txpp.skew = 0;
1024 }
1025 
1026 /**
1027  * Creates and starts packet pacing infrastructure on specified device.
1028  *
1029  * @param dev
1030  *   Pointer to Ethernet device structure.
1031  *
1032  * @return
1033  *   0 on success, a negative errno value otherwise and rte_errno is set.
1034  */
1035 int
1036 mlx5_txpp_start(struct rte_eth_dev *dev)
1037 {
1038 	struct mlx5_priv *priv = dev->data->dev_private;
1039 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1040 	int err = 0;
1041 	int ret;
1042 
1043 	if (!priv->config.tx_pp) {
1044 		/* Packet pacing is not requested for the device. */
1045 		MLX5_ASSERT(priv->txpp_en == 0);
1046 		return 0;
1047 	}
1048 	if (priv->txpp_en) {
1049 		/* Packet pacing is already enabled for the device. */
1050 		MLX5_ASSERT(sh->txpp.refcnt);
1051 		return 0;
1052 	}
1053 	if (priv->config.tx_pp > 0) {
1054 		ret = rte_mbuf_dynflag_lookup
1055 				(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
1056 		if (ret < 0)
1057 			return 0;
1058 	}
1059 	ret = pthread_mutex_lock(&sh->txpp.mutex);
1060 	MLX5_ASSERT(!ret);
1061 	RTE_SET_USED(ret);
1062 	if (sh->txpp.refcnt) {
1063 		priv->txpp_en = 1;
1064 		++sh->txpp.refcnt;
1065 	} else {
1066 		err = mlx5_txpp_create(sh, priv);
1067 		if (!err) {
1068 			MLX5_ASSERT(sh->txpp.tick);
1069 			priv->txpp_en = 1;
1070 			sh->txpp.refcnt = 1;
1071 		} else {
1072 			rte_errno = -err;
1073 		}
1074 	}
1075 	ret = pthread_mutex_unlock(&sh->txpp.mutex);
1076 	MLX5_ASSERT(!ret);
1077 	RTE_SET_USED(ret);
1078 	return err;
1079 }
1080 
1081 /**
1082  * Stops and destroys packet pacing infrastructure on specified device.
1083  *
1084  * @param dev
1085  *   Pointer to Ethernet device structure.
1086  *
1087  * @return
1088  *   0 on success, a negative errno value otherwise and rte_errno is set.
1089  */
1090 void
1091 mlx5_txpp_stop(struct rte_eth_dev *dev)
1092 {
1093 	struct mlx5_priv *priv = dev->data->dev_private;
1094 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1095 	int ret;
1096 
1097 	if (!priv->txpp_en) {
1098 		/* Packet pacing is already disabled for the device. */
1099 		return;
1100 	}
1101 	priv->txpp_en = 0;
1102 	ret = pthread_mutex_lock(&sh->txpp.mutex);
1103 	MLX5_ASSERT(!ret);
1104 	RTE_SET_USED(ret);
1105 	MLX5_ASSERT(sh->txpp.refcnt);
1106 	if (!sh->txpp.refcnt || --sh->txpp.refcnt)
1107 		return;
1108 	/* No references any more, do actual destroy. */
1109 	mlx5_txpp_destroy(sh);
1110 	ret = pthread_mutex_unlock(&sh->txpp.mutex);
1111 	MLX5_ASSERT(!ret);
1112 	RTE_SET_USED(ret);
1113 }
1114 
1115 /*
1116  * Read the current clock counter of an Ethernet device
1117  *
1118  * This returns the current raw clock value of an Ethernet device. It is
1119  * a raw amount of ticks, with no given time reference.
1120  * The value returned here is from the same clock than the one
1121  * filling timestamp field of Rx/Tx packets when using hardware timestamp
1122  * offload. Therefore it can be used to compute a precise conversion of
1123  * the device clock to the real time.
1124  *
1125  * @param dev
1126  *   Pointer to Ethernet device structure.
1127  * @param clock
1128  *   Pointer to the uint64_t that holds the raw clock value.
1129  *
1130  * @return
1131  *   - 0: Success.
1132  *   - -ENOTSUP: The function is not supported in this mode. Requires
1133  *     packet pacing module configured and started (tx_pp devarg)
1134  */
1135 int
1136 mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp)
1137 {
1138 	struct mlx5_priv *priv = dev->data->dev_private;
1139 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1140 	int ret;
1141 
1142 	if (sh->txpp.refcnt) {
1143 		struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
1144 		struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
1145 		union {
1146 			rte_int128_t u128;
1147 			struct mlx5_cqe_ts cts;
1148 		} to;
1149 		uint64_t ts;
1150 
1151 		mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
1152 		if (to.cts.op_own >> 4) {
1153 			DRV_LOG(DEBUG, "Clock Queue error sync lost.");
1154 			__atomic_fetch_add(&sh->txpp.err_clock_queue,
1155 					   1, __ATOMIC_RELAXED);
1156 			sh->txpp.sync_lost = 1;
1157 			return -EIO;
1158 		}
1159 		ts = rte_be_to_cpu_64(to.cts.timestamp);
1160 		ts = mlx5_txpp_convert_rx_ts(sh, ts);
1161 		*timestamp = ts;
1162 		return 0;
1163 	}
1164 	/* Not supported in isolated mode - kernel does not see the CQEs. */
1165 	if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY)
1166 		return -ENOTSUP;
1167 	ret = mlx5_read_clock(dev, timestamp);
1168 	return ret;
1169 }
1170 
1171 /**
1172  * DPDK callback to clear device extended statistics.
1173  *
1174  * @param dev
1175  *   Pointer to Ethernet device structure.
1176  *
1177  * @return
1178  *   0 on success and stats is reset, negative errno value otherwise and
1179  *   rte_errno is set.
1180  */
1181 int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev)
1182 {
1183 	struct mlx5_priv *priv = dev->data->dev_private;
1184 	struct mlx5_dev_ctx_shared *sh = priv->sh;
1185 
1186 	__atomic_store_n(&sh->txpp.err_miss_int, 0, __ATOMIC_RELAXED);
1187 	__atomic_store_n(&sh->txpp.err_rearm_queue, 0, __ATOMIC_RELAXED);
1188 	__atomic_store_n(&sh->txpp.err_clock_queue, 0, __ATOMIC_RELAXED);
1189 	__atomic_store_n(&sh->txpp.err_ts_past, 0, __ATOMIC_RELAXED);
1190 	__atomic_store_n(&sh->txpp.err_ts_future, 0, __ATOMIC_RELAXED);
1191 	return 0;
1192 }
1193 
1194 /**
1195  * Routine to retrieve names of extended device statistics
1196  * for packet send scheduling. It appends the specific stats names
1197  * after the parts filled by preceding modules (eth stats, etc.)
1198  *
1199  * @param dev
1200  *   Pointer to Ethernet device structure.
1201  * @param[out] xstats_names
1202  *   Buffer to insert names into.
1203  * @param n
1204  *   Number of names.
1205  * @param n_used
1206  *   Number of names filled by preceding statistics modules.
1207  *
1208  * @return
1209  *   Number of xstats names.
1210  */
1211 int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused,
1212 			       struct rte_eth_xstat_name *xstats_names,
1213 			       unsigned int n, unsigned int n_used)
1214 {
1215 	unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
1216 	unsigned int i;
1217 
1218 	if (n >= n_used + n_txpp && xstats_names) {
1219 		for (i = 0; i < n_txpp; ++i) {
1220 			strncpy(xstats_names[i + n_used].name,
1221 				mlx5_txpp_stat_names[i],
1222 				RTE_ETH_XSTATS_NAME_SIZE);
1223 			xstats_names[i + n_used].name
1224 					[RTE_ETH_XSTATS_NAME_SIZE - 1] = 0;
1225 		}
1226 	}
1227 	return n_used + n_txpp;
1228 }
1229 
1230 static inline void
1231 mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp,
1232 		   struct mlx5_txpp_ts *tsa, uint16_t idx)
1233 {
1234 	do {
1235 		uint64_t ts, ci;
1236 
1237 		ts = __atomic_load_n(&txpp->tsa[idx].ts, __ATOMIC_RELAXED);
1238 		ci = __atomic_load_n(&txpp->tsa[idx].ci_ts, __ATOMIC_RELAXED);
1239 		rte_compiler_barrier();
1240 		if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0)
1241 			continue;
1242 		if (__atomic_load_n(&txpp->tsa[idx].ts,
1243 				    __ATOMIC_RELAXED) != ts)
1244 			continue;
1245 		if (__atomic_load_n(&txpp->tsa[idx].ci_ts,
1246 				    __ATOMIC_RELAXED) != ci)
1247 			continue;
1248 		tsa->ts = ts;
1249 		tsa->ci_ts = ci;
1250 		return;
1251 	} while (true);
1252 }
1253 
1254 /*
1255  * Jitter reflects the clock change between
1256  * neighbours Clock Queue completions.
1257  */
1258 static uint64_t
1259 mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp)
1260 {
1261 	struct mlx5_txpp_ts tsa0, tsa1;
1262 	int64_t dts, dci;
1263 	uint16_t ts_p;
1264 
1265 	if (txpp->ts_n < 2) {
1266 		/* No gathered enough reports yet. */
1267 		return 0;
1268 	}
1269 	do {
1270 		int ts_0, ts_1;
1271 
1272 		ts_p = txpp->ts_p;
1273 		rte_compiler_barrier();
1274 		ts_0 = ts_p - 2;
1275 		if (ts_0 < 0)
1276 			ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
1277 		ts_1 = ts_p - 1;
1278 		if (ts_1 < 0)
1279 			ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
1280 		mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
1281 		mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
1282 		rte_compiler_barrier();
1283 	} while (ts_p != txpp->ts_p);
1284 	/* We have two neighbor reports, calculate the jitter. */
1285 	dts = tsa1.ts - tsa0.ts;
1286 	dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) -
1287 	      (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH));
1288 	if (dci < 0)
1289 		dci += 1 << MLX5_CQ_INDEX_WIDTH;
1290 	dci *= txpp->tick;
1291 	return (dts > dci) ? dts - dci : dci - dts;
1292 }
1293 
1294 /*
1295  * Wander reflects the long-term clock change
1296  * over the entire length of all Clock Queue completions.
1297  */
1298 static uint64_t
1299 mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp)
1300 {
1301 	struct mlx5_txpp_ts tsa0, tsa1;
1302 	int64_t dts, dci;
1303 	uint16_t ts_p;
1304 
1305 	if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) {
1306 		/* No gathered enough reports yet. */
1307 		return 0;
1308 	}
1309 	do {
1310 		int ts_0, ts_1;
1311 
1312 		ts_p = txpp->ts_p;
1313 		rte_compiler_barrier();
1314 		ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1;
1315 		if (ts_0 < 0)
1316 			ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
1317 		ts_1 = ts_p - 1;
1318 		if (ts_1 < 0)
1319 			ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
1320 		mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
1321 		mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
1322 		rte_compiler_barrier();
1323 	} while (ts_p != txpp->ts_p);
1324 	/* We have two neighbor reports, calculate the jitter. */
1325 	dts = tsa1.ts - tsa0.ts;
1326 	dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) -
1327 	      (tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH));
1328 	dci += 1 << MLX5_CQ_INDEX_WIDTH;
1329 	dci *= txpp->tick;
1330 	return (dts > dci) ? dts - dci : dci - dts;
1331 }
1332 
1333 /**
1334  * Routine to retrieve extended device statistics
1335  * for packet send scheduling. It appends the specific statistics
1336  * after the parts filled by preceding modules (eth stats, etc.)
1337  *
1338  * @param dev
1339  *   Pointer to Ethernet device.
1340  * @param[out] stats
1341  *   Pointer to rte extended stats table.
1342  * @param n
1343  *   The size of the stats table.
1344  * @param n_used
1345  *   Number of stats filled by preceding statistics modules.
1346  *
1347  * @return
1348  *   Number of extended stats on success and stats is filled,
1349  *   negative on error and rte_errno is set.
1350  */
1351 int
1352 mlx5_txpp_xstats_get(struct rte_eth_dev *dev,
1353 		     struct rte_eth_xstat *stats,
1354 		     unsigned int n, unsigned int n_used)
1355 {
1356 	unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
1357 
1358 	if (n >= n_used + n_txpp && stats) {
1359 		struct mlx5_priv *priv = dev->data->dev_private;
1360 		struct mlx5_dev_ctx_shared *sh = priv->sh;
1361 		unsigned int i;
1362 
1363 		for (i = 0; i < n_txpp; ++i)
1364 			stats[n_used + i].id = n_used + i;
1365 		stats[n_used + 0].value =
1366 				__atomic_load_n(&sh->txpp.err_miss_int,
1367 						__ATOMIC_RELAXED);
1368 		stats[n_used + 1].value =
1369 				__atomic_load_n(&sh->txpp.err_rearm_queue,
1370 						__ATOMIC_RELAXED);
1371 		stats[n_used + 2].value =
1372 				__atomic_load_n(&sh->txpp.err_clock_queue,
1373 						__ATOMIC_RELAXED);
1374 		stats[n_used + 3].value =
1375 				__atomic_load_n(&sh->txpp.err_ts_past,
1376 						__ATOMIC_RELAXED);
1377 		stats[n_used + 4].value =
1378 				__atomic_load_n(&sh->txpp.err_ts_future,
1379 						__ATOMIC_RELAXED);
1380 		stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp);
1381 		stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp);
1382 		stats[n_used + 7].value = sh->txpp.sync_lost;
1383 	}
1384 	return n_used + n_txpp;
1385 }
1386