xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_neon.h (revision ceccf8dc7c3d7797e380f12b45cd3ea1d7396b58)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_NEON_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_NEON_H_
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <arm_neon.h>
14 
15 #include <rte_mbuf.h>
16 #include <rte_mempool.h>
17 #include <rte_prefetch.h>
18 
19 #include "mlx5.h"
20 #include "mlx5_utils.h"
21 #include "mlx5_rxtx.h"
22 #include "mlx5_rxtx_vec.h"
23 #include "mlx5_autoconf.h"
24 #include "mlx5_defs.h"
25 #include "mlx5_prm.h"
26 
27 #pragma GCC diagnostic ignored "-Wcast-qual"
28 
29 /**
30  * Fill in buffer descriptors in a multi-packet send descriptor.
31  *
32  * @param txq
33  *   Pointer to TX queue structure.
34  * @param dseg
35  *   Pointer to buffer descriptor to be written.
36  * @param pkts
37  *   Pointer to array of packets to be sent.
38  * @param n
39  *   Number of packets to be filled.
40  */
41 static inline void
42 txq_wr_dseg_v(struct mlx5_txq_data *txq, uint8_t *dseg,
43 	      struct rte_mbuf **pkts, unsigned int n)
44 {
45 	unsigned int pos;
46 	uintptr_t addr;
47 	const uint8x16_t dseg_shuf_m = {
48 		 3,  2,  1,  0, /* length, bswap32 */
49 		 4,  5,  6,  7, /* lkey */
50 		15, 14, 13, 12, /* addr, bswap64 */
51 		11, 10,  9,  8
52 	};
53 #ifdef MLX5_PMD_SOFT_COUNTERS
54 	uint32_t tx_byte = 0;
55 #endif
56 
57 	for (pos = 0; pos < n; ++pos, dseg += MLX5_WQE_DWORD_SIZE) {
58 		uint8x16_t desc;
59 		struct rte_mbuf *pkt = pkts[pos];
60 
61 		addr = rte_pktmbuf_mtod(pkt, uintptr_t);
62 		desc = vreinterpretq_u8_u32((uint32x4_t) {
63 				DATA_LEN(pkt),
64 				mlx5_tx_mb2mr(txq, pkt),
65 				addr,
66 				addr >> 32 });
67 		desc = vqtbl1q_u8(desc, dseg_shuf_m);
68 		vst1q_u8(dseg, desc);
69 #ifdef MLX5_PMD_SOFT_COUNTERS
70 		tx_byte += DATA_LEN(pkt);
71 #endif
72 	}
73 #ifdef MLX5_PMD_SOFT_COUNTERS
74 	txq->stats.obytes += tx_byte;
75 #endif
76 }
77 
78 /**
79  * Send multi-segmented packets until it encounters a single segment packet in
80  * the pkts list.
81  *
82  * @param txq
83  *   Pointer to TX queue structure.
84  * @param pkts
85  *   Pointer to array of packets to be sent.
86  * @param pkts_n
87  *   Number of packets to be sent.
88  *
89  * @return
90  *   Number of packets successfully transmitted (<= pkts_n).
91  */
92 static uint16_t
93 txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
94 	      uint16_t pkts_n)
95 {
96 	uint16_t elts_head = txq->elts_head;
97 	const uint16_t elts_n = 1 << txq->elts_n;
98 	const uint16_t elts_m = elts_n - 1;
99 	const uint16_t wq_n = 1 << txq->wqe_n;
100 	const uint16_t wq_mask = wq_n - 1;
101 	const unsigned int nb_dword_per_wqebb =
102 		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
103 	const unsigned int nb_dword_in_hdr =
104 		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
105 	unsigned int n;
106 	volatile struct mlx5_wqe *wqe = NULL;
107 
108 	assert(elts_n > pkts_n);
109 	mlx5_tx_complete(txq);
110 	if (unlikely(!pkts_n))
111 		return 0;
112 	for (n = 0; n < pkts_n; ++n) {
113 		struct rte_mbuf *buf = pkts[n];
114 		unsigned int segs_n = buf->nb_segs;
115 		unsigned int ds = nb_dword_in_hdr;
116 		unsigned int len = PKT_LEN(buf);
117 		uint16_t wqe_ci = txq->wqe_ci;
118 		const uint8x16_t ctrl_shuf_m = {
119 			3,  2,  1,  0, /* bswap32 */
120 			7,  6,  5,  4, /* bswap32 */
121 			11, 10,  9,  8, /* bswap32 */
122 			12, 13, 14, 15
123 		};
124 		uint8_t cs_flags;
125 		uint16_t max_elts;
126 		uint16_t max_wqe;
127 		uint8x16_t *t_wqe;
128 		uint8_t *dseg;
129 		uint8x16_t ctrl;
130 
131 		assert(segs_n);
132 		max_elts = elts_n - (elts_head - txq->elts_tail);
133 		max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
134 		/*
135 		 * A MPW session consumes 2 WQEs at most to
136 		 * include MLX5_MPW_DSEG_MAX pointers.
137 		 */
138 		if (segs_n == 1 ||
139 		    max_elts < segs_n || max_wqe < 2)
140 			break;
141 		wqe = &((volatile struct mlx5_wqe64 *)
142 			 txq->wqes)[wqe_ci & wq_mask].hdr;
143 		cs_flags = txq_ol_cksum_to_cs(buf);
144 		/* Title WQEBB pointer. */
145 		t_wqe = (uint8x16_t *)wqe;
146 		dseg = (uint8_t *)(wqe + 1);
147 		do {
148 			if (!(ds++ % nb_dword_per_wqebb)) {
149 				dseg = (uint8_t *)
150 					&((volatile struct mlx5_wqe64 *)
151 					   txq->wqes)[++wqe_ci & wq_mask];
152 			}
153 			txq_wr_dseg_v(txq, dseg, &buf, 1);
154 			dseg += MLX5_WQE_DWORD_SIZE;
155 			(*txq->elts)[elts_head++ & elts_m] = buf;
156 			buf = buf->next;
157 		} while (--segs_n);
158 		++wqe_ci;
159 		/* Fill CTRL in the header. */
160 		ctrl = vreinterpretq_u8_u32((uint32x4_t) {
161 				MLX5_OPC_MOD_MPW << 24 |
162 				txq->wqe_ci << 8 | MLX5_OPCODE_TSO,
163 				txq->qp_num_8s | ds, 0, 0});
164 		ctrl = vqtbl1q_u8(ctrl, ctrl_shuf_m);
165 		vst1q_u8((void *)t_wqe, ctrl);
166 		/* Fill ESEG in the header. */
167 		vst1q_u16((void *)(t_wqe + 1),
168 			  ((uint16x8_t) { 0, 0, cs_flags, rte_cpu_to_be_16(len),
169 					  0, 0, 0, 0 }));
170 		txq->wqe_ci = wqe_ci;
171 	}
172 	if (!n)
173 		return 0;
174 	txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
175 	txq->elts_head = elts_head;
176 	if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
177 		/* A CQE slot must always be available. */
178 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
179 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
180 		wqe->ctrl[3] = txq->elts_head;
181 		txq->elts_comp = 0;
182 	}
183 #ifdef MLX5_PMD_SOFT_COUNTERS
184 	txq->stats.opackets += n;
185 #endif
186 	mlx5_tx_dbrec(txq, wqe);
187 	return n;
188 }
189 
190 /**
191  * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
192  * it returns to make it processed by txq_scatter_v(). All the packets in
193  * the pkts list should be single segment packets having same offload flags.
194  * This must be checked by txq_count_contig_single_seg() and txq_calc_offload().
195  *
196  * @param txq
197  *   Pointer to TX queue structure.
198  * @param pkts
199  *   Pointer to array of packets to be sent.
200  * @param pkts_n
201  *   Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
202  * @param cs_flags
203  *   Checksum offload flags to be written in the descriptor.
204  * @param metadata
205  *   Metadata value to be written in the descriptor.
206  *
207  * @return
208  *   Number of packets successfully transmitted (<= pkts_n).
209  */
210 static inline uint16_t
211 txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
212 	    uint8_t cs_flags, rte_be32_t metadata)
213 {
214 	struct rte_mbuf **elts;
215 	uint16_t elts_head = txq->elts_head;
216 	const uint16_t elts_n = 1 << txq->elts_n;
217 	const uint16_t elts_m = elts_n - 1;
218 	const unsigned int nb_dword_per_wqebb =
219 		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
220 	const unsigned int nb_dword_in_hdr =
221 		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
222 	unsigned int n = 0;
223 	unsigned int pos;
224 	uint16_t max_elts;
225 	uint16_t max_wqe;
226 	uint32_t comp_req = 0;
227 	const uint16_t wq_n = 1 << txq->wqe_n;
228 	const uint16_t wq_mask = wq_n - 1;
229 	uint16_t wq_idx = txq->wqe_ci & wq_mask;
230 	volatile struct mlx5_wqe64 *wq =
231 		&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
232 	volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
233 	const uint8x16_t ctrl_shuf_m = {
234 		 3,  2,  1,  0, /* bswap32 */
235 		 7,  6,  5,  4, /* bswap32 */
236 		11, 10,  9,  8, /* bswap32 */
237 		12, 13, 14, 15
238 	};
239 	uint8x16_t *t_wqe;
240 	uint8_t *dseg;
241 	uint8x16_t ctrl;
242 
243 	/* Make sure all packets can fit into a single WQE. */
244 	assert(elts_n > pkts_n);
245 	mlx5_tx_complete(txq);
246 	max_elts = (elts_n - (elts_head - txq->elts_tail));
247 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
248 	pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
249 	if (unlikely(!pkts_n))
250 		return 0;
251 	elts = &(*txq->elts)[elts_head & elts_m];
252 	/* Loop for available tailroom first. */
253 	n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
254 	for (pos = 0; pos < (n & -2); pos += 2)
255 		vst1q_u64((void *)&elts[pos], vld1q_u64((void *)&pkts[pos]));
256 	if (n & 1)
257 		elts[pos] = pkts[pos];
258 	/* Check if it crosses the end of the queue. */
259 	if (unlikely(n < pkts_n)) {
260 		elts = &(*txq->elts)[0];
261 		for (pos = 0; pos < pkts_n - n; ++pos)
262 			elts[pos] = pkts[n + pos];
263 	}
264 	txq->elts_head += pkts_n;
265 	/* Save title WQEBB pointer. */
266 	t_wqe = (uint8x16_t *)wqe;
267 	dseg = (uint8_t *)(wqe + 1);
268 	/* Calculate the number of entries to the end. */
269 	n = RTE_MIN(
270 		(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
271 		pkts_n);
272 	/* Fill DSEGs. */
273 	txq_wr_dseg_v(txq, dseg, pkts, n);
274 	/* Check if it crosses the end of the queue. */
275 	if (n < pkts_n) {
276 		dseg = (uint8_t *)txq->wqes;
277 		txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
278 	}
279 	if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
280 		txq->elts_comp += pkts_n;
281 	} else {
282 		/* A CQE slot must always be available. */
283 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
284 		/* Request a completion. */
285 		txq->elts_comp = 0;
286 		comp_req = 8;
287 	}
288 	/* Fill CTRL in the header. */
289 	ctrl = vreinterpretq_u8_u32((uint32x4_t) {
290 			MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
291 			txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW,
292 			txq->qp_num_8s | (pkts_n + 2),
293 			comp_req,
294 			txq->elts_head });
295 	ctrl = vqtbl1q_u8(ctrl, ctrl_shuf_m);
296 	vst1q_u8((void *)t_wqe, ctrl);
297 	/* Fill ESEG in the header. */
298 	vst1q_u32((void *)(t_wqe + 1),
299 		 ((uint32x4_t) { 0, cs_flags, metadata, 0 }));
300 #ifdef MLX5_PMD_SOFT_COUNTERS
301 	txq->stats.opackets += pkts_n;
302 #endif
303 	txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
304 		       nb_dword_per_wqebb;
305 	/* Ring QP doorbell. */
306 	mlx5_tx_dbrec_cond_wmb(txq, wqe, pkts_n < MLX5_VPMD_TX_MAX_BURST);
307 	return pkts_n;
308 }
309 
310 /**
311  * Store free buffers to RX SW ring.
312  *
313  * @param rxq
314  *   Pointer to RX queue structure.
315  * @param pkts
316  *   Pointer to array of packets to be stored.
317  * @param pkts_n
318  *   Number of packets to be stored.
319  */
320 static inline void
321 rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
322 {
323 	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
324 	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
325 	unsigned int pos;
326 	uint16_t p = n & -2;
327 
328 	for (pos = 0; pos < p; pos += 2) {
329 		uint64x2_t mbp;
330 
331 		mbp = vld1q_u64((void *)&elts[pos]);
332 		vst1q_u64((void *)&pkts[pos], mbp);
333 	}
334 	if (n & 1)
335 		pkts[pos] = elts[pos];
336 }
337 
338 /**
339  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
340  * extracted from the title completion descriptor.
341  *
342  * @param rxq
343  *   Pointer to RX queue structure.
344  * @param cq
345  *   Pointer to completion array having a compressed completion at first.
346  * @param elts
347  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
348  *   the title completion descriptor to be copied to the rest of mbufs.
349  */
350 static inline void
351 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
352 		    struct rte_mbuf **elts)
353 {
354 	volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
355 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
356 	unsigned int pos;
357 	unsigned int i;
358 	unsigned int inv = 0;
359 	/* Mask to shuffle from extracted mini CQE to mbuf. */
360 	const uint8x16_t mcqe_shuf_m1 = {
361 		-1, -1, -1, -1, /* skip packet_type */
362 		 7,  6, -1, -1, /* pkt_len, bswap16 */
363 		 7,  6,         /* data_len, bswap16 */
364 		-1, -1,         /* skip vlan_tci */
365 		 3,  2,  1,  0  /* hash.rss, bswap32 */
366 	};
367 	const uint8x16_t mcqe_shuf_m2 = {
368 		-1, -1, -1, -1, /* skip packet_type */
369 		15, 14, -1, -1, /* pkt_len, bswap16 */
370 		15, 14,         /* data_len, bswap16 */
371 		-1, -1,         /* skip vlan_tci */
372 		11, 10,  9,  8  /* hash.rss, bswap32 */
373 	};
374 	/* Restore the compressed count. Must be 16 bits. */
375 	const uint16_t mcqe_n = t_pkt->data_len +
376 				(rxq->crc_present * ETHER_CRC_LEN);
377 	const uint64x2_t rearm =
378 		vld1q_u64((void *)&t_pkt->rearm_data);
379 	const uint32x4_t rxdf_mask = {
380 		0xffffffff, /* packet_type */
381 		0,          /* skip pkt_len */
382 		0xffff0000, /* vlan_tci, skip data_len */
383 		0,          /* skip hash.rss */
384 	};
385 	const uint8x16_t rxdf =
386 		vandq_u8(vld1q_u8((void *)&t_pkt->rx_descriptor_fields1),
387 			 vreinterpretq_u8_u32(rxdf_mask));
388 	const uint16x8_t crc_adj = {
389 		0, 0,
390 		rxq->crc_present * ETHER_CRC_LEN, 0,
391 		rxq->crc_present * ETHER_CRC_LEN, 0,
392 		0, 0
393 	};
394 	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
395 #ifdef MLX5_PMD_SOFT_COUNTERS
396 	uint32_t rcvd_byte = 0;
397 #endif
398 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
399 	const uint8x8_t len_shuf_m = {
400 		 7,  6,         /* 1st mCQE */
401 		15, 14,         /* 2nd mCQE */
402 		23, 22,         /* 3rd mCQE */
403 		31, 30          /* 4th mCQE */
404 	};
405 
406 	/*
407 	 * A. load mCQEs into a 128bit register.
408 	 * B. store rearm data to mbuf.
409 	 * C. combine data from mCQEs with rx_descriptor_fields1.
410 	 * D. store rx_descriptor_fields1.
411 	 * E. store flow tag (rte_flow mark).
412 	 */
413 	for (pos = 0; pos < mcqe_n; ) {
414 		uint8_t *p = (void *)&mcq[pos % 8];
415 		uint8_t *e0 = (void *)&elts[pos]->rearm_data;
416 		uint8_t *e1 = (void *)&elts[pos + 1]->rearm_data;
417 		uint8_t *e2 = (void *)&elts[pos + 2]->rearm_data;
418 		uint8_t *e3 = (void *)&elts[pos + 3]->rearm_data;
419 		uint16x4_t byte_cnt;
420 #ifdef MLX5_PMD_SOFT_COUNTERS
421 		uint16x4_t invalid_mask =
422 			vcreate_u16(mcqe_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
423 				    -1UL << ((mcqe_n - pos) *
424 					     sizeof(uint16_t) * 8) : 0);
425 #endif
426 
427 		if (!(pos & 0x7) && pos + 8 < mcqe_n)
428 			rte_prefetch0((void *)(cq + pos + 8));
429 		__asm__ volatile (
430 		/* A.1 load mCQEs into a 128bit register. */
431 		"ld1 {v16.16b - v17.16b}, [%[mcq]] \n\t"
432 		/* B.1 store rearm data to mbuf. */
433 		"st1 {%[rearm].2d}, [%[e0]] \n\t"
434 		"add %[e0], %[e0], #16 \n\t"
435 		"st1 {%[rearm].2d}, [%[e1]] \n\t"
436 		"add %[e1], %[e1], #16 \n\t"
437 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
438 		"tbl v18.16b, {v16.16b}, %[mcqe_shuf_m1].16b \n\t"
439 		"tbl v19.16b, {v16.16b}, %[mcqe_shuf_m2].16b \n\t"
440 		"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
441 		"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
442 		"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
443 		"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
444 		/* D.1 store rx_descriptor_fields1. */
445 		"st1 {v18.2d}, [%[e0]] \n\t"
446 		"st1 {v19.2d}, [%[e1]] \n\t"
447 		/* B.1 store rearm data to mbuf. */
448 		"st1 {%[rearm].2d}, [%[e2]] \n\t"
449 		"add %[e2], %[e2], #16 \n\t"
450 		"st1 {%[rearm].2d}, [%[e3]] \n\t"
451 		"add %[e3], %[e3], #16 \n\t"
452 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
453 		"tbl v18.16b, {v17.16b}, %[mcqe_shuf_m1].16b \n\t"
454 		"tbl v19.16b, {v17.16b}, %[mcqe_shuf_m2].16b \n\t"
455 		"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
456 		"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
457 		"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
458 		"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
459 		/* D.1 store rx_descriptor_fields1. */
460 		"st1 {v18.2d}, [%[e2]] \n\t"
461 		"st1 {v19.2d}, [%[e3]] \n\t"
462 #ifdef MLX5_PMD_SOFT_COUNTERS
463 		"tbl %[byte_cnt].8b, {v16.16b - v17.16b}, %[len_shuf_m].8b \n\t"
464 #endif
465 		:[byte_cnt]"=&w"(byte_cnt)
466 		:[mcq]"r"(p),
467 		 [rxdf]"w"(rxdf),
468 		 [rearm]"w"(rearm),
469 		 [e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
470 		 [mcqe_shuf_m1]"w"(mcqe_shuf_m1),
471 		 [mcqe_shuf_m2]"w"(mcqe_shuf_m2),
472 		 [crc_adj]"w"(crc_adj),
473 		 [len_shuf_m]"w"(len_shuf_m)
474 		:"memory", "v16", "v17", "v18", "v19");
475 #ifdef MLX5_PMD_SOFT_COUNTERS
476 		byte_cnt = vbic_u16(byte_cnt, invalid_mask);
477 		rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
478 #endif
479 		if (rxq->mark) {
480 			/* E.1 store flow tag (rte_flow mark). */
481 			elts[pos]->hash.fdir.hi = flow_tag;
482 			elts[pos + 1]->hash.fdir.hi = flow_tag;
483 			elts[pos + 2]->hash.fdir.hi = flow_tag;
484 			elts[pos + 3]->hash.fdir.hi = flow_tag;
485 		}
486 		pos += MLX5_VPMD_DESCS_PER_LOOP;
487 		/* Move to next CQE and invalidate consumed CQEs. */
488 		if (!(pos & 0x7) && pos < mcqe_n) {
489 			mcq = (void *)&(cq + pos)->pkt_info;
490 			for (i = 0; i < 8; ++i)
491 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
492 		}
493 	}
494 	/* Invalidate the rest of CQEs. */
495 	for (; inv < mcqe_n; ++inv)
496 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
497 #ifdef MLX5_PMD_SOFT_COUNTERS
498 	rxq->stats.ipackets += mcqe_n;
499 	rxq->stats.ibytes += rcvd_byte;
500 #endif
501 	rxq->cq_ci += mcqe_n;
502 }
503 
504 /**
505  * Calculate packet type and offload flag for mbuf and store it.
506  *
507  * @param rxq
508  *   Pointer to RX queue structure.
509  * @param ptype_info
510  *   Array of four 4bytes packet type info extracted from the original
511  *   completion descriptor.
512  * @param flow_tag
513  *   Array of four 4bytes flow ID extracted from the original completion
514  *   descriptor.
515  * @param op_err
516  *   Opcode vector having responder error status. Each field is 4B.
517  * @param pkts
518  *   Pointer to array of packets to be filled.
519  */
520 static inline void
521 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
522 			 uint32x4_t ptype_info, uint32x4_t flow_tag,
523 			 uint16x4_t op_err, struct rte_mbuf **pkts)
524 {
525 	uint16x4_t ptype;
526 	uint32x4_t pinfo, cv_flags;
527 	uint32x4_t ol_flags =
528 		vdupq_n_u32(rxq->rss_hash * PKT_RX_RSS_HASH |
529 			    rxq->hw_timestamp * PKT_RX_TIMESTAMP);
530 	const uint32x4_t ptype_ol_mask = { 0x106, 0x106, 0x106, 0x106 };
531 	const uint8x16_t cv_flag_sel = {
532 		0,
533 		(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
534 		(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
535 		0,
536 		(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
537 		0,
538 		(uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
539 		0, 0, 0, 0, 0, 0, 0, 0, 0
540 	};
541 	const uint32x4_t cv_mask =
542 		vdupq_n_u32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
543 			    PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
544 	const uint64x1_t mbuf_init = vld1_u64(&rxq->mbuf_initializer);
545 	const uint64x1_t r32_mask = vcreate_u64(0xffffffff);
546 	uint64x2_t rearm0, rearm1, rearm2, rearm3;
547 	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
548 
549 	if (rxq->mark) {
550 		const uint32x4_t ft_def = vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
551 		const uint32x4_t fdir_flags = vdupq_n_u32(PKT_RX_FDIR);
552 		uint32x4_t fdir_id_flags = vdupq_n_u32(PKT_RX_FDIR_ID);
553 		uint32x4_t invalid_mask;
554 
555 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
556 		invalid_mask = vceqzq_u32(flow_tag);
557 		ol_flags = vorrq_u32(ol_flags,
558 				     vbicq_u32(fdir_flags, invalid_mask));
559 		/* Mask out invalid entries. */
560 		fdir_id_flags = vbicq_u32(fdir_id_flags, invalid_mask);
561 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
562 		ol_flags = vorrq_u32(ol_flags,
563 				     vbicq_u32(fdir_id_flags,
564 					       vceqq_u32(flow_tag, ft_def)));
565 	}
566 	/*
567 	 * ptype_info has the following:
568 	 * bit[1]     = l3_ok
569 	 * bit[2]     = l4_ok
570 	 * bit[8]     = cv
571 	 * bit[11:10] = l3_hdr_type
572 	 * bit[14:12] = l4_hdr_type
573 	 * bit[15]    = ip_frag
574 	 * bit[16]    = tunneled
575 	 * bit[17]    = outer_l3_type
576 	 */
577 	ptype = vshrn_n_u32(ptype_info, 10);
578 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
579 	ptype = vorr_u16(ptype, op_err);
580 	pt_idx0 = vget_lane_u8(vreinterpret_u8_u16(ptype), 6);
581 	pt_idx1 = vget_lane_u8(vreinterpret_u8_u16(ptype), 4);
582 	pt_idx2 = vget_lane_u8(vreinterpret_u8_u16(ptype), 2);
583 	pt_idx3 = vget_lane_u8(vreinterpret_u8_u16(ptype), 0);
584 	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
585 			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
586 	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
587 			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
588 	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
589 			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
590 	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
591 			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
592 	/* Fill flags for checksum and VLAN. */
593 	pinfo = vandq_u32(ptype_info, ptype_ol_mask);
594 	pinfo = vreinterpretq_u32_u8(
595 		vqtbl1q_u8(cv_flag_sel, vreinterpretq_u8_u32(pinfo)));
596 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
597 	cv_flags = vshlq_n_u32(pinfo, 9);
598 	cv_flags = vorrq_u32(pinfo, cv_flags);
599 	/* Move back flags to start from byte[0]. */
600 	cv_flags = vshrq_n_u32(cv_flags, 8);
601 	/* Mask out garbage bits. */
602 	cv_flags = vandq_u32(cv_flags, cv_mask);
603 	/* Merge to ol_flags. */
604 	ol_flags = vorrq_u32(ol_flags, cv_flags);
605 	/* Merge mbuf_init and ol_flags, and store. */
606 	rearm0 = vcombine_u64(mbuf_init,
607 			      vshr_n_u64(vget_high_u64(vreinterpretq_u64_u32(
608 						       ol_flags)), 32));
609 	rearm1 = vcombine_u64(mbuf_init,
610 			      vand_u64(vget_high_u64(vreinterpretq_u64_u32(
611 						     ol_flags)), r32_mask));
612 	rearm2 = vcombine_u64(mbuf_init,
613 			      vshr_n_u64(vget_low_u64(vreinterpretq_u64_u32(
614 						      ol_flags)), 32));
615 	rearm3 = vcombine_u64(mbuf_init,
616 			      vand_u64(vget_low_u64(vreinterpretq_u64_u32(
617 						    ol_flags)), r32_mask));
618 	vst1q_u64((void *)&pkts[0]->rearm_data, rearm0);
619 	vst1q_u64((void *)&pkts[1]->rearm_data, rearm1);
620 	vst1q_u64((void *)&pkts[2]->rearm_data, rearm2);
621 	vst1q_u64((void *)&pkts[3]->rearm_data, rearm3);
622 }
623 
624 /**
625  * Receive burst of packets. An errored completion also consumes a mbuf, but the
626  * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
627  * before returning to application.
628  *
629  * @param rxq
630  *   Pointer to RX queue structure.
631  * @param[out] pkts
632  *   Array to store received packets.
633  * @param pkts_n
634  *   Maximum number of packets in array.
635  * @param[out] err
636  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
637  *   packet to handle.
638  *
639  * @return
640  *   Number of packets received including errors (<= pkts_n).
641  */
642 static inline uint16_t
643 rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n,
644 	    uint64_t *err)
645 {
646 	const uint16_t q_n = 1 << rxq->cqe_n;
647 	const uint16_t q_mask = q_n - 1;
648 	volatile struct mlx5_cqe *cq;
649 	struct rte_mbuf **elts;
650 	unsigned int pos;
651 	uint64_t n;
652 	uint16_t repl_n;
653 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
654 	uint16_t nocmp_n = 0;
655 	uint16_t rcvd_pkt = 0;
656 	unsigned int cq_idx = rxq->cq_ci & q_mask;
657 	unsigned int elts_idx;
658 	const uint16x4_t ownership = vdup_n_u16(!(rxq->cq_ci & (q_mask + 1)));
659 	const uint16x4_t owner_check = vcreate_u16(0x0001000100010001);
660 	const uint16x4_t opcode_check = vcreate_u16(0x00f000f000f000f0);
661 	const uint16x4_t format_check = vcreate_u16(0x000c000c000c000c);
662 	const uint16x4_t resp_err_check = vcreate_u16(0x00e000e000e000e0);
663 #ifdef MLX5_PMD_SOFT_COUNTERS
664 	uint32_t rcvd_byte = 0;
665 #endif
666 	/* Mask to generate 16B length vector. */
667 	const uint8x8_t len_shuf_m = {
668 		52, 53,         /* 4th CQE */
669 		36, 37,         /* 3rd CQE */
670 		20, 21,         /* 2nd CQE */
671 		 4,  5          /* 1st CQE */
672 	};
673 	/* Mask to extract 16B data from a 64B CQE. */
674 	const uint8x16_t cqe_shuf_m = {
675 		28, 29,         /* hdr_type_etc */
676 		 0,             /* pkt_info */
677 		-1,             /* null */
678 		47, 46,         /* byte_cnt, bswap16 */
679 		31, 30,         /* vlan_info, bswap16 */
680 		15, 14, 13, 12, /* rx_hash_res, bswap32 */
681 		57, 58, 59,     /* flow_tag */
682 		63              /* op_own */
683 	};
684 	/* Mask to generate 16B data for mbuf. */
685 	const uint8x16_t mb_shuf_m = {
686 		 4,  5, -1, -1, /* pkt_len */
687 		 4,  5,         /* data_len */
688 		 6,  7,         /* vlan_tci */
689 		 8,  9, 10, 11, /* hash.rss */
690 		12, 13, 14, -1  /* hash.fdir.hi */
691 	};
692 	/* Mask to generate 16B owner vector. */
693 	const uint8x8_t owner_shuf_m = {
694 		63, -1,         /* 4th CQE */
695 		47, -1,         /* 3rd CQE */
696 		31, -1,         /* 2nd CQE */
697 		15, -1          /* 1st CQE */
698 	};
699 	/* Mask to generate a vector having packet_type/ol_flags. */
700 	const uint8x16_t ptype_shuf_m = {
701 		48, 49, 50, -1, /* 4th CQE */
702 		32, 33, 34, -1, /* 3rd CQE */
703 		16, 17, 18, -1, /* 2nd CQE */
704 		 0,  1,  2, -1  /* 1st CQE */
705 	};
706 	/* Mask to generate a vector having flow tags. */
707 	const uint8x16_t ftag_shuf_m = {
708 		60, 61, 62, -1, /* 4th CQE */
709 		44, 45, 46, -1, /* 3rd CQE */
710 		28, 29, 30, -1, /* 2nd CQE */
711 		12, 13, 14, -1  /* 1st CQE */
712 	};
713 	const uint16x8_t crc_adj = {
714 		0, 0, rxq->crc_present * ETHER_CRC_LEN, 0, 0, 0, 0, 0
715 	};
716 	const uint32x4_t flow_mark_adj = { 0, 0, 0, rxq->mark * (-1) };
717 
718 	assert(rxq->sges_n == 0);
719 	assert(rxq->cqe_n == rxq->elts_n);
720 	cq = &(*rxq->cqes)[cq_idx];
721 	rte_prefetch_non_temporal(cq);
722 	rte_prefetch_non_temporal(cq + 1);
723 	rte_prefetch_non_temporal(cq + 2);
724 	rte_prefetch_non_temporal(cq + 3);
725 	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
726 	/*
727 	 * Order of indexes:
728 	 *   rq_ci >= cq_ci >= rq_pi
729 	 * Definition of indexes:
730 	 *   rq_ci - cq_ci := # of buffers owned by HW (posted).
731 	 *   cq_ci - rq_pi := # of buffers not returned to app (decompressed).
732 	 *   N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
733 	 */
734 	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
735 	if (repl_n >= rxq->rq_repl_thresh)
736 		mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
737 	/* See if there're unreturned mbufs from compressed CQE. */
738 	rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
739 	if (rcvd_pkt > 0) {
740 		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
741 		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
742 		rxq->rq_pi += rcvd_pkt;
743 		pkts += rcvd_pkt;
744 	}
745 	elts_idx = rxq->rq_pi & q_mask;
746 	elts = &(*rxq->elts)[elts_idx];
747 	/* Not to overflow pkts array. */
748 	pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
749 	/* Not to cross queue end. */
750 	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
751 	if (!pkts_n)
752 		return rcvd_pkt;
753 	/* At this point, there shouldn't be any remained packets. */
754 	assert(rxq->rq_pi == rxq->cq_ci);
755 	/*
756 	 * Note that vectors have reverse order - {v3, v2, v1, v0}, because
757 	 * there's no instruction to count trailing zeros. __builtin_clzl() is
758 	 * used instead.
759 	 *
760 	 * A. copy 4 mbuf pointers from elts ring to returing pkts.
761 	 * B. load 64B CQE and extract necessary fields
762 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
763 	 *    following structure:
764 	 *        struct {
765 	 *          uint16_t hdr_type_etc;
766 	 *          uint8_t  pkt_info;
767 	 *          uint8_t  rsvd;
768 	 *          uint16_t byte_cnt;
769 	 *          uint16_t vlan_info;
770 	 *          uint32_t rx_has_res;
771 	 *          uint8_t  flow_tag[3];
772 	 *          uint8_t  op_own;
773 	 *        } c;
774 	 * C. fill in mbuf.
775 	 * D. get valid CQEs.
776 	 * E. find compressed CQE.
777 	 */
778 	for (pos = 0;
779 	     pos < pkts_n;
780 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
781 		uint16x4_t op_own;
782 		uint16x4_t opcode, owner_mask, invalid_mask;
783 		uint16x4_t comp_mask;
784 		uint16x4_t mask;
785 		uint16x4_t byte_cnt;
786 		uint32x4_t ptype_info, flow_tag;
787 		register uint64x2_t c0, c1, c2, c3;
788 		uint8_t *p0, *p1, *p2, *p3;
789 		uint8_t *e0 = (void *)&elts[pos]->pkt_len;
790 		uint8_t *e1 = (void *)&elts[pos + 1]->pkt_len;
791 		uint8_t *e2 = (void *)&elts[pos + 2]->pkt_len;
792 		uint8_t *e3 = (void *)&elts[pos + 3]->pkt_len;
793 		void *elts_p = (void *)&elts[pos];
794 		void *pkts_p = (void *)&pkts[pos];
795 
796 		/* A.0 do not cross the end of CQ. */
797 		mask = vcreate_u16(pkts_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
798 				   -1UL >> ((pkts_n - pos) *
799 					    sizeof(uint16_t) * 8) : 0);
800 		p0 = (void *)&cq[pos].pkt_info;
801 		p1 = p0 + (pkts_n - pos > 1) * sizeof(struct mlx5_cqe);
802 		p2 = p1 + (pkts_n - pos > 2) * sizeof(struct mlx5_cqe);
803 		p3 = p2 + (pkts_n - pos > 3) * sizeof(struct mlx5_cqe);
804 		/* B.0 (CQE 3) load a block having op_own. */
805 		c3 = vld1q_u64((uint64_t *)(p3 + 48));
806 		/* B.0 (CQE 2) load a block having op_own. */
807 		c2 = vld1q_u64((uint64_t *)(p2 + 48));
808 		/* B.0 (CQE 1) load a block having op_own. */
809 		c1 = vld1q_u64((uint64_t *)(p1 + 48));
810 		/* B.0 (CQE 0) load a block having op_own. */
811 		c0 = vld1q_u64((uint64_t *)(p0 + 48));
812 		/* Synchronize for loading the rest of blocks. */
813 		rte_cio_rmb();
814 		/* Prefetch next 4 CQEs. */
815 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
816 			unsigned int next = pos + MLX5_VPMD_DESCS_PER_LOOP;
817 			rte_prefetch_non_temporal(&cq[next]);
818 			rte_prefetch_non_temporal(&cq[next + 1]);
819 			rte_prefetch_non_temporal(&cq[next + 2]);
820 			rte_prefetch_non_temporal(&cq[next + 3]);
821 		}
822 		__asm__ volatile (
823 		/* B.1 (CQE 3) load the rest of blocks. */
824 		"ld1 {v16.16b - v18.16b}, [%[p3]] \n\t"
825 		/* B.2 (CQE 3) move the block having op_own. */
826 		"mov v19.16b, %[c3].16b \n\t"
827 		/* B.3 (CQE 3) extract 16B fields. */
828 		"tbl v23.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
829 		/* B.1 (CQE 2) load the rest of blocks. */
830 		"ld1 {v16.16b - v18.16b}, [%[p2]] \n\t"
831 		/* B.4 (CQE 3) adjust CRC length. */
832 		"sub v23.8h, v23.8h, %[crc_adj].8h \n\t"
833 		/* C.1 (CQE 3) generate final structure for mbuf. */
834 		"tbl v15.16b, {v23.16b}, %[mb_shuf_m].16b \n\t"
835 		/* B.2 (CQE 2) move the block having op_own. */
836 		"mov v19.16b, %[c2].16b \n\t"
837 		/* B.3 (CQE 2) extract 16B fields. */
838 		"tbl v22.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
839 		/* B.1 (CQE 1) load the rest of blocks. */
840 		"ld1 {v16.16b - v18.16b}, [%[p1]] \n\t"
841 		/* B.4 (CQE 2) adjust CRC length. */
842 		"sub v22.8h, v22.8h, %[crc_adj].8h \n\t"
843 		/* C.1 (CQE 2) generate final structure for mbuf. */
844 		"tbl v14.16b, {v22.16b}, %[mb_shuf_m].16b \n\t"
845 		/* B.2 (CQE 1) move the block having op_own. */
846 		"mov v19.16b, %[c1].16b \n\t"
847 		/* B.3 (CQE 1) extract 16B fields. */
848 		"tbl v21.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
849 		/* B.1 (CQE 0) load the rest of blocks. */
850 		"ld1 {v16.16b - v18.16b}, [%[p0]] \n\t"
851 		/* B.4 (CQE 1) adjust CRC length. */
852 		"sub v21.8h, v21.8h, %[crc_adj].8h \n\t"
853 		/* C.1 (CQE 1) generate final structure for mbuf. */
854 		"tbl v13.16b, {v21.16b}, %[mb_shuf_m].16b \n\t"
855 		/* B.2 (CQE 0) move the block having op_own. */
856 		"mov v19.16b, %[c0].16b \n\t"
857 		/* A.1 load mbuf pointers. */
858 		"ld1 {v24.2d - v25.2d}, [%[elts_p]] \n\t"
859 		/* B.3 (CQE 0) extract 16B fields. */
860 		"tbl v20.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
861 		/* B.4 (CQE 0) adjust CRC length. */
862 		"sub v20.8h, v20.8h, %[crc_adj].8h \n\t"
863 		/* D.1 extract op_own byte. */
864 		"tbl %[op_own].8b, {v20.16b - v23.16b}, %[owner_shuf_m].8b \n\t"
865 		/* C.2 (CQE 3) adjust flow mark. */
866 		"add v15.4s, v15.4s, %[flow_mark_adj].4s \n\t"
867 		/* C.3 (CQE 3) fill in mbuf - rx_descriptor_fields1. */
868 		"st1 {v15.2d}, [%[e3]] \n\t"
869 		/* C.2 (CQE 2) adjust flow mark. */
870 		"add v14.4s, v14.4s, %[flow_mark_adj].4s \n\t"
871 		/* C.3 (CQE 2) fill in mbuf - rx_descriptor_fields1. */
872 		"st1 {v14.2d}, [%[e2]] \n\t"
873 		/* C.1 (CQE 0) generate final structure for mbuf. */
874 		"tbl v12.16b, {v20.16b}, %[mb_shuf_m].16b \n\t"
875 		/* C.2 (CQE 1) adjust flow mark. */
876 		"add v13.4s, v13.4s, %[flow_mark_adj].4s \n\t"
877 		/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
878 		"st1 {v13.2d}, [%[e1]] \n\t"
879 #ifdef MLX5_PMD_SOFT_COUNTERS
880 		/* Extract byte_cnt. */
881 		"tbl %[byte_cnt].8b, {v20.16b - v23.16b}, %[len_shuf_m].8b \n\t"
882 #endif
883 		/* Extract ptype_info. */
884 		"tbl %[ptype_info].16b, {v20.16b - v23.16b}, %[ptype_shuf_m].16b \n\t"
885 		/* Extract flow_tag. */
886 		"tbl %[flow_tag].16b, {v20.16b - v23.16b}, %[ftag_shuf_m].16b \n\t"
887 		/* A.2 copy mbuf pointers. */
888 		"st1 {v24.2d - v25.2d}, [%[pkts_p]] \n\t"
889 		/* C.2 (CQE 0) adjust flow mark. */
890 		"add v12.4s, v12.4s, %[flow_mark_adj].4s \n\t"
891 		/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
892 		"st1 {v12.2d}, [%[e0]] \n\t"
893 		:[op_own]"=&w"(op_own),
894 		 [byte_cnt]"=&w"(byte_cnt),
895 		 [ptype_info]"=&w"(ptype_info),
896 		 [flow_tag]"=&w"(flow_tag)
897 		:[p3]"r"(p3), [p2]"r"(p2), [p1]"r"(p1), [p0]"r"(p0),
898 		 [e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
899 		 [c3]"w"(c3), [c2]"w"(c2), [c1]"w"(c1), [c0]"w"(c0),
900 		 [elts_p]"r"(elts_p),
901 		 [pkts_p]"r"(pkts_p),
902 		 [cqe_shuf_m]"w"(cqe_shuf_m),
903 		 [mb_shuf_m]"w"(mb_shuf_m),
904 		 [owner_shuf_m]"w"(owner_shuf_m),
905 		 [len_shuf_m]"w"(len_shuf_m),
906 		 [ptype_shuf_m]"w"(ptype_shuf_m),
907 		 [ftag_shuf_m]"w"(ftag_shuf_m),
908 		 [crc_adj]"w"(crc_adj),
909 		 [flow_mark_adj]"w"(flow_mark_adj)
910 		:"memory",
911 		 "v12", "v13", "v14", "v15",
912 		 "v16", "v17", "v18", "v19",
913 		 "v20", "v21", "v22", "v23",
914 		 "v24", "v25");
915 		/* D.2 flip owner bit to mark CQEs from last round. */
916 		owner_mask = vand_u16(op_own, owner_check);
917 		owner_mask = vceq_u16(owner_mask, ownership);
918 		/* D.3 get mask for invalidated CQEs. */
919 		opcode = vand_u16(op_own, opcode_check);
920 		invalid_mask = vceq_u16(opcode_check, opcode);
921 		/* E.1 find compressed CQE format. */
922 		comp_mask = vand_u16(op_own, format_check);
923 		comp_mask = vceq_u16(comp_mask, format_check);
924 		/* D.4 mask out beyond boundary. */
925 		invalid_mask = vorr_u16(invalid_mask, mask);
926 		/* D.5 merge invalid_mask with invalid owner. */
927 		invalid_mask = vorr_u16(invalid_mask, owner_mask);
928 		/* E.2 mask out invalid entries. */
929 		comp_mask = vbic_u16(comp_mask, invalid_mask);
930 		/* E.3 get the first compressed CQE. */
931 		comp_idx = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
932 					  comp_mask), 0)) /
933 					  (sizeof(uint16_t) * 8);
934 		/* D.6 mask out entries after the compressed CQE. */
935 		mask = vcreate_u16(comp_idx < MLX5_VPMD_DESCS_PER_LOOP ?
936 				   -1UL >> (comp_idx * sizeof(uint16_t) * 8) :
937 				   0);
938 		invalid_mask = vorr_u16(invalid_mask, mask);
939 		/* D.7 count non-compressed valid CQEs. */
940 		n = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
941 				   invalid_mask), 0)) / (sizeof(uint16_t) * 8);
942 		nocmp_n += n;
943 		/* D.2 get the final invalid mask. */
944 		mask = vcreate_u16(n < MLX5_VPMD_DESCS_PER_LOOP ?
945 				   -1UL >> (n * sizeof(uint16_t) * 8) : 0);
946 		invalid_mask = vorr_u16(invalid_mask, mask);
947 		/* D.3 check error in opcode. */
948 		opcode = vceq_u16(resp_err_check, opcode);
949 		opcode = vbic_u16(opcode, invalid_mask);
950 		/* D.4 mark if any error is set */
951 		*err |= vget_lane_u64(vreinterpret_u64_u16(opcode), 0);
952 		/* C.4 fill in mbuf - rearm_data and packet_type. */
953 		rxq_cq_to_ptype_oflags_v(rxq, ptype_info, flow_tag,
954 					 opcode, &elts[pos]);
955 		if (rxq->hw_timestamp) {
956 			elts[pos]->timestamp =
957 				rte_be_to_cpu_64(
958 					container_of(p0, struct mlx5_cqe,
959 						     pkt_info)->timestamp);
960 			elts[pos + 1]->timestamp =
961 				rte_be_to_cpu_64(
962 					container_of(p1, struct mlx5_cqe,
963 						     pkt_info)->timestamp);
964 			elts[pos + 2]->timestamp =
965 				rte_be_to_cpu_64(
966 					container_of(p2, struct mlx5_cqe,
967 						     pkt_info)->timestamp);
968 			elts[pos + 3]->timestamp =
969 				rte_be_to_cpu_64(
970 					container_of(p3, struct mlx5_cqe,
971 						     pkt_info)->timestamp);
972 		}
973 #ifdef MLX5_PMD_SOFT_COUNTERS
974 		/* Add up received bytes count. */
975 		byte_cnt = vbic_u16(byte_cnt, invalid_mask);
976 		rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
977 #endif
978 		/*
979 		 * Break the loop unless more valid CQE is expected, or if
980 		 * there's a compressed CQE.
981 		 */
982 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
983 			break;
984 	}
985 	/* If no new CQE seen, return without updating cq_db. */
986 	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
987 		return rcvd_pkt;
988 	/* Update the consumer indexes for non-compressed CQEs. */
989 	assert(nocmp_n <= pkts_n);
990 	rxq->cq_ci += nocmp_n;
991 	rxq->rq_pi += nocmp_n;
992 	rcvd_pkt += nocmp_n;
993 #ifdef MLX5_PMD_SOFT_COUNTERS
994 	rxq->stats.ipackets += nocmp_n;
995 	rxq->stats.ibytes += rcvd_byte;
996 #endif
997 	/* Decompress the last CQE if compressed. */
998 	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
999 		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
1000 		rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
1001 		/* Return more packets if needed. */
1002 		if (nocmp_n < pkts_n) {
1003 			uint16_t n = rxq->cq_ci - rxq->rq_pi;
1004 
1005 			n = RTE_MIN(n, pkts_n - nocmp_n);
1006 			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
1007 			rxq->rq_pi += n;
1008 			rcvd_pkt += n;
1009 		}
1010 	}
1011 	rte_compiler_barrier();
1012 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1013 	return rcvd_pkt;
1014 }
1015 
1016 #endif /* RTE_PMD_MLX5_RXTX_VEC_NEON_H_ */
1017