xref: /dpdk/drivers/net/mlx5/mlx5_rxtx_vec_neon.h (revision 3bb3ebb51b789d4ecb417cbdb1dce5c7211f6f18)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef RTE_PMD_MLX5_RXTX_VEC_NEON_H_
7 #define RTE_PMD_MLX5_RXTX_VEC_NEON_H_
8 
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <arm_neon.h>
13 
14 #include <rte_mbuf.h>
15 #include <rte_mempool.h>
16 #include <rte_prefetch.h>
17 
18 #include <mlx5_prm.h>
19 
20 #include "mlx5_defs.h"
21 #include "mlx5.h"
22 #include "mlx5_utils.h"
23 #include "mlx5_rxtx.h"
24 #include "mlx5_rxtx_vec.h"
25 #include "mlx5_autoconf.h"
26 
27 #pragma GCC diagnostic ignored "-Wcast-qual"
28 
29 /**
30  * Store free buffers to RX SW ring.
31  *
32  * @param elts
33  *   Pointer to SW ring to be filled.
34  * @param pkts
35  *   Pointer to array of packets to be stored.
36  * @param pkts_n
37  *   Number of packets to be stored.
38  */
39 static inline void
40 rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
41 {
42 	unsigned int pos;
43 	uint16_t p = n & -2;
44 
45 	for (pos = 0; pos < p; pos += 2) {
46 		uint64x2_t mbp;
47 
48 		mbp = vld1q_u64((void *)&elts[pos]);
49 		vst1q_u64((void *)&pkts[pos], mbp);
50 	}
51 	if (n & 1)
52 		pkts[pos] = elts[pos];
53 }
54 
55 /**
56  * Decompress a compressed completion and fill in mbufs in RX SW ring with data
57  * extracted from the title completion descriptor.
58  *
59  * @param rxq
60  *   Pointer to RX queue structure.
61  * @param cq
62  *   Pointer to completion array having a compressed completion at first.
63  * @param elts
64  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
65  *   the title completion descriptor to be copied to the rest of mbufs.
66  *
67  * @return
68  *   Number of mini-CQEs successfully decompressed.
69  */
70 static inline uint16_t
71 rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
72 		    struct rte_mbuf **elts)
73 {
74 	volatile struct mlx5_mini_cqe8 *mcq = (void *)&(cq + 1)->pkt_info;
75 	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
76 	unsigned int pos;
77 	unsigned int i;
78 	unsigned int inv = 0;
79 	/* Mask to shuffle from extracted mini CQE to mbuf. */
80 	const uint8x16_t mcqe_shuf_m1 = {
81 		-1, -1, -1, -1, /* skip packet_type */
82 		 7,  6, -1, -1, /* pkt_len, bswap16 */
83 		 7,  6,         /* data_len, bswap16 */
84 		-1, -1,         /* skip vlan_tci */
85 		 3,  2,  1,  0  /* hash.rss, bswap32 */
86 	};
87 	const uint8x16_t mcqe_shuf_m2 = {
88 		-1, -1, -1, -1, /* skip packet_type */
89 		15, 14, -1, -1, /* pkt_len, bswap16 */
90 		15, 14,         /* data_len, bswap16 */
91 		-1, -1,         /* skip vlan_tci */
92 		11, 10,  9,  8  /* hash.rss, bswap32 */
93 	};
94 	/* Restore the compressed count. Must be 16 bits. */
95 	const uint16_t mcqe_n = t_pkt->data_len +
96 				(rxq->crc_present * RTE_ETHER_CRC_LEN);
97 	const uint64x2_t rearm =
98 		vld1q_u64((void *)&t_pkt->rearm_data);
99 	const uint32x4_t rxdf_mask = {
100 		0xffffffff, /* packet_type */
101 		0,          /* skip pkt_len */
102 		0xffff0000, /* vlan_tci, skip data_len */
103 		0,          /* skip hash.rss */
104 	};
105 	const uint8x16_t rxdf =
106 		vandq_u8(vld1q_u8((void *)&t_pkt->rx_descriptor_fields1),
107 			 vreinterpretq_u8_u32(rxdf_mask));
108 	const uint16x8_t crc_adj = {
109 		0, 0,
110 		rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
111 		rxq->crc_present * RTE_ETHER_CRC_LEN, 0,
112 		0, 0
113 	};
114 	uint32x4_t ol_flags = {0, 0, 0, 0};
115 	uint32x4_t ol_flags_mask = {0, 0, 0, 0};
116 #ifdef MLX5_PMD_SOFT_COUNTERS
117 	uint32_t rcvd_byte = 0;
118 #endif
119 	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
120 	const uint8x8_t len_shuf_m = {
121 		 7,  6,         /* 1st mCQE */
122 		15, 14,         /* 2nd mCQE */
123 		23, 22,         /* 3rd mCQE */
124 		31, 30          /* 4th mCQE */
125 	};
126 
127 	/*
128 	 * A. load mCQEs into a 128bit register.
129 	 * B. store rearm data to mbuf.
130 	 * C. combine data from mCQEs with rx_descriptor_fields1.
131 	 * D. store rx_descriptor_fields1.
132 	 * E. store flow tag (rte_flow mark).
133 	 */
134 	for (pos = 0; pos < mcqe_n; ) {
135 		uint8_t *p = (void *)&mcq[pos % 8];
136 		uint8_t *e0 = (void *)&elts[pos]->rearm_data;
137 		uint8_t *e1 = (void *)&elts[pos + 1]->rearm_data;
138 		uint8_t *e2 = (void *)&elts[pos + 2]->rearm_data;
139 		uint8_t *e3 = (void *)&elts[pos + 3]->rearm_data;
140 		uint16x4_t byte_cnt;
141 #ifdef MLX5_PMD_SOFT_COUNTERS
142 		uint16x4_t invalid_mask =
143 			vcreate_u16(mcqe_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
144 				    -1UL << ((mcqe_n - pos) *
145 					     sizeof(uint16_t) * 8) : 0);
146 #endif
147 
148 		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
149 			if (likely(pos + i < mcqe_n))
150 				rte_prefetch0((void *)(cq + pos + i));
151 		__asm__ volatile (
152 		/* A.1 load mCQEs into a 128bit register. */
153 		"ld1 {v16.16b - v17.16b}, [%[mcq]] \n\t"
154 		/* B.1 store rearm data to mbuf. */
155 		"st1 {%[rearm].2d}, [%[e0]] \n\t"
156 		"add %[e0], %[e0], #16 \n\t"
157 		"st1 {%[rearm].2d}, [%[e1]] \n\t"
158 		"add %[e1], %[e1], #16 \n\t"
159 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
160 		"tbl v18.16b, {v16.16b}, %[mcqe_shuf_m1].16b \n\t"
161 		"tbl v19.16b, {v16.16b}, %[mcqe_shuf_m2].16b \n\t"
162 		"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
163 		"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
164 		"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
165 		"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
166 		/* D.1 store rx_descriptor_fields1. */
167 		"st1 {v18.2d}, [%[e0]] \n\t"
168 		"st1 {v19.2d}, [%[e1]] \n\t"
169 		/* B.1 store rearm data to mbuf. */
170 		"st1 {%[rearm].2d}, [%[e2]] \n\t"
171 		"add %[e2], %[e2], #16 \n\t"
172 		"st1 {%[rearm].2d}, [%[e3]] \n\t"
173 		"add %[e3], %[e3], #16 \n\t"
174 		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
175 		"tbl v18.16b, {v17.16b}, %[mcqe_shuf_m1].16b \n\t"
176 		"tbl v19.16b, {v17.16b}, %[mcqe_shuf_m2].16b \n\t"
177 		"sub v18.8h, v18.8h, %[crc_adj].8h \n\t"
178 		"sub v19.8h, v19.8h, %[crc_adj].8h \n\t"
179 		"orr v18.16b, v18.16b, %[rxdf].16b \n\t"
180 		"orr v19.16b, v19.16b, %[rxdf].16b \n\t"
181 		/* D.1 store rx_descriptor_fields1. */
182 		"st1 {v18.2d}, [%[e2]] \n\t"
183 		"st1 {v19.2d}, [%[e3]] \n\t"
184 #ifdef MLX5_PMD_SOFT_COUNTERS
185 		"tbl %[byte_cnt].8b, {v16.16b - v17.16b}, %[len_shuf_m].8b \n\t"
186 #endif
187 		:[byte_cnt]"=&w"(byte_cnt)
188 		:[mcq]"r"(p),
189 		 [rxdf]"w"(rxdf),
190 		 [rearm]"w"(rearm),
191 		 [e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
192 		 [mcqe_shuf_m1]"w"(mcqe_shuf_m1),
193 		 [mcqe_shuf_m2]"w"(mcqe_shuf_m2),
194 		 [crc_adj]"w"(crc_adj),
195 		 [len_shuf_m]"w"(len_shuf_m)
196 		:"memory", "v16", "v17", "v18", "v19");
197 #ifdef MLX5_PMD_SOFT_COUNTERS
198 		byte_cnt = vbic_u16(byte_cnt, invalid_mask);
199 		rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
200 #endif
201 		if (rxq->mark) {
202 			if (rxq->mcqe_format !=
203 			    MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
204 				const uint32_t flow_tag = t_pkt->hash.fdir.hi;
205 
206 				/* E.1 store flow tag (rte_flow mark). */
207 				elts[pos]->hash.fdir.hi = flow_tag;
208 				elts[pos + 1]->hash.fdir.hi = flow_tag;
209 				elts[pos + 2]->hash.fdir.hi = flow_tag;
210 				elts[pos + 3]->hash.fdir.hi = flow_tag;
211 			}  else {
212 				const uint32x4_t flow_mark_adj = {
213 					-1, -1, -1, -1 };
214 				const uint8x16_t flow_mark_shuf = {
215 					28, 24, 25, -1,
216 					20, 16, 17, -1,
217 					12,  8,  9, -1,
218 					 4,  0,  1, -1};
219 				/* Extract flow_tag field. */
220 				const uint32x4_t ft_mask =
221 					vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
222 				const uint32x4_t fdir_flags =
223 					vdupq_n_u32(PKT_RX_FDIR);
224 				const uint32x4_t fdir_all_flags =
225 					vdupq_n_u32(PKT_RX_FDIR |
226 						    PKT_RX_FDIR_ID);
227 				uint32x4_t fdir_id_flags =
228 					vdupq_n_u32(PKT_RX_FDIR_ID);
229 				uint32x4_t invalid_mask, ftag;
230 
231 				__asm__ volatile
232 				/* A.1 load mCQEs into a 128bit register. */
233 				("ld1 {v16.16b - v17.16b}, [%[mcq]]\n\t"
234 				/* Extract flow_tag. */
235 				 "tbl %[ftag].16b, {v16.16b - v17.16b}, %[flow_mark_shuf].16b\n\t"
236 				: [ftag]"=&w"(ftag)
237 				: [mcq]"r"(p),
238 				  [flow_mark_shuf]"w"(flow_mark_shuf)
239 				: "memory", "v16", "v17");
240 				invalid_mask = vceqzq_u32(ftag);
241 				ol_flags_mask = vorrq_u32(ol_flags_mask,
242 							  fdir_all_flags);
243 				/* Set PKT_RX_FDIR if flow tag is non-zero. */
244 				ol_flags = vorrq_u32(ol_flags,
245 					vbicq_u32(fdir_flags, invalid_mask));
246 				/* Mask out invalid entries. */
247 				fdir_id_flags = vbicq_u32(fdir_id_flags,
248 							  invalid_mask);
249 				/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
250 				ol_flags = vorrq_u32(ol_flags,
251 					vbicq_u32(fdir_id_flags,
252 						  vceqq_u32(ftag, ft_mask)));
253 				ftag = vaddq_u32(ftag, flow_mark_adj);
254 				elts[pos]->hash.fdir.hi =
255 					vgetq_lane_u32(ftag, 3);
256 				elts[pos + 1]->hash.fdir.hi =
257 					vgetq_lane_u32(ftag, 2);
258 				elts[pos + 2]->hash.fdir.hi =
259 					vgetq_lane_u32(ftag, 1);
260 				elts[pos + 3]->hash.fdir.hi =
261 					vgetq_lane_u32(ftag, 0);
262 				}
263 		}
264 		if (unlikely(rxq->mcqe_format !=
265 			     MLX5_CQE_RESP_FORMAT_HASH)) {
266 			if (rxq->mcqe_format ==
267 			    MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
268 				const uint8_t pkt_info =
269 					(cq->pkt_info & 0x3) << 6;
270 				const uint8_t pkt_hdr0 =
271 					mcq[pos % 8].hdr_type;
272 				const uint8_t pkt_hdr1 =
273 					mcq[pos % 8 + 1].hdr_type;
274 				const uint8_t pkt_hdr2 =
275 					mcq[pos % 8 + 2].hdr_type;
276 				const uint8_t pkt_hdr3 =
277 					mcq[pos % 8 + 3].hdr_type;
278 				const uint32x4_t vlan_mask =
279 					vdupq_n_u32(PKT_RX_VLAN |
280 						    PKT_RX_VLAN_STRIPPED);
281 				const uint32x4_t cv_mask =
282 					vdupq_n_u32(MLX5_CQE_VLAN_STRIPPED);
283 				const uint32x4_t pkt_cv = {
284 					pkt_hdr0 & 0x1, pkt_hdr1 & 0x1,
285 					pkt_hdr2 & 0x1, pkt_hdr3 & 0x1};
286 
287 				ol_flags_mask = vorrq_u32(ol_flags_mask,
288 							  vlan_mask);
289 				ol_flags = vorrq_u32(ol_flags,
290 						vandq_u32(vlan_mask,
291 						vceqq_u32(pkt_cv, cv_mask)));
292 				elts[pos]->packet_type =
293 					mlx5_ptype_table[(pkt_hdr0 >> 2) |
294 							 pkt_info];
295 				elts[pos + 1]->packet_type =
296 					mlx5_ptype_table[(pkt_hdr1 >> 2) |
297 							 pkt_info];
298 				elts[pos + 2]->packet_type =
299 					mlx5_ptype_table[(pkt_hdr2 >> 2) |
300 							 pkt_info];
301 				elts[pos + 3]->packet_type =
302 					mlx5_ptype_table[(pkt_hdr3 >> 2) |
303 							 pkt_info];
304 				if (rxq->tunnel) {
305 					elts[pos]->packet_type |=
306 						!!(((pkt_hdr0 >> 2) |
307 						pkt_info) & (1 << 6));
308 					elts[pos + 1]->packet_type |=
309 						!!(((pkt_hdr1 >> 2) |
310 						pkt_info) & (1 << 6));
311 					elts[pos + 2]->packet_type |=
312 						!!(((pkt_hdr2 >> 2) |
313 						pkt_info) & (1 << 6));
314 					elts[pos + 3]->packet_type |=
315 						!!(((pkt_hdr3 >> 2) |
316 						pkt_info) & (1 << 6));
317 				}
318 			}
319 			const uint32x4_t hash_flags =
320 				vdupq_n_u32(PKT_RX_RSS_HASH);
321 			const uint32x4_t rearm_flags =
322 				vdupq_n_u32((uint32_t)t_pkt->ol_flags);
323 
324 			ol_flags_mask = vorrq_u32(ol_flags_mask, hash_flags);
325 			ol_flags = vorrq_u32(ol_flags,
326 					vbicq_u32(rearm_flags, ol_flags_mask));
327 			elts[pos]->ol_flags = vgetq_lane_u32(ol_flags, 3);
328 			elts[pos + 1]->ol_flags = vgetq_lane_u32(ol_flags, 2);
329 			elts[pos + 2]->ol_flags = vgetq_lane_u32(ol_flags, 1);
330 			elts[pos + 3]->ol_flags = vgetq_lane_u32(ol_flags, 0);
331 			elts[pos]->hash.rss = 0;
332 			elts[pos + 1]->hash.rss = 0;
333 			elts[pos + 2]->hash.rss = 0;
334 			elts[pos + 3]->hash.rss = 0;
335 		}
336 		if (rxq->dynf_meta) {
337 			int32_t offs = rxq->flow_meta_offset;
338 			const uint32_t meta =
339 				*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
340 
341 			/* Check if title packet has valid metadata. */
342 			if (meta) {
343 				MLX5_ASSERT(t_pkt->ol_flags &
344 					    rxq->flow_meta_mask);
345 				*RTE_MBUF_DYNFIELD(elts[pos], offs,
346 							uint32_t *) = meta;
347 				*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
348 							uint32_t *) = meta;
349 				*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
350 							uint32_t *) = meta;
351 				*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
352 							uint32_t *) = meta;
353 			}
354 		}
355 		pos += MLX5_VPMD_DESCS_PER_LOOP;
356 		/* Move to next CQE and invalidate consumed CQEs. */
357 		if (!(pos & 0x7) && pos < mcqe_n) {
358 			if (pos + 8 < mcqe_n)
359 				rte_prefetch0((void *)(cq + pos + 8));
360 			mcq = (void *)&(cq + pos)->pkt_info;
361 			for (i = 0; i < 8; ++i)
362 				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
363 		}
364 	}
365 	/* Invalidate the rest of CQEs. */
366 	for (; inv < mcqe_n; ++inv)
367 		cq[inv].op_own = MLX5_CQE_INVALIDATE;
368 #ifdef MLX5_PMD_SOFT_COUNTERS
369 	rxq->stats.ipackets += mcqe_n;
370 	rxq->stats.ibytes += rcvd_byte;
371 #endif
372 	return mcqe_n;
373 }
374 
375 /**
376  * Calculate packet type and offload flag for mbuf and store it.
377  *
378  * @param rxq
379  *   Pointer to RX queue structure.
380  * @param ptype_info
381  *   Array of four 4bytes packet type info extracted from the original
382  *   completion descriptor.
383  * @param flow_tag
384  *   Array of four 4bytes flow ID extracted from the original completion
385  *   descriptor.
386  * @param op_err
387  *   Opcode vector having responder error status. Each field is 4B.
388  * @param pkts
389  *   Pointer to array of packets to be filled.
390  */
391 static inline void
392 rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq,
393 			 uint32x4_t ptype_info, uint32x4_t flow_tag,
394 			 uint16x4_t op_err, struct rte_mbuf **pkts)
395 {
396 	uint16x4_t ptype;
397 	uint32x4_t pinfo, cv_flags;
398 	uint32x4_t ol_flags =
399 		vdupq_n_u32(rxq->rss_hash * PKT_RX_RSS_HASH |
400 			    rxq->hw_timestamp * rxq->timestamp_rx_flag);
401 	const uint32x4_t ptype_ol_mask = { 0x106, 0x106, 0x106, 0x106 };
402 	const uint8x16_t cv_flag_sel = {
403 		0,
404 		(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
405 		(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
406 		0,
407 		(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
408 		0,
409 		(uint8_t)((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
410 		0, 0, 0, 0, 0, 0, 0, 0, 0
411 	};
412 	const uint32x4_t cv_mask =
413 		vdupq_n_u32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
414 			    PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
415 	const uint64x2_t mbuf_init = vld1q_u64
416 				((const uint64_t *)&rxq->mbuf_initializer);
417 	uint64x2_t rearm0, rearm1, rearm2, rearm3;
418 	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
419 
420 	if (rxq->mark) {
421 		const uint32x4_t ft_def = vdupq_n_u32(MLX5_FLOW_MARK_DEFAULT);
422 		const uint32x4_t fdir_flags = vdupq_n_u32(PKT_RX_FDIR);
423 		uint32x4_t fdir_id_flags = vdupq_n_u32(PKT_RX_FDIR_ID);
424 		uint32x4_t invalid_mask;
425 
426 		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
427 		invalid_mask = vceqzq_u32(flow_tag);
428 		ol_flags = vorrq_u32(ol_flags,
429 				     vbicq_u32(fdir_flags, invalid_mask));
430 		/* Mask out invalid entries. */
431 		fdir_id_flags = vbicq_u32(fdir_id_flags, invalid_mask);
432 		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
433 		ol_flags = vorrq_u32(ol_flags,
434 				     vbicq_u32(fdir_id_flags,
435 					       vceqq_u32(flow_tag, ft_def)));
436 	}
437 	/*
438 	 * ptype_info has the following:
439 	 * bit[1]     = l3_ok
440 	 * bit[2]     = l4_ok
441 	 * bit[8]     = cv
442 	 * bit[11:10] = l3_hdr_type
443 	 * bit[14:12] = l4_hdr_type
444 	 * bit[15]    = ip_frag
445 	 * bit[16]    = tunneled
446 	 * bit[17]    = outer_l3_type
447 	 */
448 	ptype = vshrn_n_u32(ptype_info, 10);
449 	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
450 	ptype = vorr_u16(ptype, op_err);
451 	pt_idx0 = vget_lane_u8(vreinterpret_u8_u16(ptype), 6);
452 	pt_idx1 = vget_lane_u8(vreinterpret_u8_u16(ptype), 4);
453 	pt_idx2 = vget_lane_u8(vreinterpret_u8_u16(ptype), 2);
454 	pt_idx3 = vget_lane_u8(vreinterpret_u8_u16(ptype), 0);
455 	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
456 			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
457 	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
458 			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
459 	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
460 			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
461 	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
462 			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
463 	/* Fill flags for checksum and VLAN. */
464 	pinfo = vandq_u32(ptype_info, ptype_ol_mask);
465 	pinfo = vreinterpretq_u32_u8(
466 		vqtbl1q_u8(cv_flag_sel, vreinterpretq_u8_u32(pinfo)));
467 	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
468 	cv_flags = vshlq_n_u32(pinfo, 9);
469 	cv_flags = vorrq_u32(pinfo, cv_flags);
470 	/* Move back flags to start from byte[0]. */
471 	cv_flags = vshrq_n_u32(cv_flags, 8);
472 	/* Mask out garbage bits. */
473 	cv_flags = vandq_u32(cv_flags, cv_mask);
474 	/* Merge to ol_flags. */
475 	ol_flags = vorrq_u32(ol_flags, cv_flags);
476 	/* Merge mbuf_init and ol_flags, and store. */
477 	rearm0 = vreinterpretq_u64_u32(vsetq_lane_u32
478 					(vgetq_lane_u32(ol_flags, 3),
479 					 vreinterpretq_u32_u64(mbuf_init), 2));
480 	rearm1 = vreinterpretq_u64_u32(vsetq_lane_u32
481 					(vgetq_lane_u32(ol_flags, 2),
482 					 vreinterpretq_u32_u64(mbuf_init), 2));
483 	rearm2 = vreinterpretq_u64_u32(vsetq_lane_u32
484 					(vgetq_lane_u32(ol_flags, 1),
485 					 vreinterpretq_u32_u64(mbuf_init), 2));
486 	rearm3 = vreinterpretq_u64_u32(vsetq_lane_u32
487 					(vgetq_lane_u32(ol_flags, 0),
488 					 vreinterpretq_u32_u64(mbuf_init), 2));
489 
490 	vst1q_u64((void *)&pkts[0]->rearm_data, rearm0);
491 	vst1q_u64((void *)&pkts[1]->rearm_data, rearm1);
492 	vst1q_u64((void *)&pkts[2]->rearm_data, rearm2);
493 	vst1q_u64((void *)&pkts[3]->rearm_data, rearm3);
494 }
495 
496 /**
497  * Process a non-compressed completion and fill in mbufs in RX SW ring
498  * with data extracted from the title completion descriptor.
499  *
500  * @param rxq
501  *   Pointer to RX queue structure.
502  * @param cq
503  *   Pointer to completion array having a non-compressed completion at first.
504  * @param elts
505  *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
506  *   the title completion descriptor to be copied to the rest of mbufs.
507  * @param[out] pkts
508  *   Array to store received packets.
509  * @param pkts_n
510  *   Maximum number of packets in array.
511  * @param[out] err
512  *   Pointer to a flag. Set non-zero value if pkts array has at least one error
513  *   packet to handle.
514  * @param[out] comp
515  *   Pointer to a index. Set it to the first compressed completion if any.
516  *
517  * @return
518  *   Number of CQEs successfully processed.
519  */
520 static inline uint16_t
521 rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
522 		 struct rte_mbuf **elts, struct rte_mbuf **pkts,
523 		 uint16_t pkts_n, uint64_t *err, uint64_t *comp)
524 {
525 	const uint16_t q_n = 1 << rxq->cqe_n;
526 	const uint16_t q_mask = q_n - 1;
527 	unsigned int pos;
528 	uint64_t n = 0;
529 	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
530 	uint16_t nocmp_n = 0;
531 	const uint16x4_t ownership = vdup_n_u16(!(rxq->cq_ci & (q_mask + 1)));
532 	const uint16x4_t owner_check = vcreate_u16(0x0001000100010001);
533 	const uint16x4_t opcode_check = vcreate_u16(0x00f000f000f000f0);
534 	const uint16x4_t format_check = vcreate_u16(0x000c000c000c000c);
535 	const uint16x4_t resp_err_check = vcreate_u16(0x00e000e000e000e0);
536 #ifdef MLX5_PMD_SOFT_COUNTERS
537 	uint32_t rcvd_byte = 0;
538 #endif
539 	/* Mask to generate 16B length vector. */
540 	const uint8x8_t len_shuf_m = {
541 		52, 53,         /* 4th CQE */
542 		36, 37,         /* 3rd CQE */
543 		20, 21,         /* 2nd CQE */
544 		 4,  5          /* 1st CQE */
545 	};
546 	/* Mask to extract 16B data from a 64B CQE. */
547 	const uint8x16_t cqe_shuf_m = {
548 		28, 29,         /* hdr_type_etc */
549 		 0,             /* pkt_info */
550 		-1,             /* null */
551 		47, 46,         /* byte_cnt, bswap16 */
552 		31, 30,         /* vlan_info, bswap16 */
553 		15, 14, 13, 12, /* rx_hash_res, bswap32 */
554 		57, 58, 59,     /* flow_tag */
555 		63              /* op_own */
556 	};
557 	/* Mask to generate 16B data for mbuf. */
558 	const uint8x16_t mb_shuf_m = {
559 		 4,  5, -1, -1, /* pkt_len */
560 		 4,  5,         /* data_len */
561 		 6,  7,         /* vlan_tci */
562 		 8,  9, 10, 11, /* hash.rss */
563 		12, 13, 14, -1  /* hash.fdir.hi */
564 	};
565 	/* Mask to generate 16B owner vector. */
566 	const uint8x8_t owner_shuf_m = {
567 		63, -1,         /* 4th CQE */
568 		47, -1,         /* 3rd CQE */
569 		31, -1,         /* 2nd CQE */
570 		15, -1          /* 1st CQE */
571 	};
572 	/* Mask to generate a vector having packet_type/ol_flags. */
573 	const uint8x16_t ptype_shuf_m = {
574 		48, 49, 50, -1, /* 4th CQE */
575 		32, 33, 34, -1, /* 3rd CQE */
576 		16, 17, 18, -1, /* 2nd CQE */
577 		 0,  1,  2, -1  /* 1st CQE */
578 	};
579 	/* Mask to generate a vector having flow tags. */
580 	const uint8x16_t ftag_shuf_m = {
581 		60, 61, 62, -1, /* 4th CQE */
582 		44, 45, 46, -1, /* 3rd CQE */
583 		28, 29, 30, -1, /* 2nd CQE */
584 		12, 13, 14, -1  /* 1st CQE */
585 	};
586 	const uint16x8_t crc_adj = {
587 		0, 0, rxq->crc_present * RTE_ETHER_CRC_LEN, 0, 0, 0, 0, 0
588 	};
589 	const uint32x4_t flow_mark_adj = { 0, 0, 0, rxq->mark * (-1) };
590 
591 	/*
592 	 * Note that vectors have reverse order - {v3, v2, v1, v0}, because
593 	 * there's no instruction to count trailing zeros. __builtin_clzl() is
594 	 * used instead.
595 	 *
596 	 * A. copy 4 mbuf pointers from elts ring to returing pkts.
597 	 * B. load 64B CQE and extract necessary fields
598 	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
599 	 *    following structure:
600 	 *        struct {
601 	 *          uint16_t hdr_type_etc;
602 	 *          uint8_t  pkt_info;
603 	 *          uint8_t  rsvd;
604 	 *          uint16_t byte_cnt;
605 	 *          uint16_t vlan_info;
606 	 *          uint32_t rx_has_res;
607 	 *          uint8_t  flow_tag[3];
608 	 *          uint8_t  op_own;
609 	 *        } c;
610 	 * C. fill in mbuf.
611 	 * D. get valid CQEs.
612 	 * E. find compressed CQE.
613 	 */
614 	for (pos = 0;
615 	     pos < pkts_n;
616 	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
617 		uint16x4_t op_own;
618 		uint16x4_t opcode, owner_mask, invalid_mask;
619 		uint16x4_t comp_mask;
620 		uint16x4_t mask;
621 		uint16x4_t byte_cnt;
622 		uint32x4_t ptype_info, flow_tag;
623 		register uint64x2_t c0, c1, c2, c3;
624 		uint8_t *p0, *p1, *p2, *p3;
625 		uint8_t *e0 = (void *)&elts[pos]->pkt_len;
626 		uint8_t *e1 = (void *)&elts[pos + 1]->pkt_len;
627 		uint8_t *e2 = (void *)&elts[pos + 2]->pkt_len;
628 		uint8_t *e3 = (void *)&elts[pos + 3]->pkt_len;
629 		void *elts_p = (void *)&elts[pos];
630 		void *pkts_p = (void *)&pkts[pos];
631 
632 		/* A.0 do not cross the end of CQ. */
633 		mask = vcreate_u16(pkts_n - pos < MLX5_VPMD_DESCS_PER_LOOP ?
634 				   -1UL >> ((pkts_n - pos) *
635 					    sizeof(uint16_t) * 8) : 0);
636 		p0 = (void *)&cq[pos].pkt_info;
637 		p1 = p0 + (pkts_n - pos > 1) * sizeof(struct mlx5_cqe);
638 		p2 = p1 + (pkts_n - pos > 2) * sizeof(struct mlx5_cqe);
639 		p3 = p2 + (pkts_n - pos > 3) * sizeof(struct mlx5_cqe);
640 		/* B.0 (CQE 3) load a block having op_own. */
641 		c3 = vld1q_u64((uint64_t *)(p3 + 48));
642 		/* B.0 (CQE 2) load a block having op_own. */
643 		c2 = vld1q_u64((uint64_t *)(p2 + 48));
644 		/* B.0 (CQE 1) load a block having op_own. */
645 		c1 = vld1q_u64((uint64_t *)(p1 + 48));
646 		/* B.0 (CQE 0) load a block having op_own. */
647 		c0 = vld1q_u64((uint64_t *)(p0 + 48));
648 		/* Synchronize for loading the rest of blocks. */
649 		rte_io_rmb();
650 		/* Prefetch next 4 CQEs. */
651 		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
652 			unsigned int next = pos + MLX5_VPMD_DESCS_PER_LOOP;
653 			rte_prefetch_non_temporal(&cq[next]);
654 			rte_prefetch_non_temporal(&cq[next + 1]);
655 			rte_prefetch_non_temporal(&cq[next + 2]);
656 			rte_prefetch_non_temporal(&cq[next + 3]);
657 		}
658 		__asm__ volatile (
659 		/* B.1 (CQE 3) load the rest of blocks. */
660 		"ld1 {v16.16b - v18.16b}, [%[p3]] \n\t"
661 		/* B.2 (CQE 3) move the block having op_own. */
662 		"mov v19.16b, %[c3].16b \n\t"
663 		/* B.3 (CQE 3) extract 16B fields. */
664 		"tbl v23.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
665 		/* B.1 (CQE 2) load the rest of blocks. */
666 		"ld1 {v16.16b - v18.16b}, [%[p2]] \n\t"
667 		/* B.4 (CQE 3) adjust CRC length. */
668 		"sub v23.8h, v23.8h, %[crc_adj].8h \n\t"
669 		/* C.1 (CQE 3) generate final structure for mbuf. */
670 		"tbl v15.16b, {v23.16b}, %[mb_shuf_m].16b \n\t"
671 		/* B.2 (CQE 2) move the block having op_own. */
672 		"mov v19.16b, %[c2].16b \n\t"
673 		/* B.3 (CQE 2) extract 16B fields. */
674 		"tbl v22.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
675 		/* B.1 (CQE 1) load the rest of blocks. */
676 		"ld1 {v16.16b - v18.16b}, [%[p1]] \n\t"
677 		/* B.4 (CQE 2) adjust CRC length. */
678 		"sub v22.8h, v22.8h, %[crc_adj].8h \n\t"
679 		/* C.1 (CQE 2) generate final structure for mbuf. */
680 		"tbl v14.16b, {v22.16b}, %[mb_shuf_m].16b \n\t"
681 		/* B.2 (CQE 1) move the block having op_own. */
682 		"mov v19.16b, %[c1].16b \n\t"
683 		/* B.3 (CQE 1) extract 16B fields. */
684 		"tbl v21.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
685 		/* B.1 (CQE 0) load the rest of blocks. */
686 		"ld1 {v16.16b - v18.16b}, [%[p0]] \n\t"
687 		/* B.4 (CQE 1) adjust CRC length. */
688 		"sub v21.8h, v21.8h, %[crc_adj].8h \n\t"
689 		/* C.1 (CQE 1) generate final structure for mbuf. */
690 		"tbl v13.16b, {v21.16b}, %[mb_shuf_m].16b \n\t"
691 		/* B.2 (CQE 0) move the block having op_own. */
692 		"mov v19.16b, %[c0].16b \n\t"
693 		/* A.1 load mbuf pointers. */
694 		"ld1 {v24.2d - v25.2d}, [%[elts_p]] \n\t"
695 		/* B.3 (CQE 0) extract 16B fields. */
696 		"tbl v20.16b, {v16.16b - v19.16b}, %[cqe_shuf_m].16b \n\t"
697 		/* B.4 (CQE 0) adjust CRC length. */
698 		"sub v20.8h, v20.8h, %[crc_adj].8h \n\t"
699 		/* D.1 extract op_own byte. */
700 		"tbl %[op_own].8b, {v20.16b - v23.16b}, %[owner_shuf_m].8b \n\t"
701 		/* C.2 (CQE 3) adjust flow mark. */
702 		"add v15.4s, v15.4s, %[flow_mark_adj].4s \n\t"
703 		/* C.3 (CQE 3) fill in mbuf - rx_descriptor_fields1. */
704 		"st1 {v15.2d}, [%[e3]] \n\t"
705 		/* C.2 (CQE 2) adjust flow mark. */
706 		"add v14.4s, v14.4s, %[flow_mark_adj].4s \n\t"
707 		/* C.3 (CQE 2) fill in mbuf - rx_descriptor_fields1. */
708 		"st1 {v14.2d}, [%[e2]] \n\t"
709 		/* C.1 (CQE 0) generate final structure for mbuf. */
710 		"tbl v12.16b, {v20.16b}, %[mb_shuf_m].16b \n\t"
711 		/* C.2 (CQE 1) adjust flow mark. */
712 		"add v13.4s, v13.4s, %[flow_mark_adj].4s \n\t"
713 		/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
714 		"st1 {v13.2d}, [%[e1]] \n\t"
715 #ifdef MLX5_PMD_SOFT_COUNTERS
716 		/* Extract byte_cnt. */
717 		"tbl %[byte_cnt].8b, {v20.16b - v23.16b}, %[len_shuf_m].8b \n\t"
718 #endif
719 		/* Extract ptype_info. */
720 		"tbl %[ptype_info].16b, {v20.16b - v23.16b}, %[ptype_shuf_m].16b \n\t"
721 		/* Extract flow_tag. */
722 		"tbl %[flow_tag].16b, {v20.16b - v23.16b}, %[ftag_shuf_m].16b \n\t"
723 		/* A.2 copy mbuf pointers. */
724 		"st1 {v24.2d - v25.2d}, [%[pkts_p]] \n\t"
725 		/* C.2 (CQE 0) adjust flow mark. */
726 		"add v12.4s, v12.4s, %[flow_mark_adj].4s \n\t"
727 		/* C.3 (CQE 1) fill in mbuf - rx_descriptor_fields1. */
728 		"st1 {v12.2d}, [%[e0]] \n\t"
729 		:[op_own]"=&w"(op_own),
730 		 [byte_cnt]"=&w"(byte_cnt),
731 		 [ptype_info]"=&w"(ptype_info),
732 		 [flow_tag]"=&w"(flow_tag)
733 		:[p3]"r"(p3), [p2]"r"(p2), [p1]"r"(p1), [p0]"r"(p0),
734 		 [e3]"r"(e3), [e2]"r"(e2), [e1]"r"(e1), [e0]"r"(e0),
735 		 [c3]"w"(c3), [c2]"w"(c2), [c1]"w"(c1), [c0]"w"(c0),
736 		 [elts_p]"r"(elts_p),
737 		 [pkts_p]"r"(pkts_p),
738 		 [cqe_shuf_m]"w"(cqe_shuf_m),
739 		 [mb_shuf_m]"w"(mb_shuf_m),
740 		 [owner_shuf_m]"w"(owner_shuf_m),
741 		 [len_shuf_m]"w"(len_shuf_m),
742 		 [ptype_shuf_m]"w"(ptype_shuf_m),
743 		 [ftag_shuf_m]"w"(ftag_shuf_m),
744 		 [crc_adj]"w"(crc_adj),
745 		 [flow_mark_adj]"w"(flow_mark_adj)
746 		:"memory",
747 		 "v12", "v13", "v14", "v15",
748 		 "v16", "v17", "v18", "v19",
749 		 "v20", "v21", "v22", "v23",
750 		 "v24", "v25");
751 		/* D.2 flip owner bit to mark CQEs from last round. */
752 		owner_mask = vand_u16(op_own, owner_check);
753 		owner_mask = vceq_u16(owner_mask, ownership);
754 		/* D.3 get mask for invalidated CQEs. */
755 		opcode = vand_u16(op_own, opcode_check);
756 		invalid_mask = vceq_u16(opcode_check, opcode);
757 		/* E.1 find compressed CQE format. */
758 		comp_mask = vand_u16(op_own, format_check);
759 		comp_mask = vceq_u16(comp_mask, format_check);
760 		/* D.4 mask out beyond boundary. */
761 		invalid_mask = vorr_u16(invalid_mask, mask);
762 		/* D.5 merge invalid_mask with invalid owner. */
763 		invalid_mask = vorr_u16(invalid_mask, owner_mask);
764 		/* E.2 mask out invalid entries. */
765 		comp_mask = vbic_u16(comp_mask, invalid_mask);
766 		/* E.3 get the first compressed CQE. */
767 		comp_idx = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
768 					  comp_mask), 0)) /
769 					  (sizeof(uint16_t) * 8);
770 		/* D.6 mask out entries after the compressed CQE. */
771 		mask = vcreate_u16(comp_idx < MLX5_VPMD_DESCS_PER_LOOP ?
772 				   -1UL >> (comp_idx * sizeof(uint16_t) * 8) :
773 				   0);
774 		invalid_mask = vorr_u16(invalid_mask, mask);
775 		/* D.7 count non-compressed valid CQEs. */
776 		n = __builtin_clzl(vget_lane_u64(vreinterpret_u64_u16(
777 				   invalid_mask), 0)) / (sizeof(uint16_t) * 8);
778 		nocmp_n += n;
779 		/* D.2 get the final invalid mask. */
780 		mask = vcreate_u16(n < MLX5_VPMD_DESCS_PER_LOOP ?
781 				   -1UL >> (n * sizeof(uint16_t) * 8) : 0);
782 		invalid_mask = vorr_u16(invalid_mask, mask);
783 		/* D.3 check error in opcode. */
784 		opcode = vceq_u16(resp_err_check, opcode);
785 		opcode = vbic_u16(opcode, invalid_mask);
786 		/* D.4 mark if any error is set */
787 		*err |= vget_lane_u64(vreinterpret_u64_u16(opcode), 0);
788 		/* C.4 fill in mbuf - rearm_data and packet_type. */
789 		rxq_cq_to_ptype_oflags_v(rxq, ptype_info, flow_tag,
790 					 opcode, &elts[pos]);
791 		if (rxq->hw_timestamp) {
792 			int offset = rxq->timestamp_offset;
793 			if (rxq->rt_timestamp) {
794 				struct mlx5_dev_ctx_shared *sh = rxq->sh;
795 				uint64_t ts;
796 
797 				ts = rte_be_to_cpu_64
798 					(container_of(p0, struct mlx5_cqe,
799 						      pkt_info)->timestamp);
800 				mlx5_timestamp_set(elts[pos], offset,
801 					mlx5_txpp_convert_rx_ts(sh, ts));
802 				ts = rte_be_to_cpu_64
803 					(container_of(p1, struct mlx5_cqe,
804 						      pkt_info)->timestamp);
805 				mlx5_timestamp_set(elts[pos + 1], offset,
806 					mlx5_txpp_convert_rx_ts(sh, ts));
807 				ts = rte_be_to_cpu_64
808 					(container_of(p2, struct mlx5_cqe,
809 						      pkt_info)->timestamp);
810 				mlx5_timestamp_set(elts[pos + 2], offset,
811 					mlx5_txpp_convert_rx_ts(sh, ts));
812 				ts = rte_be_to_cpu_64
813 					(container_of(p3, struct mlx5_cqe,
814 						      pkt_info)->timestamp);
815 				mlx5_timestamp_set(elts[pos + 3], offset,
816 					mlx5_txpp_convert_rx_ts(sh, ts));
817 			} else {
818 				mlx5_timestamp_set(elts[pos], offset,
819 					rte_be_to_cpu_64(container_of(p0,
820 					struct mlx5_cqe, pkt_info)->timestamp));
821 				mlx5_timestamp_set(elts[pos + 1], offset,
822 					rte_be_to_cpu_64(container_of(p1,
823 					struct mlx5_cqe, pkt_info)->timestamp));
824 				mlx5_timestamp_set(elts[pos + 2], offset,
825 					rte_be_to_cpu_64(container_of(p2,
826 					struct mlx5_cqe, pkt_info)->timestamp));
827 				mlx5_timestamp_set(elts[pos + 3], offset,
828 					rte_be_to_cpu_64(container_of(p3,
829 					struct mlx5_cqe, pkt_info)->timestamp));
830 			}
831 		}
832 		if (rxq->dynf_meta) {
833 			/* This code is subject for futher optimization. */
834 			int32_t offs = rxq->flow_meta_offset;
835 			uint32_t mask = rxq->flow_meta_port_mask;
836 
837 			*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
838 				container_of(p0, struct mlx5_cqe,
839 					     pkt_info)->flow_table_metadata &
840 					     mask;
841 			*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
842 				container_of(p1, struct mlx5_cqe,
843 					     pkt_info)->flow_table_metadata &
844 					     mask;
845 			*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
846 				container_of(p2, struct mlx5_cqe,
847 					     pkt_info)->flow_table_metadata &
848 					     mask;
849 			*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
850 				container_of(p3, struct mlx5_cqe,
851 					     pkt_info)->flow_table_metadata &
852 					     mask;
853 			if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
854 				elts[pos]->ol_flags |= rxq->flow_meta_mask;
855 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
856 				elts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
857 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
858 				elts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
859 			if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
860 				elts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
861 		}
862 #ifdef MLX5_PMD_SOFT_COUNTERS
863 		/* Add up received bytes count. */
864 		byte_cnt = vbic_u16(byte_cnt, invalid_mask);
865 		rcvd_byte += vget_lane_u64(vpaddl_u32(vpaddl_u16(byte_cnt)), 0);
866 #endif
867 		/*
868 		 * Break the loop unless more valid CQE is expected, or if
869 		 * there's a compressed CQE.
870 		 */
871 		if (n != MLX5_VPMD_DESCS_PER_LOOP)
872 			break;
873 	}
874 #ifdef MLX5_PMD_SOFT_COUNTERS
875 	rxq->stats.ipackets += nocmp_n;
876 	rxq->stats.ibytes += rcvd_byte;
877 #endif
878 	if (comp_idx == n)
879 		*comp = comp_idx;
880 	return nocmp_n;
881 }
882 
883 #endif /* RTE_PMD_MLX5_RXTX_VEC_NEON_H_ */
884