xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision ff160dbcba6274bfcb22bbb05155c80c011f996d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_item items[4];
243 	struct rte_flow_item_eth l2;
244 	struct rte_flow_item_eth l2_mask;
245 	union {
246 		struct rte_flow_item_ipv4 ipv4;
247 		struct rte_flow_item_ipv6 ipv6;
248 	} l3;
249 	union {
250 		struct rte_flow_item_ipv4 ipv4;
251 		struct rte_flow_item_ipv6 ipv6;
252 	} l3_mask;
253 	union {
254 		struct rte_flow_item_udp udp;
255 		struct rte_flow_item_tcp tcp;
256 	} l4;
257 	union {
258 		struct rte_flow_item_udp udp;
259 		struct rte_flow_item_tcp tcp;
260 	} l4_mask;
261 	struct rte_flow_action actions[2];
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct {
319 		struct ibv_flow_attr attr;
320 		struct ibv_flow_spec_eth eth;
321 		struct ibv_flow_spec_action_drop drop;
322 	} flow_attr = {
323 		.attr = {
324 			.num_of_specs = 2,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	switch (priority) {
354 	case 8:
355 		priority = RTE_DIM(priority_map_3);
356 		break;
357 	case 16:
358 		priority = RTE_DIM(priority_map_5);
359 		break;
360 	default:
361 		rte_errno = ENOTSUP;
362 		DRV_LOG(ERR,
363 			"port %u verbs maximum priority: %d expected 8/16",
364 			dev->data->port_id, vprio[i]);
365 		return -rte_errno;
366 	}
367 	mlx5_hrxq_drop_release(dev);
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (!priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  NULL, "No Rx queues configured");
853 	if (queue->index >= priv->rxqs_n)
854 		return rte_flow_error_set(error, EINVAL,
855 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856 					  &queue->index,
857 					  "queue index out of range");
858 	if (!(*priv->rxqs)[queue->index])
859 		return rte_flow_error_set(error, EINVAL,
860 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861 					  &queue->index,
862 					  "queue is not configured");
863 	if (attr->egress)
864 		return rte_flow_error_set(error, ENOTSUP,
865 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866 					  "queue action not supported for "
867 					  "egress");
868 	return 0;
869 }
870 
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[out] error
883  *   Pointer to error structure.
884  *
885  * @return
886  *   0 on success, a negative errno value otherwise and rte_ernno is set.
887  */
888 int
889 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
890 			      uint64_t action_flags,
891 			      struct rte_eth_dev *dev,
892 			      const struct rte_flow_attr *attr,
893 			      struct rte_flow_error *error)
894 {
895 	struct priv *priv = dev->data->dev_private;
896 	const struct rte_flow_action_rss *rss = action->conf;
897 	unsigned int i;
898 
899 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
900 		return rte_flow_error_set(error, EINVAL,
901 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
902 					  "can't have 2 fate actions"
903 					  " in same flow");
904 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
905 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
906 		return rte_flow_error_set(error, ENOTSUP,
907 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
908 					  &rss->func,
909 					  "RSS hash function not supported");
910 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
911 	if (rss->level > 2)
912 #else
913 	if (rss->level > 1)
914 #endif
915 		return rte_flow_error_set(error, ENOTSUP,
916 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
917 					  &rss->level,
918 					  "tunnel RSS is not supported");
919 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
920 	if (rss->key_len == 0 && rss->key != NULL)
921 		return rte_flow_error_set(error, ENOTSUP,
922 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
923 					  &rss->key_len,
924 					  "RSS hash key length 0");
925 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
926 		return rte_flow_error_set(error, ENOTSUP,
927 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
928 					  &rss->key_len,
929 					  "RSS hash key too small");
930 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
931 		return rte_flow_error_set(error, ENOTSUP,
932 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
933 					  &rss->key_len,
934 					  "RSS hash key too large");
935 	if (rss->queue_num > priv->config.ind_table_max_size)
936 		return rte_flow_error_set(error, ENOTSUP,
937 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
938 					  &rss->queue_num,
939 					  "number of queues too large");
940 	if (rss->types & MLX5_RSS_HF_MASK)
941 		return rte_flow_error_set(error, ENOTSUP,
942 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
943 					  &rss->types,
944 					  "some RSS protocols are not"
945 					  " supported");
946 	if (!priv->rxqs_n)
947 		return rte_flow_error_set(error, EINVAL,
948 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
949 					  NULL, "No Rx queues configured");
950 	for (i = 0; i != rss->queue_num; ++i) {
951 		if (!(*priv->rxqs)[rss->queue[i]])
952 			return rte_flow_error_set
953 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
954 				 &rss->queue[i], "queue is not configured");
955 	}
956 	if (attr->egress)
957 		return rte_flow_error_set(error, ENOTSUP,
958 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
959 					  "rss action not supported for "
960 					  "egress");
961 	return 0;
962 }
963 
964 /*
965  * Validate the count action.
966  *
967  * @param[in] dev
968  *   Pointer to the Ethernet device structure.
969  * @param[in] attr
970  *   Attributes of flow that includes this action.
971  * @param[out] error
972  *   Pointer to error structure.
973  *
974  * @return
975  *   0 on success, a negative errno value otherwise and rte_ernno is set.
976  */
977 int
978 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
979 				const struct rte_flow_attr *attr,
980 				struct rte_flow_error *error)
981 {
982 	if (attr->egress)
983 		return rte_flow_error_set(error, ENOTSUP,
984 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
985 					  "count action not supported for "
986 					  "egress");
987 	return 0;
988 }
989 
990 /**
991  * Verify the @p attributes will be correctly understood by the NIC and store
992  * them in the @p flow if everything is correct.
993  *
994  * @param[in] dev
995  *   Pointer to the Ethernet device structure.
996  * @param[in] attributes
997  *   Pointer to flow attributes
998  * @param[out] error
999  *   Pointer to error structure.
1000  *
1001  * @return
1002  *   0 on success, a negative errno value otherwise and rte_errno is set.
1003  */
1004 int
1005 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1006 			      const struct rte_flow_attr *attributes,
1007 			      struct rte_flow_error *error)
1008 {
1009 	struct priv *priv = dev->data->dev_private;
1010 	uint32_t priority_max = priv->config.flow_prio - 1;
1011 
1012 	if (attributes->group)
1013 		return rte_flow_error_set(error, ENOTSUP,
1014 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1015 					  NULL, "groups is not supported");
1016 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1017 	    attributes->priority >= priority_max)
1018 		return rte_flow_error_set(error, ENOTSUP,
1019 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1020 					  NULL, "priority out of range");
1021 	if (attributes->egress)
1022 		return rte_flow_error_set(error, ENOTSUP,
1023 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1024 					  "egress is not supported");
1025 	if (attributes->transfer)
1026 		return rte_flow_error_set(error, ENOTSUP,
1027 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1028 					  NULL, "transfer is not supported");
1029 	if (!attributes->ingress)
1030 		return rte_flow_error_set(error, EINVAL,
1031 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1032 					  NULL,
1033 					  "ingress attribute is mandatory");
1034 	return 0;
1035 }
1036 
1037 /**
1038  * Validate Ethernet item.
1039  *
1040  * @param[in] item
1041  *   Item specification.
1042  * @param[in] item_flags
1043  *   Bit-fields that holds the items detected until now.
1044  * @param[out] error
1045  *   Pointer to error structure.
1046  *
1047  * @return
1048  *   0 on success, a negative errno value otherwise and rte_errno is set.
1049  */
1050 int
1051 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1052 			    uint64_t item_flags,
1053 			    struct rte_flow_error *error)
1054 {
1055 	const struct rte_flow_item_eth *mask = item->mask;
1056 	const struct rte_flow_item_eth nic_mask = {
1057 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1058 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1059 		.type = RTE_BE16(0xffff),
1060 	};
1061 	int ret;
1062 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1063 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1064 				       MLX5_FLOW_LAYER_OUTER_L2;
1065 
1066 	if (item_flags & ethm)
1067 		return rte_flow_error_set(error, ENOTSUP,
1068 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1069 					  "multiple L2 layers not supported");
1070 	if (!mask)
1071 		mask = &rte_flow_item_eth_mask;
1072 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1073 					(const uint8_t *)&nic_mask,
1074 					sizeof(struct rte_flow_item_eth),
1075 					error);
1076 	return ret;
1077 }
1078 
1079 /**
1080  * Validate VLAN item.
1081  *
1082  * @param[in] item
1083  *   Item specification.
1084  * @param[in] item_flags
1085  *   Bit-fields that holds the items detected until now.
1086  * @param[out] error
1087  *   Pointer to error structure.
1088  *
1089  * @return
1090  *   0 on success, a negative errno value otherwise and rte_errno is set.
1091  */
1092 int
1093 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1094 			     uint64_t item_flags,
1095 			     struct rte_flow_error *error)
1096 {
1097 	const struct rte_flow_item_vlan *spec = item->spec;
1098 	const struct rte_flow_item_vlan *mask = item->mask;
1099 	const struct rte_flow_item_vlan nic_mask = {
1100 		.tci = RTE_BE16(0x0fff),
1101 		.inner_type = RTE_BE16(0xffff),
1102 	};
1103 	uint16_t vlan_tag = 0;
1104 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1105 	int ret;
1106 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1107 					MLX5_FLOW_LAYER_INNER_L4) :
1108 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1109 					MLX5_FLOW_LAYER_OUTER_L4);
1110 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1111 					MLX5_FLOW_LAYER_OUTER_VLAN;
1112 
1113 	if (item_flags & vlanm)
1114 		return rte_flow_error_set(error, EINVAL,
1115 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1116 					  "multiple VLAN layers not supported");
1117 	else if ((item_flags & l34m) != 0)
1118 		return rte_flow_error_set(error, EINVAL,
1119 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1120 					  "L2 layer cannot follow L3/L4 layer");
1121 	if (!mask)
1122 		mask = &rte_flow_item_vlan_mask;
1123 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1124 					(const uint8_t *)&nic_mask,
1125 					sizeof(struct rte_flow_item_vlan),
1126 					error);
1127 	if (ret)
1128 		return ret;
1129 	if (spec) {
1130 		vlan_tag = spec->tci;
1131 		vlan_tag &= mask->tci;
1132 	}
1133 	/*
1134 	 * From verbs perspective an empty VLAN is equivalent
1135 	 * to a packet without VLAN layer.
1136 	 */
1137 	if (!vlan_tag)
1138 		return rte_flow_error_set(error, EINVAL,
1139 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1140 					  item->spec,
1141 					  "VLAN cannot be empty");
1142 	return 0;
1143 }
1144 
1145 /**
1146  * Validate IPV4 item.
1147  *
1148  * @param[in] item
1149  *   Item specification.
1150  * @param[in] item_flags
1151  *   Bit-fields that holds the items detected until now.
1152  * @param[in] acc_mask
1153  *   Acceptable mask, if NULL default internal default mask
1154  *   will be used to check whether item fields are supported.
1155  * @param[out] error
1156  *   Pointer to error structure.
1157  *
1158  * @return
1159  *   0 on success, a negative errno value otherwise and rte_errno is set.
1160  */
1161 int
1162 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1163 			     uint64_t item_flags,
1164 			     const struct rte_flow_item_ipv4 *acc_mask,
1165 			     struct rte_flow_error *error)
1166 {
1167 	const struct rte_flow_item_ipv4 *mask = item->mask;
1168 	const struct rte_flow_item_ipv4 nic_mask = {
1169 		.hdr = {
1170 			.src_addr = RTE_BE32(0xffffffff),
1171 			.dst_addr = RTE_BE32(0xffffffff),
1172 			.type_of_service = 0xff,
1173 			.next_proto_id = 0xff,
1174 		},
1175 	};
1176 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1177 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1178 				      MLX5_FLOW_LAYER_OUTER_L3;
1179 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1180 				      MLX5_FLOW_LAYER_OUTER_L4;
1181 	int ret;
1182 
1183 	if (item_flags & l3m)
1184 		return rte_flow_error_set(error, ENOTSUP,
1185 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1186 					  "multiple L3 layers not supported");
1187 	else if (item_flags & l4m)
1188 		return rte_flow_error_set(error, EINVAL,
1189 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1190 					  "L3 cannot follow an L4 layer.");
1191 	if (!mask)
1192 		mask = &rte_flow_item_ipv4_mask;
1193 	else if (mask->hdr.next_proto_id != 0 &&
1194 		 mask->hdr.next_proto_id != 0xff)
1195 		return rte_flow_error_set(error, EINVAL,
1196 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1197 					  "partial mask is not supported"
1198 					  " for protocol");
1199 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1200 					acc_mask ? (const uint8_t *)acc_mask
1201 						 : (const uint8_t *)&nic_mask,
1202 					sizeof(struct rte_flow_item_ipv4),
1203 					error);
1204 	if (ret < 0)
1205 		return ret;
1206 	return 0;
1207 }
1208 
1209 /**
1210  * Validate IPV6 item.
1211  *
1212  * @param[in] item
1213  *   Item specification.
1214  * @param[in] item_flags
1215  *   Bit-fields that holds the items detected until now.
1216  * @param[in] acc_mask
1217  *   Acceptable mask, if NULL default internal default mask
1218  *   will be used to check whether item fields are supported.
1219  * @param[out] error
1220  *   Pointer to error structure.
1221  *
1222  * @return
1223  *   0 on success, a negative errno value otherwise and rte_errno is set.
1224  */
1225 int
1226 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1227 			     uint64_t item_flags,
1228 			     const struct rte_flow_item_ipv6 *acc_mask,
1229 			     struct rte_flow_error *error)
1230 {
1231 	const struct rte_flow_item_ipv6 *mask = item->mask;
1232 	const struct rte_flow_item_ipv6 nic_mask = {
1233 		.hdr = {
1234 			.src_addr =
1235 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1236 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1237 			.dst_addr =
1238 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1239 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1240 			.vtc_flow = RTE_BE32(0xffffffff),
1241 			.proto = 0xff,
1242 			.hop_limits = 0xff,
1243 		},
1244 	};
1245 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1246 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1247 				      MLX5_FLOW_LAYER_OUTER_L3;
1248 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1249 				      MLX5_FLOW_LAYER_OUTER_L4;
1250 	int ret;
1251 
1252 	if (item_flags & l3m)
1253 		return rte_flow_error_set(error, ENOTSUP,
1254 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1255 					  "multiple L3 layers not supported");
1256 	else if (item_flags & l4m)
1257 		return rte_flow_error_set(error, EINVAL,
1258 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1259 					  "L3 cannot follow an L4 layer.");
1260 	if (!mask)
1261 		mask = &rte_flow_item_ipv6_mask;
1262 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1263 					acc_mask ? (const uint8_t *)acc_mask
1264 						 : (const uint8_t *)&nic_mask,
1265 					sizeof(struct rte_flow_item_ipv6),
1266 					error);
1267 	if (ret < 0)
1268 		return ret;
1269 	return 0;
1270 }
1271 
1272 /**
1273  * Validate UDP item.
1274  *
1275  * @param[in] item
1276  *   Item specification.
1277  * @param[in] item_flags
1278  *   Bit-fields that holds the items detected until now.
1279  * @param[in] target_protocol
1280  *   The next protocol in the previous item.
1281  * @param[in] flow_mask
1282  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1283  * @param[out] error
1284  *   Pointer to error structure.
1285  *
1286  * @return
1287  *   0 on success, a negative errno value otherwise and rte_errno is set.
1288  */
1289 int
1290 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1291 			    uint64_t item_flags,
1292 			    uint8_t target_protocol,
1293 			    struct rte_flow_error *error)
1294 {
1295 	const struct rte_flow_item_udp *mask = item->mask;
1296 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1297 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1298 				      MLX5_FLOW_LAYER_OUTER_L3;
1299 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1300 				      MLX5_FLOW_LAYER_OUTER_L4;
1301 	int ret;
1302 
1303 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1304 		return rte_flow_error_set(error, EINVAL,
1305 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1306 					  "protocol filtering not compatible"
1307 					  " with UDP layer");
1308 	if (!(item_flags & l3m))
1309 		return rte_flow_error_set(error, EINVAL,
1310 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1311 					  "L3 is mandatory to filter on L4");
1312 	if (item_flags & l4m)
1313 		return rte_flow_error_set(error, EINVAL,
1314 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1315 					  "multiple L4 layers not supported");
1316 	if (!mask)
1317 		mask = &rte_flow_item_udp_mask;
1318 	ret = mlx5_flow_item_acceptable
1319 		(item, (const uint8_t *)mask,
1320 		 (const uint8_t *)&rte_flow_item_udp_mask,
1321 		 sizeof(struct rte_flow_item_udp), error);
1322 	if (ret < 0)
1323 		return ret;
1324 	return 0;
1325 }
1326 
1327 /**
1328  * Validate TCP item.
1329  *
1330  * @param[in] item
1331  *   Item specification.
1332  * @param[in] item_flags
1333  *   Bit-fields that holds the items detected until now.
1334  * @param[in] target_protocol
1335  *   The next protocol in the previous item.
1336  * @param[out] error
1337  *   Pointer to error structure.
1338  *
1339  * @return
1340  *   0 on success, a negative errno value otherwise and rte_errno is set.
1341  */
1342 int
1343 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1344 			    uint64_t item_flags,
1345 			    uint8_t target_protocol,
1346 			    const struct rte_flow_item_tcp *flow_mask,
1347 			    struct rte_flow_error *error)
1348 {
1349 	const struct rte_flow_item_tcp *mask = item->mask;
1350 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1351 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1352 				      MLX5_FLOW_LAYER_OUTER_L3;
1353 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1354 				      MLX5_FLOW_LAYER_OUTER_L4;
1355 	int ret;
1356 
1357 	assert(flow_mask);
1358 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1359 		return rte_flow_error_set(error, EINVAL,
1360 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1361 					  "protocol filtering not compatible"
1362 					  " with TCP layer");
1363 	if (!(item_flags & l3m))
1364 		return rte_flow_error_set(error, EINVAL,
1365 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1366 					  "L3 is mandatory to filter on L4");
1367 	if (item_flags & l4m)
1368 		return rte_flow_error_set(error, EINVAL,
1369 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1370 					  "multiple L4 layers not supported");
1371 	if (!mask)
1372 		mask = &rte_flow_item_tcp_mask;
1373 	ret = mlx5_flow_item_acceptable
1374 		(item, (const uint8_t *)mask,
1375 		 (const uint8_t *)flow_mask,
1376 		 sizeof(struct rte_flow_item_tcp), error);
1377 	if (ret < 0)
1378 		return ret;
1379 	return 0;
1380 }
1381 
1382 /**
1383  * Validate VXLAN item.
1384  *
1385  * @param[in] item
1386  *   Item specification.
1387  * @param[in] item_flags
1388  *   Bit-fields that holds the items detected until now.
1389  * @param[in] target_protocol
1390  *   The next protocol in the previous item.
1391  * @param[out] error
1392  *   Pointer to error structure.
1393  *
1394  * @return
1395  *   0 on success, a negative errno value otherwise and rte_errno is set.
1396  */
1397 int
1398 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1399 			      uint64_t item_flags,
1400 			      struct rte_flow_error *error)
1401 {
1402 	const struct rte_flow_item_vxlan *spec = item->spec;
1403 	const struct rte_flow_item_vxlan *mask = item->mask;
1404 	int ret;
1405 	union vni {
1406 		uint32_t vlan_id;
1407 		uint8_t vni[4];
1408 	} id = { .vlan_id = 0, };
1409 	uint32_t vlan_id = 0;
1410 
1411 
1412 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1413 		return rte_flow_error_set(error, ENOTSUP,
1414 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1415 					  "multiple tunnel layers not"
1416 					  " supported");
1417 	/*
1418 	 * Verify only UDPv4 is present as defined in
1419 	 * https://tools.ietf.org/html/rfc7348
1420 	 */
1421 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1422 		return rte_flow_error_set(error, EINVAL,
1423 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1424 					  "no outer UDP layer found");
1425 	if (!mask)
1426 		mask = &rte_flow_item_vxlan_mask;
1427 	ret = mlx5_flow_item_acceptable
1428 		(item, (const uint8_t *)mask,
1429 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1430 		 sizeof(struct rte_flow_item_vxlan),
1431 		 error);
1432 	if (ret < 0)
1433 		return ret;
1434 	if (spec) {
1435 		memcpy(&id.vni[1], spec->vni, 3);
1436 		vlan_id = id.vlan_id;
1437 		memcpy(&id.vni[1], mask->vni, 3);
1438 		vlan_id &= id.vlan_id;
1439 	}
1440 	/*
1441 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1442 	 * only this layer is defined in the Verbs specification it is
1443 	 * interpreted as wildcard and all packets will match this
1444 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1445 	 * udp), all packets matching the layers before will also
1446 	 * match this rule.  To avoid such situation, VNI 0 is
1447 	 * currently refused.
1448 	 */
1449 	if (!vlan_id)
1450 		return rte_flow_error_set(error, ENOTSUP,
1451 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1452 					  "VXLAN vni cannot be 0");
1453 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1454 		return rte_flow_error_set(error, ENOTSUP,
1455 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1456 					  "VXLAN tunnel must be fully defined");
1457 	return 0;
1458 }
1459 
1460 /**
1461  * Validate VXLAN_GPE item.
1462  *
1463  * @param[in] item
1464  *   Item specification.
1465  * @param[in] item_flags
1466  *   Bit-fields that holds the items detected until now.
1467  * @param[in] priv
1468  *   Pointer to the private data structure.
1469  * @param[in] target_protocol
1470  *   The next protocol in the previous item.
1471  * @param[out] error
1472  *   Pointer to error structure.
1473  *
1474  * @return
1475  *   0 on success, a negative errno value otherwise and rte_errno is set.
1476  */
1477 int
1478 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1479 				  uint64_t item_flags,
1480 				  struct rte_eth_dev *dev,
1481 				  struct rte_flow_error *error)
1482 {
1483 	struct priv *priv = dev->data->dev_private;
1484 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1485 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1486 	int ret;
1487 	union vni {
1488 		uint32_t vlan_id;
1489 		uint8_t vni[4];
1490 	} id = { .vlan_id = 0, };
1491 	uint32_t vlan_id = 0;
1492 
1493 	if (!priv->config.l3_vxlan_en)
1494 		return rte_flow_error_set(error, ENOTSUP,
1495 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1496 					  "L3 VXLAN is not enabled by device"
1497 					  " parameter and/or not configured in"
1498 					  " firmware");
1499 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1500 		return rte_flow_error_set(error, ENOTSUP,
1501 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1502 					  "multiple tunnel layers not"
1503 					  " supported");
1504 	/*
1505 	 * Verify only UDPv4 is present as defined in
1506 	 * https://tools.ietf.org/html/rfc7348
1507 	 */
1508 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1509 		return rte_flow_error_set(error, EINVAL,
1510 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1511 					  "no outer UDP layer found");
1512 	if (!mask)
1513 		mask = &rte_flow_item_vxlan_gpe_mask;
1514 	ret = mlx5_flow_item_acceptable
1515 		(item, (const uint8_t *)mask,
1516 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1517 		 sizeof(struct rte_flow_item_vxlan_gpe),
1518 		 error);
1519 	if (ret < 0)
1520 		return ret;
1521 	if (spec) {
1522 		if (spec->protocol)
1523 			return rte_flow_error_set(error, ENOTSUP,
1524 						  RTE_FLOW_ERROR_TYPE_ITEM,
1525 						  item,
1526 						  "VxLAN-GPE protocol"
1527 						  " not supported");
1528 		memcpy(&id.vni[1], spec->vni, 3);
1529 		vlan_id = id.vlan_id;
1530 		memcpy(&id.vni[1], mask->vni, 3);
1531 		vlan_id &= id.vlan_id;
1532 	}
1533 	/*
1534 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1535 	 * layer is defined in the Verbs specification it is interpreted as
1536 	 * wildcard and all packets will match this rule, if it follows a full
1537 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1538 	 * before will also match this rule.  To avoid such situation, VNI 0
1539 	 * is currently refused.
1540 	 */
1541 	if (!vlan_id)
1542 		return rte_flow_error_set(error, ENOTSUP,
1543 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1544 					  "VXLAN-GPE vni cannot be 0");
1545 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1546 		return rte_flow_error_set(error, ENOTSUP,
1547 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1548 					  "VXLAN-GPE tunnel must be fully"
1549 					  " defined");
1550 	return 0;
1551 }
1552 
1553 /**
1554  * Validate GRE item.
1555  *
1556  * @param[in] item
1557  *   Item specification.
1558  * @param[in] item_flags
1559  *   Bit flags to mark detected items.
1560  * @param[in] target_protocol
1561  *   The next protocol in the previous item.
1562  * @param[out] error
1563  *   Pointer to error structure.
1564  *
1565  * @return
1566  *   0 on success, a negative errno value otherwise and rte_errno is set.
1567  */
1568 int
1569 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1570 			    uint64_t item_flags,
1571 			    uint8_t target_protocol,
1572 			    struct rte_flow_error *error)
1573 {
1574 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1575 	const struct rte_flow_item_gre *mask = item->mask;
1576 	int ret;
1577 
1578 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1579 		return rte_flow_error_set(error, EINVAL,
1580 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1581 					  "protocol filtering not compatible"
1582 					  " with this GRE layer");
1583 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1584 		return rte_flow_error_set(error, ENOTSUP,
1585 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1586 					  "multiple tunnel layers not"
1587 					  " supported");
1588 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1589 		return rte_flow_error_set(error, ENOTSUP,
1590 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1591 					  "L3 Layer is missing");
1592 	if (!mask)
1593 		mask = &rte_flow_item_gre_mask;
1594 	ret = mlx5_flow_item_acceptable
1595 		(item, (const uint8_t *)mask,
1596 		 (const uint8_t *)&rte_flow_item_gre_mask,
1597 		 sizeof(struct rte_flow_item_gre), error);
1598 	if (ret < 0)
1599 		return ret;
1600 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1601 	if (spec && (spec->protocol & mask->protocol))
1602 		return rte_flow_error_set(error, ENOTSUP,
1603 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1604 					  "without MPLS support the"
1605 					  " specification cannot be used for"
1606 					  " filtering");
1607 #endif
1608 	return 0;
1609 }
1610 
1611 /**
1612  * Validate MPLS item.
1613  *
1614  * @param[in] dev
1615  *   Pointer to the rte_eth_dev structure.
1616  * @param[in] item
1617  *   Item specification.
1618  * @param[in] item_flags
1619  *   Bit-fields that holds the items detected until now.
1620  * @param[in] prev_layer
1621  *   The protocol layer indicated in previous item.
1622  * @param[out] error
1623  *   Pointer to error structure.
1624  *
1625  * @return
1626  *   0 on success, a negative errno value otherwise and rte_errno is set.
1627  */
1628 int
1629 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1630 			     const struct rte_flow_item *item __rte_unused,
1631 			     uint64_t item_flags __rte_unused,
1632 			     uint64_t prev_layer __rte_unused,
1633 			     struct rte_flow_error *error)
1634 {
1635 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1636 	const struct rte_flow_item_mpls *mask = item->mask;
1637 	struct priv *priv = dev->data->dev_private;
1638 	int ret;
1639 
1640 	if (!priv->config.mpls_en)
1641 		return rte_flow_error_set(error, ENOTSUP,
1642 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1643 					  "MPLS not supported or"
1644 					  " disabled in firmware"
1645 					  " configuration.");
1646 	/* MPLS over IP, UDP, GRE is allowed */
1647 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1648 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1649 			    MLX5_FLOW_LAYER_GRE)))
1650 		return rte_flow_error_set(error, EINVAL,
1651 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1652 					  "protocol filtering not compatible"
1653 					  " with MPLS layer");
1654 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1655 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1656 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1657 		return rte_flow_error_set(error, ENOTSUP,
1658 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1659 					  "multiple tunnel layers not"
1660 					  " supported");
1661 	if (!mask)
1662 		mask = &rte_flow_item_mpls_mask;
1663 	ret = mlx5_flow_item_acceptable
1664 		(item, (const uint8_t *)mask,
1665 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1666 		 sizeof(struct rte_flow_item_mpls), error);
1667 	if (ret < 0)
1668 		return ret;
1669 	return 0;
1670 #endif
1671 	return rte_flow_error_set(error, ENOTSUP,
1672 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1673 				  "MPLS is not supported by Verbs, please"
1674 				  " update.");
1675 }
1676 
1677 static int
1678 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1679 		   const struct rte_flow_attr *attr __rte_unused,
1680 		   const struct rte_flow_item items[] __rte_unused,
1681 		   const struct rte_flow_action actions[] __rte_unused,
1682 		   struct rte_flow_error *error __rte_unused)
1683 {
1684 	rte_errno = ENOTSUP;
1685 	return -rte_errno;
1686 }
1687 
1688 static struct mlx5_flow *
1689 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1690 		  const struct rte_flow_item items[] __rte_unused,
1691 		  const struct rte_flow_action actions[] __rte_unused,
1692 		  struct rte_flow_error *error __rte_unused)
1693 {
1694 	rte_errno = ENOTSUP;
1695 	return NULL;
1696 }
1697 
1698 static int
1699 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1700 		    struct mlx5_flow *dev_flow __rte_unused,
1701 		    const struct rte_flow_attr *attr __rte_unused,
1702 		    const struct rte_flow_item items[] __rte_unused,
1703 		    const struct rte_flow_action actions[] __rte_unused,
1704 		    struct rte_flow_error *error __rte_unused)
1705 {
1706 	rte_errno = ENOTSUP;
1707 	return -rte_errno;
1708 }
1709 
1710 static int
1711 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1712 		struct rte_flow *flow __rte_unused,
1713 		struct rte_flow_error *error __rte_unused)
1714 {
1715 	rte_errno = ENOTSUP;
1716 	return -rte_errno;
1717 }
1718 
1719 static void
1720 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1721 		 struct rte_flow *flow __rte_unused)
1722 {
1723 }
1724 
1725 static void
1726 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1727 		  struct rte_flow *flow __rte_unused)
1728 {
1729 }
1730 
1731 static int
1732 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1733 		struct rte_flow *flow __rte_unused,
1734 		const struct rte_flow_action *actions __rte_unused,
1735 		void *data __rte_unused,
1736 		struct rte_flow_error *error __rte_unused)
1737 {
1738 	rte_errno = ENOTSUP;
1739 	return -rte_errno;
1740 }
1741 
1742 /* Void driver to protect from null pointer reference. */
1743 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1744 	.validate = flow_null_validate,
1745 	.prepare = flow_null_prepare,
1746 	.translate = flow_null_translate,
1747 	.apply = flow_null_apply,
1748 	.remove = flow_null_remove,
1749 	.destroy = flow_null_destroy,
1750 	.query = flow_null_query,
1751 };
1752 
1753 /**
1754  * Select flow driver type according to flow attributes and device
1755  * configuration.
1756  *
1757  * @param[in] dev
1758  *   Pointer to the dev structure.
1759  * @param[in] attr
1760  *   Pointer to the flow attributes.
1761  *
1762  * @return
1763  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1764  */
1765 static enum mlx5_flow_drv_type
1766 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1767 {
1768 	struct priv *priv = dev->data->dev_private;
1769 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1770 
1771 	if (attr->transfer)
1772 		type = MLX5_FLOW_TYPE_TCF;
1773 	else
1774 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1775 						 MLX5_FLOW_TYPE_VERBS;
1776 	return type;
1777 }
1778 
1779 #define flow_get_drv_ops(type) flow_drv_ops[type]
1780 
1781 /**
1782  * Flow driver validation API. This abstracts calling driver specific functions.
1783  * The type of flow driver is determined according to flow attributes.
1784  *
1785  * @param[in] dev
1786  *   Pointer to the dev structure.
1787  * @param[in] attr
1788  *   Pointer to the flow attributes.
1789  * @param[in] items
1790  *   Pointer to the list of items.
1791  * @param[in] actions
1792  *   Pointer to the list of actions.
1793  * @param[out] error
1794  *   Pointer to the error structure.
1795  *
1796  * @return
1797  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1798  */
1799 static inline int
1800 flow_drv_validate(struct rte_eth_dev *dev,
1801 		  const struct rte_flow_attr *attr,
1802 		  const struct rte_flow_item items[],
1803 		  const struct rte_flow_action actions[],
1804 		  struct rte_flow_error *error)
1805 {
1806 	const struct mlx5_flow_driver_ops *fops;
1807 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1808 
1809 	fops = flow_get_drv_ops(type);
1810 	return fops->validate(dev, attr, items, actions, error);
1811 }
1812 
1813 /**
1814  * Flow driver preparation API. This abstracts calling driver specific
1815  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1816  * calculates the size of memory required for device flow, allocates the memory,
1817  * initializes the device flow and returns the pointer.
1818  *
1819  * @note
1820  *   This function initializes device flow structure such as dv, tcf or verbs in
1821  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1822  *   rest. For example, adding returning device flow to flow->dev_flow list and
1823  *   setting backward reference to the flow should be done out of this function.
1824  *   layers field is not filled either.
1825  *
1826  * @param[in] attr
1827  *   Pointer to the flow attributes.
1828  * @param[in] items
1829  *   Pointer to the list of items.
1830  * @param[in] actions
1831  *   Pointer to the list of actions.
1832  * @param[out] error
1833  *   Pointer to the error structure.
1834  *
1835  * @return
1836  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1837  */
1838 static inline struct mlx5_flow *
1839 flow_drv_prepare(const struct rte_flow *flow,
1840 		 const struct rte_flow_attr *attr,
1841 		 const struct rte_flow_item items[],
1842 		 const struct rte_flow_action actions[],
1843 		 struct rte_flow_error *error)
1844 {
1845 	const struct mlx5_flow_driver_ops *fops;
1846 	enum mlx5_flow_drv_type type = flow->drv_type;
1847 
1848 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1849 	fops = flow_get_drv_ops(type);
1850 	return fops->prepare(attr, items, actions, error);
1851 }
1852 
1853 /**
1854  * Flow driver translation API. This abstracts calling driver specific
1855  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1856  * translates a generic flow into a driver flow. flow_drv_prepare() must
1857  * precede.
1858  *
1859  * @note
1860  *   dev_flow->layers could be filled as a result of parsing during translation
1861  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1862  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1863  *   flow->actions could be overwritten even though all the expanded dev_flows
1864  *   have the same actions.
1865  *
1866  * @param[in] dev
1867  *   Pointer to the rte dev structure.
1868  * @param[in, out] dev_flow
1869  *   Pointer to the mlx5 flow.
1870  * @param[in] attr
1871  *   Pointer to the flow attributes.
1872  * @param[in] items
1873  *   Pointer to the list of items.
1874  * @param[in] actions
1875  *   Pointer to the list of actions.
1876  * @param[out] error
1877  *   Pointer to the error structure.
1878  *
1879  * @return
1880  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1881  */
1882 static inline int
1883 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1884 		   const struct rte_flow_attr *attr,
1885 		   const struct rte_flow_item items[],
1886 		   const struct rte_flow_action actions[],
1887 		   struct rte_flow_error *error)
1888 {
1889 	const struct mlx5_flow_driver_ops *fops;
1890 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1891 
1892 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1893 	fops = flow_get_drv_ops(type);
1894 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1895 }
1896 
1897 /**
1898  * Flow driver apply API. This abstracts calling driver specific functions.
1899  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1900  * translated driver flows on to device. flow_drv_translate() must precede.
1901  *
1902  * @param[in] dev
1903  *   Pointer to Ethernet device structure.
1904  * @param[in, out] flow
1905  *   Pointer to flow structure.
1906  * @param[out] error
1907  *   Pointer to error structure.
1908  *
1909  * @return
1910  *   0 on success, a negative errno value otherwise and rte_errno is set.
1911  */
1912 static inline int
1913 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1914 	       struct rte_flow_error *error)
1915 {
1916 	const struct mlx5_flow_driver_ops *fops;
1917 	enum mlx5_flow_drv_type type = flow->drv_type;
1918 
1919 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1920 	fops = flow_get_drv_ops(type);
1921 	return fops->apply(dev, flow, error);
1922 }
1923 
1924 /**
1925  * Flow driver remove API. This abstracts calling driver specific functions.
1926  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1927  * on device. All the resources of the flow should be freed by calling
1928  * flow_drv_destroy().
1929  *
1930  * @param[in] dev
1931  *   Pointer to Ethernet device.
1932  * @param[in, out] flow
1933  *   Pointer to flow structure.
1934  */
1935 static inline void
1936 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1937 {
1938 	const struct mlx5_flow_driver_ops *fops;
1939 	enum mlx5_flow_drv_type type = flow->drv_type;
1940 
1941 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1942 	fops = flow_get_drv_ops(type);
1943 	fops->remove(dev, flow);
1944 }
1945 
1946 /**
1947  * Flow driver destroy API. This abstracts calling driver specific functions.
1948  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1949  * on device and releases resources of the flow.
1950  *
1951  * @param[in] dev
1952  *   Pointer to Ethernet device.
1953  * @param[in, out] flow
1954  *   Pointer to flow structure.
1955  */
1956 static inline void
1957 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1958 {
1959 	const struct mlx5_flow_driver_ops *fops;
1960 	enum mlx5_flow_drv_type type = flow->drv_type;
1961 
1962 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1963 	fops = flow_get_drv_ops(type);
1964 	fops->destroy(dev, flow);
1965 }
1966 
1967 /**
1968  * Validate a flow supported by the NIC.
1969  *
1970  * @see rte_flow_validate()
1971  * @see rte_flow_ops
1972  */
1973 int
1974 mlx5_flow_validate(struct rte_eth_dev *dev,
1975 		   const struct rte_flow_attr *attr,
1976 		   const struct rte_flow_item items[],
1977 		   const struct rte_flow_action actions[],
1978 		   struct rte_flow_error *error)
1979 {
1980 	int ret;
1981 
1982 	ret = flow_drv_validate(dev, attr, items, actions, error);
1983 	if (ret < 0)
1984 		return ret;
1985 	return 0;
1986 }
1987 
1988 /**
1989  * Get RSS action from the action list.
1990  *
1991  * @param[in] actions
1992  *   Pointer to the list of actions.
1993  *
1994  * @return
1995  *   Pointer to the RSS action if exist, else return NULL.
1996  */
1997 static const struct rte_flow_action_rss*
1998 flow_get_rss_action(const struct rte_flow_action actions[])
1999 {
2000 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2001 		switch (actions->type) {
2002 		case RTE_FLOW_ACTION_TYPE_RSS:
2003 			return (const struct rte_flow_action_rss *)
2004 			       actions->conf;
2005 		default:
2006 			break;
2007 		}
2008 	}
2009 	return NULL;
2010 }
2011 
2012 static unsigned int
2013 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2014 {
2015 	const struct rte_flow_item *item;
2016 	unsigned int has_vlan = 0;
2017 
2018 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2019 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2020 			has_vlan = 1;
2021 			break;
2022 		}
2023 	}
2024 	if (has_vlan)
2025 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2026 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2027 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2028 			       MLX5_EXPANSION_ROOT_OUTER;
2029 }
2030 
2031 /**
2032  * Create a flow and add it to @p list.
2033  *
2034  * @param dev
2035  *   Pointer to Ethernet device.
2036  * @param list
2037  *   Pointer to a TAILQ flow list.
2038  * @param[in] attr
2039  *   Flow rule attributes.
2040  * @param[in] items
2041  *   Pattern specification (list terminated by the END pattern item).
2042  * @param[in] actions
2043  *   Associated actions (list terminated by the END action).
2044  * @param[out] error
2045  *   Perform verbose error reporting if not NULL.
2046  *
2047  * @return
2048  *   A flow on success, NULL otherwise and rte_errno is set.
2049  */
2050 static struct rte_flow *
2051 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2052 		 const struct rte_flow_attr *attr,
2053 		 const struct rte_flow_item items[],
2054 		 const struct rte_flow_action actions[],
2055 		 struct rte_flow_error *error)
2056 {
2057 	struct rte_flow *flow = NULL;
2058 	struct mlx5_flow *dev_flow;
2059 	const struct rte_flow_action_rss *rss;
2060 	union {
2061 		struct rte_flow_expand_rss buf;
2062 		uint8_t buffer[2048];
2063 	} expand_buffer;
2064 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2065 	int ret;
2066 	uint32_t i;
2067 	uint32_t flow_size;
2068 
2069 	ret = flow_drv_validate(dev, attr, items, actions, error);
2070 	if (ret < 0)
2071 		return NULL;
2072 	flow_size = sizeof(struct rte_flow);
2073 	rss = flow_get_rss_action(actions);
2074 	if (rss)
2075 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2076 					    sizeof(void *));
2077 	else
2078 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2079 	flow = rte_calloc(__func__, 1, flow_size, 0);
2080 	flow->drv_type = flow_get_drv_type(dev, attr);
2081 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2082 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2083 	flow->queue = (void *)(flow + 1);
2084 	LIST_INIT(&flow->dev_flows);
2085 	if (rss && rss->types) {
2086 		unsigned int graph_root;
2087 
2088 		graph_root = find_graph_root(items, rss->level);
2089 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2090 					  items, rss->types,
2091 					  mlx5_support_expansion,
2092 					  graph_root);
2093 		assert(ret > 0 &&
2094 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2095 	} else {
2096 		buf->entries = 1;
2097 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2098 	}
2099 	for (i = 0; i < buf->entries; ++i) {
2100 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2101 					    actions, error);
2102 		if (!dev_flow)
2103 			goto error;
2104 		dev_flow->flow = flow;
2105 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2106 		ret = flow_drv_translate(dev, dev_flow, attr,
2107 					 buf->entry[i].pattern,
2108 					 actions, error);
2109 		if (ret < 0)
2110 			goto error;
2111 	}
2112 	if (dev->data->dev_started) {
2113 		ret = flow_drv_apply(dev, flow, error);
2114 		if (ret < 0)
2115 			goto error;
2116 	}
2117 	TAILQ_INSERT_TAIL(list, flow, next);
2118 	flow_rxq_flags_set(dev, flow);
2119 	return flow;
2120 error:
2121 	ret = rte_errno; /* Save rte_errno before cleanup. */
2122 	assert(flow);
2123 	flow_drv_destroy(dev, flow);
2124 	rte_free(flow);
2125 	rte_errno = ret; /* Restore rte_errno. */
2126 	return NULL;
2127 }
2128 
2129 /**
2130  * Create a flow.
2131  *
2132  * @see rte_flow_create()
2133  * @see rte_flow_ops
2134  */
2135 struct rte_flow *
2136 mlx5_flow_create(struct rte_eth_dev *dev,
2137 		 const struct rte_flow_attr *attr,
2138 		 const struct rte_flow_item items[],
2139 		 const struct rte_flow_action actions[],
2140 		 struct rte_flow_error *error)
2141 {
2142 	return flow_list_create(dev,
2143 				&((struct priv *)dev->data->dev_private)->flows,
2144 				attr, items, actions, error);
2145 }
2146 
2147 /**
2148  * Destroy a flow in a list.
2149  *
2150  * @param dev
2151  *   Pointer to Ethernet device.
2152  * @param list
2153  *   Pointer to a TAILQ flow list.
2154  * @param[in] flow
2155  *   Flow to destroy.
2156  */
2157 static void
2158 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2159 		  struct rte_flow *flow)
2160 {
2161 	/*
2162 	 * Update RX queue flags only if port is started, otherwise it is
2163 	 * already clean.
2164 	 */
2165 	if (dev->data->dev_started)
2166 		flow_rxq_flags_trim(dev, flow);
2167 	flow_drv_destroy(dev, flow);
2168 	TAILQ_REMOVE(list, flow, next);
2169 	rte_free(flow->fdir);
2170 	rte_free(flow);
2171 }
2172 
2173 /**
2174  * Destroy all flows.
2175  *
2176  * @param dev
2177  *   Pointer to Ethernet device.
2178  * @param list
2179  *   Pointer to a TAILQ flow list.
2180  */
2181 void
2182 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2183 {
2184 	while (!TAILQ_EMPTY(list)) {
2185 		struct rte_flow *flow;
2186 
2187 		flow = TAILQ_FIRST(list);
2188 		flow_list_destroy(dev, list, flow);
2189 	}
2190 }
2191 
2192 /**
2193  * Remove all flows.
2194  *
2195  * @param dev
2196  *   Pointer to Ethernet device.
2197  * @param list
2198  *   Pointer to a TAILQ flow list.
2199  */
2200 void
2201 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2202 {
2203 	struct rte_flow *flow;
2204 
2205 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2206 		flow_drv_remove(dev, flow);
2207 	flow_rxq_flags_clear(dev);
2208 }
2209 
2210 /**
2211  * Add all flows.
2212  *
2213  * @param dev
2214  *   Pointer to Ethernet device.
2215  * @param list
2216  *   Pointer to a TAILQ flow list.
2217  *
2218  * @return
2219  *   0 on success, a negative errno value otherwise and rte_errno is set.
2220  */
2221 int
2222 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2223 {
2224 	struct rte_flow *flow;
2225 	struct rte_flow_error error;
2226 	int ret = 0;
2227 
2228 	TAILQ_FOREACH(flow, list, next) {
2229 		ret = flow_drv_apply(dev, flow, &error);
2230 		if (ret < 0)
2231 			goto error;
2232 		flow_rxq_flags_set(dev, flow);
2233 	}
2234 	return 0;
2235 error:
2236 	ret = rte_errno; /* Save rte_errno before cleanup. */
2237 	mlx5_flow_stop(dev, list);
2238 	rte_errno = ret; /* Restore rte_errno. */
2239 	return -rte_errno;
2240 }
2241 
2242 /**
2243  * Verify the flow list is empty
2244  *
2245  * @param dev
2246  *  Pointer to Ethernet device.
2247  *
2248  * @return the number of flows not released.
2249  */
2250 int
2251 mlx5_flow_verify(struct rte_eth_dev *dev)
2252 {
2253 	struct priv *priv = dev->data->dev_private;
2254 	struct rte_flow *flow;
2255 	int ret = 0;
2256 
2257 	TAILQ_FOREACH(flow, &priv->flows, next) {
2258 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2259 			dev->data->port_id, (void *)flow);
2260 		++ret;
2261 	}
2262 	return ret;
2263 }
2264 
2265 /**
2266  * Enable a control flow configured from the control plane.
2267  *
2268  * @param dev
2269  *   Pointer to Ethernet device.
2270  * @param eth_spec
2271  *   An Ethernet flow spec to apply.
2272  * @param eth_mask
2273  *   An Ethernet flow mask to apply.
2274  * @param vlan_spec
2275  *   A VLAN flow spec to apply.
2276  * @param vlan_mask
2277  *   A VLAN flow mask to apply.
2278  *
2279  * @return
2280  *   0 on success, a negative errno value otherwise and rte_errno is set.
2281  */
2282 int
2283 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2284 		    struct rte_flow_item_eth *eth_spec,
2285 		    struct rte_flow_item_eth *eth_mask,
2286 		    struct rte_flow_item_vlan *vlan_spec,
2287 		    struct rte_flow_item_vlan *vlan_mask)
2288 {
2289 	struct priv *priv = dev->data->dev_private;
2290 	const struct rte_flow_attr attr = {
2291 		.ingress = 1,
2292 		.priority = MLX5_FLOW_PRIO_RSVD,
2293 	};
2294 	struct rte_flow_item items[] = {
2295 		{
2296 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2297 			.spec = eth_spec,
2298 			.last = NULL,
2299 			.mask = eth_mask,
2300 		},
2301 		{
2302 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2303 					      RTE_FLOW_ITEM_TYPE_END,
2304 			.spec = vlan_spec,
2305 			.last = NULL,
2306 			.mask = vlan_mask,
2307 		},
2308 		{
2309 			.type = RTE_FLOW_ITEM_TYPE_END,
2310 		},
2311 	};
2312 	uint16_t queue[priv->reta_idx_n];
2313 	struct rte_flow_action_rss action_rss = {
2314 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2315 		.level = 0,
2316 		.types = priv->rss_conf.rss_hf,
2317 		.key_len = priv->rss_conf.rss_key_len,
2318 		.queue_num = priv->reta_idx_n,
2319 		.key = priv->rss_conf.rss_key,
2320 		.queue = queue,
2321 	};
2322 	struct rte_flow_action actions[] = {
2323 		{
2324 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2325 			.conf = &action_rss,
2326 		},
2327 		{
2328 			.type = RTE_FLOW_ACTION_TYPE_END,
2329 		},
2330 	};
2331 	struct rte_flow *flow;
2332 	struct rte_flow_error error;
2333 	unsigned int i;
2334 
2335 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2336 		return 0;
2337 	}
2338 	for (i = 0; i != priv->reta_idx_n; ++i)
2339 		queue[i] = (*priv->reta_idx)[i];
2340 	flow = flow_list_create(dev, &priv->ctrl_flows,
2341 				&attr, items, actions, &error);
2342 	if (!flow)
2343 		return -rte_errno;
2344 	return 0;
2345 }
2346 
2347 /**
2348  * Enable a flow control configured from the control plane.
2349  *
2350  * @param dev
2351  *   Pointer to Ethernet device.
2352  * @param eth_spec
2353  *   An Ethernet flow spec to apply.
2354  * @param eth_mask
2355  *   An Ethernet flow mask to apply.
2356  *
2357  * @return
2358  *   0 on success, a negative errno value otherwise and rte_errno is set.
2359  */
2360 int
2361 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2362 	       struct rte_flow_item_eth *eth_spec,
2363 	       struct rte_flow_item_eth *eth_mask)
2364 {
2365 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2366 }
2367 
2368 /**
2369  * Destroy a flow.
2370  *
2371  * @see rte_flow_destroy()
2372  * @see rte_flow_ops
2373  */
2374 int
2375 mlx5_flow_destroy(struct rte_eth_dev *dev,
2376 		  struct rte_flow *flow,
2377 		  struct rte_flow_error *error __rte_unused)
2378 {
2379 	struct priv *priv = dev->data->dev_private;
2380 
2381 	flow_list_destroy(dev, &priv->flows, flow);
2382 	return 0;
2383 }
2384 
2385 /**
2386  * Destroy all flows.
2387  *
2388  * @see rte_flow_flush()
2389  * @see rte_flow_ops
2390  */
2391 int
2392 mlx5_flow_flush(struct rte_eth_dev *dev,
2393 		struct rte_flow_error *error __rte_unused)
2394 {
2395 	struct priv *priv = dev->data->dev_private;
2396 
2397 	mlx5_flow_list_flush(dev, &priv->flows);
2398 	return 0;
2399 }
2400 
2401 /**
2402  * Isolated mode.
2403  *
2404  * @see rte_flow_isolate()
2405  * @see rte_flow_ops
2406  */
2407 int
2408 mlx5_flow_isolate(struct rte_eth_dev *dev,
2409 		  int enable,
2410 		  struct rte_flow_error *error)
2411 {
2412 	struct priv *priv = dev->data->dev_private;
2413 
2414 	if (dev->data->dev_started) {
2415 		rte_flow_error_set(error, EBUSY,
2416 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2417 				   NULL,
2418 				   "port must be stopped first");
2419 		return -rte_errno;
2420 	}
2421 	priv->isolated = !!enable;
2422 	if (enable)
2423 		dev->dev_ops = &mlx5_dev_ops_isolate;
2424 	else
2425 		dev->dev_ops = &mlx5_dev_ops;
2426 	return 0;
2427 }
2428 
2429 /**
2430  * Query a flow.
2431  *
2432  * @see rte_flow_query()
2433  * @see rte_flow_ops
2434  */
2435 static int
2436 flow_drv_query(struct rte_eth_dev *dev,
2437 	       struct rte_flow *flow,
2438 	       const struct rte_flow_action *actions,
2439 	       void *data,
2440 	       struct rte_flow_error *error)
2441 {
2442 	const struct mlx5_flow_driver_ops *fops;
2443 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2444 
2445 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2446 	fops = flow_get_drv_ops(ftype);
2447 
2448 	return fops->query(dev, flow, actions, data, error);
2449 }
2450 
2451 /**
2452  * Query a flow.
2453  *
2454  * @see rte_flow_query()
2455  * @see rte_flow_ops
2456  */
2457 int
2458 mlx5_flow_query(struct rte_eth_dev *dev,
2459 		struct rte_flow *flow,
2460 		const struct rte_flow_action *actions,
2461 		void *data,
2462 		struct rte_flow_error *error)
2463 {
2464 	int ret;
2465 
2466 	ret = flow_drv_query(dev, flow, actions, data, error);
2467 	if (ret < 0)
2468 		return ret;
2469 	return 0;
2470 }
2471 
2472 /**
2473  * Convert a flow director filter to a generic flow.
2474  *
2475  * @param dev
2476  *   Pointer to Ethernet device.
2477  * @param fdir_filter
2478  *   Flow director filter to add.
2479  * @param attributes
2480  *   Generic flow parameters structure.
2481  *
2482  * @return
2483  *   0 on success, a negative errno value otherwise and rte_errno is set.
2484  */
2485 static int
2486 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2487 			 const struct rte_eth_fdir_filter *fdir_filter,
2488 			 struct mlx5_fdir *attributes)
2489 {
2490 	struct priv *priv = dev->data->dev_private;
2491 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2492 	const struct rte_eth_fdir_masks *mask =
2493 		&dev->data->dev_conf.fdir_conf.mask;
2494 
2495 	/* Validate queue number. */
2496 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2497 		DRV_LOG(ERR, "port %u invalid queue number %d",
2498 			dev->data->port_id, fdir_filter->action.rx_queue);
2499 		rte_errno = EINVAL;
2500 		return -rte_errno;
2501 	}
2502 	attributes->attr.ingress = 1;
2503 	attributes->items[0] = (struct rte_flow_item) {
2504 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2505 		.spec = &attributes->l2,
2506 		.mask = &attributes->l2_mask,
2507 	};
2508 	switch (fdir_filter->action.behavior) {
2509 	case RTE_ETH_FDIR_ACCEPT:
2510 		attributes->actions[0] = (struct rte_flow_action){
2511 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2512 			.conf = &attributes->queue,
2513 		};
2514 		break;
2515 	case RTE_ETH_FDIR_REJECT:
2516 		attributes->actions[0] = (struct rte_flow_action){
2517 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2518 		};
2519 		break;
2520 	default:
2521 		DRV_LOG(ERR, "port %u invalid behavior %d",
2522 			dev->data->port_id,
2523 			fdir_filter->action.behavior);
2524 		rte_errno = ENOTSUP;
2525 		return -rte_errno;
2526 	}
2527 	attributes->queue.index = fdir_filter->action.rx_queue;
2528 	/* Handle L3. */
2529 	switch (fdir_filter->input.flow_type) {
2530 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2531 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2532 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2533 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2534 			.src_addr = input->flow.ip4_flow.src_ip,
2535 			.dst_addr = input->flow.ip4_flow.dst_ip,
2536 			.time_to_live = input->flow.ip4_flow.ttl,
2537 			.type_of_service = input->flow.ip4_flow.tos,
2538 		};
2539 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2540 			.src_addr = mask->ipv4_mask.src_ip,
2541 			.dst_addr = mask->ipv4_mask.dst_ip,
2542 			.time_to_live = mask->ipv4_mask.ttl,
2543 			.type_of_service = mask->ipv4_mask.tos,
2544 			.next_proto_id = mask->ipv4_mask.proto,
2545 		};
2546 		attributes->items[1] = (struct rte_flow_item){
2547 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2548 			.spec = &attributes->l3,
2549 			.mask = &attributes->l3_mask,
2550 		};
2551 		break;
2552 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2553 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2554 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2555 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2556 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2557 			.proto = input->flow.ipv6_flow.proto,
2558 		};
2559 
2560 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2561 		       input->flow.ipv6_flow.src_ip,
2562 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2563 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2564 		       input->flow.ipv6_flow.dst_ip,
2565 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2566 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2567 		       mask->ipv6_mask.src_ip,
2568 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2569 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2570 		       mask->ipv6_mask.dst_ip,
2571 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2572 		attributes->items[1] = (struct rte_flow_item){
2573 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2574 			.spec = &attributes->l3,
2575 			.mask = &attributes->l3_mask,
2576 		};
2577 		break;
2578 	default:
2579 		DRV_LOG(ERR, "port %u invalid flow type%d",
2580 			dev->data->port_id, fdir_filter->input.flow_type);
2581 		rte_errno = ENOTSUP;
2582 		return -rte_errno;
2583 	}
2584 	/* Handle L4. */
2585 	switch (fdir_filter->input.flow_type) {
2586 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2587 		attributes->l4.udp.hdr = (struct udp_hdr){
2588 			.src_port = input->flow.udp4_flow.src_port,
2589 			.dst_port = input->flow.udp4_flow.dst_port,
2590 		};
2591 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2592 			.src_port = mask->src_port_mask,
2593 			.dst_port = mask->dst_port_mask,
2594 		};
2595 		attributes->items[2] = (struct rte_flow_item){
2596 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2597 			.spec = &attributes->l4,
2598 			.mask = &attributes->l4_mask,
2599 		};
2600 		break;
2601 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2602 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2603 			.src_port = input->flow.tcp4_flow.src_port,
2604 			.dst_port = input->flow.tcp4_flow.dst_port,
2605 		};
2606 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2607 			.src_port = mask->src_port_mask,
2608 			.dst_port = mask->dst_port_mask,
2609 		};
2610 		attributes->items[2] = (struct rte_flow_item){
2611 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2612 			.spec = &attributes->l4,
2613 			.mask = &attributes->l4_mask,
2614 		};
2615 		break;
2616 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2617 		attributes->l4.udp.hdr = (struct udp_hdr){
2618 			.src_port = input->flow.udp6_flow.src_port,
2619 			.dst_port = input->flow.udp6_flow.dst_port,
2620 		};
2621 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2622 			.src_port = mask->src_port_mask,
2623 			.dst_port = mask->dst_port_mask,
2624 		};
2625 		attributes->items[2] = (struct rte_flow_item){
2626 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2627 			.spec = &attributes->l4,
2628 			.mask = &attributes->l4_mask,
2629 		};
2630 		break;
2631 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2632 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2633 			.src_port = input->flow.tcp6_flow.src_port,
2634 			.dst_port = input->flow.tcp6_flow.dst_port,
2635 		};
2636 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2637 			.src_port = mask->src_port_mask,
2638 			.dst_port = mask->dst_port_mask,
2639 		};
2640 		attributes->items[2] = (struct rte_flow_item){
2641 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2642 			.spec = &attributes->l4,
2643 			.mask = &attributes->l4_mask,
2644 		};
2645 		break;
2646 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2647 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2648 		break;
2649 	default:
2650 		DRV_LOG(ERR, "port %u invalid flow type%d",
2651 			dev->data->port_id, fdir_filter->input.flow_type);
2652 		rte_errno = ENOTSUP;
2653 		return -rte_errno;
2654 	}
2655 	return 0;
2656 }
2657 
2658 #define FLOW_FDIR_CMP(f1, f2, fld) \
2659 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2660 
2661 /**
2662  * Compare two FDIR flows. If items and actions are identical, the two flows are
2663  * regarded as same.
2664  *
2665  * @param dev
2666  *   Pointer to Ethernet device.
2667  * @param f1
2668  *   FDIR flow to compare.
2669  * @param f2
2670  *   FDIR flow to compare.
2671  *
2672  * @return
2673  *   Zero on match, 1 otherwise.
2674  */
2675 static int
2676 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2677 {
2678 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2679 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2680 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2681 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2682 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2683 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2684 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2685 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2686 		return 1;
2687 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2688 	    FLOW_FDIR_CMP(f1, f2, queue))
2689 		return 1;
2690 	return 0;
2691 }
2692 
2693 /**
2694  * Search device flow list to find out a matched FDIR flow.
2695  *
2696  * @param dev
2697  *   Pointer to Ethernet device.
2698  * @param fdir_flow
2699  *   FDIR flow to lookup.
2700  *
2701  * @return
2702  *   Pointer of flow if found, NULL otherwise.
2703  */
2704 static struct rte_flow *
2705 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2706 {
2707 	struct priv *priv = dev->data->dev_private;
2708 	struct rte_flow *flow = NULL;
2709 
2710 	assert(fdir_flow);
2711 	TAILQ_FOREACH(flow, &priv->flows, next) {
2712 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2713 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2714 				dev->data->port_id, (void *)flow);
2715 			break;
2716 		}
2717 	}
2718 	return flow;
2719 }
2720 
2721 /**
2722  * Add new flow director filter and store it in list.
2723  *
2724  * @param dev
2725  *   Pointer to Ethernet device.
2726  * @param fdir_filter
2727  *   Flow director filter to add.
2728  *
2729  * @return
2730  *   0 on success, a negative errno value otherwise and rte_errno is set.
2731  */
2732 static int
2733 flow_fdir_filter_add(struct rte_eth_dev *dev,
2734 		     const struct rte_eth_fdir_filter *fdir_filter)
2735 {
2736 	struct priv *priv = dev->data->dev_private;
2737 	struct mlx5_fdir *fdir_flow;
2738 	struct rte_flow *flow;
2739 	int ret;
2740 
2741 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2742 	if (!fdir_flow) {
2743 		rte_errno = ENOMEM;
2744 		return -rte_errno;
2745 	}
2746 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2747 	if (ret)
2748 		goto error;
2749 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2750 	if (flow) {
2751 		rte_errno = EEXIST;
2752 		goto error;
2753 	}
2754 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2755 				fdir_flow->items, fdir_flow->actions, NULL);
2756 	if (!flow)
2757 		goto error;
2758 	assert(!flow->fdir);
2759 	flow->fdir = fdir_flow;
2760 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2761 		dev->data->port_id, (void *)flow);
2762 	return 0;
2763 error:
2764 	rte_free(fdir_flow);
2765 	return -rte_errno;
2766 }
2767 
2768 /**
2769  * Delete specific filter.
2770  *
2771  * @param dev
2772  *   Pointer to Ethernet device.
2773  * @param fdir_filter
2774  *   Filter to be deleted.
2775  *
2776  * @return
2777  *   0 on success, a negative errno value otherwise and rte_errno is set.
2778  */
2779 static int
2780 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2781 			const struct rte_eth_fdir_filter *fdir_filter)
2782 {
2783 	struct priv *priv = dev->data->dev_private;
2784 	struct rte_flow *flow;
2785 	struct mlx5_fdir fdir_flow = {
2786 		.attr.group = 0,
2787 	};
2788 	int ret;
2789 
2790 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2791 	if (ret)
2792 		return -rte_errno;
2793 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2794 	if (!flow) {
2795 		rte_errno = ENOENT;
2796 		return -rte_errno;
2797 	}
2798 	flow_list_destroy(dev, &priv->flows, flow);
2799 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2800 		dev->data->port_id, (void *)flow);
2801 	return 0;
2802 }
2803 
2804 /**
2805  * Update queue for specific filter.
2806  *
2807  * @param dev
2808  *   Pointer to Ethernet device.
2809  * @param fdir_filter
2810  *   Filter to be updated.
2811  *
2812  * @return
2813  *   0 on success, a negative errno value otherwise and rte_errno is set.
2814  */
2815 static int
2816 flow_fdir_filter_update(struct rte_eth_dev *dev,
2817 			const struct rte_eth_fdir_filter *fdir_filter)
2818 {
2819 	int ret;
2820 
2821 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2822 	if (ret)
2823 		return ret;
2824 	return flow_fdir_filter_add(dev, fdir_filter);
2825 }
2826 
2827 /**
2828  * Flush all filters.
2829  *
2830  * @param dev
2831  *   Pointer to Ethernet device.
2832  */
2833 static void
2834 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2835 {
2836 	struct priv *priv = dev->data->dev_private;
2837 
2838 	mlx5_flow_list_flush(dev, &priv->flows);
2839 }
2840 
2841 /**
2842  * Get flow director information.
2843  *
2844  * @param dev
2845  *   Pointer to Ethernet device.
2846  * @param[out] fdir_info
2847  *   Resulting flow director information.
2848  */
2849 static void
2850 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2851 {
2852 	struct rte_eth_fdir_masks *mask =
2853 		&dev->data->dev_conf.fdir_conf.mask;
2854 
2855 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2856 	fdir_info->guarant_spc = 0;
2857 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2858 	fdir_info->max_flexpayload = 0;
2859 	fdir_info->flow_types_mask[0] = 0;
2860 	fdir_info->flex_payload_unit = 0;
2861 	fdir_info->max_flex_payload_segment_num = 0;
2862 	fdir_info->flex_payload_limit = 0;
2863 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2864 }
2865 
2866 /**
2867  * Deal with flow director operations.
2868  *
2869  * @param dev
2870  *   Pointer to Ethernet device.
2871  * @param filter_op
2872  *   Operation to perform.
2873  * @param arg
2874  *   Pointer to operation-specific structure.
2875  *
2876  * @return
2877  *   0 on success, a negative errno value otherwise and rte_errno is set.
2878  */
2879 static int
2880 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2881 		    void *arg)
2882 {
2883 	enum rte_fdir_mode fdir_mode =
2884 		dev->data->dev_conf.fdir_conf.mode;
2885 
2886 	if (filter_op == RTE_ETH_FILTER_NOP)
2887 		return 0;
2888 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2889 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2890 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2891 			dev->data->port_id, fdir_mode);
2892 		rte_errno = EINVAL;
2893 		return -rte_errno;
2894 	}
2895 	switch (filter_op) {
2896 	case RTE_ETH_FILTER_ADD:
2897 		return flow_fdir_filter_add(dev, arg);
2898 	case RTE_ETH_FILTER_UPDATE:
2899 		return flow_fdir_filter_update(dev, arg);
2900 	case RTE_ETH_FILTER_DELETE:
2901 		return flow_fdir_filter_delete(dev, arg);
2902 	case RTE_ETH_FILTER_FLUSH:
2903 		flow_fdir_filter_flush(dev);
2904 		break;
2905 	case RTE_ETH_FILTER_INFO:
2906 		flow_fdir_info_get(dev, arg);
2907 		break;
2908 	default:
2909 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2910 			dev->data->port_id, filter_op);
2911 		rte_errno = EINVAL;
2912 		return -rte_errno;
2913 	}
2914 	return 0;
2915 }
2916 
2917 /**
2918  * Manage filter operations.
2919  *
2920  * @param dev
2921  *   Pointer to Ethernet device structure.
2922  * @param filter_type
2923  *   Filter type.
2924  * @param filter_op
2925  *   Operation to perform.
2926  * @param arg
2927  *   Pointer to operation-specific structure.
2928  *
2929  * @return
2930  *   0 on success, a negative errno value otherwise and rte_errno is set.
2931  */
2932 int
2933 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2934 		     enum rte_filter_type filter_type,
2935 		     enum rte_filter_op filter_op,
2936 		     void *arg)
2937 {
2938 	switch (filter_type) {
2939 	case RTE_ETH_FILTER_GENERIC:
2940 		if (filter_op != RTE_ETH_FILTER_GET) {
2941 			rte_errno = EINVAL;
2942 			return -rte_errno;
2943 		}
2944 		*(const void **)arg = &mlx5_flow_ops;
2945 		return 0;
2946 	case RTE_ETH_FILTER_FDIR:
2947 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2948 	default:
2949 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2950 			dev->data->port_id, filter_type);
2951 		rte_errno = ENOTSUP;
2952 		return -rte_errno;
2953 	}
2954 	return 0;
2955 }
2956