1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 12 /* Verbs header. */ 13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 14 #ifdef PEDANTIC 15 #pragma GCC diagnostic ignored "-Wpedantic" 16 #endif 17 #include <infiniband/verbs.h> 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic error "-Wpedantic" 20 #endif 21 22 #include <rte_common.h> 23 #include <rte_ether.h> 24 #include <rte_eth_ctrl.h> 25 #include <rte_ethdev_driver.h> 26 #include <rte_flow.h> 27 #include <rte_flow_driver.h> 28 #include <rte_malloc.h> 29 #include <rte_ip.h> 30 31 #include "mlx5.h" 32 #include "mlx5_defs.h" 33 #include "mlx5_prm.h" 34 #include "mlx5_glue.h" 35 #include "mlx5_flow.h" 36 37 /* Dev ops structure defined in mlx5.c */ 38 extern const struct eth_dev_ops mlx5_dev_ops; 39 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 40 41 /** Device flow drivers. */ 42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops; 44 #endif 45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops; 46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 47 48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 49 50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 51 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 53 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 54 #endif 55 [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops, 56 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 57 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 58 }; 59 60 enum mlx5_expansion { 61 MLX5_EXPANSION_ROOT, 62 MLX5_EXPANSION_ROOT_OUTER, 63 MLX5_EXPANSION_ROOT_ETH_VLAN, 64 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 65 MLX5_EXPANSION_OUTER_ETH, 66 MLX5_EXPANSION_OUTER_ETH_VLAN, 67 MLX5_EXPANSION_OUTER_VLAN, 68 MLX5_EXPANSION_OUTER_IPV4, 69 MLX5_EXPANSION_OUTER_IPV4_UDP, 70 MLX5_EXPANSION_OUTER_IPV4_TCP, 71 MLX5_EXPANSION_OUTER_IPV6, 72 MLX5_EXPANSION_OUTER_IPV6_UDP, 73 MLX5_EXPANSION_OUTER_IPV6_TCP, 74 MLX5_EXPANSION_VXLAN, 75 MLX5_EXPANSION_VXLAN_GPE, 76 MLX5_EXPANSION_GRE, 77 MLX5_EXPANSION_MPLS, 78 MLX5_EXPANSION_ETH, 79 MLX5_EXPANSION_ETH_VLAN, 80 MLX5_EXPANSION_VLAN, 81 MLX5_EXPANSION_IPV4, 82 MLX5_EXPANSION_IPV4_UDP, 83 MLX5_EXPANSION_IPV4_TCP, 84 MLX5_EXPANSION_IPV6, 85 MLX5_EXPANSION_IPV6_UDP, 86 MLX5_EXPANSION_IPV6_TCP, 87 }; 88 89 /** Supported expansion of items. */ 90 static const struct rte_flow_expand_node mlx5_support_expansion[] = { 91 [MLX5_EXPANSION_ROOT] = { 92 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 93 MLX5_EXPANSION_IPV4, 94 MLX5_EXPANSION_IPV6), 95 .type = RTE_FLOW_ITEM_TYPE_END, 96 }, 97 [MLX5_EXPANSION_ROOT_OUTER] = { 98 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 99 MLX5_EXPANSION_OUTER_IPV4, 100 MLX5_EXPANSION_OUTER_IPV6), 101 .type = RTE_FLOW_ITEM_TYPE_END, 102 }, 103 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 104 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 105 .type = RTE_FLOW_ITEM_TYPE_END, 106 }, 107 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 108 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), 109 .type = RTE_FLOW_ITEM_TYPE_END, 110 }, 111 [MLX5_EXPANSION_OUTER_ETH] = { 112 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 113 MLX5_EXPANSION_OUTER_IPV6, 114 MLX5_EXPANSION_MPLS), 115 .type = RTE_FLOW_ITEM_TYPE_ETH, 116 .rss_types = 0, 117 }, 118 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 119 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 120 .type = RTE_FLOW_ITEM_TYPE_ETH, 121 .rss_types = 0, 122 }, 123 [MLX5_EXPANSION_OUTER_VLAN] = { 124 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 125 MLX5_EXPANSION_OUTER_IPV6), 126 .type = RTE_FLOW_ITEM_TYPE_VLAN, 127 }, 128 [MLX5_EXPANSION_OUTER_IPV4] = { 129 .next = RTE_FLOW_EXPAND_RSS_NEXT 130 (MLX5_EXPANSION_OUTER_IPV4_UDP, 131 MLX5_EXPANSION_OUTER_IPV4_TCP, 132 MLX5_EXPANSION_GRE), 133 .type = RTE_FLOW_ITEM_TYPE_IPV4, 134 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 135 ETH_RSS_NONFRAG_IPV4_OTHER, 136 }, 137 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 138 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 139 MLX5_EXPANSION_VXLAN_GPE), 140 .type = RTE_FLOW_ITEM_TYPE_UDP, 141 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 142 }, 143 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 144 .type = RTE_FLOW_ITEM_TYPE_TCP, 145 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 146 }, 147 [MLX5_EXPANSION_OUTER_IPV6] = { 148 .next = RTE_FLOW_EXPAND_RSS_NEXT 149 (MLX5_EXPANSION_OUTER_IPV6_UDP, 150 MLX5_EXPANSION_OUTER_IPV6_TCP), 151 .type = RTE_FLOW_ITEM_TYPE_IPV6, 152 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 153 ETH_RSS_NONFRAG_IPV6_OTHER, 154 }, 155 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 156 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 157 MLX5_EXPANSION_VXLAN_GPE), 158 .type = RTE_FLOW_ITEM_TYPE_UDP, 159 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 160 }, 161 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 162 .type = RTE_FLOW_ITEM_TYPE_TCP, 163 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 164 }, 165 [MLX5_EXPANSION_VXLAN] = { 166 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 167 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 168 }, 169 [MLX5_EXPANSION_VXLAN_GPE] = { 170 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 171 MLX5_EXPANSION_IPV4, 172 MLX5_EXPANSION_IPV6), 173 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 174 }, 175 [MLX5_EXPANSION_GRE] = { 176 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 177 .type = RTE_FLOW_ITEM_TYPE_GRE, 178 }, 179 [MLX5_EXPANSION_MPLS] = { 180 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 181 MLX5_EXPANSION_IPV6), 182 .type = RTE_FLOW_ITEM_TYPE_MPLS, 183 }, 184 [MLX5_EXPANSION_ETH] = { 185 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 186 MLX5_EXPANSION_IPV6), 187 .type = RTE_FLOW_ITEM_TYPE_ETH, 188 }, 189 [MLX5_EXPANSION_ETH_VLAN] = { 190 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 191 .type = RTE_FLOW_ITEM_TYPE_ETH, 192 }, 193 [MLX5_EXPANSION_VLAN] = { 194 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 195 MLX5_EXPANSION_IPV6), 196 .type = RTE_FLOW_ITEM_TYPE_VLAN, 197 }, 198 [MLX5_EXPANSION_IPV4] = { 199 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 200 MLX5_EXPANSION_IPV4_TCP), 201 .type = RTE_FLOW_ITEM_TYPE_IPV4, 202 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 203 ETH_RSS_NONFRAG_IPV4_OTHER, 204 }, 205 [MLX5_EXPANSION_IPV4_UDP] = { 206 .type = RTE_FLOW_ITEM_TYPE_UDP, 207 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 208 }, 209 [MLX5_EXPANSION_IPV4_TCP] = { 210 .type = RTE_FLOW_ITEM_TYPE_TCP, 211 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 212 }, 213 [MLX5_EXPANSION_IPV6] = { 214 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 215 MLX5_EXPANSION_IPV6_TCP), 216 .type = RTE_FLOW_ITEM_TYPE_IPV6, 217 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 218 ETH_RSS_NONFRAG_IPV6_OTHER, 219 }, 220 [MLX5_EXPANSION_IPV6_UDP] = { 221 .type = RTE_FLOW_ITEM_TYPE_UDP, 222 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 223 }, 224 [MLX5_EXPANSION_IPV6_TCP] = { 225 .type = RTE_FLOW_ITEM_TYPE_TCP, 226 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 227 }, 228 }; 229 230 static const struct rte_flow_ops mlx5_flow_ops = { 231 .validate = mlx5_flow_validate, 232 .create = mlx5_flow_create, 233 .destroy = mlx5_flow_destroy, 234 .flush = mlx5_flow_flush, 235 .isolate = mlx5_flow_isolate, 236 .query = mlx5_flow_query, 237 }; 238 239 /* Convert FDIR request to Generic flow. */ 240 struct mlx5_fdir { 241 struct rte_flow_attr attr; 242 struct rte_flow_item items[4]; 243 struct rte_flow_item_eth l2; 244 struct rte_flow_item_eth l2_mask; 245 union { 246 struct rte_flow_item_ipv4 ipv4; 247 struct rte_flow_item_ipv6 ipv6; 248 } l3; 249 union { 250 struct rte_flow_item_ipv4 ipv4; 251 struct rte_flow_item_ipv6 ipv6; 252 } l3_mask; 253 union { 254 struct rte_flow_item_udp udp; 255 struct rte_flow_item_tcp tcp; 256 } l4; 257 union { 258 struct rte_flow_item_udp udp; 259 struct rte_flow_item_tcp tcp; 260 } l4_mask; 261 struct rte_flow_action actions[2]; 262 struct rte_flow_action_queue queue; 263 }; 264 265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 267 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 268 }; 269 270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 272 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 273 { 9, 10, 11 }, { 12, 13, 14 }, 274 }; 275 276 /* Tunnel information. */ 277 struct mlx5_flow_tunnel_info { 278 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 279 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 280 }; 281 282 static struct mlx5_flow_tunnel_info tunnels_info[] = { 283 { 284 .tunnel = MLX5_FLOW_LAYER_VXLAN, 285 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 286 }, 287 { 288 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 289 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 290 }, 291 { 292 .tunnel = MLX5_FLOW_LAYER_GRE, 293 .ptype = RTE_PTYPE_TUNNEL_GRE, 294 }, 295 { 296 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 297 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 298 }, 299 { 300 .tunnel = MLX5_FLOW_LAYER_MPLS, 301 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 302 }, 303 }; 304 305 /** 306 * Discover the maximum number of priority available. 307 * 308 * @param[in] dev 309 * Pointer to the Ethernet device structure. 310 * 311 * @return 312 * number of supported flow priority on success, a negative errno 313 * value otherwise and rte_errno is set. 314 */ 315 int 316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 317 { 318 struct { 319 struct ibv_flow_attr attr; 320 struct ibv_flow_spec_eth eth; 321 struct ibv_flow_spec_action_drop drop; 322 } flow_attr = { 323 .attr = { 324 .num_of_specs = 2, 325 }, 326 .eth = { 327 .type = IBV_FLOW_SPEC_ETH, 328 .size = sizeof(struct ibv_flow_spec_eth), 329 }, 330 .drop = { 331 .size = sizeof(struct ibv_flow_spec_action_drop), 332 .type = IBV_FLOW_SPEC_ACTION_DROP, 333 }, 334 }; 335 struct ibv_flow *flow; 336 struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); 337 uint16_t vprio[] = { 8, 16 }; 338 int i; 339 int priority = 0; 340 341 if (!drop) { 342 rte_errno = ENOTSUP; 343 return -rte_errno; 344 } 345 for (i = 0; i != RTE_DIM(vprio); i++) { 346 flow_attr.attr.priority = vprio[i] - 1; 347 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 348 if (!flow) 349 break; 350 claim_zero(mlx5_glue->destroy_flow(flow)); 351 priority = vprio[i]; 352 } 353 switch (priority) { 354 case 8: 355 priority = RTE_DIM(priority_map_3); 356 break; 357 case 16: 358 priority = RTE_DIM(priority_map_5); 359 break; 360 default: 361 rte_errno = ENOTSUP; 362 DRV_LOG(ERR, 363 "port %u verbs maximum priority: %d expected 8/16", 364 dev->data->port_id, vprio[i]); 365 return -rte_errno; 366 } 367 mlx5_hrxq_drop_release(dev); 368 DRV_LOG(INFO, "port %u flow maximum priority: %d", 369 dev->data->port_id, priority); 370 return priority; 371 } 372 373 /** 374 * Adjust flow priority based on the highest layer and the request priority. 375 * 376 * @param[in] dev 377 * Pointer to the Ethernet device structure. 378 * @param[in] priority 379 * The rule base priority. 380 * @param[in] subpriority 381 * The priority based on the items. 382 * 383 * @return 384 * The new priority. 385 */ 386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 387 uint32_t subpriority) 388 { 389 uint32_t res = 0; 390 struct priv *priv = dev->data->dev_private; 391 392 switch (priv->config.flow_prio) { 393 case RTE_DIM(priority_map_3): 394 res = priority_map_3[priority][subpriority]; 395 break; 396 case RTE_DIM(priority_map_5): 397 res = priority_map_5[priority][subpriority]; 398 break; 399 } 400 return res; 401 } 402 403 /** 404 * Verify the @p item specifications (spec, last, mask) are compatible with the 405 * NIC capabilities. 406 * 407 * @param[in] item 408 * Item specification. 409 * @param[in] mask 410 * @p item->mask or flow default bit-masks. 411 * @param[in] nic_mask 412 * Bit-masks covering supported fields by the NIC to compare with user mask. 413 * @param[in] size 414 * Bit-masks size in bytes. 415 * @param[out] error 416 * Pointer to error structure. 417 * 418 * @return 419 * 0 on success, a negative errno value otherwise and rte_errno is set. 420 */ 421 int 422 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 423 const uint8_t *mask, 424 const uint8_t *nic_mask, 425 unsigned int size, 426 struct rte_flow_error *error) 427 { 428 unsigned int i; 429 430 assert(nic_mask); 431 for (i = 0; i < size; ++i) 432 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 433 return rte_flow_error_set(error, ENOTSUP, 434 RTE_FLOW_ERROR_TYPE_ITEM, 435 item, 436 "mask enables non supported" 437 " bits"); 438 if (!item->spec && (item->mask || item->last)) 439 return rte_flow_error_set(error, EINVAL, 440 RTE_FLOW_ERROR_TYPE_ITEM, item, 441 "mask/last without a spec is not" 442 " supported"); 443 if (item->spec && item->last) { 444 uint8_t spec[size]; 445 uint8_t last[size]; 446 unsigned int i; 447 int ret; 448 449 for (i = 0; i < size; ++i) { 450 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 451 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 452 } 453 ret = memcmp(spec, last, size); 454 if (ret != 0) 455 return rte_flow_error_set(error, EINVAL, 456 RTE_FLOW_ERROR_TYPE_ITEM, 457 item, 458 "range is not valid"); 459 } 460 return 0; 461 } 462 463 /** 464 * Adjust the hash fields according to the @p flow information. 465 * 466 * @param[in] dev_flow. 467 * Pointer to the mlx5_flow. 468 * @param[in] tunnel 469 * 1 when the hash field is for a tunnel item. 470 * @param[in] layer_types 471 * ETH_RSS_* types. 472 * @param[in] hash_fields 473 * Item hash fields. 474 * 475 * @return 476 * The hash fileds that should be used. 477 */ 478 uint64_t 479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow, 480 int tunnel __rte_unused, uint64_t layer_types, 481 uint64_t hash_fields) 482 { 483 struct rte_flow *flow = dev_flow->flow; 484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 485 int rss_request_inner = flow->rss.level >= 2; 486 487 /* Check RSS hash level for tunnel. */ 488 if (tunnel && rss_request_inner) 489 hash_fields |= IBV_RX_HASH_INNER; 490 else if (tunnel || rss_request_inner) 491 return 0; 492 #endif 493 /* Check if requested layer matches RSS hash fields. */ 494 if (!(flow->rss.types & layer_types)) 495 return 0; 496 return hash_fields; 497 } 498 499 /** 500 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 501 * if several tunnel rules are used on this queue, the tunnel ptype will be 502 * cleared. 503 * 504 * @param rxq_ctrl 505 * Rx queue to update. 506 */ 507 static void 508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 509 { 510 unsigned int i; 511 uint32_t tunnel_ptype = 0; 512 513 /* Look up for the ptype to use. */ 514 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 515 if (!rxq_ctrl->flow_tunnels_n[i]) 516 continue; 517 if (!tunnel_ptype) { 518 tunnel_ptype = tunnels_info[i].ptype; 519 } else { 520 tunnel_ptype = 0; 521 break; 522 } 523 } 524 rxq_ctrl->rxq.tunnel = tunnel_ptype; 525 } 526 527 /** 528 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 529 * flow. 530 * 531 * @param[in] dev 532 * Pointer to the Ethernet device structure. 533 * @param[in] dev_flow 534 * Pointer to device flow structure. 535 */ 536 static void 537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 538 { 539 struct priv *priv = dev->data->dev_private; 540 struct rte_flow *flow = dev_flow->flow; 541 const int mark = !!(flow->actions & 542 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 543 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 544 unsigned int i; 545 546 for (i = 0; i != flow->rss.queue_num; ++i) { 547 int idx = (*flow->queue)[i]; 548 struct mlx5_rxq_ctrl *rxq_ctrl = 549 container_of((*priv->rxqs)[idx], 550 struct mlx5_rxq_ctrl, rxq); 551 552 if (mark) { 553 rxq_ctrl->rxq.mark = 1; 554 rxq_ctrl->flow_mark_n++; 555 } 556 if (tunnel) { 557 unsigned int j; 558 559 /* Increase the counter matching the flow. */ 560 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 561 if ((tunnels_info[j].tunnel & 562 dev_flow->layers) == 563 tunnels_info[j].tunnel) { 564 rxq_ctrl->flow_tunnels_n[j]++; 565 break; 566 } 567 } 568 flow_rxq_tunnel_ptype_update(rxq_ctrl); 569 } 570 } 571 } 572 573 /** 574 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 575 * 576 * @param[in] dev 577 * Pointer to the Ethernet device structure. 578 * @param[in] flow 579 * Pointer to flow structure. 580 */ 581 static void 582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 583 { 584 struct mlx5_flow *dev_flow; 585 586 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 587 flow_drv_rxq_flags_set(dev, dev_flow); 588 } 589 590 /** 591 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 592 * device flow if no other flow uses it with the same kind of request. 593 * 594 * @param dev 595 * Pointer to Ethernet device. 596 * @param[in] dev_flow 597 * Pointer to the device flow. 598 */ 599 static void 600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 601 { 602 struct priv *priv = dev->data->dev_private; 603 struct rte_flow *flow = dev_flow->flow; 604 const int mark = !!(flow->actions & 605 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 606 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 607 unsigned int i; 608 609 assert(dev->data->dev_started); 610 for (i = 0; i != flow->rss.queue_num; ++i) { 611 int idx = (*flow->queue)[i]; 612 struct mlx5_rxq_ctrl *rxq_ctrl = 613 container_of((*priv->rxqs)[idx], 614 struct mlx5_rxq_ctrl, rxq); 615 616 if (mark) { 617 rxq_ctrl->flow_mark_n--; 618 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 619 } 620 if (tunnel) { 621 unsigned int j; 622 623 /* Decrease the counter matching the flow. */ 624 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 625 if ((tunnels_info[j].tunnel & 626 dev_flow->layers) == 627 tunnels_info[j].tunnel) { 628 rxq_ctrl->flow_tunnels_n[j]--; 629 break; 630 } 631 } 632 flow_rxq_tunnel_ptype_update(rxq_ctrl); 633 } 634 } 635 } 636 637 /** 638 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 639 * @p flow if no other flow uses it with the same kind of request. 640 * 641 * @param dev 642 * Pointer to Ethernet device. 643 * @param[in] flow 644 * Pointer to the flow. 645 */ 646 static void 647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 648 { 649 struct mlx5_flow *dev_flow; 650 651 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 652 flow_drv_rxq_flags_trim(dev, dev_flow); 653 } 654 655 /** 656 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 657 * 658 * @param dev 659 * Pointer to Ethernet device. 660 */ 661 static void 662 flow_rxq_flags_clear(struct rte_eth_dev *dev) 663 { 664 struct priv *priv = dev->data->dev_private; 665 unsigned int i; 666 667 for (i = 0; i != priv->rxqs_n; ++i) { 668 struct mlx5_rxq_ctrl *rxq_ctrl; 669 unsigned int j; 670 671 if (!(*priv->rxqs)[i]) 672 continue; 673 rxq_ctrl = container_of((*priv->rxqs)[i], 674 struct mlx5_rxq_ctrl, rxq); 675 rxq_ctrl->flow_mark_n = 0; 676 rxq_ctrl->rxq.mark = 0; 677 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 678 rxq_ctrl->flow_tunnels_n[j] = 0; 679 rxq_ctrl->rxq.tunnel = 0; 680 } 681 } 682 683 /* 684 * Validate the flag action. 685 * 686 * @param[in] action_flags 687 * Bit-fields that holds the actions detected until now. 688 * @param[in] attr 689 * Attributes of flow that includes this action. 690 * @param[out] error 691 * Pointer to error structure. 692 * 693 * @return 694 * 0 on success, a negative errno value otherwise and rte_errno is set. 695 */ 696 int 697 mlx5_flow_validate_action_flag(uint64_t action_flags, 698 const struct rte_flow_attr *attr, 699 struct rte_flow_error *error) 700 { 701 702 if (action_flags & MLX5_FLOW_ACTION_DROP) 703 return rte_flow_error_set(error, EINVAL, 704 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 705 "can't drop and flag in same flow"); 706 if (action_flags & MLX5_FLOW_ACTION_MARK) 707 return rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 709 "can't mark and flag in same flow"); 710 if (action_flags & MLX5_FLOW_ACTION_FLAG) 711 return rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 713 "can't have 2 flag" 714 " actions in same flow"); 715 if (attr->egress) 716 return rte_flow_error_set(error, ENOTSUP, 717 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 718 "flag action not supported for " 719 "egress"); 720 return 0; 721 } 722 723 /* 724 * Validate the mark action. 725 * 726 * @param[in] action 727 * Pointer to the queue action. 728 * @param[in] action_flags 729 * Bit-fields that holds the actions detected until now. 730 * @param[in] attr 731 * Attributes of flow that includes this action. 732 * @param[out] error 733 * Pointer to error structure. 734 * 735 * @return 736 * 0 on success, a negative errno value otherwise and rte_errno is set. 737 */ 738 int 739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 740 uint64_t action_flags, 741 const struct rte_flow_attr *attr, 742 struct rte_flow_error *error) 743 { 744 const struct rte_flow_action_mark *mark = action->conf; 745 746 if (!mark) 747 return rte_flow_error_set(error, EINVAL, 748 RTE_FLOW_ERROR_TYPE_ACTION, 749 action, 750 "configuration cannot be null"); 751 if (mark->id >= MLX5_FLOW_MARK_MAX) 752 return rte_flow_error_set(error, EINVAL, 753 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 754 &mark->id, 755 "mark id must in 0 <= id < " 756 RTE_STR(MLX5_FLOW_MARK_MAX)); 757 if (action_flags & MLX5_FLOW_ACTION_DROP) 758 return rte_flow_error_set(error, EINVAL, 759 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 760 "can't drop and mark in same flow"); 761 if (action_flags & MLX5_FLOW_ACTION_FLAG) 762 return rte_flow_error_set(error, EINVAL, 763 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 764 "can't flag and mark in same flow"); 765 if (action_flags & MLX5_FLOW_ACTION_MARK) 766 return rte_flow_error_set(error, EINVAL, 767 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 768 "can't have 2 mark actions in same" 769 " flow"); 770 if (attr->egress) 771 return rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 773 "mark action not supported for " 774 "egress"); 775 return 0; 776 } 777 778 /* 779 * Validate the drop action. 780 * 781 * @param[in] action_flags 782 * Bit-fields that holds the actions detected until now. 783 * @param[in] attr 784 * Attributes of flow that includes this action. 785 * @param[out] error 786 * Pointer to error structure. 787 * 788 * @return 789 * 0 on success, a negative errno value otherwise and rte_ernno is set. 790 */ 791 int 792 mlx5_flow_validate_action_drop(uint64_t action_flags, 793 const struct rte_flow_attr *attr, 794 struct rte_flow_error *error) 795 { 796 if (action_flags & MLX5_FLOW_ACTION_FLAG) 797 return rte_flow_error_set(error, EINVAL, 798 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 799 "can't drop and flag in same flow"); 800 if (action_flags & MLX5_FLOW_ACTION_MARK) 801 return rte_flow_error_set(error, EINVAL, 802 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 803 "can't drop and mark in same flow"); 804 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 805 return rte_flow_error_set(error, EINVAL, 806 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 807 "can't have 2 fate actions in" 808 " same flow"); 809 if (attr->egress) 810 return rte_flow_error_set(error, ENOTSUP, 811 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 812 "drop action not supported for " 813 "egress"); 814 return 0; 815 } 816 817 /* 818 * Validate the queue action. 819 * 820 * @param[in] action 821 * Pointer to the queue action. 822 * @param[in] action_flags 823 * Bit-fields that holds the actions detected until now. 824 * @param[in] dev 825 * Pointer to the Ethernet device structure. 826 * @param[in] attr 827 * Attributes of flow that includes this action. 828 * @param[out] error 829 * Pointer to error structure. 830 * 831 * @return 832 * 0 on success, a negative errno value otherwise and rte_ernno is set. 833 */ 834 int 835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 836 uint64_t action_flags, 837 struct rte_eth_dev *dev, 838 const struct rte_flow_attr *attr, 839 struct rte_flow_error *error) 840 { 841 struct priv *priv = dev->data->dev_private; 842 const struct rte_flow_action_queue *queue = action->conf; 843 844 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 845 return rte_flow_error_set(error, EINVAL, 846 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 847 "can't have 2 fate actions in" 848 " same flow"); 849 if (!priv->rxqs_n) 850 return rte_flow_error_set(error, EINVAL, 851 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 852 NULL, "No Rx queues configured"); 853 if (queue->index >= priv->rxqs_n) 854 return rte_flow_error_set(error, EINVAL, 855 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 856 &queue->index, 857 "queue index out of range"); 858 if (!(*priv->rxqs)[queue->index]) 859 return rte_flow_error_set(error, EINVAL, 860 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 861 &queue->index, 862 "queue is not configured"); 863 if (attr->egress) 864 return rte_flow_error_set(error, ENOTSUP, 865 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 866 "queue action not supported for " 867 "egress"); 868 return 0; 869 } 870 871 /* 872 * Validate the rss action. 873 * 874 * @param[in] action 875 * Pointer to the queue action. 876 * @param[in] action_flags 877 * Bit-fields that holds the actions detected until now. 878 * @param[in] dev 879 * Pointer to the Ethernet device structure. 880 * @param[in] attr 881 * Attributes of flow that includes this action. 882 * @param[out] error 883 * Pointer to error structure. 884 * 885 * @return 886 * 0 on success, a negative errno value otherwise and rte_ernno is set. 887 */ 888 int 889 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 890 uint64_t action_flags, 891 struct rte_eth_dev *dev, 892 const struct rte_flow_attr *attr, 893 struct rte_flow_error *error) 894 { 895 struct priv *priv = dev->data->dev_private; 896 const struct rte_flow_action_rss *rss = action->conf; 897 unsigned int i; 898 899 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 900 return rte_flow_error_set(error, EINVAL, 901 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 902 "can't have 2 fate actions" 903 " in same flow"); 904 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 905 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 906 return rte_flow_error_set(error, ENOTSUP, 907 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 908 &rss->func, 909 "RSS hash function not supported"); 910 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 911 if (rss->level > 2) 912 #else 913 if (rss->level > 1) 914 #endif 915 return rte_flow_error_set(error, ENOTSUP, 916 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 917 &rss->level, 918 "tunnel RSS is not supported"); 919 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 920 if (rss->key_len == 0 && rss->key != NULL) 921 return rte_flow_error_set(error, ENOTSUP, 922 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 923 &rss->key_len, 924 "RSS hash key length 0"); 925 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 926 return rte_flow_error_set(error, ENOTSUP, 927 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 928 &rss->key_len, 929 "RSS hash key too small"); 930 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 931 return rte_flow_error_set(error, ENOTSUP, 932 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 933 &rss->key_len, 934 "RSS hash key too large"); 935 if (rss->queue_num > priv->config.ind_table_max_size) 936 return rte_flow_error_set(error, ENOTSUP, 937 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 938 &rss->queue_num, 939 "number of queues too large"); 940 if (rss->types & MLX5_RSS_HF_MASK) 941 return rte_flow_error_set(error, ENOTSUP, 942 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 943 &rss->types, 944 "some RSS protocols are not" 945 " supported"); 946 if (!priv->rxqs_n) 947 return rte_flow_error_set(error, EINVAL, 948 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 949 NULL, "No Rx queues configured"); 950 for (i = 0; i != rss->queue_num; ++i) { 951 if (!(*priv->rxqs)[rss->queue[i]]) 952 return rte_flow_error_set 953 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 954 &rss->queue[i], "queue is not configured"); 955 } 956 if (attr->egress) 957 return rte_flow_error_set(error, ENOTSUP, 958 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 959 "rss action not supported for " 960 "egress"); 961 return 0; 962 } 963 964 /* 965 * Validate the count action. 966 * 967 * @param[in] dev 968 * Pointer to the Ethernet device structure. 969 * @param[in] attr 970 * Attributes of flow that includes this action. 971 * @param[out] error 972 * Pointer to error structure. 973 * 974 * @return 975 * 0 on success, a negative errno value otherwise and rte_ernno is set. 976 */ 977 int 978 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 979 const struct rte_flow_attr *attr, 980 struct rte_flow_error *error) 981 { 982 if (attr->egress) 983 return rte_flow_error_set(error, ENOTSUP, 984 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 985 "count action not supported for " 986 "egress"); 987 return 0; 988 } 989 990 /** 991 * Verify the @p attributes will be correctly understood by the NIC and store 992 * them in the @p flow if everything is correct. 993 * 994 * @param[in] dev 995 * Pointer to the Ethernet device structure. 996 * @param[in] attributes 997 * Pointer to flow attributes 998 * @param[out] error 999 * Pointer to error structure. 1000 * 1001 * @return 1002 * 0 on success, a negative errno value otherwise and rte_errno is set. 1003 */ 1004 int 1005 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 1006 const struct rte_flow_attr *attributes, 1007 struct rte_flow_error *error) 1008 { 1009 struct priv *priv = dev->data->dev_private; 1010 uint32_t priority_max = priv->config.flow_prio - 1; 1011 1012 if (attributes->group) 1013 return rte_flow_error_set(error, ENOTSUP, 1014 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1015 NULL, "groups is not supported"); 1016 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1017 attributes->priority >= priority_max) 1018 return rte_flow_error_set(error, ENOTSUP, 1019 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1020 NULL, "priority out of range"); 1021 if (attributes->egress) 1022 return rte_flow_error_set(error, ENOTSUP, 1023 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1024 "egress is not supported"); 1025 if (attributes->transfer) 1026 return rte_flow_error_set(error, ENOTSUP, 1027 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1028 NULL, "transfer is not supported"); 1029 if (!attributes->ingress) 1030 return rte_flow_error_set(error, EINVAL, 1031 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1032 NULL, 1033 "ingress attribute is mandatory"); 1034 return 0; 1035 } 1036 1037 /** 1038 * Validate Ethernet item. 1039 * 1040 * @param[in] item 1041 * Item specification. 1042 * @param[in] item_flags 1043 * Bit-fields that holds the items detected until now. 1044 * @param[out] error 1045 * Pointer to error structure. 1046 * 1047 * @return 1048 * 0 on success, a negative errno value otherwise and rte_errno is set. 1049 */ 1050 int 1051 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1052 uint64_t item_flags, 1053 struct rte_flow_error *error) 1054 { 1055 const struct rte_flow_item_eth *mask = item->mask; 1056 const struct rte_flow_item_eth nic_mask = { 1057 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1058 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1059 .type = RTE_BE16(0xffff), 1060 }; 1061 int ret; 1062 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1063 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1064 MLX5_FLOW_LAYER_OUTER_L2; 1065 1066 if (item_flags & ethm) 1067 return rte_flow_error_set(error, ENOTSUP, 1068 RTE_FLOW_ERROR_TYPE_ITEM, item, 1069 "multiple L2 layers not supported"); 1070 if (!mask) 1071 mask = &rte_flow_item_eth_mask; 1072 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1073 (const uint8_t *)&nic_mask, 1074 sizeof(struct rte_flow_item_eth), 1075 error); 1076 return ret; 1077 } 1078 1079 /** 1080 * Validate VLAN item. 1081 * 1082 * @param[in] item 1083 * Item specification. 1084 * @param[in] item_flags 1085 * Bit-fields that holds the items detected until now. 1086 * @param[out] error 1087 * Pointer to error structure. 1088 * 1089 * @return 1090 * 0 on success, a negative errno value otherwise and rte_errno is set. 1091 */ 1092 int 1093 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1094 uint64_t item_flags, 1095 struct rte_flow_error *error) 1096 { 1097 const struct rte_flow_item_vlan *spec = item->spec; 1098 const struct rte_flow_item_vlan *mask = item->mask; 1099 const struct rte_flow_item_vlan nic_mask = { 1100 .tci = RTE_BE16(0x0fff), 1101 .inner_type = RTE_BE16(0xffff), 1102 }; 1103 uint16_t vlan_tag = 0; 1104 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1105 int ret; 1106 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1107 MLX5_FLOW_LAYER_INNER_L4) : 1108 (MLX5_FLOW_LAYER_OUTER_L3 | 1109 MLX5_FLOW_LAYER_OUTER_L4); 1110 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1111 MLX5_FLOW_LAYER_OUTER_VLAN; 1112 1113 if (item_flags & vlanm) 1114 return rte_flow_error_set(error, EINVAL, 1115 RTE_FLOW_ERROR_TYPE_ITEM, item, 1116 "multiple VLAN layers not supported"); 1117 else if ((item_flags & l34m) != 0) 1118 return rte_flow_error_set(error, EINVAL, 1119 RTE_FLOW_ERROR_TYPE_ITEM, item, 1120 "L2 layer cannot follow L3/L4 layer"); 1121 if (!mask) 1122 mask = &rte_flow_item_vlan_mask; 1123 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1124 (const uint8_t *)&nic_mask, 1125 sizeof(struct rte_flow_item_vlan), 1126 error); 1127 if (ret) 1128 return ret; 1129 if (spec) { 1130 vlan_tag = spec->tci; 1131 vlan_tag &= mask->tci; 1132 } 1133 /* 1134 * From verbs perspective an empty VLAN is equivalent 1135 * to a packet without VLAN layer. 1136 */ 1137 if (!vlan_tag) 1138 return rte_flow_error_set(error, EINVAL, 1139 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1140 item->spec, 1141 "VLAN cannot be empty"); 1142 return 0; 1143 } 1144 1145 /** 1146 * Validate IPV4 item. 1147 * 1148 * @param[in] item 1149 * Item specification. 1150 * @param[in] item_flags 1151 * Bit-fields that holds the items detected until now. 1152 * @param[in] acc_mask 1153 * Acceptable mask, if NULL default internal default mask 1154 * will be used to check whether item fields are supported. 1155 * @param[out] error 1156 * Pointer to error structure. 1157 * 1158 * @return 1159 * 0 on success, a negative errno value otherwise and rte_errno is set. 1160 */ 1161 int 1162 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1163 uint64_t item_flags, 1164 const struct rte_flow_item_ipv4 *acc_mask, 1165 struct rte_flow_error *error) 1166 { 1167 const struct rte_flow_item_ipv4 *mask = item->mask; 1168 const struct rte_flow_item_ipv4 nic_mask = { 1169 .hdr = { 1170 .src_addr = RTE_BE32(0xffffffff), 1171 .dst_addr = RTE_BE32(0xffffffff), 1172 .type_of_service = 0xff, 1173 .next_proto_id = 0xff, 1174 }, 1175 }; 1176 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1177 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1178 MLX5_FLOW_LAYER_OUTER_L3; 1179 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1180 MLX5_FLOW_LAYER_OUTER_L4; 1181 int ret; 1182 1183 if (item_flags & l3m) 1184 return rte_flow_error_set(error, ENOTSUP, 1185 RTE_FLOW_ERROR_TYPE_ITEM, item, 1186 "multiple L3 layers not supported"); 1187 else if (item_flags & l4m) 1188 return rte_flow_error_set(error, EINVAL, 1189 RTE_FLOW_ERROR_TYPE_ITEM, item, 1190 "L3 cannot follow an L4 layer."); 1191 if (!mask) 1192 mask = &rte_flow_item_ipv4_mask; 1193 else if (mask->hdr.next_proto_id != 0 && 1194 mask->hdr.next_proto_id != 0xff) 1195 return rte_flow_error_set(error, EINVAL, 1196 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 1197 "partial mask is not supported" 1198 " for protocol"); 1199 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1200 acc_mask ? (const uint8_t *)acc_mask 1201 : (const uint8_t *)&nic_mask, 1202 sizeof(struct rte_flow_item_ipv4), 1203 error); 1204 if (ret < 0) 1205 return ret; 1206 return 0; 1207 } 1208 1209 /** 1210 * Validate IPV6 item. 1211 * 1212 * @param[in] item 1213 * Item specification. 1214 * @param[in] item_flags 1215 * Bit-fields that holds the items detected until now. 1216 * @param[in] acc_mask 1217 * Acceptable mask, if NULL default internal default mask 1218 * will be used to check whether item fields are supported. 1219 * @param[out] error 1220 * Pointer to error structure. 1221 * 1222 * @return 1223 * 0 on success, a negative errno value otherwise and rte_errno is set. 1224 */ 1225 int 1226 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 1227 uint64_t item_flags, 1228 const struct rte_flow_item_ipv6 *acc_mask, 1229 struct rte_flow_error *error) 1230 { 1231 const struct rte_flow_item_ipv6 *mask = item->mask; 1232 const struct rte_flow_item_ipv6 nic_mask = { 1233 .hdr = { 1234 .src_addr = 1235 "\xff\xff\xff\xff\xff\xff\xff\xff" 1236 "\xff\xff\xff\xff\xff\xff\xff\xff", 1237 .dst_addr = 1238 "\xff\xff\xff\xff\xff\xff\xff\xff" 1239 "\xff\xff\xff\xff\xff\xff\xff\xff", 1240 .vtc_flow = RTE_BE32(0xffffffff), 1241 .proto = 0xff, 1242 .hop_limits = 0xff, 1243 }, 1244 }; 1245 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1246 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1247 MLX5_FLOW_LAYER_OUTER_L3; 1248 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1249 MLX5_FLOW_LAYER_OUTER_L4; 1250 int ret; 1251 1252 if (item_flags & l3m) 1253 return rte_flow_error_set(error, ENOTSUP, 1254 RTE_FLOW_ERROR_TYPE_ITEM, item, 1255 "multiple L3 layers not supported"); 1256 else if (item_flags & l4m) 1257 return rte_flow_error_set(error, EINVAL, 1258 RTE_FLOW_ERROR_TYPE_ITEM, item, 1259 "L3 cannot follow an L4 layer."); 1260 if (!mask) 1261 mask = &rte_flow_item_ipv6_mask; 1262 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1263 acc_mask ? (const uint8_t *)acc_mask 1264 : (const uint8_t *)&nic_mask, 1265 sizeof(struct rte_flow_item_ipv6), 1266 error); 1267 if (ret < 0) 1268 return ret; 1269 return 0; 1270 } 1271 1272 /** 1273 * Validate UDP item. 1274 * 1275 * @param[in] item 1276 * Item specification. 1277 * @param[in] item_flags 1278 * Bit-fields that holds the items detected until now. 1279 * @param[in] target_protocol 1280 * The next protocol in the previous item. 1281 * @param[in] flow_mask 1282 * mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask. 1283 * @param[out] error 1284 * Pointer to error structure. 1285 * 1286 * @return 1287 * 0 on success, a negative errno value otherwise and rte_errno is set. 1288 */ 1289 int 1290 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 1291 uint64_t item_flags, 1292 uint8_t target_protocol, 1293 struct rte_flow_error *error) 1294 { 1295 const struct rte_flow_item_udp *mask = item->mask; 1296 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1297 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1298 MLX5_FLOW_LAYER_OUTER_L3; 1299 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1300 MLX5_FLOW_LAYER_OUTER_L4; 1301 int ret; 1302 1303 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 1304 return rte_flow_error_set(error, EINVAL, 1305 RTE_FLOW_ERROR_TYPE_ITEM, item, 1306 "protocol filtering not compatible" 1307 " with UDP layer"); 1308 if (!(item_flags & l3m)) 1309 return rte_flow_error_set(error, EINVAL, 1310 RTE_FLOW_ERROR_TYPE_ITEM, item, 1311 "L3 is mandatory to filter on L4"); 1312 if (item_flags & l4m) 1313 return rte_flow_error_set(error, EINVAL, 1314 RTE_FLOW_ERROR_TYPE_ITEM, item, 1315 "multiple L4 layers not supported"); 1316 if (!mask) 1317 mask = &rte_flow_item_udp_mask; 1318 ret = mlx5_flow_item_acceptable 1319 (item, (const uint8_t *)mask, 1320 (const uint8_t *)&rte_flow_item_udp_mask, 1321 sizeof(struct rte_flow_item_udp), error); 1322 if (ret < 0) 1323 return ret; 1324 return 0; 1325 } 1326 1327 /** 1328 * Validate TCP item. 1329 * 1330 * @param[in] item 1331 * Item specification. 1332 * @param[in] item_flags 1333 * Bit-fields that holds the items detected until now. 1334 * @param[in] target_protocol 1335 * The next protocol in the previous item. 1336 * @param[out] error 1337 * Pointer to error structure. 1338 * 1339 * @return 1340 * 0 on success, a negative errno value otherwise and rte_errno is set. 1341 */ 1342 int 1343 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 1344 uint64_t item_flags, 1345 uint8_t target_protocol, 1346 const struct rte_flow_item_tcp *flow_mask, 1347 struct rte_flow_error *error) 1348 { 1349 const struct rte_flow_item_tcp *mask = item->mask; 1350 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1351 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1352 MLX5_FLOW_LAYER_OUTER_L3; 1353 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1354 MLX5_FLOW_LAYER_OUTER_L4; 1355 int ret; 1356 1357 assert(flow_mask); 1358 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 1359 return rte_flow_error_set(error, EINVAL, 1360 RTE_FLOW_ERROR_TYPE_ITEM, item, 1361 "protocol filtering not compatible" 1362 " with TCP layer"); 1363 if (!(item_flags & l3m)) 1364 return rte_flow_error_set(error, EINVAL, 1365 RTE_FLOW_ERROR_TYPE_ITEM, item, 1366 "L3 is mandatory to filter on L4"); 1367 if (item_flags & l4m) 1368 return rte_flow_error_set(error, EINVAL, 1369 RTE_FLOW_ERROR_TYPE_ITEM, item, 1370 "multiple L4 layers not supported"); 1371 if (!mask) 1372 mask = &rte_flow_item_tcp_mask; 1373 ret = mlx5_flow_item_acceptable 1374 (item, (const uint8_t *)mask, 1375 (const uint8_t *)flow_mask, 1376 sizeof(struct rte_flow_item_tcp), error); 1377 if (ret < 0) 1378 return ret; 1379 return 0; 1380 } 1381 1382 /** 1383 * Validate VXLAN item. 1384 * 1385 * @param[in] item 1386 * Item specification. 1387 * @param[in] item_flags 1388 * Bit-fields that holds the items detected until now. 1389 * @param[in] target_protocol 1390 * The next protocol in the previous item. 1391 * @param[out] error 1392 * Pointer to error structure. 1393 * 1394 * @return 1395 * 0 on success, a negative errno value otherwise and rte_errno is set. 1396 */ 1397 int 1398 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 1399 uint64_t item_flags, 1400 struct rte_flow_error *error) 1401 { 1402 const struct rte_flow_item_vxlan *spec = item->spec; 1403 const struct rte_flow_item_vxlan *mask = item->mask; 1404 int ret; 1405 union vni { 1406 uint32_t vlan_id; 1407 uint8_t vni[4]; 1408 } id = { .vlan_id = 0, }; 1409 uint32_t vlan_id = 0; 1410 1411 1412 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1413 return rte_flow_error_set(error, ENOTSUP, 1414 RTE_FLOW_ERROR_TYPE_ITEM, item, 1415 "multiple tunnel layers not" 1416 " supported"); 1417 /* 1418 * Verify only UDPv4 is present as defined in 1419 * https://tools.ietf.org/html/rfc7348 1420 */ 1421 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1422 return rte_flow_error_set(error, EINVAL, 1423 RTE_FLOW_ERROR_TYPE_ITEM, item, 1424 "no outer UDP layer found"); 1425 if (!mask) 1426 mask = &rte_flow_item_vxlan_mask; 1427 ret = mlx5_flow_item_acceptable 1428 (item, (const uint8_t *)mask, 1429 (const uint8_t *)&rte_flow_item_vxlan_mask, 1430 sizeof(struct rte_flow_item_vxlan), 1431 error); 1432 if (ret < 0) 1433 return ret; 1434 if (spec) { 1435 memcpy(&id.vni[1], spec->vni, 3); 1436 vlan_id = id.vlan_id; 1437 memcpy(&id.vni[1], mask->vni, 3); 1438 vlan_id &= id.vlan_id; 1439 } 1440 /* 1441 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if 1442 * only this layer is defined in the Verbs specification it is 1443 * interpreted as wildcard and all packets will match this 1444 * rule, if it follows a full stack layer (ex: eth / ipv4 / 1445 * udp), all packets matching the layers before will also 1446 * match this rule. To avoid such situation, VNI 0 is 1447 * currently refused. 1448 */ 1449 if (!vlan_id) 1450 return rte_flow_error_set(error, ENOTSUP, 1451 RTE_FLOW_ERROR_TYPE_ITEM, item, 1452 "VXLAN vni cannot be 0"); 1453 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1454 return rte_flow_error_set(error, ENOTSUP, 1455 RTE_FLOW_ERROR_TYPE_ITEM, item, 1456 "VXLAN tunnel must be fully defined"); 1457 return 0; 1458 } 1459 1460 /** 1461 * Validate VXLAN_GPE item. 1462 * 1463 * @param[in] item 1464 * Item specification. 1465 * @param[in] item_flags 1466 * Bit-fields that holds the items detected until now. 1467 * @param[in] priv 1468 * Pointer to the private data structure. 1469 * @param[in] target_protocol 1470 * The next protocol in the previous item. 1471 * @param[out] error 1472 * Pointer to error structure. 1473 * 1474 * @return 1475 * 0 on success, a negative errno value otherwise and rte_errno is set. 1476 */ 1477 int 1478 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 1479 uint64_t item_flags, 1480 struct rte_eth_dev *dev, 1481 struct rte_flow_error *error) 1482 { 1483 struct priv *priv = dev->data->dev_private; 1484 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 1485 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 1486 int ret; 1487 union vni { 1488 uint32_t vlan_id; 1489 uint8_t vni[4]; 1490 } id = { .vlan_id = 0, }; 1491 uint32_t vlan_id = 0; 1492 1493 if (!priv->config.l3_vxlan_en) 1494 return rte_flow_error_set(error, ENOTSUP, 1495 RTE_FLOW_ERROR_TYPE_ITEM, item, 1496 "L3 VXLAN is not enabled by device" 1497 " parameter and/or not configured in" 1498 " firmware"); 1499 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1500 return rte_flow_error_set(error, ENOTSUP, 1501 RTE_FLOW_ERROR_TYPE_ITEM, item, 1502 "multiple tunnel layers not" 1503 " supported"); 1504 /* 1505 * Verify only UDPv4 is present as defined in 1506 * https://tools.ietf.org/html/rfc7348 1507 */ 1508 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1509 return rte_flow_error_set(error, EINVAL, 1510 RTE_FLOW_ERROR_TYPE_ITEM, item, 1511 "no outer UDP layer found"); 1512 if (!mask) 1513 mask = &rte_flow_item_vxlan_gpe_mask; 1514 ret = mlx5_flow_item_acceptable 1515 (item, (const uint8_t *)mask, 1516 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 1517 sizeof(struct rte_flow_item_vxlan_gpe), 1518 error); 1519 if (ret < 0) 1520 return ret; 1521 if (spec) { 1522 if (spec->protocol) 1523 return rte_flow_error_set(error, ENOTSUP, 1524 RTE_FLOW_ERROR_TYPE_ITEM, 1525 item, 1526 "VxLAN-GPE protocol" 1527 " not supported"); 1528 memcpy(&id.vni[1], spec->vni, 3); 1529 vlan_id = id.vlan_id; 1530 memcpy(&id.vni[1], mask->vni, 3); 1531 vlan_id &= id.vlan_id; 1532 } 1533 /* 1534 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1535 * layer is defined in the Verbs specification it is interpreted as 1536 * wildcard and all packets will match this rule, if it follows a full 1537 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1538 * before will also match this rule. To avoid such situation, VNI 0 1539 * is currently refused. 1540 */ 1541 if (!vlan_id) 1542 return rte_flow_error_set(error, ENOTSUP, 1543 RTE_FLOW_ERROR_TYPE_ITEM, item, 1544 "VXLAN-GPE vni cannot be 0"); 1545 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1546 return rte_flow_error_set(error, ENOTSUP, 1547 RTE_FLOW_ERROR_TYPE_ITEM, item, 1548 "VXLAN-GPE tunnel must be fully" 1549 " defined"); 1550 return 0; 1551 } 1552 1553 /** 1554 * Validate GRE item. 1555 * 1556 * @param[in] item 1557 * Item specification. 1558 * @param[in] item_flags 1559 * Bit flags to mark detected items. 1560 * @param[in] target_protocol 1561 * The next protocol in the previous item. 1562 * @param[out] error 1563 * Pointer to error structure. 1564 * 1565 * @return 1566 * 0 on success, a negative errno value otherwise and rte_errno is set. 1567 */ 1568 int 1569 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 1570 uint64_t item_flags, 1571 uint8_t target_protocol, 1572 struct rte_flow_error *error) 1573 { 1574 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 1575 const struct rte_flow_item_gre *mask = item->mask; 1576 int ret; 1577 1578 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1579 return rte_flow_error_set(error, EINVAL, 1580 RTE_FLOW_ERROR_TYPE_ITEM, item, 1581 "protocol filtering not compatible" 1582 " with this GRE layer"); 1583 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1584 return rte_flow_error_set(error, ENOTSUP, 1585 RTE_FLOW_ERROR_TYPE_ITEM, item, 1586 "multiple tunnel layers not" 1587 " supported"); 1588 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1589 return rte_flow_error_set(error, ENOTSUP, 1590 RTE_FLOW_ERROR_TYPE_ITEM, item, 1591 "L3 Layer is missing"); 1592 if (!mask) 1593 mask = &rte_flow_item_gre_mask; 1594 ret = mlx5_flow_item_acceptable 1595 (item, (const uint8_t *)mask, 1596 (const uint8_t *)&rte_flow_item_gre_mask, 1597 sizeof(struct rte_flow_item_gre), error); 1598 if (ret < 0) 1599 return ret; 1600 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 1601 if (spec && (spec->protocol & mask->protocol)) 1602 return rte_flow_error_set(error, ENOTSUP, 1603 RTE_FLOW_ERROR_TYPE_ITEM, item, 1604 "without MPLS support the" 1605 " specification cannot be used for" 1606 " filtering"); 1607 #endif 1608 return 0; 1609 } 1610 1611 /** 1612 * Validate MPLS item. 1613 * 1614 * @param[in] dev 1615 * Pointer to the rte_eth_dev structure. 1616 * @param[in] item 1617 * Item specification. 1618 * @param[in] item_flags 1619 * Bit-fields that holds the items detected until now. 1620 * @param[in] prev_layer 1621 * The protocol layer indicated in previous item. 1622 * @param[out] error 1623 * Pointer to error structure. 1624 * 1625 * @return 1626 * 0 on success, a negative errno value otherwise and rte_errno is set. 1627 */ 1628 int 1629 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 1630 const struct rte_flow_item *item __rte_unused, 1631 uint64_t item_flags __rte_unused, 1632 uint64_t prev_layer __rte_unused, 1633 struct rte_flow_error *error) 1634 { 1635 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1636 const struct rte_flow_item_mpls *mask = item->mask; 1637 struct priv *priv = dev->data->dev_private; 1638 int ret; 1639 1640 if (!priv->config.mpls_en) 1641 return rte_flow_error_set(error, ENOTSUP, 1642 RTE_FLOW_ERROR_TYPE_ITEM, item, 1643 "MPLS not supported or" 1644 " disabled in firmware" 1645 " configuration."); 1646 /* MPLS over IP, UDP, GRE is allowed */ 1647 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 1648 MLX5_FLOW_LAYER_OUTER_L4_UDP | 1649 MLX5_FLOW_LAYER_GRE))) 1650 return rte_flow_error_set(error, EINVAL, 1651 RTE_FLOW_ERROR_TYPE_ITEM, item, 1652 "protocol filtering not compatible" 1653 " with MPLS layer"); 1654 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 1655 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 1656 !(item_flags & MLX5_FLOW_LAYER_GRE)) 1657 return rte_flow_error_set(error, ENOTSUP, 1658 RTE_FLOW_ERROR_TYPE_ITEM, item, 1659 "multiple tunnel layers not" 1660 " supported"); 1661 if (!mask) 1662 mask = &rte_flow_item_mpls_mask; 1663 ret = mlx5_flow_item_acceptable 1664 (item, (const uint8_t *)mask, 1665 (const uint8_t *)&rte_flow_item_mpls_mask, 1666 sizeof(struct rte_flow_item_mpls), error); 1667 if (ret < 0) 1668 return ret; 1669 return 0; 1670 #endif 1671 return rte_flow_error_set(error, ENOTSUP, 1672 RTE_FLOW_ERROR_TYPE_ITEM, item, 1673 "MPLS is not supported by Verbs, please" 1674 " update."); 1675 } 1676 1677 static int 1678 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 1679 const struct rte_flow_attr *attr __rte_unused, 1680 const struct rte_flow_item items[] __rte_unused, 1681 const struct rte_flow_action actions[] __rte_unused, 1682 struct rte_flow_error *error __rte_unused) 1683 { 1684 rte_errno = ENOTSUP; 1685 return -rte_errno; 1686 } 1687 1688 static struct mlx5_flow * 1689 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused, 1690 const struct rte_flow_item items[] __rte_unused, 1691 const struct rte_flow_action actions[] __rte_unused, 1692 struct rte_flow_error *error __rte_unused) 1693 { 1694 rte_errno = ENOTSUP; 1695 return NULL; 1696 } 1697 1698 static int 1699 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 1700 struct mlx5_flow *dev_flow __rte_unused, 1701 const struct rte_flow_attr *attr __rte_unused, 1702 const struct rte_flow_item items[] __rte_unused, 1703 const struct rte_flow_action actions[] __rte_unused, 1704 struct rte_flow_error *error __rte_unused) 1705 { 1706 rte_errno = ENOTSUP; 1707 return -rte_errno; 1708 } 1709 1710 static int 1711 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 1712 struct rte_flow *flow __rte_unused, 1713 struct rte_flow_error *error __rte_unused) 1714 { 1715 rte_errno = ENOTSUP; 1716 return -rte_errno; 1717 } 1718 1719 static void 1720 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 1721 struct rte_flow *flow __rte_unused) 1722 { 1723 } 1724 1725 static void 1726 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 1727 struct rte_flow *flow __rte_unused) 1728 { 1729 } 1730 1731 static int 1732 flow_null_query(struct rte_eth_dev *dev __rte_unused, 1733 struct rte_flow *flow __rte_unused, 1734 const struct rte_flow_action *actions __rte_unused, 1735 void *data __rte_unused, 1736 struct rte_flow_error *error __rte_unused) 1737 { 1738 rte_errno = ENOTSUP; 1739 return -rte_errno; 1740 } 1741 1742 /* Void driver to protect from null pointer reference. */ 1743 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 1744 .validate = flow_null_validate, 1745 .prepare = flow_null_prepare, 1746 .translate = flow_null_translate, 1747 .apply = flow_null_apply, 1748 .remove = flow_null_remove, 1749 .destroy = flow_null_destroy, 1750 .query = flow_null_query, 1751 }; 1752 1753 /** 1754 * Select flow driver type according to flow attributes and device 1755 * configuration. 1756 * 1757 * @param[in] dev 1758 * Pointer to the dev structure. 1759 * @param[in] attr 1760 * Pointer to the flow attributes. 1761 * 1762 * @return 1763 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 1764 */ 1765 static enum mlx5_flow_drv_type 1766 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 1767 { 1768 struct priv *priv = dev->data->dev_private; 1769 enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX; 1770 1771 if (attr->transfer) 1772 type = MLX5_FLOW_TYPE_TCF; 1773 else 1774 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 1775 MLX5_FLOW_TYPE_VERBS; 1776 return type; 1777 } 1778 1779 #define flow_get_drv_ops(type) flow_drv_ops[type] 1780 1781 /** 1782 * Flow driver validation API. This abstracts calling driver specific functions. 1783 * The type of flow driver is determined according to flow attributes. 1784 * 1785 * @param[in] dev 1786 * Pointer to the dev structure. 1787 * @param[in] attr 1788 * Pointer to the flow attributes. 1789 * @param[in] items 1790 * Pointer to the list of items. 1791 * @param[in] actions 1792 * Pointer to the list of actions. 1793 * @param[out] error 1794 * Pointer to the error structure. 1795 * 1796 * @return 1797 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1798 */ 1799 static inline int 1800 flow_drv_validate(struct rte_eth_dev *dev, 1801 const struct rte_flow_attr *attr, 1802 const struct rte_flow_item items[], 1803 const struct rte_flow_action actions[], 1804 struct rte_flow_error *error) 1805 { 1806 const struct mlx5_flow_driver_ops *fops; 1807 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 1808 1809 fops = flow_get_drv_ops(type); 1810 return fops->validate(dev, attr, items, actions, error); 1811 } 1812 1813 /** 1814 * Flow driver preparation API. This abstracts calling driver specific 1815 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1816 * calculates the size of memory required for device flow, allocates the memory, 1817 * initializes the device flow and returns the pointer. 1818 * 1819 * @note 1820 * This function initializes device flow structure such as dv, tcf or verbs in 1821 * struct mlx5_flow. However, it is caller's responsibility to initialize the 1822 * rest. For example, adding returning device flow to flow->dev_flow list and 1823 * setting backward reference to the flow should be done out of this function. 1824 * layers field is not filled either. 1825 * 1826 * @param[in] attr 1827 * Pointer to the flow attributes. 1828 * @param[in] items 1829 * Pointer to the list of items. 1830 * @param[in] actions 1831 * Pointer to the list of actions. 1832 * @param[out] error 1833 * Pointer to the error structure. 1834 * 1835 * @return 1836 * Pointer to device flow on success, otherwise NULL and rte_ernno is set. 1837 */ 1838 static inline struct mlx5_flow * 1839 flow_drv_prepare(const struct rte_flow *flow, 1840 const struct rte_flow_attr *attr, 1841 const struct rte_flow_item items[], 1842 const struct rte_flow_action actions[], 1843 struct rte_flow_error *error) 1844 { 1845 const struct mlx5_flow_driver_ops *fops; 1846 enum mlx5_flow_drv_type type = flow->drv_type; 1847 1848 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1849 fops = flow_get_drv_ops(type); 1850 return fops->prepare(attr, items, actions, error); 1851 } 1852 1853 /** 1854 * Flow driver translation API. This abstracts calling driver specific 1855 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1856 * translates a generic flow into a driver flow. flow_drv_prepare() must 1857 * precede. 1858 * 1859 * @note 1860 * dev_flow->layers could be filled as a result of parsing during translation 1861 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 1862 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 1863 * flow->actions could be overwritten even though all the expanded dev_flows 1864 * have the same actions. 1865 * 1866 * @param[in] dev 1867 * Pointer to the rte dev structure. 1868 * @param[in, out] dev_flow 1869 * Pointer to the mlx5 flow. 1870 * @param[in] attr 1871 * Pointer to the flow attributes. 1872 * @param[in] items 1873 * Pointer to the list of items. 1874 * @param[in] actions 1875 * Pointer to the list of actions. 1876 * @param[out] error 1877 * Pointer to the error structure. 1878 * 1879 * @return 1880 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1881 */ 1882 static inline int 1883 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 1884 const struct rte_flow_attr *attr, 1885 const struct rte_flow_item items[], 1886 const struct rte_flow_action actions[], 1887 struct rte_flow_error *error) 1888 { 1889 const struct mlx5_flow_driver_ops *fops; 1890 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 1891 1892 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1893 fops = flow_get_drv_ops(type); 1894 return fops->translate(dev, dev_flow, attr, items, actions, error); 1895 } 1896 1897 /** 1898 * Flow driver apply API. This abstracts calling driver specific functions. 1899 * Parent flow (rte_flow) should have driver type (drv_type). It applies 1900 * translated driver flows on to device. flow_drv_translate() must precede. 1901 * 1902 * @param[in] dev 1903 * Pointer to Ethernet device structure. 1904 * @param[in, out] flow 1905 * Pointer to flow structure. 1906 * @param[out] error 1907 * Pointer to error structure. 1908 * 1909 * @return 1910 * 0 on success, a negative errno value otherwise and rte_errno is set. 1911 */ 1912 static inline int 1913 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 1914 struct rte_flow_error *error) 1915 { 1916 const struct mlx5_flow_driver_ops *fops; 1917 enum mlx5_flow_drv_type type = flow->drv_type; 1918 1919 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1920 fops = flow_get_drv_ops(type); 1921 return fops->apply(dev, flow, error); 1922 } 1923 1924 /** 1925 * Flow driver remove API. This abstracts calling driver specific functions. 1926 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1927 * on device. All the resources of the flow should be freed by calling 1928 * flow_drv_destroy(). 1929 * 1930 * @param[in] dev 1931 * Pointer to Ethernet device. 1932 * @param[in, out] flow 1933 * Pointer to flow structure. 1934 */ 1935 static inline void 1936 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 1937 { 1938 const struct mlx5_flow_driver_ops *fops; 1939 enum mlx5_flow_drv_type type = flow->drv_type; 1940 1941 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1942 fops = flow_get_drv_ops(type); 1943 fops->remove(dev, flow); 1944 } 1945 1946 /** 1947 * Flow driver destroy API. This abstracts calling driver specific functions. 1948 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1949 * on device and releases resources of the flow. 1950 * 1951 * @param[in] dev 1952 * Pointer to Ethernet device. 1953 * @param[in, out] flow 1954 * Pointer to flow structure. 1955 */ 1956 static inline void 1957 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 1958 { 1959 const struct mlx5_flow_driver_ops *fops; 1960 enum mlx5_flow_drv_type type = flow->drv_type; 1961 1962 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1963 fops = flow_get_drv_ops(type); 1964 fops->destroy(dev, flow); 1965 } 1966 1967 /** 1968 * Validate a flow supported by the NIC. 1969 * 1970 * @see rte_flow_validate() 1971 * @see rte_flow_ops 1972 */ 1973 int 1974 mlx5_flow_validate(struct rte_eth_dev *dev, 1975 const struct rte_flow_attr *attr, 1976 const struct rte_flow_item items[], 1977 const struct rte_flow_action actions[], 1978 struct rte_flow_error *error) 1979 { 1980 int ret; 1981 1982 ret = flow_drv_validate(dev, attr, items, actions, error); 1983 if (ret < 0) 1984 return ret; 1985 return 0; 1986 } 1987 1988 /** 1989 * Get RSS action from the action list. 1990 * 1991 * @param[in] actions 1992 * Pointer to the list of actions. 1993 * 1994 * @return 1995 * Pointer to the RSS action if exist, else return NULL. 1996 */ 1997 static const struct rte_flow_action_rss* 1998 flow_get_rss_action(const struct rte_flow_action actions[]) 1999 { 2000 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 2001 switch (actions->type) { 2002 case RTE_FLOW_ACTION_TYPE_RSS: 2003 return (const struct rte_flow_action_rss *) 2004 actions->conf; 2005 default: 2006 break; 2007 } 2008 } 2009 return NULL; 2010 } 2011 2012 static unsigned int 2013 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 2014 { 2015 const struct rte_flow_item *item; 2016 unsigned int has_vlan = 0; 2017 2018 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 2019 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 2020 has_vlan = 1; 2021 break; 2022 } 2023 } 2024 if (has_vlan) 2025 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 2026 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 2027 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 2028 MLX5_EXPANSION_ROOT_OUTER; 2029 } 2030 2031 /** 2032 * Create a flow and add it to @p list. 2033 * 2034 * @param dev 2035 * Pointer to Ethernet device. 2036 * @param list 2037 * Pointer to a TAILQ flow list. 2038 * @param[in] attr 2039 * Flow rule attributes. 2040 * @param[in] items 2041 * Pattern specification (list terminated by the END pattern item). 2042 * @param[in] actions 2043 * Associated actions (list terminated by the END action). 2044 * @param[out] error 2045 * Perform verbose error reporting if not NULL. 2046 * 2047 * @return 2048 * A flow on success, NULL otherwise and rte_errno is set. 2049 */ 2050 static struct rte_flow * 2051 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, 2052 const struct rte_flow_attr *attr, 2053 const struct rte_flow_item items[], 2054 const struct rte_flow_action actions[], 2055 struct rte_flow_error *error) 2056 { 2057 struct rte_flow *flow = NULL; 2058 struct mlx5_flow *dev_flow; 2059 const struct rte_flow_action_rss *rss; 2060 union { 2061 struct rte_flow_expand_rss buf; 2062 uint8_t buffer[2048]; 2063 } expand_buffer; 2064 struct rte_flow_expand_rss *buf = &expand_buffer.buf; 2065 int ret; 2066 uint32_t i; 2067 uint32_t flow_size; 2068 2069 ret = flow_drv_validate(dev, attr, items, actions, error); 2070 if (ret < 0) 2071 return NULL; 2072 flow_size = sizeof(struct rte_flow); 2073 rss = flow_get_rss_action(actions); 2074 if (rss) 2075 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t), 2076 sizeof(void *)); 2077 else 2078 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *)); 2079 flow = rte_calloc(__func__, 1, flow_size, 0); 2080 flow->drv_type = flow_get_drv_type(dev, attr); 2081 assert(flow->drv_type > MLX5_FLOW_TYPE_MIN && 2082 flow->drv_type < MLX5_FLOW_TYPE_MAX); 2083 flow->queue = (void *)(flow + 1); 2084 LIST_INIT(&flow->dev_flows); 2085 if (rss && rss->types) { 2086 unsigned int graph_root; 2087 2088 graph_root = find_graph_root(items, rss->level); 2089 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 2090 items, rss->types, 2091 mlx5_support_expansion, 2092 graph_root); 2093 assert(ret > 0 && 2094 (unsigned int)ret < sizeof(expand_buffer.buffer)); 2095 } else { 2096 buf->entries = 1; 2097 buf->entry[0].pattern = (void *)(uintptr_t)items; 2098 } 2099 for (i = 0; i < buf->entries; ++i) { 2100 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern, 2101 actions, error); 2102 if (!dev_flow) 2103 goto error; 2104 dev_flow->flow = flow; 2105 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next); 2106 ret = flow_drv_translate(dev, dev_flow, attr, 2107 buf->entry[i].pattern, 2108 actions, error); 2109 if (ret < 0) 2110 goto error; 2111 } 2112 if (dev->data->dev_started) { 2113 ret = flow_drv_apply(dev, flow, error); 2114 if (ret < 0) 2115 goto error; 2116 } 2117 TAILQ_INSERT_TAIL(list, flow, next); 2118 flow_rxq_flags_set(dev, flow); 2119 return flow; 2120 error: 2121 ret = rte_errno; /* Save rte_errno before cleanup. */ 2122 assert(flow); 2123 flow_drv_destroy(dev, flow); 2124 rte_free(flow); 2125 rte_errno = ret; /* Restore rte_errno. */ 2126 return NULL; 2127 } 2128 2129 /** 2130 * Create a flow. 2131 * 2132 * @see rte_flow_create() 2133 * @see rte_flow_ops 2134 */ 2135 struct rte_flow * 2136 mlx5_flow_create(struct rte_eth_dev *dev, 2137 const struct rte_flow_attr *attr, 2138 const struct rte_flow_item items[], 2139 const struct rte_flow_action actions[], 2140 struct rte_flow_error *error) 2141 { 2142 return flow_list_create(dev, 2143 &((struct priv *)dev->data->dev_private)->flows, 2144 attr, items, actions, error); 2145 } 2146 2147 /** 2148 * Destroy a flow in a list. 2149 * 2150 * @param dev 2151 * Pointer to Ethernet device. 2152 * @param list 2153 * Pointer to a TAILQ flow list. 2154 * @param[in] flow 2155 * Flow to destroy. 2156 */ 2157 static void 2158 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2159 struct rte_flow *flow) 2160 { 2161 /* 2162 * Update RX queue flags only if port is started, otherwise it is 2163 * already clean. 2164 */ 2165 if (dev->data->dev_started) 2166 flow_rxq_flags_trim(dev, flow); 2167 flow_drv_destroy(dev, flow); 2168 TAILQ_REMOVE(list, flow, next); 2169 rte_free(flow->fdir); 2170 rte_free(flow); 2171 } 2172 2173 /** 2174 * Destroy all flows. 2175 * 2176 * @param dev 2177 * Pointer to Ethernet device. 2178 * @param list 2179 * Pointer to a TAILQ flow list. 2180 */ 2181 void 2182 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2183 { 2184 while (!TAILQ_EMPTY(list)) { 2185 struct rte_flow *flow; 2186 2187 flow = TAILQ_FIRST(list); 2188 flow_list_destroy(dev, list, flow); 2189 } 2190 } 2191 2192 /** 2193 * Remove all flows. 2194 * 2195 * @param dev 2196 * Pointer to Ethernet device. 2197 * @param list 2198 * Pointer to a TAILQ flow list. 2199 */ 2200 void 2201 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2202 { 2203 struct rte_flow *flow; 2204 2205 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) 2206 flow_drv_remove(dev, flow); 2207 flow_rxq_flags_clear(dev); 2208 } 2209 2210 /** 2211 * Add all flows. 2212 * 2213 * @param dev 2214 * Pointer to Ethernet device. 2215 * @param list 2216 * Pointer to a TAILQ flow list. 2217 * 2218 * @return 2219 * 0 on success, a negative errno value otherwise and rte_errno is set. 2220 */ 2221 int 2222 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2223 { 2224 struct rte_flow *flow; 2225 struct rte_flow_error error; 2226 int ret = 0; 2227 2228 TAILQ_FOREACH(flow, list, next) { 2229 ret = flow_drv_apply(dev, flow, &error); 2230 if (ret < 0) 2231 goto error; 2232 flow_rxq_flags_set(dev, flow); 2233 } 2234 return 0; 2235 error: 2236 ret = rte_errno; /* Save rte_errno before cleanup. */ 2237 mlx5_flow_stop(dev, list); 2238 rte_errno = ret; /* Restore rte_errno. */ 2239 return -rte_errno; 2240 } 2241 2242 /** 2243 * Verify the flow list is empty 2244 * 2245 * @param dev 2246 * Pointer to Ethernet device. 2247 * 2248 * @return the number of flows not released. 2249 */ 2250 int 2251 mlx5_flow_verify(struct rte_eth_dev *dev) 2252 { 2253 struct priv *priv = dev->data->dev_private; 2254 struct rte_flow *flow; 2255 int ret = 0; 2256 2257 TAILQ_FOREACH(flow, &priv->flows, next) { 2258 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2259 dev->data->port_id, (void *)flow); 2260 ++ret; 2261 } 2262 return ret; 2263 } 2264 2265 /** 2266 * Enable a control flow configured from the control plane. 2267 * 2268 * @param dev 2269 * Pointer to Ethernet device. 2270 * @param eth_spec 2271 * An Ethernet flow spec to apply. 2272 * @param eth_mask 2273 * An Ethernet flow mask to apply. 2274 * @param vlan_spec 2275 * A VLAN flow spec to apply. 2276 * @param vlan_mask 2277 * A VLAN flow mask to apply. 2278 * 2279 * @return 2280 * 0 on success, a negative errno value otherwise and rte_errno is set. 2281 */ 2282 int 2283 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2284 struct rte_flow_item_eth *eth_spec, 2285 struct rte_flow_item_eth *eth_mask, 2286 struct rte_flow_item_vlan *vlan_spec, 2287 struct rte_flow_item_vlan *vlan_mask) 2288 { 2289 struct priv *priv = dev->data->dev_private; 2290 const struct rte_flow_attr attr = { 2291 .ingress = 1, 2292 .priority = MLX5_FLOW_PRIO_RSVD, 2293 }; 2294 struct rte_flow_item items[] = { 2295 { 2296 .type = RTE_FLOW_ITEM_TYPE_ETH, 2297 .spec = eth_spec, 2298 .last = NULL, 2299 .mask = eth_mask, 2300 }, 2301 { 2302 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2303 RTE_FLOW_ITEM_TYPE_END, 2304 .spec = vlan_spec, 2305 .last = NULL, 2306 .mask = vlan_mask, 2307 }, 2308 { 2309 .type = RTE_FLOW_ITEM_TYPE_END, 2310 }, 2311 }; 2312 uint16_t queue[priv->reta_idx_n]; 2313 struct rte_flow_action_rss action_rss = { 2314 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2315 .level = 0, 2316 .types = priv->rss_conf.rss_hf, 2317 .key_len = priv->rss_conf.rss_key_len, 2318 .queue_num = priv->reta_idx_n, 2319 .key = priv->rss_conf.rss_key, 2320 .queue = queue, 2321 }; 2322 struct rte_flow_action actions[] = { 2323 { 2324 .type = RTE_FLOW_ACTION_TYPE_RSS, 2325 .conf = &action_rss, 2326 }, 2327 { 2328 .type = RTE_FLOW_ACTION_TYPE_END, 2329 }, 2330 }; 2331 struct rte_flow *flow; 2332 struct rte_flow_error error; 2333 unsigned int i; 2334 2335 if (!priv->reta_idx_n || !priv->rxqs_n) { 2336 return 0; 2337 } 2338 for (i = 0; i != priv->reta_idx_n; ++i) 2339 queue[i] = (*priv->reta_idx)[i]; 2340 flow = flow_list_create(dev, &priv->ctrl_flows, 2341 &attr, items, actions, &error); 2342 if (!flow) 2343 return -rte_errno; 2344 return 0; 2345 } 2346 2347 /** 2348 * Enable a flow control configured from the control plane. 2349 * 2350 * @param dev 2351 * Pointer to Ethernet device. 2352 * @param eth_spec 2353 * An Ethernet flow spec to apply. 2354 * @param eth_mask 2355 * An Ethernet flow mask to apply. 2356 * 2357 * @return 2358 * 0 on success, a negative errno value otherwise and rte_errno is set. 2359 */ 2360 int 2361 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2362 struct rte_flow_item_eth *eth_spec, 2363 struct rte_flow_item_eth *eth_mask) 2364 { 2365 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2366 } 2367 2368 /** 2369 * Destroy a flow. 2370 * 2371 * @see rte_flow_destroy() 2372 * @see rte_flow_ops 2373 */ 2374 int 2375 mlx5_flow_destroy(struct rte_eth_dev *dev, 2376 struct rte_flow *flow, 2377 struct rte_flow_error *error __rte_unused) 2378 { 2379 struct priv *priv = dev->data->dev_private; 2380 2381 flow_list_destroy(dev, &priv->flows, flow); 2382 return 0; 2383 } 2384 2385 /** 2386 * Destroy all flows. 2387 * 2388 * @see rte_flow_flush() 2389 * @see rte_flow_ops 2390 */ 2391 int 2392 mlx5_flow_flush(struct rte_eth_dev *dev, 2393 struct rte_flow_error *error __rte_unused) 2394 { 2395 struct priv *priv = dev->data->dev_private; 2396 2397 mlx5_flow_list_flush(dev, &priv->flows); 2398 return 0; 2399 } 2400 2401 /** 2402 * Isolated mode. 2403 * 2404 * @see rte_flow_isolate() 2405 * @see rte_flow_ops 2406 */ 2407 int 2408 mlx5_flow_isolate(struct rte_eth_dev *dev, 2409 int enable, 2410 struct rte_flow_error *error) 2411 { 2412 struct priv *priv = dev->data->dev_private; 2413 2414 if (dev->data->dev_started) { 2415 rte_flow_error_set(error, EBUSY, 2416 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2417 NULL, 2418 "port must be stopped first"); 2419 return -rte_errno; 2420 } 2421 priv->isolated = !!enable; 2422 if (enable) 2423 dev->dev_ops = &mlx5_dev_ops_isolate; 2424 else 2425 dev->dev_ops = &mlx5_dev_ops; 2426 return 0; 2427 } 2428 2429 /** 2430 * Query a flow. 2431 * 2432 * @see rte_flow_query() 2433 * @see rte_flow_ops 2434 */ 2435 static int 2436 flow_drv_query(struct rte_eth_dev *dev, 2437 struct rte_flow *flow, 2438 const struct rte_flow_action *actions, 2439 void *data, 2440 struct rte_flow_error *error) 2441 { 2442 const struct mlx5_flow_driver_ops *fops; 2443 enum mlx5_flow_drv_type ftype = flow->drv_type; 2444 2445 assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 2446 fops = flow_get_drv_ops(ftype); 2447 2448 return fops->query(dev, flow, actions, data, error); 2449 } 2450 2451 /** 2452 * Query a flow. 2453 * 2454 * @see rte_flow_query() 2455 * @see rte_flow_ops 2456 */ 2457 int 2458 mlx5_flow_query(struct rte_eth_dev *dev, 2459 struct rte_flow *flow, 2460 const struct rte_flow_action *actions, 2461 void *data, 2462 struct rte_flow_error *error) 2463 { 2464 int ret; 2465 2466 ret = flow_drv_query(dev, flow, actions, data, error); 2467 if (ret < 0) 2468 return ret; 2469 return 0; 2470 } 2471 2472 /** 2473 * Convert a flow director filter to a generic flow. 2474 * 2475 * @param dev 2476 * Pointer to Ethernet device. 2477 * @param fdir_filter 2478 * Flow director filter to add. 2479 * @param attributes 2480 * Generic flow parameters structure. 2481 * 2482 * @return 2483 * 0 on success, a negative errno value otherwise and rte_errno is set. 2484 */ 2485 static int 2486 flow_fdir_filter_convert(struct rte_eth_dev *dev, 2487 const struct rte_eth_fdir_filter *fdir_filter, 2488 struct mlx5_fdir *attributes) 2489 { 2490 struct priv *priv = dev->data->dev_private; 2491 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2492 const struct rte_eth_fdir_masks *mask = 2493 &dev->data->dev_conf.fdir_conf.mask; 2494 2495 /* Validate queue number. */ 2496 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2497 DRV_LOG(ERR, "port %u invalid queue number %d", 2498 dev->data->port_id, fdir_filter->action.rx_queue); 2499 rte_errno = EINVAL; 2500 return -rte_errno; 2501 } 2502 attributes->attr.ingress = 1; 2503 attributes->items[0] = (struct rte_flow_item) { 2504 .type = RTE_FLOW_ITEM_TYPE_ETH, 2505 .spec = &attributes->l2, 2506 .mask = &attributes->l2_mask, 2507 }; 2508 switch (fdir_filter->action.behavior) { 2509 case RTE_ETH_FDIR_ACCEPT: 2510 attributes->actions[0] = (struct rte_flow_action){ 2511 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2512 .conf = &attributes->queue, 2513 }; 2514 break; 2515 case RTE_ETH_FDIR_REJECT: 2516 attributes->actions[0] = (struct rte_flow_action){ 2517 .type = RTE_FLOW_ACTION_TYPE_DROP, 2518 }; 2519 break; 2520 default: 2521 DRV_LOG(ERR, "port %u invalid behavior %d", 2522 dev->data->port_id, 2523 fdir_filter->action.behavior); 2524 rte_errno = ENOTSUP; 2525 return -rte_errno; 2526 } 2527 attributes->queue.index = fdir_filter->action.rx_queue; 2528 /* Handle L3. */ 2529 switch (fdir_filter->input.flow_type) { 2530 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2531 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2532 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2533 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2534 .src_addr = input->flow.ip4_flow.src_ip, 2535 .dst_addr = input->flow.ip4_flow.dst_ip, 2536 .time_to_live = input->flow.ip4_flow.ttl, 2537 .type_of_service = input->flow.ip4_flow.tos, 2538 }; 2539 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){ 2540 .src_addr = mask->ipv4_mask.src_ip, 2541 .dst_addr = mask->ipv4_mask.dst_ip, 2542 .time_to_live = mask->ipv4_mask.ttl, 2543 .type_of_service = mask->ipv4_mask.tos, 2544 .next_proto_id = mask->ipv4_mask.proto, 2545 }; 2546 attributes->items[1] = (struct rte_flow_item){ 2547 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2548 .spec = &attributes->l3, 2549 .mask = &attributes->l3_mask, 2550 }; 2551 break; 2552 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2553 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2554 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2555 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2556 .hop_limits = input->flow.ipv6_flow.hop_limits, 2557 .proto = input->flow.ipv6_flow.proto, 2558 }; 2559 2560 memcpy(attributes->l3.ipv6.hdr.src_addr, 2561 input->flow.ipv6_flow.src_ip, 2562 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2563 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2564 input->flow.ipv6_flow.dst_ip, 2565 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2566 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 2567 mask->ipv6_mask.src_ip, 2568 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2569 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 2570 mask->ipv6_mask.dst_ip, 2571 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2572 attributes->items[1] = (struct rte_flow_item){ 2573 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2574 .spec = &attributes->l3, 2575 .mask = &attributes->l3_mask, 2576 }; 2577 break; 2578 default: 2579 DRV_LOG(ERR, "port %u invalid flow type%d", 2580 dev->data->port_id, fdir_filter->input.flow_type); 2581 rte_errno = ENOTSUP; 2582 return -rte_errno; 2583 } 2584 /* Handle L4. */ 2585 switch (fdir_filter->input.flow_type) { 2586 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2587 attributes->l4.udp.hdr = (struct udp_hdr){ 2588 .src_port = input->flow.udp4_flow.src_port, 2589 .dst_port = input->flow.udp4_flow.dst_port, 2590 }; 2591 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2592 .src_port = mask->src_port_mask, 2593 .dst_port = mask->dst_port_mask, 2594 }; 2595 attributes->items[2] = (struct rte_flow_item){ 2596 .type = RTE_FLOW_ITEM_TYPE_UDP, 2597 .spec = &attributes->l4, 2598 .mask = &attributes->l4_mask, 2599 }; 2600 break; 2601 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2602 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2603 .src_port = input->flow.tcp4_flow.src_port, 2604 .dst_port = input->flow.tcp4_flow.dst_port, 2605 }; 2606 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2607 .src_port = mask->src_port_mask, 2608 .dst_port = mask->dst_port_mask, 2609 }; 2610 attributes->items[2] = (struct rte_flow_item){ 2611 .type = RTE_FLOW_ITEM_TYPE_TCP, 2612 .spec = &attributes->l4, 2613 .mask = &attributes->l4_mask, 2614 }; 2615 break; 2616 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2617 attributes->l4.udp.hdr = (struct udp_hdr){ 2618 .src_port = input->flow.udp6_flow.src_port, 2619 .dst_port = input->flow.udp6_flow.dst_port, 2620 }; 2621 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2622 .src_port = mask->src_port_mask, 2623 .dst_port = mask->dst_port_mask, 2624 }; 2625 attributes->items[2] = (struct rte_flow_item){ 2626 .type = RTE_FLOW_ITEM_TYPE_UDP, 2627 .spec = &attributes->l4, 2628 .mask = &attributes->l4_mask, 2629 }; 2630 break; 2631 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2632 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2633 .src_port = input->flow.tcp6_flow.src_port, 2634 .dst_port = input->flow.tcp6_flow.dst_port, 2635 }; 2636 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2637 .src_port = mask->src_port_mask, 2638 .dst_port = mask->dst_port_mask, 2639 }; 2640 attributes->items[2] = (struct rte_flow_item){ 2641 .type = RTE_FLOW_ITEM_TYPE_TCP, 2642 .spec = &attributes->l4, 2643 .mask = &attributes->l4_mask, 2644 }; 2645 break; 2646 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2647 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2648 break; 2649 default: 2650 DRV_LOG(ERR, "port %u invalid flow type%d", 2651 dev->data->port_id, fdir_filter->input.flow_type); 2652 rte_errno = ENOTSUP; 2653 return -rte_errno; 2654 } 2655 return 0; 2656 } 2657 2658 #define FLOW_FDIR_CMP(f1, f2, fld) \ 2659 memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld)) 2660 2661 /** 2662 * Compare two FDIR flows. If items and actions are identical, the two flows are 2663 * regarded as same. 2664 * 2665 * @param dev 2666 * Pointer to Ethernet device. 2667 * @param f1 2668 * FDIR flow to compare. 2669 * @param f2 2670 * FDIR flow to compare. 2671 * 2672 * @return 2673 * Zero on match, 1 otherwise. 2674 */ 2675 static int 2676 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2) 2677 { 2678 if (FLOW_FDIR_CMP(f1, f2, attr) || 2679 FLOW_FDIR_CMP(f1, f2, l2) || 2680 FLOW_FDIR_CMP(f1, f2, l2_mask) || 2681 FLOW_FDIR_CMP(f1, f2, l3) || 2682 FLOW_FDIR_CMP(f1, f2, l3_mask) || 2683 FLOW_FDIR_CMP(f1, f2, l4) || 2684 FLOW_FDIR_CMP(f1, f2, l4_mask) || 2685 FLOW_FDIR_CMP(f1, f2, actions[0].type)) 2686 return 1; 2687 if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE && 2688 FLOW_FDIR_CMP(f1, f2, queue)) 2689 return 1; 2690 return 0; 2691 } 2692 2693 /** 2694 * Search device flow list to find out a matched FDIR flow. 2695 * 2696 * @param dev 2697 * Pointer to Ethernet device. 2698 * @param fdir_flow 2699 * FDIR flow to lookup. 2700 * 2701 * @return 2702 * Pointer of flow if found, NULL otherwise. 2703 */ 2704 static struct rte_flow * 2705 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow) 2706 { 2707 struct priv *priv = dev->data->dev_private; 2708 struct rte_flow *flow = NULL; 2709 2710 assert(fdir_flow); 2711 TAILQ_FOREACH(flow, &priv->flows, next) { 2712 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) { 2713 DRV_LOG(DEBUG, "port %u found FDIR flow %p", 2714 dev->data->port_id, (void *)flow); 2715 break; 2716 } 2717 } 2718 return flow; 2719 } 2720 2721 /** 2722 * Add new flow director filter and store it in list. 2723 * 2724 * @param dev 2725 * Pointer to Ethernet device. 2726 * @param fdir_filter 2727 * Flow director filter to add. 2728 * 2729 * @return 2730 * 0 on success, a negative errno value otherwise and rte_errno is set. 2731 */ 2732 static int 2733 flow_fdir_filter_add(struct rte_eth_dev *dev, 2734 const struct rte_eth_fdir_filter *fdir_filter) 2735 { 2736 struct priv *priv = dev->data->dev_private; 2737 struct mlx5_fdir *fdir_flow; 2738 struct rte_flow *flow; 2739 int ret; 2740 2741 fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0); 2742 if (!fdir_flow) { 2743 rte_errno = ENOMEM; 2744 return -rte_errno; 2745 } 2746 ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow); 2747 if (ret) 2748 goto error; 2749 flow = flow_fdir_filter_lookup(dev, fdir_flow); 2750 if (flow) { 2751 rte_errno = EEXIST; 2752 goto error; 2753 } 2754 flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr, 2755 fdir_flow->items, fdir_flow->actions, NULL); 2756 if (!flow) 2757 goto error; 2758 assert(!flow->fdir); 2759 flow->fdir = fdir_flow; 2760 DRV_LOG(DEBUG, "port %u created FDIR flow %p", 2761 dev->data->port_id, (void *)flow); 2762 return 0; 2763 error: 2764 rte_free(fdir_flow); 2765 return -rte_errno; 2766 } 2767 2768 /** 2769 * Delete specific filter. 2770 * 2771 * @param dev 2772 * Pointer to Ethernet device. 2773 * @param fdir_filter 2774 * Filter to be deleted. 2775 * 2776 * @return 2777 * 0 on success, a negative errno value otherwise and rte_errno is set. 2778 */ 2779 static int 2780 flow_fdir_filter_delete(struct rte_eth_dev *dev, 2781 const struct rte_eth_fdir_filter *fdir_filter) 2782 { 2783 struct priv *priv = dev->data->dev_private; 2784 struct rte_flow *flow; 2785 struct mlx5_fdir fdir_flow = { 2786 .attr.group = 0, 2787 }; 2788 int ret; 2789 2790 ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow); 2791 if (ret) 2792 return -rte_errno; 2793 flow = flow_fdir_filter_lookup(dev, &fdir_flow); 2794 if (!flow) { 2795 rte_errno = ENOENT; 2796 return -rte_errno; 2797 } 2798 flow_list_destroy(dev, &priv->flows, flow); 2799 DRV_LOG(DEBUG, "port %u deleted FDIR flow %p", 2800 dev->data->port_id, (void *)flow); 2801 return 0; 2802 } 2803 2804 /** 2805 * Update queue for specific filter. 2806 * 2807 * @param dev 2808 * Pointer to Ethernet device. 2809 * @param fdir_filter 2810 * Filter to be updated. 2811 * 2812 * @return 2813 * 0 on success, a negative errno value otherwise and rte_errno is set. 2814 */ 2815 static int 2816 flow_fdir_filter_update(struct rte_eth_dev *dev, 2817 const struct rte_eth_fdir_filter *fdir_filter) 2818 { 2819 int ret; 2820 2821 ret = flow_fdir_filter_delete(dev, fdir_filter); 2822 if (ret) 2823 return ret; 2824 return flow_fdir_filter_add(dev, fdir_filter); 2825 } 2826 2827 /** 2828 * Flush all filters. 2829 * 2830 * @param dev 2831 * Pointer to Ethernet device. 2832 */ 2833 static void 2834 flow_fdir_filter_flush(struct rte_eth_dev *dev) 2835 { 2836 struct priv *priv = dev->data->dev_private; 2837 2838 mlx5_flow_list_flush(dev, &priv->flows); 2839 } 2840 2841 /** 2842 * Get flow director information. 2843 * 2844 * @param dev 2845 * Pointer to Ethernet device. 2846 * @param[out] fdir_info 2847 * Resulting flow director information. 2848 */ 2849 static void 2850 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 2851 { 2852 struct rte_eth_fdir_masks *mask = 2853 &dev->data->dev_conf.fdir_conf.mask; 2854 2855 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 2856 fdir_info->guarant_spc = 0; 2857 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2858 fdir_info->max_flexpayload = 0; 2859 fdir_info->flow_types_mask[0] = 0; 2860 fdir_info->flex_payload_unit = 0; 2861 fdir_info->max_flex_payload_segment_num = 0; 2862 fdir_info->flex_payload_limit = 0; 2863 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2864 } 2865 2866 /** 2867 * Deal with flow director operations. 2868 * 2869 * @param dev 2870 * Pointer to Ethernet device. 2871 * @param filter_op 2872 * Operation to perform. 2873 * @param arg 2874 * Pointer to operation-specific structure. 2875 * 2876 * @return 2877 * 0 on success, a negative errno value otherwise and rte_errno is set. 2878 */ 2879 static int 2880 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 2881 void *arg) 2882 { 2883 enum rte_fdir_mode fdir_mode = 2884 dev->data->dev_conf.fdir_conf.mode; 2885 2886 if (filter_op == RTE_ETH_FILTER_NOP) 2887 return 0; 2888 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2889 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2890 DRV_LOG(ERR, "port %u flow director mode %d not supported", 2891 dev->data->port_id, fdir_mode); 2892 rte_errno = EINVAL; 2893 return -rte_errno; 2894 } 2895 switch (filter_op) { 2896 case RTE_ETH_FILTER_ADD: 2897 return flow_fdir_filter_add(dev, arg); 2898 case RTE_ETH_FILTER_UPDATE: 2899 return flow_fdir_filter_update(dev, arg); 2900 case RTE_ETH_FILTER_DELETE: 2901 return flow_fdir_filter_delete(dev, arg); 2902 case RTE_ETH_FILTER_FLUSH: 2903 flow_fdir_filter_flush(dev); 2904 break; 2905 case RTE_ETH_FILTER_INFO: 2906 flow_fdir_info_get(dev, arg); 2907 break; 2908 default: 2909 DRV_LOG(DEBUG, "port %u unknown operation %u", 2910 dev->data->port_id, filter_op); 2911 rte_errno = EINVAL; 2912 return -rte_errno; 2913 } 2914 return 0; 2915 } 2916 2917 /** 2918 * Manage filter operations. 2919 * 2920 * @param dev 2921 * Pointer to Ethernet device structure. 2922 * @param filter_type 2923 * Filter type. 2924 * @param filter_op 2925 * Operation to perform. 2926 * @param arg 2927 * Pointer to operation-specific structure. 2928 * 2929 * @return 2930 * 0 on success, a negative errno value otherwise and rte_errno is set. 2931 */ 2932 int 2933 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 2934 enum rte_filter_type filter_type, 2935 enum rte_filter_op filter_op, 2936 void *arg) 2937 { 2938 switch (filter_type) { 2939 case RTE_ETH_FILTER_GENERIC: 2940 if (filter_op != RTE_ETH_FILTER_GET) { 2941 rte_errno = EINVAL; 2942 return -rte_errno; 2943 } 2944 *(const void **)arg = &mlx5_flow_ops; 2945 return 0; 2946 case RTE_ETH_FILTER_FDIR: 2947 return flow_fdir_ctrl_func(dev, filter_op, arg); 2948 default: 2949 DRV_LOG(ERR, "port %u filter type (%d) not supported", 2950 dev->data->port_id, filter_type); 2951 rte_errno = ENOTSUP; 2952 return -rte_errno; 2953 } 2954 return 0; 2955 } 2956