xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision fba3213015891c7ec9634e66bec5eb8eaed0d70a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46 
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48 
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57 
58 enum mlx5_expansion {
59 	MLX5_EXPANSION_ROOT,
60 	MLX5_EXPANSION_ROOT_OUTER,
61 	MLX5_EXPANSION_ROOT_ETH_VLAN,
62 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63 	MLX5_EXPANSION_OUTER_ETH,
64 	MLX5_EXPANSION_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_VLAN,
66 	MLX5_EXPANSION_OUTER_IPV4,
67 	MLX5_EXPANSION_OUTER_IPV4_UDP,
68 	MLX5_EXPANSION_OUTER_IPV4_TCP,
69 	MLX5_EXPANSION_OUTER_IPV6,
70 	MLX5_EXPANSION_OUTER_IPV6_UDP,
71 	MLX5_EXPANSION_OUTER_IPV6_TCP,
72 	MLX5_EXPANSION_VXLAN,
73 	MLX5_EXPANSION_VXLAN_GPE,
74 	MLX5_EXPANSION_GRE,
75 	MLX5_EXPANSION_MPLS,
76 	MLX5_EXPANSION_ETH,
77 	MLX5_EXPANSION_ETH_VLAN,
78 	MLX5_EXPANSION_VLAN,
79 	MLX5_EXPANSION_IPV4,
80 	MLX5_EXPANSION_IPV4_UDP,
81 	MLX5_EXPANSION_IPV4_TCP,
82 	MLX5_EXPANSION_IPV6,
83 	MLX5_EXPANSION_IPV6_UDP,
84 	MLX5_EXPANSION_IPV6_TCP,
85 };
86 
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89 	[MLX5_EXPANSION_ROOT] = {
90 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91 						 MLX5_EXPANSION_IPV4,
92 						 MLX5_EXPANSION_IPV6),
93 		.type = RTE_FLOW_ITEM_TYPE_END,
94 	},
95 	[MLX5_EXPANSION_ROOT_OUTER] = {
96 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97 						 MLX5_EXPANSION_OUTER_IPV4,
98 						 MLX5_EXPANSION_OUTER_IPV6),
99 		.type = RTE_FLOW_ITEM_TYPE_END,
100 	},
101 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103 		.type = RTE_FLOW_ITEM_TYPE_END,
104 	},
105 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107 		.type = RTE_FLOW_ITEM_TYPE_END,
108 	},
109 	[MLX5_EXPANSION_OUTER_ETH] = {
110 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111 						 MLX5_EXPANSION_OUTER_IPV6,
112 						 MLX5_EXPANSION_MPLS),
113 		.type = RTE_FLOW_ITEM_TYPE_ETH,
114 		.rss_types = 0,
115 	},
116 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118 		.type = RTE_FLOW_ITEM_TYPE_ETH,
119 		.rss_types = 0,
120 	},
121 	[MLX5_EXPANSION_OUTER_VLAN] = {
122 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123 						 MLX5_EXPANSION_OUTER_IPV6),
124 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
125 	},
126 	[MLX5_EXPANSION_OUTER_IPV4] = {
127 		.next = RTE_FLOW_EXPAND_RSS_NEXT
128 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
129 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
130 			 MLX5_EXPANSION_GRE,
131 			 MLX5_EXPANSION_IPV4,
132 			 MLX5_EXPANSION_IPV6),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
151 			 MLX5_EXPANSION_IPV4,
152 			 MLX5_EXPANSION_IPV6),
153 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
154 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155 			ETH_RSS_NONFRAG_IPV6_OTHER,
156 	},
157 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159 						 MLX5_EXPANSION_VXLAN_GPE),
160 		.type = RTE_FLOW_ITEM_TYPE_UDP,
161 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162 	},
163 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164 		.type = RTE_FLOW_ITEM_TYPE_TCP,
165 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166 	},
167 	[MLX5_EXPANSION_VXLAN] = {
168 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
170 	},
171 	[MLX5_EXPANSION_VXLAN_GPE] = {
172 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173 						 MLX5_EXPANSION_IPV4,
174 						 MLX5_EXPANSION_IPV6),
175 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176 	},
177 	[MLX5_EXPANSION_GRE] = {
178 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179 		.type = RTE_FLOW_ITEM_TYPE_GRE,
180 	},
181 	[MLX5_EXPANSION_MPLS] = {
182 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183 						 MLX5_EXPANSION_IPV6),
184 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
185 	},
186 	[MLX5_EXPANSION_ETH] = {
187 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188 						 MLX5_EXPANSION_IPV6),
189 		.type = RTE_FLOW_ITEM_TYPE_ETH,
190 	},
191 	[MLX5_EXPANSION_ETH_VLAN] = {
192 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193 		.type = RTE_FLOW_ITEM_TYPE_ETH,
194 	},
195 	[MLX5_EXPANSION_VLAN] = {
196 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197 						 MLX5_EXPANSION_IPV6),
198 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
199 	},
200 	[MLX5_EXPANSION_IPV4] = {
201 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202 						 MLX5_EXPANSION_IPV4_TCP),
203 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
204 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205 			ETH_RSS_NONFRAG_IPV4_OTHER,
206 	},
207 	[MLX5_EXPANSION_IPV4_UDP] = {
208 		.type = RTE_FLOW_ITEM_TYPE_UDP,
209 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210 	},
211 	[MLX5_EXPANSION_IPV4_TCP] = {
212 		.type = RTE_FLOW_ITEM_TYPE_TCP,
213 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214 	},
215 	[MLX5_EXPANSION_IPV6] = {
216 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217 						 MLX5_EXPANSION_IPV6_TCP),
218 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
219 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220 			ETH_RSS_NONFRAG_IPV6_OTHER,
221 	},
222 	[MLX5_EXPANSION_IPV6_UDP] = {
223 		.type = RTE_FLOW_ITEM_TYPE_UDP,
224 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225 	},
226 	[MLX5_EXPANSION_IPV6_TCP] = {
227 		.type = RTE_FLOW_ITEM_TYPE_TCP,
228 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229 	},
230 };
231 
232 static const struct rte_flow_ops mlx5_flow_ops = {
233 	.validate = mlx5_flow_validate,
234 	.create = mlx5_flow_create,
235 	.destroy = mlx5_flow_destroy,
236 	.flush = mlx5_flow_flush,
237 	.isolate = mlx5_flow_isolate,
238 	.query = mlx5_flow_query,
239 };
240 
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243 	struct rte_flow_attr attr;
244 	struct rte_flow_item items[4];
245 	struct rte_flow_item_eth l2;
246 	struct rte_flow_item_eth l2_mask;
247 	union {
248 		struct rte_flow_item_ipv4 ipv4;
249 		struct rte_flow_item_ipv6 ipv6;
250 	} l3;
251 	union {
252 		struct rte_flow_item_ipv4 ipv4;
253 		struct rte_flow_item_ipv6 ipv6;
254 	} l3_mask;
255 	union {
256 		struct rte_flow_item_udp udp;
257 		struct rte_flow_item_tcp tcp;
258 	} l4;
259 	union {
260 		struct rte_flow_item_udp udp;
261 		struct rte_flow_item_tcp tcp;
262 	} l4_mask;
263 	struct rte_flow_action actions[2];
264 	struct rte_flow_action_queue queue;
265 };
266 
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271 
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275 	{ 9, 10, 11 }, { 12, 13, 14 },
276 };
277 
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283 
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285 	{
286 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
287 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288 	},
289 	{
290 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292 	},
293 	{
294 		.tunnel = MLX5_FLOW_LAYER_GRE,
295 		.ptype = RTE_PTYPE_TUNNEL_GRE,
296 	},
297 	{
298 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300 	},
301 	{
302 		.tunnel = MLX5_FLOW_LAYER_MPLS,
303 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304 	},
305 	{
306 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
307 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
308 	},
309 	{
310 		.tunnel = MLX5_FLOW_LAYER_IPIP,
311 		.ptype = RTE_PTYPE_TUNNEL_IP,
312 	},
313 	{
314 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315 		.ptype = RTE_PTYPE_TUNNEL_IP,
316 	},
317 };
318 
319 enum mlx5_feature_name {
320 	MLX5_HAIRPIN_RX,
321 	MLX5_HAIRPIN_TX,
322 	MLX5_APPLICATION,
323 };
324 
325 /**
326  * Translate tag ID to register.
327  *
328  * @param[in] dev
329  *   Pointer to the Ethernet device structure.
330  * @param[in] feature
331  *   The feature that request the register.
332  * @param[in] id
333  *   The request register ID.
334  * @param[out] error
335  *   Error description in case of any.
336  *
337  * @return
338  *   The request register on success, a negative errno
339  *   value otherwise and rte_errno is set.
340  */
341 __rte_unused
342 static enum modify_reg flow_get_reg_id(struct rte_eth_dev *dev,
343 				       enum mlx5_feature_name feature,
344 				       uint32_t id,
345 				       struct rte_flow_error *error)
346 {
347 	static enum modify_reg id2reg[] = {
348 		[0] = REG_A,
349 		[1] = REG_C_2,
350 		[2] = REG_C_3,
351 		[3] = REG_C_4,
352 		[4] = REG_B,};
353 
354 	dev = (void *)dev;
355 	switch (feature) {
356 	case MLX5_HAIRPIN_RX:
357 		return REG_B;
358 	case MLX5_HAIRPIN_TX:
359 		return REG_A;
360 	case MLX5_APPLICATION:
361 		if (id > 4)
362 			return rte_flow_error_set(error, EINVAL,
363 						  RTE_FLOW_ERROR_TYPE_ITEM,
364 						  NULL, "invalid tag id");
365 		return id2reg[id];
366 	}
367 	return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
368 				  NULL, "invalid feature name");
369 }
370 
371 /**
372  * Discover the maximum number of priority available.
373  *
374  * @param[in] dev
375  *   Pointer to the Ethernet device structure.
376  *
377  * @return
378  *   number of supported flow priority on success, a negative errno
379  *   value otherwise and rte_errno is set.
380  */
381 int
382 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
383 {
384 	struct mlx5_priv *priv = dev->data->dev_private;
385 	struct {
386 		struct ibv_flow_attr attr;
387 		struct ibv_flow_spec_eth eth;
388 		struct ibv_flow_spec_action_drop drop;
389 	} flow_attr = {
390 		.attr = {
391 			.num_of_specs = 2,
392 			.port = (uint8_t)priv->ibv_port,
393 		},
394 		.eth = {
395 			.type = IBV_FLOW_SPEC_ETH,
396 			.size = sizeof(struct ibv_flow_spec_eth),
397 		},
398 		.drop = {
399 			.size = sizeof(struct ibv_flow_spec_action_drop),
400 			.type = IBV_FLOW_SPEC_ACTION_DROP,
401 		},
402 	};
403 	struct ibv_flow *flow;
404 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
405 	uint16_t vprio[] = { 8, 16 };
406 	int i;
407 	int priority = 0;
408 
409 	if (!drop) {
410 		rte_errno = ENOTSUP;
411 		return -rte_errno;
412 	}
413 	for (i = 0; i != RTE_DIM(vprio); i++) {
414 		flow_attr.attr.priority = vprio[i] - 1;
415 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
416 		if (!flow)
417 			break;
418 		claim_zero(mlx5_glue->destroy_flow(flow));
419 		priority = vprio[i];
420 	}
421 	mlx5_hrxq_drop_release(dev);
422 	switch (priority) {
423 	case 8:
424 		priority = RTE_DIM(priority_map_3);
425 		break;
426 	case 16:
427 		priority = RTE_DIM(priority_map_5);
428 		break;
429 	default:
430 		rte_errno = ENOTSUP;
431 		DRV_LOG(ERR,
432 			"port %u verbs maximum priority: %d expected 8/16",
433 			dev->data->port_id, priority);
434 		return -rte_errno;
435 	}
436 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
437 		dev->data->port_id, priority);
438 	return priority;
439 }
440 
441 /**
442  * Adjust flow priority based on the highest layer and the request priority.
443  *
444  * @param[in] dev
445  *   Pointer to the Ethernet device structure.
446  * @param[in] priority
447  *   The rule base priority.
448  * @param[in] subpriority
449  *   The priority based on the items.
450  *
451  * @return
452  *   The new priority.
453  */
454 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
455 				   uint32_t subpriority)
456 {
457 	uint32_t res = 0;
458 	struct mlx5_priv *priv = dev->data->dev_private;
459 
460 	switch (priv->config.flow_prio) {
461 	case RTE_DIM(priority_map_3):
462 		res = priority_map_3[priority][subpriority];
463 		break;
464 	case RTE_DIM(priority_map_5):
465 		res = priority_map_5[priority][subpriority];
466 		break;
467 	}
468 	return  res;
469 }
470 
471 /**
472  * Verify the @p item specifications (spec, last, mask) are compatible with the
473  * NIC capabilities.
474  *
475  * @param[in] item
476  *   Item specification.
477  * @param[in] mask
478  *   @p item->mask or flow default bit-masks.
479  * @param[in] nic_mask
480  *   Bit-masks covering supported fields by the NIC to compare with user mask.
481  * @param[in] size
482  *   Bit-masks size in bytes.
483  * @param[out] error
484  *   Pointer to error structure.
485  *
486  * @return
487  *   0 on success, a negative errno value otherwise and rte_errno is set.
488  */
489 int
490 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
491 			  const uint8_t *mask,
492 			  const uint8_t *nic_mask,
493 			  unsigned int size,
494 			  struct rte_flow_error *error)
495 {
496 	unsigned int i;
497 
498 	assert(nic_mask);
499 	for (i = 0; i < size; ++i)
500 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
501 			return rte_flow_error_set(error, ENOTSUP,
502 						  RTE_FLOW_ERROR_TYPE_ITEM,
503 						  item,
504 						  "mask enables non supported"
505 						  " bits");
506 	if (!item->spec && (item->mask || item->last))
507 		return rte_flow_error_set(error, EINVAL,
508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
509 					  "mask/last without a spec is not"
510 					  " supported");
511 	if (item->spec && item->last) {
512 		uint8_t spec[size];
513 		uint8_t last[size];
514 		unsigned int i;
515 		int ret;
516 
517 		for (i = 0; i < size; ++i) {
518 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
519 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
520 		}
521 		ret = memcmp(spec, last, size);
522 		if (ret != 0)
523 			return rte_flow_error_set(error, EINVAL,
524 						  RTE_FLOW_ERROR_TYPE_ITEM,
525 						  item,
526 						  "range is not valid");
527 	}
528 	return 0;
529 }
530 
531 /**
532  * Adjust the hash fields according to the @p flow information.
533  *
534  * @param[in] dev_flow.
535  *   Pointer to the mlx5_flow.
536  * @param[in] tunnel
537  *   1 when the hash field is for a tunnel item.
538  * @param[in] layer_types
539  *   ETH_RSS_* types.
540  * @param[in] hash_fields
541  *   Item hash fields.
542  *
543  * @return
544  *   The hash fields that should be used.
545  */
546 uint64_t
547 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
548 			    int tunnel __rte_unused, uint64_t layer_types,
549 			    uint64_t hash_fields)
550 {
551 	struct rte_flow *flow = dev_flow->flow;
552 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
553 	int rss_request_inner = flow->rss.level >= 2;
554 
555 	/* Check RSS hash level for tunnel. */
556 	if (tunnel && rss_request_inner)
557 		hash_fields |= IBV_RX_HASH_INNER;
558 	else if (tunnel || rss_request_inner)
559 		return 0;
560 #endif
561 	/* Check if requested layer matches RSS hash fields. */
562 	if (!(flow->rss.types & layer_types))
563 		return 0;
564 	return hash_fields;
565 }
566 
567 /**
568  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
569  * if several tunnel rules are used on this queue, the tunnel ptype will be
570  * cleared.
571  *
572  * @param rxq_ctrl
573  *   Rx queue to update.
574  */
575 static void
576 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
577 {
578 	unsigned int i;
579 	uint32_t tunnel_ptype = 0;
580 
581 	/* Look up for the ptype to use. */
582 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
583 		if (!rxq_ctrl->flow_tunnels_n[i])
584 			continue;
585 		if (!tunnel_ptype) {
586 			tunnel_ptype = tunnels_info[i].ptype;
587 		} else {
588 			tunnel_ptype = 0;
589 			break;
590 		}
591 	}
592 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
593 }
594 
595 /**
596  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
597  * flow.
598  *
599  * @param[in] dev
600  *   Pointer to the Ethernet device structure.
601  * @param[in] dev_flow
602  *   Pointer to device flow structure.
603  */
604 static void
605 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
606 {
607 	struct mlx5_priv *priv = dev->data->dev_private;
608 	struct rte_flow *flow = dev_flow->flow;
609 	const int mark = !!(dev_flow->actions &
610 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
611 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
612 	unsigned int i;
613 
614 	for (i = 0; i != flow->rss.queue_num; ++i) {
615 		int idx = (*flow->queue)[i];
616 		struct mlx5_rxq_ctrl *rxq_ctrl =
617 			container_of((*priv->rxqs)[idx],
618 				     struct mlx5_rxq_ctrl, rxq);
619 
620 		if (mark) {
621 			rxq_ctrl->rxq.mark = 1;
622 			rxq_ctrl->flow_mark_n++;
623 		}
624 		if (tunnel) {
625 			unsigned int j;
626 
627 			/* Increase the counter matching the flow. */
628 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629 				if ((tunnels_info[j].tunnel &
630 				     dev_flow->layers) ==
631 				    tunnels_info[j].tunnel) {
632 					rxq_ctrl->flow_tunnels_n[j]++;
633 					break;
634 				}
635 			}
636 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
637 		}
638 	}
639 }
640 
641 /**
642  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
643  *
644  * @param[in] dev
645  *   Pointer to the Ethernet device structure.
646  * @param[in] flow
647  *   Pointer to flow structure.
648  */
649 static void
650 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
651 {
652 	struct mlx5_flow *dev_flow;
653 
654 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
655 		flow_drv_rxq_flags_set(dev, dev_flow);
656 }
657 
658 /**
659  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
660  * device flow if no other flow uses it with the same kind of request.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  * @param[in] dev_flow
665  *   Pointer to the device flow.
666  */
667 static void
668 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
669 {
670 	struct mlx5_priv *priv = dev->data->dev_private;
671 	struct rte_flow *flow = dev_flow->flow;
672 	const int mark = !!(dev_flow->actions &
673 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
674 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
675 	unsigned int i;
676 
677 	assert(dev->data->dev_started);
678 	for (i = 0; i != flow->rss.queue_num; ++i) {
679 		int idx = (*flow->queue)[i];
680 		struct mlx5_rxq_ctrl *rxq_ctrl =
681 			container_of((*priv->rxqs)[idx],
682 				     struct mlx5_rxq_ctrl, rxq);
683 
684 		if (mark) {
685 			rxq_ctrl->flow_mark_n--;
686 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
687 		}
688 		if (tunnel) {
689 			unsigned int j;
690 
691 			/* Decrease the counter matching the flow. */
692 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
693 				if ((tunnels_info[j].tunnel &
694 				     dev_flow->layers) ==
695 				    tunnels_info[j].tunnel) {
696 					rxq_ctrl->flow_tunnels_n[j]--;
697 					break;
698 				}
699 			}
700 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
701 		}
702 	}
703 }
704 
705 /**
706  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
707  * @p flow if no other flow uses it with the same kind of request.
708  *
709  * @param dev
710  *   Pointer to Ethernet device.
711  * @param[in] flow
712  *   Pointer to the flow.
713  */
714 static void
715 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
716 {
717 	struct mlx5_flow *dev_flow;
718 
719 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
720 		flow_drv_rxq_flags_trim(dev, dev_flow);
721 }
722 
723 /**
724  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
725  *
726  * @param dev
727  *   Pointer to Ethernet device.
728  */
729 static void
730 flow_rxq_flags_clear(struct rte_eth_dev *dev)
731 {
732 	struct mlx5_priv *priv = dev->data->dev_private;
733 	unsigned int i;
734 
735 	for (i = 0; i != priv->rxqs_n; ++i) {
736 		struct mlx5_rxq_ctrl *rxq_ctrl;
737 		unsigned int j;
738 
739 		if (!(*priv->rxqs)[i])
740 			continue;
741 		rxq_ctrl = container_of((*priv->rxqs)[i],
742 					struct mlx5_rxq_ctrl, rxq);
743 		rxq_ctrl->flow_mark_n = 0;
744 		rxq_ctrl->rxq.mark = 0;
745 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
746 			rxq_ctrl->flow_tunnels_n[j] = 0;
747 		rxq_ctrl->rxq.tunnel = 0;
748 	}
749 }
750 
751 /*
752  * return a pointer to the desired action in the list of actions.
753  *
754  * @param[in] actions
755  *   The list of actions to search the action in.
756  * @param[in] action
757  *   The action to find.
758  *
759  * @return
760  *   Pointer to the action in the list, if found. NULL otherwise.
761  */
762 const struct rte_flow_action *
763 mlx5_flow_find_action(const struct rte_flow_action *actions,
764 		      enum rte_flow_action_type action)
765 {
766 	if (actions == NULL)
767 		return NULL;
768 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
769 		if (actions->type == action)
770 			return actions;
771 	return NULL;
772 }
773 
774 /*
775  * Validate the flag action.
776  *
777  * @param[in] action_flags
778  *   Bit-fields that holds the actions detected until now.
779  * @param[in] attr
780  *   Attributes of flow that includes this action.
781  * @param[out] error
782  *   Pointer to error structure.
783  *
784  * @return
785  *   0 on success, a negative errno value otherwise and rte_errno is set.
786  */
787 int
788 mlx5_flow_validate_action_flag(uint64_t action_flags,
789 			       const struct rte_flow_attr *attr,
790 			       struct rte_flow_error *error)
791 {
792 
793 	if (action_flags & MLX5_FLOW_ACTION_DROP)
794 		return rte_flow_error_set(error, EINVAL,
795 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
796 					  "can't drop and flag in same flow");
797 	if (action_flags & MLX5_FLOW_ACTION_MARK)
798 		return rte_flow_error_set(error, EINVAL,
799 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
800 					  "can't mark and flag in same flow");
801 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
802 		return rte_flow_error_set(error, EINVAL,
803 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
804 					  "can't have 2 flag"
805 					  " actions in same flow");
806 	if (attr->egress)
807 		return rte_flow_error_set(error, ENOTSUP,
808 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
809 					  "flag action not supported for "
810 					  "egress");
811 	return 0;
812 }
813 
814 /*
815  * Validate the mark action.
816  *
817  * @param[in] action
818  *   Pointer to the queue action.
819  * @param[in] action_flags
820  *   Bit-fields that holds the actions detected until now.
821  * @param[in] attr
822  *   Attributes of flow that includes this action.
823  * @param[out] error
824  *   Pointer to error structure.
825  *
826  * @return
827  *   0 on success, a negative errno value otherwise and rte_errno is set.
828  */
829 int
830 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
831 			       uint64_t action_flags,
832 			       const struct rte_flow_attr *attr,
833 			       struct rte_flow_error *error)
834 {
835 	const struct rte_flow_action_mark *mark = action->conf;
836 
837 	if (!mark)
838 		return rte_flow_error_set(error, EINVAL,
839 					  RTE_FLOW_ERROR_TYPE_ACTION,
840 					  action,
841 					  "configuration cannot be null");
842 	if (mark->id >= MLX5_FLOW_MARK_MAX)
843 		return rte_flow_error_set(error, EINVAL,
844 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
845 					  &mark->id,
846 					  "mark id must in 0 <= id < "
847 					  RTE_STR(MLX5_FLOW_MARK_MAX));
848 	if (action_flags & MLX5_FLOW_ACTION_DROP)
849 		return rte_flow_error_set(error, EINVAL,
850 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851 					  "can't drop and mark in same flow");
852 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
853 		return rte_flow_error_set(error, EINVAL,
854 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
855 					  "can't flag and mark in same flow");
856 	if (action_flags & MLX5_FLOW_ACTION_MARK)
857 		return rte_flow_error_set(error, EINVAL,
858 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
859 					  "can't have 2 mark actions in same"
860 					  " flow");
861 	if (attr->egress)
862 		return rte_flow_error_set(error, ENOTSUP,
863 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
864 					  "mark action not supported for "
865 					  "egress");
866 	return 0;
867 }
868 
869 /*
870  * Validate the drop action.
871  *
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] attr
875  *   Attributes of flow that includes this action.
876  * @param[out] error
877  *   Pointer to error structure.
878  *
879  * @return
880  *   0 on success, a negative errno value otherwise and rte_errno is set.
881  */
882 int
883 mlx5_flow_validate_action_drop(uint64_t action_flags,
884 			       const struct rte_flow_attr *attr,
885 			       struct rte_flow_error *error)
886 {
887 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
888 		return rte_flow_error_set(error, EINVAL,
889 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
890 					  "can't drop and flag in same flow");
891 	if (action_flags & MLX5_FLOW_ACTION_MARK)
892 		return rte_flow_error_set(error, EINVAL,
893 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
894 					  "can't drop and mark in same flow");
895 	if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
896 			    MLX5_FLOW_FATE_ESWITCH_ACTIONS))
897 		return rte_flow_error_set(error, EINVAL,
898 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
899 					  "can't have 2 fate actions in"
900 					  " same flow");
901 	if (attr->egress)
902 		return rte_flow_error_set(error, ENOTSUP,
903 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
904 					  "drop action not supported for "
905 					  "egress");
906 	return 0;
907 }
908 
909 /*
910  * Validate the queue action.
911  *
912  * @param[in] action
913  *   Pointer to the queue action.
914  * @param[in] action_flags
915  *   Bit-fields that holds the actions detected until now.
916  * @param[in] dev
917  *   Pointer to the Ethernet device structure.
918  * @param[in] attr
919  *   Attributes of flow that includes this action.
920  * @param[out] error
921  *   Pointer to error structure.
922  *
923  * @return
924  *   0 on success, a negative errno value otherwise and rte_errno is set.
925  */
926 int
927 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
928 				uint64_t action_flags,
929 				struct rte_eth_dev *dev,
930 				const struct rte_flow_attr *attr,
931 				struct rte_flow_error *error)
932 {
933 	struct mlx5_priv *priv = dev->data->dev_private;
934 	const struct rte_flow_action_queue *queue = action->conf;
935 
936 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
937 		return rte_flow_error_set(error, EINVAL,
938 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
939 					  "can't have 2 fate actions in"
940 					  " same flow");
941 	if (!priv->rxqs_n)
942 		return rte_flow_error_set(error, EINVAL,
943 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944 					  NULL, "No Rx queues configured");
945 	if (queue->index >= priv->rxqs_n)
946 		return rte_flow_error_set(error, EINVAL,
947 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
948 					  &queue->index,
949 					  "queue index out of range");
950 	if (!(*priv->rxqs)[queue->index])
951 		return rte_flow_error_set(error, EINVAL,
952 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953 					  &queue->index,
954 					  "queue is not configured");
955 	if (attr->egress)
956 		return rte_flow_error_set(error, ENOTSUP,
957 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
958 					  "queue action not supported for "
959 					  "egress");
960 	return 0;
961 }
962 
963 /*
964  * Validate the rss action.
965  *
966  * @param[in] action
967  *   Pointer to the queue action.
968  * @param[in] action_flags
969  *   Bit-fields that holds the actions detected until now.
970  * @param[in] dev
971  *   Pointer to the Ethernet device structure.
972  * @param[in] attr
973  *   Attributes of flow that includes this action.
974  * @param[in] item_flags
975  *   Items that were detected.
976  * @param[out] error
977  *   Pointer to error structure.
978  *
979  * @return
980  *   0 on success, a negative errno value otherwise and rte_errno is set.
981  */
982 int
983 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
984 			      uint64_t action_flags,
985 			      struct rte_eth_dev *dev,
986 			      const struct rte_flow_attr *attr,
987 			      uint64_t item_flags,
988 			      struct rte_flow_error *error)
989 {
990 	struct mlx5_priv *priv = dev->data->dev_private;
991 	const struct rte_flow_action_rss *rss = action->conf;
992 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
993 	unsigned int i;
994 
995 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
996 		return rte_flow_error_set(error, EINVAL,
997 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
998 					  "can't have 2 fate actions"
999 					  " in same flow");
1000 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1001 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1002 		return rte_flow_error_set(error, ENOTSUP,
1003 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1004 					  &rss->func,
1005 					  "RSS hash function not supported");
1006 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1007 	if (rss->level > 2)
1008 #else
1009 	if (rss->level > 1)
1010 #endif
1011 		return rte_flow_error_set(error, ENOTSUP,
1012 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1013 					  &rss->level,
1014 					  "tunnel RSS is not supported");
1015 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1016 	if (rss->key_len == 0 && rss->key != NULL)
1017 		return rte_flow_error_set(error, ENOTSUP,
1018 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1019 					  &rss->key_len,
1020 					  "RSS hash key length 0");
1021 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1022 		return rte_flow_error_set(error, ENOTSUP,
1023 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1024 					  &rss->key_len,
1025 					  "RSS hash key too small");
1026 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1027 		return rte_flow_error_set(error, ENOTSUP,
1028 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1029 					  &rss->key_len,
1030 					  "RSS hash key too large");
1031 	if (rss->queue_num > priv->config.ind_table_max_size)
1032 		return rte_flow_error_set(error, ENOTSUP,
1033 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1034 					  &rss->queue_num,
1035 					  "number of queues too large");
1036 	if (rss->types & MLX5_RSS_HF_MASK)
1037 		return rte_flow_error_set(error, ENOTSUP,
1038 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1039 					  &rss->types,
1040 					  "some RSS protocols are not"
1041 					  " supported");
1042 	if (!priv->rxqs_n)
1043 		return rte_flow_error_set(error, EINVAL,
1044 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1045 					  NULL, "No Rx queues configured");
1046 	if (!rss->queue_num)
1047 		return rte_flow_error_set(error, EINVAL,
1048 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1049 					  NULL, "No queues configured");
1050 	for (i = 0; i != rss->queue_num; ++i) {
1051 		if (!(*priv->rxqs)[rss->queue[i]])
1052 			return rte_flow_error_set
1053 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1054 				 &rss->queue[i], "queue is not configured");
1055 	}
1056 	if (attr->egress)
1057 		return rte_flow_error_set(error, ENOTSUP,
1058 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1059 					  "rss action not supported for "
1060 					  "egress");
1061 	if (rss->level > 1 &&  !tunnel)
1062 		return rte_flow_error_set(error, EINVAL,
1063 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1064 					  "inner RSS is not supported for "
1065 					  "non-tunnel flows");
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Validate the count action.
1071  *
1072  * @param[in] dev
1073  *   Pointer to the Ethernet device structure.
1074  * @param[in] attr
1075  *   Attributes of flow that includes this action.
1076  * @param[out] error
1077  *   Pointer to error structure.
1078  *
1079  * @return
1080  *   0 on success, a negative errno value otherwise and rte_errno is set.
1081  */
1082 int
1083 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1084 				const struct rte_flow_attr *attr,
1085 				struct rte_flow_error *error)
1086 {
1087 	if (attr->egress)
1088 		return rte_flow_error_set(error, ENOTSUP,
1089 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1090 					  "count action not supported for "
1091 					  "egress");
1092 	return 0;
1093 }
1094 
1095 /**
1096  * Verify the @p attributes will be correctly understood by the NIC and store
1097  * them in the @p flow if everything is correct.
1098  *
1099  * @param[in] dev
1100  *   Pointer to the Ethernet device structure.
1101  * @param[in] attributes
1102  *   Pointer to flow attributes
1103  * @param[out] error
1104  *   Pointer to error structure.
1105  *
1106  * @return
1107  *   0 on success, a negative errno value otherwise and rte_errno is set.
1108  */
1109 int
1110 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1111 			      const struct rte_flow_attr *attributes,
1112 			      struct rte_flow_error *error)
1113 {
1114 	struct mlx5_priv *priv = dev->data->dev_private;
1115 	uint32_t priority_max = priv->config.flow_prio - 1;
1116 
1117 	if (attributes->group)
1118 		return rte_flow_error_set(error, ENOTSUP,
1119 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1120 					  NULL, "groups is not supported");
1121 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1122 	    attributes->priority >= priority_max)
1123 		return rte_flow_error_set(error, ENOTSUP,
1124 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1125 					  NULL, "priority out of range");
1126 	if (attributes->egress)
1127 		return rte_flow_error_set(error, ENOTSUP,
1128 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1129 					  "egress is not supported");
1130 	if (attributes->transfer && !priv->config.dv_esw_en)
1131 		return rte_flow_error_set(error, ENOTSUP,
1132 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1133 					  NULL, "transfer is not supported");
1134 	if (!attributes->ingress)
1135 		return rte_flow_error_set(error, EINVAL,
1136 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1137 					  NULL,
1138 					  "ingress attribute is mandatory");
1139 	return 0;
1140 }
1141 
1142 /**
1143  * Validate ICMP6 item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1157 			       uint64_t item_flags,
1158 			       uint8_t target_protocol,
1159 			       struct rte_flow_error *error)
1160 {
1161 	const struct rte_flow_item_icmp6 *mask = item->mask;
1162 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1164 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1165 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166 				      MLX5_FLOW_LAYER_OUTER_L4;
1167 	int ret;
1168 
1169 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1170 		return rte_flow_error_set(error, EINVAL,
1171 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1172 					  "protocol filtering not compatible"
1173 					  " with ICMP6 layer");
1174 	if (!(item_flags & l3m))
1175 		return rte_flow_error_set(error, EINVAL,
1176 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1177 					  "IPv6 is mandatory to filter on"
1178 					  " ICMP6");
1179 	if (item_flags & l4m)
1180 		return rte_flow_error_set(error, EINVAL,
1181 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1182 					  "multiple L4 layers not supported");
1183 	if (!mask)
1184 		mask = &rte_flow_item_icmp6_mask;
1185 	ret = mlx5_flow_item_acceptable
1186 		(item, (const uint8_t *)mask,
1187 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1188 		 sizeof(struct rte_flow_item_icmp6), error);
1189 	if (ret < 0)
1190 		return ret;
1191 	return 0;
1192 }
1193 
1194 /**
1195  * Validate ICMP item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1209 			     uint64_t item_flags,
1210 			     uint8_t target_protocol,
1211 			     struct rte_flow_error *error)
1212 {
1213 	const struct rte_flow_item_icmp *mask = item->mask;
1214 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1215 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1216 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1217 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1218 				      MLX5_FLOW_LAYER_OUTER_L4;
1219 	int ret;
1220 
1221 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1222 		return rte_flow_error_set(error, EINVAL,
1223 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1224 					  "protocol filtering not compatible"
1225 					  " with ICMP layer");
1226 	if (!(item_flags & l3m))
1227 		return rte_flow_error_set(error, EINVAL,
1228 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1229 					  "IPv4 is mandatory to filter"
1230 					  " on ICMP");
1231 	if (item_flags & l4m)
1232 		return rte_flow_error_set(error, EINVAL,
1233 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1234 					  "multiple L4 layers not supported");
1235 	if (!mask)
1236 		mask = &rte_flow_item_icmp_mask;
1237 	ret = mlx5_flow_item_acceptable
1238 		(item, (const uint8_t *)mask,
1239 		 (const uint8_t *)&rte_flow_item_icmp_mask,
1240 		 sizeof(struct rte_flow_item_icmp), error);
1241 	if (ret < 0)
1242 		return ret;
1243 	return 0;
1244 }
1245 
1246 /**
1247  * Validate Ethernet item.
1248  *
1249  * @param[in] item
1250  *   Item specification.
1251  * @param[in] item_flags
1252  *   Bit-fields that holds the items detected until now.
1253  * @param[out] error
1254  *   Pointer to error structure.
1255  *
1256  * @return
1257  *   0 on success, a negative errno value otherwise and rte_errno is set.
1258  */
1259 int
1260 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1261 			    uint64_t item_flags,
1262 			    struct rte_flow_error *error)
1263 {
1264 	const struct rte_flow_item_eth *mask = item->mask;
1265 	const struct rte_flow_item_eth nic_mask = {
1266 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1267 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1268 		.type = RTE_BE16(0xffff),
1269 	};
1270 	int ret;
1271 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1272 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1273 				       MLX5_FLOW_LAYER_OUTER_L2;
1274 
1275 	if (item_flags & ethm)
1276 		return rte_flow_error_set(error, ENOTSUP,
1277 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1278 					  "multiple L2 layers not supported");
1279 	if (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))
1280 		return rte_flow_error_set(error, EINVAL,
1281 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1282 					  "inner L2 layer should not "
1283 					  "follow inner L3 layers");
1284 	if (!mask)
1285 		mask = &rte_flow_item_eth_mask;
1286 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1287 					(const uint8_t *)&nic_mask,
1288 					sizeof(struct rte_flow_item_eth),
1289 					error);
1290 	return ret;
1291 }
1292 
1293 /**
1294  * Validate VLAN item.
1295  *
1296  * @param[in] item
1297  *   Item specification.
1298  * @param[in] item_flags
1299  *   Bit-fields that holds the items detected until now.
1300  * @param[in] dev
1301  *   Ethernet device flow is being created on.
1302  * @param[out] error
1303  *   Pointer to error structure.
1304  *
1305  * @return
1306  *   0 on success, a negative errno value otherwise and rte_errno is set.
1307  */
1308 int
1309 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1310 			     uint64_t item_flags,
1311 			     struct rte_eth_dev *dev,
1312 			     struct rte_flow_error *error)
1313 {
1314 	const struct rte_flow_item_vlan *spec = item->spec;
1315 	const struct rte_flow_item_vlan *mask = item->mask;
1316 	const struct rte_flow_item_vlan nic_mask = {
1317 		.tci = RTE_BE16(UINT16_MAX),
1318 		.inner_type = RTE_BE16(UINT16_MAX),
1319 	};
1320 	uint16_t vlan_tag = 0;
1321 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1322 	int ret;
1323 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1324 					MLX5_FLOW_LAYER_INNER_L4) :
1325 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1326 					MLX5_FLOW_LAYER_OUTER_L4);
1327 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1328 					MLX5_FLOW_LAYER_OUTER_VLAN;
1329 
1330 	const uint64_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1331 				      MLX5_FLOW_LAYER_OUTER_L2;
1332 	if (item_flags & vlanm)
1333 		return rte_flow_error_set(error, EINVAL,
1334 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1335 					  "multiple VLAN layers not supported");
1336 	else if ((item_flags & l34m) != 0)
1337 		return rte_flow_error_set(error, EINVAL,
1338 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1339 					  "L2 layer cannot follow L3/L4 layer");
1340 	else if ((item_flags & l2m) == 0)
1341 		return rte_flow_error_set(error, EINVAL,
1342 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1343 					  "no L2 layer before VLAN");
1344 	if (!mask)
1345 		mask = &rte_flow_item_vlan_mask;
1346 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1347 					(const uint8_t *)&nic_mask,
1348 					sizeof(struct rte_flow_item_vlan),
1349 					error);
1350 	if (ret)
1351 		return ret;
1352 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1353 		struct mlx5_priv *priv = dev->data->dev_private;
1354 
1355 		if (priv->vmwa_context) {
1356 			/*
1357 			 * Non-NULL context means we have a virtual machine
1358 			 * and SR-IOV enabled, we have to create VLAN interface
1359 			 * to make hypervisor to setup E-Switch vport
1360 			 * context correctly. We avoid creating the multiple
1361 			 * VLAN interfaces, so we cannot support VLAN tag mask.
1362 			 */
1363 			return rte_flow_error_set(error, EINVAL,
1364 						  RTE_FLOW_ERROR_TYPE_ITEM,
1365 						  item,
1366 						  "VLAN tag mask is not"
1367 						  " supported in virtual"
1368 						  " environment");
1369 		}
1370 	}
1371 	if (spec) {
1372 		vlan_tag = spec->tci;
1373 		vlan_tag &= mask->tci;
1374 	}
1375 	/*
1376 	 * From verbs perspective an empty VLAN is equivalent
1377 	 * to a packet without VLAN layer.
1378 	 */
1379 	if (!vlan_tag)
1380 		return rte_flow_error_set(error, EINVAL,
1381 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1382 					  item->spec,
1383 					  "VLAN cannot be empty");
1384 	return 0;
1385 }
1386 
1387 /**
1388  * Validate IPV4 item.
1389  *
1390  * @param[in] item
1391  *   Item specification.
1392  * @param[in] item_flags
1393  *   Bit-fields that holds the items detected until now.
1394  * @param[in] acc_mask
1395  *   Acceptable mask, if NULL default internal default mask
1396  *   will be used to check whether item fields are supported.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1405 			     uint64_t item_flags,
1406 			     uint64_t last_item,
1407 			     uint16_t ether_type,
1408 			     const struct rte_flow_item_ipv4 *acc_mask,
1409 			     struct rte_flow_error *error)
1410 {
1411 	const struct rte_flow_item_ipv4 *mask = item->mask;
1412 	const struct rte_flow_item_ipv4 *spec = item->spec;
1413 	const struct rte_flow_item_ipv4 nic_mask = {
1414 		.hdr = {
1415 			.src_addr = RTE_BE32(0xffffffff),
1416 			.dst_addr = RTE_BE32(0xffffffff),
1417 			.type_of_service = 0xff,
1418 			.next_proto_id = 0xff,
1419 		},
1420 	};
1421 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1422 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1423 				      MLX5_FLOW_LAYER_OUTER_L3;
1424 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1425 				      MLX5_FLOW_LAYER_OUTER_L4;
1426 	int ret;
1427 	uint8_t next_proto = 0xFF;
1428 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1429 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1430 				  MLX5_FLOW_LAYER_INNER_VLAN);
1431 
1432 	if ((last_item & l2_vlan) && ether_type &&
1433 	    ether_type != RTE_ETHER_TYPE_IPV4)
1434 		return rte_flow_error_set(error, EINVAL,
1435 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1436 					  "IPv4 cannot follow L2/VLAN layer "
1437 					  "which ether type is not IPv4");
1438 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1439 		if (mask && spec)
1440 			next_proto = mask->hdr.next_proto_id &
1441 				     spec->hdr.next_proto_id;
1442 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1443 			return rte_flow_error_set(error, EINVAL,
1444 						  RTE_FLOW_ERROR_TYPE_ITEM,
1445 						  item,
1446 						  "multiple tunnel "
1447 						  "not supported");
1448 	}
1449 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1450 		return rte_flow_error_set(error, EINVAL,
1451 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1452 					  "wrong tunnel type - IPv6 specified "
1453 					  "but IPv4 item provided");
1454 	if (item_flags & l3m)
1455 		return rte_flow_error_set(error, ENOTSUP,
1456 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1457 					  "multiple L3 layers not supported");
1458 	else if (item_flags & l4m)
1459 		return rte_flow_error_set(error, EINVAL,
1460 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1461 					  "L3 cannot follow an L4 layer.");
1462 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1463 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1464 		return rte_flow_error_set(error, EINVAL,
1465 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1466 					  "L3 cannot follow an NVGRE layer.");
1467 	else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1468 		return rte_flow_error_set(error, EINVAL,
1469 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1470 					  "no L2 layer before IPV4");
1471 	if (!mask)
1472 		mask = &rte_flow_item_ipv4_mask;
1473 	else if (mask->hdr.next_proto_id != 0 &&
1474 		 mask->hdr.next_proto_id != 0xff)
1475 		return rte_flow_error_set(error, EINVAL,
1476 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1477 					  "partial mask is not supported"
1478 					  " for protocol");
1479 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1480 					acc_mask ? (const uint8_t *)acc_mask
1481 						 : (const uint8_t *)&nic_mask,
1482 					sizeof(struct rte_flow_item_ipv4),
1483 					error);
1484 	if (ret < 0)
1485 		return ret;
1486 	return 0;
1487 }
1488 
1489 /**
1490  * Validate IPV6 item.
1491  *
1492  * @param[in] item
1493  *   Item specification.
1494  * @param[in] item_flags
1495  *   Bit-fields that holds the items detected until now.
1496  * @param[in] acc_mask
1497  *   Acceptable mask, if NULL default internal default mask
1498  *   will be used to check whether item fields are supported.
1499  * @param[out] error
1500  *   Pointer to error structure.
1501  *
1502  * @return
1503  *   0 on success, a negative errno value otherwise and rte_errno is set.
1504  */
1505 int
1506 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1507 			     uint64_t item_flags,
1508 			     uint64_t last_item,
1509 			     uint16_t ether_type,
1510 			     const struct rte_flow_item_ipv6 *acc_mask,
1511 			     struct rte_flow_error *error)
1512 {
1513 	const struct rte_flow_item_ipv6 *mask = item->mask;
1514 	const struct rte_flow_item_ipv6 *spec = item->spec;
1515 	const struct rte_flow_item_ipv6 nic_mask = {
1516 		.hdr = {
1517 			.src_addr =
1518 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1519 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1520 			.dst_addr =
1521 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1522 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1523 			.vtc_flow = RTE_BE32(0xffffffff),
1524 			.proto = 0xff,
1525 			.hop_limits = 0xff,
1526 		},
1527 	};
1528 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1529 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1530 				      MLX5_FLOW_LAYER_OUTER_L3;
1531 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1532 				      MLX5_FLOW_LAYER_OUTER_L4;
1533 	int ret;
1534 	uint8_t next_proto = 0xFF;
1535 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1536 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1537 				  MLX5_FLOW_LAYER_INNER_VLAN);
1538 
1539 	if ((last_item & l2_vlan) && ether_type &&
1540 	    ether_type != RTE_ETHER_TYPE_IPV6)
1541 		return rte_flow_error_set(error, EINVAL,
1542 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1543 					  "IPv6 cannot follow L2/VLAN layer "
1544 					  "which ether type is not IPv6");
1545 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1546 		if (mask && spec)
1547 			next_proto = mask->hdr.proto & spec->hdr.proto;
1548 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1549 			return rte_flow_error_set(error, EINVAL,
1550 						  RTE_FLOW_ERROR_TYPE_ITEM,
1551 						  item,
1552 						  "multiple tunnel "
1553 						  "not supported");
1554 	}
1555 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
1556 		return rte_flow_error_set(error, EINVAL,
1557 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1558 					  "wrong tunnel type - IPv4 specified "
1559 					  "but IPv6 item provided");
1560 	if (item_flags & l3m)
1561 		return rte_flow_error_set(error, ENOTSUP,
1562 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1563 					  "multiple L3 layers not supported");
1564 	else if (item_flags & l4m)
1565 		return rte_flow_error_set(error, EINVAL,
1566 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1567 					  "L3 cannot follow an L4 layer.");
1568 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1569 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1570 		return rte_flow_error_set(error, EINVAL,
1571 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1572 					  "L3 cannot follow an NVGRE layer.");
1573 	else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1574 		return rte_flow_error_set(error, EINVAL,
1575 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1576 					  "no L2 layer before IPV6");
1577 	if (!mask)
1578 		mask = &rte_flow_item_ipv6_mask;
1579 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1580 					acc_mask ? (const uint8_t *)acc_mask
1581 						 : (const uint8_t *)&nic_mask,
1582 					sizeof(struct rte_flow_item_ipv6),
1583 					error);
1584 	if (ret < 0)
1585 		return ret;
1586 	return 0;
1587 }
1588 
1589 /**
1590  * Validate UDP item.
1591  *
1592  * @param[in] item
1593  *   Item specification.
1594  * @param[in] item_flags
1595  *   Bit-fields that holds the items detected until now.
1596  * @param[in] target_protocol
1597  *   The next protocol in the previous item.
1598  * @param[in] flow_mask
1599  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1600  * @param[out] error
1601  *   Pointer to error structure.
1602  *
1603  * @return
1604  *   0 on success, a negative errno value otherwise and rte_errno is set.
1605  */
1606 int
1607 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1608 			    uint64_t item_flags,
1609 			    uint8_t target_protocol,
1610 			    struct rte_flow_error *error)
1611 {
1612 	const struct rte_flow_item_udp *mask = item->mask;
1613 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1614 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1615 				      MLX5_FLOW_LAYER_OUTER_L3;
1616 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1617 				      MLX5_FLOW_LAYER_OUTER_L4;
1618 	int ret;
1619 
1620 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1621 		return rte_flow_error_set(error, EINVAL,
1622 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1623 					  "protocol filtering not compatible"
1624 					  " with UDP layer");
1625 	if (!(item_flags & l3m))
1626 		return rte_flow_error_set(error, EINVAL,
1627 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1628 					  "L3 is mandatory to filter on L4");
1629 	if (item_flags & l4m)
1630 		return rte_flow_error_set(error, EINVAL,
1631 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1632 					  "multiple L4 layers not supported");
1633 	if (!mask)
1634 		mask = &rte_flow_item_udp_mask;
1635 	ret = mlx5_flow_item_acceptable
1636 		(item, (const uint8_t *)mask,
1637 		 (const uint8_t *)&rte_flow_item_udp_mask,
1638 		 sizeof(struct rte_flow_item_udp), error);
1639 	if (ret < 0)
1640 		return ret;
1641 	return 0;
1642 }
1643 
1644 /**
1645  * Validate TCP item.
1646  *
1647  * @param[in] item
1648  *   Item specification.
1649  * @param[in] item_flags
1650  *   Bit-fields that holds the items detected until now.
1651  * @param[in] target_protocol
1652  *   The next protocol in the previous item.
1653  * @param[out] error
1654  *   Pointer to error structure.
1655  *
1656  * @return
1657  *   0 on success, a negative errno value otherwise and rte_errno is set.
1658  */
1659 int
1660 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1661 			    uint64_t item_flags,
1662 			    uint8_t target_protocol,
1663 			    const struct rte_flow_item_tcp *flow_mask,
1664 			    struct rte_flow_error *error)
1665 {
1666 	const struct rte_flow_item_tcp *mask = item->mask;
1667 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1668 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1669 				      MLX5_FLOW_LAYER_OUTER_L3;
1670 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1671 				      MLX5_FLOW_LAYER_OUTER_L4;
1672 	int ret;
1673 
1674 	assert(flow_mask);
1675 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1676 		return rte_flow_error_set(error, EINVAL,
1677 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1678 					  "protocol filtering not compatible"
1679 					  " with TCP layer");
1680 	if (!(item_flags & l3m))
1681 		return rte_flow_error_set(error, EINVAL,
1682 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1683 					  "L3 is mandatory to filter on L4");
1684 	if (item_flags & l4m)
1685 		return rte_flow_error_set(error, EINVAL,
1686 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1687 					  "multiple L4 layers not supported");
1688 	if (!mask)
1689 		mask = &rte_flow_item_tcp_mask;
1690 	ret = mlx5_flow_item_acceptable
1691 		(item, (const uint8_t *)mask,
1692 		 (const uint8_t *)flow_mask,
1693 		 sizeof(struct rte_flow_item_tcp), error);
1694 	if (ret < 0)
1695 		return ret;
1696 	return 0;
1697 }
1698 
1699 /**
1700  * Validate VXLAN item.
1701  *
1702  * @param[in] item
1703  *   Item specification.
1704  * @param[in] item_flags
1705  *   Bit-fields that holds the items detected until now.
1706  * @param[in] target_protocol
1707  *   The next protocol in the previous item.
1708  * @param[out] error
1709  *   Pointer to error structure.
1710  *
1711  * @return
1712  *   0 on success, a negative errno value otherwise and rte_errno is set.
1713  */
1714 int
1715 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1716 			      uint64_t item_flags,
1717 			      struct rte_flow_error *error)
1718 {
1719 	const struct rte_flow_item_vxlan *spec = item->spec;
1720 	const struct rte_flow_item_vxlan *mask = item->mask;
1721 	int ret;
1722 	union vni {
1723 		uint32_t vlan_id;
1724 		uint8_t vni[4];
1725 	} id = { .vlan_id = 0, };
1726 	uint32_t vlan_id = 0;
1727 
1728 
1729 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1730 		return rte_flow_error_set(error, ENOTSUP,
1731 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1732 					  "multiple tunnel layers not"
1733 					  " supported");
1734 	/*
1735 	 * Verify only UDPv4 is present as defined in
1736 	 * https://tools.ietf.org/html/rfc7348
1737 	 */
1738 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1739 		return rte_flow_error_set(error, EINVAL,
1740 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1741 					  "no outer UDP layer found");
1742 	if (!mask)
1743 		mask = &rte_flow_item_vxlan_mask;
1744 	ret = mlx5_flow_item_acceptable
1745 		(item, (const uint8_t *)mask,
1746 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1747 		 sizeof(struct rte_flow_item_vxlan),
1748 		 error);
1749 	if (ret < 0)
1750 		return ret;
1751 	if (spec) {
1752 		memcpy(&id.vni[1], spec->vni, 3);
1753 		vlan_id = id.vlan_id;
1754 		memcpy(&id.vni[1], mask->vni, 3);
1755 		vlan_id &= id.vlan_id;
1756 	}
1757 	/*
1758 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1759 	 * only this layer is defined in the Verbs specification it is
1760 	 * interpreted as wildcard and all packets will match this
1761 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1762 	 * udp), all packets matching the layers before will also
1763 	 * match this rule.  To avoid such situation, VNI 0 is
1764 	 * currently refused.
1765 	 */
1766 	if (!vlan_id)
1767 		return rte_flow_error_set(error, ENOTSUP,
1768 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1769 					  "VXLAN vni cannot be 0");
1770 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1771 		return rte_flow_error_set(error, ENOTSUP,
1772 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1773 					  "VXLAN tunnel must be fully defined");
1774 	return 0;
1775 }
1776 
1777 /**
1778  * Validate VXLAN_GPE item.
1779  *
1780  * @param[in] item
1781  *   Item specification.
1782  * @param[in] item_flags
1783  *   Bit-fields that holds the items detected until now.
1784  * @param[in] priv
1785  *   Pointer to the private data structure.
1786  * @param[in] target_protocol
1787  *   The next protocol in the previous item.
1788  * @param[out] error
1789  *   Pointer to error structure.
1790  *
1791  * @return
1792  *   0 on success, a negative errno value otherwise and rte_errno is set.
1793  */
1794 int
1795 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1796 				  uint64_t item_flags,
1797 				  struct rte_eth_dev *dev,
1798 				  struct rte_flow_error *error)
1799 {
1800 	struct mlx5_priv *priv = dev->data->dev_private;
1801 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1802 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1803 	int ret;
1804 	union vni {
1805 		uint32_t vlan_id;
1806 		uint8_t vni[4];
1807 	} id = { .vlan_id = 0, };
1808 	uint32_t vlan_id = 0;
1809 
1810 	if (!priv->config.l3_vxlan_en)
1811 		return rte_flow_error_set(error, ENOTSUP,
1812 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1813 					  "L3 VXLAN is not enabled by device"
1814 					  " parameter and/or not configured in"
1815 					  " firmware");
1816 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1817 		return rte_flow_error_set(error, ENOTSUP,
1818 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1819 					  "multiple tunnel layers not"
1820 					  " supported");
1821 	/*
1822 	 * Verify only UDPv4 is present as defined in
1823 	 * https://tools.ietf.org/html/rfc7348
1824 	 */
1825 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1826 		return rte_flow_error_set(error, EINVAL,
1827 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1828 					  "no outer UDP layer found");
1829 	if (!mask)
1830 		mask = &rte_flow_item_vxlan_gpe_mask;
1831 	ret = mlx5_flow_item_acceptable
1832 		(item, (const uint8_t *)mask,
1833 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1834 		 sizeof(struct rte_flow_item_vxlan_gpe),
1835 		 error);
1836 	if (ret < 0)
1837 		return ret;
1838 	if (spec) {
1839 		if (spec->protocol)
1840 			return rte_flow_error_set(error, ENOTSUP,
1841 						  RTE_FLOW_ERROR_TYPE_ITEM,
1842 						  item,
1843 						  "VxLAN-GPE protocol"
1844 						  " not supported");
1845 		memcpy(&id.vni[1], spec->vni, 3);
1846 		vlan_id = id.vlan_id;
1847 		memcpy(&id.vni[1], mask->vni, 3);
1848 		vlan_id &= id.vlan_id;
1849 	}
1850 	/*
1851 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1852 	 * layer is defined in the Verbs specification it is interpreted as
1853 	 * wildcard and all packets will match this rule, if it follows a full
1854 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1855 	 * before will also match this rule.  To avoid such situation, VNI 0
1856 	 * is currently refused.
1857 	 */
1858 	if (!vlan_id)
1859 		return rte_flow_error_set(error, ENOTSUP,
1860 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1861 					  "VXLAN-GPE vni cannot be 0");
1862 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1863 		return rte_flow_error_set(error, ENOTSUP,
1864 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1865 					  "VXLAN-GPE tunnel must be fully"
1866 					  " defined");
1867 	return 0;
1868 }
1869 /**
1870  * Validate GRE Key item.
1871  *
1872  * @param[in] item
1873  *   Item specification.
1874  * @param[in] item_flags
1875  *   Bit flags to mark detected items.
1876  * @param[in] gre_item
1877  *   Pointer to gre_item
1878  * @param[out] error
1879  *   Pointer to error structure.
1880  *
1881  * @return
1882  *   0 on success, a negative errno value otherwise and rte_errno is set.
1883  */
1884 int
1885 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1886 				uint64_t item_flags,
1887 				const struct rte_flow_item *gre_item,
1888 				struct rte_flow_error *error)
1889 {
1890 	const rte_be32_t *mask = item->mask;
1891 	int ret = 0;
1892 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1893 	const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1894 	const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1895 
1896 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1897 		return rte_flow_error_set(error, ENOTSUP,
1898 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1899 					  "Multiple GRE key not support");
1900 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1901 		return rte_flow_error_set(error, ENOTSUP,
1902 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1903 					  "No preceding GRE header");
1904 	if (item_flags & MLX5_FLOW_LAYER_INNER)
1905 		return rte_flow_error_set(error, ENOTSUP,
1906 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1907 					  "GRE key following a wrong item");
1908 	if (!gre_mask)
1909 		gre_mask = &rte_flow_item_gre_mask;
1910 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1911 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1912 		return rte_flow_error_set(error, EINVAL,
1913 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1914 					  "Key bit must be on");
1915 
1916 	if (!mask)
1917 		mask = &gre_key_default_mask;
1918 	ret = mlx5_flow_item_acceptable
1919 		(item, (const uint8_t *)mask,
1920 		 (const uint8_t *)&gre_key_default_mask,
1921 		 sizeof(rte_be32_t), error);
1922 	return ret;
1923 }
1924 
1925 /**
1926  * Validate GRE item.
1927  *
1928  * @param[in] item
1929  *   Item specification.
1930  * @param[in] item_flags
1931  *   Bit flags to mark detected items.
1932  * @param[in] target_protocol
1933  *   The next protocol in the previous item.
1934  * @param[out] error
1935  *   Pointer to error structure.
1936  *
1937  * @return
1938  *   0 on success, a negative errno value otherwise and rte_errno is set.
1939  */
1940 int
1941 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1942 			    uint64_t item_flags,
1943 			    uint8_t target_protocol,
1944 			    struct rte_flow_error *error)
1945 {
1946 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1947 	const struct rte_flow_item_gre *mask = item->mask;
1948 	int ret;
1949 	const struct rte_flow_item_gre nic_mask = {
1950 		.c_rsvd0_ver = RTE_BE16(0xB000),
1951 		.protocol = RTE_BE16(UINT16_MAX),
1952 	};
1953 
1954 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1955 		return rte_flow_error_set(error, EINVAL,
1956 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1957 					  "protocol filtering not compatible"
1958 					  " with this GRE layer");
1959 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1960 		return rte_flow_error_set(error, ENOTSUP,
1961 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1962 					  "multiple tunnel layers not"
1963 					  " supported");
1964 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1965 		return rte_flow_error_set(error, ENOTSUP,
1966 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1967 					  "L3 Layer is missing");
1968 	if (!mask)
1969 		mask = &rte_flow_item_gre_mask;
1970 	ret = mlx5_flow_item_acceptable
1971 		(item, (const uint8_t *)mask,
1972 		 (const uint8_t *)&nic_mask,
1973 		 sizeof(struct rte_flow_item_gre), error);
1974 	if (ret < 0)
1975 		return ret;
1976 #ifndef HAVE_MLX5DV_DR
1977 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1978 	if (spec && (spec->protocol & mask->protocol))
1979 		return rte_flow_error_set(error, ENOTSUP,
1980 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1981 					  "without MPLS support the"
1982 					  " specification cannot be used for"
1983 					  " filtering");
1984 #endif
1985 #endif
1986 	return 0;
1987 }
1988 
1989 /**
1990  * Validate Geneve item.
1991  *
1992  * @param[in] item
1993  *   Item specification.
1994  * @param[in] itemFlags
1995  *   Bit-fields that holds the items detected until now.
1996  * @param[in] enPriv
1997  *   Pointer to the private data structure.
1998  * @param[out] error
1999  *   Pointer to error structure.
2000  *
2001  * @return
2002  *   0 on success, a negative errno value otherwise and rte_errno is set.
2003  */
2004 
2005 int
2006 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2007 			       uint64_t item_flags,
2008 			       struct rte_eth_dev *dev,
2009 			       struct rte_flow_error *error)
2010 {
2011 	struct mlx5_priv *priv = dev->data->dev_private;
2012 	const struct rte_flow_item_geneve *spec = item->spec;
2013 	const struct rte_flow_item_geneve *mask = item->mask;
2014 	int ret;
2015 	uint16_t gbhdr;
2016 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2017 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2018 	const struct rte_flow_item_geneve nic_mask = {
2019 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2020 		.vni = "\xff\xff\xff",
2021 		.protocol = RTE_BE16(UINT16_MAX),
2022 	};
2023 
2024 	if (!(priv->config.hca_attr.flex_parser_protocols &
2025 	      MLX5_HCA_FLEX_GENEVE_ENABLED) ||
2026 	    !priv->config.hca_attr.tunnel_stateless_geneve_rx)
2027 		return rte_flow_error_set(error, ENOTSUP,
2028 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2029 					  "L3 Geneve is not enabled by device"
2030 					  " parameter and/or not configured in"
2031 					  " firmware");
2032 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2033 		return rte_flow_error_set(error, ENOTSUP,
2034 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2035 					  "multiple tunnel layers not"
2036 					  " supported");
2037 	/*
2038 	 * Verify only UDPv4 is present as defined in
2039 	 * https://tools.ietf.org/html/rfc7348
2040 	 */
2041 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2042 		return rte_flow_error_set(error, EINVAL,
2043 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2044 					  "no outer UDP layer found");
2045 	if (!mask)
2046 		mask = &rte_flow_item_geneve_mask;
2047 	ret = mlx5_flow_item_acceptable
2048 				  (item, (const uint8_t *)mask,
2049 				   (const uint8_t *)&nic_mask,
2050 				   sizeof(struct rte_flow_item_geneve), error);
2051 	if (ret)
2052 		return ret;
2053 	if (spec) {
2054 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2055 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2056 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2057 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2058 			return rte_flow_error_set(error, ENOTSUP,
2059 						  RTE_FLOW_ERROR_TYPE_ITEM,
2060 						  item,
2061 						  "Geneve protocol unsupported"
2062 						  " fields are being used");
2063 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2064 			return rte_flow_error_set
2065 					(error, ENOTSUP,
2066 					 RTE_FLOW_ERROR_TYPE_ITEM,
2067 					 item,
2068 					 "Unsupported Geneve options length");
2069 	}
2070 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2071 		return rte_flow_error_set
2072 				    (error, ENOTSUP,
2073 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2074 				     "Geneve tunnel must be fully defined");
2075 	return 0;
2076 }
2077 
2078 /**
2079  * Validate MPLS item.
2080  *
2081  * @param[in] dev
2082  *   Pointer to the rte_eth_dev structure.
2083  * @param[in] item
2084  *   Item specification.
2085  * @param[in] item_flags
2086  *   Bit-fields that holds the items detected until now.
2087  * @param[in] prev_layer
2088  *   The protocol layer indicated in previous item.
2089  * @param[out] error
2090  *   Pointer to error structure.
2091  *
2092  * @return
2093  *   0 on success, a negative errno value otherwise and rte_errno is set.
2094  */
2095 int
2096 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2097 			     const struct rte_flow_item *item __rte_unused,
2098 			     uint64_t item_flags __rte_unused,
2099 			     uint64_t prev_layer __rte_unused,
2100 			     struct rte_flow_error *error)
2101 {
2102 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2103 	const struct rte_flow_item_mpls *mask = item->mask;
2104 	struct mlx5_priv *priv = dev->data->dev_private;
2105 	int ret;
2106 
2107 	if (!priv->config.mpls_en)
2108 		return rte_flow_error_set(error, ENOTSUP,
2109 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2110 					  "MPLS not supported or"
2111 					  " disabled in firmware"
2112 					  " configuration.");
2113 	/* MPLS over IP, UDP, GRE is allowed */
2114 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2115 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2116 			    MLX5_FLOW_LAYER_GRE)))
2117 		return rte_flow_error_set(error, EINVAL,
2118 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2119 					  "protocol filtering not compatible"
2120 					  " with MPLS layer");
2121 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2122 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2123 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2124 		return rte_flow_error_set(error, ENOTSUP,
2125 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2126 					  "multiple tunnel layers not"
2127 					  " supported");
2128 	if (!mask)
2129 		mask = &rte_flow_item_mpls_mask;
2130 	ret = mlx5_flow_item_acceptable
2131 		(item, (const uint8_t *)mask,
2132 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2133 		 sizeof(struct rte_flow_item_mpls), error);
2134 	if (ret < 0)
2135 		return ret;
2136 	return 0;
2137 #endif
2138 	return rte_flow_error_set(error, ENOTSUP,
2139 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2140 				  "MPLS is not supported by Verbs, please"
2141 				  " update.");
2142 }
2143 
2144 /**
2145  * Validate NVGRE item.
2146  *
2147  * @param[in] item
2148  *   Item specification.
2149  * @param[in] item_flags
2150  *   Bit flags to mark detected items.
2151  * @param[in] target_protocol
2152  *   The next protocol in the previous item.
2153  * @param[out] error
2154  *   Pointer to error structure.
2155  *
2156  * @return
2157  *   0 on success, a negative errno value otherwise and rte_errno is set.
2158  */
2159 int
2160 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2161 			      uint64_t item_flags,
2162 			      uint8_t target_protocol,
2163 			      struct rte_flow_error *error)
2164 {
2165 	const struct rte_flow_item_nvgre *mask = item->mask;
2166 	int ret;
2167 
2168 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2169 		return rte_flow_error_set(error, EINVAL,
2170 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2171 					  "protocol filtering not compatible"
2172 					  " with this GRE layer");
2173 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2174 		return rte_flow_error_set(error, ENOTSUP,
2175 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2176 					  "multiple tunnel layers not"
2177 					  " supported");
2178 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2179 		return rte_flow_error_set(error, ENOTSUP,
2180 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2181 					  "L3 Layer is missing");
2182 	if (!mask)
2183 		mask = &rte_flow_item_nvgre_mask;
2184 	ret = mlx5_flow_item_acceptable
2185 		(item, (const uint8_t *)mask,
2186 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2187 		 sizeof(struct rte_flow_item_nvgre), error);
2188 	if (ret < 0)
2189 		return ret;
2190 	return 0;
2191 }
2192 
2193 static int
2194 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2195 		   const struct rte_flow_attr *attr __rte_unused,
2196 		   const struct rte_flow_item items[] __rte_unused,
2197 		   const struct rte_flow_action actions[] __rte_unused,
2198 		   bool external __rte_unused,
2199 		   struct rte_flow_error *error)
2200 {
2201 	return rte_flow_error_set(error, ENOTSUP,
2202 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2203 }
2204 
2205 static struct mlx5_flow *
2206 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2207 		  const struct rte_flow_item items[] __rte_unused,
2208 		  const struct rte_flow_action actions[] __rte_unused,
2209 		  struct rte_flow_error *error)
2210 {
2211 	rte_flow_error_set(error, ENOTSUP,
2212 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2213 	return NULL;
2214 }
2215 
2216 static int
2217 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2218 		    struct mlx5_flow *dev_flow __rte_unused,
2219 		    const struct rte_flow_attr *attr __rte_unused,
2220 		    const struct rte_flow_item items[] __rte_unused,
2221 		    const struct rte_flow_action actions[] __rte_unused,
2222 		    struct rte_flow_error *error)
2223 {
2224 	return rte_flow_error_set(error, ENOTSUP,
2225 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2226 }
2227 
2228 static int
2229 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2230 		struct rte_flow *flow __rte_unused,
2231 		struct rte_flow_error *error)
2232 {
2233 	return rte_flow_error_set(error, ENOTSUP,
2234 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2235 }
2236 
2237 static void
2238 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2239 		 struct rte_flow *flow __rte_unused)
2240 {
2241 }
2242 
2243 static void
2244 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2245 		  struct rte_flow *flow __rte_unused)
2246 {
2247 }
2248 
2249 static int
2250 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2251 		struct rte_flow *flow __rte_unused,
2252 		const struct rte_flow_action *actions __rte_unused,
2253 		void *data __rte_unused,
2254 		struct rte_flow_error *error)
2255 {
2256 	return rte_flow_error_set(error, ENOTSUP,
2257 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2258 }
2259 
2260 /* Void driver to protect from null pointer reference. */
2261 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2262 	.validate = flow_null_validate,
2263 	.prepare = flow_null_prepare,
2264 	.translate = flow_null_translate,
2265 	.apply = flow_null_apply,
2266 	.remove = flow_null_remove,
2267 	.destroy = flow_null_destroy,
2268 	.query = flow_null_query,
2269 };
2270 
2271 /**
2272  * Select flow driver type according to flow attributes and device
2273  * configuration.
2274  *
2275  * @param[in] dev
2276  *   Pointer to the dev structure.
2277  * @param[in] attr
2278  *   Pointer to the flow attributes.
2279  *
2280  * @return
2281  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2282  */
2283 static enum mlx5_flow_drv_type
2284 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2285 {
2286 	struct mlx5_priv *priv = dev->data->dev_private;
2287 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2288 
2289 	if (attr->transfer && priv->config.dv_esw_en)
2290 		type = MLX5_FLOW_TYPE_DV;
2291 	if (!attr->transfer)
2292 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2293 						 MLX5_FLOW_TYPE_VERBS;
2294 	return type;
2295 }
2296 
2297 #define flow_get_drv_ops(type) flow_drv_ops[type]
2298 
2299 /**
2300  * Flow driver validation API. This abstracts calling driver specific functions.
2301  * The type of flow driver is determined according to flow attributes.
2302  *
2303  * @param[in] dev
2304  *   Pointer to the dev structure.
2305  * @param[in] attr
2306  *   Pointer to the flow attributes.
2307  * @param[in] items
2308  *   Pointer to the list of items.
2309  * @param[in] actions
2310  *   Pointer to the list of actions.
2311  * @param[in] external
2312  *   This flow rule is created by request external to PMD.
2313  * @param[out] error
2314  *   Pointer to the error structure.
2315  *
2316  * @return
2317  *   0 on success, a negative errno value otherwise and rte_errno is set.
2318  */
2319 static inline int
2320 flow_drv_validate(struct rte_eth_dev *dev,
2321 		  const struct rte_flow_attr *attr,
2322 		  const struct rte_flow_item items[],
2323 		  const struct rte_flow_action actions[],
2324 		  bool external, struct rte_flow_error *error)
2325 {
2326 	const struct mlx5_flow_driver_ops *fops;
2327 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2328 
2329 	fops = flow_get_drv_ops(type);
2330 	return fops->validate(dev, attr, items, actions, external, error);
2331 }
2332 
2333 /**
2334  * Flow driver preparation API. This abstracts calling driver specific
2335  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2336  * calculates the size of memory required for device flow, allocates the memory,
2337  * initializes the device flow and returns the pointer.
2338  *
2339  * @note
2340  *   This function initializes device flow structure such as dv or verbs in
2341  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2342  *   rest. For example, adding returning device flow to flow->dev_flow list and
2343  *   setting backward reference to the flow should be done out of this function.
2344  *   layers field is not filled either.
2345  *
2346  * @param[in] attr
2347  *   Pointer to the flow attributes.
2348  * @param[in] items
2349  *   Pointer to the list of items.
2350  * @param[in] actions
2351  *   Pointer to the list of actions.
2352  * @param[out] error
2353  *   Pointer to the error structure.
2354  *
2355  * @return
2356  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2357  */
2358 static inline struct mlx5_flow *
2359 flow_drv_prepare(const struct rte_flow *flow,
2360 		 const struct rte_flow_attr *attr,
2361 		 const struct rte_flow_item items[],
2362 		 const struct rte_flow_action actions[],
2363 		 struct rte_flow_error *error)
2364 {
2365 	const struct mlx5_flow_driver_ops *fops;
2366 	enum mlx5_flow_drv_type type = flow->drv_type;
2367 
2368 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2369 	fops = flow_get_drv_ops(type);
2370 	return fops->prepare(attr, items, actions, error);
2371 }
2372 
2373 /**
2374  * Flow driver translation API. This abstracts calling driver specific
2375  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2376  * translates a generic flow into a driver flow. flow_drv_prepare() must
2377  * precede.
2378  *
2379  * @note
2380  *   dev_flow->layers could be filled as a result of parsing during translation
2381  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2382  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2383  *   flow->actions could be overwritten even though all the expanded dev_flows
2384  *   have the same actions.
2385  *
2386  * @param[in] dev
2387  *   Pointer to the rte dev structure.
2388  * @param[in, out] dev_flow
2389  *   Pointer to the mlx5 flow.
2390  * @param[in] attr
2391  *   Pointer to the flow attributes.
2392  * @param[in] items
2393  *   Pointer to the list of items.
2394  * @param[in] actions
2395  *   Pointer to the list of actions.
2396  * @param[out] error
2397  *   Pointer to the error structure.
2398  *
2399  * @return
2400  *   0 on success, a negative errno value otherwise and rte_errno is set.
2401  */
2402 static inline int
2403 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2404 		   const struct rte_flow_attr *attr,
2405 		   const struct rte_flow_item items[],
2406 		   const struct rte_flow_action actions[],
2407 		   struct rte_flow_error *error)
2408 {
2409 	const struct mlx5_flow_driver_ops *fops;
2410 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2411 
2412 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2413 	fops = flow_get_drv_ops(type);
2414 	return fops->translate(dev, dev_flow, attr, items, actions, error);
2415 }
2416 
2417 /**
2418  * Flow driver apply API. This abstracts calling driver specific functions.
2419  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2420  * translated driver flows on to device. flow_drv_translate() must precede.
2421  *
2422  * @param[in] dev
2423  *   Pointer to Ethernet device structure.
2424  * @param[in, out] flow
2425  *   Pointer to flow structure.
2426  * @param[out] error
2427  *   Pointer to error structure.
2428  *
2429  * @return
2430  *   0 on success, a negative errno value otherwise and rte_errno is set.
2431  */
2432 static inline int
2433 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2434 	       struct rte_flow_error *error)
2435 {
2436 	const struct mlx5_flow_driver_ops *fops;
2437 	enum mlx5_flow_drv_type type = flow->drv_type;
2438 
2439 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2440 	fops = flow_get_drv_ops(type);
2441 	return fops->apply(dev, flow, error);
2442 }
2443 
2444 /**
2445  * Flow driver remove API. This abstracts calling driver specific functions.
2446  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2447  * on device. All the resources of the flow should be freed by calling
2448  * flow_drv_destroy().
2449  *
2450  * @param[in] dev
2451  *   Pointer to Ethernet device.
2452  * @param[in, out] flow
2453  *   Pointer to flow structure.
2454  */
2455 static inline void
2456 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2457 {
2458 	const struct mlx5_flow_driver_ops *fops;
2459 	enum mlx5_flow_drv_type type = flow->drv_type;
2460 
2461 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2462 	fops = flow_get_drv_ops(type);
2463 	fops->remove(dev, flow);
2464 }
2465 
2466 /**
2467  * Flow driver destroy API. This abstracts calling driver specific functions.
2468  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2469  * on device and releases resources of the flow.
2470  *
2471  * @param[in] dev
2472  *   Pointer to Ethernet device.
2473  * @param[in, out] flow
2474  *   Pointer to flow structure.
2475  */
2476 static inline void
2477 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2478 {
2479 	const struct mlx5_flow_driver_ops *fops;
2480 	enum mlx5_flow_drv_type type = flow->drv_type;
2481 
2482 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2483 	fops = flow_get_drv_ops(type);
2484 	fops->destroy(dev, flow);
2485 }
2486 
2487 /**
2488  * Validate a flow supported by the NIC.
2489  *
2490  * @see rte_flow_validate()
2491  * @see rte_flow_ops
2492  */
2493 int
2494 mlx5_flow_validate(struct rte_eth_dev *dev,
2495 		   const struct rte_flow_attr *attr,
2496 		   const struct rte_flow_item items[],
2497 		   const struct rte_flow_action actions[],
2498 		   struct rte_flow_error *error)
2499 {
2500 	int ret;
2501 
2502 	ret = flow_drv_validate(dev, attr, items, actions, true, error);
2503 	if (ret < 0)
2504 		return ret;
2505 	return 0;
2506 }
2507 
2508 /**
2509  * Get RSS action from the action list.
2510  *
2511  * @param[in] actions
2512  *   Pointer to the list of actions.
2513  *
2514  * @return
2515  *   Pointer to the RSS action if exist, else return NULL.
2516  */
2517 static const struct rte_flow_action_rss*
2518 flow_get_rss_action(const struct rte_flow_action actions[])
2519 {
2520 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2521 		switch (actions->type) {
2522 		case RTE_FLOW_ACTION_TYPE_RSS:
2523 			return (const struct rte_flow_action_rss *)
2524 			       actions->conf;
2525 		default:
2526 			break;
2527 		}
2528 	}
2529 	return NULL;
2530 }
2531 
2532 static unsigned int
2533 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2534 {
2535 	const struct rte_flow_item *item;
2536 	unsigned int has_vlan = 0;
2537 
2538 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2539 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2540 			has_vlan = 1;
2541 			break;
2542 		}
2543 	}
2544 	if (has_vlan)
2545 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2546 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2547 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2548 			       MLX5_EXPANSION_ROOT_OUTER;
2549 }
2550 
2551 /**
2552  * Check if the flow should be splited due to hairpin.
2553  * The reason for the split is that in current HW we can't
2554  * support encap on Rx, so if a flow have encap we move it
2555  * to Tx.
2556  *
2557  * @param dev
2558  *   Pointer to Ethernet device.
2559  * @param[in] attr
2560  *   Flow rule attributes.
2561  * @param[in] actions
2562  *   Associated actions (list terminated by the END action).
2563  *
2564  * @return
2565  *   > 0 the number of actions and the flow should be split,
2566  *   0 when no split required.
2567  */
2568 static int
2569 flow_check_hairpin_split(struct rte_eth_dev *dev,
2570 			 const struct rte_flow_attr *attr,
2571 			 const struct rte_flow_action actions[])
2572 {
2573 	int queue_action = 0;
2574 	int action_n = 0;
2575 	int encap = 0;
2576 	const struct rte_flow_action_queue *queue;
2577 	const struct rte_flow_action_rss *rss;
2578 	const struct rte_flow_action_raw_encap *raw_encap;
2579 
2580 	if (!attr->ingress)
2581 		return 0;
2582 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2583 		switch (actions->type) {
2584 		case RTE_FLOW_ACTION_TYPE_QUEUE:
2585 			queue = actions->conf;
2586 			if (mlx5_rxq_get_type(dev, queue->index) !=
2587 			    MLX5_RXQ_TYPE_HAIRPIN)
2588 				return 0;
2589 			queue_action = 1;
2590 			action_n++;
2591 			break;
2592 		case RTE_FLOW_ACTION_TYPE_RSS:
2593 			rss = actions->conf;
2594 			if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
2595 			    MLX5_RXQ_TYPE_HAIRPIN)
2596 				return 0;
2597 			queue_action = 1;
2598 			action_n++;
2599 			break;
2600 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
2601 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
2602 			encap = 1;
2603 			action_n++;
2604 			break;
2605 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
2606 			raw_encap = actions->conf;
2607 			if (raw_encap->size >
2608 			    (sizeof(struct rte_flow_item_eth) +
2609 			     sizeof(struct rte_flow_item_ipv4)))
2610 				encap = 1;
2611 			action_n++;
2612 			break;
2613 		default:
2614 			action_n++;
2615 			break;
2616 		}
2617 	}
2618 	if (encap == 1 && queue_action)
2619 		return action_n;
2620 	return 0;
2621 }
2622 
2623 #define MLX5_MAX_SPLIT_ACTIONS 24
2624 #define MLX5_MAX_SPLIT_ITEMS 24
2625 
2626 /**
2627  * Split the hairpin flow.
2628  * Since HW can't support encap on Rx we move the encap to Tx.
2629  * If the count action is after the encap then we also
2630  * move the count action. in this case the count will also measure
2631  * the outer bytes.
2632  *
2633  * @param dev
2634  *   Pointer to Ethernet device.
2635  * @param[in] actions
2636  *   Associated actions (list terminated by the END action).
2637  * @param[out] actions_rx
2638  *   Rx flow actions.
2639  * @param[out] actions_tx
2640  *   Tx flow actions..
2641  * @param[out] pattern_tx
2642  *   The pattern items for the Tx flow.
2643  * @param[out] flow_id
2644  *   The flow ID connected to this flow.
2645  *
2646  * @return
2647  *   0 on success.
2648  */
2649 static int
2650 flow_hairpin_split(struct rte_eth_dev *dev,
2651 		   const struct rte_flow_action actions[],
2652 		   struct rte_flow_action actions_rx[],
2653 		   struct rte_flow_action actions_tx[],
2654 		   struct rte_flow_item pattern_tx[],
2655 		   uint32_t *flow_id)
2656 {
2657 	struct mlx5_priv *priv = dev->data->dev_private;
2658 	const struct rte_flow_action_raw_encap *raw_encap;
2659 	const struct rte_flow_action_raw_decap *raw_decap;
2660 	struct mlx5_rte_flow_action_set_tag *set_tag;
2661 	struct rte_flow_action *tag_action;
2662 	struct mlx5_rte_flow_item_tag *tag_item;
2663 	struct rte_flow_item *item;
2664 	char *addr;
2665 	struct rte_flow_error error;
2666 	int encap = 0;
2667 
2668 	mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
2669 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2670 		switch (actions->type) {
2671 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
2672 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
2673 			rte_memcpy(actions_tx, actions,
2674 			       sizeof(struct rte_flow_action));
2675 			actions_tx++;
2676 			break;
2677 		case RTE_FLOW_ACTION_TYPE_COUNT:
2678 			if (encap) {
2679 				rte_memcpy(actions_tx, actions,
2680 					   sizeof(struct rte_flow_action));
2681 				actions_tx++;
2682 			} else {
2683 				rte_memcpy(actions_rx, actions,
2684 					   sizeof(struct rte_flow_action));
2685 				actions_rx++;
2686 			}
2687 			break;
2688 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
2689 			raw_encap = actions->conf;
2690 			if (raw_encap->size >
2691 			    (sizeof(struct rte_flow_item_eth) +
2692 			     sizeof(struct rte_flow_item_ipv4))) {
2693 				memcpy(actions_tx, actions,
2694 				       sizeof(struct rte_flow_action));
2695 				actions_tx++;
2696 				encap = 1;
2697 			} else {
2698 				rte_memcpy(actions_rx, actions,
2699 					   sizeof(struct rte_flow_action));
2700 				actions_rx++;
2701 			}
2702 			break;
2703 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
2704 			raw_decap = actions->conf;
2705 			if (raw_decap->size <
2706 			    (sizeof(struct rte_flow_item_eth) +
2707 			     sizeof(struct rte_flow_item_ipv4))) {
2708 				memcpy(actions_tx, actions,
2709 				       sizeof(struct rte_flow_action));
2710 				actions_tx++;
2711 			} else {
2712 				rte_memcpy(actions_rx, actions,
2713 					   sizeof(struct rte_flow_action));
2714 				actions_rx++;
2715 			}
2716 			break;
2717 		default:
2718 			rte_memcpy(actions_rx, actions,
2719 				   sizeof(struct rte_flow_action));
2720 			actions_rx++;
2721 			break;
2722 		}
2723 	}
2724 	/* Add set meta action and end action for the Rx flow. */
2725 	tag_action = actions_rx;
2726 	tag_action->type = MLX5_RTE_FLOW_ACTION_TYPE_TAG;
2727 	actions_rx++;
2728 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
2729 	actions_rx++;
2730 	set_tag = (void *)actions_rx;
2731 	set_tag->id = flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, &error);
2732 	set_tag->data = rte_cpu_to_be_32(*flow_id);
2733 	tag_action->conf = set_tag;
2734 	/* Create Tx item list. */
2735 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
2736 	addr = (void *)&pattern_tx[2];
2737 	item = pattern_tx;
2738 	item->type = MLX5_RTE_FLOW_ITEM_TYPE_TAG;
2739 	tag_item = (void *)addr;
2740 	tag_item->data = rte_cpu_to_be_32(*flow_id);
2741 	tag_item->id = flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, &error);
2742 	item->spec = tag_item;
2743 	addr += sizeof(struct mlx5_rte_flow_item_tag);
2744 	tag_item = (void *)addr;
2745 	tag_item->data = UINT32_MAX;
2746 	tag_item->id = UINT16_MAX;
2747 	item->mask = tag_item;
2748 	addr += sizeof(struct mlx5_rte_flow_item_tag);
2749 	item->last = NULL;
2750 	item++;
2751 	item->type = RTE_FLOW_ITEM_TYPE_END;
2752 	return 0;
2753 }
2754 
2755 /**
2756  * Create a flow and add it to @p list.
2757  *
2758  * @param dev
2759  *   Pointer to Ethernet device.
2760  * @param list
2761  *   Pointer to a TAILQ flow list.
2762  * @param[in] attr
2763  *   Flow rule attributes.
2764  * @param[in] items
2765  *   Pattern specification (list terminated by the END pattern item).
2766  * @param[in] actions
2767  *   Associated actions (list terminated by the END action).
2768  * @param[in] external
2769  *   This flow rule is created by request external to PMD.
2770  * @param[out] error
2771  *   Perform verbose error reporting if not NULL.
2772  *
2773  * @return
2774  *   A flow on success, NULL otherwise and rte_errno is set.
2775  */
2776 static struct rte_flow *
2777 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2778 		 const struct rte_flow_attr *attr,
2779 		 const struct rte_flow_item items[],
2780 		 const struct rte_flow_action actions[],
2781 		 bool external, struct rte_flow_error *error)
2782 {
2783 	struct mlx5_priv *priv = dev->data->dev_private;
2784 	struct rte_flow *flow = NULL;
2785 	struct mlx5_flow *dev_flow;
2786 	const struct rte_flow_action_rss *rss;
2787 	union {
2788 		struct rte_flow_expand_rss buf;
2789 		uint8_t buffer[2048];
2790 	} expand_buffer;
2791 	union {
2792 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
2793 		uint8_t buffer[2048];
2794 	} actions_rx;
2795 	union {
2796 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
2797 		uint8_t buffer[2048];
2798 	} actions_hairpin_tx;
2799 	union {
2800 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
2801 		uint8_t buffer[2048];
2802 	} items_tx;
2803 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2804 	const struct rte_flow_action *p_actions_rx = actions;
2805 	int ret;
2806 	uint32_t i;
2807 	uint32_t flow_size;
2808 	int hairpin_flow = 0;
2809 	uint32_t hairpin_id = 0;
2810 	struct rte_flow_attr attr_tx = { .priority = 0 };
2811 
2812 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
2813 	if (hairpin_flow > 0) {
2814 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
2815 			rte_errno = EINVAL;
2816 			return NULL;
2817 		}
2818 		flow_hairpin_split(dev, actions, actions_rx.actions,
2819 				   actions_hairpin_tx.actions, items_tx.items,
2820 				   &hairpin_id);
2821 		p_actions_rx = actions_rx.actions;
2822 	}
2823 	ret = flow_drv_validate(dev, attr, items, p_actions_rx, external,
2824 				error);
2825 	if (ret < 0)
2826 		goto error_before_flow;
2827 	flow_size = sizeof(struct rte_flow);
2828 	rss = flow_get_rss_action(p_actions_rx);
2829 	if (rss)
2830 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2831 					    sizeof(void *));
2832 	else
2833 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2834 	flow = rte_calloc(__func__, 1, flow_size, 0);
2835 	if (!flow) {
2836 		rte_errno = ENOMEM;
2837 		goto error_before_flow;
2838 	}
2839 	flow->drv_type = flow_get_drv_type(dev, attr);
2840 	flow->ingress = attr->ingress;
2841 	flow->transfer = attr->transfer;
2842 	if (hairpin_id != 0)
2843 		flow->hairpin_flow_id = hairpin_id;
2844 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2845 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2846 	flow->queue = (void *)(flow + 1);
2847 	LIST_INIT(&flow->dev_flows);
2848 	if (rss && rss->types) {
2849 		unsigned int graph_root;
2850 
2851 		graph_root = find_graph_root(items, rss->level);
2852 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2853 					  items, rss->types,
2854 					  mlx5_support_expansion,
2855 					  graph_root);
2856 		assert(ret > 0 &&
2857 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2858 	} else {
2859 		buf->entries = 1;
2860 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2861 	}
2862 	for (i = 0; i < buf->entries; ++i) {
2863 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2864 					    p_actions_rx, error);
2865 		if (!dev_flow)
2866 			goto error;
2867 		dev_flow->flow = flow;
2868 		dev_flow->external = external;
2869 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2870 		ret = flow_drv_translate(dev, dev_flow, attr,
2871 					 buf->entry[i].pattern,
2872 					 p_actions_rx, error);
2873 		if (ret < 0)
2874 			goto error;
2875 	}
2876 	/* Create the tx flow. */
2877 	if (hairpin_flow) {
2878 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
2879 		attr_tx.ingress = 0;
2880 		attr_tx.egress = 1;
2881 		dev_flow = flow_drv_prepare(flow, &attr_tx, items_tx.items,
2882 					    actions_hairpin_tx.actions, error);
2883 		if (!dev_flow)
2884 			goto error;
2885 		dev_flow->flow = flow;
2886 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2887 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
2888 					 items_tx.items,
2889 					 actions_hairpin_tx.actions, error);
2890 		if (ret < 0)
2891 			goto error;
2892 	}
2893 	if (dev->data->dev_started) {
2894 		ret = flow_drv_apply(dev, flow, error);
2895 		if (ret < 0)
2896 			goto error;
2897 	}
2898 	TAILQ_INSERT_TAIL(list, flow, next);
2899 	flow_rxq_flags_set(dev, flow);
2900 	return flow;
2901 error_before_flow:
2902 	if (hairpin_id)
2903 		mlx5_flow_id_release(priv->sh->flow_id_pool,
2904 				     hairpin_id);
2905 	return NULL;
2906 error:
2907 	ret = rte_errno; /* Save rte_errno before cleanup. */
2908 	if (flow->hairpin_flow_id)
2909 		mlx5_flow_id_release(priv->sh->flow_id_pool,
2910 				     flow->hairpin_flow_id);
2911 	assert(flow);
2912 	flow_drv_destroy(dev, flow);
2913 	rte_free(flow);
2914 	rte_errno = ret; /* Restore rte_errno. */
2915 	return NULL;
2916 }
2917 
2918 /**
2919  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2920  * incoming packets to table 1.
2921  *
2922  * Other flow rules, requested for group n, will be created in
2923  * e-switch table n+1.
2924  * Jump action to e-switch group n will be created to group n+1.
2925  *
2926  * Used when working in switchdev mode, to utilise advantages of table 1
2927  * and above.
2928  *
2929  * @param dev
2930  *   Pointer to Ethernet device.
2931  *
2932  * @return
2933  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2934  */
2935 struct rte_flow *
2936 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2937 {
2938 	const struct rte_flow_attr attr = {
2939 		.group = 0,
2940 		.priority = 0,
2941 		.ingress = 1,
2942 		.egress = 0,
2943 		.transfer = 1,
2944 	};
2945 	const struct rte_flow_item pattern = {
2946 		.type = RTE_FLOW_ITEM_TYPE_END,
2947 	};
2948 	struct rte_flow_action_jump jump = {
2949 		.group = 1,
2950 	};
2951 	const struct rte_flow_action actions[] = {
2952 		{
2953 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
2954 			.conf = &jump,
2955 		},
2956 		{
2957 			.type = RTE_FLOW_ACTION_TYPE_END,
2958 		},
2959 	};
2960 	struct mlx5_priv *priv = dev->data->dev_private;
2961 	struct rte_flow_error error;
2962 
2963 	return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2964 				actions, false, &error);
2965 }
2966 
2967 /**
2968  * Create a flow.
2969  *
2970  * @see rte_flow_create()
2971  * @see rte_flow_ops
2972  */
2973 struct rte_flow *
2974 mlx5_flow_create(struct rte_eth_dev *dev,
2975 		 const struct rte_flow_attr *attr,
2976 		 const struct rte_flow_item items[],
2977 		 const struct rte_flow_action actions[],
2978 		 struct rte_flow_error *error)
2979 {
2980 	struct mlx5_priv *priv = dev->data->dev_private;
2981 
2982 	return flow_list_create(dev, &priv->flows,
2983 				attr, items, actions, true, error);
2984 }
2985 
2986 /**
2987  * Destroy a flow in a list.
2988  *
2989  * @param dev
2990  *   Pointer to Ethernet device.
2991  * @param list
2992  *   Pointer to a TAILQ flow list.
2993  * @param[in] flow
2994  *   Flow to destroy.
2995  */
2996 static void
2997 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2998 		  struct rte_flow *flow)
2999 {
3000 	struct mlx5_priv *priv = dev->data->dev_private;
3001 
3002 	/*
3003 	 * Update RX queue flags only if port is started, otherwise it is
3004 	 * already clean.
3005 	 */
3006 	if (dev->data->dev_started)
3007 		flow_rxq_flags_trim(dev, flow);
3008 	if (flow->hairpin_flow_id)
3009 		mlx5_flow_id_release(priv->sh->flow_id_pool,
3010 				     flow->hairpin_flow_id);
3011 	flow_drv_destroy(dev, flow);
3012 	TAILQ_REMOVE(list, flow, next);
3013 	rte_free(flow->fdir);
3014 	rte_free(flow);
3015 }
3016 
3017 /**
3018  * Destroy all flows.
3019  *
3020  * @param dev
3021  *   Pointer to Ethernet device.
3022  * @param list
3023  *   Pointer to a TAILQ flow list.
3024  */
3025 void
3026 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
3027 {
3028 	while (!TAILQ_EMPTY(list)) {
3029 		struct rte_flow *flow;
3030 
3031 		flow = TAILQ_FIRST(list);
3032 		flow_list_destroy(dev, list, flow);
3033 	}
3034 }
3035 
3036 /**
3037  * Remove all flows.
3038  *
3039  * @param dev
3040  *   Pointer to Ethernet device.
3041  * @param list
3042  *   Pointer to a TAILQ flow list.
3043  */
3044 void
3045 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
3046 {
3047 	struct rte_flow *flow;
3048 
3049 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
3050 		flow_drv_remove(dev, flow);
3051 	flow_rxq_flags_clear(dev);
3052 }
3053 
3054 /**
3055  * Add all flows.
3056  *
3057  * @param dev
3058  *   Pointer to Ethernet device.
3059  * @param list
3060  *   Pointer to a TAILQ flow list.
3061  *
3062  * @return
3063  *   0 on success, a negative errno value otherwise and rte_errno is set.
3064  */
3065 int
3066 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
3067 {
3068 	struct rte_flow *flow;
3069 	struct rte_flow_error error;
3070 	int ret = 0;
3071 
3072 	TAILQ_FOREACH(flow, list, next) {
3073 		ret = flow_drv_apply(dev, flow, &error);
3074 		if (ret < 0)
3075 			goto error;
3076 		flow_rxq_flags_set(dev, flow);
3077 	}
3078 	return 0;
3079 error:
3080 	ret = rte_errno; /* Save rte_errno before cleanup. */
3081 	mlx5_flow_stop(dev, list);
3082 	rte_errno = ret; /* Restore rte_errno. */
3083 	return -rte_errno;
3084 }
3085 
3086 /**
3087  * Verify the flow list is empty
3088  *
3089  * @param dev
3090  *  Pointer to Ethernet device.
3091  *
3092  * @return the number of flows not released.
3093  */
3094 int
3095 mlx5_flow_verify(struct rte_eth_dev *dev)
3096 {
3097 	struct mlx5_priv *priv = dev->data->dev_private;
3098 	struct rte_flow *flow;
3099 	int ret = 0;
3100 
3101 	TAILQ_FOREACH(flow, &priv->flows, next) {
3102 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
3103 			dev->data->port_id, (void *)flow);
3104 		++ret;
3105 	}
3106 	return ret;
3107 }
3108 
3109 /**
3110  * Enable default hairpin egress flow.
3111  *
3112  * @param dev
3113  *   Pointer to Ethernet device.
3114  * @param queue
3115  *   The queue index.
3116  *
3117  * @return
3118  *   0 on success, a negative errno value otherwise and rte_errno is set.
3119  */
3120 int
3121 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
3122 			    uint32_t queue)
3123 {
3124 	struct mlx5_priv *priv = dev->data->dev_private;
3125 	const struct rte_flow_attr attr = {
3126 		.egress = 1,
3127 		.priority = 0,
3128 	};
3129 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
3130 		.queue = queue,
3131 	};
3132 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
3133 		.queue = UINT32_MAX,
3134 	};
3135 	struct rte_flow_item items[] = {
3136 		{
3137 			.type = MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
3138 			.spec = &queue_spec,
3139 			.last = NULL,
3140 			.mask = &queue_mask,
3141 		},
3142 		{
3143 			.type = RTE_FLOW_ITEM_TYPE_END,
3144 		},
3145 	};
3146 	struct rte_flow_action_jump jump = {
3147 		.group = MLX5_HAIRPIN_TX_TABLE,
3148 	};
3149 	struct rte_flow_action actions[2];
3150 	struct rte_flow *flow;
3151 	struct rte_flow_error error;
3152 
3153 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
3154 	actions[0].conf = &jump;
3155 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
3156 	flow = flow_list_create(dev, &priv->ctrl_flows,
3157 				&attr, items, actions, false, &error);
3158 	if (!flow) {
3159 		DRV_LOG(DEBUG,
3160 			"Failed to create ctrl flow: rte_errno(%d),"
3161 			" type(%d), message(%s)",
3162 			rte_errno, error.type,
3163 			error.message ? error.message : " (no stated reason)");
3164 		return -rte_errno;
3165 	}
3166 	return 0;
3167 }
3168 
3169 /**
3170  * Enable a control flow configured from the control plane.
3171  *
3172  * @param dev
3173  *   Pointer to Ethernet device.
3174  * @param eth_spec
3175  *   An Ethernet flow spec to apply.
3176  * @param eth_mask
3177  *   An Ethernet flow mask to apply.
3178  * @param vlan_spec
3179  *   A VLAN flow spec to apply.
3180  * @param vlan_mask
3181  *   A VLAN flow mask to apply.
3182  *
3183  * @return
3184  *   0 on success, a negative errno value otherwise and rte_errno is set.
3185  */
3186 int
3187 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
3188 		    struct rte_flow_item_eth *eth_spec,
3189 		    struct rte_flow_item_eth *eth_mask,
3190 		    struct rte_flow_item_vlan *vlan_spec,
3191 		    struct rte_flow_item_vlan *vlan_mask)
3192 {
3193 	struct mlx5_priv *priv = dev->data->dev_private;
3194 	const struct rte_flow_attr attr = {
3195 		.ingress = 1,
3196 		.priority = MLX5_FLOW_PRIO_RSVD,
3197 	};
3198 	struct rte_flow_item items[] = {
3199 		{
3200 			.type = RTE_FLOW_ITEM_TYPE_ETH,
3201 			.spec = eth_spec,
3202 			.last = NULL,
3203 			.mask = eth_mask,
3204 		},
3205 		{
3206 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
3207 					      RTE_FLOW_ITEM_TYPE_END,
3208 			.spec = vlan_spec,
3209 			.last = NULL,
3210 			.mask = vlan_mask,
3211 		},
3212 		{
3213 			.type = RTE_FLOW_ITEM_TYPE_END,
3214 		},
3215 	};
3216 	uint16_t queue[priv->reta_idx_n];
3217 	struct rte_flow_action_rss action_rss = {
3218 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3219 		.level = 0,
3220 		.types = priv->rss_conf.rss_hf,
3221 		.key_len = priv->rss_conf.rss_key_len,
3222 		.queue_num = priv->reta_idx_n,
3223 		.key = priv->rss_conf.rss_key,
3224 		.queue = queue,
3225 	};
3226 	struct rte_flow_action actions[] = {
3227 		{
3228 			.type = RTE_FLOW_ACTION_TYPE_RSS,
3229 			.conf = &action_rss,
3230 		},
3231 		{
3232 			.type = RTE_FLOW_ACTION_TYPE_END,
3233 		},
3234 	};
3235 	struct rte_flow *flow;
3236 	struct rte_flow_error error;
3237 	unsigned int i;
3238 
3239 	if (!priv->reta_idx_n || !priv->rxqs_n) {
3240 		return 0;
3241 	}
3242 	for (i = 0; i != priv->reta_idx_n; ++i)
3243 		queue[i] = (*priv->reta_idx)[i];
3244 	flow = flow_list_create(dev, &priv->ctrl_flows,
3245 				&attr, items, actions, false, &error);
3246 	if (!flow)
3247 		return -rte_errno;
3248 	return 0;
3249 }
3250 
3251 /**
3252  * Enable a flow control configured from the control plane.
3253  *
3254  * @param dev
3255  *   Pointer to Ethernet device.
3256  * @param eth_spec
3257  *   An Ethernet flow spec to apply.
3258  * @param eth_mask
3259  *   An Ethernet flow mask to apply.
3260  *
3261  * @return
3262  *   0 on success, a negative errno value otherwise and rte_errno is set.
3263  */
3264 int
3265 mlx5_ctrl_flow(struct rte_eth_dev *dev,
3266 	       struct rte_flow_item_eth *eth_spec,
3267 	       struct rte_flow_item_eth *eth_mask)
3268 {
3269 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
3270 }
3271 
3272 /**
3273  * Destroy a flow.
3274  *
3275  * @see rte_flow_destroy()
3276  * @see rte_flow_ops
3277  */
3278 int
3279 mlx5_flow_destroy(struct rte_eth_dev *dev,
3280 		  struct rte_flow *flow,
3281 		  struct rte_flow_error *error __rte_unused)
3282 {
3283 	struct mlx5_priv *priv = dev->data->dev_private;
3284 
3285 	flow_list_destroy(dev, &priv->flows, flow);
3286 	return 0;
3287 }
3288 
3289 /**
3290  * Destroy all flows.
3291  *
3292  * @see rte_flow_flush()
3293  * @see rte_flow_ops
3294  */
3295 int
3296 mlx5_flow_flush(struct rte_eth_dev *dev,
3297 		struct rte_flow_error *error __rte_unused)
3298 {
3299 	struct mlx5_priv *priv = dev->data->dev_private;
3300 
3301 	mlx5_flow_list_flush(dev, &priv->flows);
3302 	return 0;
3303 }
3304 
3305 /**
3306  * Isolated mode.
3307  *
3308  * @see rte_flow_isolate()
3309  * @see rte_flow_ops
3310  */
3311 int
3312 mlx5_flow_isolate(struct rte_eth_dev *dev,
3313 		  int enable,
3314 		  struct rte_flow_error *error)
3315 {
3316 	struct mlx5_priv *priv = dev->data->dev_private;
3317 
3318 	if (dev->data->dev_started) {
3319 		rte_flow_error_set(error, EBUSY,
3320 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3321 				   NULL,
3322 				   "port must be stopped first");
3323 		return -rte_errno;
3324 	}
3325 	priv->isolated = !!enable;
3326 	if (enable)
3327 		dev->dev_ops = &mlx5_dev_ops_isolate;
3328 	else
3329 		dev->dev_ops = &mlx5_dev_ops;
3330 	return 0;
3331 }
3332 
3333 /**
3334  * Query a flow.
3335  *
3336  * @see rte_flow_query()
3337  * @see rte_flow_ops
3338  */
3339 static int
3340 flow_drv_query(struct rte_eth_dev *dev,
3341 	       struct rte_flow *flow,
3342 	       const struct rte_flow_action *actions,
3343 	       void *data,
3344 	       struct rte_flow_error *error)
3345 {
3346 	const struct mlx5_flow_driver_ops *fops;
3347 	enum mlx5_flow_drv_type ftype = flow->drv_type;
3348 
3349 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
3350 	fops = flow_get_drv_ops(ftype);
3351 
3352 	return fops->query(dev, flow, actions, data, error);
3353 }
3354 
3355 /**
3356  * Query a flow.
3357  *
3358  * @see rte_flow_query()
3359  * @see rte_flow_ops
3360  */
3361 int
3362 mlx5_flow_query(struct rte_eth_dev *dev,
3363 		struct rte_flow *flow,
3364 		const struct rte_flow_action *actions,
3365 		void *data,
3366 		struct rte_flow_error *error)
3367 {
3368 	int ret;
3369 
3370 	ret = flow_drv_query(dev, flow, actions, data, error);
3371 	if (ret < 0)
3372 		return ret;
3373 	return 0;
3374 }
3375 
3376 /**
3377  * Convert a flow director filter to a generic flow.
3378  *
3379  * @param dev
3380  *   Pointer to Ethernet device.
3381  * @param fdir_filter
3382  *   Flow director filter to add.
3383  * @param attributes
3384  *   Generic flow parameters structure.
3385  *
3386  * @return
3387  *   0 on success, a negative errno value otherwise and rte_errno is set.
3388  */
3389 static int
3390 flow_fdir_filter_convert(struct rte_eth_dev *dev,
3391 			 const struct rte_eth_fdir_filter *fdir_filter,
3392 			 struct mlx5_fdir *attributes)
3393 {
3394 	struct mlx5_priv *priv = dev->data->dev_private;
3395 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
3396 	const struct rte_eth_fdir_masks *mask =
3397 		&dev->data->dev_conf.fdir_conf.mask;
3398 
3399 	/* Validate queue number. */
3400 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3401 		DRV_LOG(ERR, "port %u invalid queue number %d",
3402 			dev->data->port_id, fdir_filter->action.rx_queue);
3403 		rte_errno = EINVAL;
3404 		return -rte_errno;
3405 	}
3406 	attributes->attr.ingress = 1;
3407 	attributes->items[0] = (struct rte_flow_item) {
3408 		.type = RTE_FLOW_ITEM_TYPE_ETH,
3409 		.spec = &attributes->l2,
3410 		.mask = &attributes->l2_mask,
3411 	};
3412 	switch (fdir_filter->action.behavior) {
3413 	case RTE_ETH_FDIR_ACCEPT:
3414 		attributes->actions[0] = (struct rte_flow_action){
3415 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
3416 			.conf = &attributes->queue,
3417 		};
3418 		break;
3419 	case RTE_ETH_FDIR_REJECT:
3420 		attributes->actions[0] = (struct rte_flow_action){
3421 			.type = RTE_FLOW_ACTION_TYPE_DROP,
3422 		};
3423 		break;
3424 	default:
3425 		DRV_LOG(ERR, "port %u invalid behavior %d",
3426 			dev->data->port_id,
3427 			fdir_filter->action.behavior);
3428 		rte_errno = ENOTSUP;
3429 		return -rte_errno;
3430 	}
3431 	attributes->queue.index = fdir_filter->action.rx_queue;
3432 	/* Handle L3. */
3433 	switch (fdir_filter->input.flow_type) {
3434 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3435 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3436 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3437 		attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
3438 			.src_addr = input->flow.ip4_flow.src_ip,
3439 			.dst_addr = input->flow.ip4_flow.dst_ip,
3440 			.time_to_live = input->flow.ip4_flow.ttl,
3441 			.type_of_service = input->flow.ip4_flow.tos,
3442 		};
3443 		attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
3444 			.src_addr = mask->ipv4_mask.src_ip,
3445 			.dst_addr = mask->ipv4_mask.dst_ip,
3446 			.time_to_live = mask->ipv4_mask.ttl,
3447 			.type_of_service = mask->ipv4_mask.tos,
3448 			.next_proto_id = mask->ipv4_mask.proto,
3449 		};
3450 		attributes->items[1] = (struct rte_flow_item){
3451 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
3452 			.spec = &attributes->l3,
3453 			.mask = &attributes->l3_mask,
3454 		};
3455 		break;
3456 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3457 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3458 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3459 		attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
3460 			.hop_limits = input->flow.ipv6_flow.hop_limits,
3461 			.proto = input->flow.ipv6_flow.proto,
3462 		};
3463 
3464 		memcpy(attributes->l3.ipv6.hdr.src_addr,
3465 		       input->flow.ipv6_flow.src_ip,
3466 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3467 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
3468 		       input->flow.ipv6_flow.dst_ip,
3469 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3470 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3471 		       mask->ipv6_mask.src_ip,
3472 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3473 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3474 		       mask->ipv6_mask.dst_ip,
3475 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3476 		attributes->items[1] = (struct rte_flow_item){
3477 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3478 			.spec = &attributes->l3,
3479 			.mask = &attributes->l3_mask,
3480 		};
3481 		break;
3482 	default:
3483 		DRV_LOG(ERR, "port %u invalid flow type%d",
3484 			dev->data->port_id, fdir_filter->input.flow_type);
3485 		rte_errno = ENOTSUP;
3486 		return -rte_errno;
3487 	}
3488 	/* Handle L4. */
3489 	switch (fdir_filter->input.flow_type) {
3490 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3491 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
3492 			.src_port = input->flow.udp4_flow.src_port,
3493 			.dst_port = input->flow.udp4_flow.dst_port,
3494 		};
3495 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3496 			.src_port = mask->src_port_mask,
3497 			.dst_port = mask->dst_port_mask,
3498 		};
3499 		attributes->items[2] = (struct rte_flow_item){
3500 			.type = RTE_FLOW_ITEM_TYPE_UDP,
3501 			.spec = &attributes->l4,
3502 			.mask = &attributes->l4_mask,
3503 		};
3504 		break;
3505 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3506 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3507 			.src_port = input->flow.tcp4_flow.src_port,
3508 			.dst_port = input->flow.tcp4_flow.dst_port,
3509 		};
3510 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3511 			.src_port = mask->src_port_mask,
3512 			.dst_port = mask->dst_port_mask,
3513 		};
3514 		attributes->items[2] = (struct rte_flow_item){
3515 			.type = RTE_FLOW_ITEM_TYPE_TCP,
3516 			.spec = &attributes->l4,
3517 			.mask = &attributes->l4_mask,
3518 		};
3519 		break;
3520 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3521 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
3522 			.src_port = input->flow.udp6_flow.src_port,
3523 			.dst_port = input->flow.udp6_flow.dst_port,
3524 		};
3525 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3526 			.src_port = mask->src_port_mask,
3527 			.dst_port = mask->dst_port_mask,
3528 		};
3529 		attributes->items[2] = (struct rte_flow_item){
3530 			.type = RTE_FLOW_ITEM_TYPE_UDP,
3531 			.spec = &attributes->l4,
3532 			.mask = &attributes->l4_mask,
3533 		};
3534 		break;
3535 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3536 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3537 			.src_port = input->flow.tcp6_flow.src_port,
3538 			.dst_port = input->flow.tcp6_flow.dst_port,
3539 		};
3540 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3541 			.src_port = mask->src_port_mask,
3542 			.dst_port = mask->dst_port_mask,
3543 		};
3544 		attributes->items[2] = (struct rte_flow_item){
3545 			.type = RTE_FLOW_ITEM_TYPE_TCP,
3546 			.spec = &attributes->l4,
3547 			.mask = &attributes->l4_mask,
3548 		};
3549 		break;
3550 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3551 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3552 		break;
3553 	default:
3554 		DRV_LOG(ERR, "port %u invalid flow type%d",
3555 			dev->data->port_id, fdir_filter->input.flow_type);
3556 		rte_errno = ENOTSUP;
3557 		return -rte_errno;
3558 	}
3559 	return 0;
3560 }
3561 
3562 #define FLOW_FDIR_CMP(f1, f2, fld) \
3563 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3564 
3565 /**
3566  * Compare two FDIR flows. If items and actions are identical, the two flows are
3567  * regarded as same.
3568  *
3569  * @param dev
3570  *   Pointer to Ethernet device.
3571  * @param f1
3572  *   FDIR flow to compare.
3573  * @param f2
3574  *   FDIR flow to compare.
3575  *
3576  * @return
3577  *   Zero on match, 1 otherwise.
3578  */
3579 static int
3580 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3581 {
3582 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
3583 	    FLOW_FDIR_CMP(f1, f2, l2) ||
3584 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3585 	    FLOW_FDIR_CMP(f1, f2, l3) ||
3586 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3587 	    FLOW_FDIR_CMP(f1, f2, l4) ||
3588 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3589 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
3590 		return 1;
3591 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3592 	    FLOW_FDIR_CMP(f1, f2, queue))
3593 		return 1;
3594 	return 0;
3595 }
3596 
3597 /**
3598  * Search device flow list to find out a matched FDIR flow.
3599  *
3600  * @param dev
3601  *   Pointer to Ethernet device.
3602  * @param fdir_flow
3603  *   FDIR flow to lookup.
3604  *
3605  * @return
3606  *   Pointer of flow if found, NULL otherwise.
3607  */
3608 static struct rte_flow *
3609 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3610 {
3611 	struct mlx5_priv *priv = dev->data->dev_private;
3612 	struct rte_flow *flow = NULL;
3613 
3614 	assert(fdir_flow);
3615 	TAILQ_FOREACH(flow, &priv->flows, next) {
3616 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3617 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3618 				dev->data->port_id, (void *)flow);
3619 			break;
3620 		}
3621 	}
3622 	return flow;
3623 }
3624 
3625 /**
3626  * Add new flow director filter and store it in list.
3627  *
3628  * @param dev
3629  *   Pointer to Ethernet device.
3630  * @param fdir_filter
3631  *   Flow director filter to add.
3632  *
3633  * @return
3634  *   0 on success, a negative errno value otherwise and rte_errno is set.
3635  */
3636 static int
3637 flow_fdir_filter_add(struct rte_eth_dev *dev,
3638 		     const struct rte_eth_fdir_filter *fdir_filter)
3639 {
3640 	struct mlx5_priv *priv = dev->data->dev_private;
3641 	struct mlx5_fdir *fdir_flow;
3642 	struct rte_flow *flow;
3643 	int ret;
3644 
3645 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3646 	if (!fdir_flow) {
3647 		rte_errno = ENOMEM;
3648 		return -rte_errno;
3649 	}
3650 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3651 	if (ret)
3652 		goto error;
3653 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
3654 	if (flow) {
3655 		rte_errno = EEXIST;
3656 		goto error;
3657 	}
3658 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3659 				fdir_flow->items, fdir_flow->actions, true,
3660 				NULL);
3661 	if (!flow)
3662 		goto error;
3663 	assert(!flow->fdir);
3664 	flow->fdir = fdir_flow;
3665 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3666 		dev->data->port_id, (void *)flow);
3667 	return 0;
3668 error:
3669 	rte_free(fdir_flow);
3670 	return -rte_errno;
3671 }
3672 
3673 /**
3674  * Delete specific filter.
3675  *
3676  * @param dev
3677  *   Pointer to Ethernet device.
3678  * @param fdir_filter
3679  *   Filter to be deleted.
3680  *
3681  * @return
3682  *   0 on success, a negative errno value otherwise and rte_errno is set.
3683  */
3684 static int
3685 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3686 			const struct rte_eth_fdir_filter *fdir_filter)
3687 {
3688 	struct mlx5_priv *priv = dev->data->dev_private;
3689 	struct rte_flow *flow;
3690 	struct mlx5_fdir fdir_flow = {
3691 		.attr.group = 0,
3692 	};
3693 	int ret;
3694 
3695 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3696 	if (ret)
3697 		return -rte_errno;
3698 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3699 	if (!flow) {
3700 		rte_errno = ENOENT;
3701 		return -rte_errno;
3702 	}
3703 	flow_list_destroy(dev, &priv->flows, flow);
3704 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3705 		dev->data->port_id, (void *)flow);
3706 	return 0;
3707 }
3708 
3709 /**
3710  * Update queue for specific filter.
3711  *
3712  * @param dev
3713  *   Pointer to Ethernet device.
3714  * @param fdir_filter
3715  *   Filter to be updated.
3716  *
3717  * @return
3718  *   0 on success, a negative errno value otherwise and rte_errno is set.
3719  */
3720 static int
3721 flow_fdir_filter_update(struct rte_eth_dev *dev,
3722 			const struct rte_eth_fdir_filter *fdir_filter)
3723 {
3724 	int ret;
3725 
3726 	ret = flow_fdir_filter_delete(dev, fdir_filter);
3727 	if (ret)
3728 		return ret;
3729 	return flow_fdir_filter_add(dev, fdir_filter);
3730 }
3731 
3732 /**
3733  * Flush all filters.
3734  *
3735  * @param dev
3736  *   Pointer to Ethernet device.
3737  */
3738 static void
3739 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3740 {
3741 	struct mlx5_priv *priv = dev->data->dev_private;
3742 
3743 	mlx5_flow_list_flush(dev, &priv->flows);
3744 }
3745 
3746 /**
3747  * Get flow director information.
3748  *
3749  * @param dev
3750  *   Pointer to Ethernet device.
3751  * @param[out] fdir_info
3752  *   Resulting flow director information.
3753  */
3754 static void
3755 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3756 {
3757 	struct rte_eth_fdir_masks *mask =
3758 		&dev->data->dev_conf.fdir_conf.mask;
3759 
3760 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3761 	fdir_info->guarant_spc = 0;
3762 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3763 	fdir_info->max_flexpayload = 0;
3764 	fdir_info->flow_types_mask[0] = 0;
3765 	fdir_info->flex_payload_unit = 0;
3766 	fdir_info->max_flex_payload_segment_num = 0;
3767 	fdir_info->flex_payload_limit = 0;
3768 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3769 }
3770 
3771 /**
3772  * Deal with flow director operations.
3773  *
3774  * @param dev
3775  *   Pointer to Ethernet device.
3776  * @param filter_op
3777  *   Operation to perform.
3778  * @param arg
3779  *   Pointer to operation-specific structure.
3780  *
3781  * @return
3782  *   0 on success, a negative errno value otherwise and rte_errno is set.
3783  */
3784 static int
3785 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3786 		    void *arg)
3787 {
3788 	enum rte_fdir_mode fdir_mode =
3789 		dev->data->dev_conf.fdir_conf.mode;
3790 
3791 	if (filter_op == RTE_ETH_FILTER_NOP)
3792 		return 0;
3793 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3794 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3795 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
3796 			dev->data->port_id, fdir_mode);
3797 		rte_errno = EINVAL;
3798 		return -rte_errno;
3799 	}
3800 	switch (filter_op) {
3801 	case RTE_ETH_FILTER_ADD:
3802 		return flow_fdir_filter_add(dev, arg);
3803 	case RTE_ETH_FILTER_UPDATE:
3804 		return flow_fdir_filter_update(dev, arg);
3805 	case RTE_ETH_FILTER_DELETE:
3806 		return flow_fdir_filter_delete(dev, arg);
3807 	case RTE_ETH_FILTER_FLUSH:
3808 		flow_fdir_filter_flush(dev);
3809 		break;
3810 	case RTE_ETH_FILTER_INFO:
3811 		flow_fdir_info_get(dev, arg);
3812 		break;
3813 	default:
3814 		DRV_LOG(DEBUG, "port %u unknown operation %u",
3815 			dev->data->port_id, filter_op);
3816 		rte_errno = EINVAL;
3817 		return -rte_errno;
3818 	}
3819 	return 0;
3820 }
3821 
3822 /**
3823  * Manage filter operations.
3824  *
3825  * @param dev
3826  *   Pointer to Ethernet device structure.
3827  * @param filter_type
3828  *   Filter type.
3829  * @param filter_op
3830  *   Operation to perform.
3831  * @param arg
3832  *   Pointer to operation-specific structure.
3833  *
3834  * @return
3835  *   0 on success, a negative errno value otherwise and rte_errno is set.
3836  */
3837 int
3838 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3839 		     enum rte_filter_type filter_type,
3840 		     enum rte_filter_op filter_op,
3841 		     void *arg)
3842 {
3843 	switch (filter_type) {
3844 	case RTE_ETH_FILTER_GENERIC:
3845 		if (filter_op != RTE_ETH_FILTER_GET) {
3846 			rte_errno = EINVAL;
3847 			return -rte_errno;
3848 		}
3849 		*(const void **)arg = &mlx5_flow_ops;
3850 		return 0;
3851 	case RTE_ETH_FILTER_FDIR:
3852 		return flow_fdir_ctrl_func(dev, filter_op, arg);
3853 	default:
3854 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
3855 			dev->data->port_id, filter_type);
3856 		rte_errno = ENOTSUP;
3857 		return -rte_errno;
3858 	}
3859 	return 0;
3860 }
3861 
3862 #define MLX5_POOL_QUERY_FREQ_US 1000000
3863 
3864 /**
3865  * Set the periodic procedure for triggering asynchronous batch queries for all
3866  * the counter pools.
3867  *
3868  * @param[in] sh
3869  *   Pointer to mlx5_ibv_shared object.
3870  */
3871 void
3872 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3873 {
3874 	struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3875 	uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3876 	uint32_t us;
3877 
3878 	cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3879 	pools_n += rte_atomic16_read(&cont->n_valid);
3880 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3881 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
3882 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3883 		sh->cmng.query_thread_on = 0;
3884 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
3885 	} else {
3886 		sh->cmng.query_thread_on = 1;
3887 	}
3888 }
3889 
3890 /**
3891  * The periodic procedure for triggering asynchronous batch queries for all the
3892  * counter pools. This function is probably called by the host thread.
3893  *
3894  * @param[in] arg
3895  *   The parameter for the alarm process.
3896  */
3897 void
3898 mlx5_flow_query_alarm(void *arg)
3899 {
3900 	struct mlx5_ibv_shared *sh = arg;
3901 	struct mlx5_devx_obj *dcs;
3902 	uint16_t offset;
3903 	int ret;
3904 	uint8_t batch = sh->cmng.batch;
3905 	uint16_t pool_index = sh->cmng.pool_index;
3906 	struct mlx5_pools_container *cont;
3907 	struct mlx5_pools_container *mcont;
3908 	struct mlx5_flow_counter_pool *pool;
3909 
3910 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3911 		goto set_alarm;
3912 next_container:
3913 	cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3914 	mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3915 	/* Check if resize was done and need to flip a container. */
3916 	if (cont != mcont) {
3917 		if (cont->pools) {
3918 			/* Clean the old container. */
3919 			rte_free(cont->pools);
3920 			memset(cont, 0, sizeof(*cont));
3921 		}
3922 		rte_cio_wmb();
3923 		 /* Flip the host container. */
3924 		sh->cmng.mhi[batch] ^= (uint8_t)2;
3925 		cont = mcont;
3926 	}
3927 	if (!cont->pools) {
3928 		/* 2 empty containers case is unexpected. */
3929 		if (unlikely(batch != sh->cmng.batch))
3930 			goto set_alarm;
3931 		batch ^= 0x1;
3932 		pool_index = 0;
3933 		goto next_container;
3934 	}
3935 	pool = cont->pools[pool_index];
3936 	if (pool->raw_hw)
3937 		/* There is a pool query in progress. */
3938 		goto set_alarm;
3939 	pool->raw_hw =
3940 		LIST_FIRST(&sh->cmng.free_stat_raws);
3941 	if (!pool->raw_hw)
3942 		/* No free counter statistics raw memory. */
3943 		goto set_alarm;
3944 	dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3945 							      (&pool->a64_dcs);
3946 	offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3947 	ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3948 					       offset, NULL, NULL,
3949 					       pool->raw_hw->mem_mng->dm->id,
3950 					       (void *)(uintptr_t)
3951 					       (pool->raw_hw->data + offset),
3952 					       sh->devx_comp,
3953 					       (uint64_t)(uintptr_t)pool);
3954 	if (ret) {
3955 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3956 			" %d", pool->min_dcs->id);
3957 		pool->raw_hw = NULL;
3958 		goto set_alarm;
3959 	}
3960 	pool->raw_hw->min_dcs_id = dcs->id;
3961 	LIST_REMOVE(pool->raw_hw, next);
3962 	sh->cmng.pending_queries++;
3963 	pool_index++;
3964 	if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3965 		batch ^= 0x1;
3966 		pool_index = 0;
3967 	}
3968 set_alarm:
3969 	sh->cmng.batch = batch;
3970 	sh->cmng.pool_index = pool_index;
3971 	mlx5_set_query_alarm(sh);
3972 }
3973 
3974 /**
3975  * Handler for the HW respond about ready values from an asynchronous batch
3976  * query. This function is probably called by the host thread.
3977  *
3978  * @param[in] sh
3979  *   The pointer to the shared IB device context.
3980  * @param[in] async_id
3981  *   The Devx async ID.
3982  * @param[in] status
3983  *   The status of the completion.
3984  */
3985 void
3986 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3987 				  uint64_t async_id, int status)
3988 {
3989 	struct mlx5_flow_counter_pool *pool =
3990 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3991 	struct mlx5_counter_stats_raw *raw_to_free;
3992 
3993 	if (unlikely(status)) {
3994 		raw_to_free = pool->raw_hw;
3995 	} else {
3996 		raw_to_free = pool->raw;
3997 		rte_spinlock_lock(&pool->sl);
3998 		pool->raw = pool->raw_hw;
3999 		rte_spinlock_unlock(&pool->sl);
4000 		rte_atomic64_add(&pool->query_gen, 1);
4001 		/* Be sure the new raw counters data is updated in memory. */
4002 		rte_cio_wmb();
4003 	}
4004 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
4005 	pool->raw_hw = NULL;
4006 	sh->cmng.pending_queries--;
4007 }
4008 
4009 /**
4010  * Translate the rte_flow group index to HW table value.
4011  *
4012  * @param[in] attributes
4013  *   Pointer to flow attributes
4014  * @param[in] external
4015  *   Value is part of flow rule created by request external to PMD.
4016  * @param[in] group
4017  *   rte_flow group index value.
4018  * @param[out] table
4019  *   HW table value.
4020  * @param[out] error
4021  *   Pointer to error structure.
4022  *
4023  * @return
4024  *   0 on success, a negative errno value otherwise and rte_errno is set.
4025  */
4026 int
4027 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
4028 			 uint32_t group, uint32_t *table,
4029 			 struct rte_flow_error *error)
4030 {
4031 	if (attributes->transfer && external) {
4032 		if (group == UINT32_MAX)
4033 			return rte_flow_error_set
4034 						(error, EINVAL,
4035 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
4036 						 NULL,
4037 						 "group index not supported");
4038 		*table = group + 1;
4039 	} else {
4040 		*table = group;
4041 	}
4042 	return 0;
4043 }
4044