1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 12 /* Verbs header. */ 13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 14 #ifdef PEDANTIC 15 #pragma GCC diagnostic ignored "-Wpedantic" 16 #endif 17 #include <infiniband/verbs.h> 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic error "-Wpedantic" 20 #endif 21 22 #include <rte_common.h> 23 #include <rte_ether.h> 24 #include <rte_ethdev_driver.h> 25 #include <rte_flow.h> 26 #include <rte_flow_driver.h> 27 #include <rte_malloc.h> 28 #include <rte_ip.h> 29 30 #include "mlx5.h" 31 #include "mlx5_defs.h" 32 #include "mlx5_flow.h" 33 #include "mlx5_glue.h" 34 #include "mlx5_prm.h" 35 #include "mlx5_rxtx.h" 36 37 /* Dev ops structure defined in mlx5.c */ 38 extern const struct eth_dev_ops mlx5_dev_ops; 39 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 40 41 /** Device flow drivers. */ 42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops; 44 #endif 45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 46 47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 48 49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 50 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 52 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 53 #endif 54 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 55 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 56 }; 57 58 enum mlx5_expansion { 59 MLX5_EXPANSION_ROOT, 60 MLX5_EXPANSION_ROOT_OUTER, 61 MLX5_EXPANSION_ROOT_ETH_VLAN, 62 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 63 MLX5_EXPANSION_OUTER_ETH, 64 MLX5_EXPANSION_OUTER_ETH_VLAN, 65 MLX5_EXPANSION_OUTER_VLAN, 66 MLX5_EXPANSION_OUTER_IPV4, 67 MLX5_EXPANSION_OUTER_IPV4_UDP, 68 MLX5_EXPANSION_OUTER_IPV4_TCP, 69 MLX5_EXPANSION_OUTER_IPV6, 70 MLX5_EXPANSION_OUTER_IPV6_UDP, 71 MLX5_EXPANSION_OUTER_IPV6_TCP, 72 MLX5_EXPANSION_VXLAN, 73 MLX5_EXPANSION_VXLAN_GPE, 74 MLX5_EXPANSION_GRE, 75 MLX5_EXPANSION_MPLS, 76 MLX5_EXPANSION_ETH, 77 MLX5_EXPANSION_ETH_VLAN, 78 MLX5_EXPANSION_VLAN, 79 MLX5_EXPANSION_IPV4, 80 MLX5_EXPANSION_IPV4_UDP, 81 MLX5_EXPANSION_IPV4_TCP, 82 MLX5_EXPANSION_IPV6, 83 MLX5_EXPANSION_IPV6_UDP, 84 MLX5_EXPANSION_IPV6_TCP, 85 }; 86 87 /** Supported expansion of items. */ 88 static const struct rte_flow_expand_node mlx5_support_expansion[] = { 89 [MLX5_EXPANSION_ROOT] = { 90 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 91 MLX5_EXPANSION_IPV4, 92 MLX5_EXPANSION_IPV6), 93 .type = RTE_FLOW_ITEM_TYPE_END, 94 }, 95 [MLX5_EXPANSION_ROOT_OUTER] = { 96 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 97 MLX5_EXPANSION_OUTER_IPV4, 98 MLX5_EXPANSION_OUTER_IPV6), 99 .type = RTE_FLOW_ITEM_TYPE_END, 100 }, 101 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 102 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 103 .type = RTE_FLOW_ITEM_TYPE_END, 104 }, 105 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 106 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), 107 .type = RTE_FLOW_ITEM_TYPE_END, 108 }, 109 [MLX5_EXPANSION_OUTER_ETH] = { 110 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 111 MLX5_EXPANSION_OUTER_IPV6, 112 MLX5_EXPANSION_MPLS), 113 .type = RTE_FLOW_ITEM_TYPE_ETH, 114 .rss_types = 0, 115 }, 116 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 117 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 118 .type = RTE_FLOW_ITEM_TYPE_ETH, 119 .rss_types = 0, 120 }, 121 [MLX5_EXPANSION_OUTER_VLAN] = { 122 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 123 MLX5_EXPANSION_OUTER_IPV6), 124 .type = RTE_FLOW_ITEM_TYPE_VLAN, 125 }, 126 [MLX5_EXPANSION_OUTER_IPV4] = { 127 .next = RTE_FLOW_EXPAND_RSS_NEXT 128 (MLX5_EXPANSION_OUTER_IPV4_UDP, 129 MLX5_EXPANSION_OUTER_IPV4_TCP, 130 MLX5_EXPANSION_GRE), 131 .type = RTE_FLOW_ITEM_TYPE_IPV4, 132 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 133 ETH_RSS_NONFRAG_IPV4_OTHER, 134 }, 135 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 136 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 137 MLX5_EXPANSION_VXLAN_GPE), 138 .type = RTE_FLOW_ITEM_TYPE_UDP, 139 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 140 }, 141 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 142 .type = RTE_FLOW_ITEM_TYPE_TCP, 143 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 144 }, 145 [MLX5_EXPANSION_OUTER_IPV6] = { 146 .next = RTE_FLOW_EXPAND_RSS_NEXT 147 (MLX5_EXPANSION_OUTER_IPV6_UDP, 148 MLX5_EXPANSION_OUTER_IPV6_TCP), 149 .type = RTE_FLOW_ITEM_TYPE_IPV6, 150 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 151 ETH_RSS_NONFRAG_IPV6_OTHER, 152 }, 153 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 154 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 155 MLX5_EXPANSION_VXLAN_GPE), 156 .type = RTE_FLOW_ITEM_TYPE_UDP, 157 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 158 }, 159 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 160 .type = RTE_FLOW_ITEM_TYPE_TCP, 161 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 162 }, 163 [MLX5_EXPANSION_VXLAN] = { 164 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 165 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 166 }, 167 [MLX5_EXPANSION_VXLAN_GPE] = { 168 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 169 MLX5_EXPANSION_IPV4, 170 MLX5_EXPANSION_IPV6), 171 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 172 }, 173 [MLX5_EXPANSION_GRE] = { 174 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 175 .type = RTE_FLOW_ITEM_TYPE_GRE, 176 }, 177 [MLX5_EXPANSION_MPLS] = { 178 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 179 MLX5_EXPANSION_IPV6), 180 .type = RTE_FLOW_ITEM_TYPE_MPLS, 181 }, 182 [MLX5_EXPANSION_ETH] = { 183 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 184 MLX5_EXPANSION_IPV6), 185 .type = RTE_FLOW_ITEM_TYPE_ETH, 186 }, 187 [MLX5_EXPANSION_ETH_VLAN] = { 188 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 189 .type = RTE_FLOW_ITEM_TYPE_ETH, 190 }, 191 [MLX5_EXPANSION_VLAN] = { 192 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 193 MLX5_EXPANSION_IPV6), 194 .type = RTE_FLOW_ITEM_TYPE_VLAN, 195 }, 196 [MLX5_EXPANSION_IPV4] = { 197 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 198 MLX5_EXPANSION_IPV4_TCP), 199 .type = RTE_FLOW_ITEM_TYPE_IPV4, 200 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 201 ETH_RSS_NONFRAG_IPV4_OTHER, 202 }, 203 [MLX5_EXPANSION_IPV4_UDP] = { 204 .type = RTE_FLOW_ITEM_TYPE_UDP, 205 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 206 }, 207 [MLX5_EXPANSION_IPV4_TCP] = { 208 .type = RTE_FLOW_ITEM_TYPE_TCP, 209 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 210 }, 211 [MLX5_EXPANSION_IPV6] = { 212 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 213 MLX5_EXPANSION_IPV6_TCP), 214 .type = RTE_FLOW_ITEM_TYPE_IPV6, 215 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 216 ETH_RSS_NONFRAG_IPV6_OTHER, 217 }, 218 [MLX5_EXPANSION_IPV6_UDP] = { 219 .type = RTE_FLOW_ITEM_TYPE_UDP, 220 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 221 }, 222 [MLX5_EXPANSION_IPV6_TCP] = { 223 .type = RTE_FLOW_ITEM_TYPE_TCP, 224 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 225 }, 226 }; 227 228 static const struct rte_flow_ops mlx5_flow_ops = { 229 .validate = mlx5_flow_validate, 230 .create = mlx5_flow_create, 231 .destroy = mlx5_flow_destroy, 232 .flush = mlx5_flow_flush, 233 .isolate = mlx5_flow_isolate, 234 .query = mlx5_flow_query, 235 }; 236 237 /* Convert FDIR request to Generic flow. */ 238 struct mlx5_fdir { 239 struct rte_flow_attr attr; 240 struct rte_flow_item items[4]; 241 struct rte_flow_item_eth l2; 242 struct rte_flow_item_eth l2_mask; 243 union { 244 struct rte_flow_item_ipv4 ipv4; 245 struct rte_flow_item_ipv6 ipv6; 246 } l3; 247 union { 248 struct rte_flow_item_ipv4 ipv4; 249 struct rte_flow_item_ipv6 ipv6; 250 } l3_mask; 251 union { 252 struct rte_flow_item_udp udp; 253 struct rte_flow_item_tcp tcp; 254 } l4; 255 union { 256 struct rte_flow_item_udp udp; 257 struct rte_flow_item_tcp tcp; 258 } l4_mask; 259 struct rte_flow_action actions[2]; 260 struct rte_flow_action_queue queue; 261 }; 262 263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 265 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 266 }; 267 268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 270 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 271 { 9, 10, 11 }, { 12, 13, 14 }, 272 }; 273 274 /* Tunnel information. */ 275 struct mlx5_flow_tunnel_info { 276 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 277 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 278 }; 279 280 static struct mlx5_flow_tunnel_info tunnels_info[] = { 281 { 282 .tunnel = MLX5_FLOW_LAYER_VXLAN, 283 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 284 }, 285 { 286 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 287 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 288 }, 289 { 290 .tunnel = MLX5_FLOW_LAYER_GRE, 291 .ptype = RTE_PTYPE_TUNNEL_GRE, 292 }, 293 { 294 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 295 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 296 }, 297 { 298 .tunnel = MLX5_FLOW_LAYER_MPLS, 299 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 300 }, 301 { 302 .tunnel = MLX5_FLOW_LAYER_NVGRE, 303 .ptype = RTE_PTYPE_TUNNEL_NVGRE, 304 }, 305 }; 306 307 /** 308 * Discover the maximum number of priority available. 309 * 310 * @param[in] dev 311 * Pointer to the Ethernet device structure. 312 * 313 * @return 314 * number of supported flow priority on success, a negative errno 315 * value otherwise and rte_errno is set. 316 */ 317 int 318 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 319 { 320 struct mlx5_priv *priv = dev->data->dev_private; 321 struct { 322 struct ibv_flow_attr attr; 323 struct ibv_flow_spec_eth eth; 324 struct ibv_flow_spec_action_drop drop; 325 } flow_attr = { 326 .attr = { 327 .num_of_specs = 2, 328 .port = (uint8_t)priv->ibv_port, 329 }, 330 .eth = { 331 .type = IBV_FLOW_SPEC_ETH, 332 .size = sizeof(struct ibv_flow_spec_eth), 333 }, 334 .drop = { 335 .size = sizeof(struct ibv_flow_spec_action_drop), 336 .type = IBV_FLOW_SPEC_ACTION_DROP, 337 }, 338 }; 339 struct ibv_flow *flow; 340 struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); 341 uint16_t vprio[] = { 8, 16 }; 342 int i; 343 int priority = 0; 344 345 if (!drop) { 346 rte_errno = ENOTSUP; 347 return -rte_errno; 348 } 349 for (i = 0; i != RTE_DIM(vprio); i++) { 350 flow_attr.attr.priority = vprio[i] - 1; 351 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 352 if (!flow) 353 break; 354 claim_zero(mlx5_glue->destroy_flow(flow)); 355 priority = vprio[i]; 356 } 357 mlx5_hrxq_drop_release(dev); 358 switch (priority) { 359 case 8: 360 priority = RTE_DIM(priority_map_3); 361 break; 362 case 16: 363 priority = RTE_DIM(priority_map_5); 364 break; 365 default: 366 rte_errno = ENOTSUP; 367 DRV_LOG(ERR, 368 "port %u verbs maximum priority: %d expected 8/16", 369 dev->data->port_id, priority); 370 return -rte_errno; 371 } 372 DRV_LOG(INFO, "port %u flow maximum priority: %d", 373 dev->data->port_id, priority); 374 return priority; 375 } 376 377 /** 378 * Adjust flow priority based on the highest layer and the request priority. 379 * 380 * @param[in] dev 381 * Pointer to the Ethernet device structure. 382 * @param[in] priority 383 * The rule base priority. 384 * @param[in] subpriority 385 * The priority based on the items. 386 * 387 * @return 388 * The new priority. 389 */ 390 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 391 uint32_t subpriority) 392 { 393 uint32_t res = 0; 394 struct mlx5_priv *priv = dev->data->dev_private; 395 396 switch (priv->config.flow_prio) { 397 case RTE_DIM(priority_map_3): 398 res = priority_map_3[priority][subpriority]; 399 break; 400 case RTE_DIM(priority_map_5): 401 res = priority_map_5[priority][subpriority]; 402 break; 403 } 404 return res; 405 } 406 407 /** 408 * Verify the @p item specifications (spec, last, mask) are compatible with the 409 * NIC capabilities. 410 * 411 * @param[in] item 412 * Item specification. 413 * @param[in] mask 414 * @p item->mask or flow default bit-masks. 415 * @param[in] nic_mask 416 * Bit-masks covering supported fields by the NIC to compare with user mask. 417 * @param[in] size 418 * Bit-masks size in bytes. 419 * @param[out] error 420 * Pointer to error structure. 421 * 422 * @return 423 * 0 on success, a negative errno value otherwise and rte_errno is set. 424 */ 425 int 426 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 427 const uint8_t *mask, 428 const uint8_t *nic_mask, 429 unsigned int size, 430 struct rte_flow_error *error) 431 { 432 unsigned int i; 433 434 assert(nic_mask); 435 for (i = 0; i < size; ++i) 436 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 437 return rte_flow_error_set(error, ENOTSUP, 438 RTE_FLOW_ERROR_TYPE_ITEM, 439 item, 440 "mask enables non supported" 441 " bits"); 442 if (!item->spec && (item->mask || item->last)) 443 return rte_flow_error_set(error, EINVAL, 444 RTE_FLOW_ERROR_TYPE_ITEM, item, 445 "mask/last without a spec is not" 446 " supported"); 447 if (item->spec && item->last) { 448 uint8_t spec[size]; 449 uint8_t last[size]; 450 unsigned int i; 451 int ret; 452 453 for (i = 0; i < size; ++i) { 454 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 455 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 456 } 457 ret = memcmp(spec, last, size); 458 if (ret != 0) 459 return rte_flow_error_set(error, EINVAL, 460 RTE_FLOW_ERROR_TYPE_ITEM, 461 item, 462 "range is not valid"); 463 } 464 return 0; 465 } 466 467 /** 468 * Adjust the hash fields according to the @p flow information. 469 * 470 * @param[in] dev_flow. 471 * Pointer to the mlx5_flow. 472 * @param[in] tunnel 473 * 1 when the hash field is for a tunnel item. 474 * @param[in] layer_types 475 * ETH_RSS_* types. 476 * @param[in] hash_fields 477 * Item hash fields. 478 * 479 * @return 480 * The hash fields that should be used. 481 */ 482 uint64_t 483 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow, 484 int tunnel __rte_unused, uint64_t layer_types, 485 uint64_t hash_fields) 486 { 487 struct rte_flow *flow = dev_flow->flow; 488 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 489 int rss_request_inner = flow->rss.level >= 2; 490 491 /* Check RSS hash level for tunnel. */ 492 if (tunnel && rss_request_inner) 493 hash_fields |= IBV_RX_HASH_INNER; 494 else if (tunnel || rss_request_inner) 495 return 0; 496 #endif 497 /* Check if requested layer matches RSS hash fields. */ 498 if (!(flow->rss.types & layer_types)) 499 return 0; 500 return hash_fields; 501 } 502 503 /** 504 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 505 * if several tunnel rules are used on this queue, the tunnel ptype will be 506 * cleared. 507 * 508 * @param rxq_ctrl 509 * Rx queue to update. 510 */ 511 static void 512 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 513 { 514 unsigned int i; 515 uint32_t tunnel_ptype = 0; 516 517 /* Look up for the ptype to use. */ 518 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 519 if (!rxq_ctrl->flow_tunnels_n[i]) 520 continue; 521 if (!tunnel_ptype) { 522 tunnel_ptype = tunnels_info[i].ptype; 523 } else { 524 tunnel_ptype = 0; 525 break; 526 } 527 } 528 rxq_ctrl->rxq.tunnel = tunnel_ptype; 529 } 530 531 /** 532 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 533 * flow. 534 * 535 * @param[in] dev 536 * Pointer to the Ethernet device structure. 537 * @param[in] dev_flow 538 * Pointer to device flow structure. 539 */ 540 static void 541 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 542 { 543 struct mlx5_priv *priv = dev->data->dev_private; 544 struct rte_flow *flow = dev_flow->flow; 545 const int mark = !!(flow->actions & 546 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 547 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 548 unsigned int i; 549 550 for (i = 0; i != flow->rss.queue_num; ++i) { 551 int idx = (*flow->queue)[i]; 552 struct mlx5_rxq_ctrl *rxq_ctrl = 553 container_of((*priv->rxqs)[idx], 554 struct mlx5_rxq_ctrl, rxq); 555 556 if (mark) { 557 rxq_ctrl->rxq.mark = 1; 558 rxq_ctrl->flow_mark_n++; 559 } 560 if (tunnel) { 561 unsigned int j; 562 563 /* Increase the counter matching the flow. */ 564 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 565 if ((tunnels_info[j].tunnel & 566 dev_flow->layers) == 567 tunnels_info[j].tunnel) { 568 rxq_ctrl->flow_tunnels_n[j]++; 569 break; 570 } 571 } 572 flow_rxq_tunnel_ptype_update(rxq_ctrl); 573 } 574 } 575 } 576 577 /** 578 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 579 * 580 * @param[in] dev 581 * Pointer to the Ethernet device structure. 582 * @param[in] flow 583 * Pointer to flow structure. 584 */ 585 static void 586 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 587 { 588 struct mlx5_flow *dev_flow; 589 590 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 591 flow_drv_rxq_flags_set(dev, dev_flow); 592 } 593 594 /** 595 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 596 * device flow if no other flow uses it with the same kind of request. 597 * 598 * @param dev 599 * Pointer to Ethernet device. 600 * @param[in] dev_flow 601 * Pointer to the device flow. 602 */ 603 static void 604 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 605 { 606 struct mlx5_priv *priv = dev->data->dev_private; 607 struct rte_flow *flow = dev_flow->flow; 608 const int mark = !!(flow->actions & 609 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 610 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 611 unsigned int i; 612 613 assert(dev->data->dev_started); 614 for (i = 0; i != flow->rss.queue_num; ++i) { 615 int idx = (*flow->queue)[i]; 616 struct mlx5_rxq_ctrl *rxq_ctrl = 617 container_of((*priv->rxqs)[idx], 618 struct mlx5_rxq_ctrl, rxq); 619 620 if (mark) { 621 rxq_ctrl->flow_mark_n--; 622 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 623 } 624 if (tunnel) { 625 unsigned int j; 626 627 /* Decrease the counter matching the flow. */ 628 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 629 if ((tunnels_info[j].tunnel & 630 dev_flow->layers) == 631 tunnels_info[j].tunnel) { 632 rxq_ctrl->flow_tunnels_n[j]--; 633 break; 634 } 635 } 636 flow_rxq_tunnel_ptype_update(rxq_ctrl); 637 } 638 } 639 } 640 641 /** 642 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 643 * @p flow if no other flow uses it with the same kind of request. 644 * 645 * @param dev 646 * Pointer to Ethernet device. 647 * @param[in] flow 648 * Pointer to the flow. 649 */ 650 static void 651 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 652 { 653 struct mlx5_flow *dev_flow; 654 655 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 656 flow_drv_rxq_flags_trim(dev, dev_flow); 657 } 658 659 /** 660 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 661 * 662 * @param dev 663 * Pointer to Ethernet device. 664 */ 665 static void 666 flow_rxq_flags_clear(struct rte_eth_dev *dev) 667 { 668 struct mlx5_priv *priv = dev->data->dev_private; 669 unsigned int i; 670 671 for (i = 0; i != priv->rxqs_n; ++i) { 672 struct mlx5_rxq_ctrl *rxq_ctrl; 673 unsigned int j; 674 675 if (!(*priv->rxqs)[i]) 676 continue; 677 rxq_ctrl = container_of((*priv->rxqs)[i], 678 struct mlx5_rxq_ctrl, rxq); 679 rxq_ctrl->flow_mark_n = 0; 680 rxq_ctrl->rxq.mark = 0; 681 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 682 rxq_ctrl->flow_tunnels_n[j] = 0; 683 rxq_ctrl->rxq.tunnel = 0; 684 } 685 } 686 687 /* 688 * Validate the flag action. 689 * 690 * @param[in] action_flags 691 * Bit-fields that holds the actions detected until now. 692 * @param[in] attr 693 * Attributes of flow that includes this action. 694 * @param[out] error 695 * Pointer to error structure. 696 * 697 * @return 698 * 0 on success, a negative errno value otherwise and rte_errno is set. 699 */ 700 int 701 mlx5_flow_validate_action_flag(uint64_t action_flags, 702 const struct rte_flow_attr *attr, 703 struct rte_flow_error *error) 704 { 705 706 if (action_flags & MLX5_FLOW_ACTION_DROP) 707 return rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 709 "can't drop and flag in same flow"); 710 if (action_flags & MLX5_FLOW_ACTION_MARK) 711 return rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 713 "can't mark and flag in same flow"); 714 if (action_flags & MLX5_FLOW_ACTION_FLAG) 715 return rte_flow_error_set(error, EINVAL, 716 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 717 "can't have 2 flag" 718 " actions in same flow"); 719 if (attr->egress) 720 return rte_flow_error_set(error, ENOTSUP, 721 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 722 "flag action not supported for " 723 "egress"); 724 return 0; 725 } 726 727 /* 728 * Validate the mark action. 729 * 730 * @param[in] action 731 * Pointer to the queue action. 732 * @param[in] action_flags 733 * Bit-fields that holds the actions detected until now. 734 * @param[in] attr 735 * Attributes of flow that includes this action. 736 * @param[out] error 737 * Pointer to error structure. 738 * 739 * @return 740 * 0 on success, a negative errno value otherwise and rte_errno is set. 741 */ 742 int 743 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 744 uint64_t action_flags, 745 const struct rte_flow_attr *attr, 746 struct rte_flow_error *error) 747 { 748 const struct rte_flow_action_mark *mark = action->conf; 749 750 if (!mark) 751 return rte_flow_error_set(error, EINVAL, 752 RTE_FLOW_ERROR_TYPE_ACTION, 753 action, 754 "configuration cannot be null"); 755 if (mark->id >= MLX5_FLOW_MARK_MAX) 756 return rte_flow_error_set(error, EINVAL, 757 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 758 &mark->id, 759 "mark id must in 0 <= id < " 760 RTE_STR(MLX5_FLOW_MARK_MAX)); 761 if (action_flags & MLX5_FLOW_ACTION_DROP) 762 return rte_flow_error_set(error, EINVAL, 763 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 764 "can't drop and mark in same flow"); 765 if (action_flags & MLX5_FLOW_ACTION_FLAG) 766 return rte_flow_error_set(error, EINVAL, 767 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 768 "can't flag and mark in same flow"); 769 if (action_flags & MLX5_FLOW_ACTION_MARK) 770 return rte_flow_error_set(error, EINVAL, 771 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 772 "can't have 2 mark actions in same" 773 " flow"); 774 if (attr->egress) 775 return rte_flow_error_set(error, ENOTSUP, 776 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 777 "mark action not supported for " 778 "egress"); 779 return 0; 780 } 781 782 /* 783 * Validate the drop action. 784 * 785 * @param[in] action_flags 786 * Bit-fields that holds the actions detected until now. 787 * @param[in] attr 788 * Attributes of flow that includes this action. 789 * @param[out] error 790 * Pointer to error structure. 791 * 792 * @return 793 * 0 on success, a negative errno value otherwise and rte_errno is set. 794 */ 795 int 796 mlx5_flow_validate_action_drop(uint64_t action_flags, 797 const struct rte_flow_attr *attr, 798 struct rte_flow_error *error) 799 { 800 if (action_flags & MLX5_FLOW_ACTION_FLAG) 801 return rte_flow_error_set(error, EINVAL, 802 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 803 "can't drop and flag in same flow"); 804 if (action_flags & MLX5_FLOW_ACTION_MARK) 805 return rte_flow_error_set(error, EINVAL, 806 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 807 "can't drop and mark in same flow"); 808 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 809 return rte_flow_error_set(error, EINVAL, 810 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 811 "can't have 2 fate actions in" 812 " same flow"); 813 if (attr->egress) 814 return rte_flow_error_set(error, ENOTSUP, 815 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 816 "drop action not supported for " 817 "egress"); 818 return 0; 819 } 820 821 /* 822 * Validate the queue action. 823 * 824 * @param[in] action 825 * Pointer to the queue action. 826 * @param[in] action_flags 827 * Bit-fields that holds the actions detected until now. 828 * @param[in] dev 829 * Pointer to the Ethernet device structure. 830 * @param[in] attr 831 * Attributes of flow that includes this action. 832 * @param[out] error 833 * Pointer to error structure. 834 * 835 * @return 836 * 0 on success, a negative errno value otherwise and rte_errno is set. 837 */ 838 int 839 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 840 uint64_t action_flags, 841 struct rte_eth_dev *dev, 842 const struct rte_flow_attr *attr, 843 struct rte_flow_error *error) 844 { 845 struct mlx5_priv *priv = dev->data->dev_private; 846 const struct rte_flow_action_queue *queue = action->conf; 847 848 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 849 return rte_flow_error_set(error, EINVAL, 850 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 851 "can't have 2 fate actions in" 852 " same flow"); 853 if (!priv->rxqs_n) 854 return rte_flow_error_set(error, EINVAL, 855 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 856 NULL, "No Rx queues configured"); 857 if (queue->index >= priv->rxqs_n) 858 return rte_flow_error_set(error, EINVAL, 859 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 860 &queue->index, 861 "queue index out of range"); 862 if (!(*priv->rxqs)[queue->index]) 863 return rte_flow_error_set(error, EINVAL, 864 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 865 &queue->index, 866 "queue is not configured"); 867 if (attr->egress) 868 return rte_flow_error_set(error, ENOTSUP, 869 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 870 "queue action not supported for " 871 "egress"); 872 return 0; 873 } 874 875 /* 876 * Validate the rss action. 877 * 878 * @param[in] action 879 * Pointer to the queue action. 880 * @param[in] action_flags 881 * Bit-fields that holds the actions detected until now. 882 * @param[in] dev 883 * Pointer to the Ethernet device structure. 884 * @param[in] attr 885 * Attributes of flow that includes this action. 886 * @param[in] item_flags 887 * Items that were detected. 888 * @param[out] error 889 * Pointer to error structure. 890 * 891 * @return 892 * 0 on success, a negative errno value otherwise and rte_errno is set. 893 */ 894 int 895 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 896 uint64_t action_flags, 897 struct rte_eth_dev *dev, 898 const struct rte_flow_attr *attr, 899 uint64_t item_flags, 900 struct rte_flow_error *error) 901 { 902 struct mlx5_priv *priv = dev->data->dev_private; 903 const struct rte_flow_action_rss *rss = action->conf; 904 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 905 unsigned int i; 906 907 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 908 return rte_flow_error_set(error, EINVAL, 909 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 910 "can't have 2 fate actions" 911 " in same flow"); 912 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 913 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 914 return rte_flow_error_set(error, ENOTSUP, 915 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 916 &rss->func, 917 "RSS hash function not supported"); 918 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 919 if (rss->level > 2) 920 #else 921 if (rss->level > 1) 922 #endif 923 return rte_flow_error_set(error, ENOTSUP, 924 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 925 &rss->level, 926 "tunnel RSS is not supported"); 927 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 928 if (rss->key_len == 0 && rss->key != NULL) 929 return rte_flow_error_set(error, ENOTSUP, 930 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 931 &rss->key_len, 932 "RSS hash key length 0"); 933 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 934 return rte_flow_error_set(error, ENOTSUP, 935 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 936 &rss->key_len, 937 "RSS hash key too small"); 938 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 939 return rte_flow_error_set(error, ENOTSUP, 940 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 941 &rss->key_len, 942 "RSS hash key too large"); 943 if (rss->queue_num > priv->config.ind_table_max_size) 944 return rte_flow_error_set(error, ENOTSUP, 945 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 946 &rss->queue_num, 947 "number of queues too large"); 948 if (rss->types & MLX5_RSS_HF_MASK) 949 return rte_flow_error_set(error, ENOTSUP, 950 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 951 &rss->types, 952 "some RSS protocols are not" 953 " supported"); 954 if (!priv->rxqs_n) 955 return rte_flow_error_set(error, EINVAL, 956 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 957 NULL, "No Rx queues configured"); 958 if (!rss->queue_num) 959 return rte_flow_error_set(error, EINVAL, 960 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 961 NULL, "No queues configured"); 962 for (i = 0; i != rss->queue_num; ++i) { 963 if (!(*priv->rxqs)[rss->queue[i]]) 964 return rte_flow_error_set 965 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 966 &rss->queue[i], "queue is not configured"); 967 } 968 if (attr->egress) 969 return rte_flow_error_set(error, ENOTSUP, 970 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 971 "rss action not supported for " 972 "egress"); 973 if (rss->level > 1 && !tunnel) 974 return rte_flow_error_set(error, EINVAL, 975 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 976 "inner RSS is not supported for " 977 "non-tunnel flows"); 978 return 0; 979 } 980 981 /* 982 * Validate the count action. 983 * 984 * @param[in] dev 985 * Pointer to the Ethernet device structure. 986 * @param[in] attr 987 * Attributes of flow that includes this action. 988 * @param[out] error 989 * Pointer to error structure. 990 * 991 * @return 992 * 0 on success, a negative errno value otherwise and rte_errno is set. 993 */ 994 int 995 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 996 const struct rte_flow_attr *attr, 997 struct rte_flow_error *error) 998 { 999 if (attr->egress) 1000 return rte_flow_error_set(error, ENOTSUP, 1001 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1002 "count action not supported for " 1003 "egress"); 1004 return 0; 1005 } 1006 1007 /** 1008 * Verify the @p attributes will be correctly understood by the NIC and store 1009 * them in the @p flow if everything is correct. 1010 * 1011 * @param[in] dev 1012 * Pointer to the Ethernet device structure. 1013 * @param[in] attributes 1014 * Pointer to flow attributes 1015 * @param[out] error 1016 * Pointer to error structure. 1017 * 1018 * @return 1019 * 0 on success, a negative errno value otherwise and rte_errno is set. 1020 */ 1021 int 1022 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 1023 const struct rte_flow_attr *attributes, 1024 struct rte_flow_error *error) 1025 { 1026 struct mlx5_priv *priv = dev->data->dev_private; 1027 uint32_t priority_max = priv->config.flow_prio - 1; 1028 1029 if (attributes->group) 1030 return rte_flow_error_set(error, ENOTSUP, 1031 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1032 NULL, "groups is not supported"); 1033 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1034 attributes->priority >= priority_max) 1035 return rte_flow_error_set(error, ENOTSUP, 1036 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1037 NULL, "priority out of range"); 1038 if (attributes->egress) 1039 return rte_flow_error_set(error, ENOTSUP, 1040 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1041 "egress is not supported"); 1042 if (attributes->transfer && !priv->config.dv_esw_en) 1043 return rte_flow_error_set(error, ENOTSUP, 1044 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1045 NULL, "transfer is not supported"); 1046 if (!attributes->ingress) 1047 return rte_flow_error_set(error, EINVAL, 1048 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1049 NULL, 1050 "ingress attribute is mandatory"); 1051 return 0; 1052 } 1053 1054 /** 1055 * Validate ICMP6 item. 1056 * 1057 * @param[in] item 1058 * Item specification. 1059 * @param[in] item_flags 1060 * Bit-fields that holds the items detected until now. 1061 * @param[out] error 1062 * Pointer to error structure. 1063 * 1064 * @return 1065 * 0 on success, a negative errno value otherwise and rte_errno is set. 1066 */ 1067 int 1068 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item, 1069 uint64_t item_flags, 1070 uint8_t target_protocol, 1071 struct rte_flow_error *error) 1072 { 1073 const struct rte_flow_item_icmp6 *mask = item->mask; 1074 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1075 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 1076 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 1077 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1078 MLX5_FLOW_LAYER_OUTER_L4; 1079 int ret; 1080 1081 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6) 1082 return rte_flow_error_set(error, EINVAL, 1083 RTE_FLOW_ERROR_TYPE_ITEM, item, 1084 "protocol filtering not compatible" 1085 " with ICMP6 layer"); 1086 if (!(item_flags & l3m)) 1087 return rte_flow_error_set(error, EINVAL, 1088 RTE_FLOW_ERROR_TYPE_ITEM, item, 1089 "IPv6 is mandatory to filter on" 1090 " ICMP6"); 1091 if (item_flags & l4m) 1092 return rte_flow_error_set(error, EINVAL, 1093 RTE_FLOW_ERROR_TYPE_ITEM, item, 1094 "multiple L4 layers not supported"); 1095 if (!mask) 1096 mask = &rte_flow_item_icmp6_mask; 1097 ret = mlx5_flow_item_acceptable 1098 (item, (const uint8_t *)mask, 1099 (const uint8_t *)&rte_flow_item_icmp6_mask, 1100 sizeof(struct rte_flow_item_icmp6), error); 1101 if (ret < 0) 1102 return ret; 1103 return 0; 1104 } 1105 1106 /** 1107 * Validate ICMP item. 1108 * 1109 * @param[in] item 1110 * Item specification. 1111 * @param[in] item_flags 1112 * Bit-fields that holds the items detected until now. 1113 * @param[out] error 1114 * Pointer to error structure. 1115 * 1116 * @return 1117 * 0 on success, a negative errno value otherwise and rte_errno is set. 1118 */ 1119 int 1120 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item, 1121 uint64_t item_flags, 1122 uint8_t target_protocol, 1123 struct rte_flow_error *error) 1124 { 1125 const struct rte_flow_item_icmp *mask = item->mask; 1126 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1127 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 1128 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 1129 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1130 MLX5_FLOW_LAYER_OUTER_L4; 1131 int ret; 1132 1133 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP) 1134 return rte_flow_error_set(error, EINVAL, 1135 RTE_FLOW_ERROR_TYPE_ITEM, item, 1136 "protocol filtering not compatible" 1137 " with ICMP layer"); 1138 if (!(item_flags & l3m)) 1139 return rte_flow_error_set(error, EINVAL, 1140 RTE_FLOW_ERROR_TYPE_ITEM, item, 1141 "IPv4 is mandatory to filter" 1142 " on ICMP"); 1143 if (item_flags & l4m) 1144 return rte_flow_error_set(error, EINVAL, 1145 RTE_FLOW_ERROR_TYPE_ITEM, item, 1146 "multiple L4 layers not supported"); 1147 if (!mask) 1148 mask = &rte_flow_item_icmp_mask; 1149 ret = mlx5_flow_item_acceptable 1150 (item, (const uint8_t *)mask, 1151 (const uint8_t *)&rte_flow_item_icmp_mask, 1152 sizeof(struct rte_flow_item_icmp), error); 1153 if (ret < 0) 1154 return ret; 1155 return 0; 1156 } 1157 1158 /** 1159 * Validate Ethernet item. 1160 * 1161 * @param[in] item 1162 * Item specification. 1163 * @param[in] item_flags 1164 * Bit-fields that holds the items detected until now. 1165 * @param[out] error 1166 * Pointer to error structure. 1167 * 1168 * @return 1169 * 0 on success, a negative errno value otherwise and rte_errno is set. 1170 */ 1171 int 1172 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1173 uint64_t item_flags, 1174 struct rte_flow_error *error) 1175 { 1176 const struct rte_flow_item_eth *mask = item->mask; 1177 const struct rte_flow_item_eth nic_mask = { 1178 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1179 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1180 .type = RTE_BE16(0xffff), 1181 }; 1182 int ret; 1183 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1184 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1185 MLX5_FLOW_LAYER_OUTER_L2; 1186 1187 if (item_flags & ethm) 1188 return rte_flow_error_set(error, ENOTSUP, 1189 RTE_FLOW_ERROR_TYPE_ITEM, item, 1190 "multiple L2 layers not supported"); 1191 if (!mask) 1192 mask = &rte_flow_item_eth_mask; 1193 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1194 (const uint8_t *)&nic_mask, 1195 sizeof(struct rte_flow_item_eth), 1196 error); 1197 return ret; 1198 } 1199 1200 /** 1201 * Validate VLAN item. 1202 * 1203 * @param[in] item 1204 * Item specification. 1205 * @param[in] item_flags 1206 * Bit-fields that holds the items detected until now. 1207 * @param[out] error 1208 * Pointer to error structure. 1209 * 1210 * @return 1211 * 0 on success, a negative errno value otherwise and rte_errno is set. 1212 */ 1213 int 1214 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1215 uint64_t item_flags, 1216 struct rte_flow_error *error) 1217 { 1218 const struct rte_flow_item_vlan *spec = item->spec; 1219 const struct rte_flow_item_vlan *mask = item->mask; 1220 const struct rte_flow_item_vlan nic_mask = { 1221 .tci = RTE_BE16(0x0fff), 1222 .inner_type = RTE_BE16(0xffff), 1223 }; 1224 uint16_t vlan_tag = 0; 1225 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1226 int ret; 1227 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1228 MLX5_FLOW_LAYER_INNER_L4) : 1229 (MLX5_FLOW_LAYER_OUTER_L3 | 1230 MLX5_FLOW_LAYER_OUTER_L4); 1231 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1232 MLX5_FLOW_LAYER_OUTER_VLAN; 1233 1234 if (item_flags & vlanm) 1235 return rte_flow_error_set(error, EINVAL, 1236 RTE_FLOW_ERROR_TYPE_ITEM, item, 1237 "multiple VLAN layers not supported"); 1238 else if ((item_flags & l34m) != 0) 1239 return rte_flow_error_set(error, EINVAL, 1240 RTE_FLOW_ERROR_TYPE_ITEM, item, 1241 "L2 layer cannot follow L3/L4 layer"); 1242 if (!mask) 1243 mask = &rte_flow_item_vlan_mask; 1244 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1245 (const uint8_t *)&nic_mask, 1246 sizeof(struct rte_flow_item_vlan), 1247 error); 1248 if (ret) 1249 return ret; 1250 if (spec) { 1251 vlan_tag = spec->tci; 1252 vlan_tag &= mask->tci; 1253 } 1254 /* 1255 * From verbs perspective an empty VLAN is equivalent 1256 * to a packet without VLAN layer. 1257 */ 1258 if (!vlan_tag) 1259 return rte_flow_error_set(error, EINVAL, 1260 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1261 item->spec, 1262 "VLAN cannot be empty"); 1263 return 0; 1264 } 1265 1266 /** 1267 * Validate IPV4 item. 1268 * 1269 * @param[in] item 1270 * Item specification. 1271 * @param[in] item_flags 1272 * Bit-fields that holds the items detected until now. 1273 * @param[in] acc_mask 1274 * Acceptable mask, if NULL default internal default mask 1275 * will be used to check whether item fields are supported. 1276 * @param[out] error 1277 * Pointer to error structure. 1278 * 1279 * @return 1280 * 0 on success, a negative errno value otherwise and rte_errno is set. 1281 */ 1282 int 1283 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1284 uint64_t item_flags, 1285 const struct rte_flow_item_ipv4 *acc_mask, 1286 struct rte_flow_error *error) 1287 { 1288 const struct rte_flow_item_ipv4 *mask = item->mask; 1289 const struct rte_flow_item_ipv4 *spec = item->spec; 1290 const struct rte_flow_item_ipv4 nic_mask = { 1291 .hdr = { 1292 .src_addr = RTE_BE32(0xffffffff), 1293 .dst_addr = RTE_BE32(0xffffffff), 1294 .type_of_service = 0xff, 1295 .next_proto_id = 0xff, 1296 }, 1297 }; 1298 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1299 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1300 MLX5_FLOW_LAYER_OUTER_L3; 1301 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1302 MLX5_FLOW_LAYER_OUTER_L4; 1303 int ret; 1304 uint8_t next_proto = 0xFF; 1305 1306 if (item_flags & MLX5_FLOW_LAYER_IPIP) { 1307 if (mask && spec) 1308 next_proto = mask->hdr.next_proto_id & 1309 spec->hdr.next_proto_id; 1310 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 1311 return rte_flow_error_set(error, EINVAL, 1312 RTE_FLOW_ERROR_TYPE_ITEM, 1313 item, 1314 "multiple tunnel " 1315 "not supported"); 1316 } 1317 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) 1318 return rte_flow_error_set(error, EINVAL, 1319 RTE_FLOW_ERROR_TYPE_ITEM, item, 1320 "wrong tunnel type - IPv6 specified " 1321 "but IPv4 item provided"); 1322 if (item_flags & l3m) 1323 return rte_flow_error_set(error, ENOTSUP, 1324 RTE_FLOW_ERROR_TYPE_ITEM, item, 1325 "multiple L3 layers not supported"); 1326 else if (item_flags & l4m) 1327 return rte_flow_error_set(error, EINVAL, 1328 RTE_FLOW_ERROR_TYPE_ITEM, item, 1329 "L3 cannot follow an L4 layer."); 1330 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 1331 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 1332 return rte_flow_error_set(error, EINVAL, 1333 RTE_FLOW_ERROR_TYPE_ITEM, item, 1334 "L3 cannot follow an NVGRE layer."); 1335 if (!mask) 1336 mask = &rte_flow_item_ipv4_mask; 1337 else if (mask->hdr.next_proto_id != 0 && 1338 mask->hdr.next_proto_id != 0xff) 1339 return rte_flow_error_set(error, EINVAL, 1340 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 1341 "partial mask is not supported" 1342 " for protocol"); 1343 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1344 acc_mask ? (const uint8_t *)acc_mask 1345 : (const uint8_t *)&nic_mask, 1346 sizeof(struct rte_flow_item_ipv4), 1347 error); 1348 if (ret < 0) 1349 return ret; 1350 return 0; 1351 } 1352 1353 /** 1354 * Validate IPV6 item. 1355 * 1356 * @param[in] item 1357 * Item specification. 1358 * @param[in] item_flags 1359 * Bit-fields that holds the items detected until now. 1360 * @param[in] acc_mask 1361 * Acceptable mask, if NULL default internal default mask 1362 * will be used to check whether item fields are supported. 1363 * @param[out] error 1364 * Pointer to error structure. 1365 * 1366 * @return 1367 * 0 on success, a negative errno value otherwise and rte_errno is set. 1368 */ 1369 int 1370 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 1371 uint64_t item_flags, 1372 const struct rte_flow_item_ipv6 *acc_mask, 1373 struct rte_flow_error *error) 1374 { 1375 const struct rte_flow_item_ipv6 *mask = item->mask; 1376 const struct rte_flow_item_ipv6 *spec = item->spec; 1377 const struct rte_flow_item_ipv6 nic_mask = { 1378 .hdr = { 1379 .src_addr = 1380 "\xff\xff\xff\xff\xff\xff\xff\xff" 1381 "\xff\xff\xff\xff\xff\xff\xff\xff", 1382 .dst_addr = 1383 "\xff\xff\xff\xff\xff\xff\xff\xff" 1384 "\xff\xff\xff\xff\xff\xff\xff\xff", 1385 .vtc_flow = RTE_BE32(0xffffffff), 1386 .proto = 0xff, 1387 .hop_limits = 0xff, 1388 }, 1389 }; 1390 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1391 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1392 MLX5_FLOW_LAYER_OUTER_L3; 1393 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1394 MLX5_FLOW_LAYER_OUTER_L4; 1395 int ret; 1396 uint8_t next_proto = 0xFF; 1397 1398 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) { 1399 if (mask && spec) 1400 next_proto = mask->hdr.proto & spec->hdr.proto; 1401 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 1402 return rte_flow_error_set(error, EINVAL, 1403 RTE_FLOW_ERROR_TYPE_ITEM, 1404 item, 1405 "multiple tunnel " 1406 "not supported"); 1407 } 1408 if (item_flags & MLX5_FLOW_LAYER_IPIP) 1409 return rte_flow_error_set(error, EINVAL, 1410 RTE_FLOW_ERROR_TYPE_ITEM, item, 1411 "wrong tunnel type - IPv4 specified " 1412 "but IPv6 item provided"); 1413 if (item_flags & l3m) 1414 return rte_flow_error_set(error, ENOTSUP, 1415 RTE_FLOW_ERROR_TYPE_ITEM, item, 1416 "multiple L3 layers not supported"); 1417 else if (item_flags & l4m) 1418 return rte_flow_error_set(error, EINVAL, 1419 RTE_FLOW_ERROR_TYPE_ITEM, item, 1420 "L3 cannot follow an L4 layer."); 1421 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 1422 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 1423 return rte_flow_error_set(error, EINVAL, 1424 RTE_FLOW_ERROR_TYPE_ITEM, item, 1425 "L3 cannot follow an NVGRE layer."); 1426 if (!mask) 1427 mask = &rte_flow_item_ipv6_mask; 1428 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1429 acc_mask ? (const uint8_t *)acc_mask 1430 : (const uint8_t *)&nic_mask, 1431 sizeof(struct rte_flow_item_ipv6), 1432 error); 1433 if (ret < 0) 1434 return ret; 1435 return 0; 1436 } 1437 1438 /** 1439 * Validate UDP item. 1440 * 1441 * @param[in] item 1442 * Item specification. 1443 * @param[in] item_flags 1444 * Bit-fields that holds the items detected until now. 1445 * @param[in] target_protocol 1446 * The next protocol in the previous item. 1447 * @param[in] flow_mask 1448 * mlx5 flow-specific (DV, verbs, etc.) supported header fields mask. 1449 * @param[out] error 1450 * Pointer to error structure. 1451 * 1452 * @return 1453 * 0 on success, a negative errno value otherwise and rte_errno is set. 1454 */ 1455 int 1456 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 1457 uint64_t item_flags, 1458 uint8_t target_protocol, 1459 struct rte_flow_error *error) 1460 { 1461 const struct rte_flow_item_udp *mask = item->mask; 1462 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1463 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1464 MLX5_FLOW_LAYER_OUTER_L3; 1465 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1466 MLX5_FLOW_LAYER_OUTER_L4; 1467 int ret; 1468 1469 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 1470 return rte_flow_error_set(error, EINVAL, 1471 RTE_FLOW_ERROR_TYPE_ITEM, item, 1472 "protocol filtering not compatible" 1473 " with UDP layer"); 1474 if (!(item_flags & l3m)) 1475 return rte_flow_error_set(error, EINVAL, 1476 RTE_FLOW_ERROR_TYPE_ITEM, item, 1477 "L3 is mandatory to filter on L4"); 1478 if (item_flags & l4m) 1479 return rte_flow_error_set(error, EINVAL, 1480 RTE_FLOW_ERROR_TYPE_ITEM, item, 1481 "multiple L4 layers not supported"); 1482 if (!mask) 1483 mask = &rte_flow_item_udp_mask; 1484 ret = mlx5_flow_item_acceptable 1485 (item, (const uint8_t *)mask, 1486 (const uint8_t *)&rte_flow_item_udp_mask, 1487 sizeof(struct rte_flow_item_udp), error); 1488 if (ret < 0) 1489 return ret; 1490 return 0; 1491 } 1492 1493 /** 1494 * Validate TCP item. 1495 * 1496 * @param[in] item 1497 * Item specification. 1498 * @param[in] item_flags 1499 * Bit-fields that holds the items detected until now. 1500 * @param[in] target_protocol 1501 * The next protocol in the previous item. 1502 * @param[out] error 1503 * Pointer to error structure. 1504 * 1505 * @return 1506 * 0 on success, a negative errno value otherwise and rte_errno is set. 1507 */ 1508 int 1509 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 1510 uint64_t item_flags, 1511 uint8_t target_protocol, 1512 const struct rte_flow_item_tcp *flow_mask, 1513 struct rte_flow_error *error) 1514 { 1515 const struct rte_flow_item_tcp *mask = item->mask; 1516 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1517 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1518 MLX5_FLOW_LAYER_OUTER_L3; 1519 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1520 MLX5_FLOW_LAYER_OUTER_L4; 1521 int ret; 1522 1523 assert(flow_mask); 1524 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 1525 return rte_flow_error_set(error, EINVAL, 1526 RTE_FLOW_ERROR_TYPE_ITEM, item, 1527 "protocol filtering not compatible" 1528 " with TCP layer"); 1529 if (!(item_flags & l3m)) 1530 return rte_flow_error_set(error, EINVAL, 1531 RTE_FLOW_ERROR_TYPE_ITEM, item, 1532 "L3 is mandatory to filter on L4"); 1533 if (item_flags & l4m) 1534 return rte_flow_error_set(error, EINVAL, 1535 RTE_FLOW_ERROR_TYPE_ITEM, item, 1536 "multiple L4 layers not supported"); 1537 if (!mask) 1538 mask = &rte_flow_item_tcp_mask; 1539 ret = mlx5_flow_item_acceptable 1540 (item, (const uint8_t *)mask, 1541 (const uint8_t *)flow_mask, 1542 sizeof(struct rte_flow_item_tcp), error); 1543 if (ret < 0) 1544 return ret; 1545 return 0; 1546 } 1547 1548 /** 1549 * Validate VXLAN item. 1550 * 1551 * @param[in] item 1552 * Item specification. 1553 * @param[in] item_flags 1554 * Bit-fields that holds the items detected until now. 1555 * @param[in] target_protocol 1556 * The next protocol in the previous item. 1557 * @param[out] error 1558 * Pointer to error structure. 1559 * 1560 * @return 1561 * 0 on success, a negative errno value otherwise and rte_errno is set. 1562 */ 1563 int 1564 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 1565 uint64_t item_flags, 1566 struct rte_flow_error *error) 1567 { 1568 const struct rte_flow_item_vxlan *spec = item->spec; 1569 const struct rte_flow_item_vxlan *mask = item->mask; 1570 int ret; 1571 union vni { 1572 uint32_t vlan_id; 1573 uint8_t vni[4]; 1574 } id = { .vlan_id = 0, }; 1575 uint32_t vlan_id = 0; 1576 1577 1578 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1579 return rte_flow_error_set(error, ENOTSUP, 1580 RTE_FLOW_ERROR_TYPE_ITEM, item, 1581 "multiple tunnel layers not" 1582 " supported"); 1583 /* 1584 * Verify only UDPv4 is present as defined in 1585 * https://tools.ietf.org/html/rfc7348 1586 */ 1587 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1588 return rte_flow_error_set(error, EINVAL, 1589 RTE_FLOW_ERROR_TYPE_ITEM, item, 1590 "no outer UDP layer found"); 1591 if (!mask) 1592 mask = &rte_flow_item_vxlan_mask; 1593 ret = mlx5_flow_item_acceptable 1594 (item, (const uint8_t *)mask, 1595 (const uint8_t *)&rte_flow_item_vxlan_mask, 1596 sizeof(struct rte_flow_item_vxlan), 1597 error); 1598 if (ret < 0) 1599 return ret; 1600 if (spec) { 1601 memcpy(&id.vni[1], spec->vni, 3); 1602 vlan_id = id.vlan_id; 1603 memcpy(&id.vni[1], mask->vni, 3); 1604 vlan_id &= id.vlan_id; 1605 } 1606 /* 1607 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if 1608 * only this layer is defined in the Verbs specification it is 1609 * interpreted as wildcard and all packets will match this 1610 * rule, if it follows a full stack layer (ex: eth / ipv4 / 1611 * udp), all packets matching the layers before will also 1612 * match this rule. To avoid such situation, VNI 0 is 1613 * currently refused. 1614 */ 1615 if (!vlan_id) 1616 return rte_flow_error_set(error, ENOTSUP, 1617 RTE_FLOW_ERROR_TYPE_ITEM, item, 1618 "VXLAN vni cannot be 0"); 1619 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1620 return rte_flow_error_set(error, ENOTSUP, 1621 RTE_FLOW_ERROR_TYPE_ITEM, item, 1622 "VXLAN tunnel must be fully defined"); 1623 return 0; 1624 } 1625 1626 /** 1627 * Validate VXLAN_GPE item. 1628 * 1629 * @param[in] item 1630 * Item specification. 1631 * @param[in] item_flags 1632 * Bit-fields that holds the items detected until now. 1633 * @param[in] priv 1634 * Pointer to the private data structure. 1635 * @param[in] target_protocol 1636 * The next protocol in the previous item. 1637 * @param[out] error 1638 * Pointer to error structure. 1639 * 1640 * @return 1641 * 0 on success, a negative errno value otherwise and rte_errno is set. 1642 */ 1643 int 1644 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 1645 uint64_t item_flags, 1646 struct rte_eth_dev *dev, 1647 struct rte_flow_error *error) 1648 { 1649 struct mlx5_priv *priv = dev->data->dev_private; 1650 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 1651 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 1652 int ret; 1653 union vni { 1654 uint32_t vlan_id; 1655 uint8_t vni[4]; 1656 } id = { .vlan_id = 0, }; 1657 uint32_t vlan_id = 0; 1658 1659 if (!priv->config.l3_vxlan_en) 1660 return rte_flow_error_set(error, ENOTSUP, 1661 RTE_FLOW_ERROR_TYPE_ITEM, item, 1662 "L3 VXLAN is not enabled by device" 1663 " parameter and/or not configured in" 1664 " firmware"); 1665 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1666 return rte_flow_error_set(error, ENOTSUP, 1667 RTE_FLOW_ERROR_TYPE_ITEM, item, 1668 "multiple tunnel layers not" 1669 " supported"); 1670 /* 1671 * Verify only UDPv4 is present as defined in 1672 * https://tools.ietf.org/html/rfc7348 1673 */ 1674 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1675 return rte_flow_error_set(error, EINVAL, 1676 RTE_FLOW_ERROR_TYPE_ITEM, item, 1677 "no outer UDP layer found"); 1678 if (!mask) 1679 mask = &rte_flow_item_vxlan_gpe_mask; 1680 ret = mlx5_flow_item_acceptable 1681 (item, (const uint8_t *)mask, 1682 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 1683 sizeof(struct rte_flow_item_vxlan_gpe), 1684 error); 1685 if (ret < 0) 1686 return ret; 1687 if (spec) { 1688 if (spec->protocol) 1689 return rte_flow_error_set(error, ENOTSUP, 1690 RTE_FLOW_ERROR_TYPE_ITEM, 1691 item, 1692 "VxLAN-GPE protocol" 1693 " not supported"); 1694 memcpy(&id.vni[1], spec->vni, 3); 1695 vlan_id = id.vlan_id; 1696 memcpy(&id.vni[1], mask->vni, 3); 1697 vlan_id &= id.vlan_id; 1698 } 1699 /* 1700 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1701 * layer is defined in the Verbs specification it is interpreted as 1702 * wildcard and all packets will match this rule, if it follows a full 1703 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1704 * before will also match this rule. To avoid such situation, VNI 0 1705 * is currently refused. 1706 */ 1707 if (!vlan_id) 1708 return rte_flow_error_set(error, ENOTSUP, 1709 RTE_FLOW_ERROR_TYPE_ITEM, item, 1710 "VXLAN-GPE vni cannot be 0"); 1711 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1712 return rte_flow_error_set(error, ENOTSUP, 1713 RTE_FLOW_ERROR_TYPE_ITEM, item, 1714 "VXLAN-GPE tunnel must be fully" 1715 " defined"); 1716 return 0; 1717 } 1718 /** 1719 * Validate GRE Key item. 1720 * 1721 * @param[in] item 1722 * Item specification. 1723 * @param[in] item_flags 1724 * Bit flags to mark detected items. 1725 * @param[in] gre_item 1726 * Pointer to gre_item 1727 * @param[out] error 1728 * Pointer to error structure. 1729 * 1730 * @return 1731 * 0 on success, a negative errno value otherwise and rte_errno is set. 1732 */ 1733 int 1734 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item, 1735 uint64_t item_flags, 1736 const struct rte_flow_item *gre_item, 1737 struct rte_flow_error *error) 1738 { 1739 const rte_be32_t *mask = item->mask; 1740 int ret = 0; 1741 rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX); 1742 const struct rte_flow_item_gre *gre_spec = gre_item->spec; 1743 const struct rte_flow_item_gre *gre_mask = gre_item->mask; 1744 1745 if (item_flags & MLX5_FLOW_LAYER_GRE_KEY) 1746 return rte_flow_error_set(error, ENOTSUP, 1747 RTE_FLOW_ERROR_TYPE_ITEM, item, 1748 "Multiple GRE key not support"); 1749 if (!(item_flags & MLX5_FLOW_LAYER_GRE)) 1750 return rte_flow_error_set(error, ENOTSUP, 1751 RTE_FLOW_ERROR_TYPE_ITEM, item, 1752 "No preceding GRE header"); 1753 if (item_flags & MLX5_FLOW_LAYER_INNER) 1754 return rte_flow_error_set(error, ENOTSUP, 1755 RTE_FLOW_ERROR_TYPE_ITEM, item, 1756 "GRE key following a wrong item"); 1757 if (!gre_mask) 1758 gre_mask = &rte_flow_item_gre_mask; 1759 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) && 1760 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000))) 1761 return rte_flow_error_set(error, EINVAL, 1762 RTE_FLOW_ERROR_TYPE_ITEM, item, 1763 "Key bit must be on"); 1764 1765 if (!mask) 1766 mask = &gre_key_default_mask; 1767 ret = mlx5_flow_item_acceptable 1768 (item, (const uint8_t *)mask, 1769 (const uint8_t *)&gre_key_default_mask, 1770 sizeof(rte_be32_t), error); 1771 return ret; 1772 } 1773 1774 /** 1775 * Validate GRE item. 1776 * 1777 * @param[in] item 1778 * Item specification. 1779 * @param[in] item_flags 1780 * Bit flags to mark detected items. 1781 * @param[in] target_protocol 1782 * The next protocol in the previous item. 1783 * @param[out] error 1784 * Pointer to error structure. 1785 * 1786 * @return 1787 * 0 on success, a negative errno value otherwise and rte_errno is set. 1788 */ 1789 int 1790 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 1791 uint64_t item_flags, 1792 uint8_t target_protocol, 1793 struct rte_flow_error *error) 1794 { 1795 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 1796 const struct rte_flow_item_gre *mask = item->mask; 1797 int ret; 1798 const struct rte_flow_item_gre nic_mask = { 1799 .c_rsvd0_ver = RTE_BE16(0xB000), 1800 .protocol = RTE_BE16(UINT16_MAX), 1801 }; 1802 1803 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1804 return rte_flow_error_set(error, EINVAL, 1805 RTE_FLOW_ERROR_TYPE_ITEM, item, 1806 "protocol filtering not compatible" 1807 " with this GRE layer"); 1808 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1809 return rte_flow_error_set(error, ENOTSUP, 1810 RTE_FLOW_ERROR_TYPE_ITEM, item, 1811 "multiple tunnel layers not" 1812 " supported"); 1813 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1814 return rte_flow_error_set(error, ENOTSUP, 1815 RTE_FLOW_ERROR_TYPE_ITEM, item, 1816 "L3 Layer is missing"); 1817 if (!mask) 1818 mask = &rte_flow_item_gre_mask; 1819 ret = mlx5_flow_item_acceptable 1820 (item, (const uint8_t *)mask, 1821 (const uint8_t *)&nic_mask, 1822 sizeof(struct rte_flow_item_gre), error); 1823 if (ret < 0) 1824 return ret; 1825 #ifndef HAVE_MLX5DV_DR 1826 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 1827 if (spec && (spec->protocol & mask->protocol)) 1828 return rte_flow_error_set(error, ENOTSUP, 1829 RTE_FLOW_ERROR_TYPE_ITEM, item, 1830 "without MPLS support the" 1831 " specification cannot be used for" 1832 " filtering"); 1833 #endif 1834 #endif 1835 return 0; 1836 } 1837 1838 /** 1839 * Validate MPLS item. 1840 * 1841 * @param[in] dev 1842 * Pointer to the rte_eth_dev structure. 1843 * @param[in] item 1844 * Item specification. 1845 * @param[in] item_flags 1846 * Bit-fields that holds the items detected until now. 1847 * @param[in] prev_layer 1848 * The protocol layer indicated in previous item. 1849 * @param[out] error 1850 * Pointer to error structure. 1851 * 1852 * @return 1853 * 0 on success, a negative errno value otherwise and rte_errno is set. 1854 */ 1855 int 1856 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 1857 const struct rte_flow_item *item __rte_unused, 1858 uint64_t item_flags __rte_unused, 1859 uint64_t prev_layer __rte_unused, 1860 struct rte_flow_error *error) 1861 { 1862 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1863 const struct rte_flow_item_mpls *mask = item->mask; 1864 struct mlx5_priv *priv = dev->data->dev_private; 1865 int ret; 1866 1867 if (!priv->config.mpls_en) 1868 return rte_flow_error_set(error, ENOTSUP, 1869 RTE_FLOW_ERROR_TYPE_ITEM, item, 1870 "MPLS not supported or" 1871 " disabled in firmware" 1872 " configuration."); 1873 /* MPLS over IP, UDP, GRE is allowed */ 1874 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 1875 MLX5_FLOW_LAYER_OUTER_L4_UDP | 1876 MLX5_FLOW_LAYER_GRE))) 1877 return rte_flow_error_set(error, EINVAL, 1878 RTE_FLOW_ERROR_TYPE_ITEM, item, 1879 "protocol filtering not compatible" 1880 " with MPLS layer"); 1881 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 1882 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 1883 !(item_flags & MLX5_FLOW_LAYER_GRE)) 1884 return rte_flow_error_set(error, ENOTSUP, 1885 RTE_FLOW_ERROR_TYPE_ITEM, item, 1886 "multiple tunnel layers not" 1887 " supported"); 1888 if (!mask) 1889 mask = &rte_flow_item_mpls_mask; 1890 ret = mlx5_flow_item_acceptable 1891 (item, (const uint8_t *)mask, 1892 (const uint8_t *)&rte_flow_item_mpls_mask, 1893 sizeof(struct rte_flow_item_mpls), error); 1894 if (ret < 0) 1895 return ret; 1896 return 0; 1897 #endif 1898 return rte_flow_error_set(error, ENOTSUP, 1899 RTE_FLOW_ERROR_TYPE_ITEM, item, 1900 "MPLS is not supported by Verbs, please" 1901 " update."); 1902 } 1903 1904 /** 1905 * Validate NVGRE item. 1906 * 1907 * @param[in] item 1908 * Item specification. 1909 * @param[in] item_flags 1910 * Bit flags to mark detected items. 1911 * @param[in] target_protocol 1912 * The next protocol in the previous item. 1913 * @param[out] error 1914 * Pointer to error structure. 1915 * 1916 * @return 1917 * 0 on success, a negative errno value otherwise and rte_errno is set. 1918 */ 1919 int 1920 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item, 1921 uint64_t item_flags, 1922 uint8_t target_protocol, 1923 struct rte_flow_error *error) 1924 { 1925 const struct rte_flow_item_nvgre *mask = item->mask; 1926 int ret; 1927 1928 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1929 return rte_flow_error_set(error, EINVAL, 1930 RTE_FLOW_ERROR_TYPE_ITEM, item, 1931 "protocol filtering not compatible" 1932 " with this GRE layer"); 1933 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1934 return rte_flow_error_set(error, ENOTSUP, 1935 RTE_FLOW_ERROR_TYPE_ITEM, item, 1936 "multiple tunnel layers not" 1937 " supported"); 1938 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1939 return rte_flow_error_set(error, ENOTSUP, 1940 RTE_FLOW_ERROR_TYPE_ITEM, item, 1941 "L3 Layer is missing"); 1942 if (!mask) 1943 mask = &rte_flow_item_nvgre_mask; 1944 ret = mlx5_flow_item_acceptable 1945 (item, (const uint8_t *)mask, 1946 (const uint8_t *)&rte_flow_item_nvgre_mask, 1947 sizeof(struct rte_flow_item_nvgre), error); 1948 if (ret < 0) 1949 return ret; 1950 return 0; 1951 } 1952 1953 static int 1954 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 1955 const struct rte_flow_attr *attr __rte_unused, 1956 const struct rte_flow_item items[] __rte_unused, 1957 const struct rte_flow_action actions[] __rte_unused, 1958 struct rte_flow_error *error) 1959 { 1960 return rte_flow_error_set(error, ENOTSUP, 1961 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 1962 } 1963 1964 static struct mlx5_flow * 1965 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused, 1966 const struct rte_flow_item items[] __rte_unused, 1967 const struct rte_flow_action actions[] __rte_unused, 1968 struct rte_flow_error *error) 1969 { 1970 rte_flow_error_set(error, ENOTSUP, 1971 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 1972 return NULL; 1973 } 1974 1975 static int 1976 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 1977 struct mlx5_flow *dev_flow __rte_unused, 1978 const struct rte_flow_attr *attr __rte_unused, 1979 const struct rte_flow_item items[] __rte_unused, 1980 const struct rte_flow_action actions[] __rte_unused, 1981 struct rte_flow_error *error) 1982 { 1983 return rte_flow_error_set(error, ENOTSUP, 1984 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 1985 } 1986 1987 static int 1988 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 1989 struct rte_flow *flow __rte_unused, 1990 struct rte_flow_error *error) 1991 { 1992 return rte_flow_error_set(error, ENOTSUP, 1993 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 1994 } 1995 1996 static void 1997 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 1998 struct rte_flow *flow __rte_unused) 1999 { 2000 } 2001 2002 static void 2003 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 2004 struct rte_flow *flow __rte_unused) 2005 { 2006 } 2007 2008 static int 2009 flow_null_query(struct rte_eth_dev *dev __rte_unused, 2010 struct rte_flow *flow __rte_unused, 2011 const struct rte_flow_action *actions __rte_unused, 2012 void *data __rte_unused, 2013 struct rte_flow_error *error) 2014 { 2015 return rte_flow_error_set(error, ENOTSUP, 2016 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2017 } 2018 2019 /* Void driver to protect from null pointer reference. */ 2020 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 2021 .validate = flow_null_validate, 2022 .prepare = flow_null_prepare, 2023 .translate = flow_null_translate, 2024 .apply = flow_null_apply, 2025 .remove = flow_null_remove, 2026 .destroy = flow_null_destroy, 2027 .query = flow_null_query, 2028 }; 2029 2030 /** 2031 * Select flow driver type according to flow attributes and device 2032 * configuration. 2033 * 2034 * @param[in] dev 2035 * Pointer to the dev structure. 2036 * @param[in] attr 2037 * Pointer to the flow attributes. 2038 * 2039 * @return 2040 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 2041 */ 2042 static enum mlx5_flow_drv_type 2043 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 2044 { 2045 struct mlx5_priv *priv = dev->data->dev_private; 2046 enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX; 2047 2048 if (attr->transfer && priv->config.dv_esw_en) 2049 type = MLX5_FLOW_TYPE_DV; 2050 if (!attr->transfer) 2051 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 2052 MLX5_FLOW_TYPE_VERBS; 2053 return type; 2054 } 2055 2056 #define flow_get_drv_ops(type) flow_drv_ops[type] 2057 2058 /** 2059 * Flow driver validation API. This abstracts calling driver specific functions. 2060 * The type of flow driver is determined according to flow attributes. 2061 * 2062 * @param[in] dev 2063 * Pointer to the dev structure. 2064 * @param[in] attr 2065 * Pointer to the flow attributes. 2066 * @param[in] items 2067 * Pointer to the list of items. 2068 * @param[in] actions 2069 * Pointer to the list of actions. 2070 * @param[out] error 2071 * Pointer to the error structure. 2072 * 2073 * @return 2074 * 0 on success, a negative errno value otherwise and rte_errno is set. 2075 */ 2076 static inline int 2077 flow_drv_validate(struct rte_eth_dev *dev, 2078 const struct rte_flow_attr *attr, 2079 const struct rte_flow_item items[], 2080 const struct rte_flow_action actions[], 2081 struct rte_flow_error *error) 2082 { 2083 const struct mlx5_flow_driver_ops *fops; 2084 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 2085 2086 fops = flow_get_drv_ops(type); 2087 return fops->validate(dev, attr, items, actions, error); 2088 } 2089 2090 /** 2091 * Flow driver preparation API. This abstracts calling driver specific 2092 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 2093 * calculates the size of memory required for device flow, allocates the memory, 2094 * initializes the device flow and returns the pointer. 2095 * 2096 * @note 2097 * This function initializes device flow structure such as dv or verbs in 2098 * struct mlx5_flow. However, it is caller's responsibility to initialize the 2099 * rest. For example, adding returning device flow to flow->dev_flow list and 2100 * setting backward reference to the flow should be done out of this function. 2101 * layers field is not filled either. 2102 * 2103 * @param[in] attr 2104 * Pointer to the flow attributes. 2105 * @param[in] items 2106 * Pointer to the list of items. 2107 * @param[in] actions 2108 * Pointer to the list of actions. 2109 * @param[out] error 2110 * Pointer to the error structure. 2111 * 2112 * @return 2113 * Pointer to device flow on success, otherwise NULL and rte_errno is set. 2114 */ 2115 static inline struct mlx5_flow * 2116 flow_drv_prepare(const struct rte_flow *flow, 2117 const struct rte_flow_attr *attr, 2118 const struct rte_flow_item items[], 2119 const struct rte_flow_action actions[], 2120 struct rte_flow_error *error) 2121 { 2122 const struct mlx5_flow_driver_ops *fops; 2123 enum mlx5_flow_drv_type type = flow->drv_type; 2124 2125 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 2126 fops = flow_get_drv_ops(type); 2127 return fops->prepare(attr, items, actions, error); 2128 } 2129 2130 /** 2131 * Flow driver translation API. This abstracts calling driver specific 2132 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 2133 * translates a generic flow into a driver flow. flow_drv_prepare() must 2134 * precede. 2135 * 2136 * @note 2137 * dev_flow->layers could be filled as a result of parsing during translation 2138 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 2139 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 2140 * flow->actions could be overwritten even though all the expanded dev_flows 2141 * have the same actions. 2142 * 2143 * @param[in] dev 2144 * Pointer to the rte dev structure. 2145 * @param[in, out] dev_flow 2146 * Pointer to the mlx5 flow. 2147 * @param[in] attr 2148 * Pointer to the flow attributes. 2149 * @param[in] items 2150 * Pointer to the list of items. 2151 * @param[in] actions 2152 * Pointer to the list of actions. 2153 * @param[out] error 2154 * Pointer to the error structure. 2155 * 2156 * @return 2157 * 0 on success, a negative errno value otherwise and rte_errno is set. 2158 */ 2159 static inline int 2160 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 2161 const struct rte_flow_attr *attr, 2162 const struct rte_flow_item items[], 2163 const struct rte_flow_action actions[], 2164 struct rte_flow_error *error) 2165 { 2166 const struct mlx5_flow_driver_ops *fops; 2167 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 2168 2169 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 2170 fops = flow_get_drv_ops(type); 2171 return fops->translate(dev, dev_flow, attr, items, actions, error); 2172 } 2173 2174 /** 2175 * Flow driver apply API. This abstracts calling driver specific functions. 2176 * Parent flow (rte_flow) should have driver type (drv_type). It applies 2177 * translated driver flows on to device. flow_drv_translate() must precede. 2178 * 2179 * @param[in] dev 2180 * Pointer to Ethernet device structure. 2181 * @param[in, out] flow 2182 * Pointer to flow structure. 2183 * @param[out] error 2184 * Pointer to error structure. 2185 * 2186 * @return 2187 * 0 on success, a negative errno value otherwise and rte_errno is set. 2188 */ 2189 static inline int 2190 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 2191 struct rte_flow_error *error) 2192 { 2193 const struct mlx5_flow_driver_ops *fops; 2194 enum mlx5_flow_drv_type type = flow->drv_type; 2195 2196 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 2197 fops = flow_get_drv_ops(type); 2198 return fops->apply(dev, flow, error); 2199 } 2200 2201 /** 2202 * Flow driver remove API. This abstracts calling driver specific functions. 2203 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 2204 * on device. All the resources of the flow should be freed by calling 2205 * flow_drv_destroy(). 2206 * 2207 * @param[in] dev 2208 * Pointer to Ethernet device. 2209 * @param[in, out] flow 2210 * Pointer to flow structure. 2211 */ 2212 static inline void 2213 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 2214 { 2215 const struct mlx5_flow_driver_ops *fops; 2216 enum mlx5_flow_drv_type type = flow->drv_type; 2217 2218 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 2219 fops = flow_get_drv_ops(type); 2220 fops->remove(dev, flow); 2221 } 2222 2223 /** 2224 * Flow driver destroy API. This abstracts calling driver specific functions. 2225 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 2226 * on device and releases resources of the flow. 2227 * 2228 * @param[in] dev 2229 * Pointer to Ethernet device. 2230 * @param[in, out] flow 2231 * Pointer to flow structure. 2232 */ 2233 static inline void 2234 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 2235 { 2236 const struct mlx5_flow_driver_ops *fops; 2237 enum mlx5_flow_drv_type type = flow->drv_type; 2238 2239 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 2240 fops = flow_get_drv_ops(type); 2241 fops->destroy(dev, flow); 2242 } 2243 2244 /** 2245 * Validate a flow supported by the NIC. 2246 * 2247 * @see rte_flow_validate() 2248 * @see rte_flow_ops 2249 */ 2250 int 2251 mlx5_flow_validate(struct rte_eth_dev *dev, 2252 const struct rte_flow_attr *attr, 2253 const struct rte_flow_item items[], 2254 const struct rte_flow_action actions[], 2255 struct rte_flow_error *error) 2256 { 2257 int ret; 2258 2259 ret = flow_drv_validate(dev, attr, items, actions, error); 2260 if (ret < 0) 2261 return ret; 2262 return 0; 2263 } 2264 2265 /** 2266 * Get RSS action from the action list. 2267 * 2268 * @param[in] actions 2269 * Pointer to the list of actions. 2270 * 2271 * @return 2272 * Pointer to the RSS action if exist, else return NULL. 2273 */ 2274 static const struct rte_flow_action_rss* 2275 flow_get_rss_action(const struct rte_flow_action actions[]) 2276 { 2277 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 2278 switch (actions->type) { 2279 case RTE_FLOW_ACTION_TYPE_RSS: 2280 return (const struct rte_flow_action_rss *) 2281 actions->conf; 2282 default: 2283 break; 2284 } 2285 } 2286 return NULL; 2287 } 2288 2289 static unsigned int 2290 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 2291 { 2292 const struct rte_flow_item *item; 2293 unsigned int has_vlan = 0; 2294 2295 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 2296 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 2297 has_vlan = 1; 2298 break; 2299 } 2300 } 2301 if (has_vlan) 2302 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 2303 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 2304 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 2305 MLX5_EXPANSION_ROOT_OUTER; 2306 } 2307 2308 /** 2309 * Create a flow and add it to @p list. 2310 * 2311 * @param dev 2312 * Pointer to Ethernet device. 2313 * @param list 2314 * Pointer to a TAILQ flow list. 2315 * @param[in] attr 2316 * Flow rule attributes. 2317 * @param[in] items 2318 * Pattern specification (list terminated by the END pattern item). 2319 * @param[in] actions 2320 * Associated actions (list terminated by the END action). 2321 * @param[out] error 2322 * Perform verbose error reporting if not NULL. 2323 * 2324 * @return 2325 * A flow on success, NULL otherwise and rte_errno is set. 2326 */ 2327 static struct rte_flow * 2328 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, 2329 const struct rte_flow_attr *attr, 2330 const struct rte_flow_item items[], 2331 const struct rte_flow_action actions[], 2332 struct rte_flow_error *error) 2333 { 2334 struct rte_flow *flow = NULL; 2335 struct mlx5_flow *dev_flow; 2336 const struct rte_flow_action_rss *rss; 2337 union { 2338 struct rte_flow_expand_rss buf; 2339 uint8_t buffer[2048]; 2340 } expand_buffer; 2341 struct rte_flow_expand_rss *buf = &expand_buffer.buf; 2342 int ret; 2343 uint32_t i; 2344 uint32_t flow_size; 2345 2346 ret = flow_drv_validate(dev, attr, items, actions, error); 2347 if (ret < 0) 2348 return NULL; 2349 flow_size = sizeof(struct rte_flow); 2350 rss = flow_get_rss_action(actions); 2351 if (rss) 2352 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t), 2353 sizeof(void *)); 2354 else 2355 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *)); 2356 flow = rte_calloc(__func__, 1, flow_size, 0); 2357 if (!flow) { 2358 rte_errno = ENOMEM; 2359 return NULL; 2360 } 2361 flow->drv_type = flow_get_drv_type(dev, attr); 2362 flow->ingress = attr->ingress; 2363 flow->transfer = attr->transfer; 2364 assert(flow->drv_type > MLX5_FLOW_TYPE_MIN && 2365 flow->drv_type < MLX5_FLOW_TYPE_MAX); 2366 flow->queue = (void *)(flow + 1); 2367 LIST_INIT(&flow->dev_flows); 2368 if (rss && rss->types) { 2369 unsigned int graph_root; 2370 2371 graph_root = find_graph_root(items, rss->level); 2372 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 2373 items, rss->types, 2374 mlx5_support_expansion, 2375 graph_root); 2376 assert(ret > 0 && 2377 (unsigned int)ret < sizeof(expand_buffer.buffer)); 2378 } else { 2379 buf->entries = 1; 2380 buf->entry[0].pattern = (void *)(uintptr_t)items; 2381 } 2382 for (i = 0; i < buf->entries; ++i) { 2383 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern, 2384 actions, error); 2385 if (!dev_flow) 2386 goto error; 2387 dev_flow->flow = flow; 2388 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next); 2389 ret = flow_drv_translate(dev, dev_flow, attr, 2390 buf->entry[i].pattern, 2391 actions, error); 2392 if (ret < 0) 2393 goto error; 2394 } 2395 if (dev->data->dev_started) { 2396 ret = flow_drv_apply(dev, flow, error); 2397 if (ret < 0) 2398 goto error; 2399 } 2400 TAILQ_INSERT_TAIL(list, flow, next); 2401 flow_rxq_flags_set(dev, flow); 2402 return flow; 2403 error: 2404 ret = rte_errno; /* Save rte_errno before cleanup. */ 2405 assert(flow); 2406 flow_drv_destroy(dev, flow); 2407 rte_free(flow); 2408 rte_errno = ret; /* Restore rte_errno. */ 2409 return NULL; 2410 } 2411 2412 /** 2413 * Create a flow. 2414 * 2415 * @see rte_flow_create() 2416 * @see rte_flow_ops 2417 */ 2418 struct rte_flow * 2419 mlx5_flow_create(struct rte_eth_dev *dev, 2420 const struct rte_flow_attr *attr, 2421 const struct rte_flow_item items[], 2422 const struct rte_flow_action actions[], 2423 struct rte_flow_error *error) 2424 { 2425 struct mlx5_priv *priv = dev->data->dev_private; 2426 2427 return flow_list_create(dev, &priv->flows, 2428 attr, items, actions, error); 2429 } 2430 2431 /** 2432 * Destroy a flow in a list. 2433 * 2434 * @param dev 2435 * Pointer to Ethernet device. 2436 * @param list 2437 * Pointer to a TAILQ flow list. 2438 * @param[in] flow 2439 * Flow to destroy. 2440 */ 2441 static void 2442 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2443 struct rte_flow *flow) 2444 { 2445 /* 2446 * Update RX queue flags only if port is started, otherwise it is 2447 * already clean. 2448 */ 2449 if (dev->data->dev_started) 2450 flow_rxq_flags_trim(dev, flow); 2451 flow_drv_destroy(dev, flow); 2452 TAILQ_REMOVE(list, flow, next); 2453 rte_free(flow->fdir); 2454 rte_free(flow); 2455 } 2456 2457 /** 2458 * Destroy all flows. 2459 * 2460 * @param dev 2461 * Pointer to Ethernet device. 2462 * @param list 2463 * Pointer to a TAILQ flow list. 2464 */ 2465 void 2466 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2467 { 2468 while (!TAILQ_EMPTY(list)) { 2469 struct rte_flow *flow; 2470 2471 flow = TAILQ_FIRST(list); 2472 flow_list_destroy(dev, list, flow); 2473 } 2474 } 2475 2476 /** 2477 * Remove all flows. 2478 * 2479 * @param dev 2480 * Pointer to Ethernet device. 2481 * @param list 2482 * Pointer to a TAILQ flow list. 2483 */ 2484 void 2485 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2486 { 2487 struct rte_flow *flow; 2488 2489 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) 2490 flow_drv_remove(dev, flow); 2491 flow_rxq_flags_clear(dev); 2492 } 2493 2494 /** 2495 * Add all flows. 2496 * 2497 * @param dev 2498 * Pointer to Ethernet device. 2499 * @param list 2500 * Pointer to a TAILQ flow list. 2501 * 2502 * @return 2503 * 0 on success, a negative errno value otherwise and rte_errno is set. 2504 */ 2505 int 2506 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2507 { 2508 struct rte_flow *flow; 2509 struct rte_flow_error error; 2510 int ret = 0; 2511 2512 TAILQ_FOREACH(flow, list, next) { 2513 ret = flow_drv_apply(dev, flow, &error); 2514 if (ret < 0) 2515 goto error; 2516 flow_rxq_flags_set(dev, flow); 2517 } 2518 return 0; 2519 error: 2520 ret = rte_errno; /* Save rte_errno before cleanup. */ 2521 mlx5_flow_stop(dev, list); 2522 rte_errno = ret; /* Restore rte_errno. */ 2523 return -rte_errno; 2524 } 2525 2526 /** 2527 * Verify the flow list is empty 2528 * 2529 * @param dev 2530 * Pointer to Ethernet device. 2531 * 2532 * @return the number of flows not released. 2533 */ 2534 int 2535 mlx5_flow_verify(struct rte_eth_dev *dev) 2536 { 2537 struct mlx5_priv *priv = dev->data->dev_private; 2538 struct rte_flow *flow; 2539 int ret = 0; 2540 2541 TAILQ_FOREACH(flow, &priv->flows, next) { 2542 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2543 dev->data->port_id, (void *)flow); 2544 ++ret; 2545 } 2546 return ret; 2547 } 2548 2549 /** 2550 * Enable a control flow configured from the control plane. 2551 * 2552 * @param dev 2553 * Pointer to Ethernet device. 2554 * @param eth_spec 2555 * An Ethernet flow spec to apply. 2556 * @param eth_mask 2557 * An Ethernet flow mask to apply. 2558 * @param vlan_spec 2559 * A VLAN flow spec to apply. 2560 * @param vlan_mask 2561 * A VLAN flow mask to apply. 2562 * 2563 * @return 2564 * 0 on success, a negative errno value otherwise and rte_errno is set. 2565 */ 2566 int 2567 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2568 struct rte_flow_item_eth *eth_spec, 2569 struct rte_flow_item_eth *eth_mask, 2570 struct rte_flow_item_vlan *vlan_spec, 2571 struct rte_flow_item_vlan *vlan_mask) 2572 { 2573 struct mlx5_priv *priv = dev->data->dev_private; 2574 const struct rte_flow_attr attr = { 2575 .ingress = 1, 2576 .priority = MLX5_FLOW_PRIO_RSVD, 2577 }; 2578 struct rte_flow_item items[] = { 2579 { 2580 .type = RTE_FLOW_ITEM_TYPE_ETH, 2581 .spec = eth_spec, 2582 .last = NULL, 2583 .mask = eth_mask, 2584 }, 2585 { 2586 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2587 RTE_FLOW_ITEM_TYPE_END, 2588 .spec = vlan_spec, 2589 .last = NULL, 2590 .mask = vlan_mask, 2591 }, 2592 { 2593 .type = RTE_FLOW_ITEM_TYPE_END, 2594 }, 2595 }; 2596 uint16_t queue[priv->reta_idx_n]; 2597 struct rte_flow_action_rss action_rss = { 2598 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2599 .level = 0, 2600 .types = priv->rss_conf.rss_hf, 2601 .key_len = priv->rss_conf.rss_key_len, 2602 .queue_num = priv->reta_idx_n, 2603 .key = priv->rss_conf.rss_key, 2604 .queue = queue, 2605 }; 2606 struct rte_flow_action actions[] = { 2607 { 2608 .type = RTE_FLOW_ACTION_TYPE_RSS, 2609 .conf = &action_rss, 2610 }, 2611 { 2612 .type = RTE_FLOW_ACTION_TYPE_END, 2613 }, 2614 }; 2615 struct rte_flow *flow; 2616 struct rte_flow_error error; 2617 unsigned int i; 2618 2619 if (!priv->reta_idx_n || !priv->rxqs_n) { 2620 return 0; 2621 } 2622 for (i = 0; i != priv->reta_idx_n; ++i) 2623 queue[i] = (*priv->reta_idx)[i]; 2624 flow = flow_list_create(dev, &priv->ctrl_flows, 2625 &attr, items, actions, &error); 2626 if (!flow) 2627 return -rte_errno; 2628 return 0; 2629 } 2630 2631 /** 2632 * Enable a flow control configured from the control plane. 2633 * 2634 * @param dev 2635 * Pointer to Ethernet device. 2636 * @param eth_spec 2637 * An Ethernet flow spec to apply. 2638 * @param eth_mask 2639 * An Ethernet flow mask to apply. 2640 * 2641 * @return 2642 * 0 on success, a negative errno value otherwise and rte_errno is set. 2643 */ 2644 int 2645 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2646 struct rte_flow_item_eth *eth_spec, 2647 struct rte_flow_item_eth *eth_mask) 2648 { 2649 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2650 } 2651 2652 /** 2653 * Destroy a flow. 2654 * 2655 * @see rte_flow_destroy() 2656 * @see rte_flow_ops 2657 */ 2658 int 2659 mlx5_flow_destroy(struct rte_eth_dev *dev, 2660 struct rte_flow *flow, 2661 struct rte_flow_error *error __rte_unused) 2662 { 2663 struct mlx5_priv *priv = dev->data->dev_private; 2664 2665 flow_list_destroy(dev, &priv->flows, flow); 2666 return 0; 2667 } 2668 2669 /** 2670 * Destroy all flows. 2671 * 2672 * @see rte_flow_flush() 2673 * @see rte_flow_ops 2674 */ 2675 int 2676 mlx5_flow_flush(struct rte_eth_dev *dev, 2677 struct rte_flow_error *error __rte_unused) 2678 { 2679 struct mlx5_priv *priv = dev->data->dev_private; 2680 2681 mlx5_flow_list_flush(dev, &priv->flows); 2682 return 0; 2683 } 2684 2685 /** 2686 * Isolated mode. 2687 * 2688 * @see rte_flow_isolate() 2689 * @see rte_flow_ops 2690 */ 2691 int 2692 mlx5_flow_isolate(struct rte_eth_dev *dev, 2693 int enable, 2694 struct rte_flow_error *error) 2695 { 2696 struct mlx5_priv *priv = dev->data->dev_private; 2697 2698 if (dev->data->dev_started) { 2699 rte_flow_error_set(error, EBUSY, 2700 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2701 NULL, 2702 "port must be stopped first"); 2703 return -rte_errno; 2704 } 2705 priv->isolated = !!enable; 2706 if (enable) 2707 dev->dev_ops = &mlx5_dev_ops_isolate; 2708 else 2709 dev->dev_ops = &mlx5_dev_ops; 2710 return 0; 2711 } 2712 2713 /** 2714 * Query a flow. 2715 * 2716 * @see rte_flow_query() 2717 * @see rte_flow_ops 2718 */ 2719 static int 2720 flow_drv_query(struct rte_eth_dev *dev, 2721 struct rte_flow *flow, 2722 const struct rte_flow_action *actions, 2723 void *data, 2724 struct rte_flow_error *error) 2725 { 2726 const struct mlx5_flow_driver_ops *fops; 2727 enum mlx5_flow_drv_type ftype = flow->drv_type; 2728 2729 assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 2730 fops = flow_get_drv_ops(ftype); 2731 2732 return fops->query(dev, flow, actions, data, error); 2733 } 2734 2735 /** 2736 * Query a flow. 2737 * 2738 * @see rte_flow_query() 2739 * @see rte_flow_ops 2740 */ 2741 int 2742 mlx5_flow_query(struct rte_eth_dev *dev, 2743 struct rte_flow *flow, 2744 const struct rte_flow_action *actions, 2745 void *data, 2746 struct rte_flow_error *error) 2747 { 2748 int ret; 2749 2750 ret = flow_drv_query(dev, flow, actions, data, error); 2751 if (ret < 0) 2752 return ret; 2753 return 0; 2754 } 2755 2756 /** 2757 * Convert a flow director filter to a generic flow. 2758 * 2759 * @param dev 2760 * Pointer to Ethernet device. 2761 * @param fdir_filter 2762 * Flow director filter to add. 2763 * @param attributes 2764 * Generic flow parameters structure. 2765 * 2766 * @return 2767 * 0 on success, a negative errno value otherwise and rte_errno is set. 2768 */ 2769 static int 2770 flow_fdir_filter_convert(struct rte_eth_dev *dev, 2771 const struct rte_eth_fdir_filter *fdir_filter, 2772 struct mlx5_fdir *attributes) 2773 { 2774 struct mlx5_priv *priv = dev->data->dev_private; 2775 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2776 const struct rte_eth_fdir_masks *mask = 2777 &dev->data->dev_conf.fdir_conf.mask; 2778 2779 /* Validate queue number. */ 2780 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2781 DRV_LOG(ERR, "port %u invalid queue number %d", 2782 dev->data->port_id, fdir_filter->action.rx_queue); 2783 rte_errno = EINVAL; 2784 return -rte_errno; 2785 } 2786 attributes->attr.ingress = 1; 2787 attributes->items[0] = (struct rte_flow_item) { 2788 .type = RTE_FLOW_ITEM_TYPE_ETH, 2789 .spec = &attributes->l2, 2790 .mask = &attributes->l2_mask, 2791 }; 2792 switch (fdir_filter->action.behavior) { 2793 case RTE_ETH_FDIR_ACCEPT: 2794 attributes->actions[0] = (struct rte_flow_action){ 2795 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2796 .conf = &attributes->queue, 2797 }; 2798 break; 2799 case RTE_ETH_FDIR_REJECT: 2800 attributes->actions[0] = (struct rte_flow_action){ 2801 .type = RTE_FLOW_ACTION_TYPE_DROP, 2802 }; 2803 break; 2804 default: 2805 DRV_LOG(ERR, "port %u invalid behavior %d", 2806 dev->data->port_id, 2807 fdir_filter->action.behavior); 2808 rte_errno = ENOTSUP; 2809 return -rte_errno; 2810 } 2811 attributes->queue.index = fdir_filter->action.rx_queue; 2812 /* Handle L3. */ 2813 switch (fdir_filter->input.flow_type) { 2814 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2815 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2816 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2817 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){ 2818 .src_addr = input->flow.ip4_flow.src_ip, 2819 .dst_addr = input->flow.ip4_flow.dst_ip, 2820 .time_to_live = input->flow.ip4_flow.ttl, 2821 .type_of_service = input->flow.ip4_flow.tos, 2822 }; 2823 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){ 2824 .src_addr = mask->ipv4_mask.src_ip, 2825 .dst_addr = mask->ipv4_mask.dst_ip, 2826 .time_to_live = mask->ipv4_mask.ttl, 2827 .type_of_service = mask->ipv4_mask.tos, 2828 .next_proto_id = mask->ipv4_mask.proto, 2829 }; 2830 attributes->items[1] = (struct rte_flow_item){ 2831 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2832 .spec = &attributes->l3, 2833 .mask = &attributes->l3_mask, 2834 }; 2835 break; 2836 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2837 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2838 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2839 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){ 2840 .hop_limits = input->flow.ipv6_flow.hop_limits, 2841 .proto = input->flow.ipv6_flow.proto, 2842 }; 2843 2844 memcpy(attributes->l3.ipv6.hdr.src_addr, 2845 input->flow.ipv6_flow.src_ip, 2846 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2847 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2848 input->flow.ipv6_flow.dst_ip, 2849 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2850 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 2851 mask->ipv6_mask.src_ip, 2852 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2853 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 2854 mask->ipv6_mask.dst_ip, 2855 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2856 attributes->items[1] = (struct rte_flow_item){ 2857 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2858 .spec = &attributes->l3, 2859 .mask = &attributes->l3_mask, 2860 }; 2861 break; 2862 default: 2863 DRV_LOG(ERR, "port %u invalid flow type%d", 2864 dev->data->port_id, fdir_filter->input.flow_type); 2865 rte_errno = ENOTSUP; 2866 return -rte_errno; 2867 } 2868 /* Handle L4. */ 2869 switch (fdir_filter->input.flow_type) { 2870 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2871 attributes->l4.udp.hdr = (struct rte_udp_hdr){ 2872 .src_port = input->flow.udp4_flow.src_port, 2873 .dst_port = input->flow.udp4_flow.dst_port, 2874 }; 2875 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){ 2876 .src_port = mask->src_port_mask, 2877 .dst_port = mask->dst_port_mask, 2878 }; 2879 attributes->items[2] = (struct rte_flow_item){ 2880 .type = RTE_FLOW_ITEM_TYPE_UDP, 2881 .spec = &attributes->l4, 2882 .mask = &attributes->l4_mask, 2883 }; 2884 break; 2885 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2886 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){ 2887 .src_port = input->flow.tcp4_flow.src_port, 2888 .dst_port = input->flow.tcp4_flow.dst_port, 2889 }; 2890 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){ 2891 .src_port = mask->src_port_mask, 2892 .dst_port = mask->dst_port_mask, 2893 }; 2894 attributes->items[2] = (struct rte_flow_item){ 2895 .type = RTE_FLOW_ITEM_TYPE_TCP, 2896 .spec = &attributes->l4, 2897 .mask = &attributes->l4_mask, 2898 }; 2899 break; 2900 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2901 attributes->l4.udp.hdr = (struct rte_udp_hdr){ 2902 .src_port = input->flow.udp6_flow.src_port, 2903 .dst_port = input->flow.udp6_flow.dst_port, 2904 }; 2905 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){ 2906 .src_port = mask->src_port_mask, 2907 .dst_port = mask->dst_port_mask, 2908 }; 2909 attributes->items[2] = (struct rte_flow_item){ 2910 .type = RTE_FLOW_ITEM_TYPE_UDP, 2911 .spec = &attributes->l4, 2912 .mask = &attributes->l4_mask, 2913 }; 2914 break; 2915 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2916 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){ 2917 .src_port = input->flow.tcp6_flow.src_port, 2918 .dst_port = input->flow.tcp6_flow.dst_port, 2919 }; 2920 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){ 2921 .src_port = mask->src_port_mask, 2922 .dst_port = mask->dst_port_mask, 2923 }; 2924 attributes->items[2] = (struct rte_flow_item){ 2925 .type = RTE_FLOW_ITEM_TYPE_TCP, 2926 .spec = &attributes->l4, 2927 .mask = &attributes->l4_mask, 2928 }; 2929 break; 2930 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2931 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2932 break; 2933 default: 2934 DRV_LOG(ERR, "port %u invalid flow type%d", 2935 dev->data->port_id, fdir_filter->input.flow_type); 2936 rte_errno = ENOTSUP; 2937 return -rte_errno; 2938 } 2939 return 0; 2940 } 2941 2942 #define FLOW_FDIR_CMP(f1, f2, fld) \ 2943 memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld)) 2944 2945 /** 2946 * Compare two FDIR flows. If items and actions are identical, the two flows are 2947 * regarded as same. 2948 * 2949 * @param dev 2950 * Pointer to Ethernet device. 2951 * @param f1 2952 * FDIR flow to compare. 2953 * @param f2 2954 * FDIR flow to compare. 2955 * 2956 * @return 2957 * Zero on match, 1 otherwise. 2958 */ 2959 static int 2960 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2) 2961 { 2962 if (FLOW_FDIR_CMP(f1, f2, attr) || 2963 FLOW_FDIR_CMP(f1, f2, l2) || 2964 FLOW_FDIR_CMP(f1, f2, l2_mask) || 2965 FLOW_FDIR_CMP(f1, f2, l3) || 2966 FLOW_FDIR_CMP(f1, f2, l3_mask) || 2967 FLOW_FDIR_CMP(f1, f2, l4) || 2968 FLOW_FDIR_CMP(f1, f2, l4_mask) || 2969 FLOW_FDIR_CMP(f1, f2, actions[0].type)) 2970 return 1; 2971 if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE && 2972 FLOW_FDIR_CMP(f1, f2, queue)) 2973 return 1; 2974 return 0; 2975 } 2976 2977 /** 2978 * Search device flow list to find out a matched FDIR flow. 2979 * 2980 * @param dev 2981 * Pointer to Ethernet device. 2982 * @param fdir_flow 2983 * FDIR flow to lookup. 2984 * 2985 * @return 2986 * Pointer of flow if found, NULL otherwise. 2987 */ 2988 static struct rte_flow * 2989 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow) 2990 { 2991 struct mlx5_priv *priv = dev->data->dev_private; 2992 struct rte_flow *flow = NULL; 2993 2994 assert(fdir_flow); 2995 TAILQ_FOREACH(flow, &priv->flows, next) { 2996 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) { 2997 DRV_LOG(DEBUG, "port %u found FDIR flow %p", 2998 dev->data->port_id, (void *)flow); 2999 break; 3000 } 3001 } 3002 return flow; 3003 } 3004 3005 /** 3006 * Add new flow director filter and store it in list. 3007 * 3008 * @param dev 3009 * Pointer to Ethernet device. 3010 * @param fdir_filter 3011 * Flow director filter to add. 3012 * 3013 * @return 3014 * 0 on success, a negative errno value otherwise and rte_errno is set. 3015 */ 3016 static int 3017 flow_fdir_filter_add(struct rte_eth_dev *dev, 3018 const struct rte_eth_fdir_filter *fdir_filter) 3019 { 3020 struct mlx5_priv *priv = dev->data->dev_private; 3021 struct mlx5_fdir *fdir_flow; 3022 struct rte_flow *flow; 3023 int ret; 3024 3025 fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0); 3026 if (!fdir_flow) { 3027 rte_errno = ENOMEM; 3028 return -rte_errno; 3029 } 3030 ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow); 3031 if (ret) 3032 goto error; 3033 flow = flow_fdir_filter_lookup(dev, fdir_flow); 3034 if (flow) { 3035 rte_errno = EEXIST; 3036 goto error; 3037 } 3038 flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr, 3039 fdir_flow->items, fdir_flow->actions, NULL); 3040 if (!flow) 3041 goto error; 3042 assert(!flow->fdir); 3043 flow->fdir = fdir_flow; 3044 DRV_LOG(DEBUG, "port %u created FDIR flow %p", 3045 dev->data->port_id, (void *)flow); 3046 return 0; 3047 error: 3048 rte_free(fdir_flow); 3049 return -rte_errno; 3050 } 3051 3052 /** 3053 * Delete specific filter. 3054 * 3055 * @param dev 3056 * Pointer to Ethernet device. 3057 * @param fdir_filter 3058 * Filter to be deleted. 3059 * 3060 * @return 3061 * 0 on success, a negative errno value otherwise and rte_errno is set. 3062 */ 3063 static int 3064 flow_fdir_filter_delete(struct rte_eth_dev *dev, 3065 const struct rte_eth_fdir_filter *fdir_filter) 3066 { 3067 struct mlx5_priv *priv = dev->data->dev_private; 3068 struct rte_flow *flow; 3069 struct mlx5_fdir fdir_flow = { 3070 .attr.group = 0, 3071 }; 3072 int ret; 3073 3074 ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow); 3075 if (ret) 3076 return -rte_errno; 3077 flow = flow_fdir_filter_lookup(dev, &fdir_flow); 3078 if (!flow) { 3079 rte_errno = ENOENT; 3080 return -rte_errno; 3081 } 3082 flow_list_destroy(dev, &priv->flows, flow); 3083 DRV_LOG(DEBUG, "port %u deleted FDIR flow %p", 3084 dev->data->port_id, (void *)flow); 3085 return 0; 3086 } 3087 3088 /** 3089 * Update queue for specific filter. 3090 * 3091 * @param dev 3092 * Pointer to Ethernet device. 3093 * @param fdir_filter 3094 * Filter to be updated. 3095 * 3096 * @return 3097 * 0 on success, a negative errno value otherwise and rte_errno is set. 3098 */ 3099 static int 3100 flow_fdir_filter_update(struct rte_eth_dev *dev, 3101 const struct rte_eth_fdir_filter *fdir_filter) 3102 { 3103 int ret; 3104 3105 ret = flow_fdir_filter_delete(dev, fdir_filter); 3106 if (ret) 3107 return ret; 3108 return flow_fdir_filter_add(dev, fdir_filter); 3109 } 3110 3111 /** 3112 * Flush all filters. 3113 * 3114 * @param dev 3115 * Pointer to Ethernet device. 3116 */ 3117 static void 3118 flow_fdir_filter_flush(struct rte_eth_dev *dev) 3119 { 3120 struct mlx5_priv *priv = dev->data->dev_private; 3121 3122 mlx5_flow_list_flush(dev, &priv->flows); 3123 } 3124 3125 /** 3126 * Get flow director information. 3127 * 3128 * @param dev 3129 * Pointer to Ethernet device. 3130 * @param[out] fdir_info 3131 * Resulting flow director information. 3132 */ 3133 static void 3134 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 3135 { 3136 struct rte_eth_fdir_masks *mask = 3137 &dev->data->dev_conf.fdir_conf.mask; 3138 3139 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 3140 fdir_info->guarant_spc = 0; 3141 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 3142 fdir_info->max_flexpayload = 0; 3143 fdir_info->flow_types_mask[0] = 0; 3144 fdir_info->flex_payload_unit = 0; 3145 fdir_info->max_flex_payload_segment_num = 0; 3146 fdir_info->flex_payload_limit = 0; 3147 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 3148 } 3149 3150 /** 3151 * Deal with flow director operations. 3152 * 3153 * @param dev 3154 * Pointer to Ethernet device. 3155 * @param filter_op 3156 * Operation to perform. 3157 * @param arg 3158 * Pointer to operation-specific structure. 3159 * 3160 * @return 3161 * 0 on success, a negative errno value otherwise and rte_errno is set. 3162 */ 3163 static int 3164 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 3165 void *arg) 3166 { 3167 enum rte_fdir_mode fdir_mode = 3168 dev->data->dev_conf.fdir_conf.mode; 3169 3170 if (filter_op == RTE_ETH_FILTER_NOP) 3171 return 0; 3172 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 3173 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3174 DRV_LOG(ERR, "port %u flow director mode %d not supported", 3175 dev->data->port_id, fdir_mode); 3176 rte_errno = EINVAL; 3177 return -rte_errno; 3178 } 3179 switch (filter_op) { 3180 case RTE_ETH_FILTER_ADD: 3181 return flow_fdir_filter_add(dev, arg); 3182 case RTE_ETH_FILTER_UPDATE: 3183 return flow_fdir_filter_update(dev, arg); 3184 case RTE_ETH_FILTER_DELETE: 3185 return flow_fdir_filter_delete(dev, arg); 3186 case RTE_ETH_FILTER_FLUSH: 3187 flow_fdir_filter_flush(dev); 3188 break; 3189 case RTE_ETH_FILTER_INFO: 3190 flow_fdir_info_get(dev, arg); 3191 break; 3192 default: 3193 DRV_LOG(DEBUG, "port %u unknown operation %u", 3194 dev->data->port_id, filter_op); 3195 rte_errno = EINVAL; 3196 return -rte_errno; 3197 } 3198 return 0; 3199 } 3200 3201 /** 3202 * Manage filter operations. 3203 * 3204 * @param dev 3205 * Pointer to Ethernet device structure. 3206 * @param filter_type 3207 * Filter type. 3208 * @param filter_op 3209 * Operation to perform. 3210 * @param arg 3211 * Pointer to operation-specific structure. 3212 * 3213 * @return 3214 * 0 on success, a negative errno value otherwise and rte_errno is set. 3215 */ 3216 int 3217 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 3218 enum rte_filter_type filter_type, 3219 enum rte_filter_op filter_op, 3220 void *arg) 3221 { 3222 switch (filter_type) { 3223 case RTE_ETH_FILTER_GENERIC: 3224 if (filter_op != RTE_ETH_FILTER_GET) { 3225 rte_errno = EINVAL; 3226 return -rte_errno; 3227 } 3228 *(const void **)arg = &mlx5_flow_ops; 3229 return 0; 3230 case RTE_ETH_FILTER_FDIR: 3231 return flow_fdir_ctrl_func(dev, filter_op, arg); 3232 default: 3233 DRV_LOG(ERR, "port %u filter type (%d) not supported", 3234 dev->data->port_id, filter_type); 3235 rte_errno = ENOTSUP; 3236 return -rte_errno; 3237 } 3238 return 0; 3239 } 3240 3241 #define MLX5_POOL_QUERY_FREQ_US 1000000 3242 3243 /** 3244 * Set the periodic procedure for triggering asynchronous batch queries for all 3245 * the counter pools. 3246 * 3247 * @param[in] sh 3248 * Pointer to mlx5_ibv_shared object. 3249 */ 3250 void 3251 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh) 3252 { 3253 struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0); 3254 uint32_t pools_n = rte_atomic16_read(&cont->n_valid); 3255 uint32_t us; 3256 3257 cont = MLX5_CNT_CONTAINER(sh, 1, 0); 3258 pools_n += rte_atomic16_read(&cont->n_valid); 3259 us = MLX5_POOL_QUERY_FREQ_US / pools_n; 3260 DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us); 3261 if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) { 3262 sh->cmng.query_thread_on = 0; 3263 DRV_LOG(ERR, "Cannot reinitialize query alarm\n"); 3264 } else { 3265 sh->cmng.query_thread_on = 1; 3266 } 3267 } 3268 3269 /** 3270 * The periodic procedure for triggering asynchronous batch queries for all the 3271 * counter pools. This function is probably called by the host thread. 3272 * 3273 * @param[in] arg 3274 * The parameter for the alarm process. 3275 */ 3276 void 3277 mlx5_flow_query_alarm(void *arg) 3278 { 3279 struct mlx5_ibv_shared *sh = arg; 3280 struct mlx5_devx_obj *dcs; 3281 uint16_t offset; 3282 int ret; 3283 uint8_t batch = sh->cmng.batch; 3284 uint16_t pool_index = sh->cmng.pool_index; 3285 struct mlx5_pools_container *cont; 3286 struct mlx5_pools_container *mcont; 3287 struct mlx5_flow_counter_pool *pool; 3288 3289 if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES) 3290 goto set_alarm; 3291 next_container: 3292 cont = MLX5_CNT_CONTAINER(sh, batch, 1); 3293 mcont = MLX5_CNT_CONTAINER(sh, batch, 0); 3294 /* Check if resize was done and need to flip a container. */ 3295 if (cont != mcont) { 3296 if (cont->pools) { 3297 /* Clean the old container. */ 3298 rte_free(cont->pools); 3299 memset(cont, 0, sizeof(*cont)); 3300 } 3301 rte_cio_wmb(); 3302 /* Flip the host container. */ 3303 sh->cmng.mhi[batch] ^= (uint8_t)2; 3304 cont = mcont; 3305 } 3306 if (!cont->pools) { 3307 /* 2 empty containers case is unexpected. */ 3308 if (unlikely(batch != sh->cmng.batch)) 3309 goto set_alarm; 3310 batch ^= 0x1; 3311 pool_index = 0; 3312 goto next_container; 3313 } 3314 pool = cont->pools[pool_index]; 3315 if (pool->raw_hw) 3316 /* There is a pool query in progress. */ 3317 goto set_alarm; 3318 pool->raw_hw = 3319 LIST_FIRST(&sh->cmng.free_stat_raws); 3320 if (!pool->raw_hw) 3321 /* No free counter statistics raw memory. */ 3322 goto set_alarm; 3323 dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read 3324 (&pool->a64_dcs); 3325 offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL; 3326 ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL - 3327 offset, NULL, NULL, 3328 pool->raw_hw->mem_mng->dm->id, 3329 (void *)(uintptr_t) 3330 (pool->raw_hw->data + offset), 3331 sh->devx_comp, 3332 (uint64_t)(uintptr_t)pool); 3333 if (ret) { 3334 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID" 3335 " %d\n", pool->min_dcs->id); 3336 pool->raw_hw = NULL; 3337 goto set_alarm; 3338 } 3339 pool->raw_hw->min_dcs_id = dcs->id; 3340 LIST_REMOVE(pool->raw_hw, next); 3341 sh->cmng.pending_queries++; 3342 pool_index++; 3343 if (pool_index >= rte_atomic16_read(&cont->n_valid)) { 3344 batch ^= 0x1; 3345 pool_index = 0; 3346 } 3347 set_alarm: 3348 sh->cmng.batch = batch; 3349 sh->cmng.pool_index = pool_index; 3350 mlx5_set_query_alarm(sh); 3351 } 3352 3353 /** 3354 * Handler for the HW respond about ready values from an asynchronous batch 3355 * query. This function is probably called by the host thread. 3356 * 3357 * @param[in] sh 3358 * The pointer to the shared IB device context. 3359 * @param[in] async_id 3360 * The Devx async ID. 3361 * @param[in] status 3362 * The status of the completion. 3363 */ 3364 void 3365 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh, 3366 uint64_t async_id, int status) 3367 { 3368 struct mlx5_flow_counter_pool *pool = 3369 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id; 3370 struct mlx5_counter_stats_raw *raw_to_free; 3371 3372 if (unlikely(status)) { 3373 raw_to_free = pool->raw_hw; 3374 } else { 3375 raw_to_free = pool->raw; 3376 rte_spinlock_lock(&pool->sl); 3377 pool->raw = pool->raw_hw; 3378 rte_spinlock_unlock(&pool->sl); 3379 rte_atomic64_add(&pool->query_gen, 1); 3380 /* Be sure the new raw counters data is updated in memory. */ 3381 rte_cio_wmb(); 3382 } 3383 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next); 3384 pool->raw_hw = NULL; 3385 sh->cmng.pending_queries--; 3386 } 3387