xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision ea81c1b816f7ef7e072ee4d3155d4dcdd2aba32a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46 
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48 
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57 
58 enum mlx5_expansion {
59 	MLX5_EXPANSION_ROOT,
60 	MLX5_EXPANSION_ROOT_OUTER,
61 	MLX5_EXPANSION_ROOT_ETH_VLAN,
62 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63 	MLX5_EXPANSION_OUTER_ETH,
64 	MLX5_EXPANSION_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_VLAN,
66 	MLX5_EXPANSION_OUTER_IPV4,
67 	MLX5_EXPANSION_OUTER_IPV4_UDP,
68 	MLX5_EXPANSION_OUTER_IPV4_TCP,
69 	MLX5_EXPANSION_OUTER_IPV6,
70 	MLX5_EXPANSION_OUTER_IPV6_UDP,
71 	MLX5_EXPANSION_OUTER_IPV6_TCP,
72 	MLX5_EXPANSION_VXLAN,
73 	MLX5_EXPANSION_VXLAN_GPE,
74 	MLX5_EXPANSION_GRE,
75 	MLX5_EXPANSION_MPLS,
76 	MLX5_EXPANSION_ETH,
77 	MLX5_EXPANSION_ETH_VLAN,
78 	MLX5_EXPANSION_VLAN,
79 	MLX5_EXPANSION_IPV4,
80 	MLX5_EXPANSION_IPV4_UDP,
81 	MLX5_EXPANSION_IPV4_TCP,
82 	MLX5_EXPANSION_IPV6,
83 	MLX5_EXPANSION_IPV6_UDP,
84 	MLX5_EXPANSION_IPV6_TCP,
85 };
86 
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89 	[MLX5_EXPANSION_ROOT] = {
90 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91 						 MLX5_EXPANSION_IPV4,
92 						 MLX5_EXPANSION_IPV6),
93 		.type = RTE_FLOW_ITEM_TYPE_END,
94 	},
95 	[MLX5_EXPANSION_ROOT_OUTER] = {
96 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97 						 MLX5_EXPANSION_OUTER_IPV4,
98 						 MLX5_EXPANSION_OUTER_IPV6),
99 		.type = RTE_FLOW_ITEM_TYPE_END,
100 	},
101 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103 		.type = RTE_FLOW_ITEM_TYPE_END,
104 	},
105 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107 		.type = RTE_FLOW_ITEM_TYPE_END,
108 	},
109 	[MLX5_EXPANSION_OUTER_ETH] = {
110 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111 						 MLX5_EXPANSION_OUTER_IPV6,
112 						 MLX5_EXPANSION_MPLS),
113 		.type = RTE_FLOW_ITEM_TYPE_ETH,
114 		.rss_types = 0,
115 	},
116 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118 		.type = RTE_FLOW_ITEM_TYPE_ETH,
119 		.rss_types = 0,
120 	},
121 	[MLX5_EXPANSION_OUTER_VLAN] = {
122 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123 						 MLX5_EXPANSION_OUTER_IPV6),
124 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
125 	},
126 	[MLX5_EXPANSION_OUTER_IPV4] = {
127 		.next = RTE_FLOW_EXPAND_RSS_NEXT
128 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
129 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
130 			 MLX5_EXPANSION_GRE),
131 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
132 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133 			ETH_RSS_NONFRAG_IPV4_OTHER,
134 	},
135 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137 						 MLX5_EXPANSION_VXLAN_GPE),
138 		.type = RTE_FLOW_ITEM_TYPE_UDP,
139 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140 	},
141 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142 		.type = RTE_FLOW_ITEM_TYPE_TCP,
143 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144 	},
145 	[MLX5_EXPANSION_OUTER_IPV6] = {
146 		.next = RTE_FLOW_EXPAND_RSS_NEXT
147 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
148 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
149 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
150 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151 			ETH_RSS_NONFRAG_IPV6_OTHER,
152 	},
153 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155 						 MLX5_EXPANSION_VXLAN_GPE),
156 		.type = RTE_FLOW_ITEM_TYPE_UDP,
157 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158 	},
159 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160 		.type = RTE_FLOW_ITEM_TYPE_TCP,
161 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162 	},
163 	[MLX5_EXPANSION_VXLAN] = {
164 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
166 	},
167 	[MLX5_EXPANSION_VXLAN_GPE] = {
168 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169 						 MLX5_EXPANSION_IPV4,
170 						 MLX5_EXPANSION_IPV6),
171 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172 	},
173 	[MLX5_EXPANSION_GRE] = {
174 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175 		.type = RTE_FLOW_ITEM_TYPE_GRE,
176 	},
177 	[MLX5_EXPANSION_MPLS] = {
178 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179 						 MLX5_EXPANSION_IPV6),
180 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
181 	},
182 	[MLX5_EXPANSION_ETH] = {
183 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184 						 MLX5_EXPANSION_IPV6),
185 		.type = RTE_FLOW_ITEM_TYPE_ETH,
186 	},
187 	[MLX5_EXPANSION_ETH_VLAN] = {
188 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189 		.type = RTE_FLOW_ITEM_TYPE_ETH,
190 	},
191 	[MLX5_EXPANSION_VLAN] = {
192 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193 						 MLX5_EXPANSION_IPV6),
194 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
195 	},
196 	[MLX5_EXPANSION_IPV4] = {
197 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198 						 MLX5_EXPANSION_IPV4_TCP),
199 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
200 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201 			ETH_RSS_NONFRAG_IPV4_OTHER,
202 	},
203 	[MLX5_EXPANSION_IPV4_UDP] = {
204 		.type = RTE_FLOW_ITEM_TYPE_UDP,
205 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206 	},
207 	[MLX5_EXPANSION_IPV4_TCP] = {
208 		.type = RTE_FLOW_ITEM_TYPE_TCP,
209 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210 	},
211 	[MLX5_EXPANSION_IPV6] = {
212 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213 						 MLX5_EXPANSION_IPV6_TCP),
214 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
215 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216 			ETH_RSS_NONFRAG_IPV6_OTHER,
217 	},
218 	[MLX5_EXPANSION_IPV6_UDP] = {
219 		.type = RTE_FLOW_ITEM_TYPE_UDP,
220 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221 	},
222 	[MLX5_EXPANSION_IPV6_TCP] = {
223 		.type = RTE_FLOW_ITEM_TYPE_TCP,
224 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225 	},
226 };
227 
228 static const struct rte_flow_ops mlx5_flow_ops = {
229 	.validate = mlx5_flow_validate,
230 	.create = mlx5_flow_create,
231 	.destroy = mlx5_flow_destroy,
232 	.flush = mlx5_flow_flush,
233 	.isolate = mlx5_flow_isolate,
234 	.query = mlx5_flow_query,
235 };
236 
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239 	struct rte_flow_attr attr;
240 	struct rte_flow_item items[4];
241 	struct rte_flow_item_eth l2;
242 	struct rte_flow_item_eth l2_mask;
243 	union {
244 		struct rte_flow_item_ipv4 ipv4;
245 		struct rte_flow_item_ipv6 ipv6;
246 	} l3;
247 	union {
248 		struct rte_flow_item_ipv4 ipv4;
249 		struct rte_flow_item_ipv6 ipv6;
250 	} l3_mask;
251 	union {
252 		struct rte_flow_item_udp udp;
253 		struct rte_flow_item_tcp tcp;
254 	} l4;
255 	union {
256 		struct rte_flow_item_udp udp;
257 		struct rte_flow_item_tcp tcp;
258 	} l4_mask;
259 	struct rte_flow_action actions[2];
260 	struct rte_flow_action_queue queue;
261 };
262 
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267 
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271 	{ 9, 10, 11 }, { 12, 13, 14 },
272 };
273 
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279 
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281 	{
282 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
283 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284 	},
285 	{
286 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288 	},
289 	{
290 		.tunnel = MLX5_FLOW_LAYER_GRE,
291 		.ptype = RTE_PTYPE_TUNNEL_GRE,
292 	},
293 	{
294 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296 	},
297 	{
298 		.tunnel = MLX5_FLOW_LAYER_MPLS,
299 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300 	},
301 	{
302 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
303 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
304 	},
305 };
306 
307 /**
308  * Discover the maximum number of priority available.
309  *
310  * @param[in] dev
311  *   Pointer to the Ethernet device structure.
312  *
313  * @return
314  *   number of supported flow priority on success, a negative errno
315  *   value otherwise and rte_errno is set.
316  */
317 int
318 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
319 {
320 	struct mlx5_priv *priv = dev->data->dev_private;
321 	struct {
322 		struct ibv_flow_attr attr;
323 		struct ibv_flow_spec_eth eth;
324 		struct ibv_flow_spec_action_drop drop;
325 	} flow_attr = {
326 		.attr = {
327 			.num_of_specs = 2,
328 			.port = (uint8_t)priv->ibv_port,
329 		},
330 		.eth = {
331 			.type = IBV_FLOW_SPEC_ETH,
332 			.size = sizeof(struct ibv_flow_spec_eth),
333 		},
334 		.drop = {
335 			.size = sizeof(struct ibv_flow_spec_action_drop),
336 			.type = IBV_FLOW_SPEC_ACTION_DROP,
337 		},
338 	};
339 	struct ibv_flow *flow;
340 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
341 	uint16_t vprio[] = { 8, 16 };
342 	int i;
343 	int priority = 0;
344 
345 	if (!drop) {
346 		rte_errno = ENOTSUP;
347 		return -rte_errno;
348 	}
349 	for (i = 0; i != RTE_DIM(vprio); i++) {
350 		flow_attr.attr.priority = vprio[i] - 1;
351 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
352 		if (!flow)
353 			break;
354 		claim_zero(mlx5_glue->destroy_flow(flow));
355 		priority = vprio[i];
356 	}
357 	mlx5_hrxq_drop_release(dev);
358 	switch (priority) {
359 	case 8:
360 		priority = RTE_DIM(priority_map_3);
361 		break;
362 	case 16:
363 		priority = RTE_DIM(priority_map_5);
364 		break;
365 	default:
366 		rte_errno = ENOTSUP;
367 		DRV_LOG(ERR,
368 			"port %u verbs maximum priority: %d expected 8/16",
369 			dev->data->port_id, priority);
370 		return -rte_errno;
371 	}
372 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
373 		dev->data->port_id, priority);
374 	return priority;
375 }
376 
377 /**
378  * Adjust flow priority based on the highest layer and the request priority.
379  *
380  * @param[in] dev
381  *   Pointer to the Ethernet device structure.
382  * @param[in] priority
383  *   The rule base priority.
384  * @param[in] subpriority
385  *   The priority based on the items.
386  *
387  * @return
388  *   The new priority.
389  */
390 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
391 				   uint32_t subpriority)
392 {
393 	uint32_t res = 0;
394 	struct mlx5_priv *priv = dev->data->dev_private;
395 
396 	switch (priv->config.flow_prio) {
397 	case RTE_DIM(priority_map_3):
398 		res = priority_map_3[priority][subpriority];
399 		break;
400 	case RTE_DIM(priority_map_5):
401 		res = priority_map_5[priority][subpriority];
402 		break;
403 	}
404 	return  res;
405 }
406 
407 /**
408  * Verify the @p item specifications (spec, last, mask) are compatible with the
409  * NIC capabilities.
410  *
411  * @param[in] item
412  *   Item specification.
413  * @param[in] mask
414  *   @p item->mask or flow default bit-masks.
415  * @param[in] nic_mask
416  *   Bit-masks covering supported fields by the NIC to compare with user mask.
417  * @param[in] size
418  *   Bit-masks size in bytes.
419  * @param[out] error
420  *   Pointer to error structure.
421  *
422  * @return
423  *   0 on success, a negative errno value otherwise and rte_errno is set.
424  */
425 int
426 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
427 			  const uint8_t *mask,
428 			  const uint8_t *nic_mask,
429 			  unsigned int size,
430 			  struct rte_flow_error *error)
431 {
432 	unsigned int i;
433 
434 	assert(nic_mask);
435 	for (i = 0; i < size; ++i)
436 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
437 			return rte_flow_error_set(error, ENOTSUP,
438 						  RTE_FLOW_ERROR_TYPE_ITEM,
439 						  item,
440 						  "mask enables non supported"
441 						  " bits");
442 	if (!item->spec && (item->mask || item->last))
443 		return rte_flow_error_set(error, EINVAL,
444 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
445 					  "mask/last without a spec is not"
446 					  " supported");
447 	if (item->spec && item->last) {
448 		uint8_t spec[size];
449 		uint8_t last[size];
450 		unsigned int i;
451 		int ret;
452 
453 		for (i = 0; i < size; ++i) {
454 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
455 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
456 		}
457 		ret = memcmp(spec, last, size);
458 		if (ret != 0)
459 			return rte_flow_error_set(error, EINVAL,
460 						  RTE_FLOW_ERROR_TYPE_ITEM,
461 						  item,
462 						  "range is not valid");
463 	}
464 	return 0;
465 }
466 
467 /**
468  * Adjust the hash fields according to the @p flow information.
469  *
470  * @param[in] dev_flow.
471  *   Pointer to the mlx5_flow.
472  * @param[in] tunnel
473  *   1 when the hash field is for a tunnel item.
474  * @param[in] layer_types
475  *   ETH_RSS_* types.
476  * @param[in] hash_fields
477  *   Item hash fields.
478  *
479  * @return
480  *   The hash fields that should be used.
481  */
482 uint64_t
483 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
484 			    int tunnel __rte_unused, uint64_t layer_types,
485 			    uint64_t hash_fields)
486 {
487 	struct rte_flow *flow = dev_flow->flow;
488 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
489 	int rss_request_inner = flow->rss.level >= 2;
490 
491 	/* Check RSS hash level for tunnel. */
492 	if (tunnel && rss_request_inner)
493 		hash_fields |= IBV_RX_HASH_INNER;
494 	else if (tunnel || rss_request_inner)
495 		return 0;
496 #endif
497 	/* Check if requested layer matches RSS hash fields. */
498 	if (!(flow->rss.types & layer_types))
499 		return 0;
500 	return hash_fields;
501 }
502 
503 /**
504  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
505  * if several tunnel rules are used on this queue, the tunnel ptype will be
506  * cleared.
507  *
508  * @param rxq_ctrl
509  *   Rx queue to update.
510  */
511 static void
512 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
513 {
514 	unsigned int i;
515 	uint32_t tunnel_ptype = 0;
516 
517 	/* Look up for the ptype to use. */
518 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
519 		if (!rxq_ctrl->flow_tunnels_n[i])
520 			continue;
521 		if (!tunnel_ptype) {
522 			tunnel_ptype = tunnels_info[i].ptype;
523 		} else {
524 			tunnel_ptype = 0;
525 			break;
526 		}
527 	}
528 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
529 }
530 
531 /**
532  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
533  * flow.
534  *
535  * @param[in] dev
536  *   Pointer to the Ethernet device structure.
537  * @param[in] dev_flow
538  *   Pointer to device flow structure.
539  */
540 static void
541 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
542 {
543 	struct mlx5_priv *priv = dev->data->dev_private;
544 	struct rte_flow *flow = dev_flow->flow;
545 	const int mark = !!(flow->actions &
546 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
547 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
548 	unsigned int i;
549 
550 	for (i = 0; i != flow->rss.queue_num; ++i) {
551 		int idx = (*flow->queue)[i];
552 		struct mlx5_rxq_ctrl *rxq_ctrl =
553 			container_of((*priv->rxqs)[idx],
554 				     struct mlx5_rxq_ctrl, rxq);
555 
556 		if (mark) {
557 			rxq_ctrl->rxq.mark = 1;
558 			rxq_ctrl->flow_mark_n++;
559 		}
560 		if (tunnel) {
561 			unsigned int j;
562 
563 			/* Increase the counter matching the flow. */
564 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
565 				if ((tunnels_info[j].tunnel &
566 				     dev_flow->layers) ==
567 				    tunnels_info[j].tunnel) {
568 					rxq_ctrl->flow_tunnels_n[j]++;
569 					break;
570 				}
571 			}
572 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
573 		}
574 	}
575 }
576 
577 /**
578  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
579  *
580  * @param[in] dev
581  *   Pointer to the Ethernet device structure.
582  * @param[in] flow
583  *   Pointer to flow structure.
584  */
585 static void
586 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
587 {
588 	struct mlx5_flow *dev_flow;
589 
590 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
591 		flow_drv_rxq_flags_set(dev, dev_flow);
592 }
593 
594 /**
595  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
596  * device flow if no other flow uses it with the same kind of request.
597  *
598  * @param dev
599  *   Pointer to Ethernet device.
600  * @param[in] dev_flow
601  *   Pointer to the device flow.
602  */
603 static void
604 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
605 {
606 	struct mlx5_priv *priv = dev->data->dev_private;
607 	struct rte_flow *flow = dev_flow->flow;
608 	const int mark = !!(flow->actions &
609 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
610 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
611 	unsigned int i;
612 
613 	assert(dev->data->dev_started);
614 	for (i = 0; i != flow->rss.queue_num; ++i) {
615 		int idx = (*flow->queue)[i];
616 		struct mlx5_rxq_ctrl *rxq_ctrl =
617 			container_of((*priv->rxqs)[idx],
618 				     struct mlx5_rxq_ctrl, rxq);
619 
620 		if (mark) {
621 			rxq_ctrl->flow_mark_n--;
622 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
623 		}
624 		if (tunnel) {
625 			unsigned int j;
626 
627 			/* Decrease the counter matching the flow. */
628 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629 				if ((tunnels_info[j].tunnel &
630 				     dev_flow->layers) ==
631 				    tunnels_info[j].tunnel) {
632 					rxq_ctrl->flow_tunnels_n[j]--;
633 					break;
634 				}
635 			}
636 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
637 		}
638 	}
639 }
640 
641 /**
642  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
643  * @p flow if no other flow uses it with the same kind of request.
644  *
645  * @param dev
646  *   Pointer to Ethernet device.
647  * @param[in] flow
648  *   Pointer to the flow.
649  */
650 static void
651 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
652 {
653 	struct mlx5_flow *dev_flow;
654 
655 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
656 		flow_drv_rxq_flags_trim(dev, dev_flow);
657 }
658 
659 /**
660  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  */
665 static void
666 flow_rxq_flags_clear(struct rte_eth_dev *dev)
667 {
668 	struct mlx5_priv *priv = dev->data->dev_private;
669 	unsigned int i;
670 
671 	for (i = 0; i != priv->rxqs_n; ++i) {
672 		struct mlx5_rxq_ctrl *rxq_ctrl;
673 		unsigned int j;
674 
675 		if (!(*priv->rxqs)[i])
676 			continue;
677 		rxq_ctrl = container_of((*priv->rxqs)[i],
678 					struct mlx5_rxq_ctrl, rxq);
679 		rxq_ctrl->flow_mark_n = 0;
680 		rxq_ctrl->rxq.mark = 0;
681 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
682 			rxq_ctrl->flow_tunnels_n[j] = 0;
683 		rxq_ctrl->rxq.tunnel = 0;
684 	}
685 }
686 
687 /*
688  * Validate the flag action.
689  *
690  * @param[in] action_flags
691  *   Bit-fields that holds the actions detected until now.
692  * @param[in] attr
693  *   Attributes of flow that includes this action.
694  * @param[out] error
695  *   Pointer to error structure.
696  *
697  * @return
698  *   0 on success, a negative errno value otherwise and rte_errno is set.
699  */
700 int
701 mlx5_flow_validate_action_flag(uint64_t action_flags,
702 			       const struct rte_flow_attr *attr,
703 			       struct rte_flow_error *error)
704 {
705 
706 	if (action_flags & MLX5_FLOW_ACTION_DROP)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't drop and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_MARK)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't mark and flag in same flow");
714 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
715 		return rte_flow_error_set(error, EINVAL,
716 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
717 					  "can't have 2 flag"
718 					  " actions in same flow");
719 	if (attr->egress)
720 		return rte_flow_error_set(error, ENOTSUP,
721 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
722 					  "flag action not supported for "
723 					  "egress");
724 	return 0;
725 }
726 
727 /*
728  * Validate the mark action.
729  *
730  * @param[in] action
731  *   Pointer to the queue action.
732  * @param[in] action_flags
733  *   Bit-fields that holds the actions detected until now.
734  * @param[in] attr
735  *   Attributes of flow that includes this action.
736  * @param[out] error
737  *   Pointer to error structure.
738  *
739  * @return
740  *   0 on success, a negative errno value otherwise and rte_errno is set.
741  */
742 int
743 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
744 			       uint64_t action_flags,
745 			       const struct rte_flow_attr *attr,
746 			       struct rte_flow_error *error)
747 {
748 	const struct rte_flow_action_mark *mark = action->conf;
749 
750 	if (!mark)
751 		return rte_flow_error_set(error, EINVAL,
752 					  RTE_FLOW_ERROR_TYPE_ACTION,
753 					  action,
754 					  "configuration cannot be null");
755 	if (mark->id >= MLX5_FLOW_MARK_MAX)
756 		return rte_flow_error_set(error, EINVAL,
757 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
758 					  &mark->id,
759 					  "mark id must in 0 <= id < "
760 					  RTE_STR(MLX5_FLOW_MARK_MAX));
761 	if (action_flags & MLX5_FLOW_ACTION_DROP)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't drop and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't flag and mark in same flow");
769 	if (action_flags & MLX5_FLOW_ACTION_MARK)
770 		return rte_flow_error_set(error, EINVAL,
771 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
772 					  "can't have 2 mark actions in same"
773 					  " flow");
774 	if (attr->egress)
775 		return rte_flow_error_set(error, ENOTSUP,
776 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
777 					  "mark action not supported for "
778 					  "egress");
779 	return 0;
780 }
781 
782 /*
783  * Validate the drop action.
784  *
785  * @param[in] action_flags
786  *   Bit-fields that holds the actions detected until now.
787  * @param[in] attr
788  *   Attributes of flow that includes this action.
789  * @param[out] error
790  *   Pointer to error structure.
791  *
792  * @return
793  *   0 on success, a negative errno value otherwise and rte_errno is set.
794  */
795 int
796 mlx5_flow_validate_action_drop(uint64_t action_flags,
797 			       const struct rte_flow_attr *attr,
798 			       struct rte_flow_error *error)
799 {
800 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and flag in same flow");
804 	if (action_flags & MLX5_FLOW_ACTION_MARK)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't drop and mark in same flow");
808 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
809 		return rte_flow_error_set(error, EINVAL,
810 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
811 					  "can't have 2 fate actions in"
812 					  " same flow");
813 	if (attr->egress)
814 		return rte_flow_error_set(error, ENOTSUP,
815 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
816 					  "drop action not supported for "
817 					  "egress");
818 	return 0;
819 }
820 
821 /*
822  * Validate the queue action.
823  *
824  * @param[in] action
825  *   Pointer to the queue action.
826  * @param[in] action_flags
827  *   Bit-fields that holds the actions detected until now.
828  * @param[in] dev
829  *   Pointer to the Ethernet device structure.
830  * @param[in] attr
831  *   Attributes of flow that includes this action.
832  * @param[out] error
833  *   Pointer to error structure.
834  *
835  * @return
836  *   0 on success, a negative errno value otherwise and rte_errno is set.
837  */
838 int
839 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
840 				uint64_t action_flags,
841 				struct rte_eth_dev *dev,
842 				const struct rte_flow_attr *attr,
843 				struct rte_flow_error *error)
844 {
845 	struct mlx5_priv *priv = dev->data->dev_private;
846 	const struct rte_flow_action_queue *queue = action->conf;
847 
848 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
849 		return rte_flow_error_set(error, EINVAL,
850 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851 					  "can't have 2 fate actions in"
852 					  " same flow");
853 	if (!priv->rxqs_n)
854 		return rte_flow_error_set(error, EINVAL,
855 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856 					  NULL, "No Rx queues configured");
857 	if (queue->index >= priv->rxqs_n)
858 		return rte_flow_error_set(error, EINVAL,
859 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
860 					  &queue->index,
861 					  "queue index out of range");
862 	if (!(*priv->rxqs)[queue->index])
863 		return rte_flow_error_set(error, EINVAL,
864 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
865 					  &queue->index,
866 					  "queue is not configured");
867 	if (attr->egress)
868 		return rte_flow_error_set(error, ENOTSUP,
869 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
870 					  "queue action not supported for "
871 					  "egress");
872 	return 0;
873 }
874 
875 /*
876  * Validate the rss action.
877  *
878  * @param[in] action
879  *   Pointer to the queue action.
880  * @param[in] action_flags
881  *   Bit-fields that holds the actions detected until now.
882  * @param[in] dev
883  *   Pointer to the Ethernet device structure.
884  * @param[in] attr
885  *   Attributes of flow that includes this action.
886  * @param[in] item_flags
887  *   Items that were detected.
888  * @param[out] error
889  *   Pointer to error structure.
890  *
891  * @return
892  *   0 on success, a negative errno value otherwise and rte_errno is set.
893  */
894 int
895 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
896 			      uint64_t action_flags,
897 			      struct rte_eth_dev *dev,
898 			      const struct rte_flow_attr *attr,
899 			      uint64_t item_flags,
900 			      struct rte_flow_error *error)
901 {
902 	struct mlx5_priv *priv = dev->data->dev_private;
903 	const struct rte_flow_action_rss *rss = action->conf;
904 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
905 	unsigned int i;
906 
907 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
908 		return rte_flow_error_set(error, EINVAL,
909 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
910 					  "can't have 2 fate actions"
911 					  " in same flow");
912 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
913 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
914 		return rte_flow_error_set(error, ENOTSUP,
915 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
916 					  &rss->func,
917 					  "RSS hash function not supported");
918 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
919 	if (rss->level > 2)
920 #else
921 	if (rss->level > 1)
922 #endif
923 		return rte_flow_error_set(error, ENOTSUP,
924 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
925 					  &rss->level,
926 					  "tunnel RSS is not supported");
927 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
928 	if (rss->key_len == 0 && rss->key != NULL)
929 		return rte_flow_error_set(error, ENOTSUP,
930 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
931 					  &rss->key_len,
932 					  "RSS hash key length 0");
933 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
934 		return rte_flow_error_set(error, ENOTSUP,
935 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
936 					  &rss->key_len,
937 					  "RSS hash key too small");
938 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
939 		return rte_flow_error_set(error, ENOTSUP,
940 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
941 					  &rss->key_len,
942 					  "RSS hash key too large");
943 	if (rss->queue_num > priv->config.ind_table_max_size)
944 		return rte_flow_error_set(error, ENOTSUP,
945 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946 					  &rss->queue_num,
947 					  "number of queues too large");
948 	if (rss->types & MLX5_RSS_HF_MASK)
949 		return rte_flow_error_set(error, ENOTSUP,
950 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
951 					  &rss->types,
952 					  "some RSS protocols are not"
953 					  " supported");
954 	if (!priv->rxqs_n)
955 		return rte_flow_error_set(error, EINVAL,
956 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957 					  NULL, "No Rx queues configured");
958 	if (!rss->queue_num)
959 		return rte_flow_error_set(error, EINVAL,
960 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
961 					  NULL, "No queues configured");
962 	for (i = 0; i != rss->queue_num; ++i) {
963 		if (!(*priv->rxqs)[rss->queue[i]])
964 			return rte_flow_error_set
965 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
966 				 &rss->queue[i], "queue is not configured");
967 	}
968 	if (attr->egress)
969 		return rte_flow_error_set(error, ENOTSUP,
970 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
971 					  "rss action not supported for "
972 					  "egress");
973 	if (rss->level > 1 &&  !tunnel)
974 		return rte_flow_error_set(error, EINVAL,
975 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
976 					  "inner RSS is not supported for "
977 					  "non-tunnel flows");
978 	return 0;
979 }
980 
981 /*
982  * Validate the count action.
983  *
984  * @param[in] dev
985  *   Pointer to the Ethernet device structure.
986  * @param[in] attr
987  *   Attributes of flow that includes this action.
988  * @param[out] error
989  *   Pointer to error structure.
990  *
991  * @return
992  *   0 on success, a negative errno value otherwise and rte_errno is set.
993  */
994 int
995 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
996 				const struct rte_flow_attr *attr,
997 				struct rte_flow_error *error)
998 {
999 	if (attr->egress)
1000 		return rte_flow_error_set(error, ENOTSUP,
1001 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1002 					  "count action not supported for "
1003 					  "egress");
1004 	return 0;
1005 }
1006 
1007 /**
1008  * Verify the @p attributes will be correctly understood by the NIC and store
1009  * them in the @p flow if everything is correct.
1010  *
1011  * @param[in] dev
1012  *   Pointer to the Ethernet device structure.
1013  * @param[in] attributes
1014  *   Pointer to flow attributes
1015  * @param[out] error
1016  *   Pointer to error structure.
1017  *
1018  * @return
1019  *   0 on success, a negative errno value otherwise and rte_errno is set.
1020  */
1021 int
1022 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1023 			      const struct rte_flow_attr *attributes,
1024 			      struct rte_flow_error *error)
1025 {
1026 	struct mlx5_priv *priv = dev->data->dev_private;
1027 	uint32_t priority_max = priv->config.flow_prio - 1;
1028 
1029 	if (attributes->group)
1030 		return rte_flow_error_set(error, ENOTSUP,
1031 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1032 					  NULL, "groups is not supported");
1033 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1034 	    attributes->priority >= priority_max)
1035 		return rte_flow_error_set(error, ENOTSUP,
1036 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1037 					  NULL, "priority out of range");
1038 	if (attributes->egress)
1039 		return rte_flow_error_set(error, ENOTSUP,
1040 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1041 					  "egress is not supported");
1042 	if (attributes->transfer && !priv->config.dv_esw_en)
1043 		return rte_flow_error_set(error, ENOTSUP,
1044 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1045 					  NULL, "transfer is not supported");
1046 	if (!attributes->ingress)
1047 		return rte_flow_error_set(error, EINVAL,
1048 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1049 					  NULL,
1050 					  "ingress attribute is mandatory");
1051 	return 0;
1052 }
1053 
1054 /**
1055  * Validate ICMP6 item.
1056  *
1057  * @param[in] item
1058  *   Item specification.
1059  * @param[in] item_flags
1060  *   Bit-fields that holds the items detected until now.
1061  * @param[out] error
1062  *   Pointer to error structure.
1063  *
1064  * @return
1065  *   0 on success, a negative errno value otherwise and rte_errno is set.
1066  */
1067 int
1068 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1069 			       uint64_t item_flags,
1070 			       uint8_t target_protocol,
1071 			       struct rte_flow_error *error)
1072 {
1073 	const struct rte_flow_item_icmp6 *mask = item->mask;
1074 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1075 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1076 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1077 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1078 				      MLX5_FLOW_LAYER_OUTER_L4;
1079 	int ret;
1080 
1081 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1082 		return rte_flow_error_set(error, EINVAL,
1083 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1084 					  "protocol filtering not compatible"
1085 					  " with ICMP6 layer");
1086 	if (!(item_flags & l3m))
1087 		return rte_flow_error_set(error, EINVAL,
1088 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1089 					  "IPv6 is mandatory to filter on"
1090 					  " ICMP6");
1091 	if (item_flags & l4m)
1092 		return rte_flow_error_set(error, EINVAL,
1093 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1094 					  "multiple L4 layers not supported");
1095 	if (!mask)
1096 		mask = &rte_flow_item_icmp6_mask;
1097 	ret = mlx5_flow_item_acceptable
1098 		(item, (const uint8_t *)mask,
1099 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1100 		 sizeof(struct rte_flow_item_icmp6), error);
1101 	if (ret < 0)
1102 		return ret;
1103 	return 0;
1104 }
1105 
1106 /**
1107  * Validate ICMP item.
1108  *
1109  * @param[in] item
1110  *   Item specification.
1111  * @param[in] item_flags
1112  *   Bit-fields that holds the items detected until now.
1113  * @param[out] error
1114  *   Pointer to error structure.
1115  *
1116  * @return
1117  *   0 on success, a negative errno value otherwise and rte_errno is set.
1118  */
1119 int
1120 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1121 			     uint64_t item_flags,
1122 			     uint8_t target_protocol,
1123 			     struct rte_flow_error *error)
1124 {
1125 	const struct rte_flow_item_icmp *mask = item->mask;
1126 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1127 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1128 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1129 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1130 				      MLX5_FLOW_LAYER_OUTER_L4;
1131 	int ret;
1132 
1133 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1134 		return rte_flow_error_set(error, EINVAL,
1135 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1136 					  "protocol filtering not compatible"
1137 					  " with ICMP layer");
1138 	if (!(item_flags & l3m))
1139 		return rte_flow_error_set(error, EINVAL,
1140 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1141 					  "IPv4 is mandatory to filter"
1142 					  " on ICMP");
1143 	if (item_flags & l4m)
1144 		return rte_flow_error_set(error, EINVAL,
1145 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1146 					  "multiple L4 layers not supported");
1147 	if (!mask)
1148 		mask = &rte_flow_item_icmp_mask;
1149 	ret = mlx5_flow_item_acceptable
1150 		(item, (const uint8_t *)mask,
1151 		 (const uint8_t *)&rte_flow_item_icmp_mask,
1152 		 sizeof(struct rte_flow_item_icmp), error);
1153 	if (ret < 0)
1154 		return ret;
1155 	return 0;
1156 }
1157 
1158 /**
1159  * Validate Ethernet item.
1160  *
1161  * @param[in] item
1162  *   Item specification.
1163  * @param[in] item_flags
1164  *   Bit-fields that holds the items detected until now.
1165  * @param[out] error
1166  *   Pointer to error structure.
1167  *
1168  * @return
1169  *   0 on success, a negative errno value otherwise and rte_errno is set.
1170  */
1171 int
1172 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1173 			    uint64_t item_flags,
1174 			    struct rte_flow_error *error)
1175 {
1176 	const struct rte_flow_item_eth *mask = item->mask;
1177 	const struct rte_flow_item_eth nic_mask = {
1178 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1179 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1180 		.type = RTE_BE16(0xffff),
1181 	};
1182 	int ret;
1183 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1184 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1185 				       MLX5_FLOW_LAYER_OUTER_L2;
1186 
1187 	if (item_flags & ethm)
1188 		return rte_flow_error_set(error, ENOTSUP,
1189 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1190 					  "multiple L2 layers not supported");
1191 	if (!mask)
1192 		mask = &rte_flow_item_eth_mask;
1193 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1194 					(const uint8_t *)&nic_mask,
1195 					sizeof(struct rte_flow_item_eth),
1196 					error);
1197 	return ret;
1198 }
1199 
1200 /**
1201  * Validate VLAN item.
1202  *
1203  * @param[in] item
1204  *   Item specification.
1205  * @param[in] item_flags
1206  *   Bit-fields that holds the items detected until now.
1207  * @param[out] error
1208  *   Pointer to error structure.
1209  *
1210  * @return
1211  *   0 on success, a negative errno value otherwise and rte_errno is set.
1212  */
1213 int
1214 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1215 			     uint64_t item_flags,
1216 			     struct rte_flow_error *error)
1217 {
1218 	const struct rte_flow_item_vlan *spec = item->spec;
1219 	const struct rte_flow_item_vlan *mask = item->mask;
1220 	const struct rte_flow_item_vlan nic_mask = {
1221 		.tci = RTE_BE16(0x0fff),
1222 		.inner_type = RTE_BE16(0xffff),
1223 	};
1224 	uint16_t vlan_tag = 0;
1225 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1226 	int ret;
1227 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1228 					MLX5_FLOW_LAYER_INNER_L4) :
1229 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1230 					MLX5_FLOW_LAYER_OUTER_L4);
1231 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1232 					MLX5_FLOW_LAYER_OUTER_VLAN;
1233 
1234 	if (item_flags & vlanm)
1235 		return rte_flow_error_set(error, EINVAL,
1236 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1237 					  "multiple VLAN layers not supported");
1238 	else if ((item_flags & l34m) != 0)
1239 		return rte_flow_error_set(error, EINVAL,
1240 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1241 					  "L2 layer cannot follow L3/L4 layer");
1242 	if (!mask)
1243 		mask = &rte_flow_item_vlan_mask;
1244 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1245 					(const uint8_t *)&nic_mask,
1246 					sizeof(struct rte_flow_item_vlan),
1247 					error);
1248 	if (ret)
1249 		return ret;
1250 	if (spec) {
1251 		vlan_tag = spec->tci;
1252 		vlan_tag &= mask->tci;
1253 	}
1254 	/*
1255 	 * From verbs perspective an empty VLAN is equivalent
1256 	 * to a packet without VLAN layer.
1257 	 */
1258 	if (!vlan_tag)
1259 		return rte_flow_error_set(error, EINVAL,
1260 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1261 					  item->spec,
1262 					  "VLAN cannot be empty");
1263 	return 0;
1264 }
1265 
1266 /**
1267  * Validate IPV4 item.
1268  *
1269  * @param[in] item
1270  *   Item specification.
1271  * @param[in] item_flags
1272  *   Bit-fields that holds the items detected until now.
1273  * @param[in] acc_mask
1274  *   Acceptable mask, if NULL default internal default mask
1275  *   will be used to check whether item fields are supported.
1276  * @param[out] error
1277  *   Pointer to error structure.
1278  *
1279  * @return
1280  *   0 on success, a negative errno value otherwise and rte_errno is set.
1281  */
1282 int
1283 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1284 			     uint64_t item_flags,
1285 			     const struct rte_flow_item_ipv4 *acc_mask,
1286 			     struct rte_flow_error *error)
1287 {
1288 	const struct rte_flow_item_ipv4 *mask = item->mask;
1289 	const struct rte_flow_item_ipv4 *spec = item->spec;
1290 	const struct rte_flow_item_ipv4 nic_mask = {
1291 		.hdr = {
1292 			.src_addr = RTE_BE32(0xffffffff),
1293 			.dst_addr = RTE_BE32(0xffffffff),
1294 			.type_of_service = 0xff,
1295 			.next_proto_id = 0xff,
1296 		},
1297 	};
1298 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1299 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1300 				      MLX5_FLOW_LAYER_OUTER_L3;
1301 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1302 				      MLX5_FLOW_LAYER_OUTER_L4;
1303 	int ret;
1304 	uint8_t next_proto = 0xFF;
1305 
1306 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1307 		if (mask && spec)
1308 			next_proto = mask->hdr.next_proto_id &
1309 				     spec->hdr.next_proto_id;
1310 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1311 			return rte_flow_error_set(error, EINVAL,
1312 						  RTE_FLOW_ERROR_TYPE_ITEM,
1313 						  item,
1314 						  "multiple tunnel "
1315 						  "not supported");
1316 	}
1317 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1318 		return rte_flow_error_set(error, EINVAL,
1319 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1320 					  "wrong tunnel type - IPv6 specified "
1321 					  "but IPv4 item provided");
1322 	if (item_flags & l3m)
1323 		return rte_flow_error_set(error, ENOTSUP,
1324 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1325 					  "multiple L3 layers not supported");
1326 	else if (item_flags & l4m)
1327 		return rte_flow_error_set(error, EINVAL,
1328 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1329 					  "L3 cannot follow an L4 layer.");
1330 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1331 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1332 		return rte_flow_error_set(error, EINVAL,
1333 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1334 					  "L3 cannot follow an NVGRE layer.");
1335 	if (!mask)
1336 		mask = &rte_flow_item_ipv4_mask;
1337 	else if (mask->hdr.next_proto_id != 0 &&
1338 		 mask->hdr.next_proto_id != 0xff)
1339 		return rte_flow_error_set(error, EINVAL,
1340 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1341 					  "partial mask is not supported"
1342 					  " for protocol");
1343 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1344 					acc_mask ? (const uint8_t *)acc_mask
1345 						 : (const uint8_t *)&nic_mask,
1346 					sizeof(struct rte_flow_item_ipv4),
1347 					error);
1348 	if (ret < 0)
1349 		return ret;
1350 	return 0;
1351 }
1352 
1353 /**
1354  * Validate IPV6 item.
1355  *
1356  * @param[in] item
1357  *   Item specification.
1358  * @param[in] item_flags
1359  *   Bit-fields that holds the items detected until now.
1360  * @param[in] acc_mask
1361  *   Acceptable mask, if NULL default internal default mask
1362  *   will be used to check whether item fields are supported.
1363  * @param[out] error
1364  *   Pointer to error structure.
1365  *
1366  * @return
1367  *   0 on success, a negative errno value otherwise and rte_errno is set.
1368  */
1369 int
1370 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1371 			     uint64_t item_flags,
1372 			     const struct rte_flow_item_ipv6 *acc_mask,
1373 			     struct rte_flow_error *error)
1374 {
1375 	const struct rte_flow_item_ipv6 *mask = item->mask;
1376 	const struct rte_flow_item_ipv6 *spec = item->spec;
1377 	const struct rte_flow_item_ipv6 nic_mask = {
1378 		.hdr = {
1379 			.src_addr =
1380 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1381 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1382 			.dst_addr =
1383 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1384 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1385 			.vtc_flow = RTE_BE32(0xffffffff),
1386 			.proto = 0xff,
1387 			.hop_limits = 0xff,
1388 		},
1389 	};
1390 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1391 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1392 				      MLX5_FLOW_LAYER_OUTER_L3;
1393 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1394 				      MLX5_FLOW_LAYER_OUTER_L4;
1395 	int ret;
1396 	uint8_t next_proto = 0xFF;
1397 
1398 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1399 		if (mask && spec)
1400 			next_proto = mask->hdr.proto & spec->hdr.proto;
1401 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1402 			return rte_flow_error_set(error, EINVAL,
1403 						  RTE_FLOW_ERROR_TYPE_ITEM,
1404 						  item,
1405 						  "multiple tunnel "
1406 						  "not supported");
1407 	}
1408 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
1409 		return rte_flow_error_set(error, EINVAL,
1410 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1411 					  "wrong tunnel type - IPv4 specified "
1412 					  "but IPv6 item provided");
1413 	if (item_flags & l3m)
1414 		return rte_flow_error_set(error, ENOTSUP,
1415 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1416 					  "multiple L3 layers not supported");
1417 	else if (item_flags & l4m)
1418 		return rte_flow_error_set(error, EINVAL,
1419 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1420 					  "L3 cannot follow an L4 layer.");
1421 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1422 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1423 		return rte_flow_error_set(error, EINVAL,
1424 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1425 					  "L3 cannot follow an NVGRE layer.");
1426 	if (!mask)
1427 		mask = &rte_flow_item_ipv6_mask;
1428 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1429 					acc_mask ? (const uint8_t *)acc_mask
1430 						 : (const uint8_t *)&nic_mask,
1431 					sizeof(struct rte_flow_item_ipv6),
1432 					error);
1433 	if (ret < 0)
1434 		return ret;
1435 	return 0;
1436 }
1437 
1438 /**
1439  * Validate UDP item.
1440  *
1441  * @param[in] item
1442  *   Item specification.
1443  * @param[in] item_flags
1444  *   Bit-fields that holds the items detected until now.
1445  * @param[in] target_protocol
1446  *   The next protocol in the previous item.
1447  * @param[in] flow_mask
1448  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1449  * @param[out] error
1450  *   Pointer to error structure.
1451  *
1452  * @return
1453  *   0 on success, a negative errno value otherwise and rte_errno is set.
1454  */
1455 int
1456 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1457 			    uint64_t item_flags,
1458 			    uint8_t target_protocol,
1459 			    struct rte_flow_error *error)
1460 {
1461 	const struct rte_flow_item_udp *mask = item->mask;
1462 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1463 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1464 				      MLX5_FLOW_LAYER_OUTER_L3;
1465 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1466 				      MLX5_FLOW_LAYER_OUTER_L4;
1467 	int ret;
1468 
1469 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1470 		return rte_flow_error_set(error, EINVAL,
1471 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1472 					  "protocol filtering not compatible"
1473 					  " with UDP layer");
1474 	if (!(item_flags & l3m))
1475 		return rte_flow_error_set(error, EINVAL,
1476 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1477 					  "L3 is mandatory to filter on L4");
1478 	if (item_flags & l4m)
1479 		return rte_flow_error_set(error, EINVAL,
1480 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1481 					  "multiple L4 layers not supported");
1482 	if (!mask)
1483 		mask = &rte_flow_item_udp_mask;
1484 	ret = mlx5_flow_item_acceptable
1485 		(item, (const uint8_t *)mask,
1486 		 (const uint8_t *)&rte_flow_item_udp_mask,
1487 		 sizeof(struct rte_flow_item_udp), error);
1488 	if (ret < 0)
1489 		return ret;
1490 	return 0;
1491 }
1492 
1493 /**
1494  * Validate TCP item.
1495  *
1496  * @param[in] item
1497  *   Item specification.
1498  * @param[in] item_flags
1499  *   Bit-fields that holds the items detected until now.
1500  * @param[in] target_protocol
1501  *   The next protocol in the previous item.
1502  * @param[out] error
1503  *   Pointer to error structure.
1504  *
1505  * @return
1506  *   0 on success, a negative errno value otherwise and rte_errno is set.
1507  */
1508 int
1509 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1510 			    uint64_t item_flags,
1511 			    uint8_t target_protocol,
1512 			    const struct rte_flow_item_tcp *flow_mask,
1513 			    struct rte_flow_error *error)
1514 {
1515 	const struct rte_flow_item_tcp *mask = item->mask;
1516 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1517 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1518 				      MLX5_FLOW_LAYER_OUTER_L3;
1519 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1520 				      MLX5_FLOW_LAYER_OUTER_L4;
1521 	int ret;
1522 
1523 	assert(flow_mask);
1524 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1525 		return rte_flow_error_set(error, EINVAL,
1526 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1527 					  "protocol filtering not compatible"
1528 					  " with TCP layer");
1529 	if (!(item_flags & l3m))
1530 		return rte_flow_error_set(error, EINVAL,
1531 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1532 					  "L3 is mandatory to filter on L4");
1533 	if (item_flags & l4m)
1534 		return rte_flow_error_set(error, EINVAL,
1535 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1536 					  "multiple L4 layers not supported");
1537 	if (!mask)
1538 		mask = &rte_flow_item_tcp_mask;
1539 	ret = mlx5_flow_item_acceptable
1540 		(item, (const uint8_t *)mask,
1541 		 (const uint8_t *)flow_mask,
1542 		 sizeof(struct rte_flow_item_tcp), error);
1543 	if (ret < 0)
1544 		return ret;
1545 	return 0;
1546 }
1547 
1548 /**
1549  * Validate VXLAN item.
1550  *
1551  * @param[in] item
1552  *   Item specification.
1553  * @param[in] item_flags
1554  *   Bit-fields that holds the items detected until now.
1555  * @param[in] target_protocol
1556  *   The next protocol in the previous item.
1557  * @param[out] error
1558  *   Pointer to error structure.
1559  *
1560  * @return
1561  *   0 on success, a negative errno value otherwise and rte_errno is set.
1562  */
1563 int
1564 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1565 			      uint64_t item_flags,
1566 			      struct rte_flow_error *error)
1567 {
1568 	const struct rte_flow_item_vxlan *spec = item->spec;
1569 	const struct rte_flow_item_vxlan *mask = item->mask;
1570 	int ret;
1571 	union vni {
1572 		uint32_t vlan_id;
1573 		uint8_t vni[4];
1574 	} id = { .vlan_id = 0, };
1575 	uint32_t vlan_id = 0;
1576 
1577 
1578 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1579 		return rte_flow_error_set(error, ENOTSUP,
1580 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1581 					  "multiple tunnel layers not"
1582 					  " supported");
1583 	/*
1584 	 * Verify only UDPv4 is present as defined in
1585 	 * https://tools.ietf.org/html/rfc7348
1586 	 */
1587 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1588 		return rte_flow_error_set(error, EINVAL,
1589 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1590 					  "no outer UDP layer found");
1591 	if (!mask)
1592 		mask = &rte_flow_item_vxlan_mask;
1593 	ret = mlx5_flow_item_acceptable
1594 		(item, (const uint8_t *)mask,
1595 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1596 		 sizeof(struct rte_flow_item_vxlan),
1597 		 error);
1598 	if (ret < 0)
1599 		return ret;
1600 	if (spec) {
1601 		memcpy(&id.vni[1], spec->vni, 3);
1602 		vlan_id = id.vlan_id;
1603 		memcpy(&id.vni[1], mask->vni, 3);
1604 		vlan_id &= id.vlan_id;
1605 	}
1606 	/*
1607 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1608 	 * only this layer is defined in the Verbs specification it is
1609 	 * interpreted as wildcard and all packets will match this
1610 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1611 	 * udp), all packets matching the layers before will also
1612 	 * match this rule.  To avoid such situation, VNI 0 is
1613 	 * currently refused.
1614 	 */
1615 	if (!vlan_id)
1616 		return rte_flow_error_set(error, ENOTSUP,
1617 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1618 					  "VXLAN vni cannot be 0");
1619 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1620 		return rte_flow_error_set(error, ENOTSUP,
1621 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1622 					  "VXLAN tunnel must be fully defined");
1623 	return 0;
1624 }
1625 
1626 /**
1627  * Validate VXLAN_GPE item.
1628  *
1629  * @param[in] item
1630  *   Item specification.
1631  * @param[in] item_flags
1632  *   Bit-fields that holds the items detected until now.
1633  * @param[in] priv
1634  *   Pointer to the private data structure.
1635  * @param[in] target_protocol
1636  *   The next protocol in the previous item.
1637  * @param[out] error
1638  *   Pointer to error structure.
1639  *
1640  * @return
1641  *   0 on success, a negative errno value otherwise and rte_errno is set.
1642  */
1643 int
1644 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1645 				  uint64_t item_flags,
1646 				  struct rte_eth_dev *dev,
1647 				  struct rte_flow_error *error)
1648 {
1649 	struct mlx5_priv *priv = dev->data->dev_private;
1650 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1651 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1652 	int ret;
1653 	union vni {
1654 		uint32_t vlan_id;
1655 		uint8_t vni[4];
1656 	} id = { .vlan_id = 0, };
1657 	uint32_t vlan_id = 0;
1658 
1659 	if (!priv->config.l3_vxlan_en)
1660 		return rte_flow_error_set(error, ENOTSUP,
1661 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1662 					  "L3 VXLAN is not enabled by device"
1663 					  " parameter and/or not configured in"
1664 					  " firmware");
1665 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1666 		return rte_flow_error_set(error, ENOTSUP,
1667 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1668 					  "multiple tunnel layers not"
1669 					  " supported");
1670 	/*
1671 	 * Verify only UDPv4 is present as defined in
1672 	 * https://tools.ietf.org/html/rfc7348
1673 	 */
1674 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1675 		return rte_flow_error_set(error, EINVAL,
1676 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1677 					  "no outer UDP layer found");
1678 	if (!mask)
1679 		mask = &rte_flow_item_vxlan_gpe_mask;
1680 	ret = mlx5_flow_item_acceptable
1681 		(item, (const uint8_t *)mask,
1682 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1683 		 sizeof(struct rte_flow_item_vxlan_gpe),
1684 		 error);
1685 	if (ret < 0)
1686 		return ret;
1687 	if (spec) {
1688 		if (spec->protocol)
1689 			return rte_flow_error_set(error, ENOTSUP,
1690 						  RTE_FLOW_ERROR_TYPE_ITEM,
1691 						  item,
1692 						  "VxLAN-GPE protocol"
1693 						  " not supported");
1694 		memcpy(&id.vni[1], spec->vni, 3);
1695 		vlan_id = id.vlan_id;
1696 		memcpy(&id.vni[1], mask->vni, 3);
1697 		vlan_id &= id.vlan_id;
1698 	}
1699 	/*
1700 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1701 	 * layer is defined in the Verbs specification it is interpreted as
1702 	 * wildcard and all packets will match this rule, if it follows a full
1703 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1704 	 * before will also match this rule.  To avoid such situation, VNI 0
1705 	 * is currently refused.
1706 	 */
1707 	if (!vlan_id)
1708 		return rte_flow_error_set(error, ENOTSUP,
1709 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1710 					  "VXLAN-GPE vni cannot be 0");
1711 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1712 		return rte_flow_error_set(error, ENOTSUP,
1713 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1714 					  "VXLAN-GPE tunnel must be fully"
1715 					  " defined");
1716 	return 0;
1717 }
1718 /**
1719  * Validate GRE Key item.
1720  *
1721  * @param[in] item
1722  *   Item specification.
1723  * @param[in] item_flags
1724  *   Bit flags to mark detected items.
1725  * @param[in] gre_item
1726  *   Pointer to gre_item
1727  * @param[out] error
1728  *   Pointer to error structure.
1729  *
1730  * @return
1731  *   0 on success, a negative errno value otherwise and rte_errno is set.
1732  */
1733 int
1734 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1735 				uint64_t item_flags,
1736 				const struct rte_flow_item *gre_item,
1737 				struct rte_flow_error *error)
1738 {
1739 	const rte_be32_t *mask = item->mask;
1740 	int ret = 0;
1741 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1742 	const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1743 	const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1744 
1745 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1746 		return rte_flow_error_set(error, ENOTSUP,
1747 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1748 					  "Multiple GRE key not support");
1749 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1750 		return rte_flow_error_set(error, ENOTSUP,
1751 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1752 					  "No preceding GRE header");
1753 	if (item_flags & MLX5_FLOW_LAYER_INNER)
1754 		return rte_flow_error_set(error, ENOTSUP,
1755 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1756 					  "GRE key following a wrong item");
1757 	if (!gre_mask)
1758 		gre_mask = &rte_flow_item_gre_mask;
1759 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1760 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1761 		return rte_flow_error_set(error, EINVAL,
1762 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1763 					  "Key bit must be on");
1764 
1765 	if (!mask)
1766 		mask = &gre_key_default_mask;
1767 	ret = mlx5_flow_item_acceptable
1768 		(item, (const uint8_t *)mask,
1769 		 (const uint8_t *)&gre_key_default_mask,
1770 		 sizeof(rte_be32_t), error);
1771 	return ret;
1772 }
1773 
1774 /**
1775  * Validate GRE item.
1776  *
1777  * @param[in] item
1778  *   Item specification.
1779  * @param[in] item_flags
1780  *   Bit flags to mark detected items.
1781  * @param[in] target_protocol
1782  *   The next protocol in the previous item.
1783  * @param[out] error
1784  *   Pointer to error structure.
1785  *
1786  * @return
1787  *   0 on success, a negative errno value otherwise and rte_errno is set.
1788  */
1789 int
1790 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1791 			    uint64_t item_flags,
1792 			    uint8_t target_protocol,
1793 			    struct rte_flow_error *error)
1794 {
1795 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1796 	const struct rte_flow_item_gre *mask = item->mask;
1797 	int ret;
1798 	const struct rte_flow_item_gre nic_mask = {
1799 		.c_rsvd0_ver = RTE_BE16(0xB000),
1800 		.protocol = RTE_BE16(UINT16_MAX),
1801 	};
1802 
1803 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1804 		return rte_flow_error_set(error, EINVAL,
1805 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1806 					  "protocol filtering not compatible"
1807 					  " with this GRE layer");
1808 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1809 		return rte_flow_error_set(error, ENOTSUP,
1810 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1811 					  "multiple tunnel layers not"
1812 					  " supported");
1813 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1814 		return rte_flow_error_set(error, ENOTSUP,
1815 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1816 					  "L3 Layer is missing");
1817 	if (!mask)
1818 		mask = &rte_flow_item_gre_mask;
1819 	ret = mlx5_flow_item_acceptable
1820 		(item, (const uint8_t *)mask,
1821 		 (const uint8_t *)&nic_mask,
1822 		 sizeof(struct rte_flow_item_gre), error);
1823 	if (ret < 0)
1824 		return ret;
1825 #ifndef HAVE_MLX5DV_DR
1826 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1827 	if (spec && (spec->protocol & mask->protocol))
1828 		return rte_flow_error_set(error, ENOTSUP,
1829 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1830 					  "without MPLS support the"
1831 					  " specification cannot be used for"
1832 					  " filtering");
1833 #endif
1834 #endif
1835 	return 0;
1836 }
1837 
1838 /**
1839  * Validate MPLS item.
1840  *
1841  * @param[in] dev
1842  *   Pointer to the rte_eth_dev structure.
1843  * @param[in] item
1844  *   Item specification.
1845  * @param[in] item_flags
1846  *   Bit-fields that holds the items detected until now.
1847  * @param[in] prev_layer
1848  *   The protocol layer indicated in previous item.
1849  * @param[out] error
1850  *   Pointer to error structure.
1851  *
1852  * @return
1853  *   0 on success, a negative errno value otherwise and rte_errno is set.
1854  */
1855 int
1856 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1857 			     const struct rte_flow_item *item __rte_unused,
1858 			     uint64_t item_flags __rte_unused,
1859 			     uint64_t prev_layer __rte_unused,
1860 			     struct rte_flow_error *error)
1861 {
1862 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1863 	const struct rte_flow_item_mpls *mask = item->mask;
1864 	struct mlx5_priv *priv = dev->data->dev_private;
1865 	int ret;
1866 
1867 	if (!priv->config.mpls_en)
1868 		return rte_flow_error_set(error, ENOTSUP,
1869 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1870 					  "MPLS not supported or"
1871 					  " disabled in firmware"
1872 					  " configuration.");
1873 	/* MPLS over IP, UDP, GRE is allowed */
1874 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1875 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1876 			    MLX5_FLOW_LAYER_GRE)))
1877 		return rte_flow_error_set(error, EINVAL,
1878 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1879 					  "protocol filtering not compatible"
1880 					  " with MPLS layer");
1881 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1882 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1883 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1884 		return rte_flow_error_set(error, ENOTSUP,
1885 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1886 					  "multiple tunnel layers not"
1887 					  " supported");
1888 	if (!mask)
1889 		mask = &rte_flow_item_mpls_mask;
1890 	ret = mlx5_flow_item_acceptable
1891 		(item, (const uint8_t *)mask,
1892 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1893 		 sizeof(struct rte_flow_item_mpls), error);
1894 	if (ret < 0)
1895 		return ret;
1896 	return 0;
1897 #endif
1898 	return rte_flow_error_set(error, ENOTSUP,
1899 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1900 				  "MPLS is not supported by Verbs, please"
1901 				  " update.");
1902 }
1903 
1904 /**
1905  * Validate NVGRE item.
1906  *
1907  * @param[in] item
1908  *   Item specification.
1909  * @param[in] item_flags
1910  *   Bit flags to mark detected items.
1911  * @param[in] target_protocol
1912  *   The next protocol in the previous item.
1913  * @param[out] error
1914  *   Pointer to error structure.
1915  *
1916  * @return
1917  *   0 on success, a negative errno value otherwise and rte_errno is set.
1918  */
1919 int
1920 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
1921 			      uint64_t item_flags,
1922 			      uint8_t target_protocol,
1923 			      struct rte_flow_error *error)
1924 {
1925 	const struct rte_flow_item_nvgre *mask = item->mask;
1926 	int ret;
1927 
1928 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1929 		return rte_flow_error_set(error, EINVAL,
1930 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1931 					  "protocol filtering not compatible"
1932 					  " with this GRE layer");
1933 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1934 		return rte_flow_error_set(error, ENOTSUP,
1935 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1936 					  "multiple tunnel layers not"
1937 					  " supported");
1938 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1939 		return rte_flow_error_set(error, ENOTSUP,
1940 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1941 					  "L3 Layer is missing");
1942 	if (!mask)
1943 		mask = &rte_flow_item_nvgre_mask;
1944 	ret = mlx5_flow_item_acceptable
1945 		(item, (const uint8_t *)mask,
1946 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
1947 		 sizeof(struct rte_flow_item_nvgre), error);
1948 	if (ret < 0)
1949 		return ret;
1950 	return 0;
1951 }
1952 
1953 static int
1954 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1955 		   const struct rte_flow_attr *attr __rte_unused,
1956 		   const struct rte_flow_item items[] __rte_unused,
1957 		   const struct rte_flow_action actions[] __rte_unused,
1958 		   struct rte_flow_error *error)
1959 {
1960 	return rte_flow_error_set(error, ENOTSUP,
1961 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1962 }
1963 
1964 static struct mlx5_flow *
1965 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1966 		  const struct rte_flow_item items[] __rte_unused,
1967 		  const struct rte_flow_action actions[] __rte_unused,
1968 		  struct rte_flow_error *error)
1969 {
1970 	rte_flow_error_set(error, ENOTSUP,
1971 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1972 	return NULL;
1973 }
1974 
1975 static int
1976 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1977 		    struct mlx5_flow *dev_flow __rte_unused,
1978 		    const struct rte_flow_attr *attr __rte_unused,
1979 		    const struct rte_flow_item items[] __rte_unused,
1980 		    const struct rte_flow_action actions[] __rte_unused,
1981 		    struct rte_flow_error *error)
1982 {
1983 	return rte_flow_error_set(error, ENOTSUP,
1984 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1985 }
1986 
1987 static int
1988 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1989 		struct rte_flow *flow __rte_unused,
1990 		struct rte_flow_error *error)
1991 {
1992 	return rte_flow_error_set(error, ENOTSUP,
1993 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1994 }
1995 
1996 static void
1997 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1998 		 struct rte_flow *flow __rte_unused)
1999 {
2000 }
2001 
2002 static void
2003 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2004 		  struct rte_flow *flow __rte_unused)
2005 {
2006 }
2007 
2008 static int
2009 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2010 		struct rte_flow *flow __rte_unused,
2011 		const struct rte_flow_action *actions __rte_unused,
2012 		void *data __rte_unused,
2013 		struct rte_flow_error *error)
2014 {
2015 	return rte_flow_error_set(error, ENOTSUP,
2016 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2017 }
2018 
2019 /* Void driver to protect from null pointer reference. */
2020 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2021 	.validate = flow_null_validate,
2022 	.prepare = flow_null_prepare,
2023 	.translate = flow_null_translate,
2024 	.apply = flow_null_apply,
2025 	.remove = flow_null_remove,
2026 	.destroy = flow_null_destroy,
2027 	.query = flow_null_query,
2028 };
2029 
2030 /**
2031  * Select flow driver type according to flow attributes and device
2032  * configuration.
2033  *
2034  * @param[in] dev
2035  *   Pointer to the dev structure.
2036  * @param[in] attr
2037  *   Pointer to the flow attributes.
2038  *
2039  * @return
2040  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2041  */
2042 static enum mlx5_flow_drv_type
2043 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2044 {
2045 	struct mlx5_priv *priv = dev->data->dev_private;
2046 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2047 
2048 	if (attr->transfer && priv->config.dv_esw_en)
2049 		type = MLX5_FLOW_TYPE_DV;
2050 	if (!attr->transfer)
2051 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2052 						 MLX5_FLOW_TYPE_VERBS;
2053 	return type;
2054 }
2055 
2056 #define flow_get_drv_ops(type) flow_drv_ops[type]
2057 
2058 /**
2059  * Flow driver validation API. This abstracts calling driver specific functions.
2060  * The type of flow driver is determined according to flow attributes.
2061  *
2062  * @param[in] dev
2063  *   Pointer to the dev structure.
2064  * @param[in] attr
2065  *   Pointer to the flow attributes.
2066  * @param[in] items
2067  *   Pointer to the list of items.
2068  * @param[in] actions
2069  *   Pointer to the list of actions.
2070  * @param[out] error
2071  *   Pointer to the error structure.
2072  *
2073  * @return
2074  *   0 on success, a negative errno value otherwise and rte_errno is set.
2075  */
2076 static inline int
2077 flow_drv_validate(struct rte_eth_dev *dev,
2078 		  const struct rte_flow_attr *attr,
2079 		  const struct rte_flow_item items[],
2080 		  const struct rte_flow_action actions[],
2081 		  struct rte_flow_error *error)
2082 {
2083 	const struct mlx5_flow_driver_ops *fops;
2084 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2085 
2086 	fops = flow_get_drv_ops(type);
2087 	return fops->validate(dev, attr, items, actions, error);
2088 }
2089 
2090 /**
2091  * Flow driver preparation API. This abstracts calling driver specific
2092  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2093  * calculates the size of memory required for device flow, allocates the memory,
2094  * initializes the device flow and returns the pointer.
2095  *
2096  * @note
2097  *   This function initializes device flow structure such as dv or verbs in
2098  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2099  *   rest. For example, adding returning device flow to flow->dev_flow list and
2100  *   setting backward reference to the flow should be done out of this function.
2101  *   layers field is not filled either.
2102  *
2103  * @param[in] attr
2104  *   Pointer to the flow attributes.
2105  * @param[in] items
2106  *   Pointer to the list of items.
2107  * @param[in] actions
2108  *   Pointer to the list of actions.
2109  * @param[out] error
2110  *   Pointer to the error structure.
2111  *
2112  * @return
2113  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2114  */
2115 static inline struct mlx5_flow *
2116 flow_drv_prepare(const struct rte_flow *flow,
2117 		 const struct rte_flow_attr *attr,
2118 		 const struct rte_flow_item items[],
2119 		 const struct rte_flow_action actions[],
2120 		 struct rte_flow_error *error)
2121 {
2122 	const struct mlx5_flow_driver_ops *fops;
2123 	enum mlx5_flow_drv_type type = flow->drv_type;
2124 
2125 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2126 	fops = flow_get_drv_ops(type);
2127 	return fops->prepare(attr, items, actions, error);
2128 }
2129 
2130 /**
2131  * Flow driver translation API. This abstracts calling driver specific
2132  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2133  * translates a generic flow into a driver flow. flow_drv_prepare() must
2134  * precede.
2135  *
2136  * @note
2137  *   dev_flow->layers could be filled as a result of parsing during translation
2138  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2139  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2140  *   flow->actions could be overwritten even though all the expanded dev_flows
2141  *   have the same actions.
2142  *
2143  * @param[in] dev
2144  *   Pointer to the rte dev structure.
2145  * @param[in, out] dev_flow
2146  *   Pointer to the mlx5 flow.
2147  * @param[in] attr
2148  *   Pointer to the flow attributes.
2149  * @param[in] items
2150  *   Pointer to the list of items.
2151  * @param[in] actions
2152  *   Pointer to the list of actions.
2153  * @param[out] error
2154  *   Pointer to the error structure.
2155  *
2156  * @return
2157  *   0 on success, a negative errno value otherwise and rte_errno is set.
2158  */
2159 static inline int
2160 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2161 		   const struct rte_flow_attr *attr,
2162 		   const struct rte_flow_item items[],
2163 		   const struct rte_flow_action actions[],
2164 		   struct rte_flow_error *error)
2165 {
2166 	const struct mlx5_flow_driver_ops *fops;
2167 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2168 
2169 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2170 	fops = flow_get_drv_ops(type);
2171 	return fops->translate(dev, dev_flow, attr, items, actions, error);
2172 }
2173 
2174 /**
2175  * Flow driver apply API. This abstracts calling driver specific functions.
2176  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2177  * translated driver flows on to device. flow_drv_translate() must precede.
2178  *
2179  * @param[in] dev
2180  *   Pointer to Ethernet device structure.
2181  * @param[in, out] flow
2182  *   Pointer to flow structure.
2183  * @param[out] error
2184  *   Pointer to error structure.
2185  *
2186  * @return
2187  *   0 on success, a negative errno value otherwise and rte_errno is set.
2188  */
2189 static inline int
2190 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2191 	       struct rte_flow_error *error)
2192 {
2193 	const struct mlx5_flow_driver_ops *fops;
2194 	enum mlx5_flow_drv_type type = flow->drv_type;
2195 
2196 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2197 	fops = flow_get_drv_ops(type);
2198 	return fops->apply(dev, flow, error);
2199 }
2200 
2201 /**
2202  * Flow driver remove API. This abstracts calling driver specific functions.
2203  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2204  * on device. All the resources of the flow should be freed by calling
2205  * flow_drv_destroy().
2206  *
2207  * @param[in] dev
2208  *   Pointer to Ethernet device.
2209  * @param[in, out] flow
2210  *   Pointer to flow structure.
2211  */
2212 static inline void
2213 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2214 {
2215 	const struct mlx5_flow_driver_ops *fops;
2216 	enum mlx5_flow_drv_type type = flow->drv_type;
2217 
2218 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2219 	fops = flow_get_drv_ops(type);
2220 	fops->remove(dev, flow);
2221 }
2222 
2223 /**
2224  * Flow driver destroy API. This abstracts calling driver specific functions.
2225  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2226  * on device and releases resources of the flow.
2227  *
2228  * @param[in] dev
2229  *   Pointer to Ethernet device.
2230  * @param[in, out] flow
2231  *   Pointer to flow structure.
2232  */
2233 static inline void
2234 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2235 {
2236 	const struct mlx5_flow_driver_ops *fops;
2237 	enum mlx5_flow_drv_type type = flow->drv_type;
2238 
2239 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2240 	fops = flow_get_drv_ops(type);
2241 	fops->destroy(dev, flow);
2242 }
2243 
2244 /**
2245  * Validate a flow supported by the NIC.
2246  *
2247  * @see rte_flow_validate()
2248  * @see rte_flow_ops
2249  */
2250 int
2251 mlx5_flow_validate(struct rte_eth_dev *dev,
2252 		   const struct rte_flow_attr *attr,
2253 		   const struct rte_flow_item items[],
2254 		   const struct rte_flow_action actions[],
2255 		   struct rte_flow_error *error)
2256 {
2257 	int ret;
2258 
2259 	ret = flow_drv_validate(dev, attr, items, actions, error);
2260 	if (ret < 0)
2261 		return ret;
2262 	return 0;
2263 }
2264 
2265 /**
2266  * Get RSS action from the action list.
2267  *
2268  * @param[in] actions
2269  *   Pointer to the list of actions.
2270  *
2271  * @return
2272  *   Pointer to the RSS action if exist, else return NULL.
2273  */
2274 static const struct rte_flow_action_rss*
2275 flow_get_rss_action(const struct rte_flow_action actions[])
2276 {
2277 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2278 		switch (actions->type) {
2279 		case RTE_FLOW_ACTION_TYPE_RSS:
2280 			return (const struct rte_flow_action_rss *)
2281 			       actions->conf;
2282 		default:
2283 			break;
2284 		}
2285 	}
2286 	return NULL;
2287 }
2288 
2289 static unsigned int
2290 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2291 {
2292 	const struct rte_flow_item *item;
2293 	unsigned int has_vlan = 0;
2294 
2295 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2296 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2297 			has_vlan = 1;
2298 			break;
2299 		}
2300 	}
2301 	if (has_vlan)
2302 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2303 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2304 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2305 			       MLX5_EXPANSION_ROOT_OUTER;
2306 }
2307 
2308 /**
2309  * Create a flow and add it to @p list.
2310  *
2311  * @param dev
2312  *   Pointer to Ethernet device.
2313  * @param list
2314  *   Pointer to a TAILQ flow list.
2315  * @param[in] attr
2316  *   Flow rule attributes.
2317  * @param[in] items
2318  *   Pattern specification (list terminated by the END pattern item).
2319  * @param[in] actions
2320  *   Associated actions (list terminated by the END action).
2321  * @param[out] error
2322  *   Perform verbose error reporting if not NULL.
2323  *
2324  * @return
2325  *   A flow on success, NULL otherwise and rte_errno is set.
2326  */
2327 static struct rte_flow *
2328 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2329 		 const struct rte_flow_attr *attr,
2330 		 const struct rte_flow_item items[],
2331 		 const struct rte_flow_action actions[],
2332 		 struct rte_flow_error *error)
2333 {
2334 	struct rte_flow *flow = NULL;
2335 	struct mlx5_flow *dev_flow;
2336 	const struct rte_flow_action_rss *rss;
2337 	union {
2338 		struct rte_flow_expand_rss buf;
2339 		uint8_t buffer[2048];
2340 	} expand_buffer;
2341 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2342 	int ret;
2343 	uint32_t i;
2344 	uint32_t flow_size;
2345 
2346 	ret = flow_drv_validate(dev, attr, items, actions, error);
2347 	if (ret < 0)
2348 		return NULL;
2349 	flow_size = sizeof(struct rte_flow);
2350 	rss = flow_get_rss_action(actions);
2351 	if (rss)
2352 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2353 					    sizeof(void *));
2354 	else
2355 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2356 	flow = rte_calloc(__func__, 1, flow_size, 0);
2357 	if (!flow) {
2358 		rte_errno = ENOMEM;
2359 		return NULL;
2360 	}
2361 	flow->drv_type = flow_get_drv_type(dev, attr);
2362 	flow->ingress = attr->ingress;
2363 	flow->transfer = attr->transfer;
2364 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2365 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2366 	flow->queue = (void *)(flow + 1);
2367 	LIST_INIT(&flow->dev_flows);
2368 	if (rss && rss->types) {
2369 		unsigned int graph_root;
2370 
2371 		graph_root = find_graph_root(items, rss->level);
2372 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2373 					  items, rss->types,
2374 					  mlx5_support_expansion,
2375 					  graph_root);
2376 		assert(ret > 0 &&
2377 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2378 	} else {
2379 		buf->entries = 1;
2380 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2381 	}
2382 	for (i = 0; i < buf->entries; ++i) {
2383 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2384 					    actions, error);
2385 		if (!dev_flow)
2386 			goto error;
2387 		dev_flow->flow = flow;
2388 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2389 		ret = flow_drv_translate(dev, dev_flow, attr,
2390 					 buf->entry[i].pattern,
2391 					 actions, error);
2392 		if (ret < 0)
2393 			goto error;
2394 	}
2395 	if (dev->data->dev_started) {
2396 		ret = flow_drv_apply(dev, flow, error);
2397 		if (ret < 0)
2398 			goto error;
2399 	}
2400 	TAILQ_INSERT_TAIL(list, flow, next);
2401 	flow_rxq_flags_set(dev, flow);
2402 	return flow;
2403 error:
2404 	ret = rte_errno; /* Save rte_errno before cleanup. */
2405 	assert(flow);
2406 	flow_drv_destroy(dev, flow);
2407 	rte_free(flow);
2408 	rte_errno = ret; /* Restore rte_errno. */
2409 	return NULL;
2410 }
2411 
2412 /**
2413  * Create a flow.
2414  *
2415  * @see rte_flow_create()
2416  * @see rte_flow_ops
2417  */
2418 struct rte_flow *
2419 mlx5_flow_create(struct rte_eth_dev *dev,
2420 		 const struct rte_flow_attr *attr,
2421 		 const struct rte_flow_item items[],
2422 		 const struct rte_flow_action actions[],
2423 		 struct rte_flow_error *error)
2424 {
2425 	struct mlx5_priv *priv = dev->data->dev_private;
2426 
2427 	return flow_list_create(dev, &priv->flows,
2428 				attr, items, actions, error);
2429 }
2430 
2431 /**
2432  * Destroy a flow in a list.
2433  *
2434  * @param dev
2435  *   Pointer to Ethernet device.
2436  * @param list
2437  *   Pointer to a TAILQ flow list.
2438  * @param[in] flow
2439  *   Flow to destroy.
2440  */
2441 static void
2442 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2443 		  struct rte_flow *flow)
2444 {
2445 	/*
2446 	 * Update RX queue flags only if port is started, otherwise it is
2447 	 * already clean.
2448 	 */
2449 	if (dev->data->dev_started)
2450 		flow_rxq_flags_trim(dev, flow);
2451 	flow_drv_destroy(dev, flow);
2452 	TAILQ_REMOVE(list, flow, next);
2453 	rte_free(flow->fdir);
2454 	rte_free(flow);
2455 }
2456 
2457 /**
2458  * Destroy all flows.
2459  *
2460  * @param dev
2461  *   Pointer to Ethernet device.
2462  * @param list
2463  *   Pointer to a TAILQ flow list.
2464  */
2465 void
2466 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2467 {
2468 	while (!TAILQ_EMPTY(list)) {
2469 		struct rte_flow *flow;
2470 
2471 		flow = TAILQ_FIRST(list);
2472 		flow_list_destroy(dev, list, flow);
2473 	}
2474 }
2475 
2476 /**
2477  * Remove all flows.
2478  *
2479  * @param dev
2480  *   Pointer to Ethernet device.
2481  * @param list
2482  *   Pointer to a TAILQ flow list.
2483  */
2484 void
2485 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2486 {
2487 	struct rte_flow *flow;
2488 
2489 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2490 		flow_drv_remove(dev, flow);
2491 	flow_rxq_flags_clear(dev);
2492 }
2493 
2494 /**
2495  * Add all flows.
2496  *
2497  * @param dev
2498  *   Pointer to Ethernet device.
2499  * @param list
2500  *   Pointer to a TAILQ flow list.
2501  *
2502  * @return
2503  *   0 on success, a negative errno value otherwise and rte_errno is set.
2504  */
2505 int
2506 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2507 {
2508 	struct rte_flow *flow;
2509 	struct rte_flow_error error;
2510 	int ret = 0;
2511 
2512 	TAILQ_FOREACH(flow, list, next) {
2513 		ret = flow_drv_apply(dev, flow, &error);
2514 		if (ret < 0)
2515 			goto error;
2516 		flow_rxq_flags_set(dev, flow);
2517 	}
2518 	return 0;
2519 error:
2520 	ret = rte_errno; /* Save rte_errno before cleanup. */
2521 	mlx5_flow_stop(dev, list);
2522 	rte_errno = ret; /* Restore rte_errno. */
2523 	return -rte_errno;
2524 }
2525 
2526 /**
2527  * Verify the flow list is empty
2528  *
2529  * @param dev
2530  *  Pointer to Ethernet device.
2531  *
2532  * @return the number of flows not released.
2533  */
2534 int
2535 mlx5_flow_verify(struct rte_eth_dev *dev)
2536 {
2537 	struct mlx5_priv *priv = dev->data->dev_private;
2538 	struct rte_flow *flow;
2539 	int ret = 0;
2540 
2541 	TAILQ_FOREACH(flow, &priv->flows, next) {
2542 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2543 			dev->data->port_id, (void *)flow);
2544 		++ret;
2545 	}
2546 	return ret;
2547 }
2548 
2549 /**
2550  * Enable a control flow configured from the control plane.
2551  *
2552  * @param dev
2553  *   Pointer to Ethernet device.
2554  * @param eth_spec
2555  *   An Ethernet flow spec to apply.
2556  * @param eth_mask
2557  *   An Ethernet flow mask to apply.
2558  * @param vlan_spec
2559  *   A VLAN flow spec to apply.
2560  * @param vlan_mask
2561  *   A VLAN flow mask to apply.
2562  *
2563  * @return
2564  *   0 on success, a negative errno value otherwise and rte_errno is set.
2565  */
2566 int
2567 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2568 		    struct rte_flow_item_eth *eth_spec,
2569 		    struct rte_flow_item_eth *eth_mask,
2570 		    struct rte_flow_item_vlan *vlan_spec,
2571 		    struct rte_flow_item_vlan *vlan_mask)
2572 {
2573 	struct mlx5_priv *priv = dev->data->dev_private;
2574 	const struct rte_flow_attr attr = {
2575 		.ingress = 1,
2576 		.priority = MLX5_FLOW_PRIO_RSVD,
2577 	};
2578 	struct rte_flow_item items[] = {
2579 		{
2580 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2581 			.spec = eth_spec,
2582 			.last = NULL,
2583 			.mask = eth_mask,
2584 		},
2585 		{
2586 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2587 					      RTE_FLOW_ITEM_TYPE_END,
2588 			.spec = vlan_spec,
2589 			.last = NULL,
2590 			.mask = vlan_mask,
2591 		},
2592 		{
2593 			.type = RTE_FLOW_ITEM_TYPE_END,
2594 		},
2595 	};
2596 	uint16_t queue[priv->reta_idx_n];
2597 	struct rte_flow_action_rss action_rss = {
2598 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2599 		.level = 0,
2600 		.types = priv->rss_conf.rss_hf,
2601 		.key_len = priv->rss_conf.rss_key_len,
2602 		.queue_num = priv->reta_idx_n,
2603 		.key = priv->rss_conf.rss_key,
2604 		.queue = queue,
2605 	};
2606 	struct rte_flow_action actions[] = {
2607 		{
2608 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2609 			.conf = &action_rss,
2610 		},
2611 		{
2612 			.type = RTE_FLOW_ACTION_TYPE_END,
2613 		},
2614 	};
2615 	struct rte_flow *flow;
2616 	struct rte_flow_error error;
2617 	unsigned int i;
2618 
2619 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2620 		return 0;
2621 	}
2622 	for (i = 0; i != priv->reta_idx_n; ++i)
2623 		queue[i] = (*priv->reta_idx)[i];
2624 	flow = flow_list_create(dev, &priv->ctrl_flows,
2625 				&attr, items, actions, &error);
2626 	if (!flow)
2627 		return -rte_errno;
2628 	return 0;
2629 }
2630 
2631 /**
2632  * Enable a flow control configured from the control plane.
2633  *
2634  * @param dev
2635  *   Pointer to Ethernet device.
2636  * @param eth_spec
2637  *   An Ethernet flow spec to apply.
2638  * @param eth_mask
2639  *   An Ethernet flow mask to apply.
2640  *
2641  * @return
2642  *   0 on success, a negative errno value otherwise and rte_errno is set.
2643  */
2644 int
2645 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2646 	       struct rte_flow_item_eth *eth_spec,
2647 	       struct rte_flow_item_eth *eth_mask)
2648 {
2649 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2650 }
2651 
2652 /**
2653  * Destroy a flow.
2654  *
2655  * @see rte_flow_destroy()
2656  * @see rte_flow_ops
2657  */
2658 int
2659 mlx5_flow_destroy(struct rte_eth_dev *dev,
2660 		  struct rte_flow *flow,
2661 		  struct rte_flow_error *error __rte_unused)
2662 {
2663 	struct mlx5_priv *priv = dev->data->dev_private;
2664 
2665 	flow_list_destroy(dev, &priv->flows, flow);
2666 	return 0;
2667 }
2668 
2669 /**
2670  * Destroy all flows.
2671  *
2672  * @see rte_flow_flush()
2673  * @see rte_flow_ops
2674  */
2675 int
2676 mlx5_flow_flush(struct rte_eth_dev *dev,
2677 		struct rte_flow_error *error __rte_unused)
2678 {
2679 	struct mlx5_priv *priv = dev->data->dev_private;
2680 
2681 	mlx5_flow_list_flush(dev, &priv->flows);
2682 	return 0;
2683 }
2684 
2685 /**
2686  * Isolated mode.
2687  *
2688  * @see rte_flow_isolate()
2689  * @see rte_flow_ops
2690  */
2691 int
2692 mlx5_flow_isolate(struct rte_eth_dev *dev,
2693 		  int enable,
2694 		  struct rte_flow_error *error)
2695 {
2696 	struct mlx5_priv *priv = dev->data->dev_private;
2697 
2698 	if (dev->data->dev_started) {
2699 		rte_flow_error_set(error, EBUSY,
2700 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2701 				   NULL,
2702 				   "port must be stopped first");
2703 		return -rte_errno;
2704 	}
2705 	priv->isolated = !!enable;
2706 	if (enable)
2707 		dev->dev_ops = &mlx5_dev_ops_isolate;
2708 	else
2709 		dev->dev_ops = &mlx5_dev_ops;
2710 	return 0;
2711 }
2712 
2713 /**
2714  * Query a flow.
2715  *
2716  * @see rte_flow_query()
2717  * @see rte_flow_ops
2718  */
2719 static int
2720 flow_drv_query(struct rte_eth_dev *dev,
2721 	       struct rte_flow *flow,
2722 	       const struct rte_flow_action *actions,
2723 	       void *data,
2724 	       struct rte_flow_error *error)
2725 {
2726 	const struct mlx5_flow_driver_ops *fops;
2727 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2728 
2729 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2730 	fops = flow_get_drv_ops(ftype);
2731 
2732 	return fops->query(dev, flow, actions, data, error);
2733 }
2734 
2735 /**
2736  * Query a flow.
2737  *
2738  * @see rte_flow_query()
2739  * @see rte_flow_ops
2740  */
2741 int
2742 mlx5_flow_query(struct rte_eth_dev *dev,
2743 		struct rte_flow *flow,
2744 		const struct rte_flow_action *actions,
2745 		void *data,
2746 		struct rte_flow_error *error)
2747 {
2748 	int ret;
2749 
2750 	ret = flow_drv_query(dev, flow, actions, data, error);
2751 	if (ret < 0)
2752 		return ret;
2753 	return 0;
2754 }
2755 
2756 /**
2757  * Convert a flow director filter to a generic flow.
2758  *
2759  * @param dev
2760  *   Pointer to Ethernet device.
2761  * @param fdir_filter
2762  *   Flow director filter to add.
2763  * @param attributes
2764  *   Generic flow parameters structure.
2765  *
2766  * @return
2767  *   0 on success, a negative errno value otherwise and rte_errno is set.
2768  */
2769 static int
2770 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2771 			 const struct rte_eth_fdir_filter *fdir_filter,
2772 			 struct mlx5_fdir *attributes)
2773 {
2774 	struct mlx5_priv *priv = dev->data->dev_private;
2775 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2776 	const struct rte_eth_fdir_masks *mask =
2777 		&dev->data->dev_conf.fdir_conf.mask;
2778 
2779 	/* Validate queue number. */
2780 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2781 		DRV_LOG(ERR, "port %u invalid queue number %d",
2782 			dev->data->port_id, fdir_filter->action.rx_queue);
2783 		rte_errno = EINVAL;
2784 		return -rte_errno;
2785 	}
2786 	attributes->attr.ingress = 1;
2787 	attributes->items[0] = (struct rte_flow_item) {
2788 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2789 		.spec = &attributes->l2,
2790 		.mask = &attributes->l2_mask,
2791 	};
2792 	switch (fdir_filter->action.behavior) {
2793 	case RTE_ETH_FDIR_ACCEPT:
2794 		attributes->actions[0] = (struct rte_flow_action){
2795 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2796 			.conf = &attributes->queue,
2797 		};
2798 		break;
2799 	case RTE_ETH_FDIR_REJECT:
2800 		attributes->actions[0] = (struct rte_flow_action){
2801 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2802 		};
2803 		break;
2804 	default:
2805 		DRV_LOG(ERR, "port %u invalid behavior %d",
2806 			dev->data->port_id,
2807 			fdir_filter->action.behavior);
2808 		rte_errno = ENOTSUP;
2809 		return -rte_errno;
2810 	}
2811 	attributes->queue.index = fdir_filter->action.rx_queue;
2812 	/* Handle L3. */
2813 	switch (fdir_filter->input.flow_type) {
2814 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2815 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2816 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2817 		attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2818 			.src_addr = input->flow.ip4_flow.src_ip,
2819 			.dst_addr = input->flow.ip4_flow.dst_ip,
2820 			.time_to_live = input->flow.ip4_flow.ttl,
2821 			.type_of_service = input->flow.ip4_flow.tos,
2822 		};
2823 		attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2824 			.src_addr = mask->ipv4_mask.src_ip,
2825 			.dst_addr = mask->ipv4_mask.dst_ip,
2826 			.time_to_live = mask->ipv4_mask.ttl,
2827 			.type_of_service = mask->ipv4_mask.tos,
2828 			.next_proto_id = mask->ipv4_mask.proto,
2829 		};
2830 		attributes->items[1] = (struct rte_flow_item){
2831 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2832 			.spec = &attributes->l3,
2833 			.mask = &attributes->l3_mask,
2834 		};
2835 		break;
2836 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2837 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2838 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2839 		attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2840 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2841 			.proto = input->flow.ipv6_flow.proto,
2842 		};
2843 
2844 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2845 		       input->flow.ipv6_flow.src_ip,
2846 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2847 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2848 		       input->flow.ipv6_flow.dst_ip,
2849 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2850 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2851 		       mask->ipv6_mask.src_ip,
2852 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2853 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2854 		       mask->ipv6_mask.dst_ip,
2855 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2856 		attributes->items[1] = (struct rte_flow_item){
2857 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2858 			.spec = &attributes->l3,
2859 			.mask = &attributes->l3_mask,
2860 		};
2861 		break;
2862 	default:
2863 		DRV_LOG(ERR, "port %u invalid flow type%d",
2864 			dev->data->port_id, fdir_filter->input.flow_type);
2865 		rte_errno = ENOTSUP;
2866 		return -rte_errno;
2867 	}
2868 	/* Handle L4. */
2869 	switch (fdir_filter->input.flow_type) {
2870 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2871 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
2872 			.src_port = input->flow.udp4_flow.src_port,
2873 			.dst_port = input->flow.udp4_flow.dst_port,
2874 		};
2875 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2876 			.src_port = mask->src_port_mask,
2877 			.dst_port = mask->dst_port_mask,
2878 		};
2879 		attributes->items[2] = (struct rte_flow_item){
2880 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2881 			.spec = &attributes->l4,
2882 			.mask = &attributes->l4_mask,
2883 		};
2884 		break;
2885 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2886 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2887 			.src_port = input->flow.tcp4_flow.src_port,
2888 			.dst_port = input->flow.tcp4_flow.dst_port,
2889 		};
2890 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2891 			.src_port = mask->src_port_mask,
2892 			.dst_port = mask->dst_port_mask,
2893 		};
2894 		attributes->items[2] = (struct rte_flow_item){
2895 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2896 			.spec = &attributes->l4,
2897 			.mask = &attributes->l4_mask,
2898 		};
2899 		break;
2900 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2901 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
2902 			.src_port = input->flow.udp6_flow.src_port,
2903 			.dst_port = input->flow.udp6_flow.dst_port,
2904 		};
2905 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2906 			.src_port = mask->src_port_mask,
2907 			.dst_port = mask->dst_port_mask,
2908 		};
2909 		attributes->items[2] = (struct rte_flow_item){
2910 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2911 			.spec = &attributes->l4,
2912 			.mask = &attributes->l4_mask,
2913 		};
2914 		break;
2915 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2916 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2917 			.src_port = input->flow.tcp6_flow.src_port,
2918 			.dst_port = input->flow.tcp6_flow.dst_port,
2919 		};
2920 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2921 			.src_port = mask->src_port_mask,
2922 			.dst_port = mask->dst_port_mask,
2923 		};
2924 		attributes->items[2] = (struct rte_flow_item){
2925 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2926 			.spec = &attributes->l4,
2927 			.mask = &attributes->l4_mask,
2928 		};
2929 		break;
2930 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2931 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2932 		break;
2933 	default:
2934 		DRV_LOG(ERR, "port %u invalid flow type%d",
2935 			dev->data->port_id, fdir_filter->input.flow_type);
2936 		rte_errno = ENOTSUP;
2937 		return -rte_errno;
2938 	}
2939 	return 0;
2940 }
2941 
2942 #define FLOW_FDIR_CMP(f1, f2, fld) \
2943 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2944 
2945 /**
2946  * Compare two FDIR flows. If items and actions are identical, the two flows are
2947  * regarded as same.
2948  *
2949  * @param dev
2950  *   Pointer to Ethernet device.
2951  * @param f1
2952  *   FDIR flow to compare.
2953  * @param f2
2954  *   FDIR flow to compare.
2955  *
2956  * @return
2957  *   Zero on match, 1 otherwise.
2958  */
2959 static int
2960 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2961 {
2962 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2963 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2964 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2965 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2966 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2967 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2968 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2969 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2970 		return 1;
2971 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2972 	    FLOW_FDIR_CMP(f1, f2, queue))
2973 		return 1;
2974 	return 0;
2975 }
2976 
2977 /**
2978  * Search device flow list to find out a matched FDIR flow.
2979  *
2980  * @param dev
2981  *   Pointer to Ethernet device.
2982  * @param fdir_flow
2983  *   FDIR flow to lookup.
2984  *
2985  * @return
2986  *   Pointer of flow if found, NULL otherwise.
2987  */
2988 static struct rte_flow *
2989 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2990 {
2991 	struct mlx5_priv *priv = dev->data->dev_private;
2992 	struct rte_flow *flow = NULL;
2993 
2994 	assert(fdir_flow);
2995 	TAILQ_FOREACH(flow, &priv->flows, next) {
2996 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2997 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2998 				dev->data->port_id, (void *)flow);
2999 			break;
3000 		}
3001 	}
3002 	return flow;
3003 }
3004 
3005 /**
3006  * Add new flow director filter and store it in list.
3007  *
3008  * @param dev
3009  *   Pointer to Ethernet device.
3010  * @param fdir_filter
3011  *   Flow director filter to add.
3012  *
3013  * @return
3014  *   0 on success, a negative errno value otherwise and rte_errno is set.
3015  */
3016 static int
3017 flow_fdir_filter_add(struct rte_eth_dev *dev,
3018 		     const struct rte_eth_fdir_filter *fdir_filter)
3019 {
3020 	struct mlx5_priv *priv = dev->data->dev_private;
3021 	struct mlx5_fdir *fdir_flow;
3022 	struct rte_flow *flow;
3023 	int ret;
3024 
3025 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3026 	if (!fdir_flow) {
3027 		rte_errno = ENOMEM;
3028 		return -rte_errno;
3029 	}
3030 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3031 	if (ret)
3032 		goto error;
3033 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
3034 	if (flow) {
3035 		rte_errno = EEXIST;
3036 		goto error;
3037 	}
3038 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3039 				fdir_flow->items, fdir_flow->actions, NULL);
3040 	if (!flow)
3041 		goto error;
3042 	assert(!flow->fdir);
3043 	flow->fdir = fdir_flow;
3044 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3045 		dev->data->port_id, (void *)flow);
3046 	return 0;
3047 error:
3048 	rte_free(fdir_flow);
3049 	return -rte_errno;
3050 }
3051 
3052 /**
3053  * Delete specific filter.
3054  *
3055  * @param dev
3056  *   Pointer to Ethernet device.
3057  * @param fdir_filter
3058  *   Filter to be deleted.
3059  *
3060  * @return
3061  *   0 on success, a negative errno value otherwise and rte_errno is set.
3062  */
3063 static int
3064 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3065 			const struct rte_eth_fdir_filter *fdir_filter)
3066 {
3067 	struct mlx5_priv *priv = dev->data->dev_private;
3068 	struct rte_flow *flow;
3069 	struct mlx5_fdir fdir_flow = {
3070 		.attr.group = 0,
3071 	};
3072 	int ret;
3073 
3074 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3075 	if (ret)
3076 		return -rte_errno;
3077 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3078 	if (!flow) {
3079 		rte_errno = ENOENT;
3080 		return -rte_errno;
3081 	}
3082 	flow_list_destroy(dev, &priv->flows, flow);
3083 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3084 		dev->data->port_id, (void *)flow);
3085 	return 0;
3086 }
3087 
3088 /**
3089  * Update queue for specific filter.
3090  *
3091  * @param dev
3092  *   Pointer to Ethernet device.
3093  * @param fdir_filter
3094  *   Filter to be updated.
3095  *
3096  * @return
3097  *   0 on success, a negative errno value otherwise and rte_errno is set.
3098  */
3099 static int
3100 flow_fdir_filter_update(struct rte_eth_dev *dev,
3101 			const struct rte_eth_fdir_filter *fdir_filter)
3102 {
3103 	int ret;
3104 
3105 	ret = flow_fdir_filter_delete(dev, fdir_filter);
3106 	if (ret)
3107 		return ret;
3108 	return flow_fdir_filter_add(dev, fdir_filter);
3109 }
3110 
3111 /**
3112  * Flush all filters.
3113  *
3114  * @param dev
3115  *   Pointer to Ethernet device.
3116  */
3117 static void
3118 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3119 {
3120 	struct mlx5_priv *priv = dev->data->dev_private;
3121 
3122 	mlx5_flow_list_flush(dev, &priv->flows);
3123 }
3124 
3125 /**
3126  * Get flow director information.
3127  *
3128  * @param dev
3129  *   Pointer to Ethernet device.
3130  * @param[out] fdir_info
3131  *   Resulting flow director information.
3132  */
3133 static void
3134 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3135 {
3136 	struct rte_eth_fdir_masks *mask =
3137 		&dev->data->dev_conf.fdir_conf.mask;
3138 
3139 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3140 	fdir_info->guarant_spc = 0;
3141 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3142 	fdir_info->max_flexpayload = 0;
3143 	fdir_info->flow_types_mask[0] = 0;
3144 	fdir_info->flex_payload_unit = 0;
3145 	fdir_info->max_flex_payload_segment_num = 0;
3146 	fdir_info->flex_payload_limit = 0;
3147 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3148 }
3149 
3150 /**
3151  * Deal with flow director operations.
3152  *
3153  * @param dev
3154  *   Pointer to Ethernet device.
3155  * @param filter_op
3156  *   Operation to perform.
3157  * @param arg
3158  *   Pointer to operation-specific structure.
3159  *
3160  * @return
3161  *   0 on success, a negative errno value otherwise and rte_errno is set.
3162  */
3163 static int
3164 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3165 		    void *arg)
3166 {
3167 	enum rte_fdir_mode fdir_mode =
3168 		dev->data->dev_conf.fdir_conf.mode;
3169 
3170 	if (filter_op == RTE_ETH_FILTER_NOP)
3171 		return 0;
3172 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3173 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3174 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
3175 			dev->data->port_id, fdir_mode);
3176 		rte_errno = EINVAL;
3177 		return -rte_errno;
3178 	}
3179 	switch (filter_op) {
3180 	case RTE_ETH_FILTER_ADD:
3181 		return flow_fdir_filter_add(dev, arg);
3182 	case RTE_ETH_FILTER_UPDATE:
3183 		return flow_fdir_filter_update(dev, arg);
3184 	case RTE_ETH_FILTER_DELETE:
3185 		return flow_fdir_filter_delete(dev, arg);
3186 	case RTE_ETH_FILTER_FLUSH:
3187 		flow_fdir_filter_flush(dev);
3188 		break;
3189 	case RTE_ETH_FILTER_INFO:
3190 		flow_fdir_info_get(dev, arg);
3191 		break;
3192 	default:
3193 		DRV_LOG(DEBUG, "port %u unknown operation %u",
3194 			dev->data->port_id, filter_op);
3195 		rte_errno = EINVAL;
3196 		return -rte_errno;
3197 	}
3198 	return 0;
3199 }
3200 
3201 /**
3202  * Manage filter operations.
3203  *
3204  * @param dev
3205  *   Pointer to Ethernet device structure.
3206  * @param filter_type
3207  *   Filter type.
3208  * @param filter_op
3209  *   Operation to perform.
3210  * @param arg
3211  *   Pointer to operation-specific structure.
3212  *
3213  * @return
3214  *   0 on success, a negative errno value otherwise and rte_errno is set.
3215  */
3216 int
3217 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3218 		     enum rte_filter_type filter_type,
3219 		     enum rte_filter_op filter_op,
3220 		     void *arg)
3221 {
3222 	switch (filter_type) {
3223 	case RTE_ETH_FILTER_GENERIC:
3224 		if (filter_op != RTE_ETH_FILTER_GET) {
3225 			rte_errno = EINVAL;
3226 			return -rte_errno;
3227 		}
3228 		*(const void **)arg = &mlx5_flow_ops;
3229 		return 0;
3230 	case RTE_ETH_FILTER_FDIR:
3231 		return flow_fdir_ctrl_func(dev, filter_op, arg);
3232 	default:
3233 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
3234 			dev->data->port_id, filter_type);
3235 		rte_errno = ENOTSUP;
3236 		return -rte_errno;
3237 	}
3238 	return 0;
3239 }
3240 
3241 #define MLX5_POOL_QUERY_FREQ_US 1000000
3242 
3243 /**
3244  * Set the periodic procedure for triggering asynchronous batch queries for all
3245  * the counter pools.
3246  *
3247  * @param[in] sh
3248  *   Pointer to mlx5_ibv_shared object.
3249  */
3250 void
3251 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3252 {
3253 	struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3254 	uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3255 	uint32_t us;
3256 
3257 	cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3258 	pools_n += rte_atomic16_read(&cont->n_valid);
3259 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3260 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3261 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3262 		sh->cmng.query_thread_on = 0;
3263 		DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3264 	} else {
3265 		sh->cmng.query_thread_on = 1;
3266 	}
3267 }
3268 
3269 /**
3270  * The periodic procedure for triggering asynchronous batch queries for all the
3271  * counter pools. This function is probably called by the host thread.
3272  *
3273  * @param[in] arg
3274  *   The parameter for the alarm process.
3275  */
3276 void
3277 mlx5_flow_query_alarm(void *arg)
3278 {
3279 	struct mlx5_ibv_shared *sh = arg;
3280 	struct mlx5_devx_obj *dcs;
3281 	uint16_t offset;
3282 	int ret;
3283 	uint8_t batch = sh->cmng.batch;
3284 	uint16_t pool_index = sh->cmng.pool_index;
3285 	struct mlx5_pools_container *cont;
3286 	struct mlx5_pools_container *mcont;
3287 	struct mlx5_flow_counter_pool *pool;
3288 
3289 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3290 		goto set_alarm;
3291 next_container:
3292 	cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3293 	mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3294 	/* Check if resize was done and need to flip a container. */
3295 	if (cont != mcont) {
3296 		if (cont->pools) {
3297 			/* Clean the old container. */
3298 			rte_free(cont->pools);
3299 			memset(cont, 0, sizeof(*cont));
3300 		}
3301 		rte_cio_wmb();
3302 		 /* Flip the host container. */
3303 		sh->cmng.mhi[batch] ^= (uint8_t)2;
3304 		cont = mcont;
3305 	}
3306 	if (!cont->pools) {
3307 		/* 2 empty containers case is unexpected. */
3308 		if (unlikely(batch != sh->cmng.batch))
3309 			goto set_alarm;
3310 		batch ^= 0x1;
3311 		pool_index = 0;
3312 		goto next_container;
3313 	}
3314 	pool = cont->pools[pool_index];
3315 	if (pool->raw_hw)
3316 		/* There is a pool query in progress. */
3317 		goto set_alarm;
3318 	pool->raw_hw =
3319 		LIST_FIRST(&sh->cmng.free_stat_raws);
3320 	if (!pool->raw_hw)
3321 		/* No free counter statistics raw memory. */
3322 		goto set_alarm;
3323 	dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3324 							      (&pool->a64_dcs);
3325 	offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3326 	ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3327 					       offset, NULL, NULL,
3328 					       pool->raw_hw->mem_mng->dm->id,
3329 					       (void *)(uintptr_t)
3330 					       (pool->raw_hw->data + offset),
3331 					       sh->devx_comp,
3332 					       (uint64_t)(uintptr_t)pool);
3333 	if (ret) {
3334 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3335 			" %d\n", pool->min_dcs->id);
3336 		pool->raw_hw = NULL;
3337 		goto set_alarm;
3338 	}
3339 	pool->raw_hw->min_dcs_id = dcs->id;
3340 	LIST_REMOVE(pool->raw_hw, next);
3341 	sh->cmng.pending_queries++;
3342 	pool_index++;
3343 	if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3344 		batch ^= 0x1;
3345 		pool_index = 0;
3346 	}
3347 set_alarm:
3348 	sh->cmng.batch = batch;
3349 	sh->cmng.pool_index = pool_index;
3350 	mlx5_set_query_alarm(sh);
3351 }
3352 
3353 /**
3354  * Handler for the HW respond about ready values from an asynchronous batch
3355  * query. This function is probably called by the host thread.
3356  *
3357  * @param[in] sh
3358  *   The pointer to the shared IB device context.
3359  * @param[in] async_id
3360  *   The Devx async ID.
3361  * @param[in] status
3362  *   The status of the completion.
3363  */
3364 void
3365 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3366 				  uint64_t async_id, int status)
3367 {
3368 	struct mlx5_flow_counter_pool *pool =
3369 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3370 	struct mlx5_counter_stats_raw *raw_to_free;
3371 
3372 	if (unlikely(status)) {
3373 		raw_to_free = pool->raw_hw;
3374 	} else {
3375 		raw_to_free = pool->raw;
3376 		rte_spinlock_lock(&pool->sl);
3377 		pool->raw = pool->raw_hw;
3378 		rte_spinlock_unlock(&pool->sl);
3379 		rte_atomic64_add(&pool->query_gen, 1);
3380 		/* Be sure the new raw counters data is updated in memory. */
3381 		rte_cio_wmb();
3382 	}
3383 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3384 	pool->raw_hw = NULL;
3385 	sh->cmng.pending_queries--;
3386 }
3387