xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision d53aa89aea9135c41de42e737c25b8cecbcaa944)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46 
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48 
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57 
58 enum mlx5_expansion {
59 	MLX5_EXPANSION_ROOT,
60 	MLX5_EXPANSION_ROOT_OUTER,
61 	MLX5_EXPANSION_ROOT_ETH_VLAN,
62 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63 	MLX5_EXPANSION_OUTER_ETH,
64 	MLX5_EXPANSION_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_VLAN,
66 	MLX5_EXPANSION_OUTER_IPV4,
67 	MLX5_EXPANSION_OUTER_IPV4_UDP,
68 	MLX5_EXPANSION_OUTER_IPV4_TCP,
69 	MLX5_EXPANSION_OUTER_IPV6,
70 	MLX5_EXPANSION_OUTER_IPV6_UDP,
71 	MLX5_EXPANSION_OUTER_IPV6_TCP,
72 	MLX5_EXPANSION_VXLAN,
73 	MLX5_EXPANSION_VXLAN_GPE,
74 	MLX5_EXPANSION_GRE,
75 	MLX5_EXPANSION_MPLS,
76 	MLX5_EXPANSION_ETH,
77 	MLX5_EXPANSION_ETH_VLAN,
78 	MLX5_EXPANSION_VLAN,
79 	MLX5_EXPANSION_IPV4,
80 	MLX5_EXPANSION_IPV4_UDP,
81 	MLX5_EXPANSION_IPV4_TCP,
82 	MLX5_EXPANSION_IPV6,
83 	MLX5_EXPANSION_IPV6_UDP,
84 	MLX5_EXPANSION_IPV6_TCP,
85 };
86 
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89 	[MLX5_EXPANSION_ROOT] = {
90 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91 						 MLX5_EXPANSION_IPV4,
92 						 MLX5_EXPANSION_IPV6),
93 		.type = RTE_FLOW_ITEM_TYPE_END,
94 	},
95 	[MLX5_EXPANSION_ROOT_OUTER] = {
96 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97 						 MLX5_EXPANSION_OUTER_IPV4,
98 						 MLX5_EXPANSION_OUTER_IPV6),
99 		.type = RTE_FLOW_ITEM_TYPE_END,
100 	},
101 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103 		.type = RTE_FLOW_ITEM_TYPE_END,
104 	},
105 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107 		.type = RTE_FLOW_ITEM_TYPE_END,
108 	},
109 	[MLX5_EXPANSION_OUTER_ETH] = {
110 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111 						 MLX5_EXPANSION_OUTER_IPV6,
112 						 MLX5_EXPANSION_MPLS),
113 		.type = RTE_FLOW_ITEM_TYPE_ETH,
114 		.rss_types = 0,
115 	},
116 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118 		.type = RTE_FLOW_ITEM_TYPE_ETH,
119 		.rss_types = 0,
120 	},
121 	[MLX5_EXPANSION_OUTER_VLAN] = {
122 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123 						 MLX5_EXPANSION_OUTER_IPV6),
124 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
125 	},
126 	[MLX5_EXPANSION_OUTER_IPV4] = {
127 		.next = RTE_FLOW_EXPAND_RSS_NEXT
128 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
129 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
130 			 MLX5_EXPANSION_GRE),
131 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
132 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133 			ETH_RSS_NONFRAG_IPV4_OTHER,
134 	},
135 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137 						 MLX5_EXPANSION_VXLAN_GPE),
138 		.type = RTE_FLOW_ITEM_TYPE_UDP,
139 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140 	},
141 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142 		.type = RTE_FLOW_ITEM_TYPE_TCP,
143 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144 	},
145 	[MLX5_EXPANSION_OUTER_IPV6] = {
146 		.next = RTE_FLOW_EXPAND_RSS_NEXT
147 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
148 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
149 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
150 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151 			ETH_RSS_NONFRAG_IPV6_OTHER,
152 	},
153 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155 						 MLX5_EXPANSION_VXLAN_GPE),
156 		.type = RTE_FLOW_ITEM_TYPE_UDP,
157 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158 	},
159 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160 		.type = RTE_FLOW_ITEM_TYPE_TCP,
161 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162 	},
163 	[MLX5_EXPANSION_VXLAN] = {
164 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
166 	},
167 	[MLX5_EXPANSION_VXLAN_GPE] = {
168 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169 						 MLX5_EXPANSION_IPV4,
170 						 MLX5_EXPANSION_IPV6),
171 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172 	},
173 	[MLX5_EXPANSION_GRE] = {
174 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175 		.type = RTE_FLOW_ITEM_TYPE_GRE,
176 	},
177 	[MLX5_EXPANSION_MPLS] = {
178 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179 						 MLX5_EXPANSION_IPV6),
180 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
181 	},
182 	[MLX5_EXPANSION_ETH] = {
183 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184 						 MLX5_EXPANSION_IPV6),
185 		.type = RTE_FLOW_ITEM_TYPE_ETH,
186 	},
187 	[MLX5_EXPANSION_ETH_VLAN] = {
188 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189 		.type = RTE_FLOW_ITEM_TYPE_ETH,
190 	},
191 	[MLX5_EXPANSION_VLAN] = {
192 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193 						 MLX5_EXPANSION_IPV6),
194 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
195 	},
196 	[MLX5_EXPANSION_IPV4] = {
197 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198 						 MLX5_EXPANSION_IPV4_TCP),
199 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
200 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201 			ETH_RSS_NONFRAG_IPV4_OTHER,
202 	},
203 	[MLX5_EXPANSION_IPV4_UDP] = {
204 		.type = RTE_FLOW_ITEM_TYPE_UDP,
205 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206 	},
207 	[MLX5_EXPANSION_IPV4_TCP] = {
208 		.type = RTE_FLOW_ITEM_TYPE_TCP,
209 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210 	},
211 	[MLX5_EXPANSION_IPV6] = {
212 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213 						 MLX5_EXPANSION_IPV6_TCP),
214 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
215 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216 			ETH_RSS_NONFRAG_IPV6_OTHER,
217 	},
218 	[MLX5_EXPANSION_IPV6_UDP] = {
219 		.type = RTE_FLOW_ITEM_TYPE_UDP,
220 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221 	},
222 	[MLX5_EXPANSION_IPV6_TCP] = {
223 		.type = RTE_FLOW_ITEM_TYPE_TCP,
224 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225 	},
226 };
227 
228 static const struct rte_flow_ops mlx5_flow_ops = {
229 	.validate = mlx5_flow_validate,
230 	.create = mlx5_flow_create,
231 	.destroy = mlx5_flow_destroy,
232 	.flush = mlx5_flow_flush,
233 	.isolate = mlx5_flow_isolate,
234 	.query = mlx5_flow_query,
235 };
236 
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239 	struct rte_flow_attr attr;
240 	struct rte_flow_item items[4];
241 	struct rte_flow_item_eth l2;
242 	struct rte_flow_item_eth l2_mask;
243 	union {
244 		struct rte_flow_item_ipv4 ipv4;
245 		struct rte_flow_item_ipv6 ipv6;
246 	} l3;
247 	union {
248 		struct rte_flow_item_ipv4 ipv4;
249 		struct rte_flow_item_ipv6 ipv6;
250 	} l3_mask;
251 	union {
252 		struct rte_flow_item_udp udp;
253 		struct rte_flow_item_tcp tcp;
254 	} l4;
255 	union {
256 		struct rte_flow_item_udp udp;
257 		struct rte_flow_item_tcp tcp;
258 	} l4_mask;
259 	struct rte_flow_action actions[2];
260 	struct rte_flow_action_queue queue;
261 };
262 
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267 
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271 	{ 9, 10, 11 }, { 12, 13, 14 },
272 };
273 
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279 
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281 	{
282 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
283 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284 	},
285 	{
286 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288 	},
289 	{
290 		.tunnel = MLX5_FLOW_LAYER_GRE,
291 		.ptype = RTE_PTYPE_TUNNEL_GRE,
292 	},
293 	{
294 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296 	},
297 	{
298 		.tunnel = MLX5_FLOW_LAYER_MPLS,
299 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300 	},
301 };
302 
303 /**
304  * Discover the maximum number of priority available.
305  *
306  * @param[in] dev
307  *   Pointer to the Ethernet device structure.
308  *
309  * @return
310  *   number of supported flow priority on success, a negative errno
311  *   value otherwise and rte_errno is set.
312  */
313 int
314 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
315 {
316 	struct mlx5_priv *priv = dev->data->dev_private;
317 	struct {
318 		struct ibv_flow_attr attr;
319 		struct ibv_flow_spec_eth eth;
320 		struct ibv_flow_spec_action_drop drop;
321 	} flow_attr = {
322 		.attr = {
323 			.num_of_specs = 2,
324 			.port = (uint8_t)priv->ibv_port,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	mlx5_hrxq_drop_release(dev);
354 	switch (priority) {
355 	case 8:
356 		priority = RTE_DIM(priority_map_3);
357 		break;
358 	case 16:
359 		priority = RTE_DIM(priority_map_5);
360 		break;
361 	default:
362 		rte_errno = ENOTSUP;
363 		DRV_LOG(ERR,
364 			"port %u verbs maximum priority: %d expected 8/16",
365 			dev->data->port_id, priority);
366 		return -rte_errno;
367 	}
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct mlx5_priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct mlx5_priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct mlx5_priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct mlx5_priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_errno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_errno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct mlx5_priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (!priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  NULL, "No Rx queues configured");
853 	if (queue->index >= priv->rxqs_n)
854 		return rte_flow_error_set(error, EINVAL,
855 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856 					  &queue->index,
857 					  "queue index out of range");
858 	if (!(*priv->rxqs)[queue->index])
859 		return rte_flow_error_set(error, EINVAL,
860 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861 					  &queue->index,
862 					  "queue is not configured");
863 	if (attr->egress)
864 		return rte_flow_error_set(error, ENOTSUP,
865 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866 					  "queue action not supported for "
867 					  "egress");
868 	return 0;
869 }
870 
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[in] item_flags
883  *   Items that were detected.
884  * @param[out] error
885  *   Pointer to error structure.
886  *
887  * @return
888  *   0 on success, a negative errno value otherwise and rte_errno is set.
889  */
890 int
891 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
892 			      uint64_t action_flags,
893 			      struct rte_eth_dev *dev,
894 			      const struct rte_flow_attr *attr,
895 			      uint64_t item_flags,
896 			      struct rte_flow_error *error)
897 {
898 	struct mlx5_priv *priv = dev->data->dev_private;
899 	const struct rte_flow_action_rss *rss = action->conf;
900 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
901 	unsigned int i;
902 
903 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
904 		return rte_flow_error_set(error, EINVAL,
905 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
906 					  "can't have 2 fate actions"
907 					  " in same flow");
908 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
909 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
910 		return rte_flow_error_set(error, ENOTSUP,
911 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
912 					  &rss->func,
913 					  "RSS hash function not supported");
914 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
915 	if (rss->level > 2)
916 #else
917 	if (rss->level > 1)
918 #endif
919 		return rte_flow_error_set(error, ENOTSUP,
920 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
921 					  &rss->level,
922 					  "tunnel RSS is not supported");
923 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
924 	if (rss->key_len == 0 && rss->key != NULL)
925 		return rte_flow_error_set(error, ENOTSUP,
926 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
927 					  &rss->key_len,
928 					  "RSS hash key length 0");
929 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
930 		return rte_flow_error_set(error, ENOTSUP,
931 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
932 					  &rss->key_len,
933 					  "RSS hash key too small");
934 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
935 		return rte_flow_error_set(error, ENOTSUP,
936 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
937 					  &rss->key_len,
938 					  "RSS hash key too large");
939 	if (rss->queue_num > priv->config.ind_table_max_size)
940 		return rte_flow_error_set(error, ENOTSUP,
941 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
942 					  &rss->queue_num,
943 					  "number of queues too large");
944 	if (rss->types & MLX5_RSS_HF_MASK)
945 		return rte_flow_error_set(error, ENOTSUP,
946 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
947 					  &rss->types,
948 					  "some RSS protocols are not"
949 					  " supported");
950 	if (!priv->rxqs_n)
951 		return rte_flow_error_set(error, EINVAL,
952 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953 					  NULL, "No Rx queues configured");
954 	if (!rss->queue_num)
955 		return rte_flow_error_set(error, EINVAL,
956 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957 					  NULL, "No queues configured");
958 	for (i = 0; i != rss->queue_num; ++i) {
959 		if (!(*priv->rxqs)[rss->queue[i]])
960 			return rte_flow_error_set
961 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
962 				 &rss->queue[i], "queue is not configured");
963 	}
964 	if (attr->egress)
965 		return rte_flow_error_set(error, ENOTSUP,
966 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
967 					  "rss action not supported for "
968 					  "egress");
969 	if (rss->level > 1 &&  !tunnel)
970 		return rte_flow_error_set(error, EINVAL,
971 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
972 					  "inner RSS is not supported for "
973 					  "non-tunnel flows");
974 	return 0;
975 }
976 
977 /*
978  * Validate the count action.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attr
983  *   Attributes of flow that includes this action.
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
992 				const struct rte_flow_attr *attr,
993 				struct rte_flow_error *error)
994 {
995 	if (attr->egress)
996 		return rte_flow_error_set(error, ENOTSUP,
997 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
998 					  "count action not supported for "
999 					  "egress");
1000 	return 0;
1001 }
1002 
1003 /**
1004  * Verify the @p attributes will be correctly understood by the NIC and store
1005  * them in the @p flow if everything is correct.
1006  *
1007  * @param[in] dev
1008  *   Pointer to the Ethernet device structure.
1009  * @param[in] attributes
1010  *   Pointer to flow attributes
1011  * @param[out] error
1012  *   Pointer to error structure.
1013  *
1014  * @return
1015  *   0 on success, a negative errno value otherwise and rte_errno is set.
1016  */
1017 int
1018 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1019 			      const struct rte_flow_attr *attributes,
1020 			      struct rte_flow_error *error)
1021 {
1022 	struct mlx5_priv *priv = dev->data->dev_private;
1023 	uint32_t priority_max = priv->config.flow_prio - 1;
1024 
1025 	if (attributes->group)
1026 		return rte_flow_error_set(error, ENOTSUP,
1027 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1028 					  NULL, "groups is not supported");
1029 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1030 	    attributes->priority >= priority_max)
1031 		return rte_flow_error_set(error, ENOTSUP,
1032 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1033 					  NULL, "priority out of range");
1034 	if (attributes->egress)
1035 		return rte_flow_error_set(error, ENOTSUP,
1036 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1037 					  "egress is not supported");
1038 	if (attributes->transfer && !priv->config.dv_esw_en)
1039 		return rte_flow_error_set(error, ENOTSUP,
1040 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1041 					  NULL, "transfer is not supported");
1042 	if (!attributes->ingress)
1043 		return rte_flow_error_set(error, EINVAL,
1044 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1045 					  NULL,
1046 					  "ingress attribute is mandatory");
1047 	return 0;
1048 }
1049 
1050 /**
1051  * Validate ICMP6 item.
1052  *
1053  * @param[in] item
1054  *   Item specification.
1055  * @param[in] item_flags
1056  *   Bit-fields that holds the items detected until now.
1057  * @param[out] error
1058  *   Pointer to error structure.
1059  *
1060  * @return
1061  *   0 on success, a negative errno value otherwise and rte_errno is set.
1062  */
1063 int
1064 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1065 			       uint64_t item_flags,
1066 			       uint8_t target_protocol,
1067 			       struct rte_flow_error *error)
1068 {
1069 	const struct rte_flow_item_icmp6 *mask = item->mask;
1070 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1071 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1072 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1073 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1074 				      MLX5_FLOW_LAYER_OUTER_L4;
1075 	int ret;
1076 
1077 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1078 		return rte_flow_error_set(error, EINVAL,
1079 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1080 					  "protocol filtering not compatible"
1081 					  " with ICMP6 layer");
1082 	if (!(item_flags & l3m))
1083 		return rte_flow_error_set(error, EINVAL,
1084 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1085 					  "IPv6 is mandatory to filter on"
1086 					  " ICMP6");
1087 	if (item_flags & l4m)
1088 		return rte_flow_error_set(error, EINVAL,
1089 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1090 					  "multiple L4 layers not supported");
1091 	if (!mask)
1092 		mask = &rte_flow_item_icmp6_mask;
1093 	ret = mlx5_flow_item_acceptable
1094 		(item, (const uint8_t *)mask,
1095 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1096 		 sizeof(struct rte_flow_item_icmp6), error);
1097 	if (ret < 0)
1098 		return ret;
1099 	return 0;
1100 }
1101 
1102 /**
1103  * Validate ICMP item.
1104  *
1105  * @param[in] item
1106  *   Item specification.
1107  * @param[in] item_flags
1108  *   Bit-fields that holds the items detected until now.
1109  * @param[out] error
1110  *   Pointer to error structure.
1111  *
1112  * @return
1113  *   0 on success, a negative errno value otherwise and rte_errno is set.
1114  */
1115 int
1116 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1117 			     uint64_t item_flags,
1118 			     uint8_t target_protocol,
1119 			     struct rte_flow_error *error)
1120 {
1121 	const struct rte_flow_item_icmp *mask = item->mask;
1122 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1123 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1124 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1125 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1126 				      MLX5_FLOW_LAYER_OUTER_L4;
1127 	int ret;
1128 
1129 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1130 		return rte_flow_error_set(error, EINVAL,
1131 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1132 					  "protocol filtering not compatible"
1133 					  " with ICMP layer");
1134 	if (!(item_flags & l3m))
1135 		return rte_flow_error_set(error, EINVAL,
1136 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1137 					  "IPv4 is mandatory to filter"
1138 					  " on ICMP");
1139 	if (item_flags & l4m)
1140 		return rte_flow_error_set(error, EINVAL,
1141 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1142 					  "multiple L4 layers not supported");
1143 	if (!mask)
1144 		mask = &rte_flow_item_icmp_mask;
1145 	ret = mlx5_flow_item_acceptable
1146 		(item, (const uint8_t *)mask,
1147 		 (const uint8_t *)&rte_flow_item_icmp_mask,
1148 		 sizeof(struct rte_flow_item_icmp), error);
1149 	if (ret < 0)
1150 		return ret;
1151 	return 0;
1152 }
1153 
1154 /**
1155  * Validate Ethernet item.
1156  *
1157  * @param[in] item
1158  *   Item specification.
1159  * @param[in] item_flags
1160  *   Bit-fields that holds the items detected until now.
1161  * @param[out] error
1162  *   Pointer to error structure.
1163  *
1164  * @return
1165  *   0 on success, a negative errno value otherwise and rte_errno is set.
1166  */
1167 int
1168 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1169 			    uint64_t item_flags,
1170 			    struct rte_flow_error *error)
1171 {
1172 	const struct rte_flow_item_eth *mask = item->mask;
1173 	const struct rte_flow_item_eth nic_mask = {
1174 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1175 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1176 		.type = RTE_BE16(0xffff),
1177 	};
1178 	int ret;
1179 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1180 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1181 				       MLX5_FLOW_LAYER_OUTER_L2;
1182 
1183 	if (item_flags & ethm)
1184 		return rte_flow_error_set(error, ENOTSUP,
1185 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1186 					  "multiple L2 layers not supported");
1187 	if (!mask)
1188 		mask = &rte_flow_item_eth_mask;
1189 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1190 					(const uint8_t *)&nic_mask,
1191 					sizeof(struct rte_flow_item_eth),
1192 					error);
1193 	return ret;
1194 }
1195 
1196 /**
1197  * Validate VLAN item.
1198  *
1199  * @param[in] item
1200  *   Item specification.
1201  * @param[in] item_flags
1202  *   Bit-fields that holds the items detected until now.
1203  * @param[out] error
1204  *   Pointer to error structure.
1205  *
1206  * @return
1207  *   0 on success, a negative errno value otherwise and rte_errno is set.
1208  */
1209 int
1210 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1211 			     uint64_t item_flags,
1212 			     struct rte_flow_error *error)
1213 {
1214 	const struct rte_flow_item_vlan *spec = item->spec;
1215 	const struct rte_flow_item_vlan *mask = item->mask;
1216 	const struct rte_flow_item_vlan nic_mask = {
1217 		.tci = RTE_BE16(0x0fff),
1218 		.inner_type = RTE_BE16(0xffff),
1219 	};
1220 	uint16_t vlan_tag = 0;
1221 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1222 	int ret;
1223 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1224 					MLX5_FLOW_LAYER_INNER_L4) :
1225 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1226 					MLX5_FLOW_LAYER_OUTER_L4);
1227 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1228 					MLX5_FLOW_LAYER_OUTER_VLAN;
1229 
1230 	if (item_flags & vlanm)
1231 		return rte_flow_error_set(error, EINVAL,
1232 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1233 					  "multiple VLAN layers not supported");
1234 	else if ((item_flags & l34m) != 0)
1235 		return rte_flow_error_set(error, EINVAL,
1236 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1237 					  "L2 layer cannot follow L3/L4 layer");
1238 	if (!mask)
1239 		mask = &rte_flow_item_vlan_mask;
1240 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1241 					(const uint8_t *)&nic_mask,
1242 					sizeof(struct rte_flow_item_vlan),
1243 					error);
1244 	if (ret)
1245 		return ret;
1246 	if (spec) {
1247 		vlan_tag = spec->tci;
1248 		vlan_tag &= mask->tci;
1249 	}
1250 	/*
1251 	 * From verbs perspective an empty VLAN is equivalent
1252 	 * to a packet without VLAN layer.
1253 	 */
1254 	if (!vlan_tag)
1255 		return rte_flow_error_set(error, EINVAL,
1256 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1257 					  item->spec,
1258 					  "VLAN cannot be empty");
1259 	return 0;
1260 }
1261 
1262 /**
1263  * Validate IPV4 item.
1264  *
1265  * @param[in] item
1266  *   Item specification.
1267  * @param[in] item_flags
1268  *   Bit-fields that holds the items detected until now.
1269  * @param[in] acc_mask
1270  *   Acceptable mask, if NULL default internal default mask
1271  *   will be used to check whether item fields are supported.
1272  * @param[out] error
1273  *   Pointer to error structure.
1274  *
1275  * @return
1276  *   0 on success, a negative errno value otherwise and rte_errno is set.
1277  */
1278 int
1279 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1280 			     uint64_t item_flags,
1281 			     const struct rte_flow_item_ipv4 *acc_mask,
1282 			     struct rte_flow_error *error)
1283 {
1284 	const struct rte_flow_item_ipv4 *mask = item->mask;
1285 	const struct rte_flow_item_ipv4 nic_mask = {
1286 		.hdr = {
1287 			.src_addr = RTE_BE32(0xffffffff),
1288 			.dst_addr = RTE_BE32(0xffffffff),
1289 			.type_of_service = 0xff,
1290 			.next_proto_id = 0xff,
1291 		},
1292 	};
1293 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1294 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1295 				      MLX5_FLOW_LAYER_OUTER_L3;
1296 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1297 				      MLX5_FLOW_LAYER_OUTER_L4;
1298 	int ret;
1299 
1300 	if (item_flags & l3m)
1301 		return rte_flow_error_set(error, ENOTSUP,
1302 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1303 					  "multiple L3 layers not supported");
1304 	else if (item_flags & l4m)
1305 		return rte_flow_error_set(error, EINVAL,
1306 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1307 					  "L3 cannot follow an L4 layer.");
1308 	if (!mask)
1309 		mask = &rte_flow_item_ipv4_mask;
1310 	else if (mask->hdr.next_proto_id != 0 &&
1311 		 mask->hdr.next_proto_id != 0xff)
1312 		return rte_flow_error_set(error, EINVAL,
1313 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1314 					  "partial mask is not supported"
1315 					  " for protocol");
1316 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1317 					acc_mask ? (const uint8_t *)acc_mask
1318 						 : (const uint8_t *)&nic_mask,
1319 					sizeof(struct rte_flow_item_ipv4),
1320 					error);
1321 	if (ret < 0)
1322 		return ret;
1323 	return 0;
1324 }
1325 
1326 /**
1327  * Validate IPV6 item.
1328  *
1329  * @param[in] item
1330  *   Item specification.
1331  * @param[in] item_flags
1332  *   Bit-fields that holds the items detected until now.
1333  * @param[in] acc_mask
1334  *   Acceptable mask, if NULL default internal default mask
1335  *   will be used to check whether item fields are supported.
1336  * @param[out] error
1337  *   Pointer to error structure.
1338  *
1339  * @return
1340  *   0 on success, a negative errno value otherwise and rte_errno is set.
1341  */
1342 int
1343 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1344 			     uint64_t item_flags,
1345 			     const struct rte_flow_item_ipv6 *acc_mask,
1346 			     struct rte_flow_error *error)
1347 {
1348 	const struct rte_flow_item_ipv6 *mask = item->mask;
1349 	const struct rte_flow_item_ipv6 nic_mask = {
1350 		.hdr = {
1351 			.src_addr =
1352 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1353 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1354 			.dst_addr =
1355 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1356 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1357 			.vtc_flow = RTE_BE32(0xffffffff),
1358 			.proto = 0xff,
1359 			.hop_limits = 0xff,
1360 		},
1361 	};
1362 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1363 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1364 				      MLX5_FLOW_LAYER_OUTER_L3;
1365 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1366 				      MLX5_FLOW_LAYER_OUTER_L4;
1367 	int ret;
1368 
1369 	if (item_flags & l3m)
1370 		return rte_flow_error_set(error, ENOTSUP,
1371 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1372 					  "multiple L3 layers not supported");
1373 	else if (item_flags & l4m)
1374 		return rte_flow_error_set(error, EINVAL,
1375 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1376 					  "L3 cannot follow an L4 layer.");
1377 	if (!mask)
1378 		mask = &rte_flow_item_ipv6_mask;
1379 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1380 					acc_mask ? (const uint8_t *)acc_mask
1381 						 : (const uint8_t *)&nic_mask,
1382 					sizeof(struct rte_flow_item_ipv6),
1383 					error);
1384 	if (ret < 0)
1385 		return ret;
1386 	return 0;
1387 }
1388 
1389 /**
1390  * Validate UDP item.
1391  *
1392  * @param[in] item
1393  *   Item specification.
1394  * @param[in] item_flags
1395  *   Bit-fields that holds the items detected until now.
1396  * @param[in] target_protocol
1397  *   The next protocol in the previous item.
1398  * @param[in] flow_mask
1399  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1400  * @param[out] error
1401  *   Pointer to error structure.
1402  *
1403  * @return
1404  *   0 on success, a negative errno value otherwise and rte_errno is set.
1405  */
1406 int
1407 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1408 			    uint64_t item_flags,
1409 			    uint8_t target_protocol,
1410 			    struct rte_flow_error *error)
1411 {
1412 	const struct rte_flow_item_udp *mask = item->mask;
1413 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1414 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1415 				      MLX5_FLOW_LAYER_OUTER_L3;
1416 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1417 				      MLX5_FLOW_LAYER_OUTER_L4;
1418 	int ret;
1419 
1420 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1421 		return rte_flow_error_set(error, EINVAL,
1422 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1423 					  "protocol filtering not compatible"
1424 					  " with UDP layer");
1425 	if (!(item_flags & l3m))
1426 		return rte_flow_error_set(error, EINVAL,
1427 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1428 					  "L3 is mandatory to filter on L4");
1429 	if (item_flags & l4m)
1430 		return rte_flow_error_set(error, EINVAL,
1431 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1432 					  "multiple L4 layers not supported");
1433 	if (!mask)
1434 		mask = &rte_flow_item_udp_mask;
1435 	ret = mlx5_flow_item_acceptable
1436 		(item, (const uint8_t *)mask,
1437 		 (const uint8_t *)&rte_flow_item_udp_mask,
1438 		 sizeof(struct rte_flow_item_udp), error);
1439 	if (ret < 0)
1440 		return ret;
1441 	return 0;
1442 }
1443 
1444 /**
1445  * Validate TCP item.
1446  *
1447  * @param[in] item
1448  *   Item specification.
1449  * @param[in] item_flags
1450  *   Bit-fields that holds the items detected until now.
1451  * @param[in] target_protocol
1452  *   The next protocol in the previous item.
1453  * @param[out] error
1454  *   Pointer to error structure.
1455  *
1456  * @return
1457  *   0 on success, a negative errno value otherwise and rte_errno is set.
1458  */
1459 int
1460 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1461 			    uint64_t item_flags,
1462 			    uint8_t target_protocol,
1463 			    const struct rte_flow_item_tcp *flow_mask,
1464 			    struct rte_flow_error *error)
1465 {
1466 	const struct rte_flow_item_tcp *mask = item->mask;
1467 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1468 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1469 				      MLX5_FLOW_LAYER_OUTER_L3;
1470 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1471 				      MLX5_FLOW_LAYER_OUTER_L4;
1472 	int ret;
1473 
1474 	assert(flow_mask);
1475 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1476 		return rte_flow_error_set(error, EINVAL,
1477 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1478 					  "protocol filtering not compatible"
1479 					  " with TCP layer");
1480 	if (!(item_flags & l3m))
1481 		return rte_flow_error_set(error, EINVAL,
1482 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1483 					  "L3 is mandatory to filter on L4");
1484 	if (item_flags & l4m)
1485 		return rte_flow_error_set(error, EINVAL,
1486 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1487 					  "multiple L4 layers not supported");
1488 	if (!mask)
1489 		mask = &rte_flow_item_tcp_mask;
1490 	ret = mlx5_flow_item_acceptable
1491 		(item, (const uint8_t *)mask,
1492 		 (const uint8_t *)flow_mask,
1493 		 sizeof(struct rte_flow_item_tcp), error);
1494 	if (ret < 0)
1495 		return ret;
1496 	return 0;
1497 }
1498 
1499 /**
1500  * Validate VXLAN item.
1501  *
1502  * @param[in] item
1503  *   Item specification.
1504  * @param[in] item_flags
1505  *   Bit-fields that holds the items detected until now.
1506  * @param[in] target_protocol
1507  *   The next protocol in the previous item.
1508  * @param[out] error
1509  *   Pointer to error structure.
1510  *
1511  * @return
1512  *   0 on success, a negative errno value otherwise and rte_errno is set.
1513  */
1514 int
1515 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1516 			      uint64_t item_flags,
1517 			      struct rte_flow_error *error)
1518 {
1519 	const struct rte_flow_item_vxlan *spec = item->spec;
1520 	const struct rte_flow_item_vxlan *mask = item->mask;
1521 	int ret;
1522 	union vni {
1523 		uint32_t vlan_id;
1524 		uint8_t vni[4];
1525 	} id = { .vlan_id = 0, };
1526 	uint32_t vlan_id = 0;
1527 
1528 
1529 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1530 		return rte_flow_error_set(error, ENOTSUP,
1531 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1532 					  "multiple tunnel layers not"
1533 					  " supported");
1534 	/*
1535 	 * Verify only UDPv4 is present as defined in
1536 	 * https://tools.ietf.org/html/rfc7348
1537 	 */
1538 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1539 		return rte_flow_error_set(error, EINVAL,
1540 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1541 					  "no outer UDP layer found");
1542 	if (!mask)
1543 		mask = &rte_flow_item_vxlan_mask;
1544 	ret = mlx5_flow_item_acceptable
1545 		(item, (const uint8_t *)mask,
1546 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1547 		 sizeof(struct rte_flow_item_vxlan),
1548 		 error);
1549 	if (ret < 0)
1550 		return ret;
1551 	if (spec) {
1552 		memcpy(&id.vni[1], spec->vni, 3);
1553 		vlan_id = id.vlan_id;
1554 		memcpy(&id.vni[1], mask->vni, 3);
1555 		vlan_id &= id.vlan_id;
1556 	}
1557 	/*
1558 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1559 	 * only this layer is defined in the Verbs specification it is
1560 	 * interpreted as wildcard and all packets will match this
1561 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1562 	 * udp), all packets matching the layers before will also
1563 	 * match this rule.  To avoid such situation, VNI 0 is
1564 	 * currently refused.
1565 	 */
1566 	if (!vlan_id)
1567 		return rte_flow_error_set(error, ENOTSUP,
1568 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1569 					  "VXLAN vni cannot be 0");
1570 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1571 		return rte_flow_error_set(error, ENOTSUP,
1572 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1573 					  "VXLAN tunnel must be fully defined");
1574 	return 0;
1575 }
1576 
1577 /**
1578  * Validate VXLAN_GPE item.
1579  *
1580  * @param[in] item
1581  *   Item specification.
1582  * @param[in] item_flags
1583  *   Bit-fields that holds the items detected until now.
1584  * @param[in] priv
1585  *   Pointer to the private data structure.
1586  * @param[in] target_protocol
1587  *   The next protocol in the previous item.
1588  * @param[out] error
1589  *   Pointer to error structure.
1590  *
1591  * @return
1592  *   0 on success, a negative errno value otherwise and rte_errno is set.
1593  */
1594 int
1595 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1596 				  uint64_t item_flags,
1597 				  struct rte_eth_dev *dev,
1598 				  struct rte_flow_error *error)
1599 {
1600 	struct mlx5_priv *priv = dev->data->dev_private;
1601 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1602 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1603 	int ret;
1604 	union vni {
1605 		uint32_t vlan_id;
1606 		uint8_t vni[4];
1607 	} id = { .vlan_id = 0, };
1608 	uint32_t vlan_id = 0;
1609 
1610 	if (!priv->config.l3_vxlan_en)
1611 		return rte_flow_error_set(error, ENOTSUP,
1612 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1613 					  "L3 VXLAN is not enabled by device"
1614 					  " parameter and/or not configured in"
1615 					  " firmware");
1616 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1617 		return rte_flow_error_set(error, ENOTSUP,
1618 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1619 					  "multiple tunnel layers not"
1620 					  " supported");
1621 	/*
1622 	 * Verify only UDPv4 is present as defined in
1623 	 * https://tools.ietf.org/html/rfc7348
1624 	 */
1625 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1626 		return rte_flow_error_set(error, EINVAL,
1627 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1628 					  "no outer UDP layer found");
1629 	if (!mask)
1630 		mask = &rte_flow_item_vxlan_gpe_mask;
1631 	ret = mlx5_flow_item_acceptable
1632 		(item, (const uint8_t *)mask,
1633 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1634 		 sizeof(struct rte_flow_item_vxlan_gpe),
1635 		 error);
1636 	if (ret < 0)
1637 		return ret;
1638 	if (spec) {
1639 		if (spec->protocol)
1640 			return rte_flow_error_set(error, ENOTSUP,
1641 						  RTE_FLOW_ERROR_TYPE_ITEM,
1642 						  item,
1643 						  "VxLAN-GPE protocol"
1644 						  " not supported");
1645 		memcpy(&id.vni[1], spec->vni, 3);
1646 		vlan_id = id.vlan_id;
1647 		memcpy(&id.vni[1], mask->vni, 3);
1648 		vlan_id &= id.vlan_id;
1649 	}
1650 	/*
1651 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1652 	 * layer is defined in the Verbs specification it is interpreted as
1653 	 * wildcard and all packets will match this rule, if it follows a full
1654 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1655 	 * before will also match this rule.  To avoid such situation, VNI 0
1656 	 * is currently refused.
1657 	 */
1658 	if (!vlan_id)
1659 		return rte_flow_error_set(error, ENOTSUP,
1660 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1661 					  "VXLAN-GPE vni cannot be 0");
1662 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1663 		return rte_flow_error_set(error, ENOTSUP,
1664 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1665 					  "VXLAN-GPE tunnel must be fully"
1666 					  " defined");
1667 	return 0;
1668 }
1669 
1670 /**
1671  * Validate GRE item.
1672  *
1673  * @param[in] item
1674  *   Item specification.
1675  * @param[in] item_flags
1676  *   Bit flags to mark detected items.
1677  * @param[in] target_protocol
1678  *   The next protocol in the previous item.
1679  * @param[out] error
1680  *   Pointer to error structure.
1681  *
1682  * @return
1683  *   0 on success, a negative errno value otherwise and rte_errno is set.
1684  */
1685 int
1686 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1687 			    uint64_t item_flags,
1688 			    uint8_t target_protocol,
1689 			    struct rte_flow_error *error)
1690 {
1691 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1692 	const struct rte_flow_item_gre *mask = item->mask;
1693 	int ret;
1694 
1695 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1696 		return rte_flow_error_set(error, EINVAL,
1697 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1698 					  "protocol filtering not compatible"
1699 					  " with this GRE layer");
1700 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1701 		return rte_flow_error_set(error, ENOTSUP,
1702 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1703 					  "multiple tunnel layers not"
1704 					  " supported");
1705 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1706 		return rte_flow_error_set(error, ENOTSUP,
1707 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1708 					  "L3 Layer is missing");
1709 	if (!mask)
1710 		mask = &rte_flow_item_gre_mask;
1711 	ret = mlx5_flow_item_acceptable
1712 		(item, (const uint8_t *)mask,
1713 		 (const uint8_t *)&rte_flow_item_gre_mask,
1714 		 sizeof(struct rte_flow_item_gre), error);
1715 	if (ret < 0)
1716 		return ret;
1717 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1718 	if (spec && (spec->protocol & mask->protocol))
1719 		return rte_flow_error_set(error, ENOTSUP,
1720 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1721 					  "without MPLS support the"
1722 					  " specification cannot be used for"
1723 					  " filtering");
1724 #endif
1725 	return 0;
1726 }
1727 
1728 /**
1729  * Validate MPLS item.
1730  *
1731  * @param[in] dev
1732  *   Pointer to the rte_eth_dev structure.
1733  * @param[in] item
1734  *   Item specification.
1735  * @param[in] item_flags
1736  *   Bit-fields that holds the items detected until now.
1737  * @param[in] prev_layer
1738  *   The protocol layer indicated in previous item.
1739  * @param[out] error
1740  *   Pointer to error structure.
1741  *
1742  * @return
1743  *   0 on success, a negative errno value otherwise and rte_errno is set.
1744  */
1745 int
1746 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1747 			     const struct rte_flow_item *item __rte_unused,
1748 			     uint64_t item_flags __rte_unused,
1749 			     uint64_t prev_layer __rte_unused,
1750 			     struct rte_flow_error *error)
1751 {
1752 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1753 	const struct rte_flow_item_mpls *mask = item->mask;
1754 	struct mlx5_priv *priv = dev->data->dev_private;
1755 	int ret;
1756 
1757 	if (!priv->config.mpls_en)
1758 		return rte_flow_error_set(error, ENOTSUP,
1759 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1760 					  "MPLS not supported or"
1761 					  " disabled in firmware"
1762 					  " configuration.");
1763 	/* MPLS over IP, UDP, GRE is allowed */
1764 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1765 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1766 			    MLX5_FLOW_LAYER_GRE)))
1767 		return rte_flow_error_set(error, EINVAL,
1768 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1769 					  "protocol filtering not compatible"
1770 					  " with MPLS layer");
1771 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1772 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1773 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1774 		return rte_flow_error_set(error, ENOTSUP,
1775 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1776 					  "multiple tunnel layers not"
1777 					  " supported");
1778 	if (!mask)
1779 		mask = &rte_flow_item_mpls_mask;
1780 	ret = mlx5_flow_item_acceptable
1781 		(item, (const uint8_t *)mask,
1782 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1783 		 sizeof(struct rte_flow_item_mpls), error);
1784 	if (ret < 0)
1785 		return ret;
1786 	return 0;
1787 #endif
1788 	return rte_flow_error_set(error, ENOTSUP,
1789 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1790 				  "MPLS is not supported by Verbs, please"
1791 				  " update.");
1792 }
1793 
1794 static int
1795 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1796 		   const struct rte_flow_attr *attr __rte_unused,
1797 		   const struct rte_flow_item items[] __rte_unused,
1798 		   const struct rte_flow_action actions[] __rte_unused,
1799 		   struct rte_flow_error *error)
1800 {
1801 	return rte_flow_error_set(error, ENOTSUP,
1802 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1803 }
1804 
1805 static struct mlx5_flow *
1806 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1807 		  const struct rte_flow_item items[] __rte_unused,
1808 		  const struct rte_flow_action actions[] __rte_unused,
1809 		  struct rte_flow_error *error)
1810 {
1811 	rte_flow_error_set(error, ENOTSUP,
1812 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1813 	return NULL;
1814 }
1815 
1816 static int
1817 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1818 		    struct mlx5_flow *dev_flow __rte_unused,
1819 		    const struct rte_flow_attr *attr __rte_unused,
1820 		    const struct rte_flow_item items[] __rte_unused,
1821 		    const struct rte_flow_action actions[] __rte_unused,
1822 		    struct rte_flow_error *error)
1823 {
1824 	return rte_flow_error_set(error, ENOTSUP,
1825 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1826 }
1827 
1828 static int
1829 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1830 		struct rte_flow *flow __rte_unused,
1831 		struct rte_flow_error *error)
1832 {
1833 	return rte_flow_error_set(error, ENOTSUP,
1834 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1835 }
1836 
1837 static void
1838 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1839 		 struct rte_flow *flow __rte_unused)
1840 {
1841 }
1842 
1843 static void
1844 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1845 		  struct rte_flow *flow __rte_unused)
1846 {
1847 }
1848 
1849 static int
1850 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1851 		struct rte_flow *flow __rte_unused,
1852 		const struct rte_flow_action *actions __rte_unused,
1853 		void *data __rte_unused,
1854 		struct rte_flow_error *error)
1855 {
1856 	return rte_flow_error_set(error, ENOTSUP,
1857 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1858 }
1859 
1860 /* Void driver to protect from null pointer reference. */
1861 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1862 	.validate = flow_null_validate,
1863 	.prepare = flow_null_prepare,
1864 	.translate = flow_null_translate,
1865 	.apply = flow_null_apply,
1866 	.remove = flow_null_remove,
1867 	.destroy = flow_null_destroy,
1868 	.query = flow_null_query,
1869 };
1870 
1871 /**
1872  * Select flow driver type according to flow attributes and device
1873  * configuration.
1874  *
1875  * @param[in] dev
1876  *   Pointer to the dev structure.
1877  * @param[in] attr
1878  *   Pointer to the flow attributes.
1879  *
1880  * @return
1881  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1882  */
1883 static enum mlx5_flow_drv_type
1884 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1885 {
1886 	struct mlx5_priv *priv = dev->data->dev_private;
1887 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1888 
1889 	if (attr->transfer && priv->config.dv_esw_en)
1890 		type = MLX5_FLOW_TYPE_DV;
1891 	if (!attr->transfer)
1892 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1893 						 MLX5_FLOW_TYPE_VERBS;
1894 	return type;
1895 }
1896 
1897 #define flow_get_drv_ops(type) flow_drv_ops[type]
1898 
1899 /**
1900  * Flow driver validation API. This abstracts calling driver specific functions.
1901  * The type of flow driver is determined according to flow attributes.
1902  *
1903  * @param[in] dev
1904  *   Pointer to the dev structure.
1905  * @param[in] attr
1906  *   Pointer to the flow attributes.
1907  * @param[in] items
1908  *   Pointer to the list of items.
1909  * @param[in] actions
1910  *   Pointer to the list of actions.
1911  * @param[out] error
1912  *   Pointer to the error structure.
1913  *
1914  * @return
1915  *   0 on success, a negative errno value otherwise and rte_errno is set.
1916  */
1917 static inline int
1918 flow_drv_validate(struct rte_eth_dev *dev,
1919 		  const struct rte_flow_attr *attr,
1920 		  const struct rte_flow_item items[],
1921 		  const struct rte_flow_action actions[],
1922 		  struct rte_flow_error *error)
1923 {
1924 	const struct mlx5_flow_driver_ops *fops;
1925 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1926 
1927 	fops = flow_get_drv_ops(type);
1928 	return fops->validate(dev, attr, items, actions, error);
1929 }
1930 
1931 /**
1932  * Flow driver preparation API. This abstracts calling driver specific
1933  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1934  * calculates the size of memory required for device flow, allocates the memory,
1935  * initializes the device flow and returns the pointer.
1936  *
1937  * @note
1938  *   This function initializes device flow structure such as dv or verbs in
1939  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1940  *   rest. For example, adding returning device flow to flow->dev_flow list and
1941  *   setting backward reference to the flow should be done out of this function.
1942  *   layers field is not filled either.
1943  *
1944  * @param[in] attr
1945  *   Pointer to the flow attributes.
1946  * @param[in] items
1947  *   Pointer to the list of items.
1948  * @param[in] actions
1949  *   Pointer to the list of actions.
1950  * @param[out] error
1951  *   Pointer to the error structure.
1952  *
1953  * @return
1954  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1955  */
1956 static inline struct mlx5_flow *
1957 flow_drv_prepare(const struct rte_flow *flow,
1958 		 const struct rte_flow_attr *attr,
1959 		 const struct rte_flow_item items[],
1960 		 const struct rte_flow_action actions[],
1961 		 struct rte_flow_error *error)
1962 {
1963 	const struct mlx5_flow_driver_ops *fops;
1964 	enum mlx5_flow_drv_type type = flow->drv_type;
1965 
1966 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1967 	fops = flow_get_drv_ops(type);
1968 	return fops->prepare(attr, items, actions, error);
1969 }
1970 
1971 /**
1972  * Flow driver translation API. This abstracts calling driver specific
1973  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1974  * translates a generic flow into a driver flow. flow_drv_prepare() must
1975  * precede.
1976  *
1977  * @note
1978  *   dev_flow->layers could be filled as a result of parsing during translation
1979  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1980  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1981  *   flow->actions could be overwritten even though all the expanded dev_flows
1982  *   have the same actions.
1983  *
1984  * @param[in] dev
1985  *   Pointer to the rte dev structure.
1986  * @param[in, out] dev_flow
1987  *   Pointer to the mlx5 flow.
1988  * @param[in] attr
1989  *   Pointer to the flow attributes.
1990  * @param[in] items
1991  *   Pointer to the list of items.
1992  * @param[in] actions
1993  *   Pointer to the list of actions.
1994  * @param[out] error
1995  *   Pointer to the error structure.
1996  *
1997  * @return
1998  *   0 on success, a negative errno value otherwise and rte_errno is set.
1999  */
2000 static inline int
2001 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2002 		   const struct rte_flow_attr *attr,
2003 		   const struct rte_flow_item items[],
2004 		   const struct rte_flow_action actions[],
2005 		   struct rte_flow_error *error)
2006 {
2007 	const struct mlx5_flow_driver_ops *fops;
2008 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2009 
2010 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2011 	fops = flow_get_drv_ops(type);
2012 	return fops->translate(dev, dev_flow, attr, items, actions, error);
2013 }
2014 
2015 /**
2016  * Flow driver apply API. This abstracts calling driver specific functions.
2017  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2018  * translated driver flows on to device. flow_drv_translate() must precede.
2019  *
2020  * @param[in] dev
2021  *   Pointer to Ethernet device structure.
2022  * @param[in, out] flow
2023  *   Pointer to flow structure.
2024  * @param[out] error
2025  *   Pointer to error structure.
2026  *
2027  * @return
2028  *   0 on success, a negative errno value otherwise and rte_errno is set.
2029  */
2030 static inline int
2031 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2032 	       struct rte_flow_error *error)
2033 {
2034 	const struct mlx5_flow_driver_ops *fops;
2035 	enum mlx5_flow_drv_type type = flow->drv_type;
2036 
2037 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2038 	fops = flow_get_drv_ops(type);
2039 	return fops->apply(dev, flow, error);
2040 }
2041 
2042 /**
2043  * Flow driver remove API. This abstracts calling driver specific functions.
2044  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2045  * on device. All the resources of the flow should be freed by calling
2046  * flow_drv_destroy().
2047  *
2048  * @param[in] dev
2049  *   Pointer to Ethernet device.
2050  * @param[in, out] flow
2051  *   Pointer to flow structure.
2052  */
2053 static inline void
2054 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2055 {
2056 	const struct mlx5_flow_driver_ops *fops;
2057 	enum mlx5_flow_drv_type type = flow->drv_type;
2058 
2059 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2060 	fops = flow_get_drv_ops(type);
2061 	fops->remove(dev, flow);
2062 }
2063 
2064 /**
2065  * Flow driver destroy API. This abstracts calling driver specific functions.
2066  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2067  * on device and releases resources of the flow.
2068  *
2069  * @param[in] dev
2070  *   Pointer to Ethernet device.
2071  * @param[in, out] flow
2072  *   Pointer to flow structure.
2073  */
2074 static inline void
2075 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2076 {
2077 	const struct mlx5_flow_driver_ops *fops;
2078 	enum mlx5_flow_drv_type type = flow->drv_type;
2079 
2080 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2081 	fops = flow_get_drv_ops(type);
2082 	fops->destroy(dev, flow);
2083 }
2084 
2085 /**
2086  * Validate a flow supported by the NIC.
2087  *
2088  * @see rte_flow_validate()
2089  * @see rte_flow_ops
2090  */
2091 int
2092 mlx5_flow_validate(struct rte_eth_dev *dev,
2093 		   const struct rte_flow_attr *attr,
2094 		   const struct rte_flow_item items[],
2095 		   const struct rte_flow_action actions[],
2096 		   struct rte_flow_error *error)
2097 {
2098 	int ret;
2099 
2100 	ret = flow_drv_validate(dev, attr, items, actions, error);
2101 	if (ret < 0)
2102 		return ret;
2103 	return 0;
2104 }
2105 
2106 /**
2107  * Get RSS action from the action list.
2108  *
2109  * @param[in] actions
2110  *   Pointer to the list of actions.
2111  *
2112  * @return
2113  *   Pointer to the RSS action if exist, else return NULL.
2114  */
2115 static const struct rte_flow_action_rss*
2116 flow_get_rss_action(const struct rte_flow_action actions[])
2117 {
2118 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2119 		switch (actions->type) {
2120 		case RTE_FLOW_ACTION_TYPE_RSS:
2121 			return (const struct rte_flow_action_rss *)
2122 			       actions->conf;
2123 		default:
2124 			break;
2125 		}
2126 	}
2127 	return NULL;
2128 }
2129 
2130 static unsigned int
2131 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2132 {
2133 	const struct rte_flow_item *item;
2134 	unsigned int has_vlan = 0;
2135 
2136 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2137 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2138 			has_vlan = 1;
2139 			break;
2140 		}
2141 	}
2142 	if (has_vlan)
2143 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2144 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2145 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2146 			       MLX5_EXPANSION_ROOT_OUTER;
2147 }
2148 
2149 /**
2150  * Create a flow and add it to @p list.
2151  *
2152  * @param dev
2153  *   Pointer to Ethernet device.
2154  * @param list
2155  *   Pointer to a TAILQ flow list.
2156  * @param[in] attr
2157  *   Flow rule attributes.
2158  * @param[in] items
2159  *   Pattern specification (list terminated by the END pattern item).
2160  * @param[in] actions
2161  *   Associated actions (list terminated by the END action).
2162  * @param[out] error
2163  *   Perform verbose error reporting if not NULL.
2164  *
2165  * @return
2166  *   A flow on success, NULL otherwise and rte_errno is set.
2167  */
2168 static struct rte_flow *
2169 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2170 		 const struct rte_flow_attr *attr,
2171 		 const struct rte_flow_item items[],
2172 		 const struct rte_flow_action actions[],
2173 		 struct rte_flow_error *error)
2174 {
2175 	struct rte_flow *flow = NULL;
2176 	struct mlx5_flow *dev_flow;
2177 	const struct rte_flow_action_rss *rss;
2178 	union {
2179 		struct rte_flow_expand_rss buf;
2180 		uint8_t buffer[2048];
2181 	} expand_buffer;
2182 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2183 	int ret;
2184 	uint32_t i;
2185 	uint32_t flow_size;
2186 
2187 	ret = flow_drv_validate(dev, attr, items, actions, error);
2188 	if (ret < 0)
2189 		return NULL;
2190 	flow_size = sizeof(struct rte_flow);
2191 	rss = flow_get_rss_action(actions);
2192 	if (rss)
2193 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2194 					    sizeof(void *));
2195 	else
2196 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2197 	flow = rte_calloc(__func__, 1, flow_size, 0);
2198 	if (!flow) {
2199 		rte_errno = ENOMEM;
2200 		return NULL;
2201 	}
2202 	flow->drv_type = flow_get_drv_type(dev, attr);
2203 	flow->ingress = attr->ingress;
2204 	flow->transfer = attr->transfer;
2205 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2206 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2207 	flow->queue = (void *)(flow + 1);
2208 	LIST_INIT(&flow->dev_flows);
2209 	if (rss && rss->types) {
2210 		unsigned int graph_root;
2211 
2212 		graph_root = find_graph_root(items, rss->level);
2213 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2214 					  items, rss->types,
2215 					  mlx5_support_expansion,
2216 					  graph_root);
2217 		assert(ret > 0 &&
2218 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2219 	} else {
2220 		buf->entries = 1;
2221 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2222 	}
2223 	for (i = 0; i < buf->entries; ++i) {
2224 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2225 					    actions, error);
2226 		if (!dev_flow)
2227 			goto error;
2228 		dev_flow->flow = flow;
2229 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2230 		ret = flow_drv_translate(dev, dev_flow, attr,
2231 					 buf->entry[i].pattern,
2232 					 actions, error);
2233 		if (ret < 0)
2234 			goto error;
2235 	}
2236 	if (dev->data->dev_started) {
2237 		ret = flow_drv_apply(dev, flow, error);
2238 		if (ret < 0)
2239 			goto error;
2240 	}
2241 	TAILQ_INSERT_TAIL(list, flow, next);
2242 	flow_rxq_flags_set(dev, flow);
2243 	return flow;
2244 error:
2245 	ret = rte_errno; /* Save rte_errno before cleanup. */
2246 	assert(flow);
2247 	flow_drv_destroy(dev, flow);
2248 	rte_free(flow);
2249 	rte_errno = ret; /* Restore rte_errno. */
2250 	return NULL;
2251 }
2252 
2253 /**
2254  * Create a flow.
2255  *
2256  * @see rte_flow_create()
2257  * @see rte_flow_ops
2258  */
2259 struct rte_flow *
2260 mlx5_flow_create(struct rte_eth_dev *dev,
2261 		 const struct rte_flow_attr *attr,
2262 		 const struct rte_flow_item items[],
2263 		 const struct rte_flow_action actions[],
2264 		 struct rte_flow_error *error)
2265 {
2266 	struct mlx5_priv *priv = dev->data->dev_private;
2267 
2268 	return flow_list_create(dev, &priv->flows,
2269 				attr, items, actions, error);
2270 }
2271 
2272 /**
2273  * Destroy a flow in a list.
2274  *
2275  * @param dev
2276  *   Pointer to Ethernet device.
2277  * @param list
2278  *   Pointer to a TAILQ flow list.
2279  * @param[in] flow
2280  *   Flow to destroy.
2281  */
2282 static void
2283 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2284 		  struct rte_flow *flow)
2285 {
2286 	/*
2287 	 * Update RX queue flags only if port is started, otherwise it is
2288 	 * already clean.
2289 	 */
2290 	if (dev->data->dev_started)
2291 		flow_rxq_flags_trim(dev, flow);
2292 	flow_drv_destroy(dev, flow);
2293 	TAILQ_REMOVE(list, flow, next);
2294 	rte_free(flow->fdir);
2295 	rte_free(flow);
2296 }
2297 
2298 /**
2299  * Destroy all flows.
2300  *
2301  * @param dev
2302  *   Pointer to Ethernet device.
2303  * @param list
2304  *   Pointer to a TAILQ flow list.
2305  */
2306 void
2307 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2308 {
2309 	while (!TAILQ_EMPTY(list)) {
2310 		struct rte_flow *flow;
2311 
2312 		flow = TAILQ_FIRST(list);
2313 		flow_list_destroy(dev, list, flow);
2314 	}
2315 }
2316 
2317 /**
2318  * Remove all flows.
2319  *
2320  * @param dev
2321  *   Pointer to Ethernet device.
2322  * @param list
2323  *   Pointer to a TAILQ flow list.
2324  */
2325 void
2326 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2327 {
2328 	struct rte_flow *flow;
2329 
2330 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2331 		flow_drv_remove(dev, flow);
2332 	flow_rxq_flags_clear(dev);
2333 }
2334 
2335 /**
2336  * Add all flows.
2337  *
2338  * @param dev
2339  *   Pointer to Ethernet device.
2340  * @param list
2341  *   Pointer to a TAILQ flow list.
2342  *
2343  * @return
2344  *   0 on success, a negative errno value otherwise and rte_errno is set.
2345  */
2346 int
2347 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2348 {
2349 	struct rte_flow *flow;
2350 	struct rte_flow_error error;
2351 	int ret = 0;
2352 
2353 	TAILQ_FOREACH(flow, list, next) {
2354 		ret = flow_drv_apply(dev, flow, &error);
2355 		if (ret < 0)
2356 			goto error;
2357 		flow_rxq_flags_set(dev, flow);
2358 	}
2359 	return 0;
2360 error:
2361 	ret = rte_errno; /* Save rte_errno before cleanup. */
2362 	mlx5_flow_stop(dev, list);
2363 	rte_errno = ret; /* Restore rte_errno. */
2364 	return -rte_errno;
2365 }
2366 
2367 /**
2368  * Verify the flow list is empty
2369  *
2370  * @param dev
2371  *  Pointer to Ethernet device.
2372  *
2373  * @return the number of flows not released.
2374  */
2375 int
2376 mlx5_flow_verify(struct rte_eth_dev *dev)
2377 {
2378 	struct mlx5_priv *priv = dev->data->dev_private;
2379 	struct rte_flow *flow;
2380 	int ret = 0;
2381 
2382 	TAILQ_FOREACH(flow, &priv->flows, next) {
2383 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2384 			dev->data->port_id, (void *)flow);
2385 		++ret;
2386 	}
2387 	return ret;
2388 }
2389 
2390 /**
2391  * Enable a control flow configured from the control plane.
2392  *
2393  * @param dev
2394  *   Pointer to Ethernet device.
2395  * @param eth_spec
2396  *   An Ethernet flow spec to apply.
2397  * @param eth_mask
2398  *   An Ethernet flow mask to apply.
2399  * @param vlan_spec
2400  *   A VLAN flow spec to apply.
2401  * @param vlan_mask
2402  *   A VLAN flow mask to apply.
2403  *
2404  * @return
2405  *   0 on success, a negative errno value otherwise and rte_errno is set.
2406  */
2407 int
2408 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2409 		    struct rte_flow_item_eth *eth_spec,
2410 		    struct rte_flow_item_eth *eth_mask,
2411 		    struct rte_flow_item_vlan *vlan_spec,
2412 		    struct rte_flow_item_vlan *vlan_mask)
2413 {
2414 	struct mlx5_priv *priv = dev->data->dev_private;
2415 	const struct rte_flow_attr attr = {
2416 		.ingress = 1,
2417 		.priority = MLX5_FLOW_PRIO_RSVD,
2418 	};
2419 	struct rte_flow_item items[] = {
2420 		{
2421 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2422 			.spec = eth_spec,
2423 			.last = NULL,
2424 			.mask = eth_mask,
2425 		},
2426 		{
2427 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2428 					      RTE_FLOW_ITEM_TYPE_END,
2429 			.spec = vlan_spec,
2430 			.last = NULL,
2431 			.mask = vlan_mask,
2432 		},
2433 		{
2434 			.type = RTE_FLOW_ITEM_TYPE_END,
2435 		},
2436 	};
2437 	uint16_t queue[priv->reta_idx_n];
2438 	struct rte_flow_action_rss action_rss = {
2439 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2440 		.level = 0,
2441 		.types = priv->rss_conf.rss_hf,
2442 		.key_len = priv->rss_conf.rss_key_len,
2443 		.queue_num = priv->reta_idx_n,
2444 		.key = priv->rss_conf.rss_key,
2445 		.queue = queue,
2446 	};
2447 	struct rte_flow_action actions[] = {
2448 		{
2449 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2450 			.conf = &action_rss,
2451 		},
2452 		{
2453 			.type = RTE_FLOW_ACTION_TYPE_END,
2454 		},
2455 	};
2456 	struct rte_flow *flow;
2457 	struct rte_flow_error error;
2458 	unsigned int i;
2459 
2460 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2461 		return 0;
2462 	}
2463 	for (i = 0; i != priv->reta_idx_n; ++i)
2464 		queue[i] = (*priv->reta_idx)[i];
2465 	flow = flow_list_create(dev, &priv->ctrl_flows,
2466 				&attr, items, actions, &error);
2467 	if (!flow)
2468 		return -rte_errno;
2469 	return 0;
2470 }
2471 
2472 /**
2473  * Enable a flow control configured from the control plane.
2474  *
2475  * @param dev
2476  *   Pointer to Ethernet device.
2477  * @param eth_spec
2478  *   An Ethernet flow spec to apply.
2479  * @param eth_mask
2480  *   An Ethernet flow mask to apply.
2481  *
2482  * @return
2483  *   0 on success, a negative errno value otherwise and rte_errno is set.
2484  */
2485 int
2486 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2487 	       struct rte_flow_item_eth *eth_spec,
2488 	       struct rte_flow_item_eth *eth_mask)
2489 {
2490 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2491 }
2492 
2493 /**
2494  * Destroy a flow.
2495  *
2496  * @see rte_flow_destroy()
2497  * @see rte_flow_ops
2498  */
2499 int
2500 mlx5_flow_destroy(struct rte_eth_dev *dev,
2501 		  struct rte_flow *flow,
2502 		  struct rte_flow_error *error __rte_unused)
2503 {
2504 	struct mlx5_priv *priv = dev->data->dev_private;
2505 
2506 	flow_list_destroy(dev, &priv->flows, flow);
2507 	return 0;
2508 }
2509 
2510 /**
2511  * Destroy all flows.
2512  *
2513  * @see rte_flow_flush()
2514  * @see rte_flow_ops
2515  */
2516 int
2517 mlx5_flow_flush(struct rte_eth_dev *dev,
2518 		struct rte_flow_error *error __rte_unused)
2519 {
2520 	struct mlx5_priv *priv = dev->data->dev_private;
2521 
2522 	mlx5_flow_list_flush(dev, &priv->flows);
2523 	return 0;
2524 }
2525 
2526 /**
2527  * Isolated mode.
2528  *
2529  * @see rte_flow_isolate()
2530  * @see rte_flow_ops
2531  */
2532 int
2533 mlx5_flow_isolate(struct rte_eth_dev *dev,
2534 		  int enable,
2535 		  struct rte_flow_error *error)
2536 {
2537 	struct mlx5_priv *priv = dev->data->dev_private;
2538 
2539 	if (dev->data->dev_started) {
2540 		rte_flow_error_set(error, EBUSY,
2541 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2542 				   NULL,
2543 				   "port must be stopped first");
2544 		return -rte_errno;
2545 	}
2546 	priv->isolated = !!enable;
2547 	if (enable)
2548 		dev->dev_ops = &mlx5_dev_ops_isolate;
2549 	else
2550 		dev->dev_ops = &mlx5_dev_ops;
2551 	return 0;
2552 }
2553 
2554 /**
2555  * Query a flow.
2556  *
2557  * @see rte_flow_query()
2558  * @see rte_flow_ops
2559  */
2560 static int
2561 flow_drv_query(struct rte_eth_dev *dev,
2562 	       struct rte_flow *flow,
2563 	       const struct rte_flow_action *actions,
2564 	       void *data,
2565 	       struct rte_flow_error *error)
2566 {
2567 	const struct mlx5_flow_driver_ops *fops;
2568 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2569 
2570 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2571 	fops = flow_get_drv_ops(ftype);
2572 
2573 	return fops->query(dev, flow, actions, data, error);
2574 }
2575 
2576 /**
2577  * Query a flow.
2578  *
2579  * @see rte_flow_query()
2580  * @see rte_flow_ops
2581  */
2582 int
2583 mlx5_flow_query(struct rte_eth_dev *dev,
2584 		struct rte_flow *flow,
2585 		const struct rte_flow_action *actions,
2586 		void *data,
2587 		struct rte_flow_error *error)
2588 {
2589 	int ret;
2590 
2591 	ret = flow_drv_query(dev, flow, actions, data, error);
2592 	if (ret < 0)
2593 		return ret;
2594 	return 0;
2595 }
2596 
2597 /**
2598  * Convert a flow director filter to a generic flow.
2599  *
2600  * @param dev
2601  *   Pointer to Ethernet device.
2602  * @param fdir_filter
2603  *   Flow director filter to add.
2604  * @param attributes
2605  *   Generic flow parameters structure.
2606  *
2607  * @return
2608  *   0 on success, a negative errno value otherwise and rte_errno is set.
2609  */
2610 static int
2611 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2612 			 const struct rte_eth_fdir_filter *fdir_filter,
2613 			 struct mlx5_fdir *attributes)
2614 {
2615 	struct mlx5_priv *priv = dev->data->dev_private;
2616 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2617 	const struct rte_eth_fdir_masks *mask =
2618 		&dev->data->dev_conf.fdir_conf.mask;
2619 
2620 	/* Validate queue number. */
2621 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2622 		DRV_LOG(ERR, "port %u invalid queue number %d",
2623 			dev->data->port_id, fdir_filter->action.rx_queue);
2624 		rte_errno = EINVAL;
2625 		return -rte_errno;
2626 	}
2627 	attributes->attr.ingress = 1;
2628 	attributes->items[0] = (struct rte_flow_item) {
2629 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2630 		.spec = &attributes->l2,
2631 		.mask = &attributes->l2_mask,
2632 	};
2633 	switch (fdir_filter->action.behavior) {
2634 	case RTE_ETH_FDIR_ACCEPT:
2635 		attributes->actions[0] = (struct rte_flow_action){
2636 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2637 			.conf = &attributes->queue,
2638 		};
2639 		break;
2640 	case RTE_ETH_FDIR_REJECT:
2641 		attributes->actions[0] = (struct rte_flow_action){
2642 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2643 		};
2644 		break;
2645 	default:
2646 		DRV_LOG(ERR, "port %u invalid behavior %d",
2647 			dev->data->port_id,
2648 			fdir_filter->action.behavior);
2649 		rte_errno = ENOTSUP;
2650 		return -rte_errno;
2651 	}
2652 	attributes->queue.index = fdir_filter->action.rx_queue;
2653 	/* Handle L3. */
2654 	switch (fdir_filter->input.flow_type) {
2655 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2656 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2657 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2658 		attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2659 			.src_addr = input->flow.ip4_flow.src_ip,
2660 			.dst_addr = input->flow.ip4_flow.dst_ip,
2661 			.time_to_live = input->flow.ip4_flow.ttl,
2662 			.type_of_service = input->flow.ip4_flow.tos,
2663 		};
2664 		attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2665 			.src_addr = mask->ipv4_mask.src_ip,
2666 			.dst_addr = mask->ipv4_mask.dst_ip,
2667 			.time_to_live = mask->ipv4_mask.ttl,
2668 			.type_of_service = mask->ipv4_mask.tos,
2669 			.next_proto_id = mask->ipv4_mask.proto,
2670 		};
2671 		attributes->items[1] = (struct rte_flow_item){
2672 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2673 			.spec = &attributes->l3,
2674 			.mask = &attributes->l3_mask,
2675 		};
2676 		break;
2677 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2678 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2679 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2680 		attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2681 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2682 			.proto = input->flow.ipv6_flow.proto,
2683 		};
2684 
2685 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2686 		       input->flow.ipv6_flow.src_ip,
2687 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2688 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2689 		       input->flow.ipv6_flow.dst_ip,
2690 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2691 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2692 		       mask->ipv6_mask.src_ip,
2693 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2694 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2695 		       mask->ipv6_mask.dst_ip,
2696 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2697 		attributes->items[1] = (struct rte_flow_item){
2698 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2699 			.spec = &attributes->l3,
2700 			.mask = &attributes->l3_mask,
2701 		};
2702 		break;
2703 	default:
2704 		DRV_LOG(ERR, "port %u invalid flow type%d",
2705 			dev->data->port_id, fdir_filter->input.flow_type);
2706 		rte_errno = ENOTSUP;
2707 		return -rte_errno;
2708 	}
2709 	/* Handle L4. */
2710 	switch (fdir_filter->input.flow_type) {
2711 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2712 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
2713 			.src_port = input->flow.udp4_flow.src_port,
2714 			.dst_port = input->flow.udp4_flow.dst_port,
2715 		};
2716 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2717 			.src_port = mask->src_port_mask,
2718 			.dst_port = mask->dst_port_mask,
2719 		};
2720 		attributes->items[2] = (struct rte_flow_item){
2721 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2722 			.spec = &attributes->l4,
2723 			.mask = &attributes->l4_mask,
2724 		};
2725 		break;
2726 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2727 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2728 			.src_port = input->flow.tcp4_flow.src_port,
2729 			.dst_port = input->flow.tcp4_flow.dst_port,
2730 		};
2731 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2732 			.src_port = mask->src_port_mask,
2733 			.dst_port = mask->dst_port_mask,
2734 		};
2735 		attributes->items[2] = (struct rte_flow_item){
2736 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2737 			.spec = &attributes->l4,
2738 			.mask = &attributes->l4_mask,
2739 		};
2740 		break;
2741 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2742 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
2743 			.src_port = input->flow.udp6_flow.src_port,
2744 			.dst_port = input->flow.udp6_flow.dst_port,
2745 		};
2746 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2747 			.src_port = mask->src_port_mask,
2748 			.dst_port = mask->dst_port_mask,
2749 		};
2750 		attributes->items[2] = (struct rte_flow_item){
2751 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2752 			.spec = &attributes->l4,
2753 			.mask = &attributes->l4_mask,
2754 		};
2755 		break;
2756 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2757 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2758 			.src_port = input->flow.tcp6_flow.src_port,
2759 			.dst_port = input->flow.tcp6_flow.dst_port,
2760 		};
2761 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2762 			.src_port = mask->src_port_mask,
2763 			.dst_port = mask->dst_port_mask,
2764 		};
2765 		attributes->items[2] = (struct rte_flow_item){
2766 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2767 			.spec = &attributes->l4,
2768 			.mask = &attributes->l4_mask,
2769 		};
2770 		break;
2771 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2772 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2773 		break;
2774 	default:
2775 		DRV_LOG(ERR, "port %u invalid flow type%d",
2776 			dev->data->port_id, fdir_filter->input.flow_type);
2777 		rte_errno = ENOTSUP;
2778 		return -rte_errno;
2779 	}
2780 	return 0;
2781 }
2782 
2783 #define FLOW_FDIR_CMP(f1, f2, fld) \
2784 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2785 
2786 /**
2787  * Compare two FDIR flows. If items and actions are identical, the two flows are
2788  * regarded as same.
2789  *
2790  * @param dev
2791  *   Pointer to Ethernet device.
2792  * @param f1
2793  *   FDIR flow to compare.
2794  * @param f2
2795  *   FDIR flow to compare.
2796  *
2797  * @return
2798  *   Zero on match, 1 otherwise.
2799  */
2800 static int
2801 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2802 {
2803 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2804 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2805 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2806 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2807 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2808 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2809 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2810 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2811 		return 1;
2812 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2813 	    FLOW_FDIR_CMP(f1, f2, queue))
2814 		return 1;
2815 	return 0;
2816 }
2817 
2818 /**
2819  * Search device flow list to find out a matched FDIR flow.
2820  *
2821  * @param dev
2822  *   Pointer to Ethernet device.
2823  * @param fdir_flow
2824  *   FDIR flow to lookup.
2825  *
2826  * @return
2827  *   Pointer of flow if found, NULL otherwise.
2828  */
2829 static struct rte_flow *
2830 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2831 {
2832 	struct mlx5_priv *priv = dev->data->dev_private;
2833 	struct rte_flow *flow = NULL;
2834 
2835 	assert(fdir_flow);
2836 	TAILQ_FOREACH(flow, &priv->flows, next) {
2837 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2838 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2839 				dev->data->port_id, (void *)flow);
2840 			break;
2841 		}
2842 	}
2843 	return flow;
2844 }
2845 
2846 /**
2847  * Add new flow director filter and store it in list.
2848  *
2849  * @param dev
2850  *   Pointer to Ethernet device.
2851  * @param fdir_filter
2852  *   Flow director filter to add.
2853  *
2854  * @return
2855  *   0 on success, a negative errno value otherwise and rte_errno is set.
2856  */
2857 static int
2858 flow_fdir_filter_add(struct rte_eth_dev *dev,
2859 		     const struct rte_eth_fdir_filter *fdir_filter)
2860 {
2861 	struct mlx5_priv *priv = dev->data->dev_private;
2862 	struct mlx5_fdir *fdir_flow;
2863 	struct rte_flow *flow;
2864 	int ret;
2865 
2866 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2867 	if (!fdir_flow) {
2868 		rte_errno = ENOMEM;
2869 		return -rte_errno;
2870 	}
2871 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2872 	if (ret)
2873 		goto error;
2874 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2875 	if (flow) {
2876 		rte_errno = EEXIST;
2877 		goto error;
2878 	}
2879 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2880 				fdir_flow->items, fdir_flow->actions, NULL);
2881 	if (!flow)
2882 		goto error;
2883 	assert(!flow->fdir);
2884 	flow->fdir = fdir_flow;
2885 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2886 		dev->data->port_id, (void *)flow);
2887 	return 0;
2888 error:
2889 	rte_free(fdir_flow);
2890 	return -rte_errno;
2891 }
2892 
2893 /**
2894  * Delete specific filter.
2895  *
2896  * @param dev
2897  *   Pointer to Ethernet device.
2898  * @param fdir_filter
2899  *   Filter to be deleted.
2900  *
2901  * @return
2902  *   0 on success, a negative errno value otherwise and rte_errno is set.
2903  */
2904 static int
2905 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2906 			const struct rte_eth_fdir_filter *fdir_filter)
2907 {
2908 	struct mlx5_priv *priv = dev->data->dev_private;
2909 	struct rte_flow *flow;
2910 	struct mlx5_fdir fdir_flow = {
2911 		.attr.group = 0,
2912 	};
2913 	int ret;
2914 
2915 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2916 	if (ret)
2917 		return -rte_errno;
2918 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2919 	if (!flow) {
2920 		rte_errno = ENOENT;
2921 		return -rte_errno;
2922 	}
2923 	flow_list_destroy(dev, &priv->flows, flow);
2924 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2925 		dev->data->port_id, (void *)flow);
2926 	return 0;
2927 }
2928 
2929 /**
2930  * Update queue for specific filter.
2931  *
2932  * @param dev
2933  *   Pointer to Ethernet device.
2934  * @param fdir_filter
2935  *   Filter to be updated.
2936  *
2937  * @return
2938  *   0 on success, a negative errno value otherwise and rte_errno is set.
2939  */
2940 static int
2941 flow_fdir_filter_update(struct rte_eth_dev *dev,
2942 			const struct rte_eth_fdir_filter *fdir_filter)
2943 {
2944 	int ret;
2945 
2946 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2947 	if (ret)
2948 		return ret;
2949 	return flow_fdir_filter_add(dev, fdir_filter);
2950 }
2951 
2952 /**
2953  * Flush all filters.
2954  *
2955  * @param dev
2956  *   Pointer to Ethernet device.
2957  */
2958 static void
2959 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2960 {
2961 	struct mlx5_priv *priv = dev->data->dev_private;
2962 
2963 	mlx5_flow_list_flush(dev, &priv->flows);
2964 }
2965 
2966 /**
2967  * Get flow director information.
2968  *
2969  * @param dev
2970  *   Pointer to Ethernet device.
2971  * @param[out] fdir_info
2972  *   Resulting flow director information.
2973  */
2974 static void
2975 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2976 {
2977 	struct rte_eth_fdir_masks *mask =
2978 		&dev->data->dev_conf.fdir_conf.mask;
2979 
2980 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2981 	fdir_info->guarant_spc = 0;
2982 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2983 	fdir_info->max_flexpayload = 0;
2984 	fdir_info->flow_types_mask[0] = 0;
2985 	fdir_info->flex_payload_unit = 0;
2986 	fdir_info->max_flex_payload_segment_num = 0;
2987 	fdir_info->flex_payload_limit = 0;
2988 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2989 }
2990 
2991 /**
2992  * Deal with flow director operations.
2993  *
2994  * @param dev
2995  *   Pointer to Ethernet device.
2996  * @param filter_op
2997  *   Operation to perform.
2998  * @param arg
2999  *   Pointer to operation-specific structure.
3000  *
3001  * @return
3002  *   0 on success, a negative errno value otherwise and rte_errno is set.
3003  */
3004 static int
3005 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3006 		    void *arg)
3007 {
3008 	enum rte_fdir_mode fdir_mode =
3009 		dev->data->dev_conf.fdir_conf.mode;
3010 
3011 	if (filter_op == RTE_ETH_FILTER_NOP)
3012 		return 0;
3013 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3014 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3015 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
3016 			dev->data->port_id, fdir_mode);
3017 		rte_errno = EINVAL;
3018 		return -rte_errno;
3019 	}
3020 	switch (filter_op) {
3021 	case RTE_ETH_FILTER_ADD:
3022 		return flow_fdir_filter_add(dev, arg);
3023 	case RTE_ETH_FILTER_UPDATE:
3024 		return flow_fdir_filter_update(dev, arg);
3025 	case RTE_ETH_FILTER_DELETE:
3026 		return flow_fdir_filter_delete(dev, arg);
3027 	case RTE_ETH_FILTER_FLUSH:
3028 		flow_fdir_filter_flush(dev);
3029 		break;
3030 	case RTE_ETH_FILTER_INFO:
3031 		flow_fdir_info_get(dev, arg);
3032 		break;
3033 	default:
3034 		DRV_LOG(DEBUG, "port %u unknown operation %u",
3035 			dev->data->port_id, filter_op);
3036 		rte_errno = EINVAL;
3037 		return -rte_errno;
3038 	}
3039 	return 0;
3040 }
3041 
3042 /**
3043  * Manage filter operations.
3044  *
3045  * @param dev
3046  *   Pointer to Ethernet device structure.
3047  * @param filter_type
3048  *   Filter type.
3049  * @param filter_op
3050  *   Operation to perform.
3051  * @param arg
3052  *   Pointer to operation-specific structure.
3053  *
3054  * @return
3055  *   0 on success, a negative errno value otherwise and rte_errno is set.
3056  */
3057 int
3058 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3059 		     enum rte_filter_type filter_type,
3060 		     enum rte_filter_op filter_op,
3061 		     void *arg)
3062 {
3063 	switch (filter_type) {
3064 	case RTE_ETH_FILTER_GENERIC:
3065 		if (filter_op != RTE_ETH_FILTER_GET) {
3066 			rte_errno = EINVAL;
3067 			return -rte_errno;
3068 		}
3069 		*(const void **)arg = &mlx5_flow_ops;
3070 		return 0;
3071 	case RTE_ETH_FILTER_FDIR:
3072 		return flow_fdir_ctrl_func(dev, filter_op, arg);
3073 	default:
3074 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
3075 			dev->data->port_id, filter_type);
3076 		rte_errno = ENOTSUP;
3077 		return -rte_errno;
3078 	}
3079 	return 0;
3080 }
3081