1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <stdalign.h> 7 #include <stdint.h> 8 #include <string.h> 9 #include <stdbool.h> 10 #include <sys/queue.h> 11 12 #include <rte_common.h> 13 #include <rte_ether.h> 14 #include <ethdev_driver.h> 15 #include <rte_eal_paging.h> 16 #include <rte_flow.h> 17 #include <rte_cycles.h> 18 #include <rte_flow_driver.h> 19 #include <rte_malloc.h> 20 #include <rte_ip.h> 21 22 #include <mlx5_glue.h> 23 #include <mlx5_devx_cmds.h> 24 #include <mlx5_prm.h> 25 #include <mlx5_malloc.h> 26 27 #include "mlx5_defs.h" 28 #include "mlx5.h" 29 #include "mlx5_flow.h" 30 #include "mlx5_flow_os.h" 31 #include "mlx5_rx.h" 32 #include "mlx5_tx.h" 33 #include "mlx5_common_os.h" 34 #include "rte_pmd_mlx5.h" 35 36 /* 37 * Shared array for quick translation between port_id and vport mask/values 38 * used for HWS rules. 39 */ 40 struct flow_hw_port_info mlx5_flow_hw_port_infos[RTE_MAX_ETHPORTS]; 41 42 /* 43 * A global structure to save the available REG_C_x for tags usage. 44 * The Meter color REG (ASO) and the last available one will be reserved 45 * for PMD internal usage. 46 * Since there is no "port" concept in the driver, it is assumed that the 47 * available tags set will be the minimum intersection. 48 * 3 - in FDB mode / 5 - in legacy mode 49 */ 50 uint32_t mlx5_flow_hw_avl_tags_init_cnt; 51 enum modify_reg mlx5_flow_hw_avl_tags[MLX5_FLOW_HW_TAGS_MAX] = {REG_NON}; 52 enum modify_reg mlx5_flow_hw_aso_tag; 53 54 struct tunnel_default_miss_ctx { 55 uint16_t *queue; 56 __extension__ 57 union { 58 struct rte_flow_action_rss action_rss; 59 struct rte_flow_action_queue miss_queue; 60 struct rte_flow_action_jump miss_jump; 61 uint8_t raw[0]; 62 }; 63 }; 64 65 static int 66 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 67 struct rte_flow *flow, 68 const struct rte_flow_attr *attr, 69 const struct rte_flow_action *app_actions, 70 uint32_t flow_idx, 71 const struct mlx5_flow_tunnel *tunnel, 72 struct tunnel_default_miss_ctx *ctx, 73 struct rte_flow_error *error); 74 static struct mlx5_flow_tunnel * 75 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id); 76 static void 77 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel); 78 static uint32_t 79 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 80 const struct mlx5_flow_tunnel *tunnel, 81 uint32_t group, uint32_t *table, 82 struct rte_flow_error *error); 83 84 /** Device flow drivers. */ 85 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 86 87 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 88 89 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 90 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 91 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H) 92 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 93 #endif 94 #ifdef HAVE_MLX5_HWS_SUPPORT 95 [MLX5_FLOW_TYPE_HW] = &mlx5_flow_hw_drv_ops, 96 #endif 97 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 98 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 99 }; 100 101 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */ 102 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \ 103 (const int []){ \ 104 __VA_ARGS__, 0, \ 105 } 106 107 /** Node object of input graph for mlx5_flow_expand_rss(). */ 108 struct mlx5_flow_expand_node { 109 const int *const next; 110 /**< 111 * List of next node indexes. Index 0 is interpreted as a terminator. 112 */ 113 const enum rte_flow_item_type type; 114 /**< Pattern item type of current node. */ 115 uint64_t rss_types; 116 /**< 117 * RSS types bit-field associated with this node 118 * (see RTE_ETH_RSS_* definitions). 119 */ 120 uint64_t node_flags; 121 /**< 122 * Bit-fields that define how the node is used in the expansion. 123 * (see MLX5_EXPANSION_NODE_* definitions). 124 */ 125 }; 126 127 /** Keep same format with mlx5_flow_expand_rss to share the buffer for expansion. */ 128 struct mlx5_flow_expand_sqn { 129 uint32_t entries; /** Number of entries */ 130 struct { 131 struct rte_flow_item *pattern; /**< Expanded pattern array. */ 132 uint32_t priority; /**< Priority offset for each expansion. */ 133 } entry[]; 134 }; 135 136 /* Optional expand field. The expansion alg will not go deeper. */ 137 #define MLX5_EXPANSION_NODE_OPTIONAL (UINT64_C(1) << 0) 138 139 /* The node is not added implicitly as expansion to the flow pattern. 140 * If the node type does not match the flow pattern item type, the 141 * expansion alg will go deeper to its next items. 142 * In the current implementation, the list of next nodes indexes can 143 * have up to one node with this flag set and it has to be the last 144 * node index (before the list terminator). 145 */ 146 #define MLX5_EXPANSION_NODE_EXPLICIT (UINT64_C(1) << 1) 147 148 /** Object returned by mlx5_flow_expand_rss(). */ 149 struct mlx5_flow_expand_rss { 150 uint32_t entries; 151 /**< Number of entries @p patterns and @p priorities. */ 152 struct { 153 struct rte_flow_item *pattern; /**< Expanded pattern array. */ 154 uint32_t priority; /**< Priority offset for each expansion. */ 155 } entry[]; 156 }; 157 158 static void 159 mlx5_dbg__print_pattern(const struct rte_flow_item *item); 160 161 static const struct mlx5_flow_expand_node * 162 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern, 163 unsigned int item_idx, 164 const struct mlx5_flow_expand_node graph[], 165 const struct mlx5_flow_expand_node *node); 166 167 static bool 168 mlx5_flow_is_rss_expandable_item(const struct rte_flow_item *item) 169 { 170 switch (item->type) { 171 case RTE_FLOW_ITEM_TYPE_ETH: 172 case RTE_FLOW_ITEM_TYPE_VLAN: 173 case RTE_FLOW_ITEM_TYPE_IPV4: 174 case RTE_FLOW_ITEM_TYPE_IPV6: 175 case RTE_FLOW_ITEM_TYPE_UDP: 176 case RTE_FLOW_ITEM_TYPE_TCP: 177 case RTE_FLOW_ITEM_TYPE_ESP: 178 case RTE_FLOW_ITEM_TYPE_ICMP: 179 case RTE_FLOW_ITEM_TYPE_ICMP6: 180 case RTE_FLOW_ITEM_TYPE_VXLAN: 181 case RTE_FLOW_ITEM_TYPE_NVGRE: 182 case RTE_FLOW_ITEM_TYPE_GRE: 183 case RTE_FLOW_ITEM_TYPE_GENEVE: 184 case RTE_FLOW_ITEM_TYPE_MPLS: 185 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: 186 case RTE_FLOW_ITEM_TYPE_GRE_KEY: 187 case RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT: 188 case RTE_FLOW_ITEM_TYPE_GTP: 189 return true; 190 default: 191 break; 192 } 193 return false; 194 } 195 196 /** 197 * Network Service Header (NSH) and its next protocol values 198 * are described in RFC-8393. 199 */ 200 static enum rte_flow_item_type 201 mlx5_nsh_proto_to_item_type(uint8_t proto_spec, uint8_t proto_mask) 202 { 203 enum rte_flow_item_type type; 204 205 switch (proto_mask & proto_spec) { 206 case 0: 207 type = RTE_FLOW_ITEM_TYPE_VOID; 208 break; 209 case RTE_VXLAN_GPE_TYPE_IPV4: 210 type = RTE_FLOW_ITEM_TYPE_IPV4; 211 break; 212 case RTE_VXLAN_GPE_TYPE_IPV6: 213 type = RTE_VXLAN_GPE_TYPE_IPV6; 214 break; 215 case RTE_VXLAN_GPE_TYPE_ETH: 216 type = RTE_FLOW_ITEM_TYPE_ETH; 217 break; 218 default: 219 type = RTE_FLOW_ITEM_TYPE_END; 220 } 221 return type; 222 } 223 224 static enum rte_flow_item_type 225 mlx5_inet_proto_to_item_type(uint8_t proto_spec, uint8_t proto_mask) 226 { 227 enum rte_flow_item_type type; 228 229 switch (proto_mask & proto_spec) { 230 case 0: 231 type = RTE_FLOW_ITEM_TYPE_VOID; 232 break; 233 case IPPROTO_UDP: 234 type = RTE_FLOW_ITEM_TYPE_UDP; 235 break; 236 case IPPROTO_TCP: 237 type = RTE_FLOW_ITEM_TYPE_TCP; 238 break; 239 case IPPROTO_IPIP: 240 type = RTE_FLOW_ITEM_TYPE_IPV4; 241 break; 242 case IPPROTO_IPV6: 243 type = RTE_FLOW_ITEM_TYPE_IPV6; 244 break; 245 case IPPROTO_ESP: 246 type = RTE_FLOW_ITEM_TYPE_ESP; 247 break; 248 default: 249 type = RTE_FLOW_ITEM_TYPE_END; 250 } 251 return type; 252 } 253 254 static enum rte_flow_item_type 255 mlx5_ethertype_to_item_type(rte_be16_t type_spec, 256 rte_be16_t type_mask, bool is_tunnel) 257 { 258 enum rte_flow_item_type type; 259 260 switch (rte_be_to_cpu_16(type_spec & type_mask)) { 261 case 0: 262 type = RTE_FLOW_ITEM_TYPE_VOID; 263 break; 264 case RTE_ETHER_TYPE_TEB: 265 type = is_tunnel ? 266 RTE_FLOW_ITEM_TYPE_ETH : RTE_FLOW_ITEM_TYPE_END; 267 break; 268 case RTE_ETHER_TYPE_VLAN: 269 type = !is_tunnel ? 270 RTE_FLOW_ITEM_TYPE_VLAN : RTE_FLOW_ITEM_TYPE_END; 271 break; 272 case RTE_ETHER_TYPE_IPV4: 273 type = RTE_FLOW_ITEM_TYPE_IPV4; 274 break; 275 case RTE_ETHER_TYPE_IPV6: 276 type = RTE_FLOW_ITEM_TYPE_IPV6; 277 break; 278 default: 279 type = RTE_FLOW_ITEM_TYPE_END; 280 } 281 return type; 282 } 283 284 static enum rte_flow_item_type 285 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item) 286 { 287 #define MLX5_XSET_ITEM_MASK_SPEC(type, fld) \ 288 do { \ 289 const void *m = item->mask; \ 290 const void *s = item->spec; \ 291 mask = m ? \ 292 ((const struct rte_flow_item_##type *)m)->fld : \ 293 rte_flow_item_##type##_mask.fld; \ 294 spec = ((const struct rte_flow_item_##type *)s)->fld; \ 295 } while (0) 296 297 enum rte_flow_item_type ret; 298 uint16_t spec, mask; 299 300 if (item == NULL || item->spec == NULL) 301 return RTE_FLOW_ITEM_TYPE_VOID; 302 switch (item->type) { 303 case RTE_FLOW_ITEM_TYPE_ETH: 304 MLX5_XSET_ITEM_MASK_SPEC(eth, type); 305 if (!mask) 306 return RTE_FLOW_ITEM_TYPE_VOID; 307 ret = mlx5_ethertype_to_item_type(spec, mask, false); 308 break; 309 case RTE_FLOW_ITEM_TYPE_VLAN: 310 MLX5_XSET_ITEM_MASK_SPEC(vlan, inner_type); 311 if (!mask) 312 return RTE_FLOW_ITEM_TYPE_VOID; 313 ret = mlx5_ethertype_to_item_type(spec, mask, false); 314 break; 315 case RTE_FLOW_ITEM_TYPE_IPV4: 316 MLX5_XSET_ITEM_MASK_SPEC(ipv4, hdr.next_proto_id); 317 if (!mask) 318 return RTE_FLOW_ITEM_TYPE_VOID; 319 ret = mlx5_inet_proto_to_item_type(spec, mask); 320 break; 321 case RTE_FLOW_ITEM_TYPE_IPV6: 322 MLX5_XSET_ITEM_MASK_SPEC(ipv6, hdr.proto); 323 if (!mask) 324 return RTE_FLOW_ITEM_TYPE_VOID; 325 ret = mlx5_inet_proto_to_item_type(spec, mask); 326 break; 327 case RTE_FLOW_ITEM_TYPE_GENEVE: 328 MLX5_XSET_ITEM_MASK_SPEC(geneve, protocol); 329 ret = mlx5_ethertype_to_item_type(spec, mask, true); 330 break; 331 case RTE_FLOW_ITEM_TYPE_GRE: 332 MLX5_XSET_ITEM_MASK_SPEC(gre, protocol); 333 ret = mlx5_ethertype_to_item_type(spec, mask, true); 334 break; 335 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: 336 MLX5_XSET_ITEM_MASK_SPEC(vxlan_gpe, protocol); 337 ret = mlx5_nsh_proto_to_item_type(spec, mask); 338 break; 339 default: 340 ret = RTE_FLOW_ITEM_TYPE_VOID; 341 break; 342 } 343 return ret; 344 #undef MLX5_XSET_ITEM_MASK_SPEC 345 } 346 347 static const int * 348 mlx5_flow_expand_rss_skip_explicit(const struct mlx5_flow_expand_node graph[], 349 const int *next_node) 350 { 351 const struct mlx5_flow_expand_node *node = NULL; 352 const int *next = next_node; 353 354 while (next && *next) { 355 /* 356 * Skip the nodes with the MLX5_EXPANSION_NODE_EXPLICIT 357 * flag set, because they were not found in the flow pattern. 358 */ 359 node = &graph[*next]; 360 if (!(node->node_flags & MLX5_EXPANSION_NODE_EXPLICIT)) 361 break; 362 next = node->next; 363 } 364 return next; 365 } 366 367 #define MLX5_RSS_EXP_ELT_N 16 368 369 /** 370 * Expand RSS flows into several possible flows according to the RSS hash 371 * fields requested and the driver capabilities. 372 * 373 * @param[out] buf 374 * Buffer to store the result expansion. 375 * @param[in] size 376 * Buffer size in bytes. If 0, @p buf can be NULL. 377 * @param[in] pattern 378 * User flow pattern. 379 * @param[in] types 380 * RSS types to expand (see RTE_ETH_RSS_* definitions). 381 * @param[in] graph 382 * Input graph to expand @p pattern according to @p types. 383 * @param[in] graph_root_index 384 * Index of root node in @p graph, typically 0. 385 * 386 * @return 387 * A positive value representing the size of @p buf in bytes regardless of 388 * @p size on success, a negative errno value otherwise and rte_errno is 389 * set, the following errors are defined: 390 * 391 * -E2BIG: graph-depth @p graph is too deep. 392 * -EINVAL: @p size has not enough space for expanded pattern. 393 */ 394 static int 395 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size, 396 const struct rte_flow_item *pattern, uint64_t types, 397 const struct mlx5_flow_expand_node graph[], 398 int graph_root_index) 399 { 400 const struct rte_flow_item *item; 401 const struct mlx5_flow_expand_node *node = &graph[graph_root_index]; 402 const int *next_node; 403 const int *stack[MLX5_RSS_EXP_ELT_N]; 404 int stack_pos = 0; 405 struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N]; 406 unsigned int i, item_idx, last_expand_item_idx = 0; 407 size_t lsize; 408 size_t user_pattern_size = 0; 409 void *addr = NULL; 410 const struct mlx5_flow_expand_node *next = NULL; 411 struct rte_flow_item missed_item; 412 int missed = 0; 413 int elt = 0; 414 const struct rte_flow_item *last_expand_item = NULL; 415 416 memset(&missed_item, 0, sizeof(missed_item)); 417 lsize = offsetof(struct mlx5_flow_expand_rss, entry) + 418 MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]); 419 if (lsize > size) 420 return -EINVAL; 421 buf->entry[0].priority = 0; 422 buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N]; 423 buf->entries = 0; 424 addr = buf->entry[0].pattern; 425 for (item = pattern, item_idx = 0; 426 item->type != RTE_FLOW_ITEM_TYPE_END; 427 item++, item_idx++) { 428 if (!mlx5_flow_is_rss_expandable_item(item)) { 429 user_pattern_size += sizeof(*item); 430 continue; 431 } 432 last_expand_item = item; 433 last_expand_item_idx = item_idx; 434 i = 0; 435 while (node->next && node->next[i]) { 436 next = &graph[node->next[i]]; 437 if (next->type == item->type) 438 break; 439 if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) { 440 node = next; 441 i = 0; 442 } else { 443 ++i; 444 } 445 } 446 if (next) 447 node = next; 448 user_pattern_size += sizeof(*item); 449 } 450 user_pattern_size += sizeof(*item); /* Handle END item. */ 451 lsize += user_pattern_size; 452 if (lsize > size) 453 return -EINVAL; 454 /* Copy the user pattern in the first entry of the buffer. */ 455 rte_memcpy(addr, pattern, user_pattern_size); 456 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 457 buf->entries = 1; 458 /* Start expanding. */ 459 memset(flow_items, 0, sizeof(flow_items)); 460 user_pattern_size -= sizeof(*item); 461 /* 462 * Check if the last valid item has spec set, need complete pattern, 463 * and the pattern can be used for expansion. 464 */ 465 missed_item.type = mlx5_flow_expand_rss_item_complete(last_expand_item); 466 if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) { 467 /* Item type END indicates expansion is not required. */ 468 return lsize; 469 } 470 if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) { 471 next = NULL; 472 missed = 1; 473 i = 0; 474 while (node->next && node->next[i]) { 475 next = &graph[node->next[i]]; 476 if (next->type == missed_item.type) { 477 flow_items[0].type = missed_item.type; 478 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 479 break; 480 } 481 if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) { 482 node = next; 483 i = 0; 484 } else { 485 ++i; 486 } 487 next = NULL; 488 } 489 } 490 if (next && missed) { 491 elt = 2; /* missed item + item end. */ 492 node = next; 493 lsize += elt * sizeof(*item) + user_pattern_size; 494 if (lsize > size) 495 return -EINVAL; 496 if (node->rss_types & types) { 497 buf->entry[buf->entries].priority = 1; 498 buf->entry[buf->entries].pattern = addr; 499 buf->entries++; 500 rte_memcpy(addr, buf->entry[0].pattern, 501 user_pattern_size); 502 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 503 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 504 addr = (void *)(((uintptr_t)addr) + 505 elt * sizeof(*item)); 506 } 507 } else if (last_expand_item != NULL) { 508 node = mlx5_flow_expand_rss_adjust_node(pattern, 509 last_expand_item_idx, graph, node); 510 } 511 memset(flow_items, 0, sizeof(flow_items)); 512 next_node = mlx5_flow_expand_rss_skip_explicit(graph, 513 node->next); 514 stack[stack_pos] = next_node; 515 node = next_node ? &graph[*next_node] : NULL; 516 while (node) { 517 flow_items[stack_pos].type = node->type; 518 if (node->rss_types & types) { 519 size_t n; 520 /* 521 * compute the number of items to copy from the 522 * expansion and copy it. 523 * When the stack_pos is 0, there are 1 element in it, 524 * plus the addition END item. 525 */ 526 elt = stack_pos + 2; 527 flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END; 528 lsize += elt * sizeof(*item) + user_pattern_size; 529 if (lsize > size) 530 return -EINVAL; 531 n = elt * sizeof(*item); 532 buf->entry[buf->entries].priority = 533 stack_pos + 1 + missed; 534 buf->entry[buf->entries].pattern = addr; 535 buf->entries++; 536 rte_memcpy(addr, buf->entry[0].pattern, 537 user_pattern_size); 538 addr = (void *)(((uintptr_t)addr) + 539 user_pattern_size); 540 rte_memcpy(addr, &missed_item, 541 missed * sizeof(*item)); 542 addr = (void *)(((uintptr_t)addr) + 543 missed * sizeof(*item)); 544 rte_memcpy(addr, flow_items, n); 545 addr = (void *)(((uintptr_t)addr) + n); 546 } 547 /* Go deeper. */ 548 if (!(node->node_flags & MLX5_EXPANSION_NODE_OPTIONAL) && 549 node->next) { 550 next_node = mlx5_flow_expand_rss_skip_explicit(graph, 551 node->next); 552 if (stack_pos++ == MLX5_RSS_EXP_ELT_N) { 553 rte_errno = E2BIG; 554 return -rte_errno; 555 } 556 stack[stack_pos] = next_node; 557 } else if (*(next_node + 1)) { 558 /* Follow up with the next possibility. */ 559 next_node = mlx5_flow_expand_rss_skip_explicit(graph, 560 ++next_node); 561 } else if (!stack_pos) { 562 /* 563 * Completing the traverse over the different paths. 564 * The next_node is advanced to the terminator. 565 */ 566 ++next_node; 567 } else { 568 /* Move to the next path. */ 569 while (stack_pos) { 570 next_node = stack[--stack_pos]; 571 next_node++; 572 if (*next_node) 573 break; 574 } 575 next_node = mlx5_flow_expand_rss_skip_explicit(graph, 576 next_node); 577 stack[stack_pos] = next_node; 578 } 579 node = next_node && *next_node ? &graph[*next_node] : NULL; 580 }; 581 return lsize; 582 } 583 584 /** 585 * Expand SQN flows into several possible flows according to the Tx queue 586 * number 587 * 588 * @param[in] buf 589 * Buffer to store the result expansion. 590 * @param[in] size 591 * Buffer size in bytes. If 0, @p buf can be NULL. 592 * @param[in] pattern 593 * User flow pattern. 594 * @param[in] sq_specs 595 * Buffer to store sq spec. 596 * 597 * @return 598 * 0 for success and negative value for failure 599 * 600 */ 601 static int 602 mlx5_flow_expand_sqn(struct mlx5_flow_expand_sqn *buf, size_t size, 603 const struct rte_flow_item *pattern, 604 struct mlx5_rte_flow_item_sq *sq_specs) 605 { 606 const struct rte_flow_item *item; 607 bool port_representor = false; 608 size_t user_pattern_size = 0; 609 struct rte_eth_dev *dev; 610 struct mlx5_priv *priv; 611 void *addr = NULL; 612 uint16_t port_id; 613 size_t lsize; 614 int elt = 2; 615 uint16_t i; 616 617 buf->entries = 0; 618 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 619 if (item->type == RTE_FLOW_ITEM_TYPE_PORT_REPRESENTOR) { 620 const struct rte_flow_item_ethdev *pid_v = item->spec; 621 622 if (!pid_v) 623 return 0; 624 port_id = pid_v->port_id; 625 port_representor = true; 626 } 627 user_pattern_size += sizeof(*item); 628 } 629 if (!port_representor) 630 return 0; 631 dev = &rte_eth_devices[port_id]; 632 priv = dev->data->dev_private; 633 buf->entry[0].pattern = (void *)&buf->entry[priv->txqs_n]; 634 lsize = offsetof(struct mlx5_flow_expand_sqn, entry) + 635 sizeof(buf->entry[0]) * priv->txqs_n; 636 if (lsize + (user_pattern_size + sizeof(struct rte_flow_item) * elt) * priv->txqs_n > size) 637 return -EINVAL; 638 addr = buf->entry[0].pattern; 639 for (i = 0; i != priv->txqs_n; ++i) { 640 struct rte_flow_item pattern_add[] = { 641 { 642 .type = (enum rte_flow_item_type) 643 MLX5_RTE_FLOW_ITEM_TYPE_SQ, 644 .spec = &sq_specs[i], 645 }, 646 { 647 .type = RTE_FLOW_ITEM_TYPE_END, 648 }, 649 }; 650 struct mlx5_txq_ctrl *txq = mlx5_txq_get(dev, i); 651 652 if (txq == NULL) 653 return -EINVAL; 654 buf->entry[i].pattern = addr; 655 sq_specs[i].queue = mlx5_txq_get_sqn(txq); 656 mlx5_txq_release(dev, i); 657 rte_memcpy(addr, pattern, user_pattern_size); 658 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 659 rte_memcpy(addr, pattern_add, sizeof(struct rte_flow_item) * elt); 660 addr = (void *)(((uintptr_t)addr) + sizeof(struct rte_flow_item) * elt); 661 buf->entries++; 662 } 663 return 0; 664 } 665 666 enum mlx5_expansion { 667 MLX5_EXPANSION_ROOT, 668 MLX5_EXPANSION_ROOT_OUTER, 669 MLX5_EXPANSION_OUTER_ETH, 670 MLX5_EXPANSION_OUTER_VLAN, 671 MLX5_EXPANSION_OUTER_IPV4, 672 MLX5_EXPANSION_OUTER_IPV4_UDP, 673 MLX5_EXPANSION_OUTER_IPV4_TCP, 674 MLX5_EXPANSION_OUTER_IPV4_ESP, 675 MLX5_EXPANSION_OUTER_IPV4_ICMP, 676 MLX5_EXPANSION_OUTER_IPV6, 677 MLX5_EXPANSION_OUTER_IPV6_UDP, 678 MLX5_EXPANSION_OUTER_IPV6_TCP, 679 MLX5_EXPANSION_OUTER_IPV6_ESP, 680 MLX5_EXPANSION_OUTER_IPV6_ICMP6, 681 MLX5_EXPANSION_VXLAN, 682 MLX5_EXPANSION_STD_VXLAN, 683 MLX5_EXPANSION_L3_VXLAN, 684 MLX5_EXPANSION_VXLAN_GPE, 685 MLX5_EXPANSION_GRE, 686 MLX5_EXPANSION_NVGRE, 687 MLX5_EXPANSION_GRE_KEY, 688 MLX5_EXPANSION_MPLS, 689 MLX5_EXPANSION_ETH, 690 MLX5_EXPANSION_VLAN, 691 MLX5_EXPANSION_IPV4, 692 MLX5_EXPANSION_IPV4_UDP, 693 MLX5_EXPANSION_IPV4_TCP, 694 MLX5_EXPANSION_IPV4_ESP, 695 MLX5_EXPANSION_IPV4_ICMP, 696 MLX5_EXPANSION_IPV6, 697 MLX5_EXPANSION_IPV6_UDP, 698 MLX5_EXPANSION_IPV6_TCP, 699 MLX5_EXPANSION_IPV6_ESP, 700 MLX5_EXPANSION_IPV6_ICMP6, 701 MLX5_EXPANSION_IPV6_FRAG_EXT, 702 MLX5_EXPANSION_GTP, 703 MLX5_EXPANSION_GENEVE, 704 }; 705 706 /** Supported expansion of items. */ 707 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = { 708 [MLX5_EXPANSION_ROOT] = { 709 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 710 MLX5_EXPANSION_IPV4, 711 MLX5_EXPANSION_IPV6), 712 .type = RTE_FLOW_ITEM_TYPE_END, 713 }, 714 [MLX5_EXPANSION_ROOT_OUTER] = { 715 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 716 MLX5_EXPANSION_OUTER_IPV4, 717 MLX5_EXPANSION_OUTER_IPV6), 718 .type = RTE_FLOW_ITEM_TYPE_END, 719 }, 720 [MLX5_EXPANSION_OUTER_ETH] = { 721 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 722 .type = RTE_FLOW_ITEM_TYPE_ETH, 723 .rss_types = 0, 724 }, 725 [MLX5_EXPANSION_OUTER_VLAN] = { 726 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 727 MLX5_EXPANSION_OUTER_IPV6), 728 .type = RTE_FLOW_ITEM_TYPE_VLAN, 729 .node_flags = MLX5_EXPANSION_NODE_EXPLICIT, 730 }, 731 [MLX5_EXPANSION_OUTER_IPV4] = { 732 .next = MLX5_FLOW_EXPAND_RSS_NEXT 733 (MLX5_EXPANSION_OUTER_IPV4_UDP, 734 MLX5_EXPANSION_OUTER_IPV4_TCP, 735 MLX5_EXPANSION_OUTER_IPV4_ESP, 736 MLX5_EXPANSION_OUTER_IPV4_ICMP, 737 MLX5_EXPANSION_GRE, 738 MLX5_EXPANSION_NVGRE, 739 MLX5_EXPANSION_IPV4, 740 MLX5_EXPANSION_IPV6), 741 .type = RTE_FLOW_ITEM_TYPE_IPV4, 742 .rss_types = RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | 743 RTE_ETH_RSS_NONFRAG_IPV4_OTHER, 744 }, 745 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 746 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 747 MLX5_EXPANSION_VXLAN_GPE, 748 MLX5_EXPANSION_MPLS, 749 MLX5_EXPANSION_GENEVE, 750 MLX5_EXPANSION_GTP), 751 .type = RTE_FLOW_ITEM_TYPE_UDP, 752 .rss_types = RTE_ETH_RSS_NONFRAG_IPV4_UDP, 753 }, 754 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 755 .type = RTE_FLOW_ITEM_TYPE_TCP, 756 .rss_types = RTE_ETH_RSS_NONFRAG_IPV4_TCP, 757 }, 758 [MLX5_EXPANSION_OUTER_IPV4_ESP] = { 759 .type = RTE_FLOW_ITEM_TYPE_ESP, 760 .rss_types = RTE_ETH_RSS_ESP, 761 }, 762 [MLX5_EXPANSION_OUTER_IPV4_ICMP] = { 763 .type = RTE_FLOW_ITEM_TYPE_ICMP, 764 }, 765 [MLX5_EXPANSION_OUTER_IPV6] = { 766 .next = MLX5_FLOW_EXPAND_RSS_NEXT 767 (MLX5_EXPANSION_OUTER_IPV6_UDP, 768 MLX5_EXPANSION_OUTER_IPV6_TCP, 769 MLX5_EXPANSION_OUTER_IPV6_ESP, 770 MLX5_EXPANSION_OUTER_IPV6_ICMP6, 771 MLX5_EXPANSION_IPV4, 772 MLX5_EXPANSION_IPV6, 773 MLX5_EXPANSION_GRE, 774 MLX5_EXPANSION_NVGRE), 775 .type = RTE_FLOW_ITEM_TYPE_IPV6, 776 .rss_types = RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | 777 RTE_ETH_RSS_NONFRAG_IPV6_OTHER, 778 }, 779 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 780 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 781 MLX5_EXPANSION_VXLAN_GPE, 782 MLX5_EXPANSION_MPLS, 783 MLX5_EXPANSION_GENEVE, 784 MLX5_EXPANSION_GTP), 785 .type = RTE_FLOW_ITEM_TYPE_UDP, 786 .rss_types = RTE_ETH_RSS_NONFRAG_IPV6_UDP, 787 }, 788 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 789 .type = RTE_FLOW_ITEM_TYPE_TCP, 790 .rss_types = RTE_ETH_RSS_NONFRAG_IPV6_TCP, 791 }, 792 [MLX5_EXPANSION_OUTER_IPV6_ESP] = { 793 .type = RTE_FLOW_ITEM_TYPE_ESP, 794 .rss_types = RTE_ETH_RSS_ESP, 795 }, 796 [MLX5_EXPANSION_OUTER_IPV6_ICMP6] = { 797 .type = RTE_FLOW_ITEM_TYPE_ICMP6, 798 }, 799 [MLX5_EXPANSION_VXLAN] = { 800 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 801 MLX5_EXPANSION_IPV4, 802 MLX5_EXPANSION_IPV6), 803 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 804 }, 805 [MLX5_EXPANSION_STD_VXLAN] = { 806 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 807 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 808 }, 809 [MLX5_EXPANSION_L3_VXLAN] = { 810 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 811 MLX5_EXPANSION_IPV6), 812 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 813 }, 814 [MLX5_EXPANSION_VXLAN_GPE] = { 815 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 816 MLX5_EXPANSION_IPV4, 817 MLX5_EXPANSION_IPV6), 818 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 819 }, 820 [MLX5_EXPANSION_GRE] = { 821 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 822 MLX5_EXPANSION_IPV4, 823 MLX5_EXPANSION_IPV6, 824 MLX5_EXPANSION_GRE_KEY, 825 MLX5_EXPANSION_MPLS), 826 .type = RTE_FLOW_ITEM_TYPE_GRE, 827 }, 828 [MLX5_EXPANSION_GRE_KEY] = { 829 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 830 MLX5_EXPANSION_IPV6, 831 MLX5_EXPANSION_MPLS), 832 .type = RTE_FLOW_ITEM_TYPE_GRE_KEY, 833 .node_flags = MLX5_EXPANSION_NODE_OPTIONAL, 834 }, 835 [MLX5_EXPANSION_NVGRE] = { 836 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 837 .type = RTE_FLOW_ITEM_TYPE_NVGRE, 838 }, 839 [MLX5_EXPANSION_MPLS] = { 840 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 841 MLX5_EXPANSION_IPV6, 842 MLX5_EXPANSION_ETH), 843 .type = RTE_FLOW_ITEM_TYPE_MPLS, 844 .node_flags = MLX5_EXPANSION_NODE_OPTIONAL, 845 }, 846 [MLX5_EXPANSION_ETH] = { 847 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 848 .type = RTE_FLOW_ITEM_TYPE_ETH, 849 }, 850 [MLX5_EXPANSION_VLAN] = { 851 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 852 MLX5_EXPANSION_IPV6), 853 .type = RTE_FLOW_ITEM_TYPE_VLAN, 854 .node_flags = MLX5_EXPANSION_NODE_EXPLICIT, 855 }, 856 [MLX5_EXPANSION_IPV4] = { 857 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 858 MLX5_EXPANSION_IPV4_TCP, 859 MLX5_EXPANSION_IPV4_ESP, 860 MLX5_EXPANSION_IPV4_ICMP), 861 .type = RTE_FLOW_ITEM_TYPE_IPV4, 862 .rss_types = RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 | 863 RTE_ETH_RSS_NONFRAG_IPV4_OTHER, 864 }, 865 [MLX5_EXPANSION_IPV4_UDP] = { 866 .type = RTE_FLOW_ITEM_TYPE_UDP, 867 .rss_types = RTE_ETH_RSS_NONFRAG_IPV4_UDP, 868 }, 869 [MLX5_EXPANSION_IPV4_TCP] = { 870 .type = RTE_FLOW_ITEM_TYPE_TCP, 871 .rss_types = RTE_ETH_RSS_NONFRAG_IPV4_TCP, 872 }, 873 [MLX5_EXPANSION_IPV4_ESP] = { 874 .type = RTE_FLOW_ITEM_TYPE_ESP, 875 .rss_types = RTE_ETH_RSS_ESP, 876 }, 877 [MLX5_EXPANSION_IPV4_ICMP] = { 878 .type = RTE_FLOW_ITEM_TYPE_ICMP, 879 }, 880 [MLX5_EXPANSION_IPV6] = { 881 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 882 MLX5_EXPANSION_IPV6_TCP, 883 MLX5_EXPANSION_IPV6_ESP, 884 MLX5_EXPANSION_IPV6_ICMP6, 885 MLX5_EXPANSION_IPV6_FRAG_EXT), 886 .type = RTE_FLOW_ITEM_TYPE_IPV6, 887 .rss_types = RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 | 888 RTE_ETH_RSS_NONFRAG_IPV6_OTHER, 889 }, 890 [MLX5_EXPANSION_IPV6_UDP] = { 891 .type = RTE_FLOW_ITEM_TYPE_UDP, 892 .rss_types = RTE_ETH_RSS_NONFRAG_IPV6_UDP, 893 }, 894 [MLX5_EXPANSION_IPV6_TCP] = { 895 .type = RTE_FLOW_ITEM_TYPE_TCP, 896 .rss_types = RTE_ETH_RSS_NONFRAG_IPV6_TCP, 897 }, 898 [MLX5_EXPANSION_IPV6_ESP] = { 899 .type = RTE_FLOW_ITEM_TYPE_ESP, 900 .rss_types = RTE_ETH_RSS_ESP, 901 }, 902 [MLX5_EXPANSION_IPV6_FRAG_EXT] = { 903 .type = RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT, 904 }, 905 [MLX5_EXPANSION_IPV6_ICMP6] = { 906 .type = RTE_FLOW_ITEM_TYPE_ICMP6, 907 }, 908 [MLX5_EXPANSION_GTP] = { 909 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 910 MLX5_EXPANSION_IPV6), 911 .type = RTE_FLOW_ITEM_TYPE_GTP, 912 }, 913 [MLX5_EXPANSION_GENEVE] = { 914 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 915 MLX5_EXPANSION_IPV4, 916 MLX5_EXPANSION_IPV6), 917 .type = RTE_FLOW_ITEM_TYPE_GENEVE, 918 }, 919 }; 920 921 static struct rte_flow_action_handle * 922 mlx5_action_handle_create(struct rte_eth_dev *dev, 923 const struct rte_flow_indir_action_conf *conf, 924 const struct rte_flow_action *action, 925 struct rte_flow_error *error); 926 static int mlx5_action_handle_destroy 927 (struct rte_eth_dev *dev, 928 struct rte_flow_action_handle *handle, 929 struct rte_flow_error *error); 930 static int mlx5_action_handle_update 931 (struct rte_eth_dev *dev, 932 struct rte_flow_action_handle *handle, 933 const void *update, 934 struct rte_flow_error *error); 935 static int mlx5_action_handle_query 936 (struct rte_eth_dev *dev, 937 const struct rte_flow_action_handle *handle, 938 void *data, 939 struct rte_flow_error *error); 940 static int 941 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 942 struct rte_flow_tunnel *app_tunnel, 943 struct rte_flow_action **actions, 944 uint32_t *num_of_actions, 945 struct rte_flow_error *error); 946 static int 947 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 948 struct rte_flow_tunnel *app_tunnel, 949 struct rte_flow_item **items, 950 uint32_t *num_of_items, 951 struct rte_flow_error *error); 952 static int 953 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev, 954 struct rte_flow_item *pmd_items, 955 uint32_t num_items, struct rte_flow_error *err); 956 static int 957 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev, 958 struct rte_flow_action *pmd_actions, 959 uint32_t num_actions, 960 struct rte_flow_error *err); 961 static int 962 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 963 struct rte_mbuf *m, 964 struct rte_flow_restore_info *info, 965 struct rte_flow_error *err); 966 static struct rte_flow_item_flex_handle * 967 mlx5_flow_flex_item_create(struct rte_eth_dev *dev, 968 const struct rte_flow_item_flex_conf *conf, 969 struct rte_flow_error *error); 970 static int 971 mlx5_flow_flex_item_release(struct rte_eth_dev *dev, 972 const struct rte_flow_item_flex_handle *handle, 973 struct rte_flow_error *error); 974 static int 975 mlx5_flow_info_get(struct rte_eth_dev *dev, 976 struct rte_flow_port_info *port_info, 977 struct rte_flow_queue_info *queue_info, 978 struct rte_flow_error *error); 979 static int 980 mlx5_flow_port_configure(struct rte_eth_dev *dev, 981 const struct rte_flow_port_attr *port_attr, 982 uint16_t nb_queue, 983 const struct rte_flow_queue_attr *queue_attr[], 984 struct rte_flow_error *err); 985 986 static struct rte_flow_pattern_template * 987 mlx5_flow_pattern_template_create(struct rte_eth_dev *dev, 988 const struct rte_flow_pattern_template_attr *attr, 989 const struct rte_flow_item items[], 990 struct rte_flow_error *error); 991 992 static int 993 mlx5_flow_pattern_template_destroy(struct rte_eth_dev *dev, 994 struct rte_flow_pattern_template *template, 995 struct rte_flow_error *error); 996 static struct rte_flow_actions_template * 997 mlx5_flow_actions_template_create(struct rte_eth_dev *dev, 998 const struct rte_flow_actions_template_attr *attr, 999 const struct rte_flow_action actions[], 1000 const struct rte_flow_action masks[], 1001 struct rte_flow_error *error); 1002 static int 1003 mlx5_flow_actions_template_destroy(struct rte_eth_dev *dev, 1004 struct rte_flow_actions_template *template, 1005 struct rte_flow_error *error); 1006 1007 static struct rte_flow_template_table * 1008 mlx5_flow_table_create(struct rte_eth_dev *dev, 1009 const struct rte_flow_template_table_attr *attr, 1010 struct rte_flow_pattern_template *item_templates[], 1011 uint8_t nb_item_templates, 1012 struct rte_flow_actions_template *action_templates[], 1013 uint8_t nb_action_templates, 1014 struct rte_flow_error *error); 1015 static int 1016 mlx5_flow_table_destroy(struct rte_eth_dev *dev, 1017 struct rte_flow_template_table *table, 1018 struct rte_flow_error *error); 1019 static struct rte_flow * 1020 mlx5_flow_async_flow_create(struct rte_eth_dev *dev, 1021 uint32_t queue, 1022 const struct rte_flow_op_attr *attr, 1023 struct rte_flow_template_table *table, 1024 const struct rte_flow_item items[], 1025 uint8_t pattern_template_index, 1026 const struct rte_flow_action actions[], 1027 uint8_t action_template_index, 1028 void *user_data, 1029 struct rte_flow_error *error); 1030 static int 1031 mlx5_flow_async_flow_destroy(struct rte_eth_dev *dev, 1032 uint32_t queue, 1033 const struct rte_flow_op_attr *attr, 1034 struct rte_flow *flow, 1035 void *user_data, 1036 struct rte_flow_error *error); 1037 static int 1038 mlx5_flow_pull(struct rte_eth_dev *dev, 1039 uint32_t queue, 1040 struct rte_flow_op_result res[], 1041 uint16_t n_res, 1042 struct rte_flow_error *error); 1043 static int 1044 mlx5_flow_push(struct rte_eth_dev *dev, 1045 uint32_t queue, 1046 struct rte_flow_error *error); 1047 1048 static struct rte_flow_action_handle * 1049 mlx5_flow_async_action_handle_create(struct rte_eth_dev *dev, uint32_t queue, 1050 const struct rte_flow_op_attr *attr, 1051 const struct rte_flow_indir_action_conf *conf, 1052 const struct rte_flow_action *action, 1053 void *user_data, 1054 struct rte_flow_error *error); 1055 1056 static int 1057 mlx5_flow_async_action_handle_update(struct rte_eth_dev *dev, uint32_t queue, 1058 const struct rte_flow_op_attr *attr, 1059 struct rte_flow_action_handle *handle, 1060 const void *update, 1061 void *user_data, 1062 struct rte_flow_error *error); 1063 1064 static int 1065 mlx5_flow_async_action_handle_destroy(struct rte_eth_dev *dev, uint32_t queue, 1066 const struct rte_flow_op_attr *attr, 1067 struct rte_flow_action_handle *handle, 1068 void *user_data, 1069 struct rte_flow_error *error); 1070 1071 static int 1072 mlx5_flow_async_action_handle_query(struct rte_eth_dev *dev, uint32_t queue, 1073 const struct rte_flow_op_attr *attr, 1074 const struct rte_flow_action_handle *handle, 1075 void *data, 1076 void *user_data, 1077 struct rte_flow_error *error); 1078 1079 static const struct rte_flow_ops mlx5_flow_ops = { 1080 .validate = mlx5_flow_validate, 1081 .create = mlx5_flow_create, 1082 .destroy = mlx5_flow_destroy, 1083 .flush = mlx5_flow_flush, 1084 .isolate = mlx5_flow_isolate, 1085 .query = mlx5_flow_query, 1086 .dev_dump = mlx5_flow_dev_dump, 1087 .get_q_aged_flows = mlx5_flow_get_q_aged_flows, 1088 .get_aged_flows = mlx5_flow_get_aged_flows, 1089 .action_handle_create = mlx5_action_handle_create, 1090 .action_handle_destroy = mlx5_action_handle_destroy, 1091 .action_handle_update = mlx5_action_handle_update, 1092 .action_handle_query = mlx5_action_handle_query, 1093 .tunnel_decap_set = mlx5_flow_tunnel_decap_set, 1094 .tunnel_match = mlx5_flow_tunnel_match, 1095 .tunnel_action_decap_release = mlx5_flow_tunnel_action_release, 1096 .tunnel_item_release = mlx5_flow_tunnel_item_release, 1097 .get_restore_info = mlx5_flow_tunnel_get_restore_info, 1098 .flex_item_create = mlx5_flow_flex_item_create, 1099 .flex_item_release = mlx5_flow_flex_item_release, 1100 .info_get = mlx5_flow_info_get, 1101 .pick_transfer_proxy = mlx5_flow_pick_transfer_proxy, 1102 .configure = mlx5_flow_port_configure, 1103 .pattern_template_create = mlx5_flow_pattern_template_create, 1104 .pattern_template_destroy = mlx5_flow_pattern_template_destroy, 1105 .actions_template_create = mlx5_flow_actions_template_create, 1106 .actions_template_destroy = mlx5_flow_actions_template_destroy, 1107 .template_table_create = mlx5_flow_table_create, 1108 .template_table_destroy = mlx5_flow_table_destroy, 1109 .async_create = mlx5_flow_async_flow_create, 1110 .async_destroy = mlx5_flow_async_flow_destroy, 1111 .pull = mlx5_flow_pull, 1112 .push = mlx5_flow_push, 1113 .async_action_handle_create = mlx5_flow_async_action_handle_create, 1114 .async_action_handle_update = mlx5_flow_async_action_handle_update, 1115 .async_action_handle_query = mlx5_flow_async_action_handle_query, 1116 .async_action_handle_destroy = mlx5_flow_async_action_handle_destroy, 1117 }; 1118 1119 /* Tunnel information. */ 1120 struct mlx5_flow_tunnel_info { 1121 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 1122 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 1123 }; 1124 1125 static struct mlx5_flow_tunnel_info tunnels_info[] = { 1126 { 1127 .tunnel = MLX5_FLOW_LAYER_VXLAN, 1128 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 1129 }, 1130 { 1131 .tunnel = MLX5_FLOW_LAYER_GENEVE, 1132 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP, 1133 }, 1134 { 1135 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 1136 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 1137 }, 1138 { 1139 .tunnel = MLX5_FLOW_LAYER_GRE, 1140 .ptype = RTE_PTYPE_TUNNEL_GRE, 1141 }, 1142 { 1143 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 1144 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 1145 }, 1146 { 1147 .tunnel = MLX5_FLOW_LAYER_MPLS, 1148 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 1149 }, 1150 { 1151 .tunnel = MLX5_FLOW_LAYER_NVGRE, 1152 .ptype = RTE_PTYPE_TUNNEL_NVGRE, 1153 }, 1154 { 1155 .tunnel = MLX5_FLOW_LAYER_IPIP, 1156 .ptype = RTE_PTYPE_TUNNEL_IP, 1157 }, 1158 { 1159 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP, 1160 .ptype = RTE_PTYPE_TUNNEL_IP, 1161 }, 1162 { 1163 .tunnel = MLX5_FLOW_LAYER_GTP, 1164 .ptype = RTE_PTYPE_TUNNEL_GTPU, 1165 }, 1166 }; 1167 1168 1169 1170 /** 1171 * Translate tag ID to register. 1172 * 1173 * @param[in] dev 1174 * Pointer to the Ethernet device structure. 1175 * @param[in] feature 1176 * The feature that request the register. 1177 * @param[in] id 1178 * The request register ID. 1179 * @param[out] error 1180 * Error description in case of any. 1181 * 1182 * @return 1183 * The request register on success, a negative errno 1184 * value otherwise and rte_errno is set. 1185 */ 1186 int 1187 mlx5_flow_get_reg_id(struct rte_eth_dev *dev, 1188 enum mlx5_feature_name feature, 1189 uint32_t id, 1190 struct rte_flow_error *error) 1191 { 1192 struct mlx5_priv *priv = dev->data->dev_private; 1193 struct mlx5_sh_config *config = &priv->sh->config; 1194 enum modify_reg start_reg; 1195 bool skip_mtr_reg = false; 1196 1197 switch (feature) { 1198 case MLX5_HAIRPIN_RX: 1199 return REG_B; 1200 case MLX5_HAIRPIN_TX: 1201 return REG_A; 1202 case MLX5_METADATA_RX: 1203 switch (config->dv_xmeta_en) { 1204 case MLX5_XMETA_MODE_LEGACY: 1205 return REG_B; 1206 case MLX5_XMETA_MODE_META16: 1207 return REG_C_0; 1208 case MLX5_XMETA_MODE_META32: 1209 return REG_C_1; 1210 case MLX5_XMETA_MODE_META32_HWS: 1211 return REG_C_1; 1212 } 1213 break; 1214 case MLX5_METADATA_TX: 1215 if (config->dv_flow_en == 2 && config->dv_xmeta_en == MLX5_XMETA_MODE_META32_HWS) { 1216 return REG_C_1; 1217 } else { 1218 return REG_A; 1219 } 1220 case MLX5_METADATA_FDB: 1221 switch (config->dv_xmeta_en) { 1222 case MLX5_XMETA_MODE_LEGACY: 1223 return REG_NON; 1224 case MLX5_XMETA_MODE_META16: 1225 return REG_C_0; 1226 case MLX5_XMETA_MODE_META32: 1227 return REG_C_1; 1228 case MLX5_XMETA_MODE_META32_HWS: 1229 return REG_C_1; 1230 } 1231 break; 1232 case MLX5_FLOW_MARK: 1233 switch (config->dv_xmeta_en) { 1234 case MLX5_XMETA_MODE_LEGACY: 1235 case MLX5_XMETA_MODE_META32_HWS: 1236 return REG_NON; 1237 case MLX5_XMETA_MODE_META16: 1238 return REG_C_1; 1239 case MLX5_XMETA_MODE_META32: 1240 return REG_C_0; 1241 } 1242 break; 1243 case MLX5_MTR_ID: 1244 /* 1245 * If meter color and meter id share one register, flow match 1246 * should use the meter color register for match. 1247 */ 1248 if (priv->mtr_reg_share) 1249 return priv->mtr_color_reg; 1250 else 1251 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 1252 REG_C_3; 1253 case MLX5_MTR_COLOR: 1254 case MLX5_ASO_FLOW_HIT: 1255 case MLX5_ASO_CONNTRACK: 1256 case MLX5_SAMPLE_ID: 1257 /* All features use the same REG_C. */ 1258 MLX5_ASSERT(priv->mtr_color_reg != REG_NON); 1259 return priv->mtr_color_reg; 1260 case MLX5_COPY_MARK: 1261 /* 1262 * Metadata COPY_MARK register using is in meter suffix sub 1263 * flow while with meter. It's safe to share the same register. 1264 */ 1265 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3; 1266 case MLX5_APP_TAG: 1267 /* 1268 * If meter is enable, it will engage the register for color 1269 * match and flow match. If meter color match is not using the 1270 * REG_C_2, need to skip the REG_C_x be used by meter color 1271 * match. 1272 * If meter is disable, free to use all available registers. 1273 */ 1274 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 1275 (priv->mtr_reg_share ? REG_C_3 : REG_C_4); 1276 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2); 1277 if (id > (uint32_t)(REG_C_7 - start_reg)) 1278 return rte_flow_error_set(error, EINVAL, 1279 RTE_FLOW_ERROR_TYPE_ITEM, 1280 NULL, "invalid tag id"); 1281 if (priv->sh->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON) 1282 return rte_flow_error_set(error, ENOTSUP, 1283 RTE_FLOW_ERROR_TYPE_ITEM, 1284 NULL, "unsupported tag id"); 1285 /* 1286 * This case means meter is using the REG_C_x great than 2. 1287 * Take care not to conflict with meter color REG_C_x. 1288 * If the available index REG_C_y >= REG_C_x, skip the 1289 * color register. 1290 */ 1291 if (skip_mtr_reg && priv->sh->flow_mreg_c 1292 [id + start_reg - REG_C_0] >= priv->mtr_color_reg) { 1293 if (id >= (uint32_t)(REG_C_7 - start_reg)) 1294 return rte_flow_error_set(error, EINVAL, 1295 RTE_FLOW_ERROR_TYPE_ITEM, 1296 NULL, "invalid tag id"); 1297 if (priv->sh->flow_mreg_c 1298 [id + 1 + start_reg - REG_C_0] != REG_NON) 1299 return priv->sh->flow_mreg_c 1300 [id + 1 + start_reg - REG_C_0]; 1301 return rte_flow_error_set(error, ENOTSUP, 1302 RTE_FLOW_ERROR_TYPE_ITEM, 1303 NULL, "unsupported tag id"); 1304 } 1305 return priv->sh->flow_mreg_c[id + start_reg - REG_C_0]; 1306 } 1307 MLX5_ASSERT(false); 1308 return rte_flow_error_set(error, EINVAL, 1309 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1310 NULL, "invalid feature name"); 1311 } 1312 1313 /** 1314 * Check extensive flow metadata register support. 1315 * 1316 * @param dev 1317 * Pointer to rte_eth_dev structure. 1318 * 1319 * @return 1320 * True if device supports extensive flow metadata register, otherwise false. 1321 */ 1322 bool 1323 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev) 1324 { 1325 struct mlx5_priv *priv = dev->data->dev_private; 1326 1327 /* 1328 * Having available reg_c can be regarded inclusively as supporting 1329 * extensive flow metadata register, which could mean, 1330 * - metadata register copy action by modify header. 1331 * - 16 modify header actions is supported. 1332 * - reg_c's are preserved across different domain (FDB and NIC) on 1333 * packet loopback by flow lookup miss. 1334 */ 1335 return priv->sh->flow_mreg_c[2] != REG_NON; 1336 } 1337 1338 /** 1339 * Get the lowest priority. 1340 * 1341 * @param[in] dev 1342 * Pointer to the Ethernet device structure. 1343 * @param[in] attributes 1344 * Pointer to device flow rule attributes. 1345 * 1346 * @return 1347 * The value of lowest priority of flow. 1348 */ 1349 uint32_t 1350 mlx5_get_lowest_priority(struct rte_eth_dev *dev, 1351 const struct rte_flow_attr *attr) 1352 { 1353 struct mlx5_priv *priv = dev->data->dev_private; 1354 1355 if (!attr->group && !(attr->transfer && priv->fdb_def_rule)) 1356 return priv->sh->flow_max_priority - 2; 1357 return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1; 1358 } 1359 1360 /** 1361 * Calculate matcher priority of the flow. 1362 * 1363 * @param[in] dev 1364 * Pointer to the Ethernet device structure. 1365 * @param[in] attr 1366 * Pointer to device flow rule attributes. 1367 * @param[in] subpriority 1368 * The priority based on the items. 1369 * @param[in] external 1370 * Flow is user flow. 1371 * @return 1372 * The matcher priority of the flow. 1373 */ 1374 uint16_t 1375 mlx5_get_matcher_priority(struct rte_eth_dev *dev, 1376 const struct rte_flow_attr *attr, 1377 uint32_t subpriority, bool external) 1378 { 1379 uint16_t priority = (uint16_t)attr->priority; 1380 struct mlx5_priv *priv = dev->data->dev_private; 1381 1382 /* NIC root rules */ 1383 if (!attr->group && !attr->transfer) { 1384 if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR) 1385 priority = priv->sh->flow_max_priority - 1; 1386 return mlx5_os_flow_adjust_priority(dev, priority, subpriority); 1387 /* FDB root rules */ 1388 } else if (attr->transfer && (!external || !priv->fdb_def_rule) && 1389 attr->group == 0 && 1390 attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR) { 1391 return (priv->sh->flow_max_priority - 1) * 3; 1392 } 1393 if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR) 1394 priority = MLX5_NON_ROOT_FLOW_MAX_PRIO; 1395 return priority * 3 + subpriority; 1396 } 1397 1398 /** 1399 * Verify the @p item specifications (spec, last, mask) are compatible with the 1400 * NIC capabilities. 1401 * 1402 * @param[in] item 1403 * Item specification. 1404 * @param[in] mask 1405 * @p item->mask or flow default bit-masks. 1406 * @param[in] nic_mask 1407 * Bit-masks covering supported fields by the NIC to compare with user mask. 1408 * @param[in] size 1409 * Bit-masks size in bytes. 1410 * @param[in] range_accepted 1411 * True if range of values is accepted for specific fields, false otherwise. 1412 * @param[out] error 1413 * Pointer to error structure. 1414 * 1415 * @return 1416 * 0 on success, a negative errno value otherwise and rte_errno is set. 1417 */ 1418 int 1419 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 1420 const uint8_t *mask, 1421 const uint8_t *nic_mask, 1422 unsigned int size, 1423 bool range_accepted, 1424 struct rte_flow_error *error) 1425 { 1426 unsigned int i; 1427 1428 MLX5_ASSERT(nic_mask); 1429 for (i = 0; i < size; ++i) 1430 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 1431 return rte_flow_error_set(error, ENOTSUP, 1432 RTE_FLOW_ERROR_TYPE_ITEM, 1433 item, 1434 "mask enables non supported" 1435 " bits"); 1436 if (!item->spec && (item->mask || item->last)) 1437 return rte_flow_error_set(error, EINVAL, 1438 RTE_FLOW_ERROR_TYPE_ITEM, item, 1439 "mask/last without a spec is not" 1440 " supported"); 1441 if (item->spec && item->last && !range_accepted) { 1442 uint8_t spec[size]; 1443 uint8_t last[size]; 1444 unsigned int i; 1445 int ret; 1446 1447 for (i = 0; i < size; ++i) { 1448 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 1449 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 1450 } 1451 ret = memcmp(spec, last, size); 1452 if (ret != 0) 1453 return rte_flow_error_set(error, EINVAL, 1454 RTE_FLOW_ERROR_TYPE_ITEM, 1455 item, 1456 "range is not valid"); 1457 } 1458 return 0; 1459 } 1460 1461 /** 1462 * Adjust the hash fields according to the @p flow information. 1463 * 1464 * @param[in] dev_flow. 1465 * Pointer to the mlx5_flow. 1466 * @param[in] tunnel 1467 * 1 when the hash field is for a tunnel item. 1468 * @param[in] layer_types 1469 * RTE_ETH_RSS_* types. 1470 * @param[in] hash_fields 1471 * Item hash fields. 1472 * 1473 * @return 1474 * The hash fields that should be used. 1475 */ 1476 uint64_t 1477 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc, 1478 int tunnel __rte_unused, uint64_t layer_types, 1479 uint64_t hash_fields) 1480 { 1481 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 1482 int rss_request_inner = rss_desc->level >= 2; 1483 1484 /* Check RSS hash level for tunnel. */ 1485 if (tunnel && rss_request_inner) 1486 hash_fields |= IBV_RX_HASH_INNER; 1487 else if (tunnel || rss_request_inner) 1488 return 0; 1489 #endif 1490 /* Check if requested layer matches RSS hash fields. */ 1491 if (!(rss_desc->types & layer_types)) 1492 return 0; 1493 return hash_fields; 1494 } 1495 1496 /** 1497 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 1498 * if several tunnel rules are used on this queue, the tunnel ptype will be 1499 * cleared. 1500 * 1501 * @param rxq_ctrl 1502 * Rx queue to update. 1503 */ 1504 static void 1505 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 1506 { 1507 unsigned int i; 1508 uint32_t tunnel_ptype = 0; 1509 1510 /* Look up for the ptype to use. */ 1511 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 1512 if (!rxq_ctrl->flow_tunnels_n[i]) 1513 continue; 1514 if (!tunnel_ptype) { 1515 tunnel_ptype = tunnels_info[i].ptype; 1516 } else { 1517 tunnel_ptype = 0; 1518 break; 1519 } 1520 } 1521 rxq_ctrl->rxq.tunnel = tunnel_ptype; 1522 } 1523 1524 /** 1525 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the device 1526 * flow. 1527 * 1528 * @param[in] dev 1529 * Pointer to the Ethernet device structure. 1530 * @param[in] dev_handle 1531 * Pointer to device flow handle structure. 1532 */ 1533 void 1534 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, 1535 struct mlx5_flow_handle *dev_handle) 1536 { 1537 struct mlx5_priv *priv = dev->data->dev_private; 1538 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1539 struct mlx5_ind_table_obj *ind_tbl = NULL; 1540 unsigned int i; 1541 1542 if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) { 1543 struct mlx5_hrxq *hrxq; 1544 1545 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1546 dev_handle->rix_hrxq); 1547 if (hrxq) 1548 ind_tbl = hrxq->ind_table; 1549 } else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) { 1550 struct mlx5_shared_action_rss *shared_rss; 1551 1552 shared_rss = mlx5_ipool_get 1553 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 1554 dev_handle->rix_srss); 1555 if (shared_rss) 1556 ind_tbl = shared_rss->ind_tbl; 1557 } 1558 if (!ind_tbl) 1559 return; 1560 for (i = 0; i != ind_tbl->queues_n; ++i) { 1561 int idx = ind_tbl->queues[i]; 1562 struct mlx5_rxq_ctrl *rxq_ctrl; 1563 1564 if (mlx5_is_external_rxq(dev, idx)) 1565 continue; 1566 rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx); 1567 MLX5_ASSERT(rxq_ctrl != NULL); 1568 if (rxq_ctrl == NULL) 1569 continue; 1570 /* 1571 * To support metadata register copy on Tx loopback, 1572 * this must be always enabled (metadata may arive 1573 * from other port - not from local flows only. 1574 */ 1575 if (tunnel) { 1576 unsigned int j; 1577 1578 /* Increase the counter matching the flow. */ 1579 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1580 if ((tunnels_info[j].tunnel & 1581 dev_handle->layers) == 1582 tunnels_info[j].tunnel) { 1583 rxq_ctrl->flow_tunnels_n[j]++; 1584 break; 1585 } 1586 } 1587 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1588 } 1589 } 1590 } 1591 1592 static void 1593 flow_rxq_mark_flag_set(struct rte_eth_dev *dev) 1594 { 1595 struct mlx5_priv *priv = dev->data->dev_private; 1596 struct mlx5_rxq_ctrl *rxq_ctrl; 1597 uint16_t port_id; 1598 1599 if (priv->sh->shared_mark_enabled) 1600 return; 1601 if (priv->master || priv->representor) { 1602 MLX5_ETH_FOREACH_DEV(port_id, dev->device) { 1603 struct mlx5_priv *opriv = 1604 rte_eth_devices[port_id].data->dev_private; 1605 1606 if (!opriv || 1607 opriv->sh != priv->sh || 1608 opriv->domain_id != priv->domain_id || 1609 opriv->mark_enabled) 1610 continue; 1611 LIST_FOREACH(rxq_ctrl, &opriv->rxqsctrl, next) { 1612 rxq_ctrl->rxq.mark = 1; 1613 } 1614 opriv->mark_enabled = 1; 1615 } 1616 } else { 1617 LIST_FOREACH(rxq_ctrl, &priv->rxqsctrl, next) { 1618 rxq_ctrl->rxq.mark = 1; 1619 } 1620 priv->mark_enabled = 1; 1621 } 1622 priv->sh->shared_mark_enabled = 1; 1623 } 1624 1625 /** 1626 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 1627 * 1628 * @param[in] dev 1629 * Pointer to the Ethernet device structure. 1630 * @param[in] flow 1631 * Pointer to flow structure. 1632 */ 1633 static void 1634 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 1635 { 1636 struct mlx5_priv *priv = dev->data->dev_private; 1637 uint32_t handle_idx; 1638 struct mlx5_flow_handle *dev_handle; 1639 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 1640 1641 MLX5_ASSERT(wks); 1642 if (wks->mark) 1643 flow_rxq_mark_flag_set(dev); 1644 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1645 handle_idx, dev_handle, next) 1646 flow_drv_rxq_flags_set(dev, dev_handle); 1647 } 1648 1649 /** 1650 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1651 * device flow if no other flow uses it with the same kind of request. 1652 * 1653 * @param dev 1654 * Pointer to Ethernet device. 1655 * @param[in] dev_handle 1656 * Pointer to the device flow handle structure. 1657 */ 1658 static void 1659 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, 1660 struct mlx5_flow_handle *dev_handle) 1661 { 1662 struct mlx5_priv *priv = dev->data->dev_private; 1663 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1664 struct mlx5_ind_table_obj *ind_tbl = NULL; 1665 unsigned int i; 1666 1667 if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) { 1668 struct mlx5_hrxq *hrxq; 1669 1670 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1671 dev_handle->rix_hrxq); 1672 if (hrxq) 1673 ind_tbl = hrxq->ind_table; 1674 } else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) { 1675 struct mlx5_shared_action_rss *shared_rss; 1676 1677 shared_rss = mlx5_ipool_get 1678 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 1679 dev_handle->rix_srss); 1680 if (shared_rss) 1681 ind_tbl = shared_rss->ind_tbl; 1682 } 1683 if (!ind_tbl) 1684 return; 1685 MLX5_ASSERT(dev->data->dev_started); 1686 for (i = 0; i != ind_tbl->queues_n; ++i) { 1687 int idx = ind_tbl->queues[i]; 1688 struct mlx5_rxq_ctrl *rxq_ctrl; 1689 1690 if (mlx5_is_external_rxq(dev, idx)) 1691 continue; 1692 rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx); 1693 MLX5_ASSERT(rxq_ctrl != NULL); 1694 if (rxq_ctrl == NULL) 1695 continue; 1696 if (tunnel) { 1697 unsigned int j; 1698 1699 /* Decrease the counter matching the flow. */ 1700 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1701 if ((tunnels_info[j].tunnel & 1702 dev_handle->layers) == 1703 tunnels_info[j].tunnel) { 1704 rxq_ctrl->flow_tunnels_n[j]--; 1705 break; 1706 } 1707 } 1708 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1709 } 1710 } 1711 } 1712 1713 /** 1714 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1715 * @p flow if no other flow uses it with the same kind of request. 1716 * 1717 * @param dev 1718 * Pointer to Ethernet device. 1719 * @param[in] flow 1720 * Pointer to the flow. 1721 */ 1722 static void 1723 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 1724 { 1725 struct mlx5_priv *priv = dev->data->dev_private; 1726 uint32_t handle_idx; 1727 struct mlx5_flow_handle *dev_handle; 1728 1729 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1730 handle_idx, dev_handle, next) 1731 flow_drv_rxq_flags_trim(dev, dev_handle); 1732 } 1733 1734 /** 1735 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 1736 * 1737 * @param dev 1738 * Pointer to Ethernet device. 1739 */ 1740 static void 1741 flow_rxq_flags_clear(struct rte_eth_dev *dev) 1742 { 1743 struct mlx5_priv *priv = dev->data->dev_private; 1744 unsigned int i; 1745 1746 for (i = 0; i != priv->rxqs_n; ++i) { 1747 struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i); 1748 unsigned int j; 1749 1750 if (rxq == NULL || rxq->ctrl == NULL) 1751 continue; 1752 rxq->ctrl->rxq.mark = 0; 1753 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 1754 rxq->ctrl->flow_tunnels_n[j] = 0; 1755 rxq->ctrl->rxq.tunnel = 0; 1756 } 1757 priv->mark_enabled = 0; 1758 priv->sh->shared_mark_enabled = 0; 1759 } 1760 1761 /** 1762 * Set the Rx queue dynamic metadata (mask and offset) for a flow 1763 * 1764 * @param[in] dev 1765 * Pointer to the Ethernet device structure. 1766 */ 1767 void 1768 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev) 1769 { 1770 struct mlx5_priv *priv = dev->data->dev_private; 1771 unsigned int i; 1772 1773 for (i = 0; i != priv->rxqs_n; ++i) { 1774 struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i); 1775 struct mlx5_rxq_data *data; 1776 1777 if (rxq == NULL || rxq->ctrl == NULL) 1778 continue; 1779 data = &rxq->ctrl->rxq; 1780 if (!rte_flow_dynf_metadata_avail()) { 1781 data->dynf_meta = 0; 1782 data->flow_meta_mask = 0; 1783 data->flow_meta_offset = -1; 1784 data->flow_meta_port_mask = 0; 1785 } else { 1786 data->dynf_meta = 1; 1787 data->flow_meta_mask = rte_flow_dynf_metadata_mask; 1788 data->flow_meta_offset = rte_flow_dynf_metadata_offs; 1789 data->flow_meta_port_mask = priv->sh->dv_meta_mask; 1790 } 1791 } 1792 } 1793 1794 /* 1795 * return a pointer to the desired action in the list of actions. 1796 * 1797 * @param[in] actions 1798 * The list of actions to search the action in. 1799 * @param[in] action 1800 * The action to find. 1801 * 1802 * @return 1803 * Pointer to the action in the list, if found. NULL otherwise. 1804 */ 1805 const struct rte_flow_action * 1806 mlx5_flow_find_action(const struct rte_flow_action *actions, 1807 enum rte_flow_action_type action) 1808 { 1809 if (actions == NULL) 1810 return NULL; 1811 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) 1812 if (actions->type == action) 1813 return actions; 1814 return NULL; 1815 } 1816 1817 /* 1818 * Validate the flag action. 1819 * 1820 * @param[in] action_flags 1821 * Bit-fields that holds the actions detected until now. 1822 * @param[in] attr 1823 * Attributes of flow that includes this action. 1824 * @param[out] error 1825 * Pointer to error structure. 1826 * 1827 * @return 1828 * 0 on success, a negative errno value otherwise and rte_errno is set. 1829 */ 1830 int 1831 mlx5_flow_validate_action_flag(uint64_t action_flags, 1832 const struct rte_flow_attr *attr, 1833 struct rte_flow_error *error) 1834 { 1835 if (action_flags & MLX5_FLOW_ACTION_MARK) 1836 return rte_flow_error_set(error, EINVAL, 1837 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1838 "can't mark and flag in same flow"); 1839 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1840 return rte_flow_error_set(error, EINVAL, 1841 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1842 "can't have 2 flag" 1843 " actions in same flow"); 1844 if (attr->egress) 1845 return rte_flow_error_set(error, ENOTSUP, 1846 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1847 "flag action not supported for " 1848 "egress"); 1849 return 0; 1850 } 1851 1852 /* 1853 * Validate the mark action. 1854 * 1855 * @param[in] action 1856 * Pointer to the queue action. 1857 * @param[in] action_flags 1858 * Bit-fields that holds the actions detected until now. 1859 * @param[in] attr 1860 * Attributes of flow that includes this action. 1861 * @param[out] error 1862 * Pointer to error structure. 1863 * 1864 * @return 1865 * 0 on success, a negative errno value otherwise and rte_errno is set. 1866 */ 1867 int 1868 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 1869 uint64_t action_flags, 1870 const struct rte_flow_attr *attr, 1871 struct rte_flow_error *error) 1872 { 1873 const struct rte_flow_action_mark *mark = action->conf; 1874 1875 if (!mark) 1876 return rte_flow_error_set(error, EINVAL, 1877 RTE_FLOW_ERROR_TYPE_ACTION, 1878 action, 1879 "configuration cannot be null"); 1880 if (mark->id >= MLX5_FLOW_MARK_MAX) 1881 return rte_flow_error_set(error, EINVAL, 1882 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1883 &mark->id, 1884 "mark id must in 0 <= id < " 1885 RTE_STR(MLX5_FLOW_MARK_MAX)); 1886 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1887 return rte_flow_error_set(error, EINVAL, 1888 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1889 "can't flag and mark in same flow"); 1890 if (action_flags & MLX5_FLOW_ACTION_MARK) 1891 return rte_flow_error_set(error, EINVAL, 1892 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1893 "can't have 2 mark actions in same" 1894 " flow"); 1895 if (attr->egress) 1896 return rte_flow_error_set(error, ENOTSUP, 1897 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1898 "mark action not supported for " 1899 "egress"); 1900 return 0; 1901 } 1902 1903 /* 1904 * Validate the drop action. 1905 * 1906 * @param[in] action_flags 1907 * Bit-fields that holds the actions detected until now. 1908 * @param[in] attr 1909 * Attributes of flow that includes this action. 1910 * @param[out] error 1911 * Pointer to error structure. 1912 * 1913 * @return 1914 * 0 on success, a negative errno value otherwise and rte_errno is set. 1915 */ 1916 int 1917 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused, 1918 const struct rte_flow_attr *attr, 1919 struct rte_flow_error *error) 1920 { 1921 if (attr->egress) 1922 return rte_flow_error_set(error, ENOTSUP, 1923 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1924 "drop action not supported for " 1925 "egress"); 1926 return 0; 1927 } 1928 1929 /* 1930 * Validate the queue action. 1931 * 1932 * @param[in] action 1933 * Pointer to the queue action. 1934 * @param[in] action_flags 1935 * Bit-fields that holds the actions detected until now. 1936 * @param[in] dev 1937 * Pointer to the Ethernet device structure. 1938 * @param[in] attr 1939 * Attributes of flow that includes this action. 1940 * @param[out] error 1941 * Pointer to error structure. 1942 * 1943 * @return 1944 * 0 on success, a negative errno value otherwise and rte_errno is set. 1945 */ 1946 int 1947 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 1948 uint64_t action_flags, 1949 struct rte_eth_dev *dev, 1950 const struct rte_flow_attr *attr, 1951 struct rte_flow_error *error) 1952 { 1953 struct mlx5_priv *priv = dev->data->dev_private; 1954 const struct rte_flow_action_queue *queue = action->conf; 1955 1956 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1957 return rte_flow_error_set(error, EINVAL, 1958 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1959 "can't have 2 fate actions in" 1960 " same flow"); 1961 if (attr->egress) 1962 return rte_flow_error_set(error, ENOTSUP, 1963 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1964 "queue action not supported for egress."); 1965 if (mlx5_is_external_rxq(dev, queue->index)) 1966 return 0; 1967 if (!priv->rxqs_n) 1968 return rte_flow_error_set(error, EINVAL, 1969 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1970 NULL, "No Rx queues configured"); 1971 if (queue->index >= priv->rxqs_n) 1972 return rte_flow_error_set(error, EINVAL, 1973 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1974 &queue->index, 1975 "queue index out of range"); 1976 if (mlx5_rxq_get(dev, queue->index) == NULL) 1977 return rte_flow_error_set(error, EINVAL, 1978 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1979 &queue->index, 1980 "queue is not configured"); 1981 return 0; 1982 } 1983 1984 /** 1985 * Validate queue numbers for device RSS. 1986 * 1987 * @param[in] dev 1988 * Configured device. 1989 * @param[in] queues 1990 * Array of queue numbers. 1991 * @param[in] queues_n 1992 * Size of the @p queues array. 1993 * @param[out] error 1994 * On error, filled with a textual error description. 1995 * @param[out] queue_idx 1996 * On error, filled with an offending queue index in @p queues array. 1997 * 1998 * @return 1999 * 0 on success, a negative errno code on error. 2000 */ 2001 static int 2002 mlx5_validate_rss_queues(struct rte_eth_dev *dev, 2003 const uint16_t *queues, uint32_t queues_n, 2004 const char **error, uint32_t *queue_idx) 2005 { 2006 const struct mlx5_priv *priv = dev->data->dev_private; 2007 bool is_hairpin = false; 2008 bool is_ext_rss = false; 2009 uint32_t i; 2010 2011 for (i = 0; i != queues_n; ++i) { 2012 struct mlx5_rxq_ctrl *rxq_ctrl; 2013 2014 if (mlx5_is_external_rxq(dev, queues[0])) { 2015 is_ext_rss = true; 2016 continue; 2017 } 2018 if (is_ext_rss) { 2019 *error = "Combining external and regular RSS queues is not supported"; 2020 *queue_idx = i; 2021 return -ENOTSUP; 2022 } 2023 if (queues[i] >= priv->rxqs_n) { 2024 *error = "queue index out of range"; 2025 *queue_idx = i; 2026 return -EINVAL; 2027 } 2028 rxq_ctrl = mlx5_rxq_ctrl_get(dev, queues[i]); 2029 if (rxq_ctrl == NULL) { 2030 *error = "queue is not configured"; 2031 *queue_idx = i; 2032 return -EINVAL; 2033 } 2034 if (i == 0 && rxq_ctrl->is_hairpin) 2035 is_hairpin = true; 2036 if (is_hairpin != rxq_ctrl->is_hairpin) { 2037 *error = "combining hairpin and regular RSS queues is not supported"; 2038 *queue_idx = i; 2039 return -ENOTSUP; 2040 } 2041 } 2042 return 0; 2043 } 2044 2045 /* 2046 * Validate the rss action. 2047 * 2048 * @param[in] dev 2049 * Pointer to the Ethernet device structure. 2050 * @param[in] action 2051 * Pointer to the queue action. 2052 * @param[out] error 2053 * Pointer to error structure. 2054 * 2055 * @return 2056 * 0 on success, a negative errno value otherwise and rte_errno is set. 2057 */ 2058 int 2059 mlx5_validate_action_rss(struct rte_eth_dev *dev, 2060 const struct rte_flow_action *action, 2061 struct rte_flow_error *error) 2062 { 2063 struct mlx5_priv *priv = dev->data->dev_private; 2064 const struct rte_flow_action_rss *rss = action->conf; 2065 int ret; 2066 const char *message; 2067 uint32_t queue_idx; 2068 2069 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 2070 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 2071 return rte_flow_error_set(error, ENOTSUP, 2072 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2073 &rss->func, 2074 "RSS hash function not supported"); 2075 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 2076 if (rss->level > 2) 2077 #else 2078 if (rss->level > 1) 2079 #endif 2080 return rte_flow_error_set(error, ENOTSUP, 2081 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2082 &rss->level, 2083 "tunnel RSS is not supported"); 2084 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 2085 if (rss->key_len == 0 && rss->key != NULL) 2086 return rte_flow_error_set(error, ENOTSUP, 2087 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2088 &rss->key_len, 2089 "RSS hash key length 0"); 2090 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 2091 return rte_flow_error_set(error, ENOTSUP, 2092 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2093 &rss->key_len, 2094 "RSS hash key too small"); 2095 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 2096 return rte_flow_error_set(error, ENOTSUP, 2097 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2098 &rss->key_len, 2099 "RSS hash key too large"); 2100 if (rss->queue_num > priv->sh->dev_cap.ind_table_max_size) 2101 return rte_flow_error_set(error, ENOTSUP, 2102 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2103 &rss->queue_num, 2104 "number of queues too large"); 2105 if (rss->types & MLX5_RSS_HF_MASK) 2106 return rte_flow_error_set(error, ENOTSUP, 2107 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2108 &rss->types, 2109 "some RSS protocols are not" 2110 " supported"); 2111 if ((rss->types & (RTE_ETH_RSS_L3_SRC_ONLY | RTE_ETH_RSS_L3_DST_ONLY)) && 2112 !(rss->types & RTE_ETH_RSS_IP)) 2113 return rte_flow_error_set(error, EINVAL, 2114 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 2115 "L3 partial RSS requested but L3 RSS" 2116 " type not specified"); 2117 if ((rss->types & (RTE_ETH_RSS_L4_SRC_ONLY | RTE_ETH_RSS_L4_DST_ONLY)) && 2118 !(rss->types & (RTE_ETH_RSS_UDP | RTE_ETH_RSS_TCP))) 2119 return rte_flow_error_set(error, EINVAL, 2120 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 2121 "L4 partial RSS requested but L4 RSS" 2122 " type not specified"); 2123 if (!priv->rxqs_n && priv->ext_rxqs == NULL) 2124 return rte_flow_error_set(error, EINVAL, 2125 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2126 NULL, "No Rx queues configured"); 2127 if (!rss->queue_num) 2128 return rte_flow_error_set(error, EINVAL, 2129 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2130 NULL, "No queues configured"); 2131 ret = mlx5_validate_rss_queues(dev, rss->queue, rss->queue_num, 2132 &message, &queue_idx); 2133 if (ret != 0) { 2134 return rte_flow_error_set(error, -ret, 2135 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 2136 &rss->queue[queue_idx], message); 2137 } 2138 return 0; 2139 } 2140 2141 /* 2142 * Validate the rss action. 2143 * 2144 * @param[in] action 2145 * Pointer to the queue action. 2146 * @param[in] action_flags 2147 * Bit-fields that holds the actions detected until now. 2148 * @param[in] dev 2149 * Pointer to the Ethernet device structure. 2150 * @param[in] attr 2151 * Attributes of flow that includes this action. 2152 * @param[in] item_flags 2153 * Items that were detected. 2154 * @param[out] error 2155 * Pointer to error structure. 2156 * 2157 * @return 2158 * 0 on success, a negative errno value otherwise and rte_errno is set. 2159 */ 2160 int 2161 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 2162 uint64_t action_flags, 2163 struct rte_eth_dev *dev, 2164 const struct rte_flow_attr *attr, 2165 uint64_t item_flags, 2166 struct rte_flow_error *error) 2167 { 2168 const struct rte_flow_action_rss *rss = action->conf; 2169 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2170 int ret; 2171 2172 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 2173 return rte_flow_error_set(error, EINVAL, 2174 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 2175 "can't have 2 fate actions" 2176 " in same flow"); 2177 ret = mlx5_validate_action_rss(dev, action, error); 2178 if (ret) 2179 return ret; 2180 if (attr->egress) 2181 return rte_flow_error_set(error, ENOTSUP, 2182 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 2183 "rss action not supported for " 2184 "egress"); 2185 if (rss->level > 1 && !tunnel) 2186 return rte_flow_error_set(error, EINVAL, 2187 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 2188 "inner RSS is not supported for " 2189 "non-tunnel flows"); 2190 if ((item_flags & MLX5_FLOW_LAYER_ECPRI) && 2191 !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) { 2192 return rte_flow_error_set(error, EINVAL, 2193 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 2194 "RSS on eCPRI is not supported now"); 2195 } 2196 if ((item_flags & MLX5_FLOW_LAYER_MPLS) && 2197 !(item_flags & 2198 (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3)) && 2199 rss->level > 1) 2200 return rte_flow_error_set(error, EINVAL, 2201 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 2202 "MPLS inner RSS needs to specify inner L2/L3 items after MPLS in pattern"); 2203 return 0; 2204 } 2205 2206 /* 2207 * Validate the default miss action. 2208 * 2209 * @param[in] action_flags 2210 * Bit-fields that holds the actions detected until now. 2211 * @param[out] error 2212 * Pointer to error structure. 2213 * 2214 * @return 2215 * 0 on success, a negative errno value otherwise and rte_errno is set. 2216 */ 2217 int 2218 mlx5_flow_validate_action_default_miss(uint64_t action_flags, 2219 const struct rte_flow_attr *attr, 2220 struct rte_flow_error *error) 2221 { 2222 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 2223 return rte_flow_error_set(error, EINVAL, 2224 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 2225 "can't have 2 fate actions in" 2226 " same flow"); 2227 if (attr->egress) 2228 return rte_flow_error_set(error, ENOTSUP, 2229 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 2230 "default miss action not supported " 2231 "for egress"); 2232 if (attr->group) 2233 return rte_flow_error_set(error, ENOTSUP, 2234 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL, 2235 "only group 0 is supported"); 2236 if (attr->transfer) 2237 return rte_flow_error_set(error, ENOTSUP, 2238 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 2239 NULL, "transfer is not supported"); 2240 return 0; 2241 } 2242 2243 /* 2244 * Validate the count action. 2245 * 2246 * @param[in] dev 2247 * Pointer to the Ethernet device structure. 2248 * @param[in] attr 2249 * Attributes of flow that includes this action. 2250 * @param[out] error 2251 * Pointer to error structure. 2252 * 2253 * @return 2254 * 0 on success, a negative errno value otherwise and rte_errno is set. 2255 */ 2256 int 2257 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 2258 const struct rte_flow_attr *attr, 2259 struct rte_flow_error *error) 2260 { 2261 if (attr->egress) 2262 return rte_flow_error_set(error, ENOTSUP, 2263 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 2264 "count action not supported for " 2265 "egress"); 2266 return 0; 2267 } 2268 2269 /* 2270 * Validate the ASO CT action. 2271 * 2272 * @param[in] dev 2273 * Pointer to the Ethernet device structure. 2274 * @param[in] conntrack 2275 * Pointer to the CT action profile. 2276 * @param[out] error 2277 * Pointer to error structure. 2278 * 2279 * @return 2280 * 0 on success, a negative errno value otherwise and rte_errno is set. 2281 */ 2282 int 2283 mlx5_validate_action_ct(struct rte_eth_dev *dev, 2284 const struct rte_flow_action_conntrack *conntrack, 2285 struct rte_flow_error *error) 2286 { 2287 RTE_SET_USED(dev); 2288 2289 if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT) 2290 return rte_flow_error_set(error, EINVAL, 2291 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 2292 "Invalid CT state"); 2293 if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST) 2294 return rte_flow_error_set(error, EINVAL, 2295 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 2296 "Invalid last TCP packet flag"); 2297 return 0; 2298 } 2299 2300 /** 2301 * Verify the @p attributes will be correctly understood by the NIC and store 2302 * them in the @p flow if everything is correct. 2303 * 2304 * @param[in] dev 2305 * Pointer to the Ethernet device structure. 2306 * @param[in] attributes 2307 * Pointer to flow attributes 2308 * @param[out] error 2309 * Pointer to error structure. 2310 * 2311 * @return 2312 * 0 on success, a negative errno value otherwise and rte_errno is set. 2313 */ 2314 int 2315 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 2316 const struct rte_flow_attr *attributes, 2317 struct rte_flow_error *error) 2318 { 2319 struct mlx5_priv *priv = dev->data->dev_private; 2320 uint32_t priority_max = priv->sh->flow_max_priority - 1; 2321 2322 if (attributes->group) 2323 return rte_flow_error_set(error, ENOTSUP, 2324 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 2325 NULL, "groups is not supported"); 2326 if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR && 2327 attributes->priority >= priority_max) 2328 return rte_flow_error_set(error, ENOTSUP, 2329 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 2330 NULL, "priority out of range"); 2331 if (attributes->egress) 2332 return rte_flow_error_set(error, ENOTSUP, 2333 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 2334 "egress is not supported"); 2335 if (attributes->transfer && !priv->sh->config.dv_esw_en) 2336 return rte_flow_error_set(error, ENOTSUP, 2337 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 2338 NULL, "transfer is not supported"); 2339 if (!attributes->ingress) 2340 return rte_flow_error_set(error, EINVAL, 2341 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 2342 NULL, 2343 "ingress attribute is mandatory"); 2344 return 0; 2345 } 2346 2347 /** 2348 * Validate ICMP6 item. 2349 * 2350 * @param[in] item 2351 * Item specification. 2352 * @param[in] item_flags 2353 * Bit-fields that holds the items detected until now. 2354 * @param[in] ext_vlan_sup 2355 * Whether extended VLAN features are supported or not. 2356 * @param[out] error 2357 * Pointer to error structure. 2358 * 2359 * @return 2360 * 0 on success, a negative errno value otherwise and rte_errno is set. 2361 */ 2362 int 2363 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item, 2364 uint64_t item_flags, 2365 uint8_t target_protocol, 2366 struct rte_flow_error *error) 2367 { 2368 const struct rte_flow_item_icmp6 *mask = item->mask; 2369 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2370 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 2371 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 2372 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2373 MLX5_FLOW_LAYER_OUTER_L4; 2374 int ret; 2375 2376 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6) 2377 return rte_flow_error_set(error, EINVAL, 2378 RTE_FLOW_ERROR_TYPE_ITEM, item, 2379 "protocol filtering not compatible" 2380 " with ICMP6 layer"); 2381 if (!(item_flags & l3m)) 2382 return rte_flow_error_set(error, EINVAL, 2383 RTE_FLOW_ERROR_TYPE_ITEM, item, 2384 "IPv6 is mandatory to filter on" 2385 " ICMP6"); 2386 if (item_flags & l4m) 2387 return rte_flow_error_set(error, EINVAL, 2388 RTE_FLOW_ERROR_TYPE_ITEM, item, 2389 "multiple L4 layers not supported"); 2390 if (!mask) 2391 mask = &rte_flow_item_icmp6_mask; 2392 ret = mlx5_flow_item_acceptable 2393 (item, (const uint8_t *)mask, 2394 (const uint8_t *)&rte_flow_item_icmp6_mask, 2395 sizeof(struct rte_flow_item_icmp6), 2396 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2397 if (ret < 0) 2398 return ret; 2399 return 0; 2400 } 2401 2402 /** 2403 * Validate ICMP item. 2404 * 2405 * @param[in] item 2406 * Item specification. 2407 * @param[in] item_flags 2408 * Bit-fields that holds the items detected until now. 2409 * @param[out] error 2410 * Pointer to error structure. 2411 * 2412 * @return 2413 * 0 on success, a negative errno value otherwise and rte_errno is set. 2414 */ 2415 int 2416 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item, 2417 uint64_t item_flags, 2418 uint8_t target_protocol, 2419 struct rte_flow_error *error) 2420 { 2421 const struct rte_flow_item_icmp *mask = item->mask; 2422 const struct rte_flow_item_icmp nic_mask = { 2423 .hdr.icmp_type = 0xff, 2424 .hdr.icmp_code = 0xff, 2425 .hdr.icmp_ident = RTE_BE16(0xffff), 2426 .hdr.icmp_seq_nb = RTE_BE16(0xffff), 2427 }; 2428 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2429 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 2430 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 2431 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2432 MLX5_FLOW_LAYER_OUTER_L4; 2433 int ret; 2434 2435 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP) 2436 return rte_flow_error_set(error, EINVAL, 2437 RTE_FLOW_ERROR_TYPE_ITEM, item, 2438 "protocol filtering not compatible" 2439 " with ICMP layer"); 2440 if (!(item_flags & l3m)) 2441 return rte_flow_error_set(error, EINVAL, 2442 RTE_FLOW_ERROR_TYPE_ITEM, item, 2443 "IPv4 is mandatory to filter" 2444 " on ICMP"); 2445 if (item_flags & l4m) 2446 return rte_flow_error_set(error, EINVAL, 2447 RTE_FLOW_ERROR_TYPE_ITEM, item, 2448 "multiple L4 layers not supported"); 2449 if (!mask) 2450 mask = &nic_mask; 2451 ret = mlx5_flow_item_acceptable 2452 (item, (const uint8_t *)mask, 2453 (const uint8_t *)&nic_mask, 2454 sizeof(struct rte_flow_item_icmp), 2455 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2456 if (ret < 0) 2457 return ret; 2458 return 0; 2459 } 2460 2461 /** 2462 * Validate Ethernet item. 2463 * 2464 * @param[in] item 2465 * Item specification. 2466 * @param[in] item_flags 2467 * Bit-fields that holds the items detected until now. 2468 * @param[out] error 2469 * Pointer to error structure. 2470 * 2471 * @return 2472 * 0 on success, a negative errno value otherwise and rte_errno is set. 2473 */ 2474 int 2475 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 2476 uint64_t item_flags, bool ext_vlan_sup, 2477 struct rte_flow_error *error) 2478 { 2479 const struct rte_flow_item_eth *mask = item->mask; 2480 const struct rte_flow_item_eth nic_mask = { 2481 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 2482 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 2483 .type = RTE_BE16(0xffff), 2484 .has_vlan = ext_vlan_sup ? 1 : 0, 2485 }; 2486 int ret; 2487 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2488 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 2489 MLX5_FLOW_LAYER_OUTER_L2; 2490 2491 if (item_flags & ethm) 2492 return rte_flow_error_set(error, ENOTSUP, 2493 RTE_FLOW_ERROR_TYPE_ITEM, item, 2494 "multiple L2 layers not supported"); 2495 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) || 2496 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))) 2497 return rte_flow_error_set(error, EINVAL, 2498 RTE_FLOW_ERROR_TYPE_ITEM, item, 2499 "L2 layer should not follow " 2500 "L3 layers"); 2501 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) || 2502 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN))) 2503 return rte_flow_error_set(error, EINVAL, 2504 RTE_FLOW_ERROR_TYPE_ITEM, item, 2505 "L2 layer should not follow VLAN"); 2506 if (item_flags & MLX5_FLOW_LAYER_GTP) 2507 return rte_flow_error_set(error, EINVAL, 2508 RTE_FLOW_ERROR_TYPE_ITEM, item, 2509 "L2 layer should not follow GTP"); 2510 if (!mask) 2511 mask = &rte_flow_item_eth_mask; 2512 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2513 (const uint8_t *)&nic_mask, 2514 sizeof(struct rte_flow_item_eth), 2515 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2516 return ret; 2517 } 2518 2519 /** 2520 * Validate VLAN item. 2521 * 2522 * @param[in] item 2523 * Item specification. 2524 * @param[in] item_flags 2525 * Bit-fields that holds the items detected until now. 2526 * @param[in] dev 2527 * Ethernet device flow is being created on. 2528 * @param[out] error 2529 * Pointer to error structure. 2530 * 2531 * @return 2532 * 0 on success, a negative errno value otherwise and rte_errno is set. 2533 */ 2534 int 2535 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 2536 uint64_t item_flags, 2537 struct rte_eth_dev *dev, 2538 struct rte_flow_error *error) 2539 { 2540 const struct rte_flow_item_vlan *spec = item->spec; 2541 const struct rte_flow_item_vlan *mask = item->mask; 2542 const struct rte_flow_item_vlan nic_mask = { 2543 .tci = RTE_BE16(UINT16_MAX), 2544 .inner_type = RTE_BE16(UINT16_MAX), 2545 }; 2546 uint16_t vlan_tag = 0; 2547 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2548 int ret; 2549 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 2550 MLX5_FLOW_LAYER_INNER_L4) : 2551 (MLX5_FLOW_LAYER_OUTER_L3 | 2552 MLX5_FLOW_LAYER_OUTER_L4); 2553 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 2554 MLX5_FLOW_LAYER_OUTER_VLAN; 2555 2556 if (item_flags & vlanm) 2557 return rte_flow_error_set(error, EINVAL, 2558 RTE_FLOW_ERROR_TYPE_ITEM, item, 2559 "multiple VLAN layers not supported"); 2560 else if ((item_flags & l34m) != 0) 2561 return rte_flow_error_set(error, EINVAL, 2562 RTE_FLOW_ERROR_TYPE_ITEM, item, 2563 "VLAN cannot follow L3/L4 layer"); 2564 if (!mask) 2565 mask = &rte_flow_item_vlan_mask; 2566 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2567 (const uint8_t *)&nic_mask, 2568 sizeof(struct rte_flow_item_vlan), 2569 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2570 if (ret) 2571 return ret; 2572 if (!tunnel && mask->tci != RTE_BE16(0x0fff)) { 2573 struct mlx5_priv *priv = dev->data->dev_private; 2574 2575 if (priv->vmwa_context) { 2576 /* 2577 * Non-NULL context means we have a virtual machine 2578 * and SR-IOV enabled, we have to create VLAN interface 2579 * to make hypervisor to setup E-Switch vport 2580 * context correctly. We avoid creating the multiple 2581 * VLAN interfaces, so we cannot support VLAN tag mask. 2582 */ 2583 return rte_flow_error_set(error, EINVAL, 2584 RTE_FLOW_ERROR_TYPE_ITEM, 2585 item, 2586 "VLAN tag mask is not" 2587 " supported in virtual" 2588 " environment"); 2589 } 2590 } 2591 if (spec) { 2592 vlan_tag = spec->tci; 2593 vlan_tag &= mask->tci; 2594 } 2595 /* 2596 * From verbs perspective an empty VLAN is equivalent 2597 * to a packet without VLAN layer. 2598 */ 2599 if (!vlan_tag) 2600 return rte_flow_error_set(error, EINVAL, 2601 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 2602 item->spec, 2603 "VLAN cannot be empty"); 2604 return 0; 2605 } 2606 2607 /** 2608 * Validate IPV4 item. 2609 * 2610 * @param[in] item 2611 * Item specification. 2612 * @param[in] item_flags 2613 * Bit-fields that holds the items detected until now. 2614 * @param[in] last_item 2615 * Previous validated item in the pattern items. 2616 * @param[in] ether_type 2617 * Type in the ethernet layer header (including dot1q). 2618 * @param[in] acc_mask 2619 * Acceptable mask, if NULL default internal default mask 2620 * will be used to check whether item fields are supported. 2621 * @param[in] range_accepted 2622 * True if range of values is accepted for specific fields, false otherwise. 2623 * @param[out] error 2624 * Pointer to error structure. 2625 * 2626 * @return 2627 * 0 on success, a negative errno value otherwise and rte_errno is set. 2628 */ 2629 int 2630 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 2631 uint64_t item_flags, 2632 uint64_t last_item, 2633 uint16_t ether_type, 2634 const struct rte_flow_item_ipv4 *acc_mask, 2635 bool range_accepted, 2636 struct rte_flow_error *error) 2637 { 2638 const struct rte_flow_item_ipv4 *mask = item->mask; 2639 const struct rte_flow_item_ipv4 *spec = item->spec; 2640 const struct rte_flow_item_ipv4 nic_mask = { 2641 .hdr = { 2642 .src_addr = RTE_BE32(0xffffffff), 2643 .dst_addr = RTE_BE32(0xffffffff), 2644 .type_of_service = 0xff, 2645 .next_proto_id = 0xff, 2646 }, 2647 }; 2648 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2649 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2650 MLX5_FLOW_LAYER_OUTER_L3; 2651 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2652 MLX5_FLOW_LAYER_OUTER_L4; 2653 int ret; 2654 uint8_t next_proto = 0xFF; 2655 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 2656 MLX5_FLOW_LAYER_OUTER_VLAN | 2657 MLX5_FLOW_LAYER_INNER_VLAN); 2658 2659 if ((last_item & l2_vlan) && ether_type && 2660 ether_type != RTE_ETHER_TYPE_IPV4) 2661 return rte_flow_error_set(error, EINVAL, 2662 RTE_FLOW_ERROR_TYPE_ITEM, item, 2663 "IPv4 cannot follow L2/VLAN layer " 2664 "which ether type is not IPv4"); 2665 if (item_flags & MLX5_FLOW_LAYER_IPIP) { 2666 if (mask && spec) 2667 next_proto = mask->hdr.next_proto_id & 2668 spec->hdr.next_proto_id; 2669 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2670 return rte_flow_error_set(error, EINVAL, 2671 RTE_FLOW_ERROR_TYPE_ITEM, 2672 item, 2673 "multiple tunnel " 2674 "not supported"); 2675 } 2676 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) 2677 return rte_flow_error_set(error, EINVAL, 2678 RTE_FLOW_ERROR_TYPE_ITEM, item, 2679 "wrong tunnel type - IPv6 specified " 2680 "but IPv4 item provided"); 2681 if (item_flags & l3m) 2682 return rte_flow_error_set(error, ENOTSUP, 2683 RTE_FLOW_ERROR_TYPE_ITEM, item, 2684 "multiple L3 layers not supported"); 2685 else if (item_flags & l4m) 2686 return rte_flow_error_set(error, EINVAL, 2687 RTE_FLOW_ERROR_TYPE_ITEM, item, 2688 "L3 cannot follow an L4 layer."); 2689 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2690 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2691 return rte_flow_error_set(error, EINVAL, 2692 RTE_FLOW_ERROR_TYPE_ITEM, item, 2693 "L3 cannot follow an NVGRE layer."); 2694 if (!mask) 2695 mask = &rte_flow_item_ipv4_mask; 2696 else if (mask->hdr.next_proto_id != 0 && 2697 mask->hdr.next_proto_id != 0xff) 2698 return rte_flow_error_set(error, EINVAL, 2699 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2700 "partial mask is not supported" 2701 " for protocol"); 2702 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2703 acc_mask ? (const uint8_t *)acc_mask 2704 : (const uint8_t *)&nic_mask, 2705 sizeof(struct rte_flow_item_ipv4), 2706 range_accepted, error); 2707 if (ret < 0) 2708 return ret; 2709 return 0; 2710 } 2711 2712 /** 2713 * Validate IPV6 item. 2714 * 2715 * @param[in] item 2716 * Item specification. 2717 * @param[in] item_flags 2718 * Bit-fields that holds the items detected until now. 2719 * @param[in] last_item 2720 * Previous validated item in the pattern items. 2721 * @param[in] ether_type 2722 * Type in the ethernet layer header (including dot1q). 2723 * @param[in] acc_mask 2724 * Acceptable mask, if NULL default internal default mask 2725 * will be used to check whether item fields are supported. 2726 * @param[out] error 2727 * Pointer to error structure. 2728 * 2729 * @return 2730 * 0 on success, a negative errno value otherwise and rte_errno is set. 2731 */ 2732 int 2733 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 2734 uint64_t item_flags, 2735 uint64_t last_item, 2736 uint16_t ether_type, 2737 const struct rte_flow_item_ipv6 *acc_mask, 2738 struct rte_flow_error *error) 2739 { 2740 const struct rte_flow_item_ipv6 *mask = item->mask; 2741 const struct rte_flow_item_ipv6 *spec = item->spec; 2742 const struct rte_flow_item_ipv6 nic_mask = { 2743 .hdr = { 2744 .src_addr = 2745 "\xff\xff\xff\xff\xff\xff\xff\xff" 2746 "\xff\xff\xff\xff\xff\xff\xff\xff", 2747 .dst_addr = 2748 "\xff\xff\xff\xff\xff\xff\xff\xff" 2749 "\xff\xff\xff\xff\xff\xff\xff\xff", 2750 .vtc_flow = RTE_BE32(0xffffffff), 2751 .proto = 0xff, 2752 }, 2753 }; 2754 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2755 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2756 MLX5_FLOW_LAYER_OUTER_L3; 2757 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2758 MLX5_FLOW_LAYER_OUTER_L4; 2759 int ret; 2760 uint8_t next_proto = 0xFF; 2761 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 2762 MLX5_FLOW_LAYER_OUTER_VLAN | 2763 MLX5_FLOW_LAYER_INNER_VLAN); 2764 2765 if ((last_item & l2_vlan) && ether_type && 2766 ether_type != RTE_ETHER_TYPE_IPV6) 2767 return rte_flow_error_set(error, EINVAL, 2768 RTE_FLOW_ERROR_TYPE_ITEM, item, 2769 "IPv6 cannot follow L2/VLAN layer " 2770 "which ether type is not IPv6"); 2771 if (mask && mask->hdr.proto == UINT8_MAX && spec) 2772 next_proto = spec->hdr.proto; 2773 if (item_flags & MLX5_FLOW_LAYER_IPIP) { 2774 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2775 return rte_flow_error_set(error, EINVAL, 2776 RTE_FLOW_ERROR_TYPE_ITEM, 2777 item, 2778 "multiple tunnel " 2779 "not supported"); 2780 } 2781 if (next_proto == IPPROTO_HOPOPTS || 2782 next_proto == IPPROTO_ROUTING || 2783 next_proto == IPPROTO_FRAGMENT || 2784 next_proto == IPPROTO_ESP || 2785 next_proto == IPPROTO_AH || 2786 next_proto == IPPROTO_DSTOPTS) 2787 return rte_flow_error_set(error, EINVAL, 2788 RTE_FLOW_ERROR_TYPE_ITEM, item, 2789 "IPv6 proto (next header) should " 2790 "not be set as extension header"); 2791 if (item_flags & MLX5_FLOW_LAYER_IPIP) 2792 return rte_flow_error_set(error, EINVAL, 2793 RTE_FLOW_ERROR_TYPE_ITEM, item, 2794 "wrong tunnel type - IPv4 specified " 2795 "but IPv6 item provided"); 2796 if (item_flags & l3m) 2797 return rte_flow_error_set(error, ENOTSUP, 2798 RTE_FLOW_ERROR_TYPE_ITEM, item, 2799 "multiple L3 layers not supported"); 2800 else if (item_flags & l4m) 2801 return rte_flow_error_set(error, EINVAL, 2802 RTE_FLOW_ERROR_TYPE_ITEM, item, 2803 "L3 cannot follow an L4 layer."); 2804 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2805 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2806 return rte_flow_error_set(error, EINVAL, 2807 RTE_FLOW_ERROR_TYPE_ITEM, item, 2808 "L3 cannot follow an NVGRE layer."); 2809 if (!mask) 2810 mask = &rte_flow_item_ipv6_mask; 2811 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2812 acc_mask ? (const uint8_t *)acc_mask 2813 : (const uint8_t *)&nic_mask, 2814 sizeof(struct rte_flow_item_ipv6), 2815 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2816 if (ret < 0) 2817 return ret; 2818 return 0; 2819 } 2820 2821 /** 2822 * Validate UDP item. 2823 * 2824 * @param[in] item 2825 * Item specification. 2826 * @param[in] item_flags 2827 * Bit-fields that holds the items detected until now. 2828 * @param[in] target_protocol 2829 * The next protocol in the previous item. 2830 * @param[in] flow_mask 2831 * mlx5 flow-specific (DV, verbs, etc.) supported header fields mask. 2832 * @param[out] error 2833 * Pointer to error structure. 2834 * 2835 * @return 2836 * 0 on success, a negative errno value otherwise and rte_errno is set. 2837 */ 2838 int 2839 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 2840 uint64_t item_flags, 2841 uint8_t target_protocol, 2842 struct rte_flow_error *error) 2843 { 2844 const struct rte_flow_item_udp *mask = item->mask; 2845 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2846 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2847 MLX5_FLOW_LAYER_OUTER_L3; 2848 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2849 MLX5_FLOW_LAYER_OUTER_L4; 2850 int ret; 2851 2852 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 2853 return rte_flow_error_set(error, EINVAL, 2854 RTE_FLOW_ERROR_TYPE_ITEM, item, 2855 "protocol filtering not compatible" 2856 " with UDP layer"); 2857 if (!(item_flags & l3m)) 2858 return rte_flow_error_set(error, EINVAL, 2859 RTE_FLOW_ERROR_TYPE_ITEM, item, 2860 "L3 is mandatory to filter on L4"); 2861 if (item_flags & l4m) 2862 return rte_flow_error_set(error, EINVAL, 2863 RTE_FLOW_ERROR_TYPE_ITEM, item, 2864 "multiple L4 layers not supported"); 2865 if (!mask) 2866 mask = &rte_flow_item_udp_mask; 2867 ret = mlx5_flow_item_acceptable 2868 (item, (const uint8_t *)mask, 2869 (const uint8_t *)&rte_flow_item_udp_mask, 2870 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2871 error); 2872 if (ret < 0) 2873 return ret; 2874 return 0; 2875 } 2876 2877 /** 2878 * Validate TCP item. 2879 * 2880 * @param[in] item 2881 * Item specification. 2882 * @param[in] item_flags 2883 * Bit-fields that holds the items detected until now. 2884 * @param[in] target_protocol 2885 * The next protocol in the previous item. 2886 * @param[out] error 2887 * Pointer to error structure. 2888 * 2889 * @return 2890 * 0 on success, a negative errno value otherwise and rte_errno is set. 2891 */ 2892 int 2893 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 2894 uint64_t item_flags, 2895 uint8_t target_protocol, 2896 const struct rte_flow_item_tcp *flow_mask, 2897 struct rte_flow_error *error) 2898 { 2899 const struct rte_flow_item_tcp *mask = item->mask; 2900 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2901 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2902 MLX5_FLOW_LAYER_OUTER_L3; 2903 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2904 MLX5_FLOW_LAYER_OUTER_L4; 2905 int ret; 2906 2907 MLX5_ASSERT(flow_mask); 2908 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 2909 return rte_flow_error_set(error, EINVAL, 2910 RTE_FLOW_ERROR_TYPE_ITEM, item, 2911 "protocol filtering not compatible" 2912 " with TCP layer"); 2913 if (!(item_flags & l3m)) 2914 return rte_flow_error_set(error, EINVAL, 2915 RTE_FLOW_ERROR_TYPE_ITEM, item, 2916 "L3 is mandatory to filter on L4"); 2917 if (item_flags & l4m) 2918 return rte_flow_error_set(error, EINVAL, 2919 RTE_FLOW_ERROR_TYPE_ITEM, item, 2920 "multiple L4 layers not supported"); 2921 if (!mask) 2922 mask = &rte_flow_item_tcp_mask; 2923 ret = mlx5_flow_item_acceptable 2924 (item, (const uint8_t *)mask, 2925 (const uint8_t *)flow_mask, 2926 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2927 error); 2928 if (ret < 0) 2929 return ret; 2930 return 0; 2931 } 2932 2933 /** 2934 * Validate VXLAN item. 2935 * 2936 * @param[in] dev 2937 * Pointer to the Ethernet device structure. 2938 * @param[in] udp_dport 2939 * UDP destination port 2940 * @param[in] item 2941 * Item specification. 2942 * @param[in] item_flags 2943 * Bit-fields that holds the items detected until now. 2944 * @param root 2945 * Whether action is on root table. 2946 * @param[out] error 2947 * Pointer to error structure. 2948 * 2949 * @return 2950 * 0 on success, a negative errno value otherwise and rte_errno is set. 2951 */ 2952 int 2953 mlx5_flow_validate_item_vxlan(struct rte_eth_dev *dev, 2954 uint16_t udp_dport, 2955 const struct rte_flow_item *item, 2956 uint64_t item_flags, 2957 bool root, 2958 struct rte_flow_error *error) 2959 { 2960 const struct rte_flow_item_vxlan *spec = item->spec; 2961 const struct rte_flow_item_vxlan *mask = item->mask; 2962 int ret; 2963 struct mlx5_priv *priv = dev->data->dev_private; 2964 union vni { 2965 uint32_t vlan_id; 2966 uint8_t vni[4]; 2967 } id = { .vlan_id = 0, }; 2968 const struct rte_flow_item_vxlan nic_mask = { 2969 .vni = "\xff\xff\xff", 2970 .rsvd1 = 0xff, 2971 }; 2972 const struct rte_flow_item_vxlan *valid_mask; 2973 2974 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2975 return rte_flow_error_set(error, ENOTSUP, 2976 RTE_FLOW_ERROR_TYPE_ITEM, item, 2977 "multiple tunnel layers not" 2978 " supported"); 2979 valid_mask = &rte_flow_item_vxlan_mask; 2980 /* 2981 * Verify only UDPv4 is present as defined in 2982 * https://tools.ietf.org/html/rfc7348 2983 */ 2984 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2985 return rte_flow_error_set(error, EINVAL, 2986 RTE_FLOW_ERROR_TYPE_ITEM, item, 2987 "no outer UDP layer found"); 2988 if (!mask) 2989 mask = &rte_flow_item_vxlan_mask; 2990 2991 if (priv->sh->steering_format_version != 2992 MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 || 2993 !udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN) { 2994 /* non-root table */ 2995 if (!root && priv->sh->misc5_cap) 2996 valid_mask = &nic_mask; 2997 /* Group zero in NIC domain */ 2998 if (!root && priv->sh->tunnel_header_0_1) 2999 valid_mask = &nic_mask; 3000 } 3001 ret = mlx5_flow_item_acceptable 3002 (item, (const uint8_t *)mask, 3003 (const uint8_t *)valid_mask, 3004 sizeof(struct rte_flow_item_vxlan), 3005 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3006 if (ret < 0) 3007 return ret; 3008 if (spec) { 3009 memcpy(&id.vni[1], spec->vni, 3); 3010 memcpy(&id.vni[1], mask->vni, 3); 3011 } 3012 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 3013 return rte_flow_error_set(error, ENOTSUP, 3014 RTE_FLOW_ERROR_TYPE_ITEM, item, 3015 "VXLAN tunnel must be fully defined"); 3016 return 0; 3017 } 3018 3019 /** 3020 * Validate VXLAN_GPE item. 3021 * 3022 * @param[in] item 3023 * Item specification. 3024 * @param[in] item_flags 3025 * Bit-fields that holds the items detected until now. 3026 * @param[in] priv 3027 * Pointer to the private data structure. 3028 * @param[in] target_protocol 3029 * The next protocol in the previous item. 3030 * @param[out] error 3031 * Pointer to error structure. 3032 * 3033 * @return 3034 * 0 on success, a negative errno value otherwise and rte_errno is set. 3035 */ 3036 int 3037 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 3038 uint64_t item_flags, 3039 struct rte_eth_dev *dev, 3040 struct rte_flow_error *error) 3041 { 3042 struct mlx5_priv *priv = dev->data->dev_private; 3043 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 3044 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 3045 int ret; 3046 union vni { 3047 uint32_t vlan_id; 3048 uint8_t vni[4]; 3049 } id = { .vlan_id = 0, }; 3050 3051 if (!priv->sh->config.l3_vxlan_en) 3052 return rte_flow_error_set(error, ENOTSUP, 3053 RTE_FLOW_ERROR_TYPE_ITEM, item, 3054 "L3 VXLAN is not enabled by device" 3055 " parameter and/or not configured in" 3056 " firmware"); 3057 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 3058 return rte_flow_error_set(error, ENOTSUP, 3059 RTE_FLOW_ERROR_TYPE_ITEM, item, 3060 "multiple tunnel layers not" 3061 " supported"); 3062 /* 3063 * Verify only UDPv4 is present as defined in 3064 * https://tools.ietf.org/html/rfc7348 3065 */ 3066 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 3067 return rte_flow_error_set(error, EINVAL, 3068 RTE_FLOW_ERROR_TYPE_ITEM, item, 3069 "no outer UDP layer found"); 3070 if (!mask) 3071 mask = &rte_flow_item_vxlan_gpe_mask; 3072 ret = mlx5_flow_item_acceptable 3073 (item, (const uint8_t *)mask, 3074 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 3075 sizeof(struct rte_flow_item_vxlan_gpe), 3076 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3077 if (ret < 0) 3078 return ret; 3079 if (spec) { 3080 if (spec->protocol) 3081 return rte_flow_error_set(error, ENOTSUP, 3082 RTE_FLOW_ERROR_TYPE_ITEM, 3083 item, 3084 "VxLAN-GPE protocol" 3085 " not supported"); 3086 memcpy(&id.vni[1], spec->vni, 3); 3087 memcpy(&id.vni[1], mask->vni, 3); 3088 } 3089 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 3090 return rte_flow_error_set(error, ENOTSUP, 3091 RTE_FLOW_ERROR_TYPE_ITEM, item, 3092 "VXLAN-GPE tunnel must be fully" 3093 " defined"); 3094 return 0; 3095 } 3096 /** 3097 * Validate GRE Key item. 3098 * 3099 * @param[in] item 3100 * Item specification. 3101 * @param[in] item_flags 3102 * Bit flags to mark detected items. 3103 * @param[in] gre_item 3104 * Pointer to gre_item 3105 * @param[out] error 3106 * Pointer to error structure. 3107 * 3108 * @return 3109 * 0 on success, a negative errno value otherwise and rte_errno is set. 3110 */ 3111 int 3112 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item, 3113 uint64_t item_flags, 3114 const struct rte_flow_item *gre_item, 3115 struct rte_flow_error *error) 3116 { 3117 const rte_be32_t *mask = item->mask; 3118 int ret = 0; 3119 rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX); 3120 const struct rte_flow_item_gre *gre_spec; 3121 const struct rte_flow_item_gre *gre_mask; 3122 3123 if (item_flags & MLX5_FLOW_LAYER_GRE_KEY) 3124 return rte_flow_error_set(error, ENOTSUP, 3125 RTE_FLOW_ERROR_TYPE_ITEM, item, 3126 "Multiple GRE key not support"); 3127 if (!(item_flags & MLX5_FLOW_LAYER_GRE)) 3128 return rte_flow_error_set(error, ENOTSUP, 3129 RTE_FLOW_ERROR_TYPE_ITEM, item, 3130 "No preceding GRE header"); 3131 if (item_flags & MLX5_FLOW_LAYER_INNER) 3132 return rte_flow_error_set(error, ENOTSUP, 3133 RTE_FLOW_ERROR_TYPE_ITEM, item, 3134 "GRE key following a wrong item"); 3135 gre_mask = gre_item->mask; 3136 if (!gre_mask) 3137 gre_mask = &rte_flow_item_gre_mask; 3138 gre_spec = gre_item->spec; 3139 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) && 3140 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000))) 3141 return rte_flow_error_set(error, EINVAL, 3142 RTE_FLOW_ERROR_TYPE_ITEM, item, 3143 "Key bit must be on"); 3144 3145 if (!mask) 3146 mask = &gre_key_default_mask; 3147 ret = mlx5_flow_item_acceptable 3148 (item, (const uint8_t *)mask, 3149 (const uint8_t *)&gre_key_default_mask, 3150 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3151 return ret; 3152 } 3153 3154 /** 3155 * Validate GRE optional item. 3156 * 3157 * @param[in] dev 3158 * Pointer to the Ethernet device structure. 3159 * @param[in] item 3160 * Item specification. 3161 * @param[in] item_flags 3162 * Bit flags to mark detected items. 3163 * @param[in] attr 3164 * Flow rule attributes. 3165 * @param[in] gre_item 3166 * Pointer to gre_item 3167 * @param[out] error 3168 * Pointer to error structure. 3169 * 3170 * @return 3171 * 0 on success, a negative errno value otherwise and rte_errno is set. 3172 */ 3173 int 3174 mlx5_flow_validate_item_gre_option(struct rte_eth_dev *dev, 3175 const struct rte_flow_item *item, 3176 uint64_t item_flags, 3177 const struct rte_flow_attr *attr, 3178 const struct rte_flow_item *gre_item, 3179 struct rte_flow_error *error) 3180 { 3181 const struct rte_flow_item_gre *gre_spec = gre_item->spec; 3182 const struct rte_flow_item_gre *gre_mask = gre_item->mask; 3183 const struct rte_flow_item_gre_opt *spec = item->spec; 3184 const struct rte_flow_item_gre_opt *mask = item->mask; 3185 struct mlx5_priv *priv = dev->data->dev_private; 3186 int ret = 0; 3187 struct rte_flow_item_gre_opt nic_mask = { 3188 .checksum_rsvd = { 3189 .checksum = RTE_BE16(UINT16_MAX), 3190 .reserved1 = 0x0, 3191 }, 3192 .key = { 3193 .key = RTE_BE32(UINT32_MAX), 3194 }, 3195 .sequence = { 3196 .sequence = RTE_BE32(UINT32_MAX), 3197 }, 3198 }; 3199 3200 if (!(item_flags & MLX5_FLOW_LAYER_GRE)) 3201 return rte_flow_error_set(error, ENOTSUP, 3202 RTE_FLOW_ERROR_TYPE_ITEM, item, 3203 "No preceding GRE header"); 3204 if (item_flags & MLX5_FLOW_LAYER_INNER) 3205 return rte_flow_error_set(error, ENOTSUP, 3206 RTE_FLOW_ERROR_TYPE_ITEM, item, 3207 "GRE option following a wrong item"); 3208 if (!spec || !mask) 3209 return rte_flow_error_set(error, EINVAL, 3210 RTE_FLOW_ERROR_TYPE_ITEM, item, 3211 "At least one field gre_option(checksum/key/sequence) must be specified"); 3212 if (!gre_mask) 3213 gre_mask = &rte_flow_item_gre_mask; 3214 if (mask->checksum_rsvd.checksum) 3215 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x8000)) && 3216 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x8000))) 3217 return rte_flow_error_set(error, EINVAL, 3218 RTE_FLOW_ERROR_TYPE_ITEM, 3219 item, 3220 "Checksum bit must be on"); 3221 if (mask->key.key) 3222 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) && 3223 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000))) 3224 return rte_flow_error_set(error, EINVAL, 3225 RTE_FLOW_ERROR_TYPE_ITEM, 3226 item, "Key bit must be on"); 3227 if (mask->sequence.sequence) 3228 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x1000)) && 3229 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x1000))) 3230 return rte_flow_error_set(error, EINVAL, 3231 RTE_FLOW_ERROR_TYPE_ITEM, 3232 item, 3233 "Sequence bit must be on"); 3234 if (mask->checksum_rsvd.checksum || mask->sequence.sequence) { 3235 if (priv->sh->steering_format_version == 3236 MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 || 3237 ((attr->group || (attr->transfer && priv->fdb_def_rule)) && 3238 !priv->sh->misc5_cap) || 3239 (!(priv->sh->tunnel_header_0_1 && 3240 priv->sh->tunnel_header_2_3) && 3241 !attr->group && (!attr->transfer || !priv->fdb_def_rule))) 3242 return rte_flow_error_set(error, EINVAL, 3243 RTE_FLOW_ERROR_TYPE_ITEM, 3244 item, 3245 "Checksum/Sequence not supported"); 3246 } 3247 ret = mlx5_flow_item_acceptable 3248 (item, (const uint8_t *)mask, 3249 (const uint8_t *)&nic_mask, 3250 sizeof(struct rte_flow_item_gre_opt), 3251 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3252 return ret; 3253 } 3254 3255 /** 3256 * Validate GRE item. 3257 * 3258 * @param[in] item 3259 * Item specification. 3260 * @param[in] item_flags 3261 * Bit flags to mark detected items. 3262 * @param[in] target_protocol 3263 * The next protocol in the previous item. 3264 * @param[out] error 3265 * Pointer to error structure. 3266 * 3267 * @return 3268 * 0 on success, a negative errno value otherwise and rte_errno is set. 3269 */ 3270 int 3271 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 3272 uint64_t item_flags, 3273 uint8_t target_protocol, 3274 struct rte_flow_error *error) 3275 { 3276 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 3277 const struct rte_flow_item_gre *mask = item->mask; 3278 int ret; 3279 const struct rte_flow_item_gre nic_mask = { 3280 .c_rsvd0_ver = RTE_BE16(0xB000), 3281 .protocol = RTE_BE16(UINT16_MAX), 3282 }; 3283 3284 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 3285 return rte_flow_error_set(error, EINVAL, 3286 RTE_FLOW_ERROR_TYPE_ITEM, item, 3287 "protocol filtering not compatible" 3288 " with this GRE layer"); 3289 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 3290 return rte_flow_error_set(error, ENOTSUP, 3291 RTE_FLOW_ERROR_TYPE_ITEM, item, 3292 "multiple tunnel layers not" 3293 " supported"); 3294 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 3295 return rte_flow_error_set(error, ENOTSUP, 3296 RTE_FLOW_ERROR_TYPE_ITEM, item, 3297 "L3 Layer is missing"); 3298 if (!mask) 3299 mask = &rte_flow_item_gre_mask; 3300 ret = mlx5_flow_item_acceptable 3301 (item, (const uint8_t *)mask, 3302 (const uint8_t *)&nic_mask, 3303 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED, 3304 error); 3305 if (ret < 0) 3306 return ret; 3307 #ifndef HAVE_MLX5DV_DR 3308 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 3309 if (spec && (spec->protocol & mask->protocol)) 3310 return rte_flow_error_set(error, ENOTSUP, 3311 RTE_FLOW_ERROR_TYPE_ITEM, item, 3312 "without MPLS support the" 3313 " specification cannot be used for" 3314 " filtering"); 3315 #endif 3316 #endif 3317 return 0; 3318 } 3319 3320 /** 3321 * Validate Geneve item. 3322 * 3323 * @param[in] item 3324 * Item specification. 3325 * @param[in] itemFlags 3326 * Bit-fields that holds the items detected until now. 3327 * @param[in] enPriv 3328 * Pointer to the private data structure. 3329 * @param[out] error 3330 * Pointer to error structure. 3331 * 3332 * @return 3333 * 0 on success, a negative errno value otherwise and rte_errno is set. 3334 */ 3335 3336 int 3337 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item, 3338 uint64_t item_flags, 3339 struct rte_eth_dev *dev, 3340 struct rte_flow_error *error) 3341 { 3342 struct mlx5_priv *priv = dev->data->dev_private; 3343 const struct rte_flow_item_geneve *spec = item->spec; 3344 const struct rte_flow_item_geneve *mask = item->mask; 3345 int ret; 3346 uint16_t gbhdr; 3347 uint8_t opt_len = priv->sh->cdev->config.hca_attr.geneve_max_opt_len ? 3348 MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0; 3349 const struct rte_flow_item_geneve nic_mask = { 3350 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80), 3351 .vni = "\xff\xff\xff", 3352 .protocol = RTE_BE16(UINT16_MAX), 3353 }; 3354 3355 if (!priv->sh->cdev->config.hca_attr.tunnel_stateless_geneve_rx) 3356 return rte_flow_error_set(error, ENOTSUP, 3357 RTE_FLOW_ERROR_TYPE_ITEM, item, 3358 "L3 Geneve is not enabled by device" 3359 " parameter and/or not configured in" 3360 " firmware"); 3361 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 3362 return rte_flow_error_set(error, ENOTSUP, 3363 RTE_FLOW_ERROR_TYPE_ITEM, item, 3364 "multiple tunnel layers not" 3365 " supported"); 3366 /* 3367 * Verify only UDPv4 is present as defined in 3368 * https://tools.ietf.org/html/rfc7348 3369 */ 3370 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 3371 return rte_flow_error_set(error, EINVAL, 3372 RTE_FLOW_ERROR_TYPE_ITEM, item, 3373 "no outer UDP layer found"); 3374 if (!mask) 3375 mask = &rte_flow_item_geneve_mask; 3376 ret = mlx5_flow_item_acceptable 3377 (item, (const uint8_t *)mask, 3378 (const uint8_t *)&nic_mask, 3379 sizeof(struct rte_flow_item_geneve), 3380 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3381 if (ret) 3382 return ret; 3383 if (spec) { 3384 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0); 3385 if (MLX5_GENEVE_VER_VAL(gbhdr) || 3386 MLX5_GENEVE_CRITO_VAL(gbhdr) || 3387 MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1) 3388 return rte_flow_error_set(error, ENOTSUP, 3389 RTE_FLOW_ERROR_TYPE_ITEM, 3390 item, 3391 "Geneve protocol unsupported" 3392 " fields are being used"); 3393 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len) 3394 return rte_flow_error_set 3395 (error, ENOTSUP, 3396 RTE_FLOW_ERROR_TYPE_ITEM, 3397 item, 3398 "Unsupported Geneve options length"); 3399 } 3400 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 3401 return rte_flow_error_set 3402 (error, ENOTSUP, 3403 RTE_FLOW_ERROR_TYPE_ITEM, item, 3404 "Geneve tunnel must be fully defined"); 3405 return 0; 3406 } 3407 3408 /** 3409 * Validate Geneve TLV option item. 3410 * 3411 * @param[in] item 3412 * Item specification. 3413 * @param[in] last_item 3414 * Previous validated item in the pattern items. 3415 * @param[in] geneve_item 3416 * Previous GENEVE item specification. 3417 * @param[in] dev 3418 * Pointer to the rte_eth_dev structure. 3419 * @param[out] error 3420 * Pointer to error structure. 3421 * 3422 * @return 3423 * 0 on success, a negative errno value otherwise and rte_errno is set. 3424 */ 3425 int 3426 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item, 3427 uint64_t last_item, 3428 const struct rte_flow_item *geneve_item, 3429 struct rte_eth_dev *dev, 3430 struct rte_flow_error *error) 3431 { 3432 struct mlx5_priv *priv = dev->data->dev_private; 3433 struct mlx5_dev_ctx_shared *sh = priv->sh; 3434 struct mlx5_geneve_tlv_option_resource *geneve_opt_resource; 3435 struct mlx5_hca_attr *hca_attr = &sh->cdev->config.hca_attr; 3436 uint8_t data_max_supported = 3437 hca_attr->max_geneve_tlv_option_data_len * 4; 3438 const struct rte_flow_item_geneve *geneve_spec; 3439 const struct rte_flow_item_geneve *geneve_mask; 3440 const struct rte_flow_item_geneve_opt *spec = item->spec; 3441 const struct rte_flow_item_geneve_opt *mask = item->mask; 3442 unsigned int i; 3443 unsigned int data_len; 3444 uint8_t tlv_option_len; 3445 uint16_t optlen_m, optlen_v; 3446 const struct rte_flow_item_geneve_opt full_mask = { 3447 .option_class = RTE_BE16(0xffff), 3448 .option_type = 0xff, 3449 .option_len = 0x1f, 3450 }; 3451 3452 if (!mask) 3453 mask = &rte_flow_item_geneve_opt_mask; 3454 if (!spec) 3455 return rte_flow_error_set 3456 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3457 "Geneve TLV opt class/type/length must be specified"); 3458 if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK) 3459 return rte_flow_error_set 3460 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3461 "Geneve TLV opt length exceeds the limit (31)"); 3462 /* Check if class type and length masks are full. */ 3463 if (full_mask.option_class != mask->option_class || 3464 full_mask.option_type != mask->option_type || 3465 full_mask.option_len != (mask->option_len & full_mask.option_len)) 3466 return rte_flow_error_set 3467 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3468 "Geneve TLV opt class/type/length masks must be full"); 3469 /* Check if length is supported */ 3470 if ((uint32_t)spec->option_len > 3471 hca_attr->max_geneve_tlv_option_data_len) 3472 return rte_flow_error_set 3473 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3474 "Geneve TLV opt length not supported"); 3475 if (hca_attr->max_geneve_tlv_options > 1) 3476 DRV_LOG(DEBUG, 3477 "max_geneve_tlv_options supports more than 1 option"); 3478 /* Check GENEVE item preceding. */ 3479 if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE)) 3480 return rte_flow_error_set 3481 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3482 "Geneve opt item must be preceded with Geneve item"); 3483 geneve_spec = geneve_item->spec; 3484 geneve_mask = geneve_item->mask ? geneve_item->mask : 3485 &rte_flow_item_geneve_mask; 3486 /* Check if GENEVE TLV option size doesn't exceed option length */ 3487 if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 || 3488 geneve_spec->ver_opt_len_o_c_rsvd0)) { 3489 tlv_option_len = spec->option_len & mask->option_len; 3490 optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0); 3491 optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v); 3492 optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0); 3493 optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m); 3494 if ((optlen_v & optlen_m) <= tlv_option_len) 3495 return rte_flow_error_set 3496 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3497 "GENEVE TLV option length exceeds optlen"); 3498 } 3499 /* Check if length is 0 or data is 0. */ 3500 if (spec->data == NULL || spec->option_len == 0) 3501 return rte_flow_error_set 3502 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3503 "Geneve TLV opt with zero data/length not supported"); 3504 /* Check not all data & mask are 0. */ 3505 data_len = spec->option_len * 4; 3506 if (mask->data == NULL) { 3507 for (i = 0; i < data_len; i++) 3508 if (spec->data[i]) 3509 break; 3510 if (i == data_len) 3511 return rte_flow_error_set(error, ENOTSUP, 3512 RTE_FLOW_ERROR_TYPE_ITEM, item, 3513 "Can't match on Geneve option data 0"); 3514 } else { 3515 for (i = 0; i < data_len; i++) 3516 if (spec->data[i] & mask->data[i]) 3517 break; 3518 if (i == data_len) 3519 return rte_flow_error_set(error, ENOTSUP, 3520 RTE_FLOW_ERROR_TYPE_ITEM, item, 3521 "Can't match on Geneve option data and mask 0"); 3522 /* Check data mask supported. */ 3523 for (i = data_max_supported; i < data_len ; i++) 3524 if (mask->data[i]) 3525 return rte_flow_error_set(error, ENOTSUP, 3526 RTE_FLOW_ERROR_TYPE_ITEM, item, 3527 "Data mask is of unsupported size"); 3528 } 3529 /* Check GENEVE option is supported in NIC. */ 3530 if (!hca_attr->geneve_tlv_opt) 3531 return rte_flow_error_set 3532 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 3533 "Geneve TLV opt not supported"); 3534 /* Check if we already have geneve option with different type/class. */ 3535 rte_spinlock_lock(&sh->geneve_tlv_opt_sl); 3536 geneve_opt_resource = sh->geneve_tlv_option_resource; 3537 if (geneve_opt_resource != NULL) 3538 if (geneve_opt_resource->option_class != spec->option_class || 3539 geneve_opt_resource->option_type != spec->option_type || 3540 geneve_opt_resource->length != spec->option_len) { 3541 rte_spinlock_unlock(&sh->geneve_tlv_opt_sl); 3542 return rte_flow_error_set(error, ENOTSUP, 3543 RTE_FLOW_ERROR_TYPE_ITEM, item, 3544 "Only one Geneve TLV option supported"); 3545 } 3546 rte_spinlock_unlock(&sh->geneve_tlv_opt_sl); 3547 return 0; 3548 } 3549 3550 /** 3551 * Validate MPLS item. 3552 * 3553 * @param[in] dev 3554 * Pointer to the rte_eth_dev structure. 3555 * @param[in] item 3556 * Item specification. 3557 * @param[in] item_flags 3558 * Bit-fields that holds the items detected until now. 3559 * @param[in] prev_layer 3560 * The protocol layer indicated in previous item. 3561 * @param[out] error 3562 * Pointer to error structure. 3563 * 3564 * @return 3565 * 0 on success, a negative errno value otherwise and rte_errno is set. 3566 */ 3567 int 3568 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 3569 const struct rte_flow_item *item __rte_unused, 3570 uint64_t item_flags __rte_unused, 3571 uint64_t prev_layer __rte_unused, 3572 struct rte_flow_error *error) 3573 { 3574 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 3575 const struct rte_flow_item_mpls *mask = item->mask; 3576 struct mlx5_priv *priv = dev->data->dev_private; 3577 int ret; 3578 3579 if (!priv->sh->dev_cap.mpls_en) 3580 return rte_flow_error_set(error, ENOTSUP, 3581 RTE_FLOW_ERROR_TYPE_ITEM, item, 3582 "MPLS not supported or" 3583 " disabled in firmware" 3584 " configuration."); 3585 /* MPLS over UDP, GRE is allowed */ 3586 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L4_UDP | 3587 MLX5_FLOW_LAYER_GRE | 3588 MLX5_FLOW_LAYER_GRE_KEY))) 3589 return rte_flow_error_set(error, EINVAL, 3590 RTE_FLOW_ERROR_TYPE_ITEM, item, 3591 "protocol filtering not compatible" 3592 " with MPLS layer"); 3593 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 3594 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 3595 !(item_flags & MLX5_FLOW_LAYER_GRE)) 3596 return rte_flow_error_set(error, ENOTSUP, 3597 RTE_FLOW_ERROR_TYPE_ITEM, item, 3598 "multiple tunnel layers not" 3599 " supported"); 3600 if (!mask) 3601 mask = &rte_flow_item_mpls_mask; 3602 ret = mlx5_flow_item_acceptable 3603 (item, (const uint8_t *)mask, 3604 (const uint8_t *)&rte_flow_item_mpls_mask, 3605 sizeof(struct rte_flow_item_mpls), 3606 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3607 if (ret < 0) 3608 return ret; 3609 return 0; 3610 #else 3611 return rte_flow_error_set(error, ENOTSUP, 3612 RTE_FLOW_ERROR_TYPE_ITEM, item, 3613 "MPLS is not supported by Verbs, please" 3614 " update."); 3615 #endif 3616 } 3617 3618 /** 3619 * Validate NVGRE item. 3620 * 3621 * @param[in] item 3622 * Item specification. 3623 * @param[in] item_flags 3624 * Bit flags to mark detected items. 3625 * @param[in] target_protocol 3626 * The next protocol in the previous item. 3627 * @param[out] error 3628 * Pointer to error structure. 3629 * 3630 * @return 3631 * 0 on success, a negative errno value otherwise and rte_errno is set. 3632 */ 3633 int 3634 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item, 3635 uint64_t item_flags, 3636 uint8_t target_protocol, 3637 struct rte_flow_error *error) 3638 { 3639 const struct rte_flow_item_nvgre *mask = item->mask; 3640 int ret; 3641 3642 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 3643 return rte_flow_error_set(error, EINVAL, 3644 RTE_FLOW_ERROR_TYPE_ITEM, item, 3645 "protocol filtering not compatible" 3646 " with this GRE layer"); 3647 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 3648 return rte_flow_error_set(error, ENOTSUP, 3649 RTE_FLOW_ERROR_TYPE_ITEM, item, 3650 "multiple tunnel layers not" 3651 " supported"); 3652 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 3653 return rte_flow_error_set(error, ENOTSUP, 3654 RTE_FLOW_ERROR_TYPE_ITEM, item, 3655 "L3 Layer is missing"); 3656 if (!mask) 3657 mask = &rte_flow_item_nvgre_mask; 3658 ret = mlx5_flow_item_acceptable 3659 (item, (const uint8_t *)mask, 3660 (const uint8_t *)&rte_flow_item_nvgre_mask, 3661 sizeof(struct rte_flow_item_nvgre), 3662 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3663 if (ret < 0) 3664 return ret; 3665 return 0; 3666 } 3667 3668 /** 3669 * Validate eCPRI item. 3670 * 3671 * @param[in] item 3672 * Item specification. 3673 * @param[in] item_flags 3674 * Bit-fields that holds the items detected until now. 3675 * @param[in] last_item 3676 * Previous validated item in the pattern items. 3677 * @param[in] ether_type 3678 * Type in the ethernet layer header (including dot1q). 3679 * @param[in] acc_mask 3680 * Acceptable mask, if NULL default internal default mask 3681 * will be used to check whether item fields are supported. 3682 * @param[out] error 3683 * Pointer to error structure. 3684 * 3685 * @return 3686 * 0 on success, a negative errno value otherwise and rte_errno is set. 3687 */ 3688 int 3689 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item, 3690 uint64_t item_flags, 3691 uint64_t last_item, 3692 uint16_t ether_type, 3693 const struct rte_flow_item_ecpri *acc_mask, 3694 struct rte_flow_error *error) 3695 { 3696 const struct rte_flow_item_ecpri *mask = item->mask; 3697 const struct rte_flow_item_ecpri nic_mask = { 3698 .hdr = { 3699 .common = { 3700 .u32 = 3701 RTE_BE32(((const struct rte_ecpri_common_hdr) { 3702 .type = 0xFF, 3703 }).u32), 3704 }, 3705 .dummy[0] = 0xFFFFFFFF, 3706 }, 3707 }; 3708 const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 | 3709 MLX5_FLOW_LAYER_OUTER_VLAN); 3710 struct rte_flow_item_ecpri mask_lo; 3711 3712 if (!(last_item & outer_l2_vlan) && 3713 last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP) 3714 return rte_flow_error_set(error, EINVAL, 3715 RTE_FLOW_ERROR_TYPE_ITEM, item, 3716 "eCPRI can only follow L2/VLAN layer or UDP layer"); 3717 if ((last_item & outer_l2_vlan) && ether_type && 3718 ether_type != RTE_ETHER_TYPE_ECPRI) 3719 return rte_flow_error_set(error, EINVAL, 3720 RTE_FLOW_ERROR_TYPE_ITEM, item, 3721 "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE"); 3722 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 3723 return rte_flow_error_set(error, EINVAL, 3724 RTE_FLOW_ERROR_TYPE_ITEM, item, 3725 "eCPRI with tunnel is not supported right now"); 3726 if (item_flags & MLX5_FLOW_LAYER_OUTER_L3) 3727 return rte_flow_error_set(error, ENOTSUP, 3728 RTE_FLOW_ERROR_TYPE_ITEM, item, 3729 "multiple L3 layers not supported"); 3730 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP) 3731 return rte_flow_error_set(error, EINVAL, 3732 RTE_FLOW_ERROR_TYPE_ITEM, item, 3733 "eCPRI cannot coexist with a TCP layer"); 3734 /* In specification, eCPRI could be over UDP layer. */ 3735 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP) 3736 return rte_flow_error_set(error, EINVAL, 3737 RTE_FLOW_ERROR_TYPE_ITEM, item, 3738 "eCPRI over UDP layer is not yet supported right now"); 3739 /* Mask for type field in common header could be zero. */ 3740 if (!mask) 3741 mask = &rte_flow_item_ecpri_mask; 3742 mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32); 3743 /* Input mask is in big-endian format. */ 3744 if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff) 3745 return rte_flow_error_set(error, EINVAL, 3746 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 3747 "partial mask is not supported for protocol"); 3748 else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0) 3749 return rte_flow_error_set(error, EINVAL, 3750 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 3751 "message header mask must be after a type mask"); 3752 return mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 3753 acc_mask ? (const uint8_t *)acc_mask 3754 : (const uint8_t *)&nic_mask, 3755 sizeof(struct rte_flow_item_ecpri), 3756 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 3757 } 3758 3759 static int 3760 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 3761 const struct rte_flow_attr *attr __rte_unused, 3762 const struct rte_flow_item items[] __rte_unused, 3763 const struct rte_flow_action actions[] __rte_unused, 3764 bool external __rte_unused, 3765 int hairpin __rte_unused, 3766 struct rte_flow_error *error) 3767 { 3768 return rte_flow_error_set(error, ENOTSUP, 3769 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3770 } 3771 3772 static struct mlx5_flow * 3773 flow_null_prepare(struct rte_eth_dev *dev __rte_unused, 3774 const struct rte_flow_attr *attr __rte_unused, 3775 const struct rte_flow_item items[] __rte_unused, 3776 const struct rte_flow_action actions[] __rte_unused, 3777 struct rte_flow_error *error) 3778 { 3779 rte_flow_error_set(error, ENOTSUP, 3780 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3781 return NULL; 3782 } 3783 3784 static int 3785 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 3786 struct mlx5_flow *dev_flow __rte_unused, 3787 const struct rte_flow_attr *attr __rte_unused, 3788 const struct rte_flow_item items[] __rte_unused, 3789 const struct rte_flow_action actions[] __rte_unused, 3790 struct rte_flow_error *error) 3791 { 3792 return rte_flow_error_set(error, ENOTSUP, 3793 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3794 } 3795 3796 static int 3797 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 3798 struct rte_flow *flow __rte_unused, 3799 struct rte_flow_error *error) 3800 { 3801 return rte_flow_error_set(error, ENOTSUP, 3802 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3803 } 3804 3805 static void 3806 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 3807 struct rte_flow *flow __rte_unused) 3808 { 3809 } 3810 3811 static void 3812 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 3813 struct rte_flow *flow __rte_unused) 3814 { 3815 } 3816 3817 static int 3818 flow_null_query(struct rte_eth_dev *dev __rte_unused, 3819 struct rte_flow *flow __rte_unused, 3820 const struct rte_flow_action *actions __rte_unused, 3821 void *data __rte_unused, 3822 struct rte_flow_error *error) 3823 { 3824 return rte_flow_error_set(error, ENOTSUP, 3825 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3826 } 3827 3828 static int 3829 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused, 3830 uint32_t domains __rte_unused, 3831 uint32_t flags __rte_unused) 3832 { 3833 return 0; 3834 } 3835 3836 /* Void driver to protect from null pointer reference. */ 3837 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 3838 .validate = flow_null_validate, 3839 .prepare = flow_null_prepare, 3840 .translate = flow_null_translate, 3841 .apply = flow_null_apply, 3842 .remove = flow_null_remove, 3843 .destroy = flow_null_destroy, 3844 .query = flow_null_query, 3845 .sync_domain = flow_null_sync_domain, 3846 }; 3847 3848 /** 3849 * Select flow driver type according to flow attributes and device 3850 * configuration. 3851 * 3852 * @param[in] dev 3853 * Pointer to the dev structure. 3854 * @param[in] attr 3855 * Pointer to the flow attributes. 3856 * 3857 * @return 3858 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 3859 */ 3860 static enum mlx5_flow_drv_type 3861 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 3862 { 3863 struct mlx5_priv *priv = dev->data->dev_private; 3864 /* The OS can determine first a specific flow type (DV, VERBS) */ 3865 enum mlx5_flow_drv_type type = mlx5_flow_os_get_type(); 3866 3867 if (type != MLX5_FLOW_TYPE_MAX) 3868 return type; 3869 /* 3870 * Currently when dv_flow_en == 2, only HW steering engine is 3871 * supported. New engines can also be chosen here if ready. 3872 */ 3873 if (priv->sh->config.dv_flow_en == 2) 3874 return MLX5_FLOW_TYPE_HW; 3875 if (!attr) 3876 return MLX5_FLOW_TYPE_MIN; 3877 /* If no OS specific type - continue with DV/VERBS selection */ 3878 if (attr->transfer && priv->sh->config.dv_esw_en) 3879 type = MLX5_FLOW_TYPE_DV; 3880 if (!attr->transfer) 3881 type = priv->sh->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 3882 MLX5_FLOW_TYPE_VERBS; 3883 return type; 3884 } 3885 3886 #define flow_get_drv_ops(type) flow_drv_ops[type] 3887 3888 /** 3889 * Flow driver validation API. This abstracts calling driver specific functions. 3890 * The type of flow driver is determined according to flow attributes. 3891 * 3892 * @param[in] dev 3893 * Pointer to the dev structure. 3894 * @param[in] attr 3895 * Pointer to the flow attributes. 3896 * @param[in] items 3897 * Pointer to the list of items. 3898 * @param[in] actions 3899 * Pointer to the list of actions. 3900 * @param[in] external 3901 * This flow rule is created by request external to PMD. 3902 * @param[in] hairpin 3903 * Number of hairpin TX actions, 0 means classic flow. 3904 * @param[out] error 3905 * Pointer to the error structure. 3906 * 3907 * @return 3908 * 0 on success, a negative errno value otherwise and rte_errno is set. 3909 */ 3910 static inline int 3911 flow_drv_validate(struct rte_eth_dev *dev, 3912 const struct rte_flow_attr *attr, 3913 const struct rte_flow_item items[], 3914 const struct rte_flow_action actions[], 3915 bool external, int hairpin, struct rte_flow_error *error) 3916 { 3917 const struct mlx5_flow_driver_ops *fops; 3918 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 3919 3920 fops = flow_get_drv_ops(type); 3921 return fops->validate(dev, attr, items, actions, external, 3922 hairpin, error); 3923 } 3924 3925 /** 3926 * Flow driver preparation API. This abstracts calling driver specific 3927 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3928 * calculates the size of memory required for device flow, allocates the memory, 3929 * initializes the device flow and returns the pointer. 3930 * 3931 * @note 3932 * This function initializes device flow structure such as dv or verbs in 3933 * struct mlx5_flow. However, it is caller's responsibility to initialize the 3934 * rest. For example, adding returning device flow to flow->dev_flow list and 3935 * setting backward reference to the flow should be done out of this function. 3936 * layers field is not filled either. 3937 * 3938 * @param[in] dev 3939 * Pointer to the dev structure. 3940 * @param[in] attr 3941 * Pointer to the flow attributes. 3942 * @param[in] items 3943 * Pointer to the list of items. 3944 * @param[in] actions 3945 * Pointer to the list of actions. 3946 * @param[in] flow_idx 3947 * This memory pool index to the flow. 3948 * @param[out] error 3949 * Pointer to the error structure. 3950 * 3951 * @return 3952 * Pointer to device flow on success, otherwise NULL and rte_errno is set. 3953 */ 3954 static inline struct mlx5_flow * 3955 flow_drv_prepare(struct rte_eth_dev *dev, 3956 const struct rte_flow *flow, 3957 const struct rte_flow_attr *attr, 3958 const struct rte_flow_item items[], 3959 const struct rte_flow_action actions[], 3960 uint32_t flow_idx, 3961 struct rte_flow_error *error) 3962 { 3963 const struct mlx5_flow_driver_ops *fops; 3964 enum mlx5_flow_drv_type type = flow->drv_type; 3965 struct mlx5_flow *mlx5_flow = NULL; 3966 3967 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3968 fops = flow_get_drv_ops(type); 3969 mlx5_flow = fops->prepare(dev, attr, items, actions, error); 3970 if (mlx5_flow) 3971 mlx5_flow->flow_idx = flow_idx; 3972 return mlx5_flow; 3973 } 3974 3975 /** 3976 * Flow driver translation API. This abstracts calling driver specific 3977 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3978 * translates a generic flow into a driver flow. flow_drv_prepare() must 3979 * precede. 3980 * 3981 * @note 3982 * dev_flow->layers could be filled as a result of parsing during translation 3983 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 3984 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 3985 * flow->actions could be overwritten even though all the expanded dev_flows 3986 * have the same actions. 3987 * 3988 * @param[in] dev 3989 * Pointer to the rte dev structure. 3990 * @param[in, out] dev_flow 3991 * Pointer to the mlx5 flow. 3992 * @param[in] attr 3993 * Pointer to the flow attributes. 3994 * @param[in] items 3995 * Pointer to the list of items. 3996 * @param[in] actions 3997 * Pointer to the list of actions. 3998 * @param[out] error 3999 * Pointer to the error structure. 4000 * 4001 * @return 4002 * 0 on success, a negative errno value otherwise and rte_errno is set. 4003 */ 4004 static inline int 4005 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 4006 const struct rte_flow_attr *attr, 4007 const struct rte_flow_item items[], 4008 const struct rte_flow_action actions[], 4009 struct rte_flow_error *error) 4010 { 4011 const struct mlx5_flow_driver_ops *fops; 4012 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 4013 4014 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 4015 fops = flow_get_drv_ops(type); 4016 return fops->translate(dev, dev_flow, attr, items, actions, error); 4017 } 4018 4019 /** 4020 * Flow driver apply API. This abstracts calling driver specific functions. 4021 * Parent flow (rte_flow) should have driver type (drv_type). It applies 4022 * translated driver flows on to device. flow_drv_translate() must precede. 4023 * 4024 * @param[in] dev 4025 * Pointer to Ethernet device structure. 4026 * @param[in, out] flow 4027 * Pointer to flow structure. 4028 * @param[out] error 4029 * Pointer to error structure. 4030 * 4031 * @return 4032 * 0 on success, a negative errno value otherwise and rte_errno is set. 4033 */ 4034 static inline int 4035 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 4036 struct rte_flow_error *error) 4037 { 4038 const struct mlx5_flow_driver_ops *fops; 4039 enum mlx5_flow_drv_type type = flow->drv_type; 4040 4041 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 4042 fops = flow_get_drv_ops(type); 4043 return fops->apply(dev, flow, error); 4044 } 4045 4046 /** 4047 * Flow driver destroy API. This abstracts calling driver specific functions. 4048 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 4049 * on device and releases resources of the flow. 4050 * 4051 * @param[in] dev 4052 * Pointer to Ethernet device. 4053 * @param[in, out] flow 4054 * Pointer to flow structure. 4055 */ 4056 static inline void 4057 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 4058 { 4059 const struct mlx5_flow_driver_ops *fops; 4060 enum mlx5_flow_drv_type type = flow->drv_type; 4061 4062 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 4063 fops = flow_get_drv_ops(type); 4064 fops->destroy(dev, flow); 4065 } 4066 4067 /** 4068 * Flow driver find RSS policy tbl API. This abstracts calling driver 4069 * specific functions. Parent flow (rte_flow) should have driver 4070 * type (drv_type). It will find the RSS policy table that has the rss_desc. 4071 * 4072 * @param[in] dev 4073 * Pointer to Ethernet device. 4074 * @param[in, out] flow 4075 * Pointer to flow structure. 4076 * @param[in] policy 4077 * Pointer to meter policy table. 4078 * @param[in] rss_desc 4079 * Pointer to rss_desc 4080 */ 4081 static struct mlx5_flow_meter_sub_policy * 4082 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev, 4083 struct rte_flow *flow, 4084 struct mlx5_flow_meter_policy *policy, 4085 struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS]) 4086 { 4087 const struct mlx5_flow_driver_ops *fops; 4088 enum mlx5_flow_drv_type type = flow->drv_type; 4089 4090 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 4091 fops = flow_get_drv_ops(type); 4092 return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc); 4093 } 4094 4095 /** 4096 * Flow driver color tag rule API. This abstracts calling driver 4097 * specific functions. Parent flow (rte_flow) should have driver 4098 * type (drv_type). It will create the color tag rules in hierarchy meter. 4099 * 4100 * @param[in] dev 4101 * Pointer to Ethernet device. 4102 * @param[in, out] flow 4103 * Pointer to flow structure. 4104 * @param[in] fm 4105 * Pointer to flow meter structure. 4106 * @param[in] src_port 4107 * The src port this extra rule should use. 4108 * @param[in] item 4109 * The src port id match item. 4110 * @param[out] error 4111 * Pointer to error structure. 4112 */ 4113 static int 4114 flow_drv_mtr_hierarchy_rule_create(struct rte_eth_dev *dev, 4115 struct rte_flow *flow, 4116 struct mlx5_flow_meter_info *fm, 4117 int32_t src_port, 4118 const struct rte_flow_item *item, 4119 struct rte_flow_error *error) 4120 { 4121 const struct mlx5_flow_driver_ops *fops; 4122 enum mlx5_flow_drv_type type = flow->drv_type; 4123 4124 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 4125 fops = flow_get_drv_ops(type); 4126 return fops->meter_hierarchy_rule_create(dev, fm, 4127 src_port, item, error); 4128 } 4129 4130 /** 4131 * Get RSS action from the action list. 4132 * 4133 * @param[in] dev 4134 * Pointer to Ethernet device. 4135 * @param[in] actions 4136 * Pointer to the list of actions. 4137 * @param[in] flow 4138 * Parent flow structure pointer. 4139 * 4140 * @return 4141 * Pointer to the RSS action if exist, else return NULL. 4142 */ 4143 static const struct rte_flow_action_rss* 4144 flow_get_rss_action(struct rte_eth_dev *dev, 4145 const struct rte_flow_action actions[]) 4146 { 4147 struct mlx5_priv *priv = dev->data->dev_private; 4148 const struct rte_flow_action_rss *rss = NULL; 4149 struct mlx5_meter_policy_action_container *acg; 4150 struct mlx5_meter_policy_action_container *acy; 4151 4152 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4153 switch (actions->type) { 4154 case RTE_FLOW_ACTION_TYPE_RSS: 4155 rss = actions->conf; 4156 break; 4157 case RTE_FLOW_ACTION_TYPE_SAMPLE: 4158 { 4159 const struct rte_flow_action_sample *sample = 4160 actions->conf; 4161 const struct rte_flow_action *act = sample->actions; 4162 for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++) 4163 if (act->type == RTE_FLOW_ACTION_TYPE_RSS) 4164 rss = act->conf; 4165 break; 4166 } 4167 case RTE_FLOW_ACTION_TYPE_METER: 4168 { 4169 uint32_t mtr_idx; 4170 struct mlx5_flow_meter_info *fm; 4171 struct mlx5_flow_meter_policy *policy; 4172 const struct rte_flow_action_meter *mtr = actions->conf; 4173 4174 fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx); 4175 if (fm && !fm->def_policy) { 4176 policy = mlx5_flow_meter_policy_find(dev, 4177 fm->policy_id, NULL); 4178 MLX5_ASSERT(policy); 4179 if (policy->is_hierarchy) { 4180 policy = 4181 mlx5_flow_meter_hierarchy_get_final_policy(dev, 4182 policy); 4183 if (!policy) 4184 return NULL; 4185 } 4186 if (policy->is_rss) { 4187 acg = 4188 &policy->act_cnt[RTE_COLOR_GREEN]; 4189 acy = 4190 &policy->act_cnt[RTE_COLOR_YELLOW]; 4191 if (acg->fate_action == 4192 MLX5_FLOW_FATE_SHARED_RSS) 4193 rss = acg->rss->conf; 4194 else if (acy->fate_action == 4195 MLX5_FLOW_FATE_SHARED_RSS) 4196 rss = acy->rss->conf; 4197 } 4198 } 4199 break; 4200 } 4201 default: 4202 break; 4203 } 4204 } 4205 return rss; 4206 } 4207 4208 /** 4209 * Get ASO age action by index. 4210 * 4211 * @param[in] dev 4212 * Pointer to the Ethernet device structure. 4213 * @param[in] age_idx 4214 * Index to the ASO age action. 4215 * 4216 * @return 4217 * The specified ASO age action. 4218 */ 4219 struct mlx5_aso_age_action* 4220 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx) 4221 { 4222 uint16_t pool_idx = age_idx & UINT16_MAX; 4223 uint16_t offset = (age_idx >> 16) & UINT16_MAX; 4224 struct mlx5_priv *priv = dev->data->dev_private; 4225 struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng; 4226 struct mlx5_aso_age_pool *pool; 4227 4228 rte_rwlock_read_lock(&mng->resize_rwl); 4229 pool = mng->pools[pool_idx]; 4230 rte_rwlock_read_unlock(&mng->resize_rwl); 4231 return &pool->actions[offset - 1]; 4232 } 4233 4234 /* maps indirect action to translated direct in some actions array */ 4235 struct mlx5_translated_action_handle { 4236 struct rte_flow_action_handle *action; /**< Indirect action handle. */ 4237 int index; /**< Index in related array of rte_flow_action. */ 4238 }; 4239 4240 /** 4241 * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related 4242 * direct action if translation possible. 4243 * This functionality used to run same execution path for both direct and 4244 * indirect actions on flow create. All necessary preparations for indirect 4245 * action handling should be performed on *handle* actions list returned 4246 * from this call. 4247 * 4248 * @param[in] dev 4249 * Pointer to Ethernet device. 4250 * @param[in] actions 4251 * List of actions to translate. 4252 * @param[out] handle 4253 * List to store translated indirect action object handles. 4254 * @param[in, out] indir_n 4255 * Size of *handle* array. On return should be updated with number of 4256 * indirect actions retrieved from the *actions* list. 4257 * @param[out] translated_actions 4258 * List of actions where all indirect actions were translated to direct 4259 * if possible. NULL if no translation took place. 4260 * @param[out] error 4261 * Pointer to the error structure. 4262 * 4263 * @return 4264 * 0 on success, a negative errno value otherwise and rte_errno is set. 4265 */ 4266 static int 4267 flow_action_handles_translate(struct rte_eth_dev *dev, 4268 const struct rte_flow_action actions[], 4269 struct mlx5_translated_action_handle *handle, 4270 int *indir_n, 4271 struct rte_flow_action **translated_actions, 4272 struct rte_flow_error *error) 4273 { 4274 struct mlx5_priv *priv = dev->data->dev_private; 4275 struct rte_flow_action *translated = NULL; 4276 size_t actions_size; 4277 int n; 4278 int copied_n = 0; 4279 struct mlx5_translated_action_handle *handle_end = NULL; 4280 4281 for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) { 4282 if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT) 4283 continue; 4284 if (copied_n == *indir_n) { 4285 return rte_flow_error_set 4286 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, 4287 NULL, "too many shared actions"); 4288 } 4289 rte_memcpy(&handle[copied_n].action, &actions[n].conf, 4290 sizeof(actions[n].conf)); 4291 handle[copied_n].index = n; 4292 copied_n++; 4293 } 4294 n++; 4295 *indir_n = copied_n; 4296 if (!copied_n) 4297 return 0; 4298 actions_size = sizeof(struct rte_flow_action) * n; 4299 translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY); 4300 if (!translated) { 4301 rte_errno = ENOMEM; 4302 return -ENOMEM; 4303 } 4304 memcpy(translated, actions, actions_size); 4305 for (handle_end = handle + copied_n; handle < handle_end; handle++) { 4306 struct mlx5_shared_action_rss *shared_rss; 4307 uint32_t act_idx = (uint32_t)(uintptr_t)handle->action; 4308 uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET; 4309 uint32_t idx = act_idx & 4310 ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1); 4311 4312 switch (type) { 4313 case MLX5_INDIRECT_ACTION_TYPE_RSS: 4314 shared_rss = mlx5_ipool_get 4315 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx); 4316 translated[handle->index].type = 4317 RTE_FLOW_ACTION_TYPE_RSS; 4318 translated[handle->index].conf = 4319 &shared_rss->origin; 4320 break; 4321 case MLX5_INDIRECT_ACTION_TYPE_COUNT: 4322 translated[handle->index].type = 4323 (enum rte_flow_action_type) 4324 MLX5_RTE_FLOW_ACTION_TYPE_COUNT; 4325 translated[handle->index].conf = (void *)(uintptr_t)idx; 4326 break; 4327 case MLX5_INDIRECT_ACTION_TYPE_METER_MARK: 4328 translated[handle->index].type = 4329 (enum rte_flow_action_type) 4330 MLX5_RTE_FLOW_ACTION_TYPE_METER_MARK; 4331 translated[handle->index].conf = (void *)(uintptr_t)idx; 4332 break; 4333 case MLX5_INDIRECT_ACTION_TYPE_AGE: 4334 if (priv->sh->flow_hit_aso_en) { 4335 translated[handle->index].type = 4336 (enum rte_flow_action_type) 4337 MLX5_RTE_FLOW_ACTION_TYPE_AGE; 4338 translated[handle->index].conf = 4339 (void *)(uintptr_t)idx; 4340 break; 4341 } 4342 /* Fall-through */ 4343 case MLX5_INDIRECT_ACTION_TYPE_CT: 4344 if (priv->sh->ct_aso_en) { 4345 translated[handle->index].type = 4346 RTE_FLOW_ACTION_TYPE_CONNTRACK; 4347 translated[handle->index].conf = 4348 (void *)(uintptr_t)idx; 4349 break; 4350 } 4351 /* Fall-through */ 4352 default: 4353 mlx5_free(translated); 4354 return rte_flow_error_set 4355 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, 4356 NULL, "invalid indirect action type"); 4357 } 4358 } 4359 *translated_actions = translated; 4360 return 0; 4361 } 4362 4363 /** 4364 * Get Shared RSS action from the action list. 4365 * 4366 * @param[in] dev 4367 * Pointer to Ethernet device. 4368 * @param[in] shared 4369 * Pointer to the list of actions. 4370 * @param[in] shared_n 4371 * Actions list length. 4372 * 4373 * @return 4374 * The MLX5 RSS action ID if exists, otherwise return 0. 4375 */ 4376 static uint32_t 4377 flow_get_shared_rss_action(struct rte_eth_dev *dev, 4378 struct mlx5_translated_action_handle *handle, 4379 int shared_n) 4380 { 4381 struct mlx5_translated_action_handle *handle_end; 4382 struct mlx5_priv *priv = dev->data->dev_private; 4383 struct mlx5_shared_action_rss *shared_rss; 4384 4385 4386 for (handle_end = handle + shared_n; handle < handle_end; handle++) { 4387 uint32_t act_idx = (uint32_t)(uintptr_t)handle->action; 4388 uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET; 4389 uint32_t idx = act_idx & 4390 ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1); 4391 switch (type) { 4392 case MLX5_INDIRECT_ACTION_TYPE_RSS: 4393 shared_rss = mlx5_ipool_get 4394 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 4395 idx); 4396 __atomic_add_fetch(&shared_rss->refcnt, 1, 4397 __ATOMIC_RELAXED); 4398 return idx; 4399 default: 4400 break; 4401 } 4402 } 4403 return 0; 4404 } 4405 4406 static unsigned int 4407 find_graph_root(uint32_t rss_level) 4408 { 4409 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 4410 MLX5_EXPANSION_ROOT_OUTER; 4411 } 4412 4413 /** 4414 * Get layer flags from the prefix flow. 4415 * 4416 * Some flows may be split to several subflows, the prefix subflow gets the 4417 * match items and the suffix sub flow gets the actions. 4418 * Some actions need the user defined match item flags to get the detail for 4419 * the action. 4420 * This function helps the suffix flow to get the item layer flags from prefix 4421 * subflow. 4422 * 4423 * @param[in] dev_flow 4424 * Pointer the created prefix subflow. 4425 * 4426 * @return 4427 * The layers get from prefix subflow. 4428 */ 4429 static inline uint64_t 4430 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow) 4431 { 4432 uint64_t layers = 0; 4433 4434 /* 4435 * Layers bits could be localization, but usually the compiler will 4436 * help to do the optimization work for source code. 4437 * If no decap actions, use the layers directly. 4438 */ 4439 if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP)) 4440 return dev_flow->handle->layers; 4441 /* Convert L3 layers with decap action. */ 4442 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4) 4443 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4; 4444 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6) 4445 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6; 4446 /* Convert L4 layers with decap action. */ 4447 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP) 4448 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP; 4449 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP) 4450 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP; 4451 return layers; 4452 } 4453 4454 /** 4455 * Get metadata split action information. 4456 * 4457 * @param[in] actions 4458 * Pointer to the list of actions. 4459 * @param[out] qrss 4460 * Pointer to the return pointer. 4461 * @param[out] qrss_type 4462 * Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned 4463 * if no QUEUE/RSS is found. 4464 * @param[out] encap_idx 4465 * Pointer to the index of the encap action if exists, otherwise the last 4466 * action index. 4467 * 4468 * @return 4469 * Total number of actions. 4470 */ 4471 static int 4472 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[], 4473 const struct rte_flow_action **qrss, 4474 int *encap_idx) 4475 { 4476 const struct rte_flow_action_raw_encap *raw_encap; 4477 int actions_n = 0; 4478 int raw_decap_idx = -1; 4479 4480 *encap_idx = -1; 4481 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4482 switch (actions->type) { 4483 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 4484 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 4485 *encap_idx = actions_n; 4486 break; 4487 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4488 raw_decap_idx = actions_n; 4489 break; 4490 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4491 raw_encap = actions->conf; 4492 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 4493 *encap_idx = raw_decap_idx != -1 ? 4494 raw_decap_idx : actions_n; 4495 break; 4496 case RTE_FLOW_ACTION_TYPE_QUEUE: 4497 case RTE_FLOW_ACTION_TYPE_RSS: 4498 *qrss = actions; 4499 break; 4500 default: 4501 break; 4502 } 4503 actions_n++; 4504 } 4505 if (*encap_idx == -1) 4506 *encap_idx = actions_n; 4507 /* Count RTE_FLOW_ACTION_TYPE_END. */ 4508 return actions_n + 1; 4509 } 4510 4511 /** 4512 * Check if the action will change packet. 4513 * 4514 * @param dev 4515 * Pointer to Ethernet device. 4516 * @param[in] type 4517 * action type. 4518 * 4519 * @return 4520 * true if action will change packet, false otherwise. 4521 */ 4522 static bool flow_check_modify_action_type(struct rte_eth_dev *dev, 4523 enum rte_flow_action_type type) 4524 { 4525 struct mlx5_priv *priv = dev->data->dev_private; 4526 4527 switch (type) { 4528 case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC: 4529 case RTE_FLOW_ACTION_TYPE_SET_MAC_DST: 4530 case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC: 4531 case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST: 4532 case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC: 4533 case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST: 4534 case RTE_FLOW_ACTION_TYPE_SET_TP_SRC: 4535 case RTE_FLOW_ACTION_TYPE_SET_TP_DST: 4536 case RTE_FLOW_ACTION_TYPE_DEC_TTL: 4537 case RTE_FLOW_ACTION_TYPE_SET_TTL: 4538 case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ: 4539 case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ: 4540 case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK: 4541 case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK: 4542 case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP: 4543 case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP: 4544 case RTE_FLOW_ACTION_TYPE_SET_META: 4545 case RTE_FLOW_ACTION_TYPE_SET_TAG: 4546 case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN: 4547 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4548 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4549 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 4550 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 4551 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: 4552 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 4553 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP: 4554 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4555 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4556 case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD: 4557 return true; 4558 case RTE_FLOW_ACTION_TYPE_FLAG: 4559 case RTE_FLOW_ACTION_TYPE_MARK: 4560 if (priv->sh->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 4561 priv->sh->config.dv_xmeta_en != MLX5_XMETA_MODE_META32_HWS) 4562 return true; 4563 else 4564 return false; 4565 default: 4566 return false; 4567 } 4568 } 4569 4570 /** 4571 * Check meter action from the action list. 4572 * 4573 * @param dev 4574 * Pointer to Ethernet device. 4575 * @param[in] actions 4576 * Pointer to the list of actions. 4577 * @param[out] has_mtr 4578 * Pointer to the meter exist flag. 4579 * @param[out] has_modify 4580 * Pointer to the flag showing there's packet change action. 4581 * @param[out] meter_id 4582 * Pointer to the meter id. 4583 * 4584 * @return 4585 * Total number of actions. 4586 */ 4587 static int 4588 flow_check_meter_action(struct rte_eth_dev *dev, 4589 const struct rte_flow_action actions[], 4590 bool *has_mtr, bool *has_modify, uint32_t *meter_id) 4591 { 4592 const struct rte_flow_action_meter *mtr = NULL; 4593 int actions_n = 0; 4594 4595 MLX5_ASSERT(has_mtr); 4596 *has_mtr = false; 4597 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4598 switch (actions->type) { 4599 case RTE_FLOW_ACTION_TYPE_METER: 4600 mtr = actions->conf; 4601 *meter_id = mtr->mtr_id; 4602 *has_mtr = true; 4603 break; 4604 default: 4605 break; 4606 } 4607 if (!*has_mtr) 4608 *has_modify |= flow_check_modify_action_type(dev, 4609 actions->type); 4610 actions_n++; 4611 } 4612 /* Count RTE_FLOW_ACTION_TYPE_END. */ 4613 return actions_n + 1; 4614 } 4615 4616 /** 4617 * Check if the flow should be split due to hairpin. 4618 * The reason for the split is that in current HW we can't 4619 * support encap and push-vlan on Rx, so if a flow contains 4620 * these actions we move it to Tx. 4621 * 4622 * @param dev 4623 * Pointer to Ethernet device. 4624 * @param[in] attr 4625 * Flow rule attributes. 4626 * @param[in] actions 4627 * Associated actions (list terminated by the END action). 4628 * 4629 * @return 4630 * > 0 the number of actions and the flow should be split, 4631 * 0 when no split required. 4632 */ 4633 static int 4634 flow_check_hairpin_split(struct rte_eth_dev *dev, 4635 const struct rte_flow_attr *attr, 4636 const struct rte_flow_action actions[]) 4637 { 4638 int queue_action = 0; 4639 int action_n = 0; 4640 int split = 0; 4641 const struct rte_flow_action_queue *queue; 4642 const struct rte_flow_action_rss *rss; 4643 const struct rte_flow_action_raw_encap *raw_encap; 4644 const struct rte_eth_hairpin_conf *conf; 4645 4646 if (!attr->ingress) 4647 return 0; 4648 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4649 switch (actions->type) { 4650 case RTE_FLOW_ACTION_TYPE_QUEUE: 4651 queue = actions->conf; 4652 if (queue == NULL) 4653 return 0; 4654 conf = mlx5_rxq_get_hairpin_conf(dev, queue->index); 4655 if (conf == NULL || conf->tx_explicit != 0) 4656 return 0; 4657 queue_action = 1; 4658 action_n++; 4659 break; 4660 case RTE_FLOW_ACTION_TYPE_RSS: 4661 rss = actions->conf; 4662 if (rss == NULL || rss->queue_num == 0) 4663 return 0; 4664 conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]); 4665 if (conf == NULL || conf->tx_explicit != 0) 4666 return 0; 4667 queue_action = 1; 4668 action_n++; 4669 break; 4670 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 4671 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 4672 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4673 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4674 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 4675 split++; 4676 action_n++; 4677 break; 4678 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4679 raw_encap = actions->conf; 4680 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 4681 split++; 4682 action_n++; 4683 break; 4684 default: 4685 action_n++; 4686 break; 4687 } 4688 } 4689 if (split && queue_action) 4690 return action_n; 4691 return 0; 4692 } 4693 4694 /* Declare flow create/destroy prototype in advance. */ 4695 static uint32_t 4696 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type, 4697 const struct rte_flow_attr *attr, 4698 const struct rte_flow_item items[], 4699 const struct rte_flow_action actions[], 4700 bool external, struct rte_flow_error *error); 4701 4702 static void 4703 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type, 4704 uint32_t flow_idx); 4705 4706 int 4707 flow_dv_mreg_match_cb(void *tool_ctx __rte_unused, 4708 struct mlx5_list_entry *entry, void *cb_ctx) 4709 { 4710 struct mlx5_flow_cb_ctx *ctx = cb_ctx; 4711 struct mlx5_flow_mreg_copy_resource *mcp_res = 4712 container_of(entry, typeof(*mcp_res), hlist_ent); 4713 4714 return mcp_res->mark_id != *(uint32_t *)(ctx->data); 4715 } 4716 4717 struct mlx5_list_entry * 4718 flow_dv_mreg_create_cb(void *tool_ctx, void *cb_ctx) 4719 { 4720 struct rte_eth_dev *dev = tool_ctx; 4721 struct mlx5_priv *priv = dev->data->dev_private; 4722 struct mlx5_flow_cb_ctx *ctx = cb_ctx; 4723 struct mlx5_flow_mreg_copy_resource *mcp_res; 4724 struct rte_flow_error *error = ctx->error; 4725 uint32_t idx = 0; 4726 int ret; 4727 uint32_t mark_id = *(uint32_t *)(ctx->data); 4728 struct rte_flow_attr attr = { 4729 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 4730 .ingress = 1, 4731 }; 4732 struct mlx5_rte_flow_item_tag tag_spec = { 4733 .data = mark_id, 4734 }; 4735 struct rte_flow_item items[] = { 4736 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, }, 4737 }; 4738 struct rte_flow_action_mark ftag = { 4739 .id = mark_id, 4740 }; 4741 struct mlx5_flow_action_copy_mreg cp_mreg = { 4742 .dst = REG_B, 4743 .src = REG_NON, 4744 }; 4745 struct rte_flow_action_jump jump = { 4746 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 4747 }; 4748 struct rte_flow_action actions[] = { 4749 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, }, 4750 }; 4751 4752 /* Fill the register fields in the flow. */ 4753 ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error); 4754 if (ret < 0) 4755 return NULL; 4756 tag_spec.id = ret; 4757 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 4758 if (ret < 0) 4759 return NULL; 4760 cp_mreg.src = ret; 4761 /* Provide the full width of FLAG specific value. */ 4762 if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT)) 4763 tag_spec.data = MLX5_FLOW_MARK_DEFAULT; 4764 /* Build a new flow. */ 4765 if (mark_id != MLX5_DEFAULT_COPY_ID) { 4766 items[0] = (struct rte_flow_item){ 4767 .type = (enum rte_flow_item_type) 4768 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 4769 .spec = &tag_spec, 4770 }; 4771 items[1] = (struct rte_flow_item){ 4772 .type = RTE_FLOW_ITEM_TYPE_END, 4773 }; 4774 actions[0] = (struct rte_flow_action){ 4775 .type = (enum rte_flow_action_type) 4776 MLX5_RTE_FLOW_ACTION_TYPE_MARK, 4777 .conf = &ftag, 4778 }; 4779 actions[1] = (struct rte_flow_action){ 4780 .type = (enum rte_flow_action_type) 4781 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4782 .conf = &cp_mreg, 4783 }; 4784 actions[2] = (struct rte_flow_action){ 4785 .type = RTE_FLOW_ACTION_TYPE_JUMP, 4786 .conf = &jump, 4787 }; 4788 actions[3] = (struct rte_flow_action){ 4789 .type = RTE_FLOW_ACTION_TYPE_END, 4790 }; 4791 } else { 4792 /* Default rule, wildcard match. */ 4793 attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR; 4794 items[0] = (struct rte_flow_item){ 4795 .type = RTE_FLOW_ITEM_TYPE_END, 4796 }; 4797 actions[0] = (struct rte_flow_action){ 4798 .type = (enum rte_flow_action_type) 4799 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4800 .conf = &cp_mreg, 4801 }; 4802 actions[1] = (struct rte_flow_action){ 4803 .type = RTE_FLOW_ACTION_TYPE_JUMP, 4804 .conf = &jump, 4805 }; 4806 actions[2] = (struct rte_flow_action){ 4807 .type = RTE_FLOW_ACTION_TYPE_END, 4808 }; 4809 } 4810 /* Build a new entry. */ 4811 mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx); 4812 if (!mcp_res) { 4813 rte_errno = ENOMEM; 4814 return NULL; 4815 } 4816 mcp_res->idx = idx; 4817 mcp_res->mark_id = mark_id; 4818 /* 4819 * The copy Flows are not included in any list. There 4820 * ones are referenced from other Flows and can not 4821 * be applied, removed, deleted in arbitrary order 4822 * by list traversing. 4823 */ 4824 mcp_res->rix_flow = flow_list_create(dev, MLX5_FLOW_TYPE_MCP, 4825 &attr, items, actions, false, error); 4826 if (!mcp_res->rix_flow) { 4827 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx); 4828 return NULL; 4829 } 4830 return &mcp_res->hlist_ent; 4831 } 4832 4833 struct mlx5_list_entry * 4834 flow_dv_mreg_clone_cb(void *tool_ctx, struct mlx5_list_entry *oentry, 4835 void *cb_ctx __rte_unused) 4836 { 4837 struct rte_eth_dev *dev = tool_ctx; 4838 struct mlx5_priv *priv = dev->data->dev_private; 4839 struct mlx5_flow_mreg_copy_resource *mcp_res; 4840 uint32_t idx = 0; 4841 4842 mcp_res = mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx); 4843 if (!mcp_res) { 4844 rte_errno = ENOMEM; 4845 return NULL; 4846 } 4847 memcpy(mcp_res, oentry, sizeof(*mcp_res)); 4848 mcp_res->idx = idx; 4849 return &mcp_res->hlist_ent; 4850 } 4851 4852 void 4853 flow_dv_mreg_clone_free_cb(void *tool_ctx, struct mlx5_list_entry *entry) 4854 { 4855 struct mlx5_flow_mreg_copy_resource *mcp_res = 4856 container_of(entry, typeof(*mcp_res), hlist_ent); 4857 struct rte_eth_dev *dev = tool_ctx; 4858 struct mlx5_priv *priv = dev->data->dev_private; 4859 4860 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 4861 } 4862 4863 /** 4864 * Add a flow of copying flow metadata registers in RX_CP_TBL. 4865 * 4866 * As mark_id is unique, if there's already a registered flow for the mark_id, 4867 * return by increasing the reference counter of the resource. Otherwise, create 4868 * the resource (mcp_res) and flow. 4869 * 4870 * Flow looks like, 4871 * - If ingress port is ANY and reg_c[1] is mark_id, 4872 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 4873 * 4874 * For default flow (zero mark_id), flow is like, 4875 * - If ingress port is ANY, 4876 * reg_b := reg_c[0] and jump to RX_ACT_TBL. 4877 * 4878 * @param dev 4879 * Pointer to Ethernet device. 4880 * @param mark_id 4881 * ID of MARK action, zero means default flow for META. 4882 * @param[out] error 4883 * Perform verbose error reporting if not NULL. 4884 * 4885 * @return 4886 * Associated resource on success, NULL otherwise and rte_errno is set. 4887 */ 4888 static struct mlx5_flow_mreg_copy_resource * 4889 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id, 4890 struct rte_flow_error *error) 4891 { 4892 struct mlx5_priv *priv = dev->data->dev_private; 4893 struct mlx5_list_entry *entry; 4894 struct mlx5_flow_cb_ctx ctx = { 4895 .dev = dev, 4896 .error = error, 4897 .data = &mark_id, 4898 }; 4899 4900 /* Check if already registered. */ 4901 MLX5_ASSERT(priv->mreg_cp_tbl); 4902 entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx); 4903 if (!entry) 4904 return NULL; 4905 return container_of(entry, struct mlx5_flow_mreg_copy_resource, 4906 hlist_ent); 4907 } 4908 4909 void 4910 flow_dv_mreg_remove_cb(void *tool_ctx, struct mlx5_list_entry *entry) 4911 { 4912 struct mlx5_flow_mreg_copy_resource *mcp_res = 4913 container_of(entry, typeof(*mcp_res), hlist_ent); 4914 struct rte_eth_dev *dev = tool_ctx; 4915 struct mlx5_priv *priv = dev->data->dev_private; 4916 4917 MLX5_ASSERT(mcp_res->rix_flow); 4918 flow_list_destroy(dev, MLX5_FLOW_TYPE_MCP, mcp_res->rix_flow); 4919 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 4920 } 4921 4922 /** 4923 * Release flow in RX_CP_TBL. 4924 * 4925 * @param dev 4926 * Pointer to Ethernet device. 4927 * @flow 4928 * Parent flow for wich copying is provided. 4929 */ 4930 static void 4931 flow_mreg_del_copy_action(struct rte_eth_dev *dev, 4932 struct rte_flow *flow) 4933 { 4934 struct mlx5_flow_mreg_copy_resource *mcp_res; 4935 struct mlx5_priv *priv = dev->data->dev_private; 4936 4937 if (!flow->rix_mreg_copy) 4938 return; 4939 mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP], 4940 flow->rix_mreg_copy); 4941 if (!mcp_res || !priv->mreg_cp_tbl) 4942 return; 4943 MLX5_ASSERT(mcp_res->rix_flow); 4944 mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent); 4945 flow->rix_mreg_copy = 0; 4946 } 4947 4948 /** 4949 * Remove the default copy action from RX_CP_TBL. 4950 * 4951 * This functions is called in the mlx5_dev_start(). No thread safe 4952 * is guaranteed. 4953 * 4954 * @param dev 4955 * Pointer to Ethernet device. 4956 */ 4957 static void 4958 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev) 4959 { 4960 struct mlx5_list_entry *entry; 4961 struct mlx5_priv *priv = dev->data->dev_private; 4962 struct mlx5_flow_cb_ctx ctx; 4963 uint32_t mark_id; 4964 4965 /* Check if default flow is registered. */ 4966 if (!priv->mreg_cp_tbl) 4967 return; 4968 mark_id = MLX5_DEFAULT_COPY_ID; 4969 ctx.data = &mark_id; 4970 entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx); 4971 if (!entry) 4972 return; 4973 mlx5_hlist_unregister(priv->mreg_cp_tbl, entry); 4974 } 4975 4976 /** 4977 * Add the default copy action in in RX_CP_TBL. 4978 * 4979 * This functions is called in the mlx5_dev_start(). No thread safe 4980 * is guaranteed. 4981 * 4982 * @param dev 4983 * Pointer to Ethernet device. 4984 * @param[out] error 4985 * Perform verbose error reporting if not NULL. 4986 * 4987 * @return 4988 * 0 for success, negative value otherwise and rte_errno is set. 4989 */ 4990 static int 4991 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev, 4992 struct rte_flow_error *error) 4993 { 4994 struct mlx5_priv *priv = dev->data->dev_private; 4995 struct mlx5_flow_mreg_copy_resource *mcp_res; 4996 struct mlx5_flow_cb_ctx ctx; 4997 uint32_t mark_id; 4998 4999 /* Check whether extensive metadata feature is engaged. */ 5000 if (!priv->sh->config.dv_flow_en || 5001 priv->sh->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 5002 !mlx5_flow_ext_mreg_supported(dev) || 5003 !priv->sh->dv_regc0_mask) 5004 return 0; 5005 /* 5006 * Add default mreg copy flow may be called multiple time, but 5007 * only be called once in stop. Avoid register it twice. 5008 */ 5009 mark_id = MLX5_DEFAULT_COPY_ID; 5010 ctx.data = &mark_id; 5011 if (mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx)) 5012 return 0; 5013 mcp_res = flow_mreg_add_copy_action(dev, mark_id, error); 5014 if (!mcp_res) 5015 return -rte_errno; 5016 return 0; 5017 } 5018 5019 /** 5020 * Add a flow of copying flow metadata registers in RX_CP_TBL. 5021 * 5022 * All the flow having Q/RSS action should be split by 5023 * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL 5024 * performs the following, 5025 * - CQE->flow_tag := reg_c[1] (MARK) 5026 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 5027 * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1] 5028 * but there should be a flow per each MARK ID set by MARK action. 5029 * 5030 * For the aforementioned reason, if there's a MARK action in flow's action 5031 * list, a corresponding flow should be added to the RX_CP_TBL in order to copy 5032 * the MARK ID to CQE's flow_tag like, 5033 * - If reg_c[1] is mark_id, 5034 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 5035 * 5036 * For SET_META action which stores value in reg_c[0], as the destination is 5037 * also a flow metadata register (reg_b), adding a default flow is enough. Zero 5038 * MARK ID means the default flow. The default flow looks like, 5039 * - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL. 5040 * 5041 * @param dev 5042 * Pointer to Ethernet device. 5043 * @param flow 5044 * Pointer to flow structure. 5045 * @param[in] actions 5046 * Pointer to the list of actions. 5047 * @param[out] error 5048 * Perform verbose error reporting if not NULL. 5049 * 5050 * @return 5051 * 0 on success, negative value otherwise and rte_errno is set. 5052 */ 5053 static int 5054 flow_mreg_update_copy_table(struct rte_eth_dev *dev, 5055 struct rte_flow *flow, 5056 const struct rte_flow_action *actions, 5057 struct rte_flow_error *error) 5058 { 5059 struct mlx5_priv *priv = dev->data->dev_private; 5060 struct mlx5_sh_config *config = &priv->sh->config; 5061 struct mlx5_flow_mreg_copy_resource *mcp_res; 5062 const struct rte_flow_action_mark *mark; 5063 5064 /* Check whether extensive metadata feature is engaged. */ 5065 if (!config->dv_flow_en || 5066 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 5067 !mlx5_flow_ext_mreg_supported(dev) || 5068 !priv->sh->dv_regc0_mask) 5069 return 0; 5070 /* Find MARK action. */ 5071 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 5072 switch (actions->type) { 5073 case RTE_FLOW_ACTION_TYPE_FLAG: 5074 mcp_res = flow_mreg_add_copy_action 5075 (dev, MLX5_FLOW_MARK_DEFAULT, error); 5076 if (!mcp_res) 5077 return -rte_errno; 5078 flow->rix_mreg_copy = mcp_res->idx; 5079 return 0; 5080 case RTE_FLOW_ACTION_TYPE_MARK: 5081 mark = (const struct rte_flow_action_mark *) 5082 actions->conf; 5083 mcp_res = 5084 flow_mreg_add_copy_action(dev, mark->id, error); 5085 if (!mcp_res) 5086 return -rte_errno; 5087 flow->rix_mreg_copy = mcp_res->idx; 5088 return 0; 5089 default: 5090 break; 5091 } 5092 } 5093 return 0; 5094 } 5095 5096 #define MLX5_MAX_SPLIT_ACTIONS 24 5097 #define MLX5_MAX_SPLIT_ITEMS 24 5098 5099 /** 5100 * Split the hairpin flow. 5101 * Since HW can't support encap and push-vlan on Rx, we move these 5102 * actions to Tx. 5103 * If the count action is after the encap then we also 5104 * move the count action. in this case the count will also measure 5105 * the outer bytes. 5106 * 5107 * @param dev 5108 * Pointer to Ethernet device. 5109 * @param[in] actions 5110 * Associated actions (list terminated by the END action). 5111 * @param[out] actions_rx 5112 * Rx flow actions. 5113 * @param[out] actions_tx 5114 * Tx flow actions.. 5115 * @param[out] pattern_tx 5116 * The pattern items for the Tx flow. 5117 * @param[out] flow_id 5118 * The flow ID connected to this flow. 5119 * 5120 * @return 5121 * 0 on success. 5122 */ 5123 static int 5124 flow_hairpin_split(struct rte_eth_dev *dev, 5125 const struct rte_flow_action actions[], 5126 struct rte_flow_action actions_rx[], 5127 struct rte_flow_action actions_tx[], 5128 struct rte_flow_item pattern_tx[], 5129 uint32_t flow_id) 5130 { 5131 const struct rte_flow_action_raw_encap *raw_encap; 5132 const struct rte_flow_action_raw_decap *raw_decap; 5133 struct mlx5_rte_flow_action_set_tag *set_tag; 5134 struct rte_flow_action *tag_action; 5135 struct mlx5_rte_flow_item_tag *tag_item; 5136 struct rte_flow_item *item; 5137 char *addr; 5138 int encap = 0; 5139 5140 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 5141 switch (actions->type) { 5142 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 5143 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 5144 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 5145 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 5146 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 5147 rte_memcpy(actions_tx, actions, 5148 sizeof(struct rte_flow_action)); 5149 actions_tx++; 5150 break; 5151 case RTE_FLOW_ACTION_TYPE_COUNT: 5152 if (encap) { 5153 rte_memcpy(actions_tx, actions, 5154 sizeof(struct rte_flow_action)); 5155 actions_tx++; 5156 } else { 5157 rte_memcpy(actions_rx, actions, 5158 sizeof(struct rte_flow_action)); 5159 actions_rx++; 5160 } 5161 break; 5162 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 5163 raw_encap = actions->conf; 5164 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) { 5165 memcpy(actions_tx, actions, 5166 sizeof(struct rte_flow_action)); 5167 actions_tx++; 5168 encap = 1; 5169 } else { 5170 rte_memcpy(actions_rx, actions, 5171 sizeof(struct rte_flow_action)); 5172 actions_rx++; 5173 } 5174 break; 5175 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 5176 raw_decap = actions->conf; 5177 if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) { 5178 memcpy(actions_tx, actions, 5179 sizeof(struct rte_flow_action)); 5180 actions_tx++; 5181 } else { 5182 rte_memcpy(actions_rx, actions, 5183 sizeof(struct rte_flow_action)); 5184 actions_rx++; 5185 } 5186 break; 5187 default: 5188 rte_memcpy(actions_rx, actions, 5189 sizeof(struct rte_flow_action)); 5190 actions_rx++; 5191 break; 5192 } 5193 } 5194 /* Add set meta action and end action for the Rx flow. */ 5195 tag_action = actions_rx; 5196 tag_action->type = (enum rte_flow_action_type) 5197 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 5198 actions_rx++; 5199 rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action)); 5200 actions_rx++; 5201 set_tag = (void *)actions_rx; 5202 *set_tag = (struct mlx5_rte_flow_action_set_tag) { 5203 .id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL), 5204 .data = flow_id, 5205 }; 5206 MLX5_ASSERT(set_tag->id > REG_NON); 5207 tag_action->conf = set_tag; 5208 /* Create Tx item list. */ 5209 rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action)); 5210 addr = (void *)&pattern_tx[2]; 5211 item = pattern_tx; 5212 item->type = (enum rte_flow_item_type) 5213 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 5214 tag_item = (void *)addr; 5215 tag_item->data = flow_id; 5216 tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL); 5217 MLX5_ASSERT(set_tag->id > REG_NON); 5218 item->spec = tag_item; 5219 addr += sizeof(struct mlx5_rte_flow_item_tag); 5220 tag_item = (void *)addr; 5221 tag_item->data = UINT32_MAX; 5222 tag_item->id = UINT16_MAX; 5223 item->mask = tag_item; 5224 item->last = NULL; 5225 item++; 5226 item->type = RTE_FLOW_ITEM_TYPE_END; 5227 return 0; 5228 } 5229 5230 /** 5231 * The last stage of splitting chain, just creates the subflow 5232 * without any modification. 5233 * 5234 * @param[in] dev 5235 * Pointer to Ethernet device. 5236 * @param[in] flow 5237 * Parent flow structure pointer. 5238 * @param[in, out] sub_flow 5239 * Pointer to return the created subflow, may be NULL. 5240 * @param[in] attr 5241 * Flow rule attributes. 5242 * @param[in] items 5243 * Pattern specification (list terminated by the END pattern item). 5244 * @param[in] actions 5245 * Associated actions (list terminated by the END action). 5246 * @param[in] flow_split_info 5247 * Pointer to flow split info structure. 5248 * @param[out] error 5249 * Perform verbose error reporting if not NULL. 5250 * @return 5251 * 0 on success, negative value otherwise 5252 */ 5253 static int 5254 flow_create_split_inner(struct rte_eth_dev *dev, 5255 struct rte_flow *flow, 5256 struct mlx5_flow **sub_flow, 5257 const struct rte_flow_attr *attr, 5258 const struct rte_flow_item items[], 5259 const struct rte_flow_action actions[], 5260 struct mlx5_flow_split_info *flow_split_info, 5261 struct rte_flow_error *error) 5262 { 5263 struct mlx5_flow *dev_flow; 5264 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 5265 5266 dev_flow = flow_drv_prepare(dev, flow, attr, items, actions, 5267 flow_split_info->flow_idx, error); 5268 if (!dev_flow) 5269 return -rte_errno; 5270 dev_flow->flow = flow; 5271 dev_flow->external = flow_split_info->external; 5272 dev_flow->skip_scale = flow_split_info->skip_scale; 5273 /* Subflow object was created, we must include one in the list. */ 5274 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 5275 dev_flow->handle, next); 5276 /* 5277 * If dev_flow is as one of the suffix flow, some actions in suffix 5278 * flow may need some user defined item layer flags, and pass the 5279 * Metadata rxq mark flag to suffix flow as well. 5280 */ 5281 if (flow_split_info->prefix_layers) 5282 dev_flow->handle->layers = flow_split_info->prefix_layers; 5283 if (flow_split_info->prefix_mark) { 5284 MLX5_ASSERT(wks); 5285 wks->mark = 1; 5286 } 5287 if (sub_flow) 5288 *sub_flow = dev_flow; 5289 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5290 dev_flow->dv.table_id = flow_split_info->table_id; 5291 #endif 5292 return flow_drv_translate(dev, dev_flow, attr, items, actions, error); 5293 } 5294 5295 /** 5296 * Get the sub policy of a meter. 5297 * 5298 * @param[in] dev 5299 * Pointer to Ethernet device. 5300 * @param[in] flow 5301 * Parent flow structure pointer. 5302 * @param wks 5303 * Pointer to thread flow work space. 5304 * @param[in] attr 5305 * Flow rule attributes. 5306 * @param[in] items 5307 * Pattern specification (list terminated by the END pattern item). 5308 * @param[out] error 5309 * Perform verbose error reporting if not NULL. 5310 * 5311 * @return 5312 * Pointer to the meter sub policy, NULL otherwise and rte_errno is set. 5313 */ 5314 static struct mlx5_flow_meter_sub_policy * 5315 get_meter_sub_policy(struct rte_eth_dev *dev, 5316 struct rte_flow *flow, 5317 struct mlx5_flow_workspace *wks, 5318 const struct rte_flow_attr *attr, 5319 const struct rte_flow_item items[], 5320 struct rte_flow_error *error) 5321 { 5322 struct mlx5_flow_meter_policy *policy; 5323 struct mlx5_flow_meter_policy *final_policy; 5324 struct mlx5_flow_meter_sub_policy *sub_policy = NULL; 5325 5326 policy = wks->policy; 5327 final_policy = policy->is_hierarchy ? wks->final_policy : policy; 5328 if (final_policy->is_rss || final_policy->is_queue) { 5329 struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS]; 5330 struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0}; 5331 uint32_t i; 5332 5333 /* 5334 * This is a tmp dev_flow, 5335 * no need to register any matcher for it in translate. 5336 */ 5337 wks->skip_matcher_reg = 1; 5338 for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) { 5339 struct mlx5_flow dev_flow = {0}; 5340 struct mlx5_flow_handle dev_handle = { {0} }; 5341 uint8_t fate = final_policy->act_cnt[i].fate_action; 5342 5343 if (fate == MLX5_FLOW_FATE_SHARED_RSS) { 5344 const struct rte_flow_action_rss *rss_act = 5345 final_policy->act_cnt[i].rss->conf; 5346 struct rte_flow_action rss_actions[2] = { 5347 [0] = { 5348 .type = RTE_FLOW_ACTION_TYPE_RSS, 5349 .conf = rss_act, 5350 }, 5351 [1] = { 5352 .type = RTE_FLOW_ACTION_TYPE_END, 5353 .conf = NULL, 5354 } 5355 }; 5356 5357 dev_flow.handle = &dev_handle; 5358 dev_flow.ingress = attr->ingress; 5359 dev_flow.flow = flow; 5360 dev_flow.external = 0; 5361 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5362 dev_flow.dv.transfer = attr->transfer; 5363 #endif 5364 /** 5365 * Translate RSS action to get rss hash fields. 5366 */ 5367 if (flow_drv_translate(dev, &dev_flow, attr, 5368 items, rss_actions, error)) 5369 goto exit; 5370 rss_desc_v[i] = wks->rss_desc; 5371 rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN; 5372 rss_desc_v[i].hash_fields = 5373 dev_flow.hash_fields; 5374 rss_desc_v[i].queue_num = 5375 rss_desc_v[i].hash_fields ? 5376 rss_desc_v[i].queue_num : 1; 5377 rss_desc_v[i].tunnel = 5378 !!(dev_flow.handle->layers & 5379 MLX5_FLOW_LAYER_TUNNEL); 5380 /* Use the RSS queues in the containers. */ 5381 rss_desc_v[i].queue = 5382 (uint16_t *)(uintptr_t)rss_act->queue; 5383 rss_desc[i] = &rss_desc_v[i]; 5384 } else if (fate == MLX5_FLOW_FATE_QUEUE) { 5385 /* This is queue action. */ 5386 rss_desc_v[i] = wks->rss_desc; 5387 rss_desc_v[i].key_len = 0; 5388 rss_desc_v[i].hash_fields = 0; 5389 rss_desc_v[i].queue = 5390 &final_policy->act_cnt[i].queue; 5391 rss_desc_v[i].queue_num = 1; 5392 rss_desc[i] = &rss_desc_v[i]; 5393 } else { 5394 rss_desc[i] = NULL; 5395 } 5396 } 5397 sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev, 5398 flow, policy, rss_desc); 5399 } else { 5400 enum mlx5_meter_domain mtr_domain = 5401 attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER : 5402 (attr->egress ? MLX5_MTR_DOMAIN_EGRESS : 5403 MLX5_MTR_DOMAIN_INGRESS); 5404 sub_policy = policy->sub_policys[mtr_domain][0]; 5405 } 5406 if (!sub_policy) 5407 rte_flow_error_set(error, EINVAL, 5408 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 5409 "Failed to get meter sub-policy."); 5410 exit: 5411 return sub_policy; 5412 } 5413 5414 /** 5415 * Split the meter flow. 5416 * 5417 * As meter flow will split to three sub flow, other than meter 5418 * action, the other actions make sense to only meter accepts 5419 * the packet. If it need to be dropped, no other additional 5420 * actions should be take. 5421 * 5422 * One kind of special action which decapsulates the L3 tunnel 5423 * header will be in the prefix sub flow, as not to take the 5424 * L3 tunnel header into account. 5425 * 5426 * @param[in] dev 5427 * Pointer to Ethernet device. 5428 * @param[in] flow 5429 * Parent flow structure pointer. 5430 * @param wks 5431 * Pointer to thread flow work space. 5432 * @param[in] attr 5433 * Flow rule attributes. 5434 * @param[in] items 5435 * Pattern specification (list terminated by the END pattern item). 5436 * @param[out] sfx_items 5437 * Suffix flow match items (list terminated by the END pattern item). 5438 * @param[in] actions 5439 * Associated actions (list terminated by the END action). 5440 * @param[out] actions_sfx 5441 * Suffix flow actions. 5442 * @param[out] actions_pre 5443 * Prefix flow actions. 5444 * @param[out] mtr_flow_id 5445 * Pointer to meter flow id. 5446 * @param[out] error 5447 * Perform verbose error reporting if not NULL. 5448 * 5449 * @return 5450 * 0 on success, a negative errno value otherwise and rte_errno is set. 5451 */ 5452 static int 5453 flow_meter_split_prep(struct rte_eth_dev *dev, 5454 struct rte_flow *flow, 5455 struct mlx5_flow_workspace *wks, 5456 const struct rte_flow_attr *attr, 5457 const struct rte_flow_item items[], 5458 struct rte_flow_item sfx_items[], 5459 const struct rte_flow_action actions[], 5460 struct rte_flow_action actions_sfx[], 5461 struct rte_flow_action actions_pre[], 5462 uint32_t *mtr_flow_id, 5463 struct rte_flow_error *error) 5464 { 5465 struct mlx5_priv *priv = dev->data->dev_private; 5466 struct mlx5_flow_meter_info *fm = wks->fm; 5467 struct rte_flow_action *tag_action = NULL; 5468 struct rte_flow_item *tag_item; 5469 struct mlx5_rte_flow_action_set_tag *set_tag; 5470 const struct rte_flow_action_raw_encap *raw_encap; 5471 const struct rte_flow_action_raw_decap *raw_decap; 5472 struct mlx5_rte_flow_item_tag *tag_item_spec; 5473 struct mlx5_rte_flow_item_tag *tag_item_mask; 5474 uint32_t tag_id = 0; 5475 struct rte_flow_item *vlan_item_dst = NULL; 5476 const struct rte_flow_item *vlan_item_src = NULL; 5477 const struct rte_flow_item *orig_items = items; 5478 struct rte_flow_action *hw_mtr_action; 5479 struct rte_flow_action *action_pre_head = NULL; 5480 uint16_t flow_src_port = priv->representor_id; 5481 bool mtr_first; 5482 uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0; 5483 uint8_t mtr_reg_bits = priv->mtr_reg_share ? 5484 MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS; 5485 uint32_t flow_id = 0; 5486 uint32_t flow_id_reversed = 0; 5487 uint8_t flow_id_bits = 0; 5488 bool after_meter = false; 5489 int shift; 5490 5491 /* Prepare the suffix subflow items. */ 5492 tag_item = sfx_items++; 5493 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 5494 int item_type = items->type; 5495 5496 switch (item_type) { 5497 case RTE_FLOW_ITEM_TYPE_PORT_ID: 5498 case RTE_FLOW_ITEM_TYPE_REPRESENTED_PORT: 5499 if (mlx5_flow_get_item_vport_id(dev, items, &flow_src_port, NULL, error)) 5500 return -rte_errno; 5501 if (!fm->def_policy && wks->policy->is_hierarchy && 5502 flow_src_port != priv->representor_id) { 5503 if (flow_drv_mtr_hierarchy_rule_create(dev, 5504 flow, fm, 5505 flow_src_port, 5506 items, 5507 error)) 5508 return -rte_errno; 5509 } 5510 memcpy(sfx_items, items, sizeof(*sfx_items)); 5511 sfx_items++; 5512 break; 5513 case RTE_FLOW_ITEM_TYPE_PORT_REPRESENTOR: 5514 flow_src_port = 0; 5515 memcpy(sfx_items, items, sizeof(*sfx_items)); 5516 sfx_items++; 5517 break; 5518 case RTE_FLOW_ITEM_TYPE_VLAN: 5519 /* Determine if copy vlan item below. */ 5520 vlan_item_src = items; 5521 vlan_item_dst = sfx_items++; 5522 vlan_item_dst->type = RTE_FLOW_ITEM_TYPE_VOID; 5523 break; 5524 default: 5525 break; 5526 } 5527 } 5528 sfx_items->type = RTE_FLOW_ITEM_TYPE_END; 5529 sfx_items++; 5530 mtr_first = priv->sh->meter_aso_en && 5531 (attr->egress || (attr->transfer && flow_src_port != UINT16_MAX)); 5532 /* For ASO meter, meter must be before tag in TX direction. */ 5533 if (mtr_first) { 5534 action_pre_head = actions_pre++; 5535 /* Leave space for tag action. */ 5536 tag_action = actions_pre++; 5537 } 5538 /* Prepare the actions for prefix and suffix flow. */ 5539 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 5540 struct rte_flow_action *action_cur = NULL; 5541 5542 switch (actions->type) { 5543 case RTE_FLOW_ACTION_TYPE_METER: 5544 if (mtr_first) { 5545 action_cur = action_pre_head; 5546 } else { 5547 /* Leave space for tag action. */ 5548 tag_action = actions_pre++; 5549 action_cur = actions_pre++; 5550 } 5551 after_meter = true; 5552 break; 5553 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: 5554 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP: 5555 action_cur = actions_pre++; 5556 break; 5557 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 5558 raw_encap = actions->conf; 5559 if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE) 5560 action_cur = actions_pre++; 5561 break; 5562 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 5563 raw_decap = actions->conf; 5564 if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 5565 action_cur = actions_pre++; 5566 break; 5567 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 5568 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 5569 if (vlan_item_dst && vlan_item_src) { 5570 memcpy(vlan_item_dst, vlan_item_src, 5571 sizeof(*vlan_item_dst)); 5572 /* 5573 * Convert to internal match item, it is used 5574 * for vlan push and set vid. 5575 */ 5576 vlan_item_dst->type = (enum rte_flow_item_type) 5577 MLX5_RTE_FLOW_ITEM_TYPE_VLAN; 5578 } 5579 break; 5580 case RTE_FLOW_ACTION_TYPE_COUNT: 5581 if (fm->def_policy) 5582 action_cur = after_meter ? 5583 actions_sfx++ : actions_pre++; 5584 break; 5585 default: 5586 break; 5587 } 5588 if (!action_cur) 5589 action_cur = (fm->def_policy) ? 5590 actions_sfx++ : actions_pre++; 5591 memcpy(action_cur, actions, sizeof(struct rte_flow_action)); 5592 } 5593 /* Add end action to the actions. */ 5594 actions_sfx->type = RTE_FLOW_ACTION_TYPE_END; 5595 if (priv->sh->meter_aso_en) { 5596 /** 5597 * For ASO meter, need to add an extra jump action explicitly, 5598 * to jump from meter to policer table. 5599 */ 5600 struct mlx5_flow_meter_sub_policy *sub_policy; 5601 struct mlx5_flow_tbl_data_entry *tbl_data; 5602 5603 if (!fm->def_policy) { 5604 sub_policy = get_meter_sub_policy(dev, flow, wks, 5605 attr, orig_items, 5606 error); 5607 if (!sub_policy) 5608 return -rte_errno; 5609 } else { 5610 enum mlx5_meter_domain mtr_domain = 5611 attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER : 5612 (attr->egress ? MLX5_MTR_DOMAIN_EGRESS : 5613 MLX5_MTR_DOMAIN_INGRESS); 5614 5615 sub_policy = 5616 &priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy; 5617 } 5618 tbl_data = container_of(sub_policy->tbl_rsc, 5619 struct mlx5_flow_tbl_data_entry, tbl); 5620 hw_mtr_action = actions_pre++; 5621 hw_mtr_action->type = (enum rte_flow_action_type) 5622 MLX5_RTE_FLOW_ACTION_TYPE_JUMP; 5623 hw_mtr_action->conf = tbl_data->jump.action; 5624 } 5625 actions_pre->type = RTE_FLOW_ACTION_TYPE_END; 5626 actions_pre++; 5627 if (!tag_action) 5628 return rte_flow_error_set(error, ENOMEM, 5629 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 5630 NULL, "No tag action space."); 5631 if (!mtr_flow_id) { 5632 tag_action->type = RTE_FLOW_ACTION_TYPE_VOID; 5633 goto exit; 5634 } 5635 /* Only default-policy Meter creates mtr flow id. */ 5636 if (fm->def_policy) { 5637 mlx5_ipool_malloc(fm->flow_ipool, &tag_id); 5638 if (!tag_id) 5639 return rte_flow_error_set(error, ENOMEM, 5640 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 5641 "Failed to allocate meter flow id."); 5642 flow_id = tag_id - 1; 5643 flow_id_bits = (!flow_id) ? 1 : 5644 (MLX5_REG_BITS - __builtin_clz(flow_id)); 5645 if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) > 5646 mtr_reg_bits) { 5647 mlx5_ipool_free(fm->flow_ipool, tag_id); 5648 return rte_flow_error_set(error, EINVAL, 5649 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 5650 "Meter flow id exceeds max limit."); 5651 } 5652 if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits) 5653 priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits; 5654 } 5655 /* Build tag actions and items for meter_id/meter flow_id. */ 5656 set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre; 5657 tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items; 5658 tag_item_mask = tag_item_spec + 1; 5659 /* Both flow_id and meter_id share the same register. */ 5660 *set_tag = (struct mlx5_rte_flow_action_set_tag) { 5661 .id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID, 5662 0, error), 5663 .offset = mtr_id_offset, 5664 .length = mtr_reg_bits, 5665 .data = flow->meter, 5666 }; 5667 /* 5668 * The color Reg bits used by flow_id are growing from 5669 * msb to lsb, so must do bit reverse for flow_id val in RegC. 5670 */ 5671 for (shift = 0; shift < flow_id_bits; shift++) 5672 flow_id_reversed = (flow_id_reversed << 1) | 5673 ((flow_id >> shift) & 0x1); 5674 set_tag->data |= 5675 flow_id_reversed << (mtr_reg_bits - flow_id_bits); 5676 tag_item_spec->id = set_tag->id; 5677 tag_item_spec->data = set_tag->data << mtr_id_offset; 5678 tag_item_mask->data = UINT32_MAX << mtr_id_offset; 5679 tag_action->type = (enum rte_flow_action_type) 5680 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 5681 tag_action->conf = set_tag; 5682 tag_item->type = (enum rte_flow_item_type) 5683 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 5684 tag_item->spec = tag_item_spec; 5685 tag_item->last = NULL; 5686 tag_item->mask = tag_item_mask; 5687 exit: 5688 if (mtr_flow_id) 5689 *mtr_flow_id = tag_id; 5690 return 0; 5691 } 5692 5693 /** 5694 * Split action list having QUEUE/RSS for metadata register copy. 5695 * 5696 * Once Q/RSS action is detected in user's action list, the flow action 5697 * should be split in order to copy metadata registers, which will happen in 5698 * RX_CP_TBL like, 5699 * - CQE->flow_tag := reg_c[1] (MARK) 5700 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 5701 * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL. 5702 * This is because the last action of each flow must be a terminal action 5703 * (QUEUE, RSS or DROP). 5704 * 5705 * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is 5706 * stored and kept in the mlx5_flow structure per each sub_flow. 5707 * 5708 * The Q/RSS action is replaced with, 5709 * - SET_TAG, setting the allocated flow ID to reg_c[2]. 5710 * And the following JUMP action is added at the end, 5711 * - JUMP, to RX_CP_TBL. 5712 * 5713 * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by 5714 * flow_create_split_metadata() routine. The flow will look like, 5715 * - If flow ID matches (reg_c[2]), perform Q/RSS. 5716 * 5717 * @param dev 5718 * Pointer to Ethernet device. 5719 * @param[out] split_actions 5720 * Pointer to store split actions to jump to CP_TBL. 5721 * @param[in] actions 5722 * Pointer to the list of original flow actions. 5723 * @param[in] qrss 5724 * Pointer to the Q/RSS action. 5725 * @param[in] actions_n 5726 * Number of original actions. 5727 * @param[in] mtr_sfx 5728 * Check if it is in meter suffix table. 5729 * @param[out] error 5730 * Perform verbose error reporting if not NULL. 5731 * 5732 * @return 5733 * non-zero unique flow_id on success, otherwise 0 and 5734 * error/rte_error are set. 5735 */ 5736 static uint32_t 5737 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev, 5738 struct rte_flow_action *split_actions, 5739 const struct rte_flow_action *actions, 5740 const struct rte_flow_action *qrss, 5741 int actions_n, int mtr_sfx, 5742 struct rte_flow_error *error) 5743 { 5744 struct mlx5_priv *priv = dev->data->dev_private; 5745 struct mlx5_rte_flow_action_set_tag *set_tag; 5746 struct rte_flow_action_jump *jump; 5747 const int qrss_idx = qrss - actions; 5748 uint32_t flow_id = 0; 5749 int ret = 0; 5750 5751 /* 5752 * Given actions will be split 5753 * - Replace QUEUE/RSS action with SET_TAG to set flow ID. 5754 * - Add jump to mreg CP_TBL. 5755 * As a result, there will be one more action. 5756 */ 5757 memcpy(split_actions, actions, sizeof(*split_actions) * actions_n); 5758 /* Count MLX5_RTE_FLOW_ACTION_TYPE_TAG. */ 5759 ++actions_n; 5760 set_tag = (void *)(split_actions + actions_n); 5761 /* 5762 * If we are not the meter suffix flow, add the tag action. 5763 * Since meter suffix flow already has the tag added. 5764 */ 5765 if (!mtr_sfx) { 5766 /* 5767 * Allocate the new subflow ID. This one is unique within 5768 * device and not shared with representors. Otherwise, 5769 * we would have to resolve multi-thread access synch 5770 * issue. Each flow on the shared device is appended 5771 * with source vport identifier, so the resulting 5772 * flows will be unique in the shared (by master and 5773 * representors) domain even if they have coinciding 5774 * IDs. 5775 */ 5776 mlx5_ipool_malloc(priv->sh->ipool 5777 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id); 5778 if (!flow_id) 5779 return rte_flow_error_set(error, ENOMEM, 5780 RTE_FLOW_ERROR_TYPE_ACTION, 5781 NULL, "can't allocate id " 5782 "for split Q/RSS subflow"); 5783 /* Internal SET_TAG action to set flow ID. */ 5784 *set_tag = (struct mlx5_rte_flow_action_set_tag){ 5785 .data = flow_id, 5786 }; 5787 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error); 5788 if (ret < 0) 5789 return ret; 5790 set_tag->id = ret; 5791 /* Construct new actions array. */ 5792 /* Replace QUEUE/RSS action. */ 5793 split_actions[qrss_idx] = (struct rte_flow_action){ 5794 .type = (enum rte_flow_action_type) 5795 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 5796 .conf = set_tag, 5797 }; 5798 } else { 5799 /* 5800 * If we are the suffix flow of meter, tag already exist. 5801 * Set the QUEUE/RSS action to void. 5802 */ 5803 split_actions[qrss_idx].type = RTE_FLOW_ACTION_TYPE_VOID; 5804 } 5805 /* JUMP action to jump to mreg copy table (CP_TBL). */ 5806 jump = (void *)(set_tag + 1); 5807 *jump = (struct rte_flow_action_jump){ 5808 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 5809 }; 5810 split_actions[actions_n - 2] = (struct rte_flow_action){ 5811 .type = RTE_FLOW_ACTION_TYPE_JUMP, 5812 .conf = jump, 5813 }; 5814 split_actions[actions_n - 1] = (struct rte_flow_action){ 5815 .type = RTE_FLOW_ACTION_TYPE_END, 5816 }; 5817 return flow_id; 5818 } 5819 5820 /** 5821 * Extend the given action list for Tx metadata copy. 5822 * 5823 * Copy the given action list to the ext_actions and add flow metadata register 5824 * copy action in order to copy reg_a set by WQE to reg_c[0]. 5825 * 5826 * @param[out] ext_actions 5827 * Pointer to the extended action list. 5828 * @param[in] actions 5829 * Pointer to the list of actions. 5830 * @param[in] actions_n 5831 * Number of actions in the list. 5832 * @param[out] error 5833 * Perform verbose error reporting if not NULL. 5834 * @param[in] encap_idx 5835 * The encap action index. 5836 * 5837 * @return 5838 * 0 on success, negative value otherwise 5839 */ 5840 static int 5841 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev, 5842 struct rte_flow_action *ext_actions, 5843 const struct rte_flow_action *actions, 5844 int actions_n, struct rte_flow_error *error, 5845 int encap_idx) 5846 { 5847 struct mlx5_flow_action_copy_mreg *cp_mreg = 5848 (struct mlx5_flow_action_copy_mreg *) 5849 (ext_actions + actions_n + 1); 5850 int ret; 5851 5852 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 5853 if (ret < 0) 5854 return ret; 5855 cp_mreg->dst = ret; 5856 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error); 5857 if (ret < 0) 5858 return ret; 5859 cp_mreg->src = ret; 5860 if (encap_idx != 0) 5861 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx); 5862 if (encap_idx == actions_n - 1) { 5863 ext_actions[actions_n - 1] = (struct rte_flow_action){ 5864 .type = (enum rte_flow_action_type) 5865 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 5866 .conf = cp_mreg, 5867 }; 5868 ext_actions[actions_n] = (struct rte_flow_action){ 5869 .type = RTE_FLOW_ACTION_TYPE_END, 5870 }; 5871 } else { 5872 ext_actions[encap_idx] = (struct rte_flow_action){ 5873 .type = (enum rte_flow_action_type) 5874 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 5875 .conf = cp_mreg, 5876 }; 5877 memcpy(ext_actions + encap_idx + 1, actions + encap_idx, 5878 sizeof(*ext_actions) * (actions_n - encap_idx)); 5879 } 5880 return 0; 5881 } 5882 5883 /** 5884 * Check the match action from the action list. 5885 * 5886 * @param[in] actions 5887 * Pointer to the list of actions. 5888 * @param[in] attr 5889 * Flow rule attributes. 5890 * @param[in] action 5891 * The action to be check if exist. 5892 * @param[out] match_action_pos 5893 * Pointer to the position of the matched action if exists, otherwise is -1. 5894 * @param[out] qrss_action_pos 5895 * Pointer to the position of the Queue/RSS action if exists, otherwise is -1. 5896 * @param[out] modify_after_mirror 5897 * Pointer to the flag of modify action after FDB mirroring. 5898 * 5899 * @return 5900 * > 0 the total number of actions. 5901 * 0 if not found match action in action list. 5902 */ 5903 static int 5904 flow_check_match_action(const struct rte_flow_action actions[], 5905 const struct rte_flow_attr *attr, 5906 enum rte_flow_action_type action, 5907 int *match_action_pos, int *qrss_action_pos, 5908 int *modify_after_mirror) 5909 { 5910 const struct rte_flow_action_sample *sample; 5911 const struct rte_flow_action_raw_decap *decap; 5912 int actions_n = 0; 5913 uint32_t ratio = 0; 5914 int sub_type = 0; 5915 int flag = 0; 5916 int fdb_mirror = 0; 5917 5918 *match_action_pos = -1; 5919 *qrss_action_pos = -1; 5920 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 5921 if (actions->type == action) { 5922 flag = 1; 5923 *match_action_pos = actions_n; 5924 } 5925 switch (actions->type) { 5926 case RTE_FLOW_ACTION_TYPE_QUEUE: 5927 case RTE_FLOW_ACTION_TYPE_RSS: 5928 *qrss_action_pos = actions_n; 5929 break; 5930 case RTE_FLOW_ACTION_TYPE_SAMPLE: 5931 sample = actions->conf; 5932 ratio = sample->ratio; 5933 sub_type = ((const struct rte_flow_action *) 5934 (sample->actions))->type; 5935 if (ratio == 1 && attr->transfer) 5936 fdb_mirror = 1; 5937 break; 5938 case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC: 5939 case RTE_FLOW_ACTION_TYPE_SET_MAC_DST: 5940 case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC: 5941 case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST: 5942 case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC: 5943 case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST: 5944 case RTE_FLOW_ACTION_TYPE_SET_TP_SRC: 5945 case RTE_FLOW_ACTION_TYPE_SET_TP_DST: 5946 case RTE_FLOW_ACTION_TYPE_DEC_TTL: 5947 case RTE_FLOW_ACTION_TYPE_SET_TTL: 5948 case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ: 5949 case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ: 5950 case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK: 5951 case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK: 5952 case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP: 5953 case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP: 5954 case RTE_FLOW_ACTION_TYPE_FLAG: 5955 case RTE_FLOW_ACTION_TYPE_MARK: 5956 case RTE_FLOW_ACTION_TYPE_SET_META: 5957 case RTE_FLOW_ACTION_TYPE_SET_TAG: 5958 case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN: 5959 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 5960 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 5961 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 5962 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: 5963 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP: 5964 case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD: 5965 case RTE_FLOW_ACTION_TYPE_METER: 5966 if (fdb_mirror) 5967 *modify_after_mirror = 1; 5968 break; 5969 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 5970 decap = actions->conf; 5971 while ((++actions)->type == RTE_FLOW_ACTION_TYPE_VOID) 5972 ; 5973 actions_n++; 5974 if (actions->type == RTE_FLOW_ACTION_TYPE_RAW_ENCAP) { 5975 const struct rte_flow_action_raw_encap *encap = 5976 actions->conf; 5977 if (decap->size <= 5978 MLX5_ENCAPSULATION_DECISION_SIZE && 5979 encap->size > 5980 MLX5_ENCAPSULATION_DECISION_SIZE) 5981 /* L3 encap. */ 5982 break; 5983 } 5984 if (fdb_mirror) 5985 *modify_after_mirror = 1; 5986 break; 5987 default: 5988 break; 5989 } 5990 actions_n++; 5991 } 5992 if (flag && fdb_mirror && !*modify_after_mirror) { 5993 /* FDB mirroring uses the destination array to implement 5994 * instead of FLOW_SAMPLER object. 5995 */ 5996 if (sub_type != RTE_FLOW_ACTION_TYPE_END) 5997 flag = 0; 5998 } 5999 /* Count RTE_FLOW_ACTION_TYPE_END. */ 6000 return flag ? actions_n + 1 : 0; 6001 } 6002 6003 #define SAMPLE_SUFFIX_ITEM 3 6004 6005 /** 6006 * Split the sample flow. 6007 * 6008 * As sample flow will split to two sub flow, sample flow with 6009 * sample action, the other actions will move to new suffix flow. 6010 * 6011 * Also add unique tag id with tag action in the sample flow, 6012 * the same tag id will be as match in the suffix flow. 6013 * 6014 * @param dev 6015 * Pointer to Ethernet device. 6016 * @param[in] add_tag 6017 * Add extra tag action flag. 6018 * @param[out] sfx_items 6019 * Suffix flow match items (list terminated by the END pattern item). 6020 * @param[in] actions 6021 * Associated actions (list terminated by the END action). 6022 * @param[out] actions_sfx 6023 * Suffix flow actions. 6024 * @param[out] actions_pre 6025 * Prefix flow actions. 6026 * @param[in] actions_n 6027 * The total number of actions. 6028 * @param[in] sample_action_pos 6029 * The sample action position. 6030 * @param[in] qrss_action_pos 6031 * The Queue/RSS action position. 6032 * @param[in] jump_table 6033 * Add extra jump action flag. 6034 * @param[out] error 6035 * Perform verbose error reporting if not NULL. 6036 * 6037 * @return 6038 * 0 on success, or unique flow_id, a negative errno value 6039 * otherwise and rte_errno is set. 6040 */ 6041 static int 6042 flow_sample_split_prep(struct rte_eth_dev *dev, 6043 int add_tag, 6044 const struct rte_flow_item items[], 6045 struct rte_flow_item sfx_items[], 6046 const struct rte_flow_action actions[], 6047 struct rte_flow_action actions_sfx[], 6048 struct rte_flow_action actions_pre[], 6049 int actions_n, 6050 int sample_action_pos, 6051 int qrss_action_pos, 6052 int jump_table, 6053 struct rte_flow_error *error) 6054 { 6055 struct mlx5_priv *priv = dev->data->dev_private; 6056 struct mlx5_rte_flow_action_set_tag *set_tag; 6057 struct mlx5_rte_flow_item_tag *tag_spec; 6058 struct mlx5_rte_flow_item_tag *tag_mask; 6059 struct rte_flow_action_jump *jump_action; 6060 uint32_t tag_id = 0; 6061 int append_index = 0; 6062 int set_tag_idx = -1; 6063 int index; 6064 int ret; 6065 6066 if (sample_action_pos < 0) 6067 return rte_flow_error_set(error, EINVAL, 6068 RTE_FLOW_ERROR_TYPE_ACTION, 6069 NULL, "invalid position of sample " 6070 "action in list"); 6071 /* Prepare the actions for prefix and suffix flow. */ 6072 if (add_tag) { 6073 /* Update the new added tag action index preceding 6074 * the PUSH_VLAN or ENCAP action. 6075 */ 6076 const struct rte_flow_action_raw_encap *raw_encap; 6077 const struct rte_flow_action *action = actions; 6078 int encap_idx; 6079 int action_idx = 0; 6080 int raw_decap_idx = -1; 6081 int push_vlan_idx = -1; 6082 for (; action->type != RTE_FLOW_ACTION_TYPE_END; action++) { 6083 switch (action->type) { 6084 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 6085 raw_decap_idx = action_idx; 6086 break; 6087 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 6088 raw_encap = action->conf; 6089 if (raw_encap->size > 6090 MLX5_ENCAPSULATION_DECISION_SIZE) { 6091 encap_idx = raw_decap_idx != -1 ? 6092 raw_decap_idx : action_idx; 6093 if (encap_idx < sample_action_pos && 6094 push_vlan_idx == -1) 6095 set_tag_idx = encap_idx; 6096 } 6097 break; 6098 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 6099 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 6100 encap_idx = action_idx; 6101 if (encap_idx < sample_action_pos && 6102 push_vlan_idx == -1) 6103 set_tag_idx = encap_idx; 6104 break; 6105 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 6106 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 6107 push_vlan_idx = action_idx; 6108 if (push_vlan_idx < sample_action_pos) 6109 set_tag_idx = action_idx; 6110 break; 6111 default: 6112 break; 6113 } 6114 action_idx++; 6115 } 6116 } 6117 /* Prepare the actions for prefix and suffix flow. */ 6118 if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) { 6119 index = qrss_action_pos; 6120 /* Put the preceding the Queue/RSS action into prefix flow. */ 6121 if (index != 0) 6122 memcpy(actions_pre, actions, 6123 sizeof(struct rte_flow_action) * index); 6124 /* Put others preceding the sample action into prefix flow. */ 6125 if (sample_action_pos > index + 1) 6126 memcpy(actions_pre + index, actions + index + 1, 6127 sizeof(struct rte_flow_action) * 6128 (sample_action_pos - index - 1)); 6129 index = sample_action_pos - 1; 6130 /* Put Queue/RSS action into Suffix flow. */ 6131 memcpy(actions_sfx, actions + qrss_action_pos, 6132 sizeof(struct rte_flow_action)); 6133 actions_sfx++; 6134 } else if (add_tag && set_tag_idx >= 0) { 6135 if (set_tag_idx > 0) 6136 memcpy(actions_pre, actions, 6137 sizeof(struct rte_flow_action) * set_tag_idx); 6138 memcpy(actions_pre + set_tag_idx + 1, actions + set_tag_idx, 6139 sizeof(struct rte_flow_action) * 6140 (sample_action_pos - set_tag_idx)); 6141 index = sample_action_pos; 6142 } else { 6143 index = sample_action_pos; 6144 if (index != 0) 6145 memcpy(actions_pre, actions, 6146 sizeof(struct rte_flow_action) * index); 6147 } 6148 /* For CX5, add an extra tag action for NIC-RX and E-Switch ingress. 6149 * For CX6DX and above, metadata registers Cx preserve their value, 6150 * add an extra tag action for NIC-RX and E-Switch Domain. 6151 */ 6152 if (add_tag) { 6153 /* Prepare the prefix tag action. */ 6154 append_index++; 6155 set_tag = (void *)(actions_pre + actions_n + append_index); 6156 ret = mlx5_flow_get_reg_id(dev, MLX5_SAMPLE_ID, 0, error); 6157 /* Trust VF/SF on CX5 not supported meter so that the reserved 6158 * metadata regC is REG_NON, back to use application tag 6159 * index 0. 6160 */ 6161 if (unlikely(ret == REG_NON)) 6162 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error); 6163 if (ret < 0) 6164 return ret; 6165 mlx5_ipool_malloc(priv->sh->ipool 6166 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id); 6167 *set_tag = (struct mlx5_rte_flow_action_set_tag) { 6168 .id = ret, 6169 .data = tag_id, 6170 }; 6171 /* Prepare the suffix subflow items. */ 6172 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 6173 if (items->type == RTE_FLOW_ITEM_TYPE_PORT_ID || 6174 items->type == RTE_FLOW_ITEM_TYPE_PORT_REPRESENTOR) { 6175 memcpy(sfx_items, items, sizeof(*sfx_items)); 6176 sfx_items++; 6177 } 6178 } 6179 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM); 6180 tag_spec->data = tag_id; 6181 tag_spec->id = set_tag->id; 6182 tag_mask = tag_spec + 1; 6183 tag_mask->data = UINT32_MAX; 6184 sfx_items[0] = (struct rte_flow_item){ 6185 .type = (enum rte_flow_item_type) 6186 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 6187 .spec = tag_spec, 6188 .last = NULL, 6189 .mask = tag_mask, 6190 }; 6191 sfx_items[1] = (struct rte_flow_item){ 6192 .type = (enum rte_flow_item_type) 6193 RTE_FLOW_ITEM_TYPE_END, 6194 }; 6195 /* Prepare the tag action in prefix subflow. */ 6196 set_tag_idx = (set_tag_idx == -1) ? index : set_tag_idx; 6197 actions_pre[set_tag_idx] = 6198 (struct rte_flow_action){ 6199 .type = (enum rte_flow_action_type) 6200 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 6201 .conf = set_tag, 6202 }; 6203 /* Update next sample position due to add one tag action */ 6204 index += 1; 6205 } 6206 /* Copy the sample action into prefix flow. */ 6207 memcpy(actions_pre + index, actions + sample_action_pos, 6208 sizeof(struct rte_flow_action)); 6209 index += 1; 6210 /* For the modify action after the sample action in E-Switch mirroring, 6211 * Add the extra jump action in prefix subflow and jump into the next 6212 * table, then do the modify action in the new table. 6213 */ 6214 if (jump_table) { 6215 /* Prepare the prefix jump action. */ 6216 append_index++; 6217 jump_action = (void *)(actions_pre + actions_n + append_index); 6218 jump_action->group = jump_table; 6219 actions_pre[index++] = 6220 (struct rte_flow_action){ 6221 .type = (enum rte_flow_action_type) 6222 RTE_FLOW_ACTION_TYPE_JUMP, 6223 .conf = jump_action, 6224 }; 6225 } 6226 actions_pre[index] = (struct rte_flow_action){ 6227 .type = (enum rte_flow_action_type) 6228 RTE_FLOW_ACTION_TYPE_END, 6229 }; 6230 /* Put the actions after sample into Suffix flow. */ 6231 memcpy(actions_sfx, actions + sample_action_pos + 1, 6232 sizeof(struct rte_flow_action) * 6233 (actions_n - sample_action_pos - 1)); 6234 return tag_id; 6235 } 6236 6237 /** 6238 * The splitting for metadata feature. 6239 * 6240 * - Q/RSS action on NIC Rx should be split in order to pass by 6241 * the mreg copy table (RX_CP_TBL) and then it jumps to the 6242 * action table (RX_ACT_TBL) which has the split Q/RSS action. 6243 * 6244 * - All the actions on NIC Tx should have a mreg copy action to 6245 * copy reg_a from WQE to reg_c[0]. 6246 * 6247 * @param dev 6248 * Pointer to Ethernet device. 6249 * @param[in] flow 6250 * Parent flow structure pointer. 6251 * @param[in] attr 6252 * Flow rule attributes. 6253 * @param[in] items 6254 * Pattern specification (list terminated by the END pattern item). 6255 * @param[in] actions 6256 * Associated actions (list terminated by the END action). 6257 * @param[in] flow_split_info 6258 * Pointer to flow split info structure. 6259 * @param[out] error 6260 * Perform verbose error reporting if not NULL. 6261 * @return 6262 * 0 on success, negative value otherwise 6263 */ 6264 static int 6265 flow_create_split_metadata(struct rte_eth_dev *dev, 6266 struct rte_flow *flow, 6267 const struct rte_flow_attr *attr, 6268 const struct rte_flow_item items[], 6269 const struct rte_flow_action actions[], 6270 struct mlx5_flow_split_info *flow_split_info, 6271 struct rte_flow_error *error) 6272 { 6273 struct mlx5_priv *priv = dev->data->dev_private; 6274 struct mlx5_sh_config *config = &priv->sh->config; 6275 const struct rte_flow_action *qrss = NULL; 6276 struct rte_flow_action *ext_actions = NULL; 6277 struct mlx5_flow *dev_flow = NULL; 6278 uint32_t qrss_id = 0; 6279 int mtr_sfx = 0; 6280 size_t act_size; 6281 int actions_n; 6282 int encap_idx; 6283 int ret; 6284 6285 /* Check whether extensive metadata feature is engaged. */ 6286 if (!config->dv_flow_en || 6287 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 6288 !mlx5_flow_ext_mreg_supported(dev)) 6289 return flow_create_split_inner(dev, flow, NULL, attr, items, 6290 actions, flow_split_info, error); 6291 actions_n = flow_parse_metadata_split_actions_info(actions, &qrss, 6292 &encap_idx); 6293 if (qrss) { 6294 /* Exclude hairpin flows from splitting. */ 6295 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 6296 const struct rte_flow_action_queue *queue; 6297 6298 queue = qrss->conf; 6299 if (mlx5_rxq_is_hairpin(dev, queue->index)) 6300 qrss = NULL; 6301 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) { 6302 const struct rte_flow_action_rss *rss; 6303 6304 rss = qrss->conf; 6305 if (mlx5_rxq_is_hairpin(dev, rss->queue[0])) 6306 qrss = NULL; 6307 } 6308 } 6309 if (qrss) { 6310 /* Check if it is in meter suffix table. */ 6311 mtr_sfx = attr->group == 6312 ((attr->transfer && priv->fdb_def_rule) ? 6313 (MLX5_FLOW_TABLE_LEVEL_METER - 1) : 6314 MLX5_FLOW_TABLE_LEVEL_METER); 6315 /* 6316 * Q/RSS action on NIC Rx should be split in order to pass by 6317 * the mreg copy table (RX_CP_TBL) and then it jumps to the 6318 * action table (RX_ACT_TBL) which has the split Q/RSS action. 6319 */ 6320 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 6321 sizeof(struct rte_flow_action_set_tag) + 6322 sizeof(struct rte_flow_action_jump); 6323 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 6324 SOCKET_ID_ANY); 6325 if (!ext_actions) 6326 return rte_flow_error_set(error, ENOMEM, 6327 RTE_FLOW_ERROR_TYPE_ACTION, 6328 NULL, "no memory to split " 6329 "metadata flow"); 6330 /* 6331 * Create the new actions list with removed Q/RSS action 6332 * and appended set tag and jump to register copy table 6333 * (RX_CP_TBL). We should preallocate unique tag ID here 6334 * in advance, because it is needed for set tag action. 6335 */ 6336 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions, 6337 qrss, actions_n, 6338 mtr_sfx, error); 6339 if (!mtr_sfx && !qrss_id) { 6340 ret = -rte_errno; 6341 goto exit; 6342 } 6343 } else if (attr->egress && !attr->transfer) { 6344 /* 6345 * All the actions on NIC Tx should have a metadata register 6346 * copy action to copy reg_a from WQE to reg_c[meta] 6347 */ 6348 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 6349 sizeof(struct mlx5_flow_action_copy_mreg); 6350 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 6351 SOCKET_ID_ANY); 6352 if (!ext_actions) 6353 return rte_flow_error_set(error, ENOMEM, 6354 RTE_FLOW_ERROR_TYPE_ACTION, 6355 NULL, "no memory to split " 6356 "metadata flow"); 6357 /* Create the action list appended with copy register. */ 6358 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions, 6359 actions_n, error, encap_idx); 6360 if (ret < 0) 6361 goto exit; 6362 } 6363 /* Add the unmodified original or prefix subflow. */ 6364 ret = flow_create_split_inner(dev, flow, &dev_flow, attr, 6365 items, ext_actions ? ext_actions : 6366 actions, flow_split_info, error); 6367 if (ret < 0) 6368 goto exit; 6369 MLX5_ASSERT(dev_flow); 6370 if (qrss) { 6371 const struct rte_flow_attr q_attr = { 6372 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 6373 .ingress = 1, 6374 }; 6375 /* Internal PMD action to set register. */ 6376 struct mlx5_rte_flow_item_tag q_tag_spec = { 6377 .data = qrss_id, 6378 .id = REG_NON, 6379 }; 6380 struct rte_flow_item q_items[] = { 6381 { 6382 .type = (enum rte_flow_item_type) 6383 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 6384 .spec = &q_tag_spec, 6385 .last = NULL, 6386 .mask = NULL, 6387 }, 6388 { 6389 .type = RTE_FLOW_ITEM_TYPE_END, 6390 }, 6391 }; 6392 struct rte_flow_action q_actions[] = { 6393 { 6394 .type = qrss->type, 6395 .conf = qrss->conf, 6396 }, 6397 { 6398 .type = RTE_FLOW_ACTION_TYPE_END, 6399 }, 6400 }; 6401 uint64_t layers = flow_get_prefix_layer_flags(dev_flow); 6402 6403 /* 6404 * Configure the tag item only if there is no meter subflow. 6405 * Since tag is already marked in the meter suffix subflow 6406 * we can just use the meter suffix items as is. 6407 */ 6408 if (qrss_id) { 6409 /* Not meter subflow. */ 6410 MLX5_ASSERT(!mtr_sfx); 6411 /* 6412 * Put unique id in prefix flow due to it is destroyed 6413 * after suffix flow and id will be freed after there 6414 * is no actual flows with this id and identifier 6415 * reallocation becomes possible (for example, for 6416 * other flows in other threads). 6417 */ 6418 dev_flow->handle->split_flow_id = qrss_id; 6419 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, 6420 error); 6421 if (ret < 0) 6422 goto exit; 6423 q_tag_spec.id = ret; 6424 } 6425 dev_flow = NULL; 6426 /* Add suffix subflow to execute Q/RSS. */ 6427 flow_split_info->prefix_layers = layers; 6428 flow_split_info->prefix_mark = 0; 6429 flow_split_info->table_id = 0; 6430 ret = flow_create_split_inner(dev, flow, &dev_flow, 6431 &q_attr, mtr_sfx ? items : 6432 q_items, q_actions, 6433 flow_split_info, error); 6434 if (ret < 0) 6435 goto exit; 6436 /* qrss ID should be freed if failed. */ 6437 qrss_id = 0; 6438 MLX5_ASSERT(dev_flow); 6439 } 6440 6441 exit: 6442 /* 6443 * We do not destroy the partially created sub_flows in case of error. 6444 * These ones are included into parent flow list and will be destroyed 6445 * by flow_drv_destroy. 6446 */ 6447 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 6448 qrss_id); 6449 mlx5_free(ext_actions); 6450 return ret; 6451 } 6452 6453 /** 6454 * Create meter internal drop flow with the original pattern. 6455 * 6456 * @param dev 6457 * Pointer to Ethernet device. 6458 * @param[in] flow 6459 * Parent flow structure pointer. 6460 * @param[in] attr 6461 * Flow rule attributes. 6462 * @param[in] items 6463 * Pattern specification (list terminated by the END pattern item). 6464 * @param[in] flow_split_info 6465 * Pointer to flow split info structure. 6466 * @param[in] fm 6467 * Pointer to flow meter structure. 6468 * @param[out] error 6469 * Perform verbose error reporting if not NULL. 6470 * @return 6471 * 0 on success, negative value otherwise 6472 */ 6473 static uint32_t 6474 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev, 6475 struct rte_flow *flow, 6476 const struct rte_flow_attr *attr, 6477 const struct rte_flow_item items[], 6478 struct mlx5_flow_split_info *flow_split_info, 6479 struct mlx5_flow_meter_info *fm, 6480 struct rte_flow_error *error) 6481 { 6482 struct mlx5_flow *dev_flow = NULL; 6483 struct rte_flow_attr drop_attr = *attr; 6484 struct rte_flow_action drop_actions[3]; 6485 struct mlx5_flow_split_info drop_split_info = *flow_split_info; 6486 6487 MLX5_ASSERT(fm->drop_cnt); 6488 drop_actions[0].type = 6489 (enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT; 6490 drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt; 6491 drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP; 6492 drop_actions[1].conf = NULL; 6493 drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END; 6494 drop_actions[2].conf = NULL; 6495 drop_split_info.external = false; 6496 drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT; 6497 drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP; 6498 drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER; 6499 return flow_create_split_inner(dev, flow, &dev_flow, 6500 &drop_attr, items, drop_actions, 6501 &drop_split_info, error); 6502 } 6503 6504 /** 6505 * The splitting for meter feature. 6506 * 6507 * - The meter flow will be split to two flows as prefix and 6508 * suffix flow. The packets make sense only it pass the prefix 6509 * meter action. 6510 * 6511 * - Reg_C_5 is used for the packet to match betweend prefix and 6512 * suffix flow. 6513 * 6514 * @param dev 6515 * Pointer to Ethernet device. 6516 * @param[in] flow 6517 * Parent flow structure pointer. 6518 * @param[in] attr 6519 * Flow rule attributes. 6520 * @param[in] items 6521 * Pattern specification (list terminated by the END pattern item). 6522 * @param[in] actions 6523 * Associated actions (list terminated by the END action). 6524 * @param[in] flow_split_info 6525 * Pointer to flow split info structure. 6526 * @param[out] error 6527 * Perform verbose error reporting if not NULL. 6528 * @return 6529 * 0 on success, negative value otherwise 6530 */ 6531 static int 6532 flow_create_split_meter(struct rte_eth_dev *dev, 6533 struct rte_flow *flow, 6534 const struct rte_flow_attr *attr, 6535 const struct rte_flow_item items[], 6536 const struct rte_flow_action actions[], 6537 struct mlx5_flow_split_info *flow_split_info, 6538 struct rte_flow_error *error) 6539 { 6540 struct mlx5_priv *priv = dev->data->dev_private; 6541 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 6542 struct rte_flow_action *sfx_actions = NULL; 6543 struct rte_flow_action *pre_actions = NULL; 6544 struct rte_flow_item *sfx_items = NULL; 6545 struct mlx5_flow *dev_flow = NULL; 6546 struct rte_flow_attr sfx_attr = *attr; 6547 struct mlx5_flow_meter_info *fm = NULL; 6548 uint8_t skip_scale_restore; 6549 bool has_mtr = false; 6550 bool has_modify = false; 6551 bool set_mtr_reg = true; 6552 bool is_mtr_hierarchy = false; 6553 uint32_t meter_id = 0; 6554 uint32_t mtr_idx = 0; 6555 uint32_t mtr_flow_id = 0; 6556 size_t act_size; 6557 size_t item_size; 6558 int actions_n = 0; 6559 int ret = 0; 6560 6561 if (priv->mtr_en) 6562 actions_n = flow_check_meter_action(dev, actions, &has_mtr, 6563 &has_modify, &meter_id); 6564 if (has_mtr) { 6565 if (flow->meter) { 6566 fm = flow_dv_meter_find_by_idx(priv, flow->meter); 6567 if (!fm) 6568 return rte_flow_error_set(error, EINVAL, 6569 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6570 NULL, "Meter not found."); 6571 } else { 6572 fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx); 6573 if (!fm) 6574 return rte_flow_error_set(error, EINVAL, 6575 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6576 NULL, "Meter not found."); 6577 ret = mlx5_flow_meter_attach(priv, fm, 6578 &sfx_attr, error); 6579 if (ret) 6580 return -rte_errno; 6581 flow->meter = mtr_idx; 6582 } 6583 MLX5_ASSERT(wks); 6584 wks->fm = fm; 6585 if (!fm->def_policy) { 6586 wks->policy = mlx5_flow_meter_policy_find(dev, 6587 fm->policy_id, 6588 NULL); 6589 MLX5_ASSERT(wks->policy); 6590 if (wks->policy->mark) 6591 wks->mark = 1; 6592 if (wks->policy->is_hierarchy) { 6593 wks->final_policy = 6594 mlx5_flow_meter_hierarchy_get_final_policy(dev, 6595 wks->policy); 6596 if (!wks->final_policy) 6597 return rte_flow_error_set(error, 6598 EINVAL, 6599 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 6600 "Failed to find terminal policy of hierarchy."); 6601 is_mtr_hierarchy = true; 6602 } 6603 } 6604 /* 6605 * If it isn't default-policy Meter, and 6606 * 1. Not meter hierarchy and there's no action in flow to change 6607 * packet (modify/encap/decap etc.), OR 6608 * 2. No drop count needed for this meter. 6609 * Then no need to use regC to save meter id anymore. 6610 */ 6611 if (!fm->def_policy && ((!has_modify && !is_mtr_hierarchy) || !fm->drop_cnt)) 6612 set_mtr_reg = false; 6613 /* Prefix actions: meter, decap, encap, tag, jump, end, cnt. */ 6614 #define METER_PREFIX_ACTION 7 6615 act_size = (sizeof(struct rte_flow_action) * 6616 (actions_n + METER_PREFIX_ACTION)) + 6617 sizeof(struct mlx5_rte_flow_action_set_tag); 6618 /* Suffix items: tag, vlan, port id, end. */ 6619 #define METER_SUFFIX_ITEM 4 6620 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM + 6621 sizeof(struct mlx5_rte_flow_item_tag) * 2; 6622 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size), 6623 0, SOCKET_ID_ANY); 6624 if (!sfx_actions) 6625 return rte_flow_error_set(error, ENOMEM, 6626 RTE_FLOW_ERROR_TYPE_ACTION, 6627 NULL, "no memory to split " 6628 "meter flow"); 6629 sfx_items = (struct rte_flow_item *)((char *)sfx_actions + 6630 act_size); 6631 /* There's no suffix flow for meter of non-default policy. */ 6632 if (!fm->def_policy) 6633 pre_actions = sfx_actions + 1; 6634 else 6635 pre_actions = sfx_actions + actions_n; 6636 ret = flow_meter_split_prep(dev, flow, wks, &sfx_attr, 6637 items, sfx_items, actions, 6638 sfx_actions, pre_actions, 6639 (set_mtr_reg ? &mtr_flow_id : NULL), 6640 error); 6641 if (ret) { 6642 ret = -rte_errno; 6643 goto exit; 6644 } 6645 /* Add the prefix subflow. */ 6646 skip_scale_restore = flow_split_info->skip_scale; 6647 flow_split_info->skip_scale |= 6648 1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT; 6649 ret = flow_create_split_inner(dev, flow, &dev_flow, 6650 attr, items, pre_actions, 6651 flow_split_info, error); 6652 flow_split_info->skip_scale = skip_scale_restore; 6653 if (ret) { 6654 if (mtr_flow_id) 6655 mlx5_ipool_free(fm->flow_ipool, mtr_flow_id); 6656 ret = -rte_errno; 6657 goto exit; 6658 } 6659 if (mtr_flow_id) { 6660 dev_flow->handle->split_flow_id = mtr_flow_id; 6661 dev_flow->handle->is_meter_flow_id = 1; 6662 } 6663 if (!fm->def_policy) { 6664 if (!set_mtr_reg && fm->drop_cnt) 6665 ret = 6666 flow_meter_create_drop_flow_with_org_pattern(dev, flow, 6667 &sfx_attr, items, 6668 flow_split_info, 6669 fm, error); 6670 goto exit; 6671 } 6672 /* Setting the sfx group atrr. */ 6673 sfx_attr.group = sfx_attr.transfer ? 6674 (MLX5_FLOW_TABLE_LEVEL_METER - 1) : 6675 MLX5_FLOW_TABLE_LEVEL_METER; 6676 flow_split_info->prefix_layers = 6677 flow_get_prefix_layer_flags(dev_flow); 6678 flow_split_info->prefix_mark |= wks->mark; 6679 flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX; 6680 } 6681 /* Add the prefix subflow. */ 6682 ret = flow_create_split_metadata(dev, flow, 6683 &sfx_attr, sfx_items ? 6684 sfx_items : items, 6685 sfx_actions ? sfx_actions : actions, 6686 flow_split_info, error); 6687 exit: 6688 if (sfx_actions) 6689 mlx5_free(sfx_actions); 6690 return ret; 6691 } 6692 6693 /** 6694 * The splitting for sample feature. 6695 * 6696 * Once Sample action is detected in the action list, the flow actions should 6697 * be split into prefix sub flow and suffix sub flow. 6698 * 6699 * The original items remain in the prefix sub flow, all actions preceding the 6700 * sample action and the sample action itself will be copied to the prefix 6701 * sub flow, the actions following the sample action will be copied to the 6702 * suffix sub flow, Queue action always be located in the suffix sub flow. 6703 * 6704 * In order to make the packet from prefix sub flow matches with suffix sub 6705 * flow, an extra tag action be added into prefix sub flow, and the suffix sub 6706 * flow uses tag item with the unique flow id. 6707 * 6708 * @param dev 6709 * Pointer to Ethernet device. 6710 * @param[in] flow 6711 * Parent flow structure pointer. 6712 * @param[in] attr 6713 * Flow rule attributes. 6714 * @param[in] items 6715 * Pattern specification (list terminated by the END pattern item). 6716 * @param[in] actions 6717 * Associated actions (list terminated by the END action). 6718 * @param[in] flow_split_info 6719 * Pointer to flow split info structure. 6720 * @param[out] error 6721 * Perform verbose error reporting if not NULL. 6722 * @return 6723 * 0 on success, negative value otherwise 6724 */ 6725 static int 6726 flow_create_split_sample(struct rte_eth_dev *dev, 6727 struct rte_flow *flow, 6728 const struct rte_flow_attr *attr, 6729 const struct rte_flow_item items[], 6730 const struct rte_flow_action actions[], 6731 struct mlx5_flow_split_info *flow_split_info, 6732 struct rte_flow_error *error) 6733 { 6734 struct mlx5_priv *priv = dev->data->dev_private; 6735 struct rte_flow_action *sfx_actions = NULL; 6736 struct rte_flow_action *pre_actions = NULL; 6737 struct rte_flow_item *sfx_items = NULL; 6738 struct mlx5_flow *dev_flow = NULL; 6739 struct rte_flow_attr sfx_attr = *attr; 6740 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 6741 struct mlx5_flow_dv_sample_resource *sample_res; 6742 struct mlx5_flow_tbl_data_entry *sfx_tbl_data; 6743 struct mlx5_flow_tbl_resource *sfx_tbl; 6744 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 6745 #endif 6746 size_t act_size; 6747 size_t item_size; 6748 uint32_t fdb_tx = 0; 6749 int32_t tag_id = 0; 6750 int actions_n = 0; 6751 int sample_action_pos; 6752 int qrss_action_pos; 6753 int add_tag = 0; 6754 int modify_after_mirror = 0; 6755 uint16_t jump_table = 0; 6756 const uint32_t next_ft_step = 1; 6757 int ret = 0; 6758 6759 if (priv->sampler_en) 6760 actions_n = flow_check_match_action(actions, attr, 6761 RTE_FLOW_ACTION_TYPE_SAMPLE, 6762 &sample_action_pos, &qrss_action_pos, 6763 &modify_after_mirror); 6764 if (actions_n) { 6765 /* The prefix actions must includes sample, tag, end. */ 6766 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1) 6767 + sizeof(struct mlx5_rte_flow_action_set_tag); 6768 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM + 6769 sizeof(struct mlx5_rte_flow_item_tag) * 2; 6770 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + 6771 item_size), 0, SOCKET_ID_ANY); 6772 if (!sfx_actions) 6773 return rte_flow_error_set(error, ENOMEM, 6774 RTE_FLOW_ERROR_TYPE_ACTION, 6775 NULL, "no memory to split " 6776 "sample flow"); 6777 /* The representor_id is UINT16_MAX for uplink. */ 6778 fdb_tx = (attr->transfer && priv->representor_id != UINT16_MAX); 6779 /* 6780 * When reg_c_preserve is set, metadata registers Cx preserve 6781 * their value even through packet duplication. 6782 */ 6783 add_tag = (!fdb_tx || 6784 priv->sh->cdev->config.hca_attr.reg_c_preserve); 6785 if (add_tag) 6786 sfx_items = (struct rte_flow_item *)((char *)sfx_actions 6787 + act_size); 6788 if (modify_after_mirror) 6789 jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR + 6790 next_ft_step; 6791 pre_actions = sfx_actions + actions_n; 6792 tag_id = flow_sample_split_prep(dev, add_tag, items, sfx_items, 6793 actions, sfx_actions, 6794 pre_actions, actions_n, 6795 sample_action_pos, 6796 qrss_action_pos, jump_table, 6797 error); 6798 if (tag_id < 0 || (add_tag && !tag_id)) { 6799 ret = -rte_errno; 6800 goto exit; 6801 } 6802 if (modify_after_mirror) 6803 flow_split_info->skip_scale = 6804 1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT; 6805 /* Add the prefix subflow. */ 6806 ret = flow_create_split_inner(dev, flow, &dev_flow, attr, 6807 items, pre_actions, 6808 flow_split_info, error); 6809 if (ret) { 6810 ret = -rte_errno; 6811 goto exit; 6812 } 6813 dev_flow->handle->split_flow_id = tag_id; 6814 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 6815 if (!modify_after_mirror) { 6816 /* Set the sfx group attr. */ 6817 sample_res = (struct mlx5_flow_dv_sample_resource *) 6818 dev_flow->dv.sample_res; 6819 sfx_tbl = (struct mlx5_flow_tbl_resource *) 6820 sample_res->normal_path_tbl; 6821 sfx_tbl_data = container_of(sfx_tbl, 6822 struct mlx5_flow_tbl_data_entry, 6823 tbl); 6824 sfx_attr.group = sfx_attr.transfer ? 6825 (sfx_tbl_data->level - 1) : sfx_tbl_data->level; 6826 } else { 6827 MLX5_ASSERT(attr->transfer); 6828 sfx_attr.group = jump_table; 6829 } 6830 flow_split_info->prefix_layers = 6831 flow_get_prefix_layer_flags(dev_flow); 6832 MLX5_ASSERT(wks); 6833 flow_split_info->prefix_mark |= wks->mark; 6834 /* Suffix group level already be scaled with factor, set 6835 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale 6836 * again in translation. 6837 */ 6838 flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT; 6839 #endif 6840 } 6841 /* Add the suffix subflow. */ 6842 ret = flow_create_split_meter(dev, flow, &sfx_attr, 6843 sfx_items ? sfx_items : items, 6844 sfx_actions ? sfx_actions : actions, 6845 flow_split_info, error); 6846 exit: 6847 if (sfx_actions) 6848 mlx5_free(sfx_actions); 6849 return ret; 6850 } 6851 6852 /** 6853 * Split the flow to subflow set. The splitters might be linked 6854 * in the chain, like this: 6855 * flow_create_split_outer() calls: 6856 * flow_create_split_meter() calls: 6857 * flow_create_split_metadata(meter_subflow_0) calls: 6858 * flow_create_split_inner(metadata_subflow_0) 6859 * flow_create_split_inner(metadata_subflow_1) 6860 * flow_create_split_inner(metadata_subflow_2) 6861 * flow_create_split_metadata(meter_subflow_1) calls: 6862 * flow_create_split_inner(metadata_subflow_0) 6863 * flow_create_split_inner(metadata_subflow_1) 6864 * flow_create_split_inner(metadata_subflow_2) 6865 * 6866 * This provide flexible way to add new levels of flow splitting. 6867 * The all of successfully created subflows are included to the 6868 * parent flow dev_flow list. 6869 * 6870 * @param dev 6871 * Pointer to Ethernet device. 6872 * @param[in] flow 6873 * Parent flow structure pointer. 6874 * @param[in] attr 6875 * Flow rule attributes. 6876 * @param[in] items 6877 * Pattern specification (list terminated by the END pattern item). 6878 * @param[in] actions 6879 * Associated actions (list terminated by the END action). 6880 * @param[in] flow_split_info 6881 * Pointer to flow split info structure. 6882 * @param[out] error 6883 * Perform verbose error reporting if not NULL. 6884 * @return 6885 * 0 on success, negative value otherwise 6886 */ 6887 static int 6888 flow_create_split_outer(struct rte_eth_dev *dev, 6889 struct rte_flow *flow, 6890 const struct rte_flow_attr *attr, 6891 const struct rte_flow_item items[], 6892 const struct rte_flow_action actions[], 6893 struct mlx5_flow_split_info *flow_split_info, 6894 struct rte_flow_error *error) 6895 { 6896 int ret; 6897 6898 ret = flow_create_split_sample(dev, flow, attr, items, 6899 actions, flow_split_info, error); 6900 MLX5_ASSERT(ret <= 0); 6901 return ret; 6902 } 6903 6904 static inline struct mlx5_flow_tunnel * 6905 flow_tunnel_from_rule(const struct mlx5_flow *flow) 6906 { 6907 struct mlx5_flow_tunnel *tunnel; 6908 6909 #pragma GCC diagnostic push 6910 #pragma GCC diagnostic ignored "-Wcast-qual" 6911 tunnel = (typeof(tunnel))flow->tunnel; 6912 #pragma GCC diagnostic pop 6913 6914 return tunnel; 6915 } 6916 6917 /** 6918 * Adjust flow RSS workspace if needed. 6919 * 6920 * @param wks 6921 * Pointer to thread flow work space. 6922 * @param rss_desc 6923 * Pointer to RSS descriptor. 6924 * @param[in] nrssq_num 6925 * New RSS queue number. 6926 * 6927 * @return 6928 * 0 on success, -1 otherwise and rte_errno is set. 6929 */ 6930 static int 6931 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks, 6932 struct mlx5_flow_rss_desc *rss_desc, 6933 uint32_t nrssq_num) 6934 { 6935 if (likely(nrssq_num <= wks->rssq_num)) 6936 return 0; 6937 rss_desc->queue = realloc(rss_desc->queue, 6938 sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2)); 6939 if (!rss_desc->queue) { 6940 rte_errno = ENOMEM; 6941 return -1; 6942 } 6943 wks->rssq_num = RTE_ALIGN(nrssq_num, 2); 6944 return 0; 6945 } 6946 6947 /** 6948 * Create a flow and add it to @p list. 6949 * 6950 * @param dev 6951 * Pointer to Ethernet device. 6952 * @param list 6953 * Pointer to a TAILQ flow list. If this parameter NULL, 6954 * no list insertion occurred, flow is just created, 6955 * this is caller's responsibility to track the 6956 * created flow. 6957 * @param[in] attr 6958 * Flow rule attributes. 6959 * @param[in] items 6960 * Pattern specification (list terminated by the END pattern item). 6961 * @param[in] actions 6962 * Associated actions (list terminated by the END action). 6963 * @param[in] external 6964 * This flow rule is created by request external to PMD. 6965 * @param[out] error 6966 * Perform verbose error reporting if not NULL. 6967 * 6968 * @return 6969 * A flow index on success, 0 otherwise and rte_errno is set. 6970 */ 6971 static uint32_t 6972 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type, 6973 const struct rte_flow_attr *attr, 6974 const struct rte_flow_item items[], 6975 const struct rte_flow_action original_actions[], 6976 bool external, struct rte_flow_error *error) 6977 { 6978 struct mlx5_priv *priv = dev->data->dev_private; 6979 struct rte_flow *flow = NULL; 6980 struct mlx5_flow *dev_flow; 6981 const struct rte_flow_action_rss *rss = NULL; 6982 struct mlx5_translated_action_handle 6983 indir_actions[MLX5_MAX_INDIRECT_ACTIONS]; 6984 int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS; 6985 union { 6986 struct mlx5_flow_expand_rss buf; 6987 uint8_t buffer[8192]; 6988 } expand_buffer; 6989 union { 6990 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 6991 uint8_t buffer[2048]; 6992 } actions_rx; 6993 union { 6994 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 6995 uint8_t buffer[2048]; 6996 } actions_hairpin_tx; 6997 union { 6998 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS]; 6999 uint8_t buffer[2048]; 7000 } items_tx; 7001 struct mlx5_rte_flow_item_sq sq_specs[RTE_MAX_QUEUES_PER_PORT]; 7002 struct mlx5_flow_expand_rss *buf = &expand_buffer.buf; 7003 struct mlx5_flow_rss_desc *rss_desc; 7004 const struct rte_flow_action *p_actions_rx; 7005 uint32_t i; 7006 uint32_t idx = 0; 7007 int hairpin_flow; 7008 struct rte_flow_attr attr_tx = { .priority = 0 }; 7009 const struct rte_flow_action *actions; 7010 struct rte_flow_action *translated_actions = NULL; 7011 struct mlx5_flow_tunnel *tunnel; 7012 struct tunnel_default_miss_ctx default_miss_ctx = { 0, }; 7013 struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace(); 7014 struct mlx5_flow_split_info flow_split_info = { 7015 .external = !!external, 7016 .skip_scale = 0, 7017 .flow_idx = 0, 7018 .prefix_mark = 0, 7019 .prefix_layers = 0, 7020 .table_id = 0 7021 }; 7022 int ret; 7023 7024 MLX5_ASSERT(wks); 7025 rss_desc = &wks->rss_desc; 7026 ret = flow_action_handles_translate(dev, original_actions, 7027 indir_actions, 7028 &indir_actions_n, 7029 &translated_actions, error); 7030 if (ret < 0) { 7031 MLX5_ASSERT(translated_actions == NULL); 7032 return 0; 7033 } 7034 actions = translated_actions ? translated_actions : original_actions; 7035 p_actions_rx = actions; 7036 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 7037 ret = flow_drv_validate(dev, attr, items, p_actions_rx, 7038 external, hairpin_flow, error); 7039 if (ret < 0) 7040 goto error_before_hairpin_split; 7041 flow = mlx5_ipool_zmalloc(priv->flows[type], &idx); 7042 if (!flow) { 7043 rte_errno = ENOMEM; 7044 goto error_before_hairpin_split; 7045 } 7046 if (hairpin_flow > 0) { 7047 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) { 7048 rte_errno = EINVAL; 7049 goto error_before_hairpin_split; 7050 } 7051 flow_hairpin_split(dev, actions, actions_rx.actions, 7052 actions_hairpin_tx.actions, items_tx.items, 7053 idx); 7054 p_actions_rx = actions_rx.actions; 7055 } 7056 flow_split_info.flow_idx = idx; 7057 flow->drv_type = flow_get_drv_type(dev, attr); 7058 MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN && 7059 flow->drv_type < MLX5_FLOW_TYPE_MAX); 7060 memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue)); 7061 /* RSS Action only works on NIC RX domain */ 7062 if (attr->ingress && !attr->transfer) 7063 rss = flow_get_rss_action(dev, p_actions_rx); 7064 if (rss) { 7065 if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num)) 7066 return 0; 7067 /* 7068 * The following information is required by 7069 * mlx5_flow_hashfields_adjust() in advance. 7070 */ 7071 rss_desc->level = rss->level; 7072 /* RSS type 0 indicates default RSS type (RTE_ETH_RSS_IP). */ 7073 rss_desc->types = !rss->types ? RTE_ETH_RSS_IP : rss->types; 7074 } 7075 flow->dev_handles = 0; 7076 if (rss && rss->types) { 7077 unsigned int graph_root; 7078 7079 graph_root = find_graph_root(rss->level); 7080 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 7081 items, rss->types, 7082 mlx5_support_expansion, graph_root); 7083 MLX5_ASSERT(ret > 0 && 7084 (unsigned int)ret < sizeof(expand_buffer.buffer)); 7085 if (rte_log_can_log(mlx5_logtype, RTE_LOG_DEBUG)) { 7086 for (i = 0; i < buf->entries; ++i) 7087 mlx5_dbg__print_pattern(buf->entry[i].pattern); 7088 } 7089 } else { 7090 ret = mlx5_flow_expand_sqn((struct mlx5_flow_expand_sqn *)buf, 7091 sizeof(expand_buffer.buffer), 7092 items, sq_specs); 7093 if (ret) { 7094 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 7095 NULL, "not enough memory for rte_flow"); 7096 goto error; 7097 } 7098 if (buf->entries == 0) { 7099 buf->entries = 1; 7100 buf->entry[0].pattern = (void *)(uintptr_t)items; 7101 } 7102 } 7103 rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions, 7104 indir_actions_n); 7105 for (i = 0; i < buf->entries; ++i) { 7106 /* Initialize flow split data. */ 7107 flow_split_info.prefix_layers = 0; 7108 flow_split_info.prefix_mark = 0; 7109 flow_split_info.skip_scale = 0; 7110 /* 7111 * The splitter may create multiple dev_flows, 7112 * depending on configuration. In the simplest 7113 * case it just creates unmodified original flow. 7114 */ 7115 ret = flow_create_split_outer(dev, flow, attr, 7116 buf->entry[i].pattern, 7117 p_actions_rx, &flow_split_info, 7118 error); 7119 if (ret < 0) 7120 goto error; 7121 if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) { 7122 ret = flow_tunnel_add_default_miss(dev, flow, attr, 7123 p_actions_rx, 7124 idx, 7125 wks->flows[0].tunnel, 7126 &default_miss_ctx, 7127 error); 7128 if (ret < 0) { 7129 mlx5_free(default_miss_ctx.queue); 7130 goto error; 7131 } 7132 } 7133 } 7134 /* Create the tx flow. */ 7135 if (hairpin_flow) { 7136 attr_tx.group = MLX5_HAIRPIN_TX_TABLE; 7137 attr_tx.ingress = 0; 7138 attr_tx.egress = 1; 7139 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items, 7140 actions_hairpin_tx.actions, 7141 idx, error); 7142 if (!dev_flow) 7143 goto error; 7144 dev_flow->flow = flow; 7145 dev_flow->external = 0; 7146 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 7147 dev_flow->handle, next); 7148 ret = flow_drv_translate(dev, dev_flow, &attr_tx, 7149 items_tx.items, 7150 actions_hairpin_tx.actions, error); 7151 if (ret < 0) 7152 goto error; 7153 } 7154 /* 7155 * Update the metadata register copy table. If extensive 7156 * metadata feature is enabled and registers are supported 7157 * we might create the extra rte_flow for each unique 7158 * MARK/FLAG action ID. 7159 * 7160 * The table is updated for ingress Flows only, because 7161 * the egress Flows belong to the different device and 7162 * copy table should be updated in peer NIC Rx domain. 7163 */ 7164 if (attr->ingress && 7165 (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) { 7166 ret = flow_mreg_update_copy_table(dev, flow, actions, error); 7167 if (ret) 7168 goto error; 7169 } 7170 /* 7171 * If the flow is external (from application) OR device is started, 7172 * OR mreg discover, then apply immediately. 7173 */ 7174 if (external || dev->data->dev_started || 7175 (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP && 7176 attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) { 7177 ret = flow_drv_apply(dev, flow, error); 7178 if (ret < 0) 7179 goto error; 7180 } 7181 flow->type = type; 7182 flow_rxq_flags_set(dev, flow); 7183 rte_free(translated_actions); 7184 tunnel = flow_tunnel_from_rule(wks->flows); 7185 if (tunnel) { 7186 flow->tunnel = 1; 7187 flow->tunnel_id = tunnel->tunnel_id; 7188 __atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED); 7189 mlx5_free(default_miss_ctx.queue); 7190 } 7191 mlx5_flow_pop_thread_workspace(); 7192 return idx; 7193 error: 7194 MLX5_ASSERT(flow); 7195 ret = rte_errno; /* Save rte_errno before cleanup. */ 7196 flow_mreg_del_copy_action(dev, flow); 7197 flow_drv_destroy(dev, flow); 7198 if (rss_desc->shared_rss) 7199 __atomic_sub_fetch(&((struct mlx5_shared_action_rss *) 7200 mlx5_ipool_get 7201 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 7202 rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED); 7203 mlx5_ipool_free(priv->flows[type], idx); 7204 rte_errno = ret; /* Restore rte_errno. */ 7205 ret = rte_errno; 7206 rte_errno = ret; 7207 error_before_hairpin_split: 7208 mlx5_flow_pop_thread_workspace(); 7209 rte_free(translated_actions); 7210 return 0; 7211 } 7212 7213 /** 7214 * Create a dedicated flow rule on e-switch table 0 (root table), to direct all 7215 * incoming packets to table 1. 7216 * 7217 * Other flow rules, requested for group n, will be created in 7218 * e-switch table n+1. 7219 * Jump action to e-switch group n will be created to group n+1. 7220 * 7221 * Used when working in switchdev mode, to utilise advantages of table 1 7222 * and above. 7223 * 7224 * @param dev 7225 * Pointer to Ethernet device. 7226 * 7227 * @return 7228 * Pointer to flow on success, NULL otherwise and rte_errno is set. 7229 */ 7230 struct rte_flow * 7231 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev) 7232 { 7233 const struct rte_flow_attr attr = { 7234 .group = 0, 7235 .priority = 0, 7236 .ingress = 1, 7237 .egress = 0, 7238 .transfer = 1, 7239 }; 7240 const struct rte_flow_item pattern = { 7241 .type = RTE_FLOW_ITEM_TYPE_END, 7242 }; 7243 struct rte_flow_action_jump jump = { 7244 .group = 1, 7245 }; 7246 const struct rte_flow_action actions[] = { 7247 { 7248 .type = RTE_FLOW_ACTION_TYPE_JUMP, 7249 .conf = &jump, 7250 }, 7251 { 7252 .type = RTE_FLOW_ACTION_TYPE_END, 7253 }, 7254 }; 7255 struct rte_flow_error error; 7256 7257 return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_CTL, 7258 &attr, &pattern, 7259 actions, false, &error); 7260 } 7261 7262 /** 7263 * Create a dedicated flow rule on e-switch table 1, matches ESW manager 7264 * and sq number, directs all packets to peer vport. 7265 * 7266 * @param dev 7267 * Pointer to Ethernet device. 7268 * @param sq_num 7269 * SQ number. 7270 * 7271 * @return 7272 * Flow ID on success, 0 otherwise and rte_errno is set. 7273 */ 7274 uint32_t 7275 mlx5_flow_create_devx_sq_miss_flow(struct rte_eth_dev *dev, uint32_t sq_num) 7276 { 7277 struct rte_flow_attr attr = { 7278 .group = 0, 7279 .priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR, 7280 .ingress = 1, 7281 .egress = 0, 7282 .transfer = 1, 7283 }; 7284 struct rte_flow_item_port_id port_spec = { 7285 .id = MLX5_PORT_ESW_MGR, 7286 }; 7287 struct mlx5_rte_flow_item_sq sq_spec = { 7288 .queue = sq_num, 7289 }; 7290 struct rte_flow_item pattern[] = { 7291 { 7292 .type = RTE_FLOW_ITEM_TYPE_PORT_ID, 7293 .spec = &port_spec, 7294 }, 7295 { 7296 .type = (enum rte_flow_item_type) 7297 MLX5_RTE_FLOW_ITEM_TYPE_SQ, 7298 .spec = &sq_spec, 7299 }, 7300 { 7301 .type = RTE_FLOW_ITEM_TYPE_END, 7302 }, 7303 }; 7304 struct rte_flow_action_jump jump = { 7305 .group = 1, 7306 }; 7307 struct rte_flow_action_port_id port = { 7308 .id = dev->data->port_id, 7309 }; 7310 struct rte_flow_action actions[] = { 7311 { 7312 .type = RTE_FLOW_ACTION_TYPE_JUMP, 7313 .conf = &jump, 7314 }, 7315 { 7316 .type = RTE_FLOW_ACTION_TYPE_END, 7317 }, 7318 }; 7319 struct rte_flow_error error; 7320 7321 /* 7322 * Creates group 0, highest priority jump flow. 7323 * Matches txq to bypass kernel packets. 7324 */ 7325 if (flow_list_create(dev, MLX5_FLOW_TYPE_CTL, &attr, pattern, actions, 7326 false, &error) == 0) 7327 return 0; 7328 /* Create group 1, lowest priority redirect flow for txq. */ 7329 attr.group = 1; 7330 actions[0].conf = &port; 7331 actions[0].type = RTE_FLOW_ACTION_TYPE_PORT_ID; 7332 return flow_list_create(dev, MLX5_FLOW_TYPE_CTL, &attr, pattern, 7333 actions, false, &error); 7334 } 7335 7336 /** 7337 * Validate a flow supported by the NIC. 7338 * 7339 * @see rte_flow_validate() 7340 * @see rte_flow_ops 7341 */ 7342 int 7343 mlx5_flow_validate(struct rte_eth_dev *dev, 7344 const struct rte_flow_attr *attr, 7345 const struct rte_flow_item items[], 7346 const struct rte_flow_action original_actions[], 7347 struct rte_flow_error *error) 7348 { 7349 int hairpin_flow; 7350 struct mlx5_translated_action_handle 7351 indir_actions[MLX5_MAX_INDIRECT_ACTIONS]; 7352 int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS; 7353 const struct rte_flow_action *actions; 7354 struct rte_flow_action *translated_actions = NULL; 7355 int ret = flow_action_handles_translate(dev, original_actions, 7356 indir_actions, 7357 &indir_actions_n, 7358 &translated_actions, error); 7359 7360 if (ret) 7361 return ret; 7362 actions = translated_actions ? translated_actions : original_actions; 7363 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 7364 ret = flow_drv_validate(dev, attr, items, actions, 7365 true, hairpin_flow, error); 7366 rte_free(translated_actions); 7367 return ret; 7368 } 7369 7370 /** 7371 * Create a flow. 7372 * 7373 * @see rte_flow_create() 7374 * @see rte_flow_ops 7375 */ 7376 struct rte_flow * 7377 mlx5_flow_create(struct rte_eth_dev *dev, 7378 const struct rte_flow_attr *attr, 7379 const struct rte_flow_item items[], 7380 const struct rte_flow_action actions[], 7381 struct rte_flow_error *error) 7382 { 7383 struct mlx5_priv *priv = dev->data->dev_private; 7384 7385 if (priv->sh->config.dv_flow_en == 2) { 7386 rte_flow_error_set(error, ENOTSUP, 7387 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 7388 NULL, 7389 "Flow non-Q creation not supported"); 7390 return NULL; 7391 } 7392 /* 7393 * If the device is not started yet, it is not allowed to created a 7394 * flow from application. PMD default flows and traffic control flows 7395 * are not affected. 7396 */ 7397 if (unlikely(!dev->data->dev_started)) { 7398 DRV_LOG(DEBUG, "port %u is not started when " 7399 "inserting a flow", dev->data->port_id); 7400 rte_flow_error_set(error, ENODEV, 7401 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 7402 NULL, 7403 "port not started"); 7404 return NULL; 7405 } 7406 7407 return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_GEN, 7408 attr, items, actions, 7409 true, error); 7410 } 7411 7412 /** 7413 * Destroy a flow in a list. 7414 * 7415 * @param dev 7416 * Pointer to Ethernet device. 7417 * @param[in] flow_idx 7418 * Index of flow to destroy. 7419 */ 7420 static void 7421 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type, 7422 uint32_t flow_idx) 7423 { 7424 struct mlx5_priv *priv = dev->data->dev_private; 7425 struct rte_flow *flow = mlx5_ipool_get(priv->flows[type], flow_idx); 7426 7427 if (!flow) 7428 return; 7429 MLX5_ASSERT(flow->type == type); 7430 /* 7431 * Update RX queue flags only if port is started, otherwise it is 7432 * already clean. 7433 */ 7434 if (dev->data->dev_started) 7435 flow_rxq_flags_trim(dev, flow); 7436 flow_drv_destroy(dev, flow); 7437 if (flow->tunnel) { 7438 struct mlx5_flow_tunnel *tunnel; 7439 7440 tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id); 7441 RTE_VERIFY(tunnel); 7442 if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED)) 7443 mlx5_flow_tunnel_free(dev, tunnel); 7444 } 7445 flow_mreg_del_copy_action(dev, flow); 7446 mlx5_ipool_free(priv->flows[type], flow_idx); 7447 } 7448 7449 /** 7450 * Destroy all flows. 7451 * 7452 * @param dev 7453 * Pointer to Ethernet device. 7454 * @param type 7455 * Flow type to be flushed. 7456 * @param active 7457 * If flushing is called actively. 7458 */ 7459 void 7460 mlx5_flow_list_flush(struct rte_eth_dev *dev, enum mlx5_flow_type type, 7461 bool active) 7462 { 7463 struct mlx5_priv *priv = dev->data->dev_private; 7464 uint32_t num_flushed = 0, fidx = 1; 7465 struct rte_flow *flow; 7466 7467 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 7468 if (priv->sh->config.dv_flow_en == 2 && 7469 type == MLX5_FLOW_TYPE_GEN) { 7470 flow_hw_q_flow_flush(dev, NULL); 7471 return; 7472 } 7473 #endif 7474 7475 MLX5_IPOOL_FOREACH(priv->flows[type], fidx, flow) { 7476 flow_list_destroy(dev, type, fidx); 7477 num_flushed++; 7478 } 7479 if (active) { 7480 DRV_LOG(INFO, "port %u: %u flows flushed before stopping", 7481 dev->data->port_id, num_flushed); 7482 } 7483 } 7484 7485 /** 7486 * Stop all default actions for flows. 7487 * 7488 * @param dev 7489 * Pointer to Ethernet device. 7490 */ 7491 void 7492 mlx5_flow_stop_default(struct rte_eth_dev *dev) 7493 { 7494 flow_mreg_del_default_copy_action(dev); 7495 flow_rxq_flags_clear(dev); 7496 } 7497 7498 /** 7499 * Start all default actions for flows. 7500 * 7501 * @param dev 7502 * Pointer to Ethernet device. 7503 * @return 7504 * 0 on success, a negative errno value otherwise and rte_errno is set. 7505 */ 7506 int 7507 mlx5_flow_start_default(struct rte_eth_dev *dev) 7508 { 7509 struct rte_flow_error error; 7510 7511 /* Make sure default copy action (reg_c[0] -> reg_b) is created. */ 7512 return flow_mreg_add_default_copy_action(dev, &error); 7513 } 7514 7515 /** 7516 * Release key of thread specific flow workspace data. 7517 */ 7518 void 7519 flow_release_workspace(void *data) 7520 { 7521 struct mlx5_flow_workspace *wks = data; 7522 struct mlx5_flow_workspace *next; 7523 7524 while (wks) { 7525 next = wks->next; 7526 free(wks->rss_desc.queue); 7527 free(wks); 7528 wks = next; 7529 } 7530 } 7531 7532 /** 7533 * Get thread specific current flow workspace. 7534 * 7535 * @return pointer to thread specific flow workspace data, NULL on error. 7536 */ 7537 struct mlx5_flow_workspace* 7538 mlx5_flow_get_thread_workspace(void) 7539 { 7540 struct mlx5_flow_workspace *data; 7541 7542 data = mlx5_flow_os_get_specific_workspace(); 7543 MLX5_ASSERT(data && data->inuse); 7544 if (!data || !data->inuse) 7545 DRV_LOG(ERR, "flow workspace not initialized."); 7546 return data; 7547 } 7548 7549 /** 7550 * Allocate and init new flow workspace. 7551 * 7552 * @return pointer to flow workspace data, NULL on error. 7553 */ 7554 static struct mlx5_flow_workspace* 7555 flow_alloc_thread_workspace(void) 7556 { 7557 struct mlx5_flow_workspace *data = calloc(1, sizeof(*data)); 7558 7559 if (!data) { 7560 DRV_LOG(ERR, "Failed to allocate flow workspace " 7561 "memory."); 7562 return NULL; 7563 } 7564 data->rss_desc.queue = calloc(1, 7565 sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM); 7566 if (!data->rss_desc.queue) 7567 goto err; 7568 data->rssq_num = MLX5_RSSQ_DEFAULT_NUM; 7569 return data; 7570 err: 7571 free(data->rss_desc.queue); 7572 free(data); 7573 return NULL; 7574 } 7575 7576 /** 7577 * Get new thread specific flow workspace. 7578 * 7579 * If current workspace inuse, create new one and set as current. 7580 * 7581 * @return pointer to thread specific flow workspace data, NULL on error. 7582 */ 7583 struct mlx5_flow_workspace* 7584 mlx5_flow_push_thread_workspace(void) 7585 { 7586 struct mlx5_flow_workspace *curr; 7587 struct mlx5_flow_workspace *data; 7588 7589 curr = mlx5_flow_os_get_specific_workspace(); 7590 if (!curr) { 7591 data = flow_alloc_thread_workspace(); 7592 if (!data) 7593 return NULL; 7594 } else if (!curr->inuse) { 7595 data = curr; 7596 } else if (curr->next) { 7597 data = curr->next; 7598 } else { 7599 data = flow_alloc_thread_workspace(); 7600 if (!data) 7601 return NULL; 7602 curr->next = data; 7603 data->prev = curr; 7604 } 7605 data->inuse = 1; 7606 data->flow_idx = 0; 7607 /* Set as current workspace */ 7608 if (mlx5_flow_os_set_specific_workspace(data)) 7609 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 7610 return data; 7611 } 7612 7613 /** 7614 * Close current thread specific flow workspace. 7615 * 7616 * If previous workspace available, set it as current. 7617 * 7618 * @return pointer to thread specific flow workspace data, NULL on error. 7619 */ 7620 void 7621 mlx5_flow_pop_thread_workspace(void) 7622 { 7623 struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace(); 7624 7625 if (!data) 7626 return; 7627 if (!data->inuse) { 7628 DRV_LOG(ERR, "Failed to close unused flow workspace."); 7629 return; 7630 } 7631 data->inuse = 0; 7632 if (!data->prev) 7633 return; 7634 if (mlx5_flow_os_set_specific_workspace(data->prev)) 7635 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 7636 } 7637 7638 /** 7639 * Verify the flow list is empty 7640 * 7641 * @param dev 7642 * Pointer to Ethernet device. 7643 * 7644 * @return the number of flows not released. 7645 */ 7646 int 7647 mlx5_flow_verify(struct rte_eth_dev *dev __rte_unused) 7648 { 7649 struct mlx5_priv *priv = dev->data->dev_private; 7650 struct rte_flow *flow; 7651 uint32_t idx = 0; 7652 int ret = 0, i; 7653 7654 for (i = 0; i < MLX5_FLOW_TYPE_MAXI; i++) { 7655 MLX5_IPOOL_FOREACH(priv->flows[i], idx, flow) { 7656 DRV_LOG(DEBUG, "port %u flow %p still referenced", 7657 dev->data->port_id, (void *)flow); 7658 ret++; 7659 } 7660 } 7661 return ret; 7662 } 7663 7664 /** 7665 * Enable default hairpin egress flow. 7666 * 7667 * @param dev 7668 * Pointer to Ethernet device. 7669 * @param sq_num 7670 * The SQ hw number. 7671 * 7672 * @return 7673 * 0 on success, a negative errno value otherwise and rte_errno is set. 7674 */ 7675 int 7676 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev, 7677 uint32_t sq_num) 7678 { 7679 const struct rte_flow_attr attr = { 7680 .egress = 1, 7681 .priority = 0, 7682 }; 7683 struct mlx5_rte_flow_item_sq queue_spec = { 7684 .queue = sq_num, 7685 }; 7686 struct mlx5_rte_flow_item_sq queue_mask = { 7687 .queue = UINT32_MAX, 7688 }; 7689 struct rte_flow_item items[] = { 7690 { 7691 .type = (enum rte_flow_item_type) 7692 MLX5_RTE_FLOW_ITEM_TYPE_SQ, 7693 .spec = &queue_spec, 7694 .last = NULL, 7695 .mask = &queue_mask, 7696 }, 7697 { 7698 .type = RTE_FLOW_ITEM_TYPE_END, 7699 }, 7700 }; 7701 struct rte_flow_action_jump jump = { 7702 .group = MLX5_HAIRPIN_TX_TABLE, 7703 }; 7704 struct rte_flow_action actions[2]; 7705 uint32_t flow_idx; 7706 struct rte_flow_error error; 7707 7708 actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP; 7709 actions[0].conf = &jump; 7710 actions[1].type = RTE_FLOW_ACTION_TYPE_END; 7711 flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL, 7712 &attr, items, actions, false, &error); 7713 if (!flow_idx) { 7714 DRV_LOG(DEBUG, 7715 "Failed to create ctrl flow: rte_errno(%d)," 7716 " type(%d), message(%s)", 7717 rte_errno, error.type, 7718 error.message ? error.message : " (no stated reason)"); 7719 return -rte_errno; 7720 } 7721 return 0; 7722 } 7723 7724 /** 7725 * Enable a control flow configured from the control plane. 7726 * 7727 * @param dev 7728 * Pointer to Ethernet device. 7729 * @param eth_spec 7730 * An Ethernet flow spec to apply. 7731 * @param eth_mask 7732 * An Ethernet flow mask to apply. 7733 * @param vlan_spec 7734 * A VLAN flow spec to apply. 7735 * @param vlan_mask 7736 * A VLAN flow mask to apply. 7737 * 7738 * @return 7739 * 0 on success, a negative errno value otherwise and rte_errno is set. 7740 */ 7741 int 7742 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 7743 struct rte_flow_item_eth *eth_spec, 7744 struct rte_flow_item_eth *eth_mask, 7745 struct rte_flow_item_vlan *vlan_spec, 7746 struct rte_flow_item_vlan *vlan_mask) 7747 { 7748 struct mlx5_priv *priv = dev->data->dev_private; 7749 const struct rte_flow_attr attr = { 7750 .ingress = 1, 7751 .priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR, 7752 }; 7753 struct rte_flow_item items[] = { 7754 { 7755 .type = RTE_FLOW_ITEM_TYPE_ETH, 7756 .spec = eth_spec, 7757 .last = NULL, 7758 .mask = eth_mask, 7759 }, 7760 { 7761 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 7762 RTE_FLOW_ITEM_TYPE_END, 7763 .spec = vlan_spec, 7764 .last = NULL, 7765 .mask = vlan_mask, 7766 }, 7767 { 7768 .type = RTE_FLOW_ITEM_TYPE_END, 7769 }, 7770 }; 7771 uint16_t queue[priv->reta_idx_n]; 7772 struct rte_flow_action_rss action_rss = { 7773 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 7774 .level = 0, 7775 .types = priv->rss_conf.rss_hf, 7776 .key_len = priv->rss_conf.rss_key_len, 7777 .queue_num = priv->reta_idx_n, 7778 .key = priv->rss_conf.rss_key, 7779 .queue = queue, 7780 }; 7781 struct rte_flow_action actions[] = { 7782 { 7783 .type = RTE_FLOW_ACTION_TYPE_RSS, 7784 .conf = &action_rss, 7785 }, 7786 { 7787 .type = RTE_FLOW_ACTION_TYPE_END, 7788 }, 7789 }; 7790 uint32_t flow_idx; 7791 struct rte_flow_error error; 7792 unsigned int i; 7793 7794 if (!priv->reta_idx_n || !priv->rxqs_n) { 7795 return 0; 7796 } 7797 if (!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)) 7798 action_rss.types = 0; 7799 for (i = 0; i != priv->reta_idx_n; ++i) 7800 queue[i] = (*priv->reta_idx)[i]; 7801 flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL, 7802 &attr, items, actions, false, &error); 7803 if (!flow_idx) 7804 return -rte_errno; 7805 return 0; 7806 } 7807 7808 /** 7809 * Enable a flow control configured from the control plane. 7810 * 7811 * @param dev 7812 * Pointer to Ethernet device. 7813 * @param eth_spec 7814 * An Ethernet flow spec to apply. 7815 * @param eth_mask 7816 * An Ethernet flow mask to apply. 7817 * 7818 * @return 7819 * 0 on success, a negative errno value otherwise and rte_errno is set. 7820 */ 7821 int 7822 mlx5_ctrl_flow(struct rte_eth_dev *dev, 7823 struct rte_flow_item_eth *eth_spec, 7824 struct rte_flow_item_eth *eth_mask) 7825 { 7826 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 7827 } 7828 7829 /** 7830 * Create default miss flow rule matching lacp traffic 7831 * 7832 * @param dev 7833 * Pointer to Ethernet device. 7834 * @param eth_spec 7835 * An Ethernet flow spec to apply. 7836 * 7837 * @return 7838 * 0 on success, a negative errno value otherwise and rte_errno is set. 7839 */ 7840 int 7841 mlx5_flow_lacp_miss(struct rte_eth_dev *dev) 7842 { 7843 /* 7844 * The LACP matching is done by only using ether type since using 7845 * a multicast dst mac causes kernel to give low priority to this flow. 7846 */ 7847 static const struct rte_flow_item_eth lacp_spec = { 7848 .type = RTE_BE16(0x8809), 7849 }; 7850 static const struct rte_flow_item_eth lacp_mask = { 7851 .type = 0xffff, 7852 }; 7853 const struct rte_flow_attr attr = { 7854 .ingress = 1, 7855 }; 7856 struct rte_flow_item items[] = { 7857 { 7858 .type = RTE_FLOW_ITEM_TYPE_ETH, 7859 .spec = &lacp_spec, 7860 .mask = &lacp_mask, 7861 }, 7862 { 7863 .type = RTE_FLOW_ITEM_TYPE_END, 7864 }, 7865 }; 7866 struct rte_flow_action actions[] = { 7867 { 7868 .type = (enum rte_flow_action_type) 7869 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS, 7870 }, 7871 { 7872 .type = RTE_FLOW_ACTION_TYPE_END, 7873 }, 7874 }; 7875 struct rte_flow_error error; 7876 uint32_t flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL, 7877 &attr, items, actions, 7878 false, &error); 7879 7880 if (!flow_idx) 7881 return -rte_errno; 7882 return 0; 7883 } 7884 7885 /** 7886 * Destroy a flow. 7887 * 7888 * @see rte_flow_destroy() 7889 * @see rte_flow_ops 7890 */ 7891 int 7892 mlx5_flow_destroy(struct rte_eth_dev *dev, 7893 struct rte_flow *flow, 7894 struct rte_flow_error *error __rte_unused) 7895 { 7896 struct mlx5_priv *priv = dev->data->dev_private; 7897 7898 if (priv->sh->config.dv_flow_en == 2) 7899 return rte_flow_error_set(error, ENOTSUP, 7900 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 7901 NULL, 7902 "Flow non-Q destruction not supported"); 7903 flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN, 7904 (uintptr_t)(void *)flow); 7905 return 0; 7906 } 7907 7908 /** 7909 * Destroy all flows. 7910 * 7911 * @see rte_flow_flush() 7912 * @see rte_flow_ops 7913 */ 7914 int 7915 mlx5_flow_flush(struct rte_eth_dev *dev, 7916 struct rte_flow_error *error __rte_unused) 7917 { 7918 mlx5_flow_list_flush(dev, MLX5_FLOW_TYPE_GEN, false); 7919 return 0; 7920 } 7921 7922 /** 7923 * Isolated mode. 7924 * 7925 * @see rte_flow_isolate() 7926 * @see rte_flow_ops 7927 */ 7928 int 7929 mlx5_flow_isolate(struct rte_eth_dev *dev, 7930 int enable, 7931 struct rte_flow_error *error) 7932 { 7933 struct mlx5_priv *priv = dev->data->dev_private; 7934 7935 if (dev->data->dev_started) { 7936 rte_flow_error_set(error, EBUSY, 7937 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 7938 NULL, 7939 "port must be stopped first"); 7940 return -rte_errno; 7941 } 7942 priv->isolated = !!enable; 7943 if (enable) 7944 dev->dev_ops = &mlx5_dev_ops_isolate; 7945 else 7946 dev->dev_ops = &mlx5_dev_ops; 7947 7948 dev->rx_descriptor_status = mlx5_rx_descriptor_status; 7949 dev->tx_descriptor_status = mlx5_tx_descriptor_status; 7950 7951 return 0; 7952 } 7953 7954 /** 7955 * Query a flow. 7956 * 7957 * @see rte_flow_query() 7958 * @see rte_flow_ops 7959 */ 7960 static int 7961 flow_drv_query(struct rte_eth_dev *dev, 7962 struct rte_flow *eflow, 7963 const struct rte_flow_action *actions, 7964 void *data, 7965 struct rte_flow_error *error) 7966 { 7967 struct mlx5_priv *priv = dev->data->dev_private; 7968 const struct mlx5_flow_driver_ops *fops; 7969 struct rte_flow *flow = NULL; 7970 enum mlx5_flow_drv_type ftype = MLX5_FLOW_TYPE_MIN; 7971 7972 if (priv->sh->config.dv_flow_en == 2) { 7973 #ifdef HAVE_MLX5_HWS_SUPPORT 7974 flow = eflow; 7975 ftype = MLX5_FLOW_TYPE_HW; 7976 #endif 7977 } else { 7978 flow = (struct rte_flow *)mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN], 7979 (uintptr_t)(void *)eflow); 7980 } 7981 if (!flow) { 7982 return rte_flow_error_set(error, ENOENT, 7983 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 7984 NULL, 7985 "invalid flow handle"); 7986 } 7987 if (ftype == MLX5_FLOW_TYPE_MIN) 7988 ftype = flow->drv_type; 7989 MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 7990 fops = flow_get_drv_ops(ftype); 7991 7992 return fops->query(dev, flow, actions, data, error); 7993 } 7994 7995 /** 7996 * Query a flow. 7997 * 7998 * @see rte_flow_query() 7999 * @see rte_flow_ops 8000 */ 8001 int 8002 mlx5_flow_query(struct rte_eth_dev *dev, 8003 struct rte_flow *flow, 8004 const struct rte_flow_action *actions, 8005 void *data, 8006 struct rte_flow_error *error) 8007 { 8008 int ret; 8009 8010 ret = flow_drv_query(dev, flow, actions, data, 8011 error); 8012 if (ret < 0) 8013 return ret; 8014 return 0; 8015 } 8016 8017 /** 8018 * Get rte_flow callbacks. 8019 * 8020 * @param dev 8021 * Pointer to Ethernet device structure. 8022 * @param ops 8023 * Pointer to operation-specific structure. 8024 * 8025 * @return 0 8026 */ 8027 int 8028 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 8029 const struct rte_flow_ops **ops) 8030 { 8031 *ops = &mlx5_flow_ops; 8032 return 0; 8033 } 8034 8035 /** 8036 * Validate meter policy actions. 8037 * Dispatcher for action type specific validation. 8038 * 8039 * @param[in] dev 8040 * Pointer to the Ethernet device structure. 8041 * @param[in] action 8042 * The meter policy action object to validate. 8043 * @param[in] attr 8044 * Attributes of flow to determine steering domain. 8045 * @param[out] is_rss 8046 * Is RSS or not. 8047 * @param[out] domain_bitmap 8048 * Domain bitmap. 8049 * @param[out] is_def_policy 8050 * Is default policy or not. 8051 * @param[out] error 8052 * Perform verbose error reporting if not NULL. Initialized in case of 8053 * error only. 8054 * 8055 * @return 8056 * 0 on success, otherwise negative errno value. 8057 */ 8058 int 8059 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev, 8060 const struct rte_flow_action *actions[RTE_COLORS], 8061 struct rte_flow_attr *attr, 8062 bool *is_rss, 8063 uint8_t *domain_bitmap, 8064 uint8_t *policy_mode, 8065 struct rte_mtr_error *error) 8066 { 8067 const struct mlx5_flow_driver_ops *fops; 8068 8069 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8070 return fops->validate_mtr_acts(dev, actions, attr, is_rss, 8071 domain_bitmap, policy_mode, error); 8072 } 8073 8074 /** 8075 * Destroy the meter table set. 8076 * 8077 * @param[in] dev 8078 * Pointer to Ethernet device. 8079 * @param[in] mtr_policy 8080 * Meter policy struct. 8081 */ 8082 void 8083 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev, 8084 struct mlx5_flow_meter_policy *mtr_policy) 8085 { 8086 const struct mlx5_flow_driver_ops *fops; 8087 8088 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8089 fops->destroy_mtr_acts(dev, mtr_policy); 8090 } 8091 8092 /** 8093 * Create policy action, lock free, 8094 * (mutex should be acquired by caller). 8095 * Dispatcher for action type specific call. 8096 * 8097 * @param[in] dev 8098 * Pointer to the Ethernet device structure. 8099 * @param[in] mtr_policy 8100 * Meter policy struct. 8101 * @param[in] action 8102 * Action specification used to create meter actions. 8103 * @param[in] attr 8104 * Flow rule attributes. 8105 * @param[out] error 8106 * Perform verbose error reporting if not NULL. Initialized in case of 8107 * error only. 8108 * 8109 * @return 8110 * 0 on success, otherwise negative errno value. 8111 */ 8112 int 8113 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev, 8114 struct mlx5_flow_meter_policy *mtr_policy, 8115 const struct rte_flow_action *actions[RTE_COLORS], 8116 struct rte_flow_attr *attr, 8117 struct rte_mtr_error *error) 8118 { 8119 const struct mlx5_flow_driver_ops *fops; 8120 8121 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8122 return fops->create_mtr_acts(dev, mtr_policy, actions, attr, error); 8123 } 8124 8125 /** 8126 * Create policy rules, lock free, 8127 * (mutex should be acquired by caller). 8128 * Dispatcher for action type specific call. 8129 * 8130 * @param[in] dev 8131 * Pointer to the Ethernet device structure. 8132 * @param[in] mtr_policy 8133 * Meter policy struct. 8134 * 8135 * @return 8136 * 0 on success, -1 otherwise. 8137 */ 8138 int 8139 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev, 8140 struct mlx5_flow_meter_policy *mtr_policy) 8141 { 8142 const struct mlx5_flow_driver_ops *fops; 8143 8144 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8145 return fops->create_policy_rules(dev, mtr_policy); 8146 } 8147 8148 /** 8149 * Destroy policy rules, lock free, 8150 * (mutex should be acquired by caller). 8151 * Dispatcher for action type specific call. 8152 * 8153 * @param[in] dev 8154 * Pointer to the Ethernet device structure. 8155 * @param[in] mtr_policy 8156 * Meter policy struct. 8157 */ 8158 void 8159 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev, 8160 struct mlx5_flow_meter_policy *mtr_policy) 8161 { 8162 const struct mlx5_flow_driver_ops *fops; 8163 8164 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8165 fops->destroy_policy_rules(dev, mtr_policy); 8166 } 8167 8168 /** 8169 * Destroy the default policy table set. 8170 * 8171 * @param[in] dev 8172 * Pointer to Ethernet device. 8173 */ 8174 void 8175 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev) 8176 { 8177 const struct mlx5_flow_driver_ops *fops; 8178 8179 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8180 fops->destroy_def_policy(dev); 8181 } 8182 8183 /** 8184 * Destroy the default policy table set. 8185 * 8186 * @param[in] dev 8187 * Pointer to Ethernet device. 8188 * 8189 * @return 8190 * 0 on success, -1 otherwise. 8191 */ 8192 int 8193 mlx5_flow_create_def_policy(struct rte_eth_dev *dev) 8194 { 8195 const struct mlx5_flow_driver_ops *fops; 8196 8197 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8198 return fops->create_def_policy(dev); 8199 } 8200 8201 /** 8202 * Create the needed meter and suffix tables. 8203 * 8204 * @param[in] dev 8205 * Pointer to Ethernet device. 8206 * 8207 * @return 8208 * 0 on success, -1 otherwise. 8209 */ 8210 int 8211 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev, 8212 struct mlx5_flow_meter_info *fm, 8213 uint32_t mtr_idx, 8214 uint8_t domain_bitmap) 8215 { 8216 const struct mlx5_flow_driver_ops *fops; 8217 8218 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8219 return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap); 8220 } 8221 8222 /** 8223 * Destroy the meter table set. 8224 * 8225 * @param[in] dev 8226 * Pointer to Ethernet device. 8227 * @param[in] tbl 8228 * Pointer to the meter table set. 8229 */ 8230 void 8231 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev, 8232 struct mlx5_flow_meter_info *fm) 8233 { 8234 const struct mlx5_flow_driver_ops *fops; 8235 8236 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8237 fops->destroy_mtr_tbls(dev, fm); 8238 } 8239 8240 /** 8241 * Destroy the global meter drop table. 8242 * 8243 * @param[in] dev 8244 * Pointer to Ethernet device. 8245 */ 8246 void 8247 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev) 8248 { 8249 const struct mlx5_flow_driver_ops *fops; 8250 8251 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8252 fops->destroy_mtr_drop_tbls(dev); 8253 } 8254 8255 /** 8256 * Destroy the sub policy table with RX queue. 8257 * 8258 * @param[in] dev 8259 * Pointer to Ethernet device. 8260 * @param[in] mtr_policy 8261 * Pointer to meter policy table. 8262 */ 8263 void 8264 mlx5_flow_destroy_sub_policy_with_rxq(struct rte_eth_dev *dev, 8265 struct mlx5_flow_meter_policy *mtr_policy) 8266 { 8267 const struct mlx5_flow_driver_ops *fops; 8268 8269 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8270 fops->destroy_sub_policy_with_rxq(dev, mtr_policy); 8271 } 8272 8273 /** 8274 * Allocate the needed aso flow meter id. 8275 * 8276 * @param[in] dev 8277 * Pointer to Ethernet device. 8278 * 8279 * @return 8280 * Index to aso flow meter on success, NULL otherwise. 8281 */ 8282 uint32_t 8283 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev) 8284 { 8285 const struct mlx5_flow_driver_ops *fops; 8286 8287 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8288 return fops->create_meter(dev); 8289 } 8290 8291 /** 8292 * Free the aso flow meter id. 8293 * 8294 * @param[in] dev 8295 * Pointer to Ethernet device. 8296 * @param[in] mtr_idx 8297 * Index to aso flow meter to be free. 8298 * 8299 * @return 8300 * 0 on success. 8301 */ 8302 void 8303 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx) 8304 { 8305 const struct mlx5_flow_driver_ops *fops; 8306 8307 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8308 fops->free_meter(dev, mtr_idx); 8309 } 8310 8311 /** 8312 * Allocate a counter. 8313 * 8314 * @param[in] dev 8315 * Pointer to Ethernet device structure. 8316 * 8317 * @return 8318 * Index to allocated counter on success, 0 otherwise. 8319 */ 8320 uint32_t 8321 mlx5_counter_alloc(struct rte_eth_dev *dev) 8322 { 8323 const struct mlx5_flow_driver_ops *fops; 8324 struct rte_flow_attr attr = { .transfer = 0 }; 8325 8326 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 8327 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8328 return fops->counter_alloc(dev); 8329 } 8330 DRV_LOG(ERR, 8331 "port %u counter allocate is not supported.", 8332 dev->data->port_id); 8333 return 0; 8334 } 8335 8336 /** 8337 * Free a counter. 8338 * 8339 * @param[in] dev 8340 * Pointer to Ethernet device structure. 8341 * @param[in] cnt 8342 * Index to counter to be free. 8343 */ 8344 void 8345 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt) 8346 { 8347 const struct mlx5_flow_driver_ops *fops; 8348 struct rte_flow_attr attr = { .transfer = 0 }; 8349 8350 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 8351 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8352 fops->counter_free(dev, cnt); 8353 return; 8354 } 8355 DRV_LOG(ERR, 8356 "port %u counter free is not supported.", 8357 dev->data->port_id); 8358 } 8359 8360 /** 8361 * Query counter statistics. 8362 * 8363 * @param[in] dev 8364 * Pointer to Ethernet device structure. 8365 * @param[in] cnt 8366 * Index to counter to query. 8367 * @param[in] clear 8368 * Set to clear counter statistics. 8369 * @param[out] pkts 8370 * The counter hits packets number to save. 8371 * @param[out] bytes 8372 * The counter hits bytes number to save. 8373 * 8374 * @return 8375 * 0 on success, a negative errno value otherwise. 8376 */ 8377 int 8378 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt, 8379 bool clear, uint64_t *pkts, uint64_t *bytes, void **action) 8380 { 8381 const struct mlx5_flow_driver_ops *fops; 8382 struct rte_flow_attr attr = { .transfer = 0 }; 8383 8384 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 8385 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 8386 return fops->counter_query(dev, cnt, clear, pkts, 8387 bytes, action); 8388 } 8389 DRV_LOG(ERR, 8390 "port %u counter query is not supported.", 8391 dev->data->port_id); 8392 return -ENOTSUP; 8393 } 8394 8395 /** 8396 * Get information about HWS pre-configurable resources. 8397 * 8398 * @param[in] dev 8399 * Pointer to the rte_eth_dev structure. 8400 * @param[out] port_info 8401 * Pointer to port information. 8402 * @param[out] queue_info 8403 * Pointer to queue information. 8404 * @param[out] error 8405 * Pointer to error structure. 8406 * 8407 * @return 8408 * 0 on success, a negative errno value otherwise and rte_errno is set. 8409 */ 8410 static int 8411 mlx5_flow_info_get(struct rte_eth_dev *dev, 8412 struct rte_flow_port_info *port_info, 8413 struct rte_flow_queue_info *queue_info, 8414 struct rte_flow_error *error) 8415 { 8416 const struct mlx5_flow_driver_ops *fops; 8417 struct rte_flow_attr attr = {0}; 8418 8419 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8420 return rte_flow_error_set(error, ENOTSUP, 8421 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8422 NULL, 8423 "info get with incorrect steering mode"); 8424 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8425 return fops->info_get(dev, port_info, queue_info, error); 8426 } 8427 8428 /** 8429 * Configure port HWS resources. 8430 * 8431 * @param[in] dev 8432 * Pointer to the rte_eth_dev structure. 8433 * @param[in] port_attr 8434 * Port configuration attributes. 8435 * @param[in] nb_queue 8436 * Number of queue. 8437 * @param[in] queue_attr 8438 * Array that holds attributes for each flow queue. 8439 * @param[out] error 8440 * Pointer to error structure. 8441 * 8442 * @return 8443 * 0 on success, a negative errno value otherwise and rte_errno is set. 8444 */ 8445 static int 8446 mlx5_flow_port_configure(struct rte_eth_dev *dev, 8447 const struct rte_flow_port_attr *port_attr, 8448 uint16_t nb_queue, 8449 const struct rte_flow_queue_attr *queue_attr[], 8450 struct rte_flow_error *error) 8451 { 8452 const struct mlx5_flow_driver_ops *fops; 8453 struct rte_flow_attr attr = {0}; 8454 8455 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8456 return rte_flow_error_set(error, ENOTSUP, 8457 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8458 NULL, 8459 "port configure with incorrect steering mode"); 8460 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8461 return fops->configure(dev, port_attr, nb_queue, queue_attr, error); 8462 } 8463 8464 /** 8465 * Validate item template. 8466 * 8467 * @param[in] dev 8468 * Pointer to the rte_eth_dev structure. 8469 * @param[in] attr 8470 * Pointer to the item template attributes. 8471 * @param[in] items 8472 * The template item pattern. 8473 * @param[out] error 8474 * Pointer to error structure. 8475 * 8476 * @return 8477 * 0 on success, a negative errno value otherwise and rte_errno is set. 8478 */ 8479 int 8480 mlx5_flow_pattern_validate(struct rte_eth_dev *dev, 8481 const struct rte_flow_pattern_template_attr *attr, 8482 const struct rte_flow_item items[], 8483 struct rte_flow_error *error) 8484 { 8485 const struct mlx5_flow_driver_ops *fops; 8486 struct rte_flow_attr fattr = {0}; 8487 8488 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) { 8489 rte_flow_error_set(error, ENOTSUP, 8490 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 8491 "pattern validate with incorrect steering mode"); 8492 return -ENOTSUP; 8493 } 8494 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8495 return fops->pattern_validate(dev, attr, items, error); 8496 } 8497 8498 /** 8499 * Create flow item template. 8500 * 8501 * @param[in] dev 8502 * Pointer to the rte_eth_dev structure. 8503 * @param[in] attr 8504 * Pointer to the item template attributes. 8505 * @param[in] items 8506 * The template item pattern. 8507 * @param[out] error 8508 * Pointer to error structure. 8509 * 8510 * @return 8511 * 0 on success, a negative errno value otherwise and rte_errno is set. 8512 */ 8513 static struct rte_flow_pattern_template * 8514 mlx5_flow_pattern_template_create(struct rte_eth_dev *dev, 8515 const struct rte_flow_pattern_template_attr *attr, 8516 const struct rte_flow_item items[], 8517 struct rte_flow_error *error) 8518 { 8519 const struct mlx5_flow_driver_ops *fops; 8520 struct rte_flow_attr fattr = {0}; 8521 8522 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) { 8523 rte_flow_error_set(error, ENOTSUP, 8524 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8525 NULL, 8526 "pattern create with incorrect steering mode"); 8527 return NULL; 8528 } 8529 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8530 return fops->pattern_template_create(dev, attr, items, error); 8531 } 8532 8533 /** 8534 * Destroy flow item template. 8535 * 8536 * @param[in] dev 8537 * Pointer to the rte_eth_dev structure. 8538 * @param[in] template 8539 * Pointer to the item template to be destroyed. 8540 * @param[out] error 8541 * Pointer to error structure. 8542 * 8543 * @return 8544 * 0 on success, a negative errno value otherwise and rte_errno is set. 8545 */ 8546 static int 8547 mlx5_flow_pattern_template_destroy(struct rte_eth_dev *dev, 8548 struct rte_flow_pattern_template *template, 8549 struct rte_flow_error *error) 8550 { 8551 const struct mlx5_flow_driver_ops *fops; 8552 struct rte_flow_attr attr = {0}; 8553 8554 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8555 return rte_flow_error_set(error, ENOTSUP, 8556 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8557 NULL, 8558 "pattern destroy with incorrect steering mode"); 8559 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8560 return fops->pattern_template_destroy(dev, template, error); 8561 } 8562 8563 /** 8564 * Validate flow actions template. 8565 * 8566 * @param[in] dev 8567 * Pointer to the rte_eth_dev structure. 8568 * @param[in] attr 8569 * Pointer to the action template attributes. 8570 * @param[in] actions 8571 * Associated actions (list terminated by the END action). 8572 * @param[in] masks 8573 * List of actions that marks which of the action's member is constant. 8574 * @param[out] error 8575 * Pointer to error structure. 8576 * 8577 * @return 8578 * 0 on success, a negative errno value otherwise and rte_errno is set. 8579 */ 8580 int 8581 mlx5_flow_actions_validate(struct rte_eth_dev *dev, 8582 const struct rte_flow_actions_template_attr *attr, 8583 const struct rte_flow_action actions[], 8584 const struct rte_flow_action masks[], 8585 struct rte_flow_error *error) 8586 { 8587 const struct mlx5_flow_driver_ops *fops; 8588 struct rte_flow_attr fattr = {0}; 8589 8590 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) { 8591 rte_flow_error_set(error, ENOTSUP, 8592 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 8593 "actions validate with incorrect steering mode"); 8594 return -ENOTSUP; 8595 } 8596 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8597 return fops->actions_validate(dev, attr, actions, masks, error); 8598 } 8599 8600 /** 8601 * Create flow item template. 8602 * 8603 * @param[in] dev 8604 * Pointer to the rte_eth_dev structure. 8605 * @param[in] attr 8606 * Pointer to the action template attributes. 8607 * @param[in] actions 8608 * Associated actions (list terminated by the END action). 8609 * @param[in] masks 8610 * List of actions that marks which of the action's member is constant. 8611 * @param[out] error 8612 * Pointer to error structure. 8613 * 8614 * @return 8615 * 0 on success, a negative errno value otherwise and rte_errno is set. 8616 */ 8617 static struct rte_flow_actions_template * 8618 mlx5_flow_actions_template_create(struct rte_eth_dev *dev, 8619 const struct rte_flow_actions_template_attr *attr, 8620 const struct rte_flow_action actions[], 8621 const struct rte_flow_action masks[], 8622 struct rte_flow_error *error) 8623 { 8624 const struct mlx5_flow_driver_ops *fops; 8625 struct rte_flow_attr fattr = {0}; 8626 8627 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) { 8628 rte_flow_error_set(error, ENOTSUP, 8629 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8630 NULL, 8631 "action create with incorrect steering mode"); 8632 return NULL; 8633 } 8634 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8635 return fops->actions_template_create(dev, attr, actions, masks, error); 8636 } 8637 8638 /** 8639 * Destroy flow action template. 8640 * 8641 * @param[in] dev 8642 * Pointer to the rte_eth_dev structure. 8643 * @param[in] template 8644 * Pointer to the action template to be destroyed. 8645 * @param[out] error 8646 * Pointer to error structure. 8647 * 8648 * @return 8649 * 0 on success, a negative errno value otherwise and rte_errno is set. 8650 */ 8651 static int 8652 mlx5_flow_actions_template_destroy(struct rte_eth_dev *dev, 8653 struct rte_flow_actions_template *template, 8654 struct rte_flow_error *error) 8655 { 8656 const struct mlx5_flow_driver_ops *fops; 8657 struct rte_flow_attr attr = {0}; 8658 8659 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8660 return rte_flow_error_set(error, ENOTSUP, 8661 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8662 NULL, 8663 "action destroy with incorrect steering mode"); 8664 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8665 return fops->actions_template_destroy(dev, template, error); 8666 } 8667 8668 /** 8669 * Create flow table. 8670 * 8671 * @param[in] dev 8672 * Pointer to the rte_eth_dev structure. 8673 * @param[in] attr 8674 * Pointer to the table attributes. 8675 * @param[in] item_templates 8676 * Item template array to be binded to the table. 8677 * @param[in] nb_item_templates 8678 * Number of item template. 8679 * @param[in] action_templates 8680 * Action template array to be binded to the table. 8681 * @param[in] nb_action_templates 8682 * Number of action template. 8683 * @param[out] error 8684 * Pointer to error structure. 8685 * 8686 * @return 8687 * Table on success, NULL otherwise and rte_errno is set. 8688 */ 8689 static struct rte_flow_template_table * 8690 mlx5_flow_table_create(struct rte_eth_dev *dev, 8691 const struct rte_flow_template_table_attr *attr, 8692 struct rte_flow_pattern_template *item_templates[], 8693 uint8_t nb_item_templates, 8694 struct rte_flow_actions_template *action_templates[], 8695 uint8_t nb_action_templates, 8696 struct rte_flow_error *error) 8697 { 8698 const struct mlx5_flow_driver_ops *fops; 8699 struct rte_flow_attr fattr = {0}; 8700 8701 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) { 8702 rte_flow_error_set(error, ENOTSUP, 8703 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8704 NULL, 8705 "table create with incorrect steering mode"); 8706 return NULL; 8707 } 8708 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8709 return fops->template_table_create(dev, 8710 attr, 8711 item_templates, 8712 nb_item_templates, 8713 action_templates, 8714 nb_action_templates, 8715 error); 8716 } 8717 8718 /** 8719 * PMD destroy flow table. 8720 * 8721 * @param[in] dev 8722 * Pointer to the rte_eth_dev structure. 8723 * @param[in] table 8724 * Pointer to the table to be destroyed. 8725 * @param[out] error 8726 * Pointer to error structure. 8727 * 8728 * @return 8729 * 0 on success, a negative errno value otherwise and rte_errno is set. 8730 */ 8731 static int 8732 mlx5_flow_table_destroy(struct rte_eth_dev *dev, 8733 struct rte_flow_template_table *table, 8734 struct rte_flow_error *error) 8735 { 8736 const struct mlx5_flow_driver_ops *fops; 8737 struct rte_flow_attr attr = {0}; 8738 8739 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8740 return rte_flow_error_set(error, ENOTSUP, 8741 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8742 NULL, 8743 "table destroy with incorrect steering mode"); 8744 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8745 return fops->template_table_destroy(dev, table, error); 8746 } 8747 8748 /** 8749 * Enqueue flow creation. 8750 * 8751 * @param[in] dev 8752 * Pointer to the rte_eth_dev structure. 8753 * @param[in] queue_id 8754 * The queue to create the flow. 8755 * @param[in] attr 8756 * Pointer to the flow operation attributes. 8757 * @param[in] items 8758 * Items with flow spec value. 8759 * @param[in] pattern_template_index 8760 * The item pattern flow follows from the table. 8761 * @param[in] actions 8762 * Action with flow spec value. 8763 * @param[in] action_template_index 8764 * The action pattern flow follows from the table. 8765 * @param[in] user_data 8766 * Pointer to the user_data. 8767 * @param[out] error 8768 * Pointer to error structure. 8769 * 8770 * @return 8771 * Flow pointer on success, NULL otherwise and rte_errno is set. 8772 */ 8773 static struct rte_flow * 8774 mlx5_flow_async_flow_create(struct rte_eth_dev *dev, 8775 uint32_t queue_id, 8776 const struct rte_flow_op_attr *attr, 8777 struct rte_flow_template_table *table, 8778 const struct rte_flow_item items[], 8779 uint8_t pattern_template_index, 8780 const struct rte_flow_action actions[], 8781 uint8_t action_template_index, 8782 void *user_data, 8783 struct rte_flow_error *error) 8784 { 8785 const struct mlx5_flow_driver_ops *fops; 8786 struct rte_flow_attr fattr = {0}; 8787 8788 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) { 8789 rte_flow_error_set(error, ENOTSUP, 8790 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8791 NULL, 8792 "flow_q create with incorrect steering mode"); 8793 return NULL; 8794 } 8795 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8796 return fops->async_flow_create(dev, queue_id, attr, table, 8797 items, pattern_template_index, 8798 actions, action_template_index, 8799 user_data, error); 8800 } 8801 8802 /** 8803 * Enqueue flow destruction. 8804 * 8805 * @param[in] dev 8806 * Pointer to the rte_eth_dev structure. 8807 * @param[in] queue 8808 * The queue to destroy the flow. 8809 * @param[in] attr 8810 * Pointer to the flow operation attributes. 8811 * @param[in] flow 8812 * Pointer to the flow to be destroyed. 8813 * @param[in] user_data 8814 * Pointer to the user_data. 8815 * @param[out] error 8816 * Pointer to error structure. 8817 * 8818 * @return 8819 * 0 on success, negative value otherwise and rte_errno is set. 8820 */ 8821 static int 8822 mlx5_flow_async_flow_destroy(struct rte_eth_dev *dev, 8823 uint32_t queue, 8824 const struct rte_flow_op_attr *attr, 8825 struct rte_flow *flow, 8826 void *user_data, 8827 struct rte_flow_error *error) 8828 { 8829 const struct mlx5_flow_driver_ops *fops; 8830 struct rte_flow_attr fattr = {0}; 8831 8832 if (flow_get_drv_type(dev, &fattr) != MLX5_FLOW_TYPE_HW) 8833 return rte_flow_error_set(error, ENOTSUP, 8834 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8835 NULL, 8836 "flow_q destroy with incorrect steering mode"); 8837 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8838 return fops->async_flow_destroy(dev, queue, attr, flow, 8839 user_data, error); 8840 } 8841 8842 /** 8843 * Pull the enqueued flows. 8844 * 8845 * @param[in] dev 8846 * Pointer to the rte_eth_dev structure. 8847 * @param[in] queue 8848 * The queue to pull the result. 8849 * @param[in/out] res 8850 * Array to save the results. 8851 * @param[in] n_res 8852 * Available result with the array. 8853 * @param[out] error 8854 * Pointer to error structure. 8855 * 8856 * @return 8857 * Result number on success, negative value otherwise and rte_errno is set. 8858 */ 8859 static int 8860 mlx5_flow_pull(struct rte_eth_dev *dev, 8861 uint32_t queue, 8862 struct rte_flow_op_result res[], 8863 uint16_t n_res, 8864 struct rte_flow_error *error) 8865 { 8866 const struct mlx5_flow_driver_ops *fops; 8867 struct rte_flow_attr attr = {0}; 8868 8869 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8870 return rte_flow_error_set(error, ENOTSUP, 8871 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8872 NULL, 8873 "flow_q pull with incorrect steering mode"); 8874 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8875 return fops->pull(dev, queue, res, n_res, error); 8876 } 8877 8878 /** 8879 * Push the enqueued flows. 8880 * 8881 * @param[in] dev 8882 * Pointer to the rte_eth_dev structure. 8883 * @param[in] queue 8884 * The queue to push the flows. 8885 * @param[out] error 8886 * Pointer to error structure. 8887 * 8888 * @return 8889 * 0 on success, negative value otherwise and rte_errno is set. 8890 */ 8891 static int 8892 mlx5_flow_push(struct rte_eth_dev *dev, 8893 uint32_t queue, 8894 struct rte_flow_error *error) 8895 { 8896 const struct mlx5_flow_driver_ops *fops; 8897 struct rte_flow_attr attr = {0}; 8898 8899 if (flow_get_drv_type(dev, &attr) != MLX5_FLOW_TYPE_HW) 8900 return rte_flow_error_set(error, ENOTSUP, 8901 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 8902 NULL, 8903 "flow_q push with incorrect steering mode"); 8904 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8905 return fops->push(dev, queue, error); 8906 } 8907 8908 /** 8909 * Create shared action. 8910 * 8911 * @param[in] dev 8912 * Pointer to the rte_eth_dev structure. 8913 * @param[in] queue 8914 * Which queue to be used.. 8915 * @param[in] attr 8916 * Operation attribute. 8917 * @param[in] conf 8918 * Indirect action configuration. 8919 * @param[in] action 8920 * rte_flow action detail. 8921 * @param[in] user_data 8922 * Pointer to the user_data. 8923 * @param[out] error 8924 * Pointer to error structure. 8925 * 8926 * @return 8927 * Action handle on success, NULL otherwise and rte_errno is set. 8928 */ 8929 static struct rte_flow_action_handle * 8930 mlx5_flow_async_action_handle_create(struct rte_eth_dev *dev, uint32_t queue, 8931 const struct rte_flow_op_attr *attr, 8932 const struct rte_flow_indir_action_conf *conf, 8933 const struct rte_flow_action *action, 8934 void *user_data, 8935 struct rte_flow_error *error) 8936 { 8937 const struct mlx5_flow_driver_ops *fops = 8938 flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8939 8940 return fops->async_action_create(dev, queue, attr, conf, action, 8941 user_data, error); 8942 } 8943 8944 /** 8945 * Update shared action. 8946 * 8947 * @param[in] dev 8948 * Pointer to the rte_eth_dev structure. 8949 * @param[in] queue 8950 * Which queue to be used.. 8951 * @param[in] attr 8952 * Operation attribute. 8953 * @param[in] handle 8954 * Action handle to be updated. 8955 * @param[in] update 8956 * Update value. 8957 * @param[in] user_data 8958 * Pointer to the user_data. 8959 * @param[out] error 8960 * Pointer to error structure. 8961 * 8962 * @return 8963 * 0 on success, negative value otherwise and rte_errno is set. 8964 */ 8965 static int 8966 mlx5_flow_async_action_handle_update(struct rte_eth_dev *dev, uint32_t queue, 8967 const struct rte_flow_op_attr *attr, 8968 struct rte_flow_action_handle *handle, 8969 const void *update, 8970 void *user_data, 8971 struct rte_flow_error *error) 8972 { 8973 const struct mlx5_flow_driver_ops *fops = 8974 flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 8975 8976 return fops->async_action_update(dev, queue, attr, handle, 8977 update, user_data, error); 8978 } 8979 8980 /** 8981 * Query shared action. 8982 * 8983 * @param[in] dev 8984 * Pointer to the rte_eth_dev structure. 8985 * @param[in] queue 8986 * Which queue to be used.. 8987 * @param[in] attr 8988 * Operation attribute. 8989 * @param[in] handle 8990 * Action handle to be updated. 8991 * @param[in] data 8992 * Pointer query result data. 8993 * @param[in] user_data 8994 * Pointer to the user_data. 8995 * @param[out] error 8996 * Pointer to error structure. 8997 * 8998 * @return 8999 * 0 on success, negative value otherwise and rte_errno is set. 9000 */ 9001 static int 9002 mlx5_flow_async_action_handle_query(struct rte_eth_dev *dev, uint32_t queue, 9003 const struct rte_flow_op_attr *attr, 9004 const struct rte_flow_action_handle *handle, 9005 void *data, 9006 void *user_data, 9007 struct rte_flow_error *error) 9008 { 9009 const struct mlx5_flow_driver_ops *fops = 9010 flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 9011 9012 return fops->async_action_query(dev, queue, attr, handle, 9013 data, user_data, error); 9014 } 9015 9016 /** 9017 * Destroy shared action. 9018 * 9019 * @param[in] dev 9020 * Pointer to the rte_eth_dev structure. 9021 * @param[in] queue 9022 * Which queue to be used.. 9023 * @param[in] attr 9024 * Operation attribute. 9025 * @param[in] handle 9026 * Action handle to be destroyed. 9027 * @param[in] user_data 9028 * Pointer to the user_data. 9029 * @param[out] error 9030 * Pointer to error structure. 9031 * 9032 * @return 9033 * 0 on success, negative value otherwise and rte_errno is set. 9034 */ 9035 static int 9036 mlx5_flow_async_action_handle_destroy(struct rte_eth_dev *dev, uint32_t queue, 9037 const struct rte_flow_op_attr *attr, 9038 struct rte_flow_action_handle *handle, 9039 void *user_data, 9040 struct rte_flow_error *error) 9041 { 9042 const struct mlx5_flow_driver_ops *fops = 9043 flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 9044 9045 return fops->async_action_destroy(dev, queue, attr, handle, 9046 user_data, error); 9047 } 9048 9049 /** 9050 * Allocate a new memory for the counter values wrapped by all the needed 9051 * management. 9052 * 9053 * @param[in] sh 9054 * Pointer to mlx5_dev_ctx_shared object. 9055 * 9056 * @return 9057 * 0 on success, a negative errno value otherwise. 9058 */ 9059 static int 9060 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh) 9061 { 9062 struct mlx5_counter_stats_mem_mng *mem_mng; 9063 volatile struct flow_counter_stats *raw_data; 9064 int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES; 9065 int size = (sizeof(struct flow_counter_stats) * 9066 MLX5_COUNTERS_PER_POOL + 9067 sizeof(struct mlx5_counter_stats_raw)) * raws_n + 9068 sizeof(struct mlx5_counter_stats_mem_mng); 9069 size_t pgsize = rte_mem_page_size(); 9070 uint8_t *mem; 9071 int ret; 9072 int i; 9073 9074 if (pgsize == (size_t)-1) { 9075 DRV_LOG(ERR, "Failed to get mem page size"); 9076 rte_errno = ENOMEM; 9077 return -ENOMEM; 9078 } 9079 mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY); 9080 if (!mem) { 9081 rte_errno = ENOMEM; 9082 return -ENOMEM; 9083 } 9084 mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1; 9085 size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n; 9086 ret = mlx5_os_wrapped_mkey_create(sh->cdev->ctx, sh->cdev->pd, 9087 sh->cdev->pdn, mem, size, 9088 &mem_mng->wm); 9089 if (ret) { 9090 rte_errno = errno; 9091 mlx5_free(mem); 9092 return -rte_errno; 9093 } 9094 mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size); 9095 raw_data = (volatile struct flow_counter_stats *)mem; 9096 for (i = 0; i < raws_n; ++i) { 9097 mem_mng->raws[i].mem_mng = mem_mng; 9098 mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL; 9099 } 9100 for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i) 9101 LIST_INSERT_HEAD(&sh->sws_cmng.free_stat_raws, 9102 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i, 9103 next); 9104 LIST_INSERT_HEAD(&sh->sws_cmng.mem_mngs, mem_mng, next); 9105 sh->sws_cmng.mem_mng = mem_mng; 9106 return 0; 9107 } 9108 9109 /** 9110 * Set the statistic memory to the new counter pool. 9111 * 9112 * @param[in] sh 9113 * Pointer to mlx5_dev_ctx_shared object. 9114 * @param[in] pool 9115 * Pointer to the pool to set the statistic memory. 9116 * 9117 * @return 9118 * 0 on success, a negative errno value otherwise. 9119 */ 9120 static int 9121 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh, 9122 struct mlx5_flow_counter_pool *pool) 9123 { 9124 struct mlx5_flow_counter_mng *cmng = &sh->sws_cmng; 9125 /* Resize statistic memory once used out. */ 9126 if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) && 9127 mlx5_flow_create_counter_stat_mem_mng(sh)) { 9128 DRV_LOG(ERR, "Cannot resize counter stat mem."); 9129 return -1; 9130 } 9131 rte_spinlock_lock(&pool->sl); 9132 pool->raw = cmng->mem_mng->raws + pool->index % 9133 MLX5_CNT_CONTAINER_RESIZE; 9134 rte_spinlock_unlock(&pool->sl); 9135 pool->raw_hw = NULL; 9136 return 0; 9137 } 9138 9139 #define MLX5_POOL_QUERY_FREQ_US 1000000 9140 9141 /** 9142 * Set the periodic procedure for triggering asynchronous batch queries for all 9143 * the counter pools. 9144 * 9145 * @param[in] sh 9146 * Pointer to mlx5_dev_ctx_shared object. 9147 */ 9148 void 9149 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh) 9150 { 9151 uint32_t pools_n, us; 9152 9153 pools_n = __atomic_load_n(&sh->sws_cmng.n_valid, __ATOMIC_RELAXED); 9154 us = MLX5_POOL_QUERY_FREQ_US / pools_n; 9155 DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us); 9156 if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) { 9157 sh->sws_cmng.query_thread_on = 0; 9158 DRV_LOG(ERR, "Cannot reinitialize query alarm"); 9159 } else { 9160 sh->sws_cmng.query_thread_on = 1; 9161 } 9162 } 9163 9164 /** 9165 * The periodic procedure for triggering asynchronous batch queries for all the 9166 * counter pools. This function is probably called by the host thread. 9167 * 9168 * @param[in] arg 9169 * The parameter for the alarm process. 9170 */ 9171 void 9172 mlx5_flow_query_alarm(void *arg) 9173 { 9174 struct mlx5_dev_ctx_shared *sh = arg; 9175 int ret; 9176 uint16_t pool_index = sh->sws_cmng.pool_index; 9177 struct mlx5_flow_counter_mng *cmng = &sh->sws_cmng; 9178 struct mlx5_flow_counter_pool *pool; 9179 uint16_t n_valid; 9180 9181 if (sh->sws_cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES) 9182 goto set_alarm; 9183 rte_spinlock_lock(&cmng->pool_update_sl); 9184 pool = cmng->pools[pool_index]; 9185 n_valid = cmng->n_valid; 9186 rte_spinlock_unlock(&cmng->pool_update_sl); 9187 /* Set the statistic memory to the new created pool. */ 9188 if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool))) 9189 goto set_alarm; 9190 if (pool->raw_hw) 9191 /* There is a pool query in progress. */ 9192 goto set_alarm; 9193 pool->raw_hw = 9194 LIST_FIRST(&sh->sws_cmng.free_stat_raws); 9195 if (!pool->raw_hw) 9196 /* No free counter statistics raw memory. */ 9197 goto set_alarm; 9198 /* 9199 * Identify the counters released between query trigger and query 9200 * handle more efficiently. The counter released in this gap period 9201 * should wait for a new round of query as the new arrived packets 9202 * will not be taken into account. 9203 */ 9204 pool->query_gen++; 9205 ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0, 9206 MLX5_COUNTERS_PER_POOL, 9207 NULL, NULL, 9208 pool->raw_hw->mem_mng->wm.lkey, 9209 (void *)(uintptr_t) 9210 pool->raw_hw->data, 9211 sh->devx_comp, 9212 (uint64_t)(uintptr_t)pool); 9213 if (ret) { 9214 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID" 9215 " %d", pool->min_dcs->id); 9216 pool->raw_hw = NULL; 9217 goto set_alarm; 9218 } 9219 LIST_REMOVE(pool->raw_hw, next); 9220 sh->sws_cmng.pending_queries++; 9221 pool_index++; 9222 if (pool_index >= n_valid) 9223 pool_index = 0; 9224 set_alarm: 9225 sh->sws_cmng.pool_index = pool_index; 9226 mlx5_set_query_alarm(sh); 9227 } 9228 9229 /** 9230 * Check and callback event for new aged flow in the counter pool 9231 * 9232 * @param[in] sh 9233 * Pointer to mlx5_dev_ctx_shared object. 9234 * @param[in] pool 9235 * Pointer to Current counter pool. 9236 */ 9237 static void 9238 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh, 9239 struct mlx5_flow_counter_pool *pool) 9240 { 9241 struct mlx5_priv *priv; 9242 struct mlx5_flow_counter *cnt; 9243 struct mlx5_age_info *age_info; 9244 struct mlx5_age_param *age_param; 9245 struct mlx5_counter_stats_raw *cur = pool->raw_hw; 9246 struct mlx5_counter_stats_raw *prev = pool->raw; 9247 const uint64_t curr_time = MLX5_CURR_TIME_SEC; 9248 const uint32_t time_delta = curr_time - pool->time_of_last_age_check; 9249 uint16_t expected = AGE_CANDIDATE; 9250 uint32_t i; 9251 9252 pool->time_of_last_age_check = curr_time; 9253 for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) { 9254 cnt = MLX5_POOL_GET_CNT(pool, i); 9255 age_param = MLX5_CNT_TO_AGE(cnt); 9256 if (__atomic_load_n(&age_param->state, 9257 __ATOMIC_RELAXED) != AGE_CANDIDATE) 9258 continue; 9259 if (cur->data[i].hits != prev->data[i].hits) { 9260 __atomic_store_n(&age_param->sec_since_last_hit, 0, 9261 __ATOMIC_RELAXED); 9262 continue; 9263 } 9264 if (__atomic_add_fetch(&age_param->sec_since_last_hit, 9265 time_delta, 9266 __ATOMIC_RELAXED) <= age_param->timeout) 9267 continue; 9268 /** 9269 * Hold the lock first, or if between the 9270 * state AGE_TMOUT and tailq operation the 9271 * release happened, the release procedure 9272 * may delete a non-existent tailq node. 9273 */ 9274 priv = rte_eth_devices[age_param->port_id].data->dev_private; 9275 age_info = GET_PORT_AGE_INFO(priv); 9276 rte_spinlock_lock(&age_info->aged_sl); 9277 if (__atomic_compare_exchange_n(&age_param->state, &expected, 9278 AGE_TMOUT, false, 9279 __ATOMIC_RELAXED, 9280 __ATOMIC_RELAXED)) { 9281 TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next); 9282 MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW); 9283 } 9284 rte_spinlock_unlock(&age_info->aged_sl); 9285 } 9286 mlx5_age_event_prepare(sh); 9287 } 9288 9289 /** 9290 * Handler for the HW respond about ready values from an asynchronous batch 9291 * query. This function is probably called by the host thread. 9292 * 9293 * @param[in] sh 9294 * The pointer to the shared device context. 9295 * @param[in] async_id 9296 * The Devx async ID. 9297 * @param[in] status 9298 * The status of the completion. 9299 */ 9300 void 9301 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh, 9302 uint64_t async_id, int status) 9303 { 9304 struct mlx5_flow_counter_pool *pool = 9305 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id; 9306 struct mlx5_counter_stats_raw *raw_to_free; 9307 uint8_t query_gen = pool->query_gen ^ 1; 9308 struct mlx5_flow_counter_mng *cmng = &sh->sws_cmng; 9309 enum mlx5_counter_type cnt_type = 9310 pool->is_aged ? MLX5_COUNTER_TYPE_AGE : 9311 MLX5_COUNTER_TYPE_ORIGIN; 9312 9313 if (unlikely(status)) { 9314 raw_to_free = pool->raw_hw; 9315 } else { 9316 raw_to_free = pool->raw; 9317 if (pool->is_aged) 9318 mlx5_flow_aging_check(sh, pool); 9319 rte_spinlock_lock(&pool->sl); 9320 pool->raw = pool->raw_hw; 9321 rte_spinlock_unlock(&pool->sl); 9322 /* Be sure the new raw counters data is updated in memory. */ 9323 rte_io_wmb(); 9324 if (!TAILQ_EMPTY(&pool->counters[query_gen])) { 9325 rte_spinlock_lock(&cmng->csl[cnt_type]); 9326 TAILQ_CONCAT(&cmng->counters[cnt_type], 9327 &pool->counters[query_gen], next); 9328 rte_spinlock_unlock(&cmng->csl[cnt_type]); 9329 } 9330 } 9331 LIST_INSERT_HEAD(&sh->sws_cmng.free_stat_raws, raw_to_free, next); 9332 pool->raw_hw = NULL; 9333 sh->sws_cmng.pending_queries--; 9334 } 9335 9336 static int 9337 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table, 9338 const struct flow_grp_info *grp_info, 9339 struct rte_flow_error *error) 9340 { 9341 if (grp_info->transfer && grp_info->external && 9342 grp_info->fdb_def_rule) { 9343 if (group == UINT32_MAX) 9344 return rte_flow_error_set 9345 (error, EINVAL, 9346 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 9347 NULL, 9348 "group index not supported"); 9349 *table = group + 1; 9350 } else { 9351 *table = group; 9352 } 9353 DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table); 9354 return 0; 9355 } 9356 9357 /** 9358 * Translate the rte_flow group index to HW table value. 9359 * 9360 * If tunnel offload is disabled, all group ids converted to flow table 9361 * id using the standard method. 9362 * If tunnel offload is enabled, group id can be converted using the 9363 * standard or tunnel conversion method. Group conversion method 9364 * selection depends on flags in `grp_info` parameter: 9365 * - Internal (grp_info.external == 0) groups conversion uses the 9366 * standard method. 9367 * - Group ids in JUMP action converted with the tunnel conversion. 9368 * - Group id in rule attribute conversion depends on a rule type and 9369 * group id value: 9370 * ** non zero group attributes converted with the tunnel method 9371 * ** zero group attribute in non-tunnel rule is converted using the 9372 * standard method - there's only one root table 9373 * ** zero group attribute in steer tunnel rule is converted with the 9374 * standard method - single root table 9375 * ** zero group attribute in match tunnel rule is a special OvS 9376 * case: that value is used for portability reasons. That group 9377 * id is converted with the tunnel conversion method. 9378 * 9379 * @param[in] dev 9380 * Port device 9381 * @param[in] tunnel 9382 * PMD tunnel offload object 9383 * @param[in] group 9384 * rte_flow group index value. 9385 * @param[out] table 9386 * HW table value. 9387 * @param[in] grp_info 9388 * flags used for conversion 9389 * @param[out] error 9390 * Pointer to error structure. 9391 * 9392 * @return 9393 * 0 on success, a negative errno value otherwise and rte_errno is set. 9394 */ 9395 int 9396 mlx5_flow_group_to_table(struct rte_eth_dev *dev, 9397 const struct mlx5_flow_tunnel *tunnel, 9398 uint32_t group, uint32_t *table, 9399 const struct flow_grp_info *grp_info, 9400 struct rte_flow_error *error) 9401 { 9402 int ret; 9403 bool standard_translation; 9404 9405 if (!grp_info->skip_scale && grp_info->external && 9406 group < MLX5_MAX_TABLES_EXTERNAL) 9407 group *= MLX5_FLOW_TABLE_FACTOR; 9408 if (is_tunnel_offload_active(dev)) { 9409 standard_translation = !grp_info->external || 9410 grp_info->std_tbl_fix; 9411 } else { 9412 standard_translation = true; 9413 } 9414 DRV_LOG(DEBUG, 9415 "port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s", 9416 dev->data->port_id, group, grp_info->transfer, 9417 grp_info->external, grp_info->fdb_def_rule, 9418 standard_translation ? "STANDARD" : "TUNNEL"); 9419 if (standard_translation) 9420 ret = flow_group_to_table(dev->data->port_id, group, table, 9421 grp_info, error); 9422 else 9423 ret = tunnel_flow_group_to_flow_table(dev, tunnel, group, 9424 table, error); 9425 9426 return ret; 9427 } 9428 9429 /** 9430 * Discover availability of metadata reg_c's. 9431 * 9432 * Iteratively use test flows to check availability. 9433 * 9434 * @param[in] dev 9435 * Pointer to the Ethernet device structure. 9436 * 9437 * @return 9438 * 0 on success, a negative errno value otherwise and rte_errno is set. 9439 */ 9440 int 9441 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev) 9442 { 9443 struct mlx5_priv *priv = dev->data->dev_private; 9444 enum modify_reg idx; 9445 int n = 0; 9446 9447 /* reg_c[0] and reg_c[1] are reserved. */ 9448 priv->sh->flow_mreg_c[n++] = REG_C_0; 9449 priv->sh->flow_mreg_c[n++] = REG_C_1; 9450 /* Discover availability of other reg_c's. */ 9451 for (idx = REG_C_2; idx <= REG_C_7; ++idx) { 9452 struct rte_flow_attr attr = { 9453 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 9454 .priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR, 9455 .ingress = 1, 9456 }; 9457 struct rte_flow_item items[] = { 9458 [0] = { 9459 .type = RTE_FLOW_ITEM_TYPE_END, 9460 }, 9461 }; 9462 struct rte_flow_action actions[] = { 9463 [0] = { 9464 .type = (enum rte_flow_action_type) 9465 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 9466 .conf = &(struct mlx5_flow_action_copy_mreg){ 9467 .src = REG_C_1, 9468 .dst = idx, 9469 }, 9470 }, 9471 [1] = { 9472 .type = RTE_FLOW_ACTION_TYPE_JUMP, 9473 .conf = &(struct rte_flow_action_jump){ 9474 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 9475 }, 9476 }, 9477 [2] = { 9478 .type = RTE_FLOW_ACTION_TYPE_END, 9479 }, 9480 }; 9481 uint32_t flow_idx; 9482 struct rte_flow *flow; 9483 struct rte_flow_error error; 9484 9485 if (!priv->sh->config.dv_flow_en) 9486 break; 9487 /* Create internal flow, validation skips copy action. */ 9488 flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_GEN, &attr, 9489 items, actions, false, &error); 9490 flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN], 9491 flow_idx); 9492 if (!flow) 9493 continue; 9494 priv->sh->flow_mreg_c[n++] = idx; 9495 flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN, flow_idx); 9496 } 9497 for (; n < MLX5_MREG_C_NUM; ++n) 9498 priv->sh->flow_mreg_c[n] = REG_NON; 9499 priv->sh->metadata_regc_check_flag = 1; 9500 return 0; 9501 } 9502 9503 int 9504 save_dump_file(const uint8_t *data, uint32_t size, 9505 uint32_t type, uint64_t id, void *arg, FILE *file) 9506 { 9507 char line[BUF_SIZE]; 9508 uint32_t out = 0; 9509 uint32_t k; 9510 uint32_t actions_num; 9511 struct rte_flow_query_count *count; 9512 9513 memset(line, 0, BUF_SIZE); 9514 switch (type) { 9515 case DR_DUMP_REC_TYPE_PMD_MODIFY_HDR: 9516 actions_num = *(uint32_t *)(arg); 9517 out += snprintf(line + out, BUF_SIZE - out, "%d,0x%" PRIx64 ",%d,", 9518 type, id, actions_num); 9519 break; 9520 case DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT: 9521 out += snprintf(line + out, BUF_SIZE - out, "%d,0x%" PRIx64 ",", 9522 type, id); 9523 break; 9524 case DR_DUMP_REC_TYPE_PMD_COUNTER: 9525 count = (struct rte_flow_query_count *)arg; 9526 fprintf(file, 9527 "%d,0x%" PRIx64 ",%" PRIu64 ",%" PRIu64 "\n", 9528 type, id, count->hits, count->bytes); 9529 return 0; 9530 default: 9531 return -1; 9532 } 9533 9534 for (k = 0; k < size; k++) { 9535 /* Make sure we do not overrun the line buffer length. */ 9536 if (out >= BUF_SIZE - 4) { 9537 line[out] = '\0'; 9538 break; 9539 } 9540 out += snprintf(line + out, BUF_SIZE - out, "%02x", 9541 (data[k]) & 0xff); 9542 } 9543 fprintf(file, "%s\n", line); 9544 return 0; 9545 } 9546 9547 int 9548 mlx5_flow_query_counter(struct rte_eth_dev *dev, struct rte_flow *flow, 9549 struct rte_flow_query_count *count, struct rte_flow_error *error) 9550 { 9551 struct rte_flow_action action[2]; 9552 enum mlx5_flow_drv_type ftype; 9553 const struct mlx5_flow_driver_ops *fops; 9554 9555 if (!flow) { 9556 return rte_flow_error_set(error, ENOENT, 9557 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 9558 NULL, 9559 "invalid flow handle"); 9560 } 9561 action[0].type = RTE_FLOW_ACTION_TYPE_COUNT; 9562 action[1].type = RTE_FLOW_ACTION_TYPE_END; 9563 if (flow->counter) { 9564 memset(count, 0, sizeof(struct rte_flow_query_count)); 9565 ftype = (enum mlx5_flow_drv_type)(flow->drv_type); 9566 MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && 9567 ftype < MLX5_FLOW_TYPE_MAX); 9568 fops = flow_get_drv_ops(ftype); 9569 return fops->query(dev, flow, action, count, error); 9570 } 9571 return -1; 9572 } 9573 9574 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 9575 /** 9576 * Dump flow ipool data to file 9577 * 9578 * @param[in] dev 9579 * The pointer to Ethernet device. 9580 * @param[in] file 9581 * A pointer to a file for output. 9582 * @param[out] error 9583 * Perform verbose error reporting if not NULL. PMDs initialize this 9584 * structure in case of error only. 9585 * @return 9586 * 0 on success, a negative value otherwise. 9587 */ 9588 int 9589 mlx5_flow_dev_dump_ipool(struct rte_eth_dev *dev, 9590 struct rte_flow *flow, FILE *file, 9591 struct rte_flow_error *error) 9592 { 9593 struct mlx5_priv *priv = dev->data->dev_private; 9594 struct mlx5_flow_dv_modify_hdr_resource *modify_hdr; 9595 struct mlx5_flow_dv_encap_decap_resource *encap_decap; 9596 uint32_t handle_idx; 9597 struct mlx5_flow_handle *dh; 9598 struct rte_flow_query_count count; 9599 uint32_t actions_num; 9600 const uint8_t *data; 9601 size_t size; 9602 uint64_t id; 9603 uint32_t type; 9604 void *action = NULL; 9605 9606 if (!flow) { 9607 return rte_flow_error_set(error, ENOENT, 9608 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 9609 NULL, 9610 "invalid flow handle"); 9611 } 9612 handle_idx = flow->dev_handles; 9613 /* query counter */ 9614 if (flow->counter && 9615 (!mlx5_counter_query(dev, flow->counter, false, 9616 &count.hits, &count.bytes, &action)) && action) { 9617 id = (uint64_t)(uintptr_t)action; 9618 type = DR_DUMP_REC_TYPE_PMD_COUNTER; 9619 save_dump_file(NULL, 0, type, 9620 id, (void *)&count, file); 9621 } 9622 9623 while (handle_idx) { 9624 dh = mlx5_ipool_get(priv->sh->ipool 9625 [MLX5_IPOOL_MLX5_FLOW], handle_idx); 9626 if (!dh) 9627 continue; 9628 handle_idx = dh->next.next; 9629 9630 /* Get modify_hdr and encap_decap buf from ipools. */ 9631 encap_decap = NULL; 9632 modify_hdr = dh->dvh.modify_hdr; 9633 9634 if (dh->dvh.rix_encap_decap) { 9635 encap_decap = mlx5_ipool_get(priv->sh->ipool 9636 [MLX5_IPOOL_DECAP_ENCAP], 9637 dh->dvh.rix_encap_decap); 9638 } 9639 if (modify_hdr) { 9640 data = (const uint8_t *)modify_hdr->actions; 9641 size = (size_t)(modify_hdr->actions_num) * 8; 9642 id = (uint64_t)(uintptr_t)modify_hdr->action; 9643 actions_num = modify_hdr->actions_num; 9644 type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR; 9645 save_dump_file(data, size, type, id, 9646 (void *)(&actions_num), file); 9647 } 9648 if (encap_decap) { 9649 data = encap_decap->buf; 9650 size = encap_decap->size; 9651 id = (uint64_t)(uintptr_t)encap_decap->action; 9652 type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT; 9653 save_dump_file(data, size, type, 9654 id, NULL, file); 9655 } 9656 } 9657 return 0; 9658 } 9659 9660 /** 9661 * Dump all flow's encap_decap/modify_hdr/counter data to file 9662 * 9663 * @param[in] dev 9664 * The pointer to Ethernet device. 9665 * @param[in] file 9666 * A pointer to a file for output. 9667 * @param[out] error 9668 * Perform verbose error reporting if not NULL. PMDs initialize this 9669 * structure in case of error only. 9670 * @return 9671 * 0 on success, a negative value otherwise. 9672 */ 9673 static int 9674 mlx5_flow_dev_dump_sh_all(struct rte_eth_dev *dev, 9675 FILE *file, struct rte_flow_error *error __rte_unused) 9676 { 9677 struct mlx5_priv *priv = dev->data->dev_private; 9678 struct mlx5_dev_ctx_shared *sh = priv->sh; 9679 struct mlx5_hlist *h; 9680 struct mlx5_flow_dv_modify_hdr_resource *modify_hdr; 9681 struct mlx5_flow_dv_encap_decap_resource *encap_decap; 9682 struct rte_flow_query_count count; 9683 uint32_t actions_num; 9684 const uint8_t *data; 9685 size_t size; 9686 uint64_t id; 9687 uint32_t type; 9688 uint32_t i; 9689 uint32_t j; 9690 struct mlx5_list_inconst *l_inconst; 9691 struct mlx5_list_entry *e; 9692 int lcore_index; 9693 struct mlx5_flow_counter_mng *cmng = &priv->sh->sws_cmng; 9694 uint32_t max; 9695 void *action; 9696 9697 /* encap_decap hlist is lcore_share, get global core cache. */ 9698 i = MLX5_LIST_GLOBAL; 9699 h = sh->encaps_decaps; 9700 if (h) { 9701 for (j = 0; j <= h->mask; j++) { 9702 l_inconst = &h->buckets[j].l; 9703 if (!l_inconst || !l_inconst->cache[i]) 9704 continue; 9705 9706 e = LIST_FIRST(&l_inconst->cache[i]->h); 9707 while (e) { 9708 encap_decap = 9709 (struct mlx5_flow_dv_encap_decap_resource *)e; 9710 data = encap_decap->buf; 9711 size = encap_decap->size; 9712 id = (uint64_t)(uintptr_t)encap_decap->action; 9713 type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT; 9714 save_dump_file(data, size, type, 9715 id, NULL, file); 9716 e = LIST_NEXT(e, next); 9717 } 9718 } 9719 } 9720 9721 /* get modify_hdr */ 9722 h = sh->modify_cmds; 9723 if (h) { 9724 lcore_index = rte_lcore_index(rte_lcore_id()); 9725 if (unlikely(lcore_index == -1)) { 9726 lcore_index = MLX5_LIST_NLCORE; 9727 rte_spinlock_lock(&h->l_const.lcore_lock); 9728 } 9729 i = lcore_index; 9730 9731 for (j = 0; j <= h->mask; j++) { 9732 l_inconst = &h->buckets[j].l; 9733 if (!l_inconst || !l_inconst->cache[i]) 9734 continue; 9735 9736 e = LIST_FIRST(&l_inconst->cache[i]->h); 9737 while (e) { 9738 modify_hdr = 9739 (struct mlx5_flow_dv_modify_hdr_resource *)e; 9740 data = (const uint8_t *)modify_hdr->actions; 9741 size = (size_t)(modify_hdr->actions_num) * 8; 9742 actions_num = modify_hdr->actions_num; 9743 id = (uint64_t)(uintptr_t)modify_hdr->action; 9744 type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR; 9745 save_dump_file(data, size, type, id, 9746 (void *)(&actions_num), file); 9747 e = LIST_NEXT(e, next); 9748 } 9749 } 9750 9751 if (unlikely(lcore_index == MLX5_LIST_NLCORE)) 9752 rte_spinlock_unlock(&h->l_const.lcore_lock); 9753 } 9754 9755 /* get counter */ 9756 MLX5_ASSERT(cmng->n_valid <= cmng->n); 9757 max = MLX5_COUNTERS_PER_POOL * cmng->n_valid; 9758 for (j = 1; j <= max; j++) { 9759 action = NULL; 9760 if ((!mlx5_counter_query(dev, j, false, &count.hits, 9761 &count.bytes, &action)) && action) { 9762 id = (uint64_t)(uintptr_t)action; 9763 type = DR_DUMP_REC_TYPE_PMD_COUNTER; 9764 save_dump_file(NULL, 0, type, 9765 id, (void *)&count, file); 9766 } 9767 } 9768 return 0; 9769 } 9770 #endif 9771 9772 /** 9773 * Dump flow raw hw data to file 9774 * 9775 * @param[in] dev 9776 * The pointer to Ethernet device. 9777 * @param[in] file 9778 * A pointer to a file for output. 9779 * @param[out] error 9780 * Perform verbose error reporting if not NULL. PMDs initialize this 9781 * structure in case of error only. 9782 * @return 9783 * 0 on success, a negative value otherwise. 9784 */ 9785 int 9786 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx, 9787 FILE *file, 9788 struct rte_flow_error *error __rte_unused) 9789 { 9790 struct mlx5_priv *priv = dev->data->dev_private; 9791 struct mlx5_dev_ctx_shared *sh = priv->sh; 9792 uint32_t handle_idx; 9793 int ret; 9794 struct mlx5_flow_handle *dh; 9795 struct rte_flow *flow; 9796 9797 if (!sh->config.dv_flow_en) { 9798 if (fputs("device dv flow disabled\n", file) <= 0) 9799 return -errno; 9800 return -ENOTSUP; 9801 } 9802 9803 /* dump all */ 9804 if (!flow_idx) { 9805 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 9806 if (mlx5_flow_dev_dump_sh_all(dev, file, error)) 9807 return -EINVAL; 9808 #endif 9809 return mlx5_devx_cmd_flow_dump(sh->fdb_domain, 9810 sh->rx_domain, 9811 sh->tx_domain, file); 9812 } 9813 /* dump one */ 9814 flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN], 9815 (uintptr_t)(void *)flow_idx); 9816 if (!flow) 9817 return -EINVAL; 9818 9819 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 9820 mlx5_flow_dev_dump_ipool(dev, flow, file, error); 9821 #endif 9822 handle_idx = flow->dev_handles; 9823 while (handle_idx) { 9824 dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], 9825 handle_idx); 9826 if (!dh) 9827 return -ENOENT; 9828 if (dh->drv_flow) { 9829 ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow, 9830 file); 9831 if (ret) 9832 return -ENOENT; 9833 } 9834 handle_idx = dh->next.next; 9835 } 9836 return 0; 9837 } 9838 9839 /** 9840 * Get aged-out flows. 9841 * 9842 * @param[in] dev 9843 * Pointer to the Ethernet device structure. 9844 * @param[in] context 9845 * The address of an array of pointers to the aged-out flows contexts. 9846 * @param[in] nb_countexts 9847 * The length of context array pointers. 9848 * @param[out] error 9849 * Perform verbose error reporting if not NULL. Initialized in case of 9850 * error only. 9851 * 9852 * @return 9853 * how many contexts get in success, otherwise negative errno value. 9854 * if nb_contexts is 0, return the amount of all aged contexts. 9855 * if nb_contexts is not 0 , return the amount of aged flows reported 9856 * in the context array. 9857 */ 9858 int 9859 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts, 9860 uint32_t nb_contexts, struct rte_flow_error *error) 9861 { 9862 const struct mlx5_flow_driver_ops *fops; 9863 struct rte_flow_attr attr = { .transfer = 0 }; 9864 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, &attr); 9865 9866 if (type == MLX5_FLOW_TYPE_DV || type == MLX5_FLOW_TYPE_HW) { 9867 fops = flow_get_drv_ops(type); 9868 return fops->get_aged_flows(dev, contexts, nb_contexts, error); 9869 } 9870 DRV_LOG(ERR, "port %u get aged flows is not supported.", 9871 dev->data->port_id); 9872 return -ENOTSUP; 9873 } 9874 9875 /** 9876 * Get aged-out flows per HWS queue. 9877 * 9878 * @param[in] dev 9879 * Pointer to the Ethernet device structure. 9880 * @param[in] queue_id 9881 * Flow queue to query. 9882 * @param[in] context 9883 * The address of an array of pointers to the aged-out flows contexts. 9884 * @param[in] nb_countexts 9885 * The length of context array pointers. 9886 * @param[out] error 9887 * Perform verbose error reporting if not NULL. Initialized in case of 9888 * error only. 9889 * 9890 * @return 9891 * how many contexts get in success, otherwise negative errno value. 9892 * if nb_contexts is 0, return the amount of all aged contexts. 9893 * if nb_contexts is not 0 , return the amount of aged flows reported 9894 * in the context array. 9895 */ 9896 int 9897 mlx5_flow_get_q_aged_flows(struct rte_eth_dev *dev, uint32_t queue_id, 9898 void **contexts, uint32_t nb_contexts, 9899 struct rte_flow_error *error) 9900 { 9901 const struct mlx5_flow_driver_ops *fops; 9902 struct rte_flow_attr attr = { 0 }; 9903 9904 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_HW) { 9905 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW); 9906 return fops->get_q_aged_flows(dev, queue_id, contexts, 9907 nb_contexts, error); 9908 } 9909 DRV_LOG(ERR, "port %u queue %u get aged flows is not supported.", 9910 dev->data->port_id, queue_id); 9911 return rte_flow_error_set(error, ENOTSUP, 9912 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 9913 "get Q aged flows with incorrect steering mode"); 9914 } 9915 9916 /* Wrapper for driver action_validate op callback */ 9917 static int 9918 flow_drv_action_validate(struct rte_eth_dev *dev, 9919 const struct rte_flow_indir_action_conf *conf, 9920 const struct rte_flow_action *action, 9921 const struct mlx5_flow_driver_ops *fops, 9922 struct rte_flow_error *error) 9923 { 9924 static const char err_msg[] = "indirect action validation unsupported"; 9925 9926 if (!fops->action_validate) { 9927 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 9928 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 9929 NULL, err_msg); 9930 return -rte_errno; 9931 } 9932 return fops->action_validate(dev, conf, action, error); 9933 } 9934 9935 /** 9936 * Destroys the shared action by handle. 9937 * 9938 * @param dev 9939 * Pointer to Ethernet device structure. 9940 * @param[in] handle 9941 * Handle for the indirect action object to be destroyed. 9942 * @param[out] error 9943 * Perform verbose error reporting if not NULL. PMDs initialize this 9944 * structure in case of error only. 9945 * 9946 * @return 9947 * 0 on success, a negative errno value otherwise and rte_errno is set. 9948 * 9949 * @note: wrapper for driver action_create op callback. 9950 */ 9951 static int 9952 mlx5_action_handle_destroy(struct rte_eth_dev *dev, 9953 struct rte_flow_action_handle *handle, 9954 struct rte_flow_error *error) 9955 { 9956 static const char err_msg[] = "indirect action destruction unsupported"; 9957 struct rte_flow_attr attr = { .transfer = 0 }; 9958 const struct mlx5_flow_driver_ops *fops = 9959 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 9960 9961 if (!fops->action_destroy) { 9962 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 9963 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 9964 NULL, err_msg); 9965 return -rte_errno; 9966 } 9967 return fops->action_destroy(dev, handle, error); 9968 } 9969 9970 /* Wrapper for driver action_destroy op callback */ 9971 static int 9972 flow_drv_action_update(struct rte_eth_dev *dev, 9973 struct rte_flow_action_handle *handle, 9974 const void *update, 9975 const struct mlx5_flow_driver_ops *fops, 9976 struct rte_flow_error *error) 9977 { 9978 static const char err_msg[] = "indirect action update unsupported"; 9979 9980 if (!fops->action_update) { 9981 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 9982 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 9983 NULL, err_msg); 9984 return -rte_errno; 9985 } 9986 return fops->action_update(dev, handle, update, error); 9987 } 9988 9989 /* Wrapper for driver action_destroy op callback */ 9990 static int 9991 flow_drv_action_query(struct rte_eth_dev *dev, 9992 const struct rte_flow_action_handle *handle, 9993 void *data, 9994 const struct mlx5_flow_driver_ops *fops, 9995 struct rte_flow_error *error) 9996 { 9997 static const char err_msg[] = "indirect action query unsupported"; 9998 9999 if (!fops->action_query) { 10000 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 10001 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 10002 NULL, err_msg); 10003 return -rte_errno; 10004 } 10005 return fops->action_query(dev, handle, data, error); 10006 } 10007 10008 /** 10009 * Create indirect action for reuse in multiple flow rules. 10010 * 10011 * @param dev 10012 * Pointer to Ethernet device structure. 10013 * @param conf 10014 * Pointer to indirect action object configuration. 10015 * @param[in] action 10016 * Action configuration for indirect action object creation. 10017 * @param[out] error 10018 * Perform verbose error reporting if not NULL. PMDs initialize this 10019 * structure in case of error only. 10020 * @return 10021 * A valid handle in case of success, NULL otherwise and rte_errno is set. 10022 */ 10023 static struct rte_flow_action_handle * 10024 mlx5_action_handle_create(struct rte_eth_dev *dev, 10025 const struct rte_flow_indir_action_conf *conf, 10026 const struct rte_flow_action *action, 10027 struct rte_flow_error *error) 10028 { 10029 static const char err_msg[] = "indirect action creation unsupported"; 10030 struct rte_flow_attr attr = { .transfer = 0 }; 10031 const struct mlx5_flow_driver_ops *fops = 10032 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 10033 10034 if (flow_drv_action_validate(dev, conf, action, fops, error)) 10035 return NULL; 10036 if (!fops->action_create) { 10037 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 10038 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 10039 NULL, err_msg); 10040 return NULL; 10041 } 10042 return fops->action_create(dev, conf, action, error); 10043 } 10044 10045 /** 10046 * Updates inplace the indirect action configuration pointed by *handle* 10047 * with the configuration provided as *update* argument. 10048 * The update of the indirect action configuration effects all flow rules 10049 * reusing the action via handle. 10050 * 10051 * @param dev 10052 * Pointer to Ethernet device structure. 10053 * @param[in] handle 10054 * Handle for the indirect action to be updated. 10055 * @param[in] update 10056 * Action specification used to modify the action pointed by handle. 10057 * *update* could be of same type with the action pointed by the *handle* 10058 * handle argument, or some other structures like a wrapper, depending on 10059 * the indirect action type. 10060 * @param[out] error 10061 * Perform verbose error reporting if not NULL. PMDs initialize this 10062 * structure in case of error only. 10063 * 10064 * @return 10065 * 0 on success, a negative errno value otherwise and rte_errno is set. 10066 */ 10067 static int 10068 mlx5_action_handle_update(struct rte_eth_dev *dev, 10069 struct rte_flow_action_handle *handle, 10070 const void *update, 10071 struct rte_flow_error *error) 10072 { 10073 struct rte_flow_attr attr = { .transfer = 0 }; 10074 const struct mlx5_flow_driver_ops *fops = 10075 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 10076 int ret; 10077 10078 ret = flow_drv_action_validate(dev, NULL, 10079 (const struct rte_flow_action *)update, fops, error); 10080 if (ret) 10081 return ret; 10082 return flow_drv_action_update(dev, handle, update, fops, 10083 error); 10084 } 10085 10086 /** 10087 * Query the indirect action by handle. 10088 * 10089 * This function allows retrieving action-specific data such as counters. 10090 * Data is gathered by special action which may be present/referenced in 10091 * more than one flow rule definition. 10092 * 10093 * see @RTE_FLOW_ACTION_TYPE_COUNT 10094 * 10095 * @param dev 10096 * Pointer to Ethernet device structure. 10097 * @param[in] handle 10098 * Handle for the indirect action to query. 10099 * @param[in, out] data 10100 * Pointer to storage for the associated query data type. 10101 * @param[out] error 10102 * Perform verbose error reporting if not NULL. PMDs initialize this 10103 * structure in case of error only. 10104 * 10105 * @return 10106 * 0 on success, a negative errno value otherwise and rte_errno is set. 10107 */ 10108 static int 10109 mlx5_action_handle_query(struct rte_eth_dev *dev, 10110 const struct rte_flow_action_handle *handle, 10111 void *data, 10112 struct rte_flow_error *error) 10113 { 10114 struct rte_flow_attr attr = { .transfer = 0 }; 10115 const struct mlx5_flow_driver_ops *fops = 10116 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 10117 10118 return flow_drv_action_query(dev, handle, data, fops, error); 10119 } 10120 10121 /** 10122 * Destroy all indirect actions (shared RSS). 10123 * 10124 * @param dev 10125 * Pointer to Ethernet device. 10126 * 10127 * @return 10128 * 0 on success, a negative errno value otherwise and rte_errno is set. 10129 */ 10130 int 10131 mlx5_action_handle_flush(struct rte_eth_dev *dev) 10132 { 10133 struct rte_flow_error error; 10134 struct mlx5_priv *priv = dev->data->dev_private; 10135 struct mlx5_shared_action_rss *shared_rss; 10136 int ret = 0; 10137 uint32_t idx; 10138 10139 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 10140 priv->rss_shared_actions, idx, shared_rss, next) { 10141 ret |= mlx5_action_handle_destroy(dev, 10142 (struct rte_flow_action_handle *)(uintptr_t)idx, &error); 10143 } 10144 return ret; 10145 } 10146 10147 /** 10148 * Validate existing indirect actions against current device configuration 10149 * and attach them to device resources. 10150 * 10151 * @param dev 10152 * Pointer to Ethernet device. 10153 * 10154 * @return 10155 * 0 on success, a negative errno value otherwise and rte_errno is set. 10156 */ 10157 int 10158 mlx5_action_handle_attach(struct rte_eth_dev *dev) 10159 { 10160 struct mlx5_priv *priv = dev->data->dev_private; 10161 int ret = 0; 10162 struct mlx5_ind_table_obj *ind_tbl, *ind_tbl_last; 10163 10164 LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) { 10165 const char *message; 10166 uint32_t queue_idx; 10167 10168 ret = mlx5_validate_rss_queues(dev, ind_tbl->queues, 10169 ind_tbl->queues_n, 10170 &message, &queue_idx); 10171 if (ret != 0) { 10172 DRV_LOG(ERR, "Port %u cannot use queue %u in RSS: %s", 10173 dev->data->port_id, ind_tbl->queues[queue_idx], 10174 message); 10175 break; 10176 } 10177 } 10178 if (ret != 0) 10179 return ret; 10180 LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) { 10181 ret = mlx5_ind_table_obj_attach(dev, ind_tbl); 10182 if (ret != 0) { 10183 DRV_LOG(ERR, "Port %u could not attach " 10184 "indirection table obj %p", 10185 dev->data->port_id, (void *)ind_tbl); 10186 goto error; 10187 } 10188 } 10189 10190 return 0; 10191 error: 10192 ind_tbl_last = ind_tbl; 10193 LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) { 10194 if (ind_tbl == ind_tbl_last) 10195 break; 10196 if (mlx5_ind_table_obj_detach(dev, ind_tbl) != 0) 10197 DRV_LOG(CRIT, "Port %u could not detach " 10198 "indirection table obj %p on rollback", 10199 dev->data->port_id, (void *)ind_tbl); 10200 } 10201 return ret; 10202 } 10203 10204 /** 10205 * Detach indirect actions of the device from its resources. 10206 * 10207 * @param dev 10208 * Pointer to Ethernet device. 10209 * 10210 * @return 10211 * 0 on success, a negative errno value otherwise and rte_errno is set. 10212 */ 10213 int 10214 mlx5_action_handle_detach(struct rte_eth_dev *dev) 10215 { 10216 struct mlx5_priv *priv = dev->data->dev_private; 10217 int ret = 0; 10218 struct mlx5_ind_table_obj *ind_tbl, *ind_tbl_last; 10219 10220 LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) { 10221 ret = mlx5_ind_table_obj_detach(dev, ind_tbl); 10222 if (ret != 0) { 10223 DRV_LOG(ERR, "Port %u could not detach " 10224 "indirection table obj %p", 10225 dev->data->port_id, (void *)ind_tbl); 10226 goto error; 10227 } 10228 } 10229 return 0; 10230 error: 10231 ind_tbl_last = ind_tbl; 10232 LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) { 10233 if (ind_tbl == ind_tbl_last) 10234 break; 10235 if (mlx5_ind_table_obj_attach(dev, ind_tbl) != 0) 10236 DRV_LOG(CRIT, "Port %u could not attach " 10237 "indirection table obj %p on rollback", 10238 dev->data->port_id, (void *)ind_tbl); 10239 } 10240 return ret; 10241 } 10242 10243 #ifndef HAVE_MLX5DV_DR 10244 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1)) 10245 #else 10246 #define MLX5_DOMAIN_SYNC_FLOW \ 10247 (MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW) 10248 #endif 10249 10250 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains) 10251 { 10252 struct rte_eth_dev *dev = &rte_eth_devices[port_id]; 10253 const struct mlx5_flow_driver_ops *fops; 10254 int ret; 10255 struct rte_flow_attr attr = { .transfer = 0 }; 10256 10257 fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 10258 ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW); 10259 if (ret > 0) 10260 ret = -ret; 10261 return ret; 10262 } 10263 10264 const struct mlx5_flow_tunnel * 10265 mlx5_get_tof(const struct rte_flow_item *item, 10266 const struct rte_flow_action *action, 10267 enum mlx5_tof_rule_type *rule_type) 10268 { 10269 for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 10270 if (item->type == (typeof(item->type)) 10271 MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) { 10272 *rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE; 10273 return flow_items_to_tunnel(item); 10274 } 10275 } 10276 for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) { 10277 if (action->type == (typeof(action->type)) 10278 MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) { 10279 *rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE; 10280 return flow_actions_to_tunnel(action); 10281 } 10282 } 10283 return NULL; 10284 } 10285 10286 /** 10287 * tunnel offload functionality is defined for DV environment only 10288 */ 10289 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 10290 __extension__ 10291 union tunnel_offload_mark { 10292 uint32_t val; 10293 struct { 10294 uint32_t app_reserve:8; 10295 uint32_t table_id:15; 10296 uint32_t transfer:1; 10297 uint32_t _unused_:8; 10298 }; 10299 }; 10300 10301 static bool 10302 mlx5_access_tunnel_offload_db 10303 (struct rte_eth_dev *dev, 10304 bool (*match)(struct rte_eth_dev *, 10305 struct mlx5_flow_tunnel *, const void *), 10306 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *), 10307 void (*miss)(struct rte_eth_dev *, void *), 10308 void *ctx, bool lock_op); 10309 10310 static int 10311 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 10312 struct rte_flow *flow, 10313 const struct rte_flow_attr *attr, 10314 const struct rte_flow_action *app_actions, 10315 uint32_t flow_idx, 10316 const struct mlx5_flow_tunnel *tunnel, 10317 struct tunnel_default_miss_ctx *ctx, 10318 struct rte_flow_error *error) 10319 { 10320 struct mlx5_priv *priv = dev->data->dev_private; 10321 struct mlx5_flow *dev_flow; 10322 struct rte_flow_attr miss_attr = *attr; 10323 const struct rte_flow_item miss_items[2] = { 10324 { 10325 .type = RTE_FLOW_ITEM_TYPE_ETH, 10326 .spec = NULL, 10327 .last = NULL, 10328 .mask = NULL 10329 }, 10330 { 10331 .type = RTE_FLOW_ITEM_TYPE_END, 10332 .spec = NULL, 10333 .last = NULL, 10334 .mask = NULL 10335 } 10336 }; 10337 union tunnel_offload_mark mark_id; 10338 struct rte_flow_action_mark miss_mark; 10339 struct rte_flow_action miss_actions[3] = { 10340 [0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark }, 10341 [2] = { .type = RTE_FLOW_ACTION_TYPE_END, .conf = NULL } 10342 }; 10343 const struct rte_flow_action_jump *jump_data; 10344 uint32_t i, flow_table = 0; /* prevent compilation warning */ 10345 struct flow_grp_info grp_info = { 10346 .external = 1, 10347 .transfer = attr->transfer, 10348 .fdb_def_rule = !!priv->fdb_def_rule, 10349 .std_tbl_fix = 0, 10350 }; 10351 int ret; 10352 10353 if (!attr->transfer) { 10354 uint32_t q_size; 10355 10356 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS; 10357 q_size = priv->reta_idx_n * sizeof(ctx->queue[0]); 10358 ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size, 10359 0, SOCKET_ID_ANY); 10360 if (!ctx->queue) 10361 return rte_flow_error_set 10362 (error, ENOMEM, 10363 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 10364 NULL, "invalid default miss RSS"); 10365 ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT, 10366 ctx->action_rss.level = 0, 10367 ctx->action_rss.types = priv->rss_conf.rss_hf, 10368 ctx->action_rss.key_len = priv->rss_conf.rss_key_len, 10369 ctx->action_rss.queue_num = priv->reta_idx_n, 10370 ctx->action_rss.key = priv->rss_conf.rss_key, 10371 ctx->action_rss.queue = ctx->queue; 10372 if (!priv->reta_idx_n || !priv->rxqs_n) 10373 return rte_flow_error_set 10374 (error, EINVAL, 10375 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 10376 NULL, "invalid port configuration"); 10377 if (!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)) 10378 ctx->action_rss.types = 0; 10379 for (i = 0; i != priv->reta_idx_n; ++i) 10380 ctx->queue[i] = (*priv->reta_idx)[i]; 10381 } else { 10382 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP; 10383 ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP; 10384 } 10385 miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw; 10386 for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++); 10387 jump_data = app_actions->conf; 10388 miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY; 10389 miss_attr.group = jump_data->group; 10390 ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group, 10391 &flow_table, &grp_info, error); 10392 if (ret) 10393 return rte_flow_error_set(error, EINVAL, 10394 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 10395 NULL, "invalid tunnel id"); 10396 mark_id.app_reserve = 0; 10397 mark_id.table_id = tunnel_flow_tbl_to_id(flow_table); 10398 mark_id.transfer = !!attr->transfer; 10399 mark_id._unused_ = 0; 10400 miss_mark.id = mark_id.val; 10401 dev_flow = flow_drv_prepare(dev, flow, &miss_attr, 10402 miss_items, miss_actions, flow_idx, error); 10403 if (!dev_flow) 10404 return -rte_errno; 10405 dev_flow->flow = flow; 10406 dev_flow->external = true; 10407 dev_flow->tunnel = tunnel; 10408 dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE; 10409 /* Subflow object was created, we must include one in the list. */ 10410 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 10411 dev_flow->handle, next); 10412 DRV_LOG(DEBUG, 10413 "port %u tunnel type=%d id=%u miss rule priority=%u group=%u", 10414 dev->data->port_id, tunnel->app_tunnel.type, 10415 tunnel->tunnel_id, miss_attr.priority, miss_attr.group); 10416 ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items, 10417 miss_actions, error); 10418 if (!ret) 10419 ret = flow_mreg_update_copy_table(dev, flow, miss_actions, 10420 error); 10421 10422 return ret; 10423 } 10424 10425 static const struct mlx5_flow_tbl_data_entry * 10426 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark) 10427 { 10428 struct mlx5_priv *priv = dev->data->dev_private; 10429 struct mlx5_dev_ctx_shared *sh = priv->sh; 10430 struct mlx5_list_entry *he; 10431 union tunnel_offload_mark mbits = { .val = mark }; 10432 union mlx5_flow_tbl_key table_key = { 10433 { 10434 .level = tunnel_id_to_flow_tbl(mbits.table_id), 10435 .id = 0, 10436 .reserved = 0, 10437 .dummy = 0, 10438 .is_fdb = !!mbits.transfer, 10439 .is_egress = 0, 10440 } 10441 }; 10442 struct mlx5_flow_cb_ctx ctx = { 10443 .data = &table_key.v64, 10444 }; 10445 10446 he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, &ctx); 10447 return he ? 10448 container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL; 10449 } 10450 10451 static void 10452 mlx5_flow_tunnel_grp2tbl_remove_cb(void *tool_ctx, 10453 struct mlx5_list_entry *entry) 10454 { 10455 struct mlx5_dev_ctx_shared *sh = tool_ctx; 10456 struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash); 10457 10458 mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 10459 tunnel_flow_tbl_to_id(tte->flow_table)); 10460 mlx5_free(tte); 10461 } 10462 10463 static int 10464 mlx5_flow_tunnel_grp2tbl_match_cb(void *tool_ctx __rte_unused, 10465 struct mlx5_list_entry *entry, void *cb_ctx) 10466 { 10467 struct mlx5_flow_cb_ctx *ctx = cb_ctx; 10468 union tunnel_tbl_key tbl = { 10469 .val = *(uint64_t *)(ctx->data), 10470 }; 10471 struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash); 10472 10473 return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group; 10474 } 10475 10476 static struct mlx5_list_entry * 10477 mlx5_flow_tunnel_grp2tbl_create_cb(void *tool_ctx, void *cb_ctx) 10478 { 10479 struct mlx5_dev_ctx_shared *sh = tool_ctx; 10480 struct mlx5_flow_cb_ctx *ctx = cb_ctx; 10481 struct tunnel_tbl_entry *tte; 10482 union tunnel_tbl_key tbl = { 10483 .val = *(uint64_t *)(ctx->data), 10484 }; 10485 10486 tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, 10487 sizeof(*tte), 0, 10488 SOCKET_ID_ANY); 10489 if (!tte) 10490 goto err; 10491 mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 10492 &tte->flow_table); 10493 if (tte->flow_table >= MLX5_MAX_TABLES) { 10494 DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.", 10495 tte->flow_table); 10496 mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 10497 tte->flow_table); 10498 goto err; 10499 } else if (!tte->flow_table) { 10500 goto err; 10501 } 10502 tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table); 10503 tte->tunnel_id = tbl.tunnel_id; 10504 tte->group = tbl.group; 10505 return &tte->hash; 10506 err: 10507 if (tte) 10508 mlx5_free(tte); 10509 return NULL; 10510 } 10511 10512 static struct mlx5_list_entry * 10513 mlx5_flow_tunnel_grp2tbl_clone_cb(void *tool_ctx __rte_unused, 10514 struct mlx5_list_entry *oentry, 10515 void *cb_ctx __rte_unused) 10516 { 10517 struct tunnel_tbl_entry *tte = mlx5_malloc(MLX5_MEM_SYS, sizeof(*tte), 10518 0, SOCKET_ID_ANY); 10519 10520 if (!tte) 10521 return NULL; 10522 memcpy(tte, oentry, sizeof(*tte)); 10523 return &tte->hash; 10524 } 10525 10526 static void 10527 mlx5_flow_tunnel_grp2tbl_clone_free_cb(void *tool_ctx __rte_unused, 10528 struct mlx5_list_entry *entry) 10529 { 10530 struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash); 10531 10532 mlx5_free(tte); 10533 } 10534 10535 static uint32_t 10536 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 10537 const struct mlx5_flow_tunnel *tunnel, 10538 uint32_t group, uint32_t *table, 10539 struct rte_flow_error *error) 10540 { 10541 struct mlx5_list_entry *he; 10542 struct tunnel_tbl_entry *tte; 10543 union tunnel_tbl_key key = { 10544 .tunnel_id = tunnel ? tunnel->tunnel_id : 0, 10545 .group = group 10546 }; 10547 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 10548 struct mlx5_hlist *group_hash; 10549 struct mlx5_flow_cb_ctx ctx = { 10550 .data = &key.val, 10551 }; 10552 10553 group_hash = tunnel ? tunnel->groups : thub->groups; 10554 he = mlx5_hlist_register(group_hash, key.val, &ctx); 10555 if (!he) 10556 return rte_flow_error_set(error, EINVAL, 10557 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 10558 NULL, 10559 "tunnel group index not supported"); 10560 tte = container_of(he, typeof(*tte), hash); 10561 *table = tte->flow_table; 10562 DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x", 10563 dev->data->port_id, key.tunnel_id, group, *table); 10564 return 0; 10565 } 10566 10567 static void 10568 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, 10569 struct mlx5_flow_tunnel *tunnel) 10570 { 10571 struct mlx5_priv *priv = dev->data->dev_private; 10572 struct mlx5_indexed_pool *ipool; 10573 10574 DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x", 10575 dev->data->port_id, tunnel->tunnel_id); 10576 LIST_REMOVE(tunnel, chain); 10577 mlx5_hlist_destroy(tunnel->groups); 10578 ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID]; 10579 mlx5_ipool_free(ipool, tunnel->tunnel_id); 10580 } 10581 10582 static bool 10583 mlx5_access_tunnel_offload_db 10584 (struct rte_eth_dev *dev, 10585 bool (*match)(struct rte_eth_dev *, 10586 struct mlx5_flow_tunnel *, const void *), 10587 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *), 10588 void (*miss)(struct rte_eth_dev *, void *), 10589 void *ctx, bool lock_op) 10590 { 10591 bool verdict = false; 10592 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 10593 struct mlx5_flow_tunnel *tunnel; 10594 10595 rte_spinlock_lock(&thub->sl); 10596 LIST_FOREACH(tunnel, &thub->tunnels, chain) { 10597 verdict = match(dev, tunnel, (const void *)ctx); 10598 if (verdict) 10599 break; 10600 } 10601 if (!lock_op) 10602 rte_spinlock_unlock(&thub->sl); 10603 if (verdict && hit) 10604 hit(dev, tunnel, ctx); 10605 if (!verdict && miss) 10606 miss(dev, ctx); 10607 if (lock_op) 10608 rte_spinlock_unlock(&thub->sl); 10609 10610 return verdict; 10611 } 10612 10613 struct tunnel_db_find_tunnel_id_ctx { 10614 uint32_t tunnel_id; 10615 struct mlx5_flow_tunnel *tunnel; 10616 }; 10617 10618 static bool 10619 find_tunnel_id_match(struct rte_eth_dev *dev, 10620 struct mlx5_flow_tunnel *tunnel, const void *x) 10621 { 10622 const struct tunnel_db_find_tunnel_id_ctx *ctx = x; 10623 10624 RTE_SET_USED(dev); 10625 return tunnel->tunnel_id == ctx->tunnel_id; 10626 } 10627 10628 static void 10629 find_tunnel_id_hit(struct rte_eth_dev *dev, 10630 struct mlx5_flow_tunnel *tunnel, void *x) 10631 { 10632 struct tunnel_db_find_tunnel_id_ctx *ctx = x; 10633 RTE_SET_USED(dev); 10634 ctx->tunnel = tunnel; 10635 } 10636 10637 static struct mlx5_flow_tunnel * 10638 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id) 10639 { 10640 struct tunnel_db_find_tunnel_id_ctx ctx = { 10641 .tunnel_id = id, 10642 }; 10643 10644 mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match, 10645 find_tunnel_id_hit, NULL, &ctx, true); 10646 10647 return ctx.tunnel; 10648 } 10649 10650 static struct mlx5_flow_tunnel * 10651 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev, 10652 const struct rte_flow_tunnel *app_tunnel) 10653 { 10654 struct mlx5_priv *priv = dev->data->dev_private; 10655 struct mlx5_indexed_pool *ipool; 10656 struct mlx5_flow_tunnel *tunnel; 10657 uint32_t id; 10658 10659 ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID]; 10660 tunnel = mlx5_ipool_zmalloc(ipool, &id); 10661 if (!tunnel) 10662 return NULL; 10663 if (id >= MLX5_MAX_TUNNELS) { 10664 mlx5_ipool_free(ipool, id); 10665 DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id); 10666 return NULL; 10667 } 10668 tunnel->groups = mlx5_hlist_create("tunnel groups", 64, false, true, 10669 priv->sh, 10670 mlx5_flow_tunnel_grp2tbl_create_cb, 10671 mlx5_flow_tunnel_grp2tbl_match_cb, 10672 mlx5_flow_tunnel_grp2tbl_remove_cb, 10673 mlx5_flow_tunnel_grp2tbl_clone_cb, 10674 mlx5_flow_tunnel_grp2tbl_clone_free_cb); 10675 if (!tunnel->groups) { 10676 mlx5_ipool_free(ipool, id); 10677 return NULL; 10678 } 10679 /* initiate new PMD tunnel */ 10680 memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel)); 10681 tunnel->tunnel_id = id; 10682 tunnel->action.type = (typeof(tunnel->action.type)) 10683 MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET; 10684 tunnel->action.conf = tunnel; 10685 tunnel->item.type = (typeof(tunnel->item.type)) 10686 MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL; 10687 tunnel->item.spec = tunnel; 10688 tunnel->item.last = NULL; 10689 tunnel->item.mask = NULL; 10690 10691 DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x", 10692 dev->data->port_id, tunnel->tunnel_id); 10693 10694 return tunnel; 10695 } 10696 10697 struct tunnel_db_get_tunnel_ctx { 10698 const struct rte_flow_tunnel *app_tunnel; 10699 struct mlx5_flow_tunnel *tunnel; 10700 }; 10701 10702 static bool get_tunnel_match(struct rte_eth_dev *dev, 10703 struct mlx5_flow_tunnel *tunnel, const void *x) 10704 { 10705 const struct tunnel_db_get_tunnel_ctx *ctx = x; 10706 10707 RTE_SET_USED(dev); 10708 return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel, 10709 sizeof(*ctx->app_tunnel)); 10710 } 10711 10712 static void get_tunnel_hit(struct rte_eth_dev *dev, 10713 struct mlx5_flow_tunnel *tunnel, void *x) 10714 { 10715 /* called under tunnel spinlock protection */ 10716 struct tunnel_db_get_tunnel_ctx *ctx = x; 10717 10718 RTE_SET_USED(dev); 10719 tunnel->refctn++; 10720 ctx->tunnel = tunnel; 10721 } 10722 10723 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x) 10724 { 10725 /* called under tunnel spinlock protection */ 10726 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 10727 struct tunnel_db_get_tunnel_ctx *ctx = x; 10728 10729 rte_spinlock_unlock(&thub->sl); 10730 ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel); 10731 rte_spinlock_lock(&thub->sl); 10732 if (ctx->tunnel) { 10733 ctx->tunnel->refctn = 1; 10734 LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain); 10735 } 10736 } 10737 10738 10739 static int 10740 mlx5_get_flow_tunnel(struct rte_eth_dev *dev, 10741 const struct rte_flow_tunnel *app_tunnel, 10742 struct mlx5_flow_tunnel **tunnel) 10743 { 10744 struct tunnel_db_get_tunnel_ctx ctx = { 10745 .app_tunnel = app_tunnel, 10746 }; 10747 10748 mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit, 10749 get_tunnel_miss, &ctx, true); 10750 *tunnel = ctx.tunnel; 10751 return ctx.tunnel ? 0 : -ENOMEM; 10752 } 10753 10754 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id) 10755 { 10756 struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub; 10757 10758 if (!thub) 10759 return; 10760 if (!LIST_EMPTY(&thub->tunnels)) 10761 DRV_LOG(WARNING, "port %u tunnels present", port_id); 10762 mlx5_hlist_destroy(thub->groups); 10763 mlx5_free(thub); 10764 } 10765 10766 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh) 10767 { 10768 int err; 10769 struct mlx5_flow_tunnel_hub *thub; 10770 10771 thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub), 10772 0, SOCKET_ID_ANY); 10773 if (!thub) 10774 return -ENOMEM; 10775 LIST_INIT(&thub->tunnels); 10776 rte_spinlock_init(&thub->sl); 10777 thub->groups = mlx5_hlist_create("flow groups", 64, 10778 false, true, sh, 10779 mlx5_flow_tunnel_grp2tbl_create_cb, 10780 mlx5_flow_tunnel_grp2tbl_match_cb, 10781 mlx5_flow_tunnel_grp2tbl_remove_cb, 10782 mlx5_flow_tunnel_grp2tbl_clone_cb, 10783 mlx5_flow_tunnel_grp2tbl_clone_free_cb); 10784 if (!thub->groups) { 10785 err = -rte_errno; 10786 goto err; 10787 } 10788 sh->tunnel_hub = thub; 10789 10790 return 0; 10791 10792 err: 10793 if (thub->groups) 10794 mlx5_hlist_destroy(thub->groups); 10795 if (thub) 10796 mlx5_free(thub); 10797 return err; 10798 } 10799 10800 static inline int 10801 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev, 10802 struct rte_flow_tunnel *tunnel, 10803 struct rte_flow_error *error) 10804 { 10805 struct mlx5_priv *priv = dev->data->dev_private; 10806 10807 if (!priv->sh->config.dv_flow_en) 10808 return rte_flow_error_set(error, ENOTSUP, 10809 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 10810 "flow DV interface is off"); 10811 if (!is_tunnel_offload_active(dev)) 10812 return rte_flow_error_set(error, ENOTSUP, 10813 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 10814 "tunnel offload was not activated"); 10815 if (!tunnel) 10816 return rte_flow_error_set(error, EINVAL, 10817 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 10818 "no application tunnel"); 10819 switch (tunnel->type) { 10820 default: 10821 return rte_flow_error_set(error, EINVAL, 10822 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 10823 "unsupported tunnel type"); 10824 case RTE_FLOW_ITEM_TYPE_VXLAN: 10825 case RTE_FLOW_ITEM_TYPE_GRE: 10826 case RTE_FLOW_ITEM_TYPE_NVGRE: 10827 case RTE_FLOW_ITEM_TYPE_GENEVE: 10828 break; 10829 } 10830 return 0; 10831 } 10832 10833 static int 10834 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 10835 struct rte_flow_tunnel *app_tunnel, 10836 struct rte_flow_action **actions, 10837 uint32_t *num_of_actions, 10838 struct rte_flow_error *error) 10839 { 10840 struct mlx5_flow_tunnel *tunnel; 10841 int ret = mlx5_flow_tunnel_validate(dev, app_tunnel, error); 10842 10843 if (ret) 10844 return ret; 10845 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 10846 if (ret < 0) { 10847 return rte_flow_error_set(error, ret, 10848 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 10849 "failed to initialize pmd tunnel"); 10850 } 10851 *actions = &tunnel->action; 10852 *num_of_actions = 1; 10853 return 0; 10854 } 10855 10856 static int 10857 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 10858 struct rte_flow_tunnel *app_tunnel, 10859 struct rte_flow_item **items, 10860 uint32_t *num_of_items, 10861 struct rte_flow_error *error) 10862 { 10863 struct mlx5_flow_tunnel *tunnel; 10864 int ret = mlx5_flow_tunnel_validate(dev, app_tunnel, error); 10865 10866 if (ret) 10867 return ret; 10868 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 10869 if (ret < 0) { 10870 return rte_flow_error_set(error, ret, 10871 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 10872 "failed to initialize pmd tunnel"); 10873 } 10874 *items = &tunnel->item; 10875 *num_of_items = 1; 10876 return 0; 10877 } 10878 10879 struct tunnel_db_element_release_ctx { 10880 struct rte_flow_item *items; 10881 struct rte_flow_action *actions; 10882 uint32_t num_elements; 10883 struct rte_flow_error *error; 10884 int ret; 10885 }; 10886 10887 static bool 10888 tunnel_element_release_match(struct rte_eth_dev *dev, 10889 struct mlx5_flow_tunnel *tunnel, const void *x) 10890 { 10891 const struct tunnel_db_element_release_ctx *ctx = x; 10892 10893 RTE_SET_USED(dev); 10894 if (ctx->num_elements != 1) 10895 return false; 10896 else if (ctx->items) 10897 return ctx->items == &tunnel->item; 10898 else if (ctx->actions) 10899 return ctx->actions == &tunnel->action; 10900 10901 return false; 10902 } 10903 10904 static void 10905 tunnel_element_release_hit(struct rte_eth_dev *dev, 10906 struct mlx5_flow_tunnel *tunnel, void *x) 10907 { 10908 struct tunnel_db_element_release_ctx *ctx = x; 10909 ctx->ret = 0; 10910 if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED)) 10911 mlx5_flow_tunnel_free(dev, tunnel); 10912 } 10913 10914 static void 10915 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x) 10916 { 10917 struct tunnel_db_element_release_ctx *ctx = x; 10918 RTE_SET_USED(dev); 10919 ctx->ret = rte_flow_error_set(ctx->error, EINVAL, 10920 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 10921 "invalid argument"); 10922 } 10923 10924 static int 10925 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev, 10926 struct rte_flow_item *pmd_items, 10927 uint32_t num_items, struct rte_flow_error *err) 10928 { 10929 struct tunnel_db_element_release_ctx ctx = { 10930 .items = pmd_items, 10931 .actions = NULL, 10932 .num_elements = num_items, 10933 .error = err, 10934 }; 10935 10936 mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match, 10937 tunnel_element_release_hit, 10938 tunnel_element_release_miss, &ctx, false); 10939 10940 return ctx.ret; 10941 } 10942 10943 static int 10944 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev, 10945 struct rte_flow_action *pmd_actions, 10946 uint32_t num_actions, struct rte_flow_error *err) 10947 { 10948 struct tunnel_db_element_release_ctx ctx = { 10949 .items = NULL, 10950 .actions = pmd_actions, 10951 .num_elements = num_actions, 10952 .error = err, 10953 }; 10954 10955 mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match, 10956 tunnel_element_release_hit, 10957 tunnel_element_release_miss, &ctx, false); 10958 10959 return ctx.ret; 10960 } 10961 10962 static int 10963 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 10964 struct rte_mbuf *m, 10965 struct rte_flow_restore_info *info, 10966 struct rte_flow_error *err) 10967 { 10968 uint64_t ol_flags = m->ol_flags; 10969 const struct mlx5_flow_tbl_data_entry *tble; 10970 const uint64_t mask = RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID; 10971 10972 if (!is_tunnel_offload_active(dev)) { 10973 info->flags = 0; 10974 return 0; 10975 } 10976 10977 if ((ol_flags & mask) != mask) 10978 goto err; 10979 tble = tunnel_mark_decode(dev, m->hash.fdir.hi); 10980 if (!tble) { 10981 DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x", 10982 dev->data->port_id, m->hash.fdir.hi); 10983 goto err; 10984 } 10985 MLX5_ASSERT(tble->tunnel); 10986 memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel)); 10987 info->group_id = tble->group_id; 10988 info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL | 10989 RTE_FLOW_RESTORE_INFO_GROUP_ID | 10990 RTE_FLOW_RESTORE_INFO_ENCAPSULATED; 10991 10992 return 0; 10993 10994 err: 10995 return rte_flow_error_set(err, EINVAL, 10996 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 10997 "failed to get restore info"); 10998 } 10999 11000 #else /* HAVE_IBV_FLOW_DV_SUPPORT */ 11001 static int 11002 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev, 11003 __rte_unused struct rte_flow_tunnel *app_tunnel, 11004 __rte_unused struct rte_flow_action **actions, 11005 __rte_unused uint32_t *num_of_actions, 11006 __rte_unused struct rte_flow_error *error) 11007 { 11008 return -ENOTSUP; 11009 } 11010 11011 static int 11012 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev, 11013 __rte_unused struct rte_flow_tunnel *app_tunnel, 11014 __rte_unused struct rte_flow_item **items, 11015 __rte_unused uint32_t *num_of_items, 11016 __rte_unused struct rte_flow_error *error) 11017 { 11018 return -ENOTSUP; 11019 } 11020 11021 static int 11022 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev, 11023 __rte_unused struct rte_flow_item *pmd_items, 11024 __rte_unused uint32_t num_items, 11025 __rte_unused struct rte_flow_error *err) 11026 { 11027 return -ENOTSUP; 11028 } 11029 11030 static int 11031 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev, 11032 __rte_unused struct rte_flow_action *pmd_action, 11033 __rte_unused uint32_t num_actions, 11034 __rte_unused struct rte_flow_error *err) 11035 { 11036 return -ENOTSUP; 11037 } 11038 11039 static int 11040 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev, 11041 __rte_unused struct rte_mbuf *m, 11042 __rte_unused struct rte_flow_restore_info *i, 11043 __rte_unused struct rte_flow_error *err) 11044 { 11045 return -ENOTSUP; 11046 } 11047 11048 static int 11049 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev, 11050 __rte_unused struct rte_flow *flow, 11051 __rte_unused const struct rte_flow_attr *attr, 11052 __rte_unused const struct rte_flow_action *actions, 11053 __rte_unused uint32_t flow_idx, 11054 __rte_unused const struct mlx5_flow_tunnel *tunnel, 11055 __rte_unused struct tunnel_default_miss_ctx *ctx, 11056 __rte_unused struct rte_flow_error *error) 11057 { 11058 return -ENOTSUP; 11059 } 11060 11061 static struct mlx5_flow_tunnel * 11062 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev, 11063 __rte_unused uint32_t id) 11064 { 11065 return NULL; 11066 } 11067 11068 static void 11069 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev, 11070 __rte_unused struct mlx5_flow_tunnel *tunnel) 11071 { 11072 } 11073 11074 static uint32_t 11075 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev, 11076 __rte_unused const struct mlx5_flow_tunnel *t, 11077 __rte_unused uint32_t group, 11078 __rte_unused uint32_t *table, 11079 struct rte_flow_error *error) 11080 { 11081 return rte_flow_error_set(error, ENOTSUP, 11082 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 11083 "tunnel offload requires DV support"); 11084 } 11085 11086 void 11087 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh, 11088 __rte_unused uint16_t port_id) 11089 { 11090 } 11091 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */ 11092 11093 /* Flex flow item API */ 11094 static struct rte_flow_item_flex_handle * 11095 mlx5_flow_flex_item_create(struct rte_eth_dev *dev, 11096 const struct rte_flow_item_flex_conf *conf, 11097 struct rte_flow_error *error) 11098 { 11099 static const char err_msg[] = "flex item creation unsupported"; 11100 struct mlx5_priv *priv = dev->data->dev_private; 11101 struct rte_flow_attr attr = { .transfer = 0 }; 11102 const struct mlx5_flow_driver_ops *fops = 11103 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 11104 11105 if (!priv->pci_dev) { 11106 rte_flow_error_set(error, ENOTSUP, 11107 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 11108 "create flex item on PF only"); 11109 return NULL; 11110 } 11111 switch (priv->pci_dev->id.device_id) { 11112 case PCI_DEVICE_ID_MELLANOX_CONNECTX6DXBF: 11113 case PCI_DEVICE_ID_MELLANOX_CONNECTX7BF: 11114 break; 11115 default: 11116 rte_flow_error_set(error, ENOTSUP, 11117 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 11118 "flex item available on BlueField ports only"); 11119 return NULL; 11120 } 11121 if (!fops->item_create) { 11122 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 11123 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 11124 NULL, err_msg); 11125 return NULL; 11126 } 11127 return fops->item_create(dev, conf, error); 11128 } 11129 11130 static int 11131 mlx5_flow_flex_item_release(struct rte_eth_dev *dev, 11132 const struct rte_flow_item_flex_handle *handle, 11133 struct rte_flow_error *error) 11134 { 11135 static const char err_msg[] = "flex item release unsupported"; 11136 struct rte_flow_attr attr = { .transfer = 0 }; 11137 const struct mlx5_flow_driver_ops *fops = 11138 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 11139 11140 if (!fops->item_release) { 11141 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 11142 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 11143 NULL, err_msg); 11144 return -rte_errno; 11145 } 11146 return fops->item_release(dev, handle, error); 11147 } 11148 11149 static void 11150 mlx5_dbg__print_pattern(const struct rte_flow_item *item) 11151 { 11152 int ret; 11153 struct rte_flow_error error; 11154 11155 for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 11156 char *item_name; 11157 ret = rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, &item_name, 11158 sizeof(item_name), 11159 (void *)(uintptr_t)item->type, &error); 11160 if (ret > 0) 11161 printf("%s ", item_name); 11162 else 11163 printf("%d\n", (int)item->type); 11164 } 11165 printf("END\n"); 11166 } 11167 11168 static int 11169 mlx5_flow_is_std_vxlan_port(const struct rte_flow_item *udp_item) 11170 { 11171 const struct rte_flow_item_udp *spec = udp_item->spec; 11172 const struct rte_flow_item_udp *mask = udp_item->mask; 11173 uint16_t udp_dport = 0; 11174 11175 if (spec != NULL) { 11176 if (!mask) 11177 mask = &rte_flow_item_udp_mask; 11178 udp_dport = rte_be_to_cpu_16(spec->hdr.dst_port & 11179 mask->hdr.dst_port); 11180 } 11181 return (!udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN); 11182 } 11183 11184 static const struct mlx5_flow_expand_node * 11185 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern, 11186 unsigned int item_idx, 11187 const struct mlx5_flow_expand_node graph[], 11188 const struct mlx5_flow_expand_node *node) 11189 { 11190 const struct rte_flow_item *item = pattern + item_idx, *prev_item; 11191 11192 if (item->type == RTE_FLOW_ITEM_TYPE_VXLAN && 11193 node != NULL && 11194 node->type == RTE_FLOW_ITEM_TYPE_VXLAN) { 11195 /* 11196 * The expansion node is VXLAN and it is also the last 11197 * expandable item in the pattern, so need to continue 11198 * expansion of the inner tunnel. 11199 */ 11200 MLX5_ASSERT(item_idx > 0); 11201 prev_item = pattern + item_idx - 1; 11202 MLX5_ASSERT(prev_item->type == RTE_FLOW_ITEM_TYPE_UDP); 11203 if (mlx5_flow_is_std_vxlan_port(prev_item)) 11204 return &graph[MLX5_EXPANSION_STD_VXLAN]; 11205 return &graph[MLX5_EXPANSION_L3_VXLAN]; 11206 } 11207 return node; 11208 } 11209 11210 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 11211 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 11212 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 11213 }; 11214 11215 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 11216 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 11217 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 11218 { 9, 10, 11 }, { 12, 13, 14 }, 11219 }; 11220 11221 /** 11222 * Discover the number of available flow priorities. 11223 * 11224 * @param dev 11225 * Ethernet device. 11226 * 11227 * @return 11228 * On success, number of available flow priorities. 11229 * On failure, a negative errno-style code and rte_errno is set. 11230 */ 11231 int 11232 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 11233 { 11234 static const uint16_t vprio[] = {8, 16}; 11235 const struct mlx5_priv *priv = dev->data->dev_private; 11236 const struct mlx5_flow_driver_ops *fops; 11237 enum mlx5_flow_drv_type type; 11238 int ret; 11239 11240 type = mlx5_flow_os_get_type(); 11241 if (type == MLX5_FLOW_TYPE_MAX) { 11242 type = MLX5_FLOW_TYPE_VERBS; 11243 if (priv->sh->cdev->config.devx && priv->sh->config.dv_flow_en) 11244 type = MLX5_FLOW_TYPE_DV; 11245 } 11246 fops = flow_get_drv_ops(type); 11247 if (fops->discover_priorities == NULL) { 11248 DRV_LOG(ERR, "Priority discovery not supported"); 11249 rte_errno = ENOTSUP; 11250 return -rte_errno; 11251 } 11252 ret = fops->discover_priorities(dev, vprio, RTE_DIM(vprio)); 11253 if (ret < 0) 11254 return ret; 11255 switch (ret) { 11256 case 8: 11257 ret = RTE_DIM(priority_map_3); 11258 break; 11259 case 16: 11260 ret = RTE_DIM(priority_map_5); 11261 break; 11262 default: 11263 rte_errno = ENOTSUP; 11264 DRV_LOG(ERR, 11265 "port %u maximum priority: %d expected 8/16", 11266 dev->data->port_id, ret); 11267 return -rte_errno; 11268 } 11269 DRV_LOG(INFO, "port %u supported flow priorities:" 11270 " 0-%d for ingress or egress root table," 11271 " 0-%d for non-root table or transfer root table.", 11272 dev->data->port_id, ret - 2, 11273 MLX5_NON_ROOT_FLOW_MAX_PRIO - 1); 11274 return ret; 11275 } 11276 11277 /** 11278 * Adjust flow priority based on the highest layer and the request priority. 11279 * 11280 * @param[in] dev 11281 * Pointer to the Ethernet device structure. 11282 * @param[in] priority 11283 * The rule base priority. 11284 * @param[in] subpriority 11285 * The priority based on the items. 11286 * 11287 * @return 11288 * The new priority. 11289 */ 11290 uint32_t 11291 mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 11292 uint32_t subpriority) 11293 { 11294 uint32_t res = 0; 11295 struct mlx5_priv *priv = dev->data->dev_private; 11296 11297 switch (priv->sh->flow_max_priority) { 11298 case RTE_DIM(priority_map_3): 11299 res = priority_map_3[priority][subpriority]; 11300 break; 11301 case RTE_DIM(priority_map_5): 11302 res = priority_map_5[priority][subpriority]; 11303 break; 11304 } 11305 return res; 11306 } 11307 11308 /** 11309 * Get the priority for sending traffic to kernel table. 11310 * 11311 * @param[in] dev 11312 * Pointer to the Ethernet device structure. 11313 * 11314 * @return 11315 * On success: the value of priority for sending traffic to kernel table 11316 * On failure: -1 11317 */ 11318 uint32_t 11319 mlx5_get_send_to_kernel_priority(struct rte_eth_dev *dev) 11320 { 11321 struct mlx5_priv *priv = dev->data->dev_private; 11322 uint32_t res; 11323 11324 switch (priv->sh->flow_max_priority) { 11325 case RTE_DIM(priority_map_5): 11326 res = 15; 11327 break; 11328 case RTE_DIM(priority_map_3): 11329 res = 7; 11330 break; 11331 default: 11332 DRV_LOG(ERR, 11333 "port %u maximum priority: %d expected 8/16", 11334 dev->data->port_id, priv->sh->flow_max_priority); 11335 res = (uint32_t)-1; 11336 } 11337 return res; 11338 } 11339 11340 /** 11341 * Get the E-Switch Manager vport id. 11342 * 11343 * @param[in] dev 11344 * Pointer to the Ethernet device structure. 11345 * 11346 * @return 11347 * The vport id. 11348 */ 11349 int16_t mlx5_flow_get_esw_manager_vport_id(struct rte_eth_dev *dev) 11350 { 11351 struct mlx5_priv *priv = dev->data->dev_private; 11352 struct mlx5_common_device *cdev = priv->sh->cdev; 11353 11354 /* New FW exposes E-Switch Manager vport ID, can use it directly. */ 11355 if (cdev->config.hca_attr.esw_mgr_vport_id_valid) 11356 return (int16_t)cdev->config.hca_attr.esw_mgr_vport_id; 11357 11358 if (priv->pci_dev == NULL) 11359 return 0; 11360 switch (priv->pci_dev->id.device_id) { 11361 case PCI_DEVICE_ID_MELLANOX_CONNECTX5BF: 11362 case PCI_DEVICE_ID_MELLANOX_CONNECTX6DXBF: 11363 case PCI_DEVICE_ID_MELLANOX_CONNECTX7BF: 11364 /* 11365 * In old FW which doesn't expose the E-Switch Manager vport ID in the capability, 11366 * only the BF embedded CPUs control the E-Switch Manager port. Hence, 11367 * ECPF vport ID is selected and not the host port (0) in any BF case. 11368 */ 11369 return (int16_t)MLX5_ECPF_VPORT_ID; 11370 default: 11371 return MLX5_PF_VPORT_ID; 11372 } 11373 } 11374 11375 /** 11376 * Parse item to get the vport id. 11377 * 11378 * @param[in] dev 11379 * Pointer to the Ethernet device structure. 11380 * @param[in] item 11381 * The src port id match item. 11382 * @param[out] vport_id 11383 * Pointer to put the vport id. 11384 * @param[out] all_ports 11385 * Indicate if the item matches all ports. 11386 * @param[out] error 11387 * Pointer to error structure. 11388 * 11389 * @return 11390 * 0 on success, a negative errno value otherwise and rte_errno is set. 11391 */ 11392 int mlx5_flow_get_item_vport_id(struct rte_eth_dev *dev, 11393 const struct rte_flow_item *item, 11394 uint16_t *vport_id, 11395 bool *all_ports, 11396 struct rte_flow_error *error) 11397 { 11398 struct mlx5_priv *port_priv; 11399 const struct rte_flow_item_port_id *pid_v; 11400 uint32_t esw_mgr_port; 11401 11402 if (item->type != RTE_FLOW_ITEM_TYPE_PORT_ID && 11403 item->type != RTE_FLOW_ITEM_TYPE_REPRESENTED_PORT) 11404 return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 11405 NULL, "Incorrect item type."); 11406 pid_v = item->spec; 11407 if (!pid_v) { 11408 if (all_ports) 11409 *all_ports = (item->type == RTE_FLOW_ITEM_TYPE_REPRESENTED_PORT); 11410 return 0; 11411 } 11412 if (all_ports) 11413 *all_ports = false; 11414 esw_mgr_port = (item->type == RTE_FLOW_ITEM_TYPE_REPRESENTED_PORT) ? 11415 MLX5_REPRESENTED_PORT_ESW_MGR : MLX5_PORT_ESW_MGR; 11416 if (pid_v->id == esw_mgr_port) { 11417 *vport_id = mlx5_flow_get_esw_manager_vport_id(dev); 11418 } else { 11419 port_priv = mlx5_port_to_eswitch_info(pid_v->id, false); 11420 if (!port_priv) 11421 return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 11422 NULL, "Failed to get port info."); 11423 *vport_id = port_priv->representor_id; 11424 } 11425 11426 return 0; 11427 } 11428 11429 int 11430 mlx5_flow_pick_transfer_proxy(struct rte_eth_dev *dev, 11431 uint16_t *proxy_port_id, 11432 struct rte_flow_error *error) 11433 { 11434 const struct mlx5_priv *priv = dev->data->dev_private; 11435 uint16_t port_id; 11436 11437 if (!priv->sh->config.dv_esw_en) 11438 return rte_flow_error_set(error, EINVAL, 11439 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 11440 NULL, 11441 "unable to provide a proxy port" 11442 " without E-Switch configured"); 11443 if (!priv->master && !priv->representor) 11444 return rte_flow_error_set(error, EINVAL, 11445 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 11446 NULL, 11447 "unable to provide a proxy port" 11448 " for port which is not a master" 11449 " or a representor port"); 11450 if (priv->master) { 11451 *proxy_port_id = dev->data->port_id; 11452 return 0; 11453 } 11454 MLX5_ETH_FOREACH_DEV(port_id, dev->device) { 11455 const struct rte_eth_dev *port_dev = &rte_eth_devices[port_id]; 11456 const struct mlx5_priv *port_priv = port_dev->data->dev_private; 11457 11458 if (port_priv->master && 11459 port_priv->domain_id == priv->domain_id) { 11460 *proxy_port_id = port_id; 11461 return 0; 11462 } 11463 } 11464 return rte_flow_error_set(error, ENODEV, 11465 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 11466 NULL, "unable to find a proxy port"); 11467 } 11468