xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision c9902a15bd005b6d4fe072cf7b60fe4ee679155f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdalign.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdbool.h>
10 #include <sys/queue.h>
11 
12 #include <rte_common.h>
13 #include <rte_ether.h>
14 #include <ethdev_driver.h>
15 #include <rte_eal_paging.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21 
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26 
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rx.h"
32 #include "mlx5_tx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     const struct mlx5_flow_tunnel *tunnel,
54 			     struct tunnel_default_miss_ctx *ctx,
55 			     struct rte_flow_error *error);
56 static struct mlx5_flow_tunnel *
57 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
58 static void
59 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
60 static uint32_t
61 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
62 				const struct mlx5_flow_tunnel *tunnel,
63 				uint32_t group, uint32_t *table,
64 				struct rte_flow_error *error);
65 
66 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
67 static void mlx5_flow_pop_thread_workspace(void);
68 
69 
70 /** Device flow drivers. */
71 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
72 
73 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
74 
75 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
76 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
77 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
78 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
79 #endif
80 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
81 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
82 };
83 
84 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
85 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
86 	(const int []){ \
87 		__VA_ARGS__, 0, \
88 	}
89 
90 /** Node object of input graph for mlx5_flow_expand_rss(). */
91 struct mlx5_flow_expand_node {
92 	const int *const next;
93 	/**<
94 	 * List of next node indexes. Index 0 is interpreted as a terminator.
95 	 */
96 	const enum rte_flow_item_type type;
97 	/**< Pattern item type of current node. */
98 	uint64_t rss_types;
99 	/**<
100 	 * RSS types bit-field associated with this node
101 	 * (see ETH_RSS_* definitions).
102 	 */
103 	uint64_t node_flags;
104 	/**<
105 	 *  Bit-fields that define how the node is used in the expansion.
106 	 * (see MLX5_EXPANSION_NODE_* definitions).
107 	 */
108 };
109 
110 /* Optional expand field. The expansion alg will not go deeper. */
111 #define MLX5_EXPANSION_NODE_OPTIONAL (UINT64_C(1) << 0)
112 
113 /* The node is not added implicitly as expansion to the flow pattern.
114  * If the node type does not match the flow pattern item type, the
115  * expansion alg will go deeper to its next items.
116  * In the current implementation, the list of next nodes indexes can
117  * have up to one node with this flag set and it has to be the last
118  * node index (before the list terminator).
119  */
120 #define MLX5_EXPANSION_NODE_EXPLICIT (UINT64_C(1) << 1)
121 
122 /** Object returned by mlx5_flow_expand_rss(). */
123 struct mlx5_flow_expand_rss {
124 	uint32_t entries;
125 	/**< Number of entries @p patterns and @p priorities. */
126 	struct {
127 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
128 		uint32_t priority; /**< Priority offset for each expansion. */
129 	} entry[];
130 };
131 
132 static void
133 mlx5_dbg__print_pattern(const struct rte_flow_item *item);
134 
135 static bool
136 mlx5_flow_is_rss_expandable_item(const struct rte_flow_item *item)
137 {
138 	switch (item->type) {
139 	case RTE_FLOW_ITEM_TYPE_ETH:
140 	case RTE_FLOW_ITEM_TYPE_VLAN:
141 	case RTE_FLOW_ITEM_TYPE_IPV4:
142 	case RTE_FLOW_ITEM_TYPE_IPV6:
143 	case RTE_FLOW_ITEM_TYPE_UDP:
144 	case RTE_FLOW_ITEM_TYPE_TCP:
145 	case RTE_FLOW_ITEM_TYPE_VXLAN:
146 	case RTE_FLOW_ITEM_TYPE_NVGRE:
147 	case RTE_FLOW_ITEM_TYPE_GRE:
148 	case RTE_FLOW_ITEM_TYPE_GENEVE:
149 	case RTE_FLOW_ITEM_TYPE_MPLS:
150 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
151 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
152 	case RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT:
153 	case RTE_FLOW_ITEM_TYPE_GTP:
154 		return true;
155 	default:
156 		break;
157 	}
158 	return false;
159 }
160 
161 static enum rte_flow_item_type
162 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
163 {
164 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
165 	uint16_t ether_type = 0;
166 	uint16_t ether_type_m;
167 	uint8_t ip_next_proto = 0;
168 	uint8_t ip_next_proto_m;
169 
170 	if (item == NULL || item->spec == NULL)
171 		return ret;
172 	switch (item->type) {
173 	case RTE_FLOW_ITEM_TYPE_ETH:
174 		if (item->mask)
175 			ether_type_m = ((const struct rte_flow_item_eth *)
176 						(item->mask))->type;
177 		else
178 			ether_type_m = rte_flow_item_eth_mask.type;
179 		if (ether_type_m != RTE_BE16(0xFFFF))
180 			break;
181 		ether_type = ((const struct rte_flow_item_eth *)
182 				(item->spec))->type;
183 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
184 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
185 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
186 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
187 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
188 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
189 		else
190 			ret = RTE_FLOW_ITEM_TYPE_END;
191 		break;
192 	case RTE_FLOW_ITEM_TYPE_VLAN:
193 		if (item->mask)
194 			ether_type_m = ((const struct rte_flow_item_vlan *)
195 						(item->mask))->inner_type;
196 		else
197 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
198 		if (ether_type_m != RTE_BE16(0xFFFF))
199 			break;
200 		ether_type = ((const struct rte_flow_item_vlan *)
201 				(item->spec))->inner_type;
202 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
203 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
204 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
205 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
206 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
207 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
208 		else
209 			ret = RTE_FLOW_ITEM_TYPE_END;
210 		break;
211 	case RTE_FLOW_ITEM_TYPE_IPV4:
212 		if (item->mask)
213 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
214 					(item->mask))->hdr.next_proto_id;
215 		else
216 			ip_next_proto_m =
217 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
218 		if (ip_next_proto_m != 0xFF)
219 			break;
220 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
221 				(item->spec))->hdr.next_proto_id;
222 		if (ip_next_proto == IPPROTO_UDP)
223 			ret = RTE_FLOW_ITEM_TYPE_UDP;
224 		else if (ip_next_proto == IPPROTO_TCP)
225 			ret = RTE_FLOW_ITEM_TYPE_TCP;
226 		else if (ip_next_proto == IPPROTO_IP)
227 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
228 		else if (ip_next_proto == IPPROTO_IPV6)
229 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
230 		else
231 			ret = RTE_FLOW_ITEM_TYPE_END;
232 		break;
233 	case RTE_FLOW_ITEM_TYPE_IPV6:
234 		if (item->mask)
235 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
236 						(item->mask))->hdr.proto;
237 		else
238 			ip_next_proto_m =
239 				rte_flow_item_ipv6_mask.hdr.proto;
240 		if (ip_next_proto_m != 0xFF)
241 			break;
242 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
243 				(item->spec))->hdr.proto;
244 		if (ip_next_proto == IPPROTO_UDP)
245 			ret = RTE_FLOW_ITEM_TYPE_UDP;
246 		else if (ip_next_proto == IPPROTO_TCP)
247 			ret = RTE_FLOW_ITEM_TYPE_TCP;
248 		else if (ip_next_proto == IPPROTO_IP)
249 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
250 		else if (ip_next_proto == IPPROTO_IPV6)
251 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
252 		else
253 			ret = RTE_FLOW_ITEM_TYPE_END;
254 		break;
255 	default:
256 		ret = RTE_FLOW_ITEM_TYPE_VOID;
257 		break;
258 	}
259 	return ret;
260 }
261 
262 static const int *
263 mlx5_flow_expand_rss_skip_explicit(const struct mlx5_flow_expand_node graph[],
264 		const int *next_node)
265 {
266 	const struct mlx5_flow_expand_node *node = NULL;
267 	const int *next = next_node;
268 
269 	while (next && *next) {
270 		/*
271 		 * Skip the nodes with the MLX5_EXPANSION_NODE_EXPLICIT
272 		 * flag set, because they were not found in the flow pattern.
273 		 */
274 		node = &graph[*next];
275 		if (!(node->node_flags & MLX5_EXPANSION_NODE_EXPLICIT))
276 			break;
277 		next = node->next;
278 	}
279 	return next;
280 }
281 
282 #define MLX5_RSS_EXP_ELT_N 16
283 
284 /**
285  * Expand RSS flows into several possible flows according to the RSS hash
286  * fields requested and the driver capabilities.
287  *
288  * @param[out] buf
289  *   Buffer to store the result expansion.
290  * @param[in] size
291  *   Buffer size in bytes. If 0, @p buf can be NULL.
292  * @param[in] pattern
293  *   User flow pattern.
294  * @param[in] types
295  *   RSS types to expand (see ETH_RSS_* definitions).
296  * @param[in] graph
297  *   Input graph to expand @p pattern according to @p types.
298  * @param[in] graph_root_index
299  *   Index of root node in @p graph, typically 0.
300  *
301  * @return
302  *   A positive value representing the size of @p buf in bytes regardless of
303  *   @p size on success, a negative errno value otherwise and rte_errno is
304  *   set, the following errors are defined:
305  *
306  *   -E2BIG: graph-depth @p graph is too deep.
307  *   -EINVAL: @p size has not enough space for expanded pattern.
308  */
309 static int
310 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
311 		     const struct rte_flow_item *pattern, uint64_t types,
312 		     const struct mlx5_flow_expand_node graph[],
313 		     int graph_root_index)
314 {
315 	const struct rte_flow_item *item;
316 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
317 	const int *next_node;
318 	const int *stack[MLX5_RSS_EXP_ELT_N];
319 	int stack_pos = 0;
320 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
321 	unsigned int i;
322 	size_t lsize;
323 	size_t user_pattern_size = 0;
324 	void *addr = NULL;
325 	const struct mlx5_flow_expand_node *next = NULL;
326 	struct rte_flow_item missed_item;
327 	int missed = 0;
328 	int elt = 0;
329 	const struct rte_flow_item *last_item = NULL;
330 
331 	memset(&missed_item, 0, sizeof(missed_item));
332 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
333 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
334 	if (lsize > size)
335 		return -EINVAL;
336 	buf->entry[0].priority = 0;
337 	buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
338 	buf->entries = 0;
339 	addr = buf->entry[0].pattern;
340 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
341 		if (!mlx5_flow_is_rss_expandable_item(item)) {
342 			user_pattern_size += sizeof(*item);
343 			continue;
344 		}
345 		last_item = item;
346 		i = 0;
347 		while (node->next && node->next[i]) {
348 			next = &graph[node->next[i]];
349 			if (next->type == item->type)
350 				break;
351 			if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) {
352 				node = next;
353 				i = 0;
354 			} else {
355 				++i;
356 			}
357 		}
358 		if (next)
359 			node = next;
360 		user_pattern_size += sizeof(*item);
361 	}
362 	user_pattern_size += sizeof(*item); /* Handle END item. */
363 	lsize += user_pattern_size;
364 	if (lsize > size)
365 		return -EINVAL;
366 	/* Copy the user pattern in the first entry of the buffer. */
367 	rte_memcpy(addr, pattern, user_pattern_size);
368 	addr = (void *)(((uintptr_t)addr) + user_pattern_size);
369 	buf->entries = 1;
370 	/* Start expanding. */
371 	memset(flow_items, 0, sizeof(flow_items));
372 	user_pattern_size -= sizeof(*item);
373 	/*
374 	 * Check if the last valid item has spec set, need complete pattern,
375 	 * and the pattern can be used for expansion.
376 	 */
377 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
378 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
379 		/* Item type END indicates expansion is not required. */
380 		return lsize;
381 	}
382 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
383 		next = NULL;
384 		missed = 1;
385 		for (i = 0; node->next && node->next[i]; ++i) {
386 			next = &graph[node->next[i]];
387 			if (next->type == missed_item.type) {
388 				flow_items[0].type = missed_item.type;
389 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
390 				break;
391 			}
392 			next = NULL;
393 		}
394 	}
395 	if (next && missed) {
396 		elt = 2; /* missed item + item end. */
397 		node = next;
398 		lsize += elt * sizeof(*item) + user_pattern_size;
399 		if (lsize > size)
400 			return -EINVAL;
401 		if (node->rss_types & types) {
402 			buf->entry[buf->entries].priority = 1;
403 			buf->entry[buf->entries].pattern = addr;
404 			buf->entries++;
405 			rte_memcpy(addr, buf->entry[0].pattern,
406 				   user_pattern_size);
407 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
408 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
409 			addr = (void *)(((uintptr_t)addr) +
410 					elt * sizeof(*item));
411 		}
412 	}
413 	memset(flow_items, 0, sizeof(flow_items));
414 	next_node = mlx5_flow_expand_rss_skip_explicit(graph,
415 			node->next);
416 	stack[stack_pos] = next_node;
417 	node = next_node ? &graph[*next_node] : NULL;
418 	while (node) {
419 		flow_items[stack_pos].type = node->type;
420 		if (node->rss_types & types) {
421 			size_t n;
422 			/*
423 			 * compute the number of items to copy from the
424 			 * expansion and copy it.
425 			 * When the stack_pos is 0, there are 1 element in it,
426 			 * plus the addition END item.
427 			 */
428 			elt = stack_pos + 2;
429 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
430 			lsize += elt * sizeof(*item) + user_pattern_size;
431 			if (lsize > size)
432 				return -EINVAL;
433 			n = elt * sizeof(*item);
434 			buf->entry[buf->entries].priority =
435 				stack_pos + 1 + missed;
436 			buf->entry[buf->entries].pattern = addr;
437 			buf->entries++;
438 			rte_memcpy(addr, buf->entry[0].pattern,
439 				   user_pattern_size);
440 			addr = (void *)(((uintptr_t)addr) +
441 					user_pattern_size);
442 			rte_memcpy(addr, &missed_item,
443 				   missed * sizeof(*item));
444 			addr = (void *)(((uintptr_t)addr) +
445 				missed * sizeof(*item));
446 			rte_memcpy(addr, flow_items, n);
447 			addr = (void *)(((uintptr_t)addr) + n);
448 		}
449 		/* Go deeper. */
450 		if (!(node->node_flags & MLX5_EXPANSION_NODE_OPTIONAL) &&
451 				node->next) {
452 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
453 					node->next);
454 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
455 				rte_errno = E2BIG;
456 				return -rte_errno;
457 			}
458 			stack[stack_pos] = next_node;
459 		} else if (*(next_node + 1)) {
460 			/* Follow up with the next possibility. */
461 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
462 					++next_node);
463 		} else if (!stack_pos) {
464 			/*
465 			 * Completing the traverse over the different paths.
466 			 * The next_node is advanced to the terminator.
467 			 */
468 			++next_node;
469 		} else {
470 			/* Move to the next path. */
471 			while (stack_pos) {
472 				next_node = stack[--stack_pos];
473 				next_node++;
474 				if (*next_node)
475 					break;
476 			}
477 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
478 					next_node);
479 			stack[stack_pos] = next_node;
480 		}
481 		node = next_node && *next_node ? &graph[*next_node] : NULL;
482 	};
483 	return lsize;
484 }
485 
486 enum mlx5_expansion {
487 	MLX5_EXPANSION_ROOT,
488 	MLX5_EXPANSION_ROOT_OUTER,
489 	MLX5_EXPANSION_OUTER_ETH,
490 	MLX5_EXPANSION_OUTER_VLAN,
491 	MLX5_EXPANSION_OUTER_IPV4,
492 	MLX5_EXPANSION_OUTER_IPV4_UDP,
493 	MLX5_EXPANSION_OUTER_IPV4_TCP,
494 	MLX5_EXPANSION_OUTER_IPV6,
495 	MLX5_EXPANSION_OUTER_IPV6_UDP,
496 	MLX5_EXPANSION_OUTER_IPV6_TCP,
497 	MLX5_EXPANSION_VXLAN,
498 	MLX5_EXPANSION_VXLAN_GPE,
499 	MLX5_EXPANSION_GRE,
500 	MLX5_EXPANSION_NVGRE,
501 	MLX5_EXPANSION_GRE_KEY,
502 	MLX5_EXPANSION_MPLS,
503 	MLX5_EXPANSION_ETH,
504 	MLX5_EXPANSION_VLAN,
505 	MLX5_EXPANSION_IPV4,
506 	MLX5_EXPANSION_IPV4_UDP,
507 	MLX5_EXPANSION_IPV4_TCP,
508 	MLX5_EXPANSION_IPV6,
509 	MLX5_EXPANSION_IPV6_UDP,
510 	MLX5_EXPANSION_IPV6_TCP,
511 	MLX5_EXPANSION_IPV6_FRAG_EXT,
512 	MLX5_EXPANSION_GTP
513 };
514 
515 /** Supported expansion of items. */
516 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
517 	[MLX5_EXPANSION_ROOT] = {
518 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
519 						  MLX5_EXPANSION_IPV4,
520 						  MLX5_EXPANSION_IPV6),
521 		.type = RTE_FLOW_ITEM_TYPE_END,
522 	},
523 	[MLX5_EXPANSION_ROOT_OUTER] = {
524 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
525 						  MLX5_EXPANSION_OUTER_IPV4,
526 						  MLX5_EXPANSION_OUTER_IPV6),
527 		.type = RTE_FLOW_ITEM_TYPE_END,
528 	},
529 	[MLX5_EXPANSION_OUTER_ETH] = {
530 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
531 		.type = RTE_FLOW_ITEM_TYPE_ETH,
532 		.rss_types = 0,
533 	},
534 	[MLX5_EXPANSION_OUTER_VLAN] = {
535 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
536 						  MLX5_EXPANSION_OUTER_IPV6),
537 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
538 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
539 	},
540 	[MLX5_EXPANSION_OUTER_IPV4] = {
541 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
542 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
543 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
544 			 MLX5_EXPANSION_GRE,
545 			 MLX5_EXPANSION_NVGRE,
546 			 MLX5_EXPANSION_IPV4,
547 			 MLX5_EXPANSION_IPV6),
548 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
549 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
550 			ETH_RSS_NONFRAG_IPV4_OTHER,
551 	},
552 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
553 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
554 						  MLX5_EXPANSION_VXLAN_GPE,
555 						  MLX5_EXPANSION_MPLS,
556 						  MLX5_EXPANSION_GTP),
557 		.type = RTE_FLOW_ITEM_TYPE_UDP,
558 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
559 	},
560 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
561 		.type = RTE_FLOW_ITEM_TYPE_TCP,
562 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
563 	},
564 	[MLX5_EXPANSION_OUTER_IPV6] = {
565 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
566 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
567 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
568 			 MLX5_EXPANSION_IPV4,
569 			 MLX5_EXPANSION_IPV6,
570 			 MLX5_EXPANSION_GRE,
571 			 MLX5_EXPANSION_NVGRE),
572 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
573 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
574 			ETH_RSS_NONFRAG_IPV6_OTHER,
575 	},
576 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
577 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
578 						  MLX5_EXPANSION_VXLAN_GPE,
579 						  MLX5_EXPANSION_MPLS,
580 						  MLX5_EXPANSION_GTP),
581 		.type = RTE_FLOW_ITEM_TYPE_UDP,
582 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
583 	},
584 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
585 		.type = RTE_FLOW_ITEM_TYPE_TCP,
586 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
587 	},
588 	[MLX5_EXPANSION_VXLAN] = {
589 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
590 						  MLX5_EXPANSION_IPV4,
591 						  MLX5_EXPANSION_IPV6),
592 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
593 	},
594 	[MLX5_EXPANSION_VXLAN_GPE] = {
595 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
596 						  MLX5_EXPANSION_IPV4,
597 						  MLX5_EXPANSION_IPV6),
598 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
599 	},
600 	[MLX5_EXPANSION_GRE] = {
601 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
602 						  MLX5_EXPANSION_IPV6,
603 						  MLX5_EXPANSION_GRE_KEY,
604 						  MLX5_EXPANSION_MPLS),
605 		.type = RTE_FLOW_ITEM_TYPE_GRE,
606 	},
607 	[MLX5_EXPANSION_GRE_KEY] = {
608 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
609 						  MLX5_EXPANSION_IPV6,
610 						  MLX5_EXPANSION_MPLS),
611 		.type = RTE_FLOW_ITEM_TYPE_GRE_KEY,
612 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
613 	},
614 	[MLX5_EXPANSION_NVGRE] = {
615 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
616 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
617 	},
618 	[MLX5_EXPANSION_MPLS] = {
619 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
620 						  MLX5_EXPANSION_IPV6,
621 						  MLX5_EXPANSION_ETH),
622 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
623 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
624 	},
625 	[MLX5_EXPANSION_ETH] = {
626 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
627 		.type = RTE_FLOW_ITEM_TYPE_ETH,
628 	},
629 	[MLX5_EXPANSION_VLAN] = {
630 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
631 						  MLX5_EXPANSION_IPV6),
632 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
633 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
634 	},
635 	[MLX5_EXPANSION_IPV4] = {
636 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
637 						  MLX5_EXPANSION_IPV4_TCP),
638 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
639 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
640 			ETH_RSS_NONFRAG_IPV4_OTHER,
641 	},
642 	[MLX5_EXPANSION_IPV4_UDP] = {
643 		.type = RTE_FLOW_ITEM_TYPE_UDP,
644 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
645 	},
646 	[MLX5_EXPANSION_IPV4_TCP] = {
647 		.type = RTE_FLOW_ITEM_TYPE_TCP,
648 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
649 	},
650 	[MLX5_EXPANSION_IPV6] = {
651 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
652 						  MLX5_EXPANSION_IPV6_TCP,
653 						  MLX5_EXPANSION_IPV6_FRAG_EXT),
654 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
655 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
656 			ETH_RSS_NONFRAG_IPV6_OTHER,
657 	},
658 	[MLX5_EXPANSION_IPV6_UDP] = {
659 		.type = RTE_FLOW_ITEM_TYPE_UDP,
660 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
661 	},
662 	[MLX5_EXPANSION_IPV6_TCP] = {
663 		.type = RTE_FLOW_ITEM_TYPE_TCP,
664 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
665 	},
666 	[MLX5_EXPANSION_IPV6_FRAG_EXT] = {
667 		.type = RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT,
668 	},
669 	[MLX5_EXPANSION_GTP] = {
670 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
671 						  MLX5_EXPANSION_IPV6),
672 		.type = RTE_FLOW_ITEM_TYPE_GTP,
673 	},
674 };
675 
676 static struct rte_flow_action_handle *
677 mlx5_action_handle_create(struct rte_eth_dev *dev,
678 			  const struct rte_flow_indir_action_conf *conf,
679 			  const struct rte_flow_action *action,
680 			  struct rte_flow_error *error);
681 static int mlx5_action_handle_destroy
682 				(struct rte_eth_dev *dev,
683 				 struct rte_flow_action_handle *handle,
684 				 struct rte_flow_error *error);
685 static int mlx5_action_handle_update
686 				(struct rte_eth_dev *dev,
687 				 struct rte_flow_action_handle *handle,
688 				 const void *update,
689 				 struct rte_flow_error *error);
690 static int mlx5_action_handle_query
691 				(struct rte_eth_dev *dev,
692 				 const struct rte_flow_action_handle *handle,
693 				 void *data,
694 				 struct rte_flow_error *error);
695 static int
696 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
697 		    struct rte_flow_tunnel *app_tunnel,
698 		    struct rte_flow_action **actions,
699 		    uint32_t *num_of_actions,
700 		    struct rte_flow_error *error);
701 static int
702 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
703 		       struct rte_flow_tunnel *app_tunnel,
704 		       struct rte_flow_item **items,
705 		       uint32_t *num_of_items,
706 		       struct rte_flow_error *error);
707 static int
708 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
709 			      struct rte_flow_item *pmd_items,
710 			      uint32_t num_items, struct rte_flow_error *err);
711 static int
712 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
713 				struct rte_flow_action *pmd_actions,
714 				uint32_t num_actions,
715 				struct rte_flow_error *err);
716 static int
717 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
718 				  struct rte_mbuf *m,
719 				  struct rte_flow_restore_info *info,
720 				  struct rte_flow_error *err);
721 
722 static const struct rte_flow_ops mlx5_flow_ops = {
723 	.validate = mlx5_flow_validate,
724 	.create = mlx5_flow_create,
725 	.destroy = mlx5_flow_destroy,
726 	.flush = mlx5_flow_flush,
727 	.isolate = mlx5_flow_isolate,
728 	.query = mlx5_flow_query,
729 	.dev_dump = mlx5_flow_dev_dump,
730 	.get_aged_flows = mlx5_flow_get_aged_flows,
731 	.action_handle_create = mlx5_action_handle_create,
732 	.action_handle_destroy = mlx5_action_handle_destroy,
733 	.action_handle_update = mlx5_action_handle_update,
734 	.action_handle_query = mlx5_action_handle_query,
735 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
736 	.tunnel_match = mlx5_flow_tunnel_match,
737 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
738 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
739 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
740 };
741 
742 /* Tunnel information. */
743 struct mlx5_flow_tunnel_info {
744 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
745 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
746 };
747 
748 static struct mlx5_flow_tunnel_info tunnels_info[] = {
749 	{
750 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
751 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
752 	},
753 	{
754 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
755 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
756 	},
757 	{
758 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
759 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
760 	},
761 	{
762 		.tunnel = MLX5_FLOW_LAYER_GRE,
763 		.ptype = RTE_PTYPE_TUNNEL_GRE,
764 	},
765 	{
766 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
767 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
768 	},
769 	{
770 		.tunnel = MLX5_FLOW_LAYER_MPLS,
771 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
772 	},
773 	{
774 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
775 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
776 	},
777 	{
778 		.tunnel = MLX5_FLOW_LAYER_IPIP,
779 		.ptype = RTE_PTYPE_TUNNEL_IP,
780 	},
781 	{
782 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
783 		.ptype = RTE_PTYPE_TUNNEL_IP,
784 	},
785 	{
786 		.tunnel = MLX5_FLOW_LAYER_GTP,
787 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
788 	},
789 };
790 
791 
792 
793 /**
794  * Translate tag ID to register.
795  *
796  * @param[in] dev
797  *   Pointer to the Ethernet device structure.
798  * @param[in] feature
799  *   The feature that request the register.
800  * @param[in] id
801  *   The request register ID.
802  * @param[out] error
803  *   Error description in case of any.
804  *
805  * @return
806  *   The request register on success, a negative errno
807  *   value otherwise and rte_errno is set.
808  */
809 int
810 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
811 		     enum mlx5_feature_name feature,
812 		     uint32_t id,
813 		     struct rte_flow_error *error)
814 {
815 	struct mlx5_priv *priv = dev->data->dev_private;
816 	struct mlx5_dev_config *config = &priv->config;
817 	enum modify_reg start_reg;
818 	bool skip_mtr_reg = false;
819 
820 	switch (feature) {
821 	case MLX5_HAIRPIN_RX:
822 		return REG_B;
823 	case MLX5_HAIRPIN_TX:
824 		return REG_A;
825 	case MLX5_METADATA_RX:
826 		switch (config->dv_xmeta_en) {
827 		case MLX5_XMETA_MODE_LEGACY:
828 			return REG_B;
829 		case MLX5_XMETA_MODE_META16:
830 			return REG_C_0;
831 		case MLX5_XMETA_MODE_META32:
832 			return REG_C_1;
833 		}
834 		break;
835 	case MLX5_METADATA_TX:
836 		return REG_A;
837 	case MLX5_METADATA_FDB:
838 		switch (config->dv_xmeta_en) {
839 		case MLX5_XMETA_MODE_LEGACY:
840 			return REG_NON;
841 		case MLX5_XMETA_MODE_META16:
842 			return REG_C_0;
843 		case MLX5_XMETA_MODE_META32:
844 			return REG_C_1;
845 		}
846 		break;
847 	case MLX5_FLOW_MARK:
848 		switch (config->dv_xmeta_en) {
849 		case MLX5_XMETA_MODE_LEGACY:
850 			return REG_NON;
851 		case MLX5_XMETA_MODE_META16:
852 			return REG_C_1;
853 		case MLX5_XMETA_MODE_META32:
854 			return REG_C_0;
855 		}
856 		break;
857 	case MLX5_MTR_ID:
858 		/*
859 		 * If meter color and meter id share one register, flow match
860 		 * should use the meter color register for match.
861 		 */
862 		if (priv->mtr_reg_share)
863 			return priv->mtr_color_reg;
864 		else
865 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
866 			       REG_C_3;
867 	case MLX5_MTR_COLOR:
868 	case MLX5_ASO_FLOW_HIT:
869 	case MLX5_ASO_CONNTRACK:
870 		/* All features use the same REG_C. */
871 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
872 		return priv->mtr_color_reg;
873 	case MLX5_COPY_MARK:
874 		/*
875 		 * Metadata COPY_MARK register using is in meter suffix sub
876 		 * flow while with meter. It's safe to share the same register.
877 		 */
878 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
879 	case MLX5_APP_TAG:
880 		/*
881 		 * If meter is enable, it will engage the register for color
882 		 * match and flow match. If meter color match is not using the
883 		 * REG_C_2, need to skip the REG_C_x be used by meter color
884 		 * match.
885 		 * If meter is disable, free to use all available registers.
886 		 */
887 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
888 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
889 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
890 		if (id > (uint32_t)(REG_C_7 - start_reg))
891 			return rte_flow_error_set(error, EINVAL,
892 						  RTE_FLOW_ERROR_TYPE_ITEM,
893 						  NULL, "invalid tag id");
894 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
895 			return rte_flow_error_set(error, ENOTSUP,
896 						  RTE_FLOW_ERROR_TYPE_ITEM,
897 						  NULL, "unsupported tag id");
898 		/*
899 		 * This case means meter is using the REG_C_x great than 2.
900 		 * Take care not to conflict with meter color REG_C_x.
901 		 * If the available index REG_C_y >= REG_C_x, skip the
902 		 * color register.
903 		 */
904 		if (skip_mtr_reg && config->flow_mreg_c
905 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
906 			if (id >= (uint32_t)(REG_C_7 - start_reg))
907 				return rte_flow_error_set(error, EINVAL,
908 						       RTE_FLOW_ERROR_TYPE_ITEM,
909 							NULL, "invalid tag id");
910 			if (config->flow_mreg_c
911 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
912 				return config->flow_mreg_c
913 					       [id + 1 + start_reg - REG_C_0];
914 			return rte_flow_error_set(error, ENOTSUP,
915 						  RTE_FLOW_ERROR_TYPE_ITEM,
916 						  NULL, "unsupported tag id");
917 		}
918 		return config->flow_mreg_c[id + start_reg - REG_C_0];
919 	}
920 	MLX5_ASSERT(false);
921 	return rte_flow_error_set(error, EINVAL,
922 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
923 				  NULL, "invalid feature name");
924 }
925 
926 /**
927  * Check extensive flow metadata register support.
928  *
929  * @param dev
930  *   Pointer to rte_eth_dev structure.
931  *
932  * @return
933  *   True if device supports extensive flow metadata register, otherwise false.
934  */
935 bool
936 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
937 {
938 	struct mlx5_priv *priv = dev->data->dev_private;
939 	struct mlx5_dev_config *config = &priv->config;
940 
941 	/*
942 	 * Having available reg_c can be regarded inclusively as supporting
943 	 * extensive flow metadata register, which could mean,
944 	 * - metadata register copy action by modify header.
945 	 * - 16 modify header actions is supported.
946 	 * - reg_c's are preserved across different domain (FDB and NIC) on
947 	 *   packet loopback by flow lookup miss.
948 	 */
949 	return config->flow_mreg_c[2] != REG_NON;
950 }
951 
952 /**
953  * Get the lowest priority.
954  *
955  * @param[in] dev
956  *   Pointer to the Ethernet device structure.
957  * @param[in] attributes
958  *   Pointer to device flow rule attributes.
959  *
960  * @return
961  *   The value of lowest priority of flow.
962  */
963 uint32_t
964 mlx5_get_lowest_priority(struct rte_eth_dev *dev,
965 			  const struct rte_flow_attr *attr)
966 {
967 	struct mlx5_priv *priv = dev->data->dev_private;
968 
969 	if (!attr->group && !attr->transfer)
970 		return priv->config.flow_prio - 2;
971 	return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1;
972 }
973 
974 /**
975  * Calculate matcher priority of the flow.
976  *
977  * @param[in] dev
978  *   Pointer to the Ethernet device structure.
979  * @param[in] attr
980  *   Pointer to device flow rule attributes.
981  * @param[in] subpriority
982  *   The priority based on the items.
983  * @return
984  *   The matcher priority of the flow.
985  */
986 uint16_t
987 mlx5_get_matcher_priority(struct rte_eth_dev *dev,
988 			  const struct rte_flow_attr *attr,
989 			  uint32_t subpriority)
990 {
991 	uint16_t priority = (uint16_t)attr->priority;
992 	struct mlx5_priv *priv = dev->data->dev_private;
993 
994 	if (!attr->group && !attr->transfer) {
995 		if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
996 			priority = priv->config.flow_prio - 1;
997 		return mlx5_os_flow_adjust_priority(dev, priority, subpriority);
998 	}
999 	if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1000 		priority = MLX5_NON_ROOT_FLOW_MAX_PRIO;
1001 	return priority * 3 + subpriority;
1002 }
1003 
1004 /**
1005  * Verify the @p item specifications (spec, last, mask) are compatible with the
1006  * NIC capabilities.
1007  *
1008  * @param[in] item
1009  *   Item specification.
1010  * @param[in] mask
1011  *   @p item->mask or flow default bit-masks.
1012  * @param[in] nic_mask
1013  *   Bit-masks covering supported fields by the NIC to compare with user mask.
1014  * @param[in] size
1015  *   Bit-masks size in bytes.
1016  * @param[in] range_accepted
1017  *   True if range of values is accepted for specific fields, false otherwise.
1018  * @param[out] error
1019  *   Pointer to error structure.
1020  *
1021  * @return
1022  *   0 on success, a negative errno value otherwise and rte_errno is set.
1023  */
1024 int
1025 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
1026 			  const uint8_t *mask,
1027 			  const uint8_t *nic_mask,
1028 			  unsigned int size,
1029 			  bool range_accepted,
1030 			  struct rte_flow_error *error)
1031 {
1032 	unsigned int i;
1033 
1034 	MLX5_ASSERT(nic_mask);
1035 	for (i = 0; i < size; ++i)
1036 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
1037 			return rte_flow_error_set(error, ENOTSUP,
1038 						  RTE_FLOW_ERROR_TYPE_ITEM,
1039 						  item,
1040 						  "mask enables non supported"
1041 						  " bits");
1042 	if (!item->spec && (item->mask || item->last))
1043 		return rte_flow_error_set(error, EINVAL,
1044 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1045 					  "mask/last without a spec is not"
1046 					  " supported");
1047 	if (item->spec && item->last && !range_accepted) {
1048 		uint8_t spec[size];
1049 		uint8_t last[size];
1050 		unsigned int i;
1051 		int ret;
1052 
1053 		for (i = 0; i < size; ++i) {
1054 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
1055 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
1056 		}
1057 		ret = memcmp(spec, last, size);
1058 		if (ret != 0)
1059 			return rte_flow_error_set(error, EINVAL,
1060 						  RTE_FLOW_ERROR_TYPE_ITEM,
1061 						  item,
1062 						  "range is not valid");
1063 	}
1064 	return 0;
1065 }
1066 
1067 /**
1068  * Adjust the hash fields according to the @p flow information.
1069  *
1070  * @param[in] dev_flow.
1071  *   Pointer to the mlx5_flow.
1072  * @param[in] tunnel
1073  *   1 when the hash field is for a tunnel item.
1074  * @param[in] layer_types
1075  *   ETH_RSS_* types.
1076  * @param[in] hash_fields
1077  *   Item hash fields.
1078  *
1079  * @return
1080  *   The hash fields that should be used.
1081  */
1082 uint64_t
1083 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
1084 			    int tunnel __rte_unused, uint64_t layer_types,
1085 			    uint64_t hash_fields)
1086 {
1087 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1088 	int rss_request_inner = rss_desc->level >= 2;
1089 
1090 	/* Check RSS hash level for tunnel. */
1091 	if (tunnel && rss_request_inner)
1092 		hash_fields |= IBV_RX_HASH_INNER;
1093 	else if (tunnel || rss_request_inner)
1094 		return 0;
1095 #endif
1096 	/* Check if requested layer matches RSS hash fields. */
1097 	if (!(rss_desc->types & layer_types))
1098 		return 0;
1099 	return hash_fields;
1100 }
1101 
1102 /**
1103  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
1104  * if several tunnel rules are used on this queue, the tunnel ptype will be
1105  * cleared.
1106  *
1107  * @param rxq_ctrl
1108  *   Rx queue to update.
1109  */
1110 static void
1111 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
1112 {
1113 	unsigned int i;
1114 	uint32_t tunnel_ptype = 0;
1115 
1116 	/* Look up for the ptype to use. */
1117 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
1118 		if (!rxq_ctrl->flow_tunnels_n[i])
1119 			continue;
1120 		if (!tunnel_ptype) {
1121 			tunnel_ptype = tunnels_info[i].ptype;
1122 		} else {
1123 			tunnel_ptype = 0;
1124 			break;
1125 		}
1126 	}
1127 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
1128 }
1129 
1130 /**
1131  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
1132  * flow.
1133  *
1134  * @param[in] dev
1135  *   Pointer to the Ethernet device structure.
1136  * @param[in] dev_handle
1137  *   Pointer to device flow handle structure.
1138  */
1139 void
1140 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1141 		       struct mlx5_flow_handle *dev_handle)
1142 {
1143 	struct mlx5_priv *priv = dev->data->dev_private;
1144 	const int mark = dev_handle->mark;
1145 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1146 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1147 	unsigned int i;
1148 
1149 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1150 		struct mlx5_hrxq *hrxq;
1151 
1152 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1153 			      dev_handle->rix_hrxq);
1154 		if (hrxq)
1155 			ind_tbl = hrxq->ind_table;
1156 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1157 		struct mlx5_shared_action_rss *shared_rss;
1158 
1159 		shared_rss = mlx5_ipool_get
1160 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1161 			 dev_handle->rix_srss);
1162 		if (shared_rss)
1163 			ind_tbl = shared_rss->ind_tbl;
1164 	}
1165 	if (!ind_tbl)
1166 		return;
1167 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1168 		int idx = ind_tbl->queues[i];
1169 		struct mlx5_rxq_ctrl *rxq_ctrl =
1170 			container_of((*priv->rxqs)[idx],
1171 				     struct mlx5_rxq_ctrl, rxq);
1172 
1173 		/*
1174 		 * To support metadata register copy on Tx loopback,
1175 		 * this must be always enabled (metadata may arive
1176 		 * from other port - not from local flows only.
1177 		 */
1178 		if (priv->config.dv_flow_en &&
1179 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1180 		    mlx5_flow_ext_mreg_supported(dev)) {
1181 			rxq_ctrl->rxq.mark = 1;
1182 			rxq_ctrl->flow_mark_n = 1;
1183 		} else if (mark) {
1184 			rxq_ctrl->rxq.mark = 1;
1185 			rxq_ctrl->flow_mark_n++;
1186 		}
1187 		if (tunnel) {
1188 			unsigned int j;
1189 
1190 			/* Increase the counter matching the flow. */
1191 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1192 				if ((tunnels_info[j].tunnel &
1193 				     dev_handle->layers) ==
1194 				    tunnels_info[j].tunnel) {
1195 					rxq_ctrl->flow_tunnels_n[j]++;
1196 					break;
1197 				}
1198 			}
1199 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1200 		}
1201 	}
1202 }
1203 
1204 /**
1205  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1206  *
1207  * @param[in] dev
1208  *   Pointer to the Ethernet device structure.
1209  * @param[in] flow
1210  *   Pointer to flow structure.
1211  */
1212 static void
1213 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1214 {
1215 	struct mlx5_priv *priv = dev->data->dev_private;
1216 	uint32_t handle_idx;
1217 	struct mlx5_flow_handle *dev_handle;
1218 
1219 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1220 		       handle_idx, dev_handle, next)
1221 		flow_drv_rxq_flags_set(dev, dev_handle);
1222 }
1223 
1224 /**
1225  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1226  * device flow if no other flow uses it with the same kind of request.
1227  *
1228  * @param dev
1229  *   Pointer to Ethernet device.
1230  * @param[in] dev_handle
1231  *   Pointer to the device flow handle structure.
1232  */
1233 static void
1234 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1235 			struct mlx5_flow_handle *dev_handle)
1236 {
1237 	struct mlx5_priv *priv = dev->data->dev_private;
1238 	const int mark = dev_handle->mark;
1239 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1240 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1241 	unsigned int i;
1242 
1243 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1244 		struct mlx5_hrxq *hrxq;
1245 
1246 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1247 			      dev_handle->rix_hrxq);
1248 		if (hrxq)
1249 			ind_tbl = hrxq->ind_table;
1250 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1251 		struct mlx5_shared_action_rss *shared_rss;
1252 
1253 		shared_rss = mlx5_ipool_get
1254 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1255 			 dev_handle->rix_srss);
1256 		if (shared_rss)
1257 			ind_tbl = shared_rss->ind_tbl;
1258 	}
1259 	if (!ind_tbl)
1260 		return;
1261 	MLX5_ASSERT(dev->data->dev_started);
1262 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1263 		int idx = ind_tbl->queues[i];
1264 		struct mlx5_rxq_ctrl *rxq_ctrl =
1265 			container_of((*priv->rxqs)[idx],
1266 				     struct mlx5_rxq_ctrl, rxq);
1267 
1268 		if (priv->config.dv_flow_en &&
1269 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1270 		    mlx5_flow_ext_mreg_supported(dev)) {
1271 			rxq_ctrl->rxq.mark = 1;
1272 			rxq_ctrl->flow_mark_n = 1;
1273 		} else if (mark) {
1274 			rxq_ctrl->flow_mark_n--;
1275 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1276 		}
1277 		if (tunnel) {
1278 			unsigned int j;
1279 
1280 			/* Decrease the counter matching the flow. */
1281 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1282 				if ((tunnels_info[j].tunnel &
1283 				     dev_handle->layers) ==
1284 				    tunnels_info[j].tunnel) {
1285 					rxq_ctrl->flow_tunnels_n[j]--;
1286 					break;
1287 				}
1288 			}
1289 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1290 		}
1291 	}
1292 }
1293 
1294 /**
1295  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1296  * @p flow if no other flow uses it with the same kind of request.
1297  *
1298  * @param dev
1299  *   Pointer to Ethernet device.
1300  * @param[in] flow
1301  *   Pointer to the flow.
1302  */
1303 static void
1304 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1305 {
1306 	struct mlx5_priv *priv = dev->data->dev_private;
1307 	uint32_t handle_idx;
1308 	struct mlx5_flow_handle *dev_handle;
1309 
1310 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1311 		       handle_idx, dev_handle, next)
1312 		flow_drv_rxq_flags_trim(dev, dev_handle);
1313 }
1314 
1315 /**
1316  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1317  *
1318  * @param dev
1319  *   Pointer to Ethernet device.
1320  */
1321 static void
1322 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1323 {
1324 	struct mlx5_priv *priv = dev->data->dev_private;
1325 	unsigned int i;
1326 
1327 	for (i = 0; i != priv->rxqs_n; ++i) {
1328 		struct mlx5_rxq_ctrl *rxq_ctrl;
1329 		unsigned int j;
1330 
1331 		if (!(*priv->rxqs)[i])
1332 			continue;
1333 		rxq_ctrl = container_of((*priv->rxqs)[i],
1334 					struct mlx5_rxq_ctrl, rxq);
1335 		rxq_ctrl->flow_mark_n = 0;
1336 		rxq_ctrl->rxq.mark = 0;
1337 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1338 			rxq_ctrl->flow_tunnels_n[j] = 0;
1339 		rxq_ctrl->rxq.tunnel = 0;
1340 	}
1341 }
1342 
1343 /**
1344  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1345  *
1346  * @param[in] dev
1347  *   Pointer to the Ethernet device structure.
1348  */
1349 void
1350 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1351 {
1352 	struct mlx5_priv *priv = dev->data->dev_private;
1353 	struct mlx5_rxq_data *data;
1354 	unsigned int i;
1355 
1356 	for (i = 0; i != priv->rxqs_n; ++i) {
1357 		if (!(*priv->rxqs)[i])
1358 			continue;
1359 		data = (*priv->rxqs)[i];
1360 		if (!rte_flow_dynf_metadata_avail()) {
1361 			data->dynf_meta = 0;
1362 			data->flow_meta_mask = 0;
1363 			data->flow_meta_offset = -1;
1364 			data->flow_meta_port_mask = 0;
1365 		} else {
1366 			data->dynf_meta = 1;
1367 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1368 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1369 			data->flow_meta_port_mask = priv->sh->dv_meta_mask;
1370 		}
1371 	}
1372 }
1373 
1374 /*
1375  * return a pointer to the desired action in the list of actions.
1376  *
1377  * @param[in] actions
1378  *   The list of actions to search the action in.
1379  * @param[in] action
1380  *   The action to find.
1381  *
1382  * @return
1383  *   Pointer to the action in the list, if found. NULL otherwise.
1384  */
1385 const struct rte_flow_action *
1386 mlx5_flow_find_action(const struct rte_flow_action *actions,
1387 		      enum rte_flow_action_type action)
1388 {
1389 	if (actions == NULL)
1390 		return NULL;
1391 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1392 		if (actions->type == action)
1393 			return actions;
1394 	return NULL;
1395 }
1396 
1397 /*
1398  * Validate the flag action.
1399  *
1400  * @param[in] action_flags
1401  *   Bit-fields that holds the actions detected until now.
1402  * @param[in] attr
1403  *   Attributes of flow that includes this action.
1404  * @param[out] error
1405  *   Pointer to error structure.
1406  *
1407  * @return
1408  *   0 on success, a negative errno value otherwise and rte_errno is set.
1409  */
1410 int
1411 mlx5_flow_validate_action_flag(uint64_t action_flags,
1412 			       const struct rte_flow_attr *attr,
1413 			       struct rte_flow_error *error)
1414 {
1415 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1416 		return rte_flow_error_set(error, EINVAL,
1417 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1418 					  "can't mark and flag in same flow");
1419 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1420 		return rte_flow_error_set(error, EINVAL,
1421 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1422 					  "can't have 2 flag"
1423 					  " actions in same flow");
1424 	if (attr->egress)
1425 		return rte_flow_error_set(error, ENOTSUP,
1426 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1427 					  "flag action not supported for "
1428 					  "egress");
1429 	return 0;
1430 }
1431 
1432 /*
1433  * Validate the mark action.
1434  *
1435  * @param[in] action
1436  *   Pointer to the queue action.
1437  * @param[in] action_flags
1438  *   Bit-fields that holds the actions detected until now.
1439  * @param[in] attr
1440  *   Attributes of flow that includes this action.
1441  * @param[out] error
1442  *   Pointer to error structure.
1443  *
1444  * @return
1445  *   0 on success, a negative errno value otherwise and rte_errno is set.
1446  */
1447 int
1448 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1449 			       uint64_t action_flags,
1450 			       const struct rte_flow_attr *attr,
1451 			       struct rte_flow_error *error)
1452 {
1453 	const struct rte_flow_action_mark *mark = action->conf;
1454 
1455 	if (!mark)
1456 		return rte_flow_error_set(error, EINVAL,
1457 					  RTE_FLOW_ERROR_TYPE_ACTION,
1458 					  action,
1459 					  "configuration cannot be null");
1460 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1461 		return rte_flow_error_set(error, EINVAL,
1462 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1463 					  &mark->id,
1464 					  "mark id must in 0 <= id < "
1465 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1466 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1467 		return rte_flow_error_set(error, EINVAL,
1468 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1469 					  "can't flag and mark in same flow");
1470 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1471 		return rte_flow_error_set(error, EINVAL,
1472 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1473 					  "can't have 2 mark actions in same"
1474 					  " flow");
1475 	if (attr->egress)
1476 		return rte_flow_error_set(error, ENOTSUP,
1477 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1478 					  "mark action not supported for "
1479 					  "egress");
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Validate the drop action.
1485  *
1486  * @param[in] action_flags
1487  *   Bit-fields that holds the actions detected until now.
1488  * @param[in] attr
1489  *   Attributes of flow that includes this action.
1490  * @param[out] error
1491  *   Pointer to error structure.
1492  *
1493  * @return
1494  *   0 on success, a negative errno value otherwise and rte_errno is set.
1495  */
1496 int
1497 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1498 			       const struct rte_flow_attr *attr,
1499 			       struct rte_flow_error *error)
1500 {
1501 	if (attr->egress)
1502 		return rte_flow_error_set(error, ENOTSUP,
1503 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1504 					  "drop action not supported for "
1505 					  "egress");
1506 	return 0;
1507 }
1508 
1509 /*
1510  * Validate the queue action.
1511  *
1512  * @param[in] action
1513  *   Pointer to the queue action.
1514  * @param[in] action_flags
1515  *   Bit-fields that holds the actions detected until now.
1516  * @param[in] dev
1517  *   Pointer to the Ethernet device structure.
1518  * @param[in] attr
1519  *   Attributes of flow that includes this action.
1520  * @param[out] error
1521  *   Pointer to error structure.
1522  *
1523  * @return
1524  *   0 on success, a negative errno value otherwise and rte_errno is set.
1525  */
1526 int
1527 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1528 				uint64_t action_flags,
1529 				struct rte_eth_dev *dev,
1530 				const struct rte_flow_attr *attr,
1531 				struct rte_flow_error *error)
1532 {
1533 	struct mlx5_priv *priv = dev->data->dev_private;
1534 	const struct rte_flow_action_queue *queue = action->conf;
1535 
1536 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1537 		return rte_flow_error_set(error, EINVAL,
1538 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1539 					  "can't have 2 fate actions in"
1540 					  " same flow");
1541 	if (!priv->rxqs_n)
1542 		return rte_flow_error_set(error, EINVAL,
1543 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1544 					  NULL, "No Rx queues configured");
1545 	if (queue->index >= priv->rxqs_n)
1546 		return rte_flow_error_set(error, EINVAL,
1547 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1548 					  &queue->index,
1549 					  "queue index out of range");
1550 	if (!(*priv->rxqs)[queue->index])
1551 		return rte_flow_error_set(error, EINVAL,
1552 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1553 					  &queue->index,
1554 					  "queue is not configured");
1555 	if (attr->egress)
1556 		return rte_flow_error_set(error, ENOTSUP,
1557 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1558 					  "queue action not supported for "
1559 					  "egress");
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Validate the rss action.
1565  *
1566  * @param[in] dev
1567  *   Pointer to the Ethernet device structure.
1568  * @param[in] action
1569  *   Pointer to the queue action.
1570  * @param[out] error
1571  *   Pointer to error structure.
1572  *
1573  * @return
1574  *   0 on success, a negative errno value otherwise and rte_errno is set.
1575  */
1576 int
1577 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1578 			 const struct rte_flow_action *action,
1579 			 struct rte_flow_error *error)
1580 {
1581 	struct mlx5_priv *priv = dev->data->dev_private;
1582 	const struct rte_flow_action_rss *rss = action->conf;
1583 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1584 	unsigned int i;
1585 
1586 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1587 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1588 		return rte_flow_error_set(error, ENOTSUP,
1589 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1590 					  &rss->func,
1591 					  "RSS hash function not supported");
1592 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1593 	if (rss->level > 2)
1594 #else
1595 	if (rss->level > 1)
1596 #endif
1597 		return rte_flow_error_set(error, ENOTSUP,
1598 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1599 					  &rss->level,
1600 					  "tunnel RSS is not supported");
1601 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1602 	if (rss->key_len == 0 && rss->key != NULL)
1603 		return rte_flow_error_set(error, ENOTSUP,
1604 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1605 					  &rss->key_len,
1606 					  "RSS hash key length 0");
1607 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1608 		return rte_flow_error_set(error, ENOTSUP,
1609 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1610 					  &rss->key_len,
1611 					  "RSS hash key too small");
1612 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1613 		return rte_flow_error_set(error, ENOTSUP,
1614 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1615 					  &rss->key_len,
1616 					  "RSS hash key too large");
1617 	if (rss->queue_num > priv->config.ind_table_max_size)
1618 		return rte_flow_error_set(error, ENOTSUP,
1619 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1620 					  &rss->queue_num,
1621 					  "number of queues too large");
1622 	if (rss->types & MLX5_RSS_HF_MASK)
1623 		return rte_flow_error_set(error, ENOTSUP,
1624 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1625 					  &rss->types,
1626 					  "some RSS protocols are not"
1627 					  " supported");
1628 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1629 	    !(rss->types & ETH_RSS_IP))
1630 		return rte_flow_error_set(error, EINVAL,
1631 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1632 					  "L3 partial RSS requested but L3 RSS"
1633 					  " type not specified");
1634 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1635 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1636 		return rte_flow_error_set(error, EINVAL,
1637 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1638 					  "L4 partial RSS requested but L4 RSS"
1639 					  " type not specified");
1640 	if (!priv->rxqs_n)
1641 		return rte_flow_error_set(error, EINVAL,
1642 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1643 					  NULL, "No Rx queues configured");
1644 	if (!rss->queue_num)
1645 		return rte_flow_error_set(error, EINVAL,
1646 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1647 					  NULL, "No queues configured");
1648 	for (i = 0; i != rss->queue_num; ++i) {
1649 		struct mlx5_rxq_ctrl *rxq_ctrl;
1650 
1651 		if (rss->queue[i] >= priv->rxqs_n)
1652 			return rte_flow_error_set
1653 				(error, EINVAL,
1654 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1655 				 &rss->queue[i], "queue index out of range");
1656 		if (!(*priv->rxqs)[rss->queue[i]])
1657 			return rte_flow_error_set
1658 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1659 				 &rss->queue[i], "queue is not configured");
1660 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1661 					struct mlx5_rxq_ctrl, rxq);
1662 		if (i == 0)
1663 			rxq_type = rxq_ctrl->type;
1664 		if (rxq_type != rxq_ctrl->type)
1665 			return rte_flow_error_set
1666 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1667 				 &rss->queue[i],
1668 				 "combining hairpin and regular RSS queues is not supported");
1669 	}
1670 	return 0;
1671 }
1672 
1673 /*
1674  * Validate the rss action.
1675  *
1676  * @param[in] action
1677  *   Pointer to the queue action.
1678  * @param[in] action_flags
1679  *   Bit-fields that holds the actions detected until now.
1680  * @param[in] dev
1681  *   Pointer to the Ethernet device structure.
1682  * @param[in] attr
1683  *   Attributes of flow that includes this action.
1684  * @param[in] item_flags
1685  *   Items that were detected.
1686  * @param[out] error
1687  *   Pointer to error structure.
1688  *
1689  * @return
1690  *   0 on success, a negative errno value otherwise and rte_errno is set.
1691  */
1692 int
1693 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1694 			      uint64_t action_flags,
1695 			      struct rte_eth_dev *dev,
1696 			      const struct rte_flow_attr *attr,
1697 			      uint64_t item_flags,
1698 			      struct rte_flow_error *error)
1699 {
1700 	const struct rte_flow_action_rss *rss = action->conf;
1701 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1702 	int ret;
1703 
1704 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1705 		return rte_flow_error_set(error, EINVAL,
1706 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1707 					  "can't have 2 fate actions"
1708 					  " in same flow");
1709 	ret = mlx5_validate_action_rss(dev, action, error);
1710 	if (ret)
1711 		return ret;
1712 	if (attr->egress)
1713 		return rte_flow_error_set(error, ENOTSUP,
1714 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1715 					  "rss action not supported for "
1716 					  "egress");
1717 	if (rss->level > 1 && !tunnel)
1718 		return rte_flow_error_set(error, EINVAL,
1719 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1720 					  "inner RSS is not supported for "
1721 					  "non-tunnel flows");
1722 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1723 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1724 		return rte_flow_error_set(error, EINVAL,
1725 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1726 					  "RSS on eCPRI is not supported now");
1727 	}
1728 	if ((item_flags & MLX5_FLOW_LAYER_MPLS) &&
1729 	    !(item_flags &
1730 	      (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3)) &&
1731 	    rss->level > 1)
1732 		return rte_flow_error_set(error, EINVAL,
1733 					  RTE_FLOW_ERROR_TYPE_ITEM, NULL,
1734 					  "MPLS inner RSS needs to specify inner L2/L3 items after MPLS in pattern");
1735 	return 0;
1736 }
1737 
1738 /*
1739  * Validate the default miss action.
1740  *
1741  * @param[in] action_flags
1742  *   Bit-fields that holds the actions detected until now.
1743  * @param[out] error
1744  *   Pointer to error structure.
1745  *
1746  * @return
1747  *   0 on success, a negative errno value otherwise and rte_errno is set.
1748  */
1749 int
1750 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1751 				const struct rte_flow_attr *attr,
1752 				struct rte_flow_error *error)
1753 {
1754 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1755 		return rte_flow_error_set(error, EINVAL,
1756 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1757 					  "can't have 2 fate actions in"
1758 					  " same flow");
1759 	if (attr->egress)
1760 		return rte_flow_error_set(error, ENOTSUP,
1761 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1762 					  "default miss action not supported "
1763 					  "for egress");
1764 	if (attr->group)
1765 		return rte_flow_error_set(error, ENOTSUP,
1766 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1767 					  "only group 0 is supported");
1768 	if (attr->transfer)
1769 		return rte_flow_error_set(error, ENOTSUP,
1770 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1771 					  NULL, "transfer is not supported");
1772 	return 0;
1773 }
1774 
1775 /*
1776  * Validate the count action.
1777  *
1778  * @param[in] dev
1779  *   Pointer to the Ethernet device structure.
1780  * @param[in] attr
1781  *   Attributes of flow that includes this action.
1782  * @param[out] error
1783  *   Pointer to error structure.
1784  *
1785  * @return
1786  *   0 on success, a negative errno value otherwise and rte_errno is set.
1787  */
1788 int
1789 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1790 				const struct rte_flow_attr *attr,
1791 				struct rte_flow_error *error)
1792 {
1793 	if (attr->egress)
1794 		return rte_flow_error_set(error, ENOTSUP,
1795 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1796 					  "count action not supported for "
1797 					  "egress");
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Validate the ASO CT action.
1803  *
1804  * @param[in] dev
1805  *   Pointer to the Ethernet device structure.
1806  * @param[in] conntrack
1807  *   Pointer to the CT action profile.
1808  * @param[out] error
1809  *   Pointer to error structure.
1810  *
1811  * @return
1812  *   0 on success, a negative errno value otherwise and rte_errno is set.
1813  */
1814 int
1815 mlx5_validate_action_ct(struct rte_eth_dev *dev,
1816 			const struct rte_flow_action_conntrack *conntrack,
1817 			struct rte_flow_error *error)
1818 {
1819 	RTE_SET_USED(dev);
1820 
1821 	if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT)
1822 		return rte_flow_error_set(error, EINVAL,
1823 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1824 					  "Invalid CT state");
1825 	if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST)
1826 		return rte_flow_error_set(error, EINVAL,
1827 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1828 					  "Invalid last TCP packet flag");
1829 	return 0;
1830 }
1831 
1832 /**
1833  * Verify the @p attributes will be correctly understood by the NIC and store
1834  * them in the @p flow if everything is correct.
1835  *
1836  * @param[in] dev
1837  *   Pointer to the Ethernet device structure.
1838  * @param[in] attributes
1839  *   Pointer to flow attributes
1840  * @param[out] error
1841  *   Pointer to error structure.
1842  *
1843  * @return
1844  *   0 on success, a negative errno value otherwise and rte_errno is set.
1845  */
1846 int
1847 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1848 			      const struct rte_flow_attr *attributes,
1849 			      struct rte_flow_error *error)
1850 {
1851 	struct mlx5_priv *priv = dev->data->dev_private;
1852 	uint32_t priority_max = priv->config.flow_prio - 1;
1853 
1854 	if (attributes->group)
1855 		return rte_flow_error_set(error, ENOTSUP,
1856 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1857 					  NULL, "groups is not supported");
1858 	if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR &&
1859 	    attributes->priority >= priority_max)
1860 		return rte_flow_error_set(error, ENOTSUP,
1861 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1862 					  NULL, "priority out of range");
1863 	if (attributes->egress)
1864 		return rte_flow_error_set(error, ENOTSUP,
1865 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1866 					  "egress is not supported");
1867 	if (attributes->transfer && !priv->config.dv_esw_en)
1868 		return rte_flow_error_set(error, ENOTSUP,
1869 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1870 					  NULL, "transfer is not supported");
1871 	if (!attributes->ingress)
1872 		return rte_flow_error_set(error, EINVAL,
1873 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1874 					  NULL,
1875 					  "ingress attribute is mandatory");
1876 	return 0;
1877 }
1878 
1879 /**
1880  * Validate ICMP6 item.
1881  *
1882  * @param[in] item
1883  *   Item specification.
1884  * @param[in] item_flags
1885  *   Bit-fields that holds the items detected until now.
1886  * @param[in] ext_vlan_sup
1887  *   Whether extended VLAN features are supported or not.
1888  * @param[out] error
1889  *   Pointer to error structure.
1890  *
1891  * @return
1892  *   0 on success, a negative errno value otherwise and rte_errno is set.
1893  */
1894 int
1895 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1896 			       uint64_t item_flags,
1897 			       uint8_t target_protocol,
1898 			       struct rte_flow_error *error)
1899 {
1900 	const struct rte_flow_item_icmp6 *mask = item->mask;
1901 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1902 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1903 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1904 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1905 				      MLX5_FLOW_LAYER_OUTER_L4;
1906 	int ret;
1907 
1908 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1909 		return rte_flow_error_set(error, EINVAL,
1910 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1911 					  "protocol filtering not compatible"
1912 					  " with ICMP6 layer");
1913 	if (!(item_flags & l3m))
1914 		return rte_flow_error_set(error, EINVAL,
1915 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1916 					  "IPv6 is mandatory to filter on"
1917 					  " ICMP6");
1918 	if (item_flags & l4m)
1919 		return rte_flow_error_set(error, EINVAL,
1920 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1921 					  "multiple L4 layers not supported");
1922 	if (!mask)
1923 		mask = &rte_flow_item_icmp6_mask;
1924 	ret = mlx5_flow_item_acceptable
1925 		(item, (const uint8_t *)mask,
1926 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1927 		 sizeof(struct rte_flow_item_icmp6),
1928 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1929 	if (ret < 0)
1930 		return ret;
1931 	return 0;
1932 }
1933 
1934 /**
1935  * Validate ICMP item.
1936  *
1937  * @param[in] item
1938  *   Item specification.
1939  * @param[in] item_flags
1940  *   Bit-fields that holds the items detected until now.
1941  * @param[out] error
1942  *   Pointer to error structure.
1943  *
1944  * @return
1945  *   0 on success, a negative errno value otherwise and rte_errno is set.
1946  */
1947 int
1948 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1949 			     uint64_t item_flags,
1950 			     uint8_t target_protocol,
1951 			     struct rte_flow_error *error)
1952 {
1953 	const struct rte_flow_item_icmp *mask = item->mask;
1954 	const struct rte_flow_item_icmp nic_mask = {
1955 		.hdr.icmp_type = 0xff,
1956 		.hdr.icmp_code = 0xff,
1957 		.hdr.icmp_ident = RTE_BE16(0xffff),
1958 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1959 	};
1960 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1961 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1962 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1963 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1964 				      MLX5_FLOW_LAYER_OUTER_L4;
1965 	int ret;
1966 
1967 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1968 		return rte_flow_error_set(error, EINVAL,
1969 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1970 					  "protocol filtering not compatible"
1971 					  " with ICMP layer");
1972 	if (!(item_flags & l3m))
1973 		return rte_flow_error_set(error, EINVAL,
1974 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1975 					  "IPv4 is mandatory to filter"
1976 					  " on ICMP");
1977 	if (item_flags & l4m)
1978 		return rte_flow_error_set(error, EINVAL,
1979 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1980 					  "multiple L4 layers not supported");
1981 	if (!mask)
1982 		mask = &nic_mask;
1983 	ret = mlx5_flow_item_acceptable
1984 		(item, (const uint8_t *)mask,
1985 		 (const uint8_t *)&nic_mask,
1986 		 sizeof(struct rte_flow_item_icmp),
1987 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1988 	if (ret < 0)
1989 		return ret;
1990 	return 0;
1991 }
1992 
1993 /**
1994  * Validate Ethernet item.
1995  *
1996  * @param[in] item
1997  *   Item specification.
1998  * @param[in] item_flags
1999  *   Bit-fields that holds the items detected until now.
2000  * @param[out] error
2001  *   Pointer to error structure.
2002  *
2003  * @return
2004  *   0 on success, a negative errno value otherwise and rte_errno is set.
2005  */
2006 int
2007 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
2008 			    uint64_t item_flags, bool ext_vlan_sup,
2009 			    struct rte_flow_error *error)
2010 {
2011 	const struct rte_flow_item_eth *mask = item->mask;
2012 	const struct rte_flow_item_eth nic_mask = {
2013 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2014 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2015 		.type = RTE_BE16(0xffff),
2016 		.has_vlan = ext_vlan_sup ? 1 : 0,
2017 	};
2018 	int ret;
2019 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2020 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
2021 				       MLX5_FLOW_LAYER_OUTER_L2;
2022 
2023 	if (item_flags & ethm)
2024 		return rte_flow_error_set(error, ENOTSUP,
2025 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2026 					  "multiple L2 layers not supported");
2027 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
2028 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
2029 		return rte_flow_error_set(error, EINVAL,
2030 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2031 					  "L2 layer should not follow "
2032 					  "L3 layers");
2033 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
2034 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
2035 		return rte_flow_error_set(error, EINVAL,
2036 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2037 					  "L2 layer should not follow VLAN");
2038 	if (item_flags & MLX5_FLOW_LAYER_GTP)
2039 		return rte_flow_error_set(error, EINVAL,
2040 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2041 					  "L2 layer should not follow GTP");
2042 	if (!mask)
2043 		mask = &rte_flow_item_eth_mask;
2044 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2045 					(const uint8_t *)&nic_mask,
2046 					sizeof(struct rte_flow_item_eth),
2047 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2048 	return ret;
2049 }
2050 
2051 /**
2052  * Validate VLAN item.
2053  *
2054  * @param[in] item
2055  *   Item specification.
2056  * @param[in] item_flags
2057  *   Bit-fields that holds the items detected until now.
2058  * @param[in] dev
2059  *   Ethernet device flow is being created on.
2060  * @param[out] error
2061  *   Pointer to error structure.
2062  *
2063  * @return
2064  *   0 on success, a negative errno value otherwise and rte_errno is set.
2065  */
2066 int
2067 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
2068 			     uint64_t item_flags,
2069 			     struct rte_eth_dev *dev,
2070 			     struct rte_flow_error *error)
2071 {
2072 	const struct rte_flow_item_vlan *spec = item->spec;
2073 	const struct rte_flow_item_vlan *mask = item->mask;
2074 	const struct rte_flow_item_vlan nic_mask = {
2075 		.tci = RTE_BE16(UINT16_MAX),
2076 		.inner_type = RTE_BE16(UINT16_MAX),
2077 	};
2078 	uint16_t vlan_tag = 0;
2079 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2080 	int ret;
2081 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
2082 					MLX5_FLOW_LAYER_INNER_L4) :
2083 				       (MLX5_FLOW_LAYER_OUTER_L3 |
2084 					MLX5_FLOW_LAYER_OUTER_L4);
2085 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
2086 					MLX5_FLOW_LAYER_OUTER_VLAN;
2087 
2088 	if (item_flags & vlanm)
2089 		return rte_flow_error_set(error, EINVAL,
2090 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2091 					  "multiple VLAN layers not supported");
2092 	else if ((item_flags & l34m) != 0)
2093 		return rte_flow_error_set(error, EINVAL,
2094 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2095 					  "VLAN cannot follow L3/L4 layer");
2096 	if (!mask)
2097 		mask = &rte_flow_item_vlan_mask;
2098 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2099 					(const uint8_t *)&nic_mask,
2100 					sizeof(struct rte_flow_item_vlan),
2101 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2102 	if (ret)
2103 		return ret;
2104 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
2105 		struct mlx5_priv *priv = dev->data->dev_private;
2106 
2107 		if (priv->vmwa_context) {
2108 			/*
2109 			 * Non-NULL context means we have a virtual machine
2110 			 * and SR-IOV enabled, we have to create VLAN interface
2111 			 * to make hypervisor to setup E-Switch vport
2112 			 * context correctly. We avoid creating the multiple
2113 			 * VLAN interfaces, so we cannot support VLAN tag mask.
2114 			 */
2115 			return rte_flow_error_set(error, EINVAL,
2116 						  RTE_FLOW_ERROR_TYPE_ITEM,
2117 						  item,
2118 						  "VLAN tag mask is not"
2119 						  " supported in virtual"
2120 						  " environment");
2121 		}
2122 	}
2123 	if (spec) {
2124 		vlan_tag = spec->tci;
2125 		vlan_tag &= mask->tci;
2126 	}
2127 	/*
2128 	 * From verbs perspective an empty VLAN is equivalent
2129 	 * to a packet without VLAN layer.
2130 	 */
2131 	if (!vlan_tag)
2132 		return rte_flow_error_set(error, EINVAL,
2133 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
2134 					  item->spec,
2135 					  "VLAN cannot be empty");
2136 	return 0;
2137 }
2138 
2139 /**
2140  * Validate IPV4 item.
2141  *
2142  * @param[in] item
2143  *   Item specification.
2144  * @param[in] item_flags
2145  *   Bit-fields that holds the items detected until now.
2146  * @param[in] last_item
2147  *   Previous validated item in the pattern items.
2148  * @param[in] ether_type
2149  *   Type in the ethernet layer header (including dot1q).
2150  * @param[in] acc_mask
2151  *   Acceptable mask, if NULL default internal default mask
2152  *   will be used to check whether item fields are supported.
2153  * @param[in] range_accepted
2154  *   True if range of values is accepted for specific fields, false otherwise.
2155  * @param[out] error
2156  *   Pointer to error structure.
2157  *
2158  * @return
2159  *   0 on success, a negative errno value otherwise and rte_errno is set.
2160  */
2161 int
2162 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
2163 			     uint64_t item_flags,
2164 			     uint64_t last_item,
2165 			     uint16_t ether_type,
2166 			     const struct rte_flow_item_ipv4 *acc_mask,
2167 			     bool range_accepted,
2168 			     struct rte_flow_error *error)
2169 {
2170 	const struct rte_flow_item_ipv4 *mask = item->mask;
2171 	const struct rte_flow_item_ipv4 *spec = item->spec;
2172 	const struct rte_flow_item_ipv4 nic_mask = {
2173 		.hdr = {
2174 			.src_addr = RTE_BE32(0xffffffff),
2175 			.dst_addr = RTE_BE32(0xffffffff),
2176 			.type_of_service = 0xff,
2177 			.next_proto_id = 0xff,
2178 		},
2179 	};
2180 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2181 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2182 				      MLX5_FLOW_LAYER_OUTER_L3;
2183 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2184 				      MLX5_FLOW_LAYER_OUTER_L4;
2185 	int ret;
2186 	uint8_t next_proto = 0xFF;
2187 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2188 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2189 				  MLX5_FLOW_LAYER_INNER_VLAN);
2190 
2191 	if ((last_item & l2_vlan) && ether_type &&
2192 	    ether_type != RTE_ETHER_TYPE_IPV4)
2193 		return rte_flow_error_set(error, EINVAL,
2194 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2195 					  "IPv4 cannot follow L2/VLAN layer "
2196 					  "which ether type is not IPv4");
2197 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2198 		if (mask && spec)
2199 			next_proto = mask->hdr.next_proto_id &
2200 				     spec->hdr.next_proto_id;
2201 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2202 			return rte_flow_error_set(error, EINVAL,
2203 						  RTE_FLOW_ERROR_TYPE_ITEM,
2204 						  item,
2205 						  "multiple tunnel "
2206 						  "not supported");
2207 	}
2208 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2209 		return rte_flow_error_set(error, EINVAL,
2210 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2211 					  "wrong tunnel type - IPv6 specified "
2212 					  "but IPv4 item provided");
2213 	if (item_flags & l3m)
2214 		return rte_flow_error_set(error, ENOTSUP,
2215 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2216 					  "multiple L3 layers not supported");
2217 	else if (item_flags & l4m)
2218 		return rte_flow_error_set(error, EINVAL,
2219 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2220 					  "L3 cannot follow an L4 layer.");
2221 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2222 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2223 		return rte_flow_error_set(error, EINVAL,
2224 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2225 					  "L3 cannot follow an NVGRE layer.");
2226 	if (!mask)
2227 		mask = &rte_flow_item_ipv4_mask;
2228 	else if (mask->hdr.next_proto_id != 0 &&
2229 		 mask->hdr.next_proto_id != 0xff)
2230 		return rte_flow_error_set(error, EINVAL,
2231 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2232 					  "partial mask is not supported"
2233 					  " for protocol");
2234 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2235 					acc_mask ? (const uint8_t *)acc_mask
2236 						 : (const uint8_t *)&nic_mask,
2237 					sizeof(struct rte_flow_item_ipv4),
2238 					range_accepted, error);
2239 	if (ret < 0)
2240 		return ret;
2241 	return 0;
2242 }
2243 
2244 /**
2245  * Validate IPV6 item.
2246  *
2247  * @param[in] item
2248  *   Item specification.
2249  * @param[in] item_flags
2250  *   Bit-fields that holds the items detected until now.
2251  * @param[in] last_item
2252  *   Previous validated item in the pattern items.
2253  * @param[in] ether_type
2254  *   Type in the ethernet layer header (including dot1q).
2255  * @param[in] acc_mask
2256  *   Acceptable mask, if NULL default internal default mask
2257  *   will be used to check whether item fields are supported.
2258  * @param[out] error
2259  *   Pointer to error structure.
2260  *
2261  * @return
2262  *   0 on success, a negative errno value otherwise and rte_errno is set.
2263  */
2264 int
2265 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2266 			     uint64_t item_flags,
2267 			     uint64_t last_item,
2268 			     uint16_t ether_type,
2269 			     const struct rte_flow_item_ipv6 *acc_mask,
2270 			     struct rte_flow_error *error)
2271 {
2272 	const struct rte_flow_item_ipv6 *mask = item->mask;
2273 	const struct rte_flow_item_ipv6 *spec = item->spec;
2274 	const struct rte_flow_item_ipv6 nic_mask = {
2275 		.hdr = {
2276 			.src_addr =
2277 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2278 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2279 			.dst_addr =
2280 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2281 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2282 			.vtc_flow = RTE_BE32(0xffffffff),
2283 			.proto = 0xff,
2284 		},
2285 	};
2286 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2287 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2288 				      MLX5_FLOW_LAYER_OUTER_L3;
2289 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2290 				      MLX5_FLOW_LAYER_OUTER_L4;
2291 	int ret;
2292 	uint8_t next_proto = 0xFF;
2293 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2294 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2295 				  MLX5_FLOW_LAYER_INNER_VLAN);
2296 
2297 	if ((last_item & l2_vlan) && ether_type &&
2298 	    ether_type != RTE_ETHER_TYPE_IPV6)
2299 		return rte_flow_error_set(error, EINVAL,
2300 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2301 					  "IPv6 cannot follow L2/VLAN layer "
2302 					  "which ether type is not IPv6");
2303 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2304 		next_proto = spec->hdr.proto;
2305 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2306 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2307 			return rte_flow_error_set(error, EINVAL,
2308 						  RTE_FLOW_ERROR_TYPE_ITEM,
2309 						  item,
2310 						  "multiple tunnel "
2311 						  "not supported");
2312 	}
2313 	if (next_proto == IPPROTO_HOPOPTS  ||
2314 	    next_proto == IPPROTO_ROUTING  ||
2315 	    next_proto == IPPROTO_FRAGMENT ||
2316 	    next_proto == IPPROTO_ESP	   ||
2317 	    next_proto == IPPROTO_AH	   ||
2318 	    next_proto == IPPROTO_DSTOPTS)
2319 		return rte_flow_error_set(error, EINVAL,
2320 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2321 					  "IPv6 proto (next header) should "
2322 					  "not be set as extension header");
2323 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2324 		return rte_flow_error_set(error, EINVAL,
2325 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2326 					  "wrong tunnel type - IPv4 specified "
2327 					  "but IPv6 item provided");
2328 	if (item_flags & l3m)
2329 		return rte_flow_error_set(error, ENOTSUP,
2330 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2331 					  "multiple L3 layers not supported");
2332 	else if (item_flags & l4m)
2333 		return rte_flow_error_set(error, EINVAL,
2334 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2335 					  "L3 cannot follow an L4 layer.");
2336 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2337 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2338 		return rte_flow_error_set(error, EINVAL,
2339 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2340 					  "L3 cannot follow an NVGRE layer.");
2341 	if (!mask)
2342 		mask = &rte_flow_item_ipv6_mask;
2343 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2344 					acc_mask ? (const uint8_t *)acc_mask
2345 						 : (const uint8_t *)&nic_mask,
2346 					sizeof(struct rte_flow_item_ipv6),
2347 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2348 	if (ret < 0)
2349 		return ret;
2350 	return 0;
2351 }
2352 
2353 /**
2354  * Validate UDP item.
2355  *
2356  * @param[in] item
2357  *   Item specification.
2358  * @param[in] item_flags
2359  *   Bit-fields that holds the items detected until now.
2360  * @param[in] target_protocol
2361  *   The next protocol in the previous item.
2362  * @param[in] flow_mask
2363  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2364  * @param[out] error
2365  *   Pointer to error structure.
2366  *
2367  * @return
2368  *   0 on success, a negative errno value otherwise and rte_errno is set.
2369  */
2370 int
2371 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2372 			    uint64_t item_flags,
2373 			    uint8_t target_protocol,
2374 			    struct rte_flow_error *error)
2375 {
2376 	const struct rte_flow_item_udp *mask = item->mask;
2377 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2378 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2379 				      MLX5_FLOW_LAYER_OUTER_L3;
2380 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2381 				      MLX5_FLOW_LAYER_OUTER_L4;
2382 	int ret;
2383 
2384 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2385 		return rte_flow_error_set(error, EINVAL,
2386 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2387 					  "protocol filtering not compatible"
2388 					  " with UDP layer");
2389 	if (!(item_flags & l3m))
2390 		return rte_flow_error_set(error, EINVAL,
2391 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2392 					  "L3 is mandatory to filter on L4");
2393 	if (item_flags & l4m)
2394 		return rte_flow_error_set(error, EINVAL,
2395 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2396 					  "multiple L4 layers not supported");
2397 	if (!mask)
2398 		mask = &rte_flow_item_udp_mask;
2399 	ret = mlx5_flow_item_acceptable
2400 		(item, (const uint8_t *)mask,
2401 		 (const uint8_t *)&rte_flow_item_udp_mask,
2402 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2403 		 error);
2404 	if (ret < 0)
2405 		return ret;
2406 	return 0;
2407 }
2408 
2409 /**
2410  * Validate TCP item.
2411  *
2412  * @param[in] item
2413  *   Item specification.
2414  * @param[in] item_flags
2415  *   Bit-fields that holds the items detected until now.
2416  * @param[in] target_protocol
2417  *   The next protocol in the previous item.
2418  * @param[out] error
2419  *   Pointer to error structure.
2420  *
2421  * @return
2422  *   0 on success, a negative errno value otherwise and rte_errno is set.
2423  */
2424 int
2425 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2426 			    uint64_t item_flags,
2427 			    uint8_t target_protocol,
2428 			    const struct rte_flow_item_tcp *flow_mask,
2429 			    struct rte_flow_error *error)
2430 {
2431 	const struct rte_flow_item_tcp *mask = item->mask;
2432 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2433 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2434 				      MLX5_FLOW_LAYER_OUTER_L3;
2435 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2436 				      MLX5_FLOW_LAYER_OUTER_L4;
2437 	int ret;
2438 
2439 	MLX5_ASSERT(flow_mask);
2440 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2441 		return rte_flow_error_set(error, EINVAL,
2442 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2443 					  "protocol filtering not compatible"
2444 					  " with TCP layer");
2445 	if (!(item_flags & l3m))
2446 		return rte_flow_error_set(error, EINVAL,
2447 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2448 					  "L3 is mandatory to filter on L4");
2449 	if (item_flags & l4m)
2450 		return rte_flow_error_set(error, EINVAL,
2451 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2452 					  "multiple L4 layers not supported");
2453 	if (!mask)
2454 		mask = &rte_flow_item_tcp_mask;
2455 	ret = mlx5_flow_item_acceptable
2456 		(item, (const uint8_t *)mask,
2457 		 (const uint8_t *)flow_mask,
2458 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2459 		 error);
2460 	if (ret < 0)
2461 		return ret;
2462 	return 0;
2463 }
2464 
2465 /**
2466  * Validate VXLAN item.
2467  *
2468  * @param[in] dev
2469  *   Pointer to the Ethernet device structure.
2470  * @param[in] udp_dport
2471  *   UDP destination port
2472  * @param[in] item
2473  *   Item specification.
2474  * @param[in] item_flags
2475  *   Bit-fields that holds the items detected until now.
2476  * @param[in] attr
2477  *   Flow rule attributes.
2478  * @param[out] error
2479  *   Pointer to error structure.
2480  *
2481  * @return
2482  *   0 on success, a negative errno value otherwise and rte_errno is set.
2483  */
2484 int
2485 mlx5_flow_validate_item_vxlan(struct rte_eth_dev *dev,
2486 			      uint16_t udp_dport,
2487 			      const struct rte_flow_item *item,
2488 			      uint64_t item_flags,
2489 			      const struct rte_flow_attr *attr,
2490 			      struct rte_flow_error *error)
2491 {
2492 	const struct rte_flow_item_vxlan *spec = item->spec;
2493 	const struct rte_flow_item_vxlan *mask = item->mask;
2494 	int ret;
2495 	struct mlx5_priv *priv = dev->data->dev_private;
2496 	union vni {
2497 		uint32_t vlan_id;
2498 		uint8_t vni[4];
2499 	} id = { .vlan_id = 0, };
2500 	const struct rte_flow_item_vxlan nic_mask = {
2501 		.vni = "\xff\xff\xff",
2502 		.rsvd1 = 0xff,
2503 	};
2504 	const struct rte_flow_item_vxlan *valid_mask;
2505 
2506 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2507 		return rte_flow_error_set(error, ENOTSUP,
2508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2509 					  "multiple tunnel layers not"
2510 					  " supported");
2511 	valid_mask = &rte_flow_item_vxlan_mask;
2512 	/*
2513 	 * Verify only UDPv4 is present as defined in
2514 	 * https://tools.ietf.org/html/rfc7348
2515 	 */
2516 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2517 		return rte_flow_error_set(error, EINVAL,
2518 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2519 					  "no outer UDP layer found");
2520 	if (!mask)
2521 		mask = &rte_flow_item_vxlan_mask;
2522 
2523 	if (priv->sh->steering_format_version !=
2524 	    MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 ||
2525 	    !udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN) {
2526 		/* FDB domain & NIC domain non-zero group */
2527 		if ((attr->transfer || attr->group) && priv->sh->misc5_cap)
2528 			valid_mask = &nic_mask;
2529 		/* Group zero in NIC domain */
2530 		if (!attr->group && !attr->transfer &&
2531 		    priv->sh->tunnel_header_0_1)
2532 			valid_mask = &nic_mask;
2533 	}
2534 	ret = mlx5_flow_item_acceptable
2535 		(item, (const uint8_t *)mask,
2536 		 (const uint8_t *)valid_mask,
2537 		 sizeof(struct rte_flow_item_vxlan),
2538 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2539 	if (ret < 0)
2540 		return ret;
2541 	if (spec) {
2542 		memcpy(&id.vni[1], spec->vni, 3);
2543 		memcpy(&id.vni[1], mask->vni, 3);
2544 	}
2545 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2546 		return rte_flow_error_set(error, ENOTSUP,
2547 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2548 					  "VXLAN tunnel must be fully defined");
2549 	return 0;
2550 }
2551 
2552 /**
2553  * Validate VXLAN_GPE item.
2554  *
2555  * @param[in] item
2556  *   Item specification.
2557  * @param[in] item_flags
2558  *   Bit-fields that holds the items detected until now.
2559  * @param[in] priv
2560  *   Pointer to the private data structure.
2561  * @param[in] target_protocol
2562  *   The next protocol in the previous item.
2563  * @param[out] error
2564  *   Pointer to error structure.
2565  *
2566  * @return
2567  *   0 on success, a negative errno value otherwise and rte_errno is set.
2568  */
2569 int
2570 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2571 				  uint64_t item_flags,
2572 				  struct rte_eth_dev *dev,
2573 				  struct rte_flow_error *error)
2574 {
2575 	struct mlx5_priv *priv = dev->data->dev_private;
2576 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2577 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2578 	int ret;
2579 	union vni {
2580 		uint32_t vlan_id;
2581 		uint8_t vni[4];
2582 	} id = { .vlan_id = 0, };
2583 
2584 	if (!priv->config.l3_vxlan_en)
2585 		return rte_flow_error_set(error, ENOTSUP,
2586 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2587 					  "L3 VXLAN is not enabled by device"
2588 					  " parameter and/or not configured in"
2589 					  " firmware");
2590 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2591 		return rte_flow_error_set(error, ENOTSUP,
2592 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2593 					  "multiple tunnel layers not"
2594 					  " supported");
2595 	/*
2596 	 * Verify only UDPv4 is present as defined in
2597 	 * https://tools.ietf.org/html/rfc7348
2598 	 */
2599 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2600 		return rte_flow_error_set(error, EINVAL,
2601 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2602 					  "no outer UDP layer found");
2603 	if (!mask)
2604 		mask = &rte_flow_item_vxlan_gpe_mask;
2605 	ret = mlx5_flow_item_acceptable
2606 		(item, (const uint8_t *)mask,
2607 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2608 		 sizeof(struct rte_flow_item_vxlan_gpe),
2609 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2610 	if (ret < 0)
2611 		return ret;
2612 	if (spec) {
2613 		if (spec->protocol)
2614 			return rte_flow_error_set(error, ENOTSUP,
2615 						  RTE_FLOW_ERROR_TYPE_ITEM,
2616 						  item,
2617 						  "VxLAN-GPE protocol"
2618 						  " not supported");
2619 		memcpy(&id.vni[1], spec->vni, 3);
2620 		memcpy(&id.vni[1], mask->vni, 3);
2621 	}
2622 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2623 		return rte_flow_error_set(error, ENOTSUP,
2624 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2625 					  "VXLAN-GPE tunnel must be fully"
2626 					  " defined");
2627 	return 0;
2628 }
2629 /**
2630  * Validate GRE Key item.
2631  *
2632  * @param[in] item
2633  *   Item specification.
2634  * @param[in] item_flags
2635  *   Bit flags to mark detected items.
2636  * @param[in] gre_item
2637  *   Pointer to gre_item
2638  * @param[out] error
2639  *   Pointer to error structure.
2640  *
2641  * @return
2642  *   0 on success, a negative errno value otherwise and rte_errno is set.
2643  */
2644 int
2645 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2646 				uint64_t item_flags,
2647 				const struct rte_flow_item *gre_item,
2648 				struct rte_flow_error *error)
2649 {
2650 	const rte_be32_t *mask = item->mask;
2651 	int ret = 0;
2652 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2653 	const struct rte_flow_item_gre *gre_spec;
2654 	const struct rte_flow_item_gre *gre_mask;
2655 
2656 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2657 		return rte_flow_error_set(error, ENOTSUP,
2658 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2659 					  "Multiple GRE key not support");
2660 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2661 		return rte_flow_error_set(error, ENOTSUP,
2662 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2663 					  "No preceding GRE header");
2664 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2665 		return rte_flow_error_set(error, ENOTSUP,
2666 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2667 					  "GRE key following a wrong item");
2668 	gre_mask = gre_item->mask;
2669 	if (!gre_mask)
2670 		gre_mask = &rte_flow_item_gre_mask;
2671 	gre_spec = gre_item->spec;
2672 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2673 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2674 		return rte_flow_error_set(error, EINVAL,
2675 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2676 					  "Key bit must be on");
2677 
2678 	if (!mask)
2679 		mask = &gre_key_default_mask;
2680 	ret = mlx5_flow_item_acceptable
2681 		(item, (const uint8_t *)mask,
2682 		 (const uint8_t *)&gre_key_default_mask,
2683 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2684 	return ret;
2685 }
2686 
2687 /**
2688  * Validate GRE item.
2689  *
2690  * @param[in] item
2691  *   Item specification.
2692  * @param[in] item_flags
2693  *   Bit flags to mark detected items.
2694  * @param[in] target_protocol
2695  *   The next protocol in the previous item.
2696  * @param[out] error
2697  *   Pointer to error structure.
2698  *
2699  * @return
2700  *   0 on success, a negative errno value otherwise and rte_errno is set.
2701  */
2702 int
2703 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2704 			    uint64_t item_flags,
2705 			    uint8_t target_protocol,
2706 			    struct rte_flow_error *error)
2707 {
2708 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2709 	const struct rte_flow_item_gre *mask = item->mask;
2710 	int ret;
2711 	const struct rte_flow_item_gre nic_mask = {
2712 		.c_rsvd0_ver = RTE_BE16(0xB000),
2713 		.protocol = RTE_BE16(UINT16_MAX),
2714 	};
2715 
2716 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2717 		return rte_flow_error_set(error, EINVAL,
2718 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2719 					  "protocol filtering not compatible"
2720 					  " with this GRE layer");
2721 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2722 		return rte_flow_error_set(error, ENOTSUP,
2723 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2724 					  "multiple tunnel layers not"
2725 					  " supported");
2726 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2727 		return rte_flow_error_set(error, ENOTSUP,
2728 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2729 					  "L3 Layer is missing");
2730 	if (!mask)
2731 		mask = &rte_flow_item_gre_mask;
2732 	ret = mlx5_flow_item_acceptable
2733 		(item, (const uint8_t *)mask,
2734 		 (const uint8_t *)&nic_mask,
2735 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2736 		 error);
2737 	if (ret < 0)
2738 		return ret;
2739 #ifndef HAVE_MLX5DV_DR
2740 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2741 	if (spec && (spec->protocol & mask->protocol))
2742 		return rte_flow_error_set(error, ENOTSUP,
2743 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2744 					  "without MPLS support the"
2745 					  " specification cannot be used for"
2746 					  " filtering");
2747 #endif
2748 #endif
2749 	return 0;
2750 }
2751 
2752 /**
2753  * Validate Geneve item.
2754  *
2755  * @param[in] item
2756  *   Item specification.
2757  * @param[in] itemFlags
2758  *   Bit-fields that holds the items detected until now.
2759  * @param[in] enPriv
2760  *   Pointer to the private data structure.
2761  * @param[out] error
2762  *   Pointer to error structure.
2763  *
2764  * @return
2765  *   0 on success, a negative errno value otherwise and rte_errno is set.
2766  */
2767 
2768 int
2769 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2770 			       uint64_t item_flags,
2771 			       struct rte_eth_dev *dev,
2772 			       struct rte_flow_error *error)
2773 {
2774 	struct mlx5_priv *priv = dev->data->dev_private;
2775 	const struct rte_flow_item_geneve *spec = item->spec;
2776 	const struct rte_flow_item_geneve *mask = item->mask;
2777 	int ret;
2778 	uint16_t gbhdr;
2779 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2780 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2781 	const struct rte_flow_item_geneve nic_mask = {
2782 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2783 		.vni = "\xff\xff\xff",
2784 		.protocol = RTE_BE16(UINT16_MAX),
2785 	};
2786 
2787 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2788 		return rte_flow_error_set(error, ENOTSUP,
2789 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2790 					  "L3 Geneve is not enabled by device"
2791 					  " parameter and/or not configured in"
2792 					  " firmware");
2793 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2794 		return rte_flow_error_set(error, ENOTSUP,
2795 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2796 					  "multiple tunnel layers not"
2797 					  " supported");
2798 	/*
2799 	 * Verify only UDPv4 is present as defined in
2800 	 * https://tools.ietf.org/html/rfc7348
2801 	 */
2802 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2803 		return rte_flow_error_set(error, EINVAL,
2804 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2805 					  "no outer UDP layer found");
2806 	if (!mask)
2807 		mask = &rte_flow_item_geneve_mask;
2808 	ret = mlx5_flow_item_acceptable
2809 				  (item, (const uint8_t *)mask,
2810 				   (const uint8_t *)&nic_mask,
2811 				   sizeof(struct rte_flow_item_geneve),
2812 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2813 	if (ret)
2814 		return ret;
2815 	if (spec) {
2816 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2817 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2818 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2819 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2820 			return rte_flow_error_set(error, ENOTSUP,
2821 						  RTE_FLOW_ERROR_TYPE_ITEM,
2822 						  item,
2823 						  "Geneve protocol unsupported"
2824 						  " fields are being used");
2825 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2826 			return rte_flow_error_set
2827 					(error, ENOTSUP,
2828 					 RTE_FLOW_ERROR_TYPE_ITEM,
2829 					 item,
2830 					 "Unsupported Geneve options length");
2831 	}
2832 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2833 		return rte_flow_error_set
2834 				    (error, ENOTSUP,
2835 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2836 				     "Geneve tunnel must be fully defined");
2837 	return 0;
2838 }
2839 
2840 /**
2841  * Validate Geneve TLV option item.
2842  *
2843  * @param[in] item
2844  *   Item specification.
2845  * @param[in] last_item
2846  *   Previous validated item in the pattern items.
2847  * @param[in] geneve_item
2848  *   Previous GENEVE item specification.
2849  * @param[in] dev
2850  *   Pointer to the rte_eth_dev structure.
2851  * @param[out] error
2852  *   Pointer to error structure.
2853  *
2854  * @return
2855  *   0 on success, a negative errno value otherwise and rte_errno is set.
2856  */
2857 int
2858 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item,
2859 				   uint64_t last_item,
2860 				   const struct rte_flow_item *geneve_item,
2861 				   struct rte_eth_dev *dev,
2862 				   struct rte_flow_error *error)
2863 {
2864 	struct mlx5_priv *priv = dev->data->dev_private;
2865 	struct mlx5_dev_ctx_shared *sh = priv->sh;
2866 	struct mlx5_geneve_tlv_option_resource *geneve_opt_resource;
2867 	struct mlx5_hca_attr *hca_attr = &priv->config.hca_attr;
2868 	uint8_t data_max_supported =
2869 			hca_attr->max_geneve_tlv_option_data_len * 4;
2870 	struct mlx5_dev_config *config = &priv->config;
2871 	const struct rte_flow_item_geneve *geneve_spec;
2872 	const struct rte_flow_item_geneve *geneve_mask;
2873 	const struct rte_flow_item_geneve_opt *spec = item->spec;
2874 	const struct rte_flow_item_geneve_opt *mask = item->mask;
2875 	unsigned int i;
2876 	unsigned int data_len;
2877 	uint8_t tlv_option_len;
2878 	uint16_t optlen_m, optlen_v;
2879 	const struct rte_flow_item_geneve_opt full_mask = {
2880 		.option_class = RTE_BE16(0xffff),
2881 		.option_type = 0xff,
2882 		.option_len = 0x1f,
2883 	};
2884 
2885 	if (!mask)
2886 		mask = &rte_flow_item_geneve_opt_mask;
2887 	if (!spec)
2888 		return rte_flow_error_set
2889 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2890 			"Geneve TLV opt class/type/length must be specified");
2891 	if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK)
2892 		return rte_flow_error_set
2893 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2894 			"Geneve TLV opt length exceeeds the limit (31)");
2895 	/* Check if class type and length masks are full. */
2896 	if (full_mask.option_class != mask->option_class ||
2897 	    full_mask.option_type != mask->option_type ||
2898 	    full_mask.option_len != (mask->option_len & full_mask.option_len))
2899 		return rte_flow_error_set
2900 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2901 			"Geneve TLV opt class/type/length masks must be full");
2902 	/* Check if length is supported */
2903 	if ((uint32_t)spec->option_len >
2904 			config->hca_attr.max_geneve_tlv_option_data_len)
2905 		return rte_flow_error_set
2906 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2907 			"Geneve TLV opt length not supported");
2908 	if (config->hca_attr.max_geneve_tlv_options > 1)
2909 		DRV_LOG(DEBUG,
2910 			"max_geneve_tlv_options supports more than 1 option");
2911 	/* Check GENEVE item preceding. */
2912 	if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE))
2913 		return rte_flow_error_set
2914 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2915 			"Geneve opt item must be preceded with Geneve item");
2916 	geneve_spec = geneve_item->spec;
2917 	geneve_mask = geneve_item->mask ? geneve_item->mask :
2918 					  &rte_flow_item_geneve_mask;
2919 	/* Check if GENEVE TLV option size doesn't exceed option length */
2920 	if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 ||
2921 			    geneve_spec->ver_opt_len_o_c_rsvd0)) {
2922 		tlv_option_len = spec->option_len & mask->option_len;
2923 		optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0);
2924 		optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v);
2925 		optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0);
2926 		optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m);
2927 		if ((optlen_v & optlen_m) <= tlv_option_len)
2928 			return rte_flow_error_set
2929 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2930 				 "GENEVE TLV option length exceeds optlen");
2931 	}
2932 	/* Check if length is 0 or data is 0. */
2933 	if (spec->data == NULL || spec->option_len == 0)
2934 		return rte_flow_error_set
2935 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2936 			"Geneve TLV opt with zero data/length not supported");
2937 	/* Check not all data & mask are 0. */
2938 	data_len = spec->option_len * 4;
2939 	if (mask->data == NULL) {
2940 		for (i = 0; i < data_len; i++)
2941 			if (spec->data[i])
2942 				break;
2943 		if (i == data_len)
2944 			return rte_flow_error_set(error, ENOTSUP,
2945 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2946 				"Can't match on Geneve option data 0");
2947 	} else {
2948 		for (i = 0; i < data_len; i++)
2949 			if (spec->data[i] & mask->data[i])
2950 				break;
2951 		if (i == data_len)
2952 			return rte_flow_error_set(error, ENOTSUP,
2953 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2954 				"Can't match on Geneve option data and mask 0");
2955 		/* Check data mask supported. */
2956 		for (i = data_max_supported; i < data_len ; i++)
2957 			if (mask->data[i])
2958 				return rte_flow_error_set(error, ENOTSUP,
2959 					RTE_FLOW_ERROR_TYPE_ITEM, item,
2960 					"Data mask is of unsupported size");
2961 	}
2962 	/* Check GENEVE option is supported in NIC. */
2963 	if (!config->hca_attr.geneve_tlv_opt)
2964 		return rte_flow_error_set
2965 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2966 			"Geneve TLV opt not supported");
2967 	/* Check if we already have geneve option with different type/class. */
2968 	rte_spinlock_lock(&sh->geneve_tlv_opt_sl);
2969 	geneve_opt_resource = sh->geneve_tlv_option_resource;
2970 	if (geneve_opt_resource != NULL)
2971 		if (geneve_opt_resource->option_class != spec->option_class ||
2972 		    geneve_opt_resource->option_type != spec->option_type ||
2973 		    geneve_opt_resource->length != spec->option_len) {
2974 			rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2975 			return rte_flow_error_set(error, ENOTSUP,
2976 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2977 				"Only one Geneve TLV option supported");
2978 		}
2979 	rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2980 	return 0;
2981 }
2982 
2983 /**
2984  * Validate MPLS item.
2985  *
2986  * @param[in] dev
2987  *   Pointer to the rte_eth_dev structure.
2988  * @param[in] item
2989  *   Item specification.
2990  * @param[in] item_flags
2991  *   Bit-fields that holds the items detected until now.
2992  * @param[in] prev_layer
2993  *   The protocol layer indicated in previous item.
2994  * @param[out] error
2995  *   Pointer to error structure.
2996  *
2997  * @return
2998  *   0 on success, a negative errno value otherwise and rte_errno is set.
2999  */
3000 int
3001 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
3002 			     const struct rte_flow_item *item __rte_unused,
3003 			     uint64_t item_flags __rte_unused,
3004 			     uint64_t prev_layer __rte_unused,
3005 			     struct rte_flow_error *error)
3006 {
3007 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
3008 	const struct rte_flow_item_mpls *mask = item->mask;
3009 	struct mlx5_priv *priv = dev->data->dev_private;
3010 	int ret;
3011 
3012 	if (!priv->config.mpls_en)
3013 		return rte_flow_error_set(error, ENOTSUP,
3014 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3015 					  "MPLS not supported or"
3016 					  " disabled in firmware"
3017 					  " configuration.");
3018 	/* MPLS over UDP, GRE is allowed */
3019 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L4_UDP |
3020 			    MLX5_FLOW_LAYER_GRE |
3021 			    MLX5_FLOW_LAYER_GRE_KEY)))
3022 		return rte_flow_error_set(error, EINVAL,
3023 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3024 					  "protocol filtering not compatible"
3025 					  " with MPLS layer");
3026 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
3027 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
3028 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
3029 		return rte_flow_error_set(error, ENOTSUP,
3030 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3031 					  "multiple tunnel layers not"
3032 					  " supported");
3033 	if (!mask)
3034 		mask = &rte_flow_item_mpls_mask;
3035 	ret = mlx5_flow_item_acceptable
3036 		(item, (const uint8_t *)mask,
3037 		 (const uint8_t *)&rte_flow_item_mpls_mask,
3038 		 sizeof(struct rte_flow_item_mpls),
3039 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3040 	if (ret < 0)
3041 		return ret;
3042 	return 0;
3043 #else
3044 	return rte_flow_error_set(error, ENOTSUP,
3045 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
3046 				  "MPLS is not supported by Verbs, please"
3047 				  " update.");
3048 #endif
3049 }
3050 
3051 /**
3052  * Validate NVGRE item.
3053  *
3054  * @param[in] item
3055  *   Item specification.
3056  * @param[in] item_flags
3057  *   Bit flags to mark detected items.
3058  * @param[in] target_protocol
3059  *   The next protocol in the previous item.
3060  * @param[out] error
3061  *   Pointer to error structure.
3062  *
3063  * @return
3064  *   0 on success, a negative errno value otherwise and rte_errno is set.
3065  */
3066 int
3067 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
3068 			      uint64_t item_flags,
3069 			      uint8_t target_protocol,
3070 			      struct rte_flow_error *error)
3071 {
3072 	const struct rte_flow_item_nvgre *mask = item->mask;
3073 	int ret;
3074 
3075 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
3076 		return rte_flow_error_set(error, EINVAL,
3077 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3078 					  "protocol filtering not compatible"
3079 					  " with this GRE layer");
3080 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3081 		return rte_flow_error_set(error, ENOTSUP,
3082 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3083 					  "multiple tunnel layers not"
3084 					  " supported");
3085 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
3086 		return rte_flow_error_set(error, ENOTSUP,
3087 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3088 					  "L3 Layer is missing");
3089 	if (!mask)
3090 		mask = &rte_flow_item_nvgre_mask;
3091 	ret = mlx5_flow_item_acceptable
3092 		(item, (const uint8_t *)mask,
3093 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
3094 		 sizeof(struct rte_flow_item_nvgre),
3095 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3096 	if (ret < 0)
3097 		return ret;
3098 	return 0;
3099 }
3100 
3101 /**
3102  * Validate eCPRI item.
3103  *
3104  * @param[in] item
3105  *   Item specification.
3106  * @param[in] item_flags
3107  *   Bit-fields that holds the items detected until now.
3108  * @param[in] last_item
3109  *   Previous validated item in the pattern items.
3110  * @param[in] ether_type
3111  *   Type in the ethernet layer header (including dot1q).
3112  * @param[in] acc_mask
3113  *   Acceptable mask, if NULL default internal default mask
3114  *   will be used to check whether item fields are supported.
3115  * @param[out] error
3116  *   Pointer to error structure.
3117  *
3118  * @return
3119  *   0 on success, a negative errno value otherwise and rte_errno is set.
3120  */
3121 int
3122 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
3123 			      uint64_t item_flags,
3124 			      uint64_t last_item,
3125 			      uint16_t ether_type,
3126 			      const struct rte_flow_item_ecpri *acc_mask,
3127 			      struct rte_flow_error *error)
3128 {
3129 	const struct rte_flow_item_ecpri *mask = item->mask;
3130 	const struct rte_flow_item_ecpri nic_mask = {
3131 		.hdr = {
3132 			.common = {
3133 				.u32 =
3134 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
3135 					.type = 0xFF,
3136 					}).u32),
3137 			},
3138 			.dummy[0] = 0xFFFFFFFF,
3139 		},
3140 	};
3141 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
3142 					MLX5_FLOW_LAYER_OUTER_VLAN);
3143 	struct rte_flow_item_ecpri mask_lo;
3144 
3145 	if (!(last_item & outer_l2_vlan) &&
3146 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
3147 		return rte_flow_error_set(error, EINVAL,
3148 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3149 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
3150 	if ((last_item & outer_l2_vlan) && ether_type &&
3151 	    ether_type != RTE_ETHER_TYPE_ECPRI)
3152 		return rte_flow_error_set(error, EINVAL,
3153 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3154 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
3155 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3156 		return rte_flow_error_set(error, EINVAL,
3157 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3158 					  "eCPRI with tunnel is not supported right now");
3159 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
3160 		return rte_flow_error_set(error, ENOTSUP,
3161 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3162 					  "multiple L3 layers not supported");
3163 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
3164 		return rte_flow_error_set(error, EINVAL,
3165 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3166 					  "eCPRI cannot coexist with a TCP layer");
3167 	/* In specification, eCPRI could be over UDP layer. */
3168 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
3169 		return rte_flow_error_set(error, EINVAL,
3170 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3171 					  "eCPRI over UDP layer is not yet supported right now");
3172 	/* Mask for type field in common header could be zero. */
3173 	if (!mask)
3174 		mask = &rte_flow_item_ecpri_mask;
3175 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
3176 	/* Input mask is in big-endian format. */
3177 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
3178 		return rte_flow_error_set(error, EINVAL,
3179 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3180 					  "partial mask is not supported for protocol");
3181 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
3182 		return rte_flow_error_set(error, EINVAL,
3183 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3184 					  "message header mask must be after a type mask");
3185 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
3186 					 acc_mask ? (const uint8_t *)acc_mask
3187 						  : (const uint8_t *)&nic_mask,
3188 					 sizeof(struct rte_flow_item_ecpri),
3189 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3190 }
3191 
3192 static int
3193 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
3194 		   const struct rte_flow_attr *attr __rte_unused,
3195 		   const struct rte_flow_item items[] __rte_unused,
3196 		   const struct rte_flow_action actions[] __rte_unused,
3197 		   bool external __rte_unused,
3198 		   int hairpin __rte_unused,
3199 		   struct rte_flow_error *error)
3200 {
3201 	return rte_flow_error_set(error, ENOTSUP,
3202 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3203 }
3204 
3205 static struct mlx5_flow *
3206 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
3207 		  const struct rte_flow_attr *attr __rte_unused,
3208 		  const struct rte_flow_item items[] __rte_unused,
3209 		  const struct rte_flow_action actions[] __rte_unused,
3210 		  struct rte_flow_error *error)
3211 {
3212 	rte_flow_error_set(error, ENOTSUP,
3213 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3214 	return NULL;
3215 }
3216 
3217 static int
3218 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
3219 		    struct mlx5_flow *dev_flow __rte_unused,
3220 		    const struct rte_flow_attr *attr __rte_unused,
3221 		    const struct rte_flow_item items[] __rte_unused,
3222 		    const struct rte_flow_action actions[] __rte_unused,
3223 		    struct rte_flow_error *error)
3224 {
3225 	return rte_flow_error_set(error, ENOTSUP,
3226 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3227 }
3228 
3229 static int
3230 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
3231 		struct rte_flow *flow __rte_unused,
3232 		struct rte_flow_error *error)
3233 {
3234 	return rte_flow_error_set(error, ENOTSUP,
3235 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3236 }
3237 
3238 static void
3239 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
3240 		 struct rte_flow *flow __rte_unused)
3241 {
3242 }
3243 
3244 static void
3245 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
3246 		  struct rte_flow *flow __rte_unused)
3247 {
3248 }
3249 
3250 static int
3251 flow_null_query(struct rte_eth_dev *dev __rte_unused,
3252 		struct rte_flow *flow __rte_unused,
3253 		const struct rte_flow_action *actions __rte_unused,
3254 		void *data __rte_unused,
3255 		struct rte_flow_error *error)
3256 {
3257 	return rte_flow_error_set(error, ENOTSUP,
3258 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3259 }
3260 
3261 static int
3262 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
3263 		      uint32_t domains __rte_unused,
3264 		      uint32_t flags __rte_unused)
3265 {
3266 	return 0;
3267 }
3268 
3269 /* Void driver to protect from null pointer reference. */
3270 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
3271 	.validate = flow_null_validate,
3272 	.prepare = flow_null_prepare,
3273 	.translate = flow_null_translate,
3274 	.apply = flow_null_apply,
3275 	.remove = flow_null_remove,
3276 	.destroy = flow_null_destroy,
3277 	.query = flow_null_query,
3278 	.sync_domain = flow_null_sync_domain,
3279 };
3280 
3281 /**
3282  * Select flow driver type according to flow attributes and device
3283  * configuration.
3284  *
3285  * @param[in] dev
3286  *   Pointer to the dev structure.
3287  * @param[in] attr
3288  *   Pointer to the flow attributes.
3289  *
3290  * @return
3291  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
3292  */
3293 static enum mlx5_flow_drv_type
3294 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
3295 {
3296 	struct mlx5_priv *priv = dev->data->dev_private;
3297 	/* The OS can determine first a specific flow type (DV, VERBS) */
3298 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
3299 
3300 	if (type != MLX5_FLOW_TYPE_MAX)
3301 		return type;
3302 	/* If no OS specific type - continue with DV/VERBS selection */
3303 	if (attr->transfer && priv->config.dv_esw_en)
3304 		type = MLX5_FLOW_TYPE_DV;
3305 	if (!attr->transfer)
3306 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
3307 						 MLX5_FLOW_TYPE_VERBS;
3308 	return type;
3309 }
3310 
3311 #define flow_get_drv_ops(type) flow_drv_ops[type]
3312 
3313 /**
3314  * Flow driver validation API. This abstracts calling driver specific functions.
3315  * The type of flow driver is determined according to flow attributes.
3316  *
3317  * @param[in] dev
3318  *   Pointer to the dev structure.
3319  * @param[in] attr
3320  *   Pointer to the flow attributes.
3321  * @param[in] items
3322  *   Pointer to the list of items.
3323  * @param[in] actions
3324  *   Pointer to the list of actions.
3325  * @param[in] external
3326  *   This flow rule is created by request external to PMD.
3327  * @param[in] hairpin
3328  *   Number of hairpin TX actions, 0 means classic flow.
3329  * @param[out] error
3330  *   Pointer to the error structure.
3331  *
3332  * @return
3333  *   0 on success, a negative errno value otherwise and rte_errno is set.
3334  */
3335 static inline int
3336 flow_drv_validate(struct rte_eth_dev *dev,
3337 		  const struct rte_flow_attr *attr,
3338 		  const struct rte_flow_item items[],
3339 		  const struct rte_flow_action actions[],
3340 		  bool external, int hairpin, struct rte_flow_error *error)
3341 {
3342 	const struct mlx5_flow_driver_ops *fops;
3343 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3344 
3345 	fops = flow_get_drv_ops(type);
3346 	return fops->validate(dev, attr, items, actions, external,
3347 			      hairpin, error);
3348 }
3349 
3350 /**
3351  * Flow driver preparation API. This abstracts calling driver specific
3352  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3353  * calculates the size of memory required for device flow, allocates the memory,
3354  * initializes the device flow and returns the pointer.
3355  *
3356  * @note
3357  *   This function initializes device flow structure such as dv or verbs in
3358  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3359  *   rest. For example, adding returning device flow to flow->dev_flow list and
3360  *   setting backward reference to the flow should be done out of this function.
3361  *   layers field is not filled either.
3362  *
3363  * @param[in] dev
3364  *   Pointer to the dev structure.
3365  * @param[in] attr
3366  *   Pointer to the flow attributes.
3367  * @param[in] items
3368  *   Pointer to the list of items.
3369  * @param[in] actions
3370  *   Pointer to the list of actions.
3371  * @param[in] flow_idx
3372  *   This memory pool index to the flow.
3373  * @param[out] error
3374  *   Pointer to the error structure.
3375  *
3376  * @return
3377  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3378  */
3379 static inline struct mlx5_flow *
3380 flow_drv_prepare(struct rte_eth_dev *dev,
3381 		 const struct rte_flow *flow,
3382 		 const struct rte_flow_attr *attr,
3383 		 const struct rte_flow_item items[],
3384 		 const struct rte_flow_action actions[],
3385 		 uint32_t flow_idx,
3386 		 struct rte_flow_error *error)
3387 {
3388 	const struct mlx5_flow_driver_ops *fops;
3389 	enum mlx5_flow_drv_type type = flow->drv_type;
3390 	struct mlx5_flow *mlx5_flow = NULL;
3391 
3392 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3393 	fops = flow_get_drv_ops(type);
3394 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3395 	if (mlx5_flow)
3396 		mlx5_flow->flow_idx = flow_idx;
3397 	return mlx5_flow;
3398 }
3399 
3400 /**
3401  * Flow driver translation API. This abstracts calling driver specific
3402  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3403  * translates a generic flow into a driver flow. flow_drv_prepare() must
3404  * precede.
3405  *
3406  * @note
3407  *   dev_flow->layers could be filled as a result of parsing during translation
3408  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3409  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3410  *   flow->actions could be overwritten even though all the expanded dev_flows
3411  *   have the same actions.
3412  *
3413  * @param[in] dev
3414  *   Pointer to the rte dev structure.
3415  * @param[in, out] dev_flow
3416  *   Pointer to the mlx5 flow.
3417  * @param[in] attr
3418  *   Pointer to the flow attributes.
3419  * @param[in] items
3420  *   Pointer to the list of items.
3421  * @param[in] actions
3422  *   Pointer to the list of actions.
3423  * @param[out] error
3424  *   Pointer to the error structure.
3425  *
3426  * @return
3427  *   0 on success, a negative errno value otherwise and rte_errno is set.
3428  */
3429 static inline int
3430 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3431 		   const struct rte_flow_attr *attr,
3432 		   const struct rte_flow_item items[],
3433 		   const struct rte_flow_action actions[],
3434 		   struct rte_flow_error *error)
3435 {
3436 	const struct mlx5_flow_driver_ops *fops;
3437 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3438 
3439 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3440 	fops = flow_get_drv_ops(type);
3441 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3442 }
3443 
3444 /**
3445  * Flow driver apply API. This abstracts calling driver specific functions.
3446  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3447  * translated driver flows on to device. flow_drv_translate() must precede.
3448  *
3449  * @param[in] dev
3450  *   Pointer to Ethernet device structure.
3451  * @param[in, out] flow
3452  *   Pointer to flow structure.
3453  * @param[out] error
3454  *   Pointer to error structure.
3455  *
3456  * @return
3457  *   0 on success, a negative errno value otherwise and rte_errno is set.
3458  */
3459 static inline int
3460 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3461 	       struct rte_flow_error *error)
3462 {
3463 	const struct mlx5_flow_driver_ops *fops;
3464 	enum mlx5_flow_drv_type type = flow->drv_type;
3465 
3466 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3467 	fops = flow_get_drv_ops(type);
3468 	return fops->apply(dev, flow, error);
3469 }
3470 
3471 /**
3472  * Flow driver destroy API. This abstracts calling driver specific functions.
3473  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3474  * on device and releases resources of the flow.
3475  *
3476  * @param[in] dev
3477  *   Pointer to Ethernet device.
3478  * @param[in, out] flow
3479  *   Pointer to flow structure.
3480  */
3481 static inline void
3482 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3483 {
3484 	const struct mlx5_flow_driver_ops *fops;
3485 	enum mlx5_flow_drv_type type = flow->drv_type;
3486 
3487 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3488 	fops = flow_get_drv_ops(type);
3489 	fops->destroy(dev, flow);
3490 }
3491 
3492 /**
3493  * Flow driver find RSS policy tbl API. This abstracts calling driver
3494  * specific functions. Parent flow (rte_flow) should have driver
3495  * type (drv_type). It will find the RSS policy table that has the rss_desc.
3496  *
3497  * @param[in] dev
3498  *   Pointer to Ethernet device.
3499  * @param[in, out] flow
3500  *   Pointer to flow structure.
3501  * @param[in] policy
3502  *   Pointer to meter policy table.
3503  * @param[in] rss_desc
3504  *   Pointer to rss_desc
3505  */
3506 static struct mlx5_flow_meter_sub_policy *
3507 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev,
3508 		struct rte_flow *flow,
3509 		struct mlx5_flow_meter_policy *policy,
3510 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS])
3511 {
3512 	const struct mlx5_flow_driver_ops *fops;
3513 	enum mlx5_flow_drv_type type = flow->drv_type;
3514 
3515 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3516 	fops = flow_get_drv_ops(type);
3517 	return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc);
3518 }
3519 
3520 /**
3521  * Flow driver color tag rule API. This abstracts calling driver
3522  * specific functions. Parent flow (rte_flow) should have driver
3523  * type (drv_type). It will create the color tag rules in hierarchy meter.
3524  *
3525  * @param[in] dev
3526  *   Pointer to Ethernet device.
3527  * @param[in, out] flow
3528  *   Pointer to flow structure.
3529  * @param[in] fm
3530  *   Pointer to flow meter structure.
3531  * @param[in] src_port
3532  *   The src port this extra rule should use.
3533  * @param[in] item
3534  *   The src port id match item.
3535  * @param[out] error
3536  *   Pointer to error structure.
3537  */
3538 static int
3539 flow_drv_mtr_hierarchy_rule_create(struct rte_eth_dev *dev,
3540 		struct rte_flow *flow,
3541 		struct mlx5_flow_meter_info *fm,
3542 		int32_t src_port,
3543 		const struct rte_flow_item *item,
3544 		struct rte_flow_error *error)
3545 {
3546 	const struct mlx5_flow_driver_ops *fops;
3547 	enum mlx5_flow_drv_type type = flow->drv_type;
3548 
3549 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3550 	fops = flow_get_drv_ops(type);
3551 	return fops->meter_hierarchy_rule_create(dev, fm,
3552 						src_port, item, error);
3553 }
3554 
3555 /**
3556  * Get RSS action from the action list.
3557  *
3558  * @param[in] dev
3559  *   Pointer to Ethernet device.
3560  * @param[in] actions
3561  *   Pointer to the list of actions.
3562  * @param[in] flow
3563  *   Parent flow structure pointer.
3564  *
3565  * @return
3566  *   Pointer to the RSS action if exist, else return NULL.
3567  */
3568 static const struct rte_flow_action_rss*
3569 flow_get_rss_action(struct rte_eth_dev *dev,
3570 		    const struct rte_flow_action actions[])
3571 {
3572 	struct mlx5_priv *priv = dev->data->dev_private;
3573 	const struct rte_flow_action_rss *rss = NULL;
3574 
3575 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3576 		switch (actions->type) {
3577 		case RTE_FLOW_ACTION_TYPE_RSS:
3578 			rss = actions->conf;
3579 			break;
3580 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
3581 		{
3582 			const struct rte_flow_action_sample *sample =
3583 								actions->conf;
3584 			const struct rte_flow_action *act = sample->actions;
3585 			for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++)
3586 				if (act->type == RTE_FLOW_ACTION_TYPE_RSS)
3587 					rss = act->conf;
3588 			break;
3589 		}
3590 		case RTE_FLOW_ACTION_TYPE_METER:
3591 		{
3592 			uint32_t mtr_idx;
3593 			struct mlx5_flow_meter_info *fm;
3594 			struct mlx5_flow_meter_policy *policy;
3595 			const struct rte_flow_action_meter *mtr = actions->conf;
3596 
3597 			fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx);
3598 			if (fm && !fm->def_policy) {
3599 				policy = mlx5_flow_meter_policy_find(dev,
3600 						fm->policy_id, NULL);
3601 				MLX5_ASSERT(policy);
3602 				if (policy->is_hierarchy) {
3603 					policy =
3604 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
3605 									policy);
3606 					if (!policy)
3607 						return NULL;
3608 				}
3609 				if (policy->is_rss)
3610 					rss =
3611 				policy->act_cnt[RTE_COLOR_GREEN].rss->conf;
3612 			}
3613 			break;
3614 		}
3615 		default:
3616 			break;
3617 		}
3618 	}
3619 	return rss;
3620 }
3621 
3622 /**
3623  * Get ASO age action by index.
3624  *
3625  * @param[in] dev
3626  *   Pointer to the Ethernet device structure.
3627  * @param[in] age_idx
3628  *   Index to the ASO age action.
3629  *
3630  * @return
3631  *   The specified ASO age action.
3632  */
3633 struct mlx5_aso_age_action*
3634 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3635 {
3636 	uint16_t pool_idx = age_idx & UINT16_MAX;
3637 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3638 	struct mlx5_priv *priv = dev->data->dev_private;
3639 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3640 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3641 
3642 	return &pool->actions[offset - 1];
3643 }
3644 
3645 /* maps indirect action to translated direct in some actions array */
3646 struct mlx5_translated_action_handle {
3647 	struct rte_flow_action_handle *action; /**< Indirect action handle. */
3648 	int index; /**< Index in related array of rte_flow_action. */
3649 };
3650 
3651 /**
3652  * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related
3653  * direct action if translation possible.
3654  * This functionality used to run same execution path for both direct and
3655  * indirect actions on flow create. All necessary preparations for indirect
3656  * action handling should be performed on *handle* actions list returned
3657  * from this call.
3658  *
3659  * @param[in] dev
3660  *   Pointer to Ethernet device.
3661  * @param[in] actions
3662  *   List of actions to translate.
3663  * @param[out] handle
3664  *   List to store translated indirect action object handles.
3665  * @param[in, out] indir_n
3666  *   Size of *handle* array. On return should be updated with number of
3667  *   indirect actions retrieved from the *actions* list.
3668  * @param[out] translated_actions
3669  *   List of actions where all indirect actions were translated to direct
3670  *   if possible. NULL if no translation took place.
3671  * @param[out] error
3672  *   Pointer to the error structure.
3673  *
3674  * @return
3675  *   0 on success, a negative errno value otherwise and rte_errno is set.
3676  */
3677 static int
3678 flow_action_handles_translate(struct rte_eth_dev *dev,
3679 			      const struct rte_flow_action actions[],
3680 			      struct mlx5_translated_action_handle *handle,
3681 			      int *indir_n,
3682 			      struct rte_flow_action **translated_actions,
3683 			      struct rte_flow_error *error)
3684 {
3685 	struct mlx5_priv *priv = dev->data->dev_private;
3686 	struct rte_flow_action *translated = NULL;
3687 	size_t actions_size;
3688 	int n;
3689 	int copied_n = 0;
3690 	struct mlx5_translated_action_handle *handle_end = NULL;
3691 
3692 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3693 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT)
3694 			continue;
3695 		if (copied_n == *indir_n) {
3696 			return rte_flow_error_set
3697 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3698 				 NULL, "too many shared actions");
3699 		}
3700 		rte_memcpy(&handle[copied_n].action, &actions[n].conf,
3701 			   sizeof(actions[n].conf));
3702 		handle[copied_n].index = n;
3703 		copied_n++;
3704 	}
3705 	n++;
3706 	*indir_n = copied_n;
3707 	if (!copied_n)
3708 		return 0;
3709 	actions_size = sizeof(struct rte_flow_action) * n;
3710 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3711 	if (!translated) {
3712 		rte_errno = ENOMEM;
3713 		return -ENOMEM;
3714 	}
3715 	memcpy(translated, actions, actions_size);
3716 	for (handle_end = handle + copied_n; handle < handle_end; handle++) {
3717 		struct mlx5_shared_action_rss *shared_rss;
3718 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3719 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3720 		uint32_t idx = act_idx &
3721 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3722 
3723 		switch (type) {
3724 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3725 			shared_rss = mlx5_ipool_get
3726 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3727 			translated[handle->index].type =
3728 				RTE_FLOW_ACTION_TYPE_RSS;
3729 			translated[handle->index].conf =
3730 				&shared_rss->origin;
3731 			break;
3732 		case MLX5_INDIRECT_ACTION_TYPE_COUNT:
3733 			translated[handle->index].type =
3734 						(enum rte_flow_action_type)
3735 						MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
3736 			translated[handle->index].conf = (void *)(uintptr_t)idx;
3737 			break;
3738 		case MLX5_INDIRECT_ACTION_TYPE_AGE:
3739 			if (priv->sh->flow_hit_aso_en) {
3740 				translated[handle->index].type =
3741 					(enum rte_flow_action_type)
3742 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3743 				translated[handle->index].conf =
3744 							 (void *)(uintptr_t)idx;
3745 				break;
3746 			}
3747 			/* Fall-through */
3748 		case MLX5_INDIRECT_ACTION_TYPE_CT:
3749 			if (priv->sh->ct_aso_en) {
3750 				translated[handle->index].type =
3751 					RTE_FLOW_ACTION_TYPE_CONNTRACK;
3752 				translated[handle->index].conf =
3753 							 (void *)(uintptr_t)idx;
3754 				break;
3755 			}
3756 			/* Fall-through */
3757 		default:
3758 			mlx5_free(translated);
3759 			return rte_flow_error_set
3760 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3761 				 NULL, "invalid indirect action type");
3762 		}
3763 	}
3764 	*translated_actions = translated;
3765 	return 0;
3766 }
3767 
3768 /**
3769  * Get Shared RSS action from the action list.
3770  *
3771  * @param[in] dev
3772  *   Pointer to Ethernet device.
3773  * @param[in] shared
3774  *   Pointer to the list of actions.
3775  * @param[in] shared_n
3776  *   Actions list length.
3777  *
3778  * @return
3779  *   The MLX5 RSS action ID if exists, otherwise return 0.
3780  */
3781 static uint32_t
3782 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3783 			   struct mlx5_translated_action_handle *handle,
3784 			   int shared_n)
3785 {
3786 	struct mlx5_translated_action_handle *handle_end;
3787 	struct mlx5_priv *priv = dev->data->dev_private;
3788 	struct mlx5_shared_action_rss *shared_rss;
3789 
3790 
3791 	for (handle_end = handle + shared_n; handle < handle_end; handle++) {
3792 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3793 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3794 		uint32_t idx = act_idx &
3795 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3796 		switch (type) {
3797 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3798 			shared_rss = mlx5_ipool_get
3799 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3800 									   idx);
3801 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3802 					   __ATOMIC_RELAXED);
3803 			return idx;
3804 		default:
3805 			break;
3806 		}
3807 	}
3808 	return 0;
3809 }
3810 
3811 static unsigned int
3812 find_graph_root(uint32_t rss_level)
3813 {
3814 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3815 			       MLX5_EXPANSION_ROOT_OUTER;
3816 }
3817 
3818 /**
3819  *  Get layer flags from the prefix flow.
3820  *
3821  *  Some flows may be split to several subflows, the prefix subflow gets the
3822  *  match items and the suffix sub flow gets the actions.
3823  *  Some actions need the user defined match item flags to get the detail for
3824  *  the action.
3825  *  This function helps the suffix flow to get the item layer flags from prefix
3826  *  subflow.
3827  *
3828  * @param[in] dev_flow
3829  *   Pointer the created preifx subflow.
3830  *
3831  * @return
3832  *   The layers get from prefix subflow.
3833  */
3834 static inline uint64_t
3835 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3836 {
3837 	uint64_t layers = 0;
3838 
3839 	/*
3840 	 * Layers bits could be localization, but usually the compiler will
3841 	 * help to do the optimization work for source code.
3842 	 * If no decap actions, use the layers directly.
3843 	 */
3844 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3845 		return dev_flow->handle->layers;
3846 	/* Convert L3 layers with decap action. */
3847 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3848 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3849 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3850 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3851 	/* Convert L4 layers with decap action.  */
3852 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3853 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3854 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3855 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3856 	return layers;
3857 }
3858 
3859 /**
3860  * Get metadata split action information.
3861  *
3862  * @param[in] actions
3863  *   Pointer to the list of actions.
3864  * @param[out] qrss
3865  *   Pointer to the return pointer.
3866  * @param[out] qrss_type
3867  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3868  *   if no QUEUE/RSS is found.
3869  * @param[out] encap_idx
3870  *   Pointer to the index of the encap action if exists, otherwise the last
3871  *   action index.
3872  *
3873  * @return
3874  *   Total number of actions.
3875  */
3876 static int
3877 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3878 				       const struct rte_flow_action **qrss,
3879 				       int *encap_idx)
3880 {
3881 	const struct rte_flow_action_raw_encap *raw_encap;
3882 	int actions_n = 0;
3883 	int raw_decap_idx = -1;
3884 
3885 	*encap_idx = -1;
3886 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3887 		switch (actions->type) {
3888 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3889 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3890 			*encap_idx = actions_n;
3891 			break;
3892 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3893 			raw_decap_idx = actions_n;
3894 			break;
3895 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3896 			raw_encap = actions->conf;
3897 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3898 				*encap_idx = raw_decap_idx != -1 ?
3899 						      raw_decap_idx : actions_n;
3900 			break;
3901 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3902 		case RTE_FLOW_ACTION_TYPE_RSS:
3903 			*qrss = actions;
3904 			break;
3905 		default:
3906 			break;
3907 		}
3908 		actions_n++;
3909 	}
3910 	if (*encap_idx == -1)
3911 		*encap_idx = actions_n;
3912 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3913 	return actions_n + 1;
3914 }
3915 
3916 /**
3917  * Check if the action will change packet.
3918  *
3919  * @param dev
3920  *   Pointer to Ethernet device.
3921  * @param[in] type
3922  *   action type.
3923  *
3924  * @return
3925  *   true if action will change packet, false otherwise.
3926  */
3927 static bool flow_check_modify_action_type(struct rte_eth_dev *dev,
3928 					  enum rte_flow_action_type type)
3929 {
3930 	struct mlx5_priv *priv = dev->data->dev_private;
3931 
3932 	switch (type) {
3933 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
3934 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
3935 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
3936 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
3937 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
3938 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
3939 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
3940 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
3941 	case RTE_FLOW_ACTION_TYPE_DEC_TTL:
3942 	case RTE_FLOW_ACTION_TYPE_SET_TTL:
3943 	case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
3944 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
3945 	case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
3946 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
3947 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
3948 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
3949 	case RTE_FLOW_ACTION_TYPE_SET_META:
3950 	case RTE_FLOW_ACTION_TYPE_SET_TAG:
3951 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
3952 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3953 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3954 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3955 	case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3956 	case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3957 	case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3958 	case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
3959 	case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3960 	case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3961 	case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
3962 		return true;
3963 	case RTE_FLOW_ACTION_TYPE_FLAG:
3964 	case RTE_FLOW_ACTION_TYPE_MARK:
3965 		if (priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY)
3966 			return true;
3967 		else
3968 			return false;
3969 	default:
3970 		return false;
3971 	}
3972 }
3973 
3974 /**
3975  * Check meter action from the action list.
3976  *
3977  * @param dev
3978  *   Pointer to Ethernet device.
3979  * @param[in] actions
3980  *   Pointer to the list of actions.
3981  * @param[out] has_mtr
3982  *   Pointer to the meter exist flag.
3983  * @param[out] has_modify
3984  *   Pointer to the flag showing there's packet change action.
3985  * @param[out] meter_id
3986  *   Pointer to the meter id.
3987  *
3988  * @return
3989  *   Total number of actions.
3990  */
3991 static int
3992 flow_check_meter_action(struct rte_eth_dev *dev,
3993 			const struct rte_flow_action actions[],
3994 			bool *has_mtr, bool *has_modify, uint32_t *meter_id)
3995 {
3996 	const struct rte_flow_action_meter *mtr = NULL;
3997 	int actions_n = 0;
3998 
3999 	MLX5_ASSERT(has_mtr);
4000 	*has_mtr = false;
4001 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4002 		switch (actions->type) {
4003 		case RTE_FLOW_ACTION_TYPE_METER:
4004 			mtr = actions->conf;
4005 			*meter_id = mtr->mtr_id;
4006 			*has_mtr = true;
4007 			break;
4008 		default:
4009 			break;
4010 		}
4011 		if (!*has_mtr)
4012 			*has_modify |= flow_check_modify_action_type(dev,
4013 								actions->type);
4014 		actions_n++;
4015 	}
4016 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4017 	return actions_n + 1;
4018 }
4019 
4020 /**
4021  * Check if the flow should be split due to hairpin.
4022  * The reason for the split is that in current HW we can't
4023  * support encap and push-vlan on Rx, so if a flow contains
4024  * these actions we move it to Tx.
4025  *
4026  * @param dev
4027  *   Pointer to Ethernet device.
4028  * @param[in] attr
4029  *   Flow rule attributes.
4030  * @param[in] actions
4031  *   Associated actions (list terminated by the END action).
4032  *
4033  * @return
4034  *   > 0 the number of actions and the flow should be split,
4035  *   0 when no split required.
4036  */
4037 static int
4038 flow_check_hairpin_split(struct rte_eth_dev *dev,
4039 			 const struct rte_flow_attr *attr,
4040 			 const struct rte_flow_action actions[])
4041 {
4042 	int queue_action = 0;
4043 	int action_n = 0;
4044 	int split = 0;
4045 	const struct rte_flow_action_queue *queue;
4046 	const struct rte_flow_action_rss *rss;
4047 	const struct rte_flow_action_raw_encap *raw_encap;
4048 	const struct rte_eth_hairpin_conf *conf;
4049 
4050 	if (!attr->ingress)
4051 		return 0;
4052 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4053 		switch (actions->type) {
4054 		case RTE_FLOW_ACTION_TYPE_QUEUE:
4055 			queue = actions->conf;
4056 			if (queue == NULL)
4057 				return 0;
4058 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
4059 			if (conf == NULL || conf->tx_explicit != 0)
4060 				return 0;
4061 			queue_action = 1;
4062 			action_n++;
4063 			break;
4064 		case RTE_FLOW_ACTION_TYPE_RSS:
4065 			rss = actions->conf;
4066 			if (rss == NULL || rss->queue_num == 0)
4067 				return 0;
4068 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
4069 			if (conf == NULL || conf->tx_explicit != 0)
4070 				return 0;
4071 			queue_action = 1;
4072 			action_n++;
4073 			break;
4074 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4075 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4076 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4077 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4078 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4079 			split++;
4080 			action_n++;
4081 			break;
4082 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4083 			raw_encap = actions->conf;
4084 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4085 				split++;
4086 			action_n++;
4087 			break;
4088 		default:
4089 			action_n++;
4090 			break;
4091 		}
4092 	}
4093 	if (split && queue_action)
4094 		return action_n;
4095 	return 0;
4096 }
4097 
4098 /* Declare flow create/destroy prototype in advance. */
4099 static uint32_t
4100 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4101 		 const struct rte_flow_attr *attr,
4102 		 const struct rte_flow_item items[],
4103 		 const struct rte_flow_action actions[],
4104 		 bool external, struct rte_flow_error *error);
4105 
4106 static void
4107 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4108 		  uint32_t flow_idx);
4109 
4110 int
4111 flow_dv_mreg_match_cb(void *tool_ctx __rte_unused,
4112 		      struct mlx5_list_entry *entry, void *cb_ctx)
4113 {
4114 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4115 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4116 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4117 
4118 	return mcp_res->mark_id != *(uint32_t *)(ctx->data);
4119 }
4120 
4121 struct mlx5_list_entry *
4122 flow_dv_mreg_create_cb(void *tool_ctx, void *cb_ctx)
4123 {
4124 	struct rte_eth_dev *dev = tool_ctx;
4125 	struct mlx5_priv *priv = dev->data->dev_private;
4126 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4127 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4128 	struct rte_flow_error *error = ctx->error;
4129 	uint32_t idx = 0;
4130 	int ret;
4131 	uint32_t mark_id = *(uint32_t *)(ctx->data);
4132 	struct rte_flow_attr attr = {
4133 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4134 		.ingress = 1,
4135 	};
4136 	struct mlx5_rte_flow_item_tag tag_spec = {
4137 		.data = mark_id,
4138 	};
4139 	struct rte_flow_item items[] = {
4140 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
4141 	};
4142 	struct rte_flow_action_mark ftag = {
4143 		.id = mark_id,
4144 	};
4145 	struct mlx5_flow_action_copy_mreg cp_mreg = {
4146 		.dst = REG_B,
4147 		.src = REG_NON,
4148 	};
4149 	struct rte_flow_action_jump jump = {
4150 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4151 	};
4152 	struct rte_flow_action actions[] = {
4153 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
4154 	};
4155 
4156 	/* Fill the register fileds in the flow. */
4157 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
4158 	if (ret < 0)
4159 		return NULL;
4160 	tag_spec.id = ret;
4161 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4162 	if (ret < 0)
4163 		return NULL;
4164 	cp_mreg.src = ret;
4165 	/* Provide the full width of FLAG specific value. */
4166 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
4167 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
4168 	/* Build a new flow. */
4169 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
4170 		items[0] = (struct rte_flow_item){
4171 			.type = (enum rte_flow_item_type)
4172 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4173 			.spec = &tag_spec,
4174 		};
4175 		items[1] = (struct rte_flow_item){
4176 			.type = RTE_FLOW_ITEM_TYPE_END,
4177 		};
4178 		actions[0] = (struct rte_flow_action){
4179 			.type = (enum rte_flow_action_type)
4180 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
4181 			.conf = &ftag,
4182 		};
4183 		actions[1] = (struct rte_flow_action){
4184 			.type = (enum rte_flow_action_type)
4185 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4186 			.conf = &cp_mreg,
4187 		};
4188 		actions[2] = (struct rte_flow_action){
4189 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4190 			.conf = &jump,
4191 		};
4192 		actions[3] = (struct rte_flow_action){
4193 			.type = RTE_FLOW_ACTION_TYPE_END,
4194 		};
4195 	} else {
4196 		/* Default rule, wildcard match. */
4197 		attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR;
4198 		items[0] = (struct rte_flow_item){
4199 			.type = RTE_FLOW_ITEM_TYPE_END,
4200 		};
4201 		actions[0] = (struct rte_flow_action){
4202 			.type = (enum rte_flow_action_type)
4203 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4204 			.conf = &cp_mreg,
4205 		};
4206 		actions[1] = (struct rte_flow_action){
4207 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4208 			.conf = &jump,
4209 		};
4210 		actions[2] = (struct rte_flow_action){
4211 			.type = RTE_FLOW_ACTION_TYPE_END,
4212 		};
4213 	}
4214 	/* Build a new entry. */
4215 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4216 	if (!mcp_res) {
4217 		rte_errno = ENOMEM;
4218 		return NULL;
4219 	}
4220 	mcp_res->idx = idx;
4221 	mcp_res->mark_id = mark_id;
4222 	/*
4223 	 * The copy Flows are not included in any list. There
4224 	 * ones are referenced from other Flows and can not
4225 	 * be applied, removed, deleted in ardbitrary order
4226 	 * by list traversing.
4227 	 */
4228 	mcp_res->rix_flow = flow_list_create(dev, MLX5_FLOW_TYPE_MCP,
4229 					&attr, items, actions, false, error);
4230 	if (!mcp_res->rix_flow) {
4231 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
4232 		return NULL;
4233 	}
4234 	return &mcp_res->hlist_ent;
4235 }
4236 
4237 struct mlx5_list_entry *
4238 flow_dv_mreg_clone_cb(void *tool_ctx, struct mlx5_list_entry *oentry,
4239 		      void *cb_ctx __rte_unused)
4240 {
4241 	struct rte_eth_dev *dev = tool_ctx;
4242 	struct mlx5_priv *priv = dev->data->dev_private;
4243 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4244 	uint32_t idx = 0;
4245 
4246 	mcp_res = mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4247 	if (!mcp_res) {
4248 		rte_errno = ENOMEM;
4249 		return NULL;
4250 	}
4251 	memcpy(mcp_res, oentry, sizeof(*mcp_res));
4252 	mcp_res->idx = idx;
4253 	return &mcp_res->hlist_ent;
4254 }
4255 
4256 void
4257 flow_dv_mreg_clone_free_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4258 {
4259 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4260 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4261 	struct rte_eth_dev *dev = tool_ctx;
4262 	struct mlx5_priv *priv = dev->data->dev_private;
4263 
4264 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4265 }
4266 
4267 /**
4268  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4269  *
4270  * As mark_id is unique, if there's already a registered flow for the mark_id,
4271  * return by increasing the reference counter of the resource. Otherwise, create
4272  * the resource (mcp_res) and flow.
4273  *
4274  * Flow looks like,
4275  *   - If ingress port is ANY and reg_c[1] is mark_id,
4276  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4277  *
4278  * For default flow (zero mark_id), flow is like,
4279  *   - If ingress port is ANY,
4280  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
4281  *
4282  * @param dev
4283  *   Pointer to Ethernet device.
4284  * @param mark_id
4285  *   ID of MARK action, zero means default flow for META.
4286  * @param[out] error
4287  *   Perform verbose error reporting if not NULL.
4288  *
4289  * @return
4290  *   Associated resource on success, NULL otherwise and rte_errno is set.
4291  */
4292 static struct mlx5_flow_mreg_copy_resource *
4293 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
4294 			  struct rte_flow_error *error)
4295 {
4296 	struct mlx5_priv *priv = dev->data->dev_private;
4297 	struct mlx5_list_entry *entry;
4298 	struct mlx5_flow_cb_ctx ctx = {
4299 		.dev = dev,
4300 		.error = error,
4301 		.data = &mark_id,
4302 	};
4303 
4304 	/* Check if already registered. */
4305 	MLX5_ASSERT(priv->mreg_cp_tbl);
4306 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
4307 	if (!entry)
4308 		return NULL;
4309 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
4310 			    hlist_ent);
4311 }
4312 
4313 void
4314 flow_dv_mreg_remove_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4315 {
4316 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4317 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4318 	struct rte_eth_dev *dev = tool_ctx;
4319 	struct mlx5_priv *priv = dev->data->dev_private;
4320 
4321 	MLX5_ASSERT(mcp_res->rix_flow);
4322 	flow_list_destroy(dev, MLX5_FLOW_TYPE_MCP, mcp_res->rix_flow);
4323 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4324 }
4325 
4326 /**
4327  * Release flow in RX_CP_TBL.
4328  *
4329  * @param dev
4330  *   Pointer to Ethernet device.
4331  * @flow
4332  *   Parent flow for wich copying is provided.
4333  */
4334 static void
4335 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
4336 			  struct rte_flow *flow)
4337 {
4338 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4339 	struct mlx5_priv *priv = dev->data->dev_private;
4340 
4341 	if (!flow->rix_mreg_copy)
4342 		return;
4343 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
4344 				 flow->rix_mreg_copy);
4345 	if (!mcp_res || !priv->mreg_cp_tbl)
4346 		return;
4347 	MLX5_ASSERT(mcp_res->rix_flow);
4348 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
4349 	flow->rix_mreg_copy = 0;
4350 }
4351 
4352 /**
4353  * Remove the default copy action from RX_CP_TBL.
4354  *
4355  * This functions is called in the mlx5_dev_start(). No thread safe
4356  * is guaranteed.
4357  *
4358  * @param dev
4359  *   Pointer to Ethernet device.
4360  */
4361 static void
4362 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
4363 {
4364 	struct mlx5_list_entry *entry;
4365 	struct mlx5_priv *priv = dev->data->dev_private;
4366 	struct mlx5_flow_cb_ctx ctx;
4367 	uint32_t mark_id;
4368 
4369 	/* Check if default flow is registered. */
4370 	if (!priv->mreg_cp_tbl)
4371 		return;
4372 	mark_id = MLX5_DEFAULT_COPY_ID;
4373 	ctx.data = &mark_id;
4374 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx);
4375 	if (!entry)
4376 		return;
4377 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
4378 }
4379 
4380 /**
4381  * Add the default copy action in in RX_CP_TBL.
4382  *
4383  * This functions is called in the mlx5_dev_start(). No thread safe
4384  * is guaranteed.
4385  *
4386  * @param dev
4387  *   Pointer to Ethernet device.
4388  * @param[out] error
4389  *   Perform verbose error reporting if not NULL.
4390  *
4391  * @return
4392  *   0 for success, negative value otherwise and rte_errno is set.
4393  */
4394 static int
4395 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
4396 				  struct rte_flow_error *error)
4397 {
4398 	struct mlx5_priv *priv = dev->data->dev_private;
4399 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4400 	struct mlx5_flow_cb_ctx ctx;
4401 	uint32_t mark_id;
4402 
4403 	/* Check whether extensive metadata feature is engaged. */
4404 	if (!priv->config.dv_flow_en ||
4405 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4406 	    !mlx5_flow_ext_mreg_supported(dev) ||
4407 	    !priv->sh->dv_regc0_mask)
4408 		return 0;
4409 	/*
4410 	 * Add default mreg copy flow may be called multiple time, but
4411 	 * only be called once in stop. Avoid register it twice.
4412 	 */
4413 	mark_id = MLX5_DEFAULT_COPY_ID;
4414 	ctx.data = &mark_id;
4415 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx))
4416 		return 0;
4417 	mcp_res = flow_mreg_add_copy_action(dev, mark_id, error);
4418 	if (!mcp_res)
4419 		return -rte_errno;
4420 	return 0;
4421 }
4422 
4423 /**
4424  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4425  *
4426  * All the flow having Q/RSS action should be split by
4427  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
4428  * performs the following,
4429  *   - CQE->flow_tag := reg_c[1] (MARK)
4430  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4431  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
4432  * but there should be a flow per each MARK ID set by MARK action.
4433  *
4434  * For the aforementioned reason, if there's a MARK action in flow's action
4435  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
4436  * the MARK ID to CQE's flow_tag like,
4437  *   - If reg_c[1] is mark_id,
4438  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4439  *
4440  * For SET_META action which stores value in reg_c[0], as the destination is
4441  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
4442  * MARK ID means the default flow. The default flow looks like,
4443  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4444  *
4445  * @param dev
4446  *   Pointer to Ethernet device.
4447  * @param flow
4448  *   Pointer to flow structure.
4449  * @param[in] actions
4450  *   Pointer to the list of actions.
4451  * @param[out] error
4452  *   Perform verbose error reporting if not NULL.
4453  *
4454  * @return
4455  *   0 on success, negative value otherwise and rte_errno is set.
4456  */
4457 static int
4458 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
4459 			    struct rte_flow *flow,
4460 			    const struct rte_flow_action *actions,
4461 			    struct rte_flow_error *error)
4462 {
4463 	struct mlx5_priv *priv = dev->data->dev_private;
4464 	struct mlx5_dev_config *config = &priv->config;
4465 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4466 	const struct rte_flow_action_mark *mark;
4467 
4468 	/* Check whether extensive metadata feature is engaged. */
4469 	if (!config->dv_flow_en ||
4470 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4471 	    !mlx5_flow_ext_mreg_supported(dev) ||
4472 	    !priv->sh->dv_regc0_mask)
4473 		return 0;
4474 	/* Find MARK action. */
4475 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4476 		switch (actions->type) {
4477 		case RTE_FLOW_ACTION_TYPE_FLAG:
4478 			mcp_res = flow_mreg_add_copy_action
4479 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
4480 			if (!mcp_res)
4481 				return -rte_errno;
4482 			flow->rix_mreg_copy = mcp_res->idx;
4483 			return 0;
4484 		case RTE_FLOW_ACTION_TYPE_MARK:
4485 			mark = (const struct rte_flow_action_mark *)
4486 				actions->conf;
4487 			mcp_res =
4488 				flow_mreg_add_copy_action(dev, mark->id, error);
4489 			if (!mcp_res)
4490 				return -rte_errno;
4491 			flow->rix_mreg_copy = mcp_res->idx;
4492 			return 0;
4493 		default:
4494 			break;
4495 		}
4496 	}
4497 	return 0;
4498 }
4499 
4500 #define MLX5_MAX_SPLIT_ACTIONS 24
4501 #define MLX5_MAX_SPLIT_ITEMS 24
4502 
4503 /**
4504  * Split the hairpin flow.
4505  * Since HW can't support encap and push-vlan on Rx, we move these
4506  * actions to Tx.
4507  * If the count action is after the encap then we also
4508  * move the count action. in this case the count will also measure
4509  * the outer bytes.
4510  *
4511  * @param dev
4512  *   Pointer to Ethernet device.
4513  * @param[in] actions
4514  *   Associated actions (list terminated by the END action).
4515  * @param[out] actions_rx
4516  *   Rx flow actions.
4517  * @param[out] actions_tx
4518  *   Tx flow actions..
4519  * @param[out] pattern_tx
4520  *   The pattern items for the Tx flow.
4521  * @param[out] flow_id
4522  *   The flow ID connected to this flow.
4523  *
4524  * @return
4525  *   0 on success.
4526  */
4527 static int
4528 flow_hairpin_split(struct rte_eth_dev *dev,
4529 		   const struct rte_flow_action actions[],
4530 		   struct rte_flow_action actions_rx[],
4531 		   struct rte_flow_action actions_tx[],
4532 		   struct rte_flow_item pattern_tx[],
4533 		   uint32_t flow_id)
4534 {
4535 	const struct rte_flow_action_raw_encap *raw_encap;
4536 	const struct rte_flow_action_raw_decap *raw_decap;
4537 	struct mlx5_rte_flow_action_set_tag *set_tag;
4538 	struct rte_flow_action *tag_action;
4539 	struct mlx5_rte_flow_item_tag *tag_item;
4540 	struct rte_flow_item *item;
4541 	char *addr;
4542 	int encap = 0;
4543 
4544 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4545 		switch (actions->type) {
4546 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4547 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4548 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4549 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4550 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4551 			rte_memcpy(actions_tx, actions,
4552 			       sizeof(struct rte_flow_action));
4553 			actions_tx++;
4554 			break;
4555 		case RTE_FLOW_ACTION_TYPE_COUNT:
4556 			if (encap) {
4557 				rte_memcpy(actions_tx, actions,
4558 					   sizeof(struct rte_flow_action));
4559 				actions_tx++;
4560 			} else {
4561 				rte_memcpy(actions_rx, actions,
4562 					   sizeof(struct rte_flow_action));
4563 				actions_rx++;
4564 			}
4565 			break;
4566 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4567 			raw_encap = actions->conf;
4568 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4569 				memcpy(actions_tx, actions,
4570 				       sizeof(struct rte_flow_action));
4571 				actions_tx++;
4572 				encap = 1;
4573 			} else {
4574 				rte_memcpy(actions_rx, actions,
4575 					   sizeof(struct rte_flow_action));
4576 				actions_rx++;
4577 			}
4578 			break;
4579 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4580 			raw_decap = actions->conf;
4581 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4582 				memcpy(actions_tx, actions,
4583 				       sizeof(struct rte_flow_action));
4584 				actions_tx++;
4585 			} else {
4586 				rte_memcpy(actions_rx, actions,
4587 					   sizeof(struct rte_flow_action));
4588 				actions_rx++;
4589 			}
4590 			break;
4591 		default:
4592 			rte_memcpy(actions_rx, actions,
4593 				   sizeof(struct rte_flow_action));
4594 			actions_rx++;
4595 			break;
4596 		}
4597 	}
4598 	/* Add set meta action and end action for the Rx flow. */
4599 	tag_action = actions_rx;
4600 	tag_action->type = (enum rte_flow_action_type)
4601 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4602 	actions_rx++;
4603 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4604 	actions_rx++;
4605 	set_tag = (void *)actions_rx;
4606 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4607 		.id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL),
4608 		.data = flow_id,
4609 	};
4610 	MLX5_ASSERT(set_tag->id > REG_NON);
4611 	tag_action->conf = set_tag;
4612 	/* Create Tx item list. */
4613 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4614 	addr = (void *)&pattern_tx[2];
4615 	item = pattern_tx;
4616 	item->type = (enum rte_flow_item_type)
4617 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4618 	tag_item = (void *)addr;
4619 	tag_item->data = flow_id;
4620 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4621 	MLX5_ASSERT(set_tag->id > REG_NON);
4622 	item->spec = tag_item;
4623 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4624 	tag_item = (void *)addr;
4625 	tag_item->data = UINT32_MAX;
4626 	tag_item->id = UINT16_MAX;
4627 	item->mask = tag_item;
4628 	item->last = NULL;
4629 	item++;
4630 	item->type = RTE_FLOW_ITEM_TYPE_END;
4631 	return 0;
4632 }
4633 
4634 /**
4635  * The last stage of splitting chain, just creates the subflow
4636  * without any modification.
4637  *
4638  * @param[in] dev
4639  *   Pointer to Ethernet device.
4640  * @param[in] flow
4641  *   Parent flow structure pointer.
4642  * @param[in, out] sub_flow
4643  *   Pointer to return the created subflow, may be NULL.
4644  * @param[in] attr
4645  *   Flow rule attributes.
4646  * @param[in] items
4647  *   Pattern specification (list terminated by the END pattern item).
4648  * @param[in] actions
4649  *   Associated actions (list terminated by the END action).
4650  * @param[in] flow_split_info
4651  *   Pointer to flow split info structure.
4652  * @param[out] error
4653  *   Perform verbose error reporting if not NULL.
4654  * @return
4655  *   0 on success, negative value otherwise
4656  */
4657 static int
4658 flow_create_split_inner(struct rte_eth_dev *dev,
4659 			struct rte_flow *flow,
4660 			struct mlx5_flow **sub_flow,
4661 			const struct rte_flow_attr *attr,
4662 			const struct rte_flow_item items[],
4663 			const struct rte_flow_action actions[],
4664 			struct mlx5_flow_split_info *flow_split_info,
4665 			struct rte_flow_error *error)
4666 {
4667 	struct mlx5_flow *dev_flow;
4668 
4669 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4670 				    flow_split_info->flow_idx, error);
4671 	if (!dev_flow)
4672 		return -rte_errno;
4673 	dev_flow->flow = flow;
4674 	dev_flow->external = flow_split_info->external;
4675 	dev_flow->skip_scale = flow_split_info->skip_scale;
4676 	/* Subflow object was created, we must include one in the list. */
4677 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4678 		      dev_flow->handle, next);
4679 	/*
4680 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4681 	 * flow may need some user defined item layer flags, and pass the
4682 	 * Metadate rxq mark flag to suffix flow as well.
4683 	 */
4684 	if (flow_split_info->prefix_layers)
4685 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4686 	if (flow_split_info->prefix_mark)
4687 		dev_flow->handle->mark = 1;
4688 	if (sub_flow)
4689 		*sub_flow = dev_flow;
4690 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4691 	dev_flow->dv.table_id = flow_split_info->table_id;
4692 #endif
4693 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4694 }
4695 
4696 /**
4697  * Get the sub policy of a meter.
4698  *
4699  * @param[in] dev
4700  *   Pointer to Ethernet device.
4701  * @param[in] flow
4702  *   Parent flow structure pointer.
4703  * @param wks
4704  *   Pointer to thread flow work space.
4705  * @param[in] attr
4706  *   Flow rule attributes.
4707  * @param[in] items
4708  *   Pattern specification (list terminated by the END pattern item).
4709  * @param[out] error
4710  *   Perform verbose error reporting if not NULL.
4711  *
4712  * @return
4713  *   Pointer to the meter sub policy, NULL otherwise and rte_errno is set.
4714  */
4715 static struct mlx5_flow_meter_sub_policy *
4716 get_meter_sub_policy(struct rte_eth_dev *dev,
4717 		     struct rte_flow *flow,
4718 		     struct mlx5_flow_workspace *wks,
4719 		     const struct rte_flow_attr *attr,
4720 		     const struct rte_flow_item items[],
4721 		     struct rte_flow_error *error)
4722 {
4723 	struct mlx5_flow_meter_policy *policy;
4724 	struct mlx5_flow_meter_policy *final_policy;
4725 	struct mlx5_flow_meter_sub_policy *sub_policy = NULL;
4726 
4727 	policy = wks->policy;
4728 	final_policy = policy->is_hierarchy ? wks->final_policy : policy;
4729 	if (final_policy->is_rss || final_policy->is_queue) {
4730 		struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS];
4731 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0};
4732 		uint32_t i;
4733 
4734 		/*
4735 		 * This is a tmp dev_flow,
4736 		 * no need to register any matcher for it in translate.
4737 		 */
4738 		wks->skip_matcher_reg = 1;
4739 		for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) {
4740 			struct mlx5_flow dev_flow = {0};
4741 			struct mlx5_flow_handle dev_handle = { {0} };
4742 			uint8_t fate = final_policy->act_cnt[i].fate_action;
4743 
4744 			if (fate == MLX5_FLOW_FATE_SHARED_RSS) {
4745 				const struct rte_flow_action_rss *rss_act =
4746 					final_policy->act_cnt[i].rss->conf;
4747 				struct rte_flow_action rss_actions[2] = {
4748 					[0] = {
4749 					.type = RTE_FLOW_ACTION_TYPE_RSS,
4750 					.conf = rss_act,
4751 					},
4752 					[1] = {
4753 					.type = RTE_FLOW_ACTION_TYPE_END,
4754 					.conf = NULL,
4755 					}
4756 				};
4757 
4758 				dev_flow.handle = &dev_handle;
4759 				dev_flow.ingress = attr->ingress;
4760 				dev_flow.flow = flow;
4761 				dev_flow.external = 0;
4762 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4763 				dev_flow.dv.transfer = attr->transfer;
4764 #endif
4765 				/**
4766 				 * Translate RSS action to get rss hash fields.
4767 				 */
4768 				if (flow_drv_translate(dev, &dev_flow, attr,
4769 						items, rss_actions, error))
4770 					goto exit;
4771 				rss_desc_v[i] = wks->rss_desc;
4772 				rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN;
4773 				rss_desc_v[i].hash_fields =
4774 						dev_flow.hash_fields;
4775 				rss_desc_v[i].queue_num =
4776 						rss_desc_v[i].hash_fields ?
4777 						rss_desc_v[i].queue_num : 1;
4778 				rss_desc_v[i].tunnel =
4779 						!!(dev_flow.handle->layers &
4780 						   MLX5_FLOW_LAYER_TUNNEL);
4781 				/* Use the RSS queues in the containers. */
4782 				rss_desc_v[i].queue =
4783 					(uint16_t *)(uintptr_t)rss_act->queue;
4784 				rss_desc[i] = &rss_desc_v[i];
4785 			} else if (fate == MLX5_FLOW_FATE_QUEUE) {
4786 				/* This is queue action. */
4787 				rss_desc_v[i] = wks->rss_desc;
4788 				rss_desc_v[i].key_len = 0;
4789 				rss_desc_v[i].hash_fields = 0;
4790 				rss_desc_v[i].queue =
4791 					&final_policy->act_cnt[i].queue;
4792 				rss_desc_v[i].queue_num = 1;
4793 				rss_desc[i] = &rss_desc_v[i];
4794 			} else {
4795 				rss_desc[i] = NULL;
4796 			}
4797 		}
4798 		sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev,
4799 						flow, policy, rss_desc);
4800 	} else {
4801 		enum mlx5_meter_domain mtr_domain =
4802 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
4803 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
4804 						MLX5_MTR_DOMAIN_INGRESS);
4805 		sub_policy = policy->sub_policys[mtr_domain][0];
4806 	}
4807 	if (!sub_policy)
4808 		rte_flow_error_set(error, EINVAL,
4809 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4810 				   "Failed to get meter sub-policy.");
4811 exit:
4812 	return sub_policy;
4813 }
4814 
4815 /**
4816  * Split the meter flow.
4817  *
4818  * As meter flow will split to three sub flow, other than meter
4819  * action, the other actions make sense to only meter accepts
4820  * the packet. If it need to be dropped, no other additional
4821  * actions should be take.
4822  *
4823  * One kind of special action which decapsulates the L3 tunnel
4824  * header will be in the prefix sub flow, as not to take the
4825  * L3 tunnel header into account.
4826  *
4827  * @param[in] dev
4828  *   Pointer to Ethernet device.
4829  * @param[in] flow
4830  *   Parent flow structure pointer.
4831  * @param wks
4832  *   Pointer to thread flow work space.
4833  * @param[in] attr
4834  *   Flow rule attributes.
4835  * @param[in] items
4836  *   Pattern specification (list terminated by the END pattern item).
4837  * @param[out] sfx_items
4838  *   Suffix flow match items (list terminated by the END pattern item).
4839  * @param[in] actions
4840  *   Associated actions (list terminated by the END action).
4841  * @param[out] actions_sfx
4842  *   Suffix flow actions.
4843  * @param[out] actions_pre
4844  *   Prefix flow actions.
4845  * @param[out] mtr_flow_id
4846  *   Pointer to meter flow id.
4847  * @param[out] error
4848  *   Perform verbose error reporting if not NULL.
4849  *
4850  * @return
4851  *   0 on success, a negative errno value otherwise and rte_errno is set.
4852  */
4853 static int
4854 flow_meter_split_prep(struct rte_eth_dev *dev,
4855 		      struct rte_flow *flow,
4856 		      struct mlx5_flow_workspace *wks,
4857 		      const struct rte_flow_attr *attr,
4858 		      const struct rte_flow_item items[],
4859 		      struct rte_flow_item sfx_items[],
4860 		      const struct rte_flow_action actions[],
4861 		      struct rte_flow_action actions_sfx[],
4862 		      struct rte_flow_action actions_pre[],
4863 		      uint32_t *mtr_flow_id,
4864 		      struct rte_flow_error *error)
4865 {
4866 	struct mlx5_priv *priv = dev->data->dev_private;
4867 	struct mlx5_flow_meter_info *fm = wks->fm;
4868 	struct rte_flow_action *tag_action = NULL;
4869 	struct rte_flow_item *tag_item;
4870 	struct mlx5_rte_flow_action_set_tag *set_tag;
4871 	const struct rte_flow_action_raw_encap *raw_encap;
4872 	const struct rte_flow_action_raw_decap *raw_decap;
4873 	struct mlx5_rte_flow_item_tag *tag_item_spec;
4874 	struct mlx5_rte_flow_item_tag *tag_item_mask;
4875 	uint32_t tag_id = 0;
4876 	struct rte_flow_item *vlan_item_dst = NULL;
4877 	const struct rte_flow_item *vlan_item_src = NULL;
4878 	struct rte_flow_action *hw_mtr_action;
4879 	struct rte_flow_action *action_pre_head = NULL;
4880 	int32_t flow_src_port = priv->representor_id;
4881 	bool mtr_first;
4882 	uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0;
4883 	uint8_t mtr_reg_bits = priv->mtr_reg_share ?
4884 				MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS;
4885 	uint32_t flow_id = 0;
4886 	uint32_t flow_id_reversed = 0;
4887 	uint8_t flow_id_bits = 0;
4888 	int shift;
4889 
4890 	/* Prepare the suffix subflow items. */
4891 	tag_item = sfx_items++;
4892 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4893 		struct mlx5_priv *port_priv;
4894 		const struct rte_flow_item_port_id *pid_v;
4895 		int item_type = items->type;
4896 
4897 		switch (item_type) {
4898 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4899 			pid_v = items->spec;
4900 			MLX5_ASSERT(pid_v);
4901 			port_priv = mlx5_port_to_eswitch_info(pid_v->id, false);
4902 			if (!port_priv)
4903 				return rte_flow_error_set(error,
4904 						rte_errno,
4905 						RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
4906 						pid_v,
4907 						"Failed to get port info.");
4908 			flow_src_port = port_priv->representor_id;
4909 			if (!fm->def_policy && wks->policy->is_hierarchy &&
4910 			    flow_src_port != priv->representor_id) {
4911 				if (flow_drv_mtr_hierarchy_rule_create(dev,
4912 								flow, fm,
4913 								flow_src_port,
4914 								items,
4915 								error))
4916 					return -rte_errno;
4917 			}
4918 			memcpy(sfx_items, items, sizeof(*sfx_items));
4919 			sfx_items++;
4920 			break;
4921 		case RTE_FLOW_ITEM_TYPE_VLAN:
4922 			/* Determine if copy vlan item below. */
4923 			vlan_item_src = items;
4924 			vlan_item_dst = sfx_items++;
4925 			vlan_item_dst->type = RTE_FLOW_ITEM_TYPE_VOID;
4926 			break;
4927 		default:
4928 			break;
4929 		}
4930 	}
4931 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4932 	sfx_items++;
4933 	mtr_first = priv->sh->meter_aso_en &&
4934 		(attr->egress || (attr->transfer && flow_src_port != UINT16_MAX));
4935 	/* For ASO meter, meter must be before tag in TX direction. */
4936 	if (mtr_first) {
4937 		action_pre_head = actions_pre++;
4938 		/* Leave space for tag action. */
4939 		tag_action = actions_pre++;
4940 	}
4941 	/* Prepare the actions for prefix and suffix flow. */
4942 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4943 		struct rte_flow_action *action_cur = NULL;
4944 
4945 		switch (actions->type) {
4946 		case RTE_FLOW_ACTION_TYPE_METER:
4947 			if (mtr_first) {
4948 				action_cur = action_pre_head;
4949 			} else {
4950 				/* Leave space for tag action. */
4951 				tag_action = actions_pre++;
4952 				action_cur = actions_pre++;
4953 			}
4954 			break;
4955 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4956 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4957 			action_cur = actions_pre++;
4958 			break;
4959 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4960 			raw_encap = actions->conf;
4961 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4962 				action_cur = actions_pre++;
4963 			break;
4964 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4965 			raw_decap = actions->conf;
4966 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4967 				action_cur = actions_pre++;
4968 			break;
4969 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4970 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4971 			if (vlan_item_dst && vlan_item_src) {
4972 				memcpy(vlan_item_dst, vlan_item_src,
4973 					sizeof(*vlan_item_dst));
4974 				/*
4975 				 * Convert to internal match item, it is used
4976 				 * for vlan push and set vid.
4977 				 */
4978 				vlan_item_dst->type = (enum rte_flow_item_type)
4979 						MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4980 			}
4981 			break;
4982 		default:
4983 			break;
4984 		}
4985 		if (!action_cur)
4986 			action_cur = (fm->def_policy) ?
4987 					actions_sfx++ : actions_pre++;
4988 		memcpy(action_cur, actions, sizeof(struct rte_flow_action));
4989 	}
4990 	/* Add end action to the actions. */
4991 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4992 	if (priv->sh->meter_aso_en) {
4993 		/**
4994 		 * For ASO meter, need to add an extra jump action explicitly,
4995 		 * to jump from meter to policer table.
4996 		 */
4997 		struct mlx5_flow_meter_sub_policy *sub_policy;
4998 		struct mlx5_flow_tbl_data_entry *tbl_data;
4999 
5000 		if (!fm->def_policy) {
5001 			sub_policy = get_meter_sub_policy(dev, flow, wks,
5002 							  attr, items, error);
5003 			if (!sub_policy)
5004 				return -rte_errno;
5005 		} else {
5006 			enum mlx5_meter_domain mtr_domain =
5007 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
5008 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
5009 						MLX5_MTR_DOMAIN_INGRESS);
5010 
5011 			sub_policy =
5012 			&priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy;
5013 		}
5014 		tbl_data = container_of(sub_policy->tbl_rsc,
5015 					struct mlx5_flow_tbl_data_entry, tbl);
5016 		hw_mtr_action = actions_pre++;
5017 		hw_mtr_action->type = (enum rte_flow_action_type)
5018 				      MLX5_RTE_FLOW_ACTION_TYPE_JUMP;
5019 		hw_mtr_action->conf = tbl_data->jump.action;
5020 	}
5021 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
5022 	actions_pre++;
5023 	if (!tag_action)
5024 		return rte_flow_error_set(error, ENOMEM,
5025 					  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5026 					  NULL, "No tag action space.");
5027 	if (!mtr_flow_id) {
5028 		tag_action->type = RTE_FLOW_ACTION_TYPE_VOID;
5029 		goto exit;
5030 	}
5031 	/* Only default-policy Meter creates mtr flow id. */
5032 	if (fm->def_policy) {
5033 		mlx5_ipool_malloc(fm->flow_ipool, &tag_id);
5034 		if (!tag_id)
5035 			return rte_flow_error_set(error, ENOMEM,
5036 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5037 					"Failed to allocate meter flow id.");
5038 		flow_id = tag_id - 1;
5039 		flow_id_bits = (!flow_id) ? 1 :
5040 				(MLX5_REG_BITS - __builtin_clz(flow_id));
5041 		if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) >
5042 		    mtr_reg_bits) {
5043 			mlx5_ipool_free(fm->flow_ipool, tag_id);
5044 			return rte_flow_error_set(error, EINVAL,
5045 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5046 					"Meter flow id exceeds max limit.");
5047 		}
5048 		if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits)
5049 			priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits;
5050 	}
5051 	/* Build tag actions and items for meter_id/meter flow_id. */
5052 	set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre;
5053 	tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
5054 	tag_item_mask = tag_item_spec + 1;
5055 	/* Both flow_id and meter_id share the same register. */
5056 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5057 		.id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID,
5058 							    0, error),
5059 		.offset = mtr_id_offset,
5060 		.length = mtr_reg_bits,
5061 		.data = flow->meter,
5062 	};
5063 	/*
5064 	 * The color Reg bits used by flow_id are growing from
5065 	 * msb to lsb, so must do bit reverse for flow_id val in RegC.
5066 	 */
5067 	for (shift = 0; shift < flow_id_bits; shift++)
5068 		flow_id_reversed = (flow_id_reversed << 1) |
5069 				((flow_id >> shift) & 0x1);
5070 	set_tag->data |=
5071 		flow_id_reversed << (mtr_reg_bits - flow_id_bits);
5072 	tag_item_spec->id = set_tag->id;
5073 	tag_item_spec->data = set_tag->data << mtr_id_offset;
5074 	tag_item_mask->data = UINT32_MAX << mtr_id_offset;
5075 	tag_action->type = (enum rte_flow_action_type)
5076 				MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5077 	tag_action->conf = set_tag;
5078 	tag_item->type = (enum rte_flow_item_type)
5079 				MLX5_RTE_FLOW_ITEM_TYPE_TAG;
5080 	tag_item->spec = tag_item_spec;
5081 	tag_item->last = NULL;
5082 	tag_item->mask = tag_item_mask;
5083 exit:
5084 	if (mtr_flow_id)
5085 		*mtr_flow_id = tag_id;
5086 	return 0;
5087 }
5088 
5089 /**
5090  * Split action list having QUEUE/RSS for metadata register copy.
5091  *
5092  * Once Q/RSS action is detected in user's action list, the flow action
5093  * should be split in order to copy metadata registers, which will happen in
5094  * RX_CP_TBL like,
5095  *   - CQE->flow_tag := reg_c[1] (MARK)
5096  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
5097  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
5098  * This is because the last action of each flow must be a terminal action
5099  * (QUEUE, RSS or DROP).
5100  *
5101  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
5102  * stored and kept in the mlx5_flow structure per each sub_flow.
5103  *
5104  * The Q/RSS action is replaced with,
5105  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
5106  * And the following JUMP action is added at the end,
5107  *   - JUMP, to RX_CP_TBL.
5108  *
5109  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
5110  * flow_create_split_metadata() routine. The flow will look like,
5111  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
5112  *
5113  * @param dev
5114  *   Pointer to Ethernet device.
5115  * @param[out] split_actions
5116  *   Pointer to store split actions to jump to CP_TBL.
5117  * @param[in] actions
5118  *   Pointer to the list of original flow actions.
5119  * @param[in] qrss
5120  *   Pointer to the Q/RSS action.
5121  * @param[in] actions_n
5122  *   Number of original actions.
5123  * @param[out] error
5124  *   Perform verbose error reporting if not NULL.
5125  *
5126  * @return
5127  *   non-zero unique flow_id on success, otherwise 0 and
5128  *   error/rte_error are set.
5129  */
5130 static uint32_t
5131 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
5132 			  struct rte_flow_action *split_actions,
5133 			  const struct rte_flow_action *actions,
5134 			  const struct rte_flow_action *qrss,
5135 			  int actions_n, struct rte_flow_error *error)
5136 {
5137 	struct mlx5_priv *priv = dev->data->dev_private;
5138 	struct mlx5_rte_flow_action_set_tag *set_tag;
5139 	struct rte_flow_action_jump *jump;
5140 	const int qrss_idx = qrss - actions;
5141 	uint32_t flow_id = 0;
5142 	int ret = 0;
5143 
5144 	/*
5145 	 * Given actions will be split
5146 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
5147 	 * - Add jump to mreg CP_TBL.
5148 	 * As a result, there will be one more action.
5149 	 */
5150 	++actions_n;
5151 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
5152 	set_tag = (void *)(split_actions + actions_n);
5153 	/*
5154 	 * If tag action is not set to void(it means we are not the meter
5155 	 * suffix flow), add the tag action. Since meter suffix flow already
5156 	 * has the tag added.
5157 	 */
5158 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
5159 		/*
5160 		 * Allocate the new subflow ID. This one is unique within
5161 		 * device and not shared with representors. Otherwise,
5162 		 * we would have to resolve multi-thread access synch
5163 		 * issue. Each flow on the shared device is appended
5164 		 * with source vport identifier, so the resulting
5165 		 * flows will be unique in the shared (by master and
5166 		 * representors) domain even if they have coinciding
5167 		 * IDs.
5168 		 */
5169 		mlx5_ipool_malloc(priv->sh->ipool
5170 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
5171 		if (!flow_id)
5172 			return rte_flow_error_set(error, ENOMEM,
5173 						  RTE_FLOW_ERROR_TYPE_ACTION,
5174 						  NULL, "can't allocate id "
5175 						  "for split Q/RSS subflow");
5176 		/* Internal SET_TAG action to set flow ID. */
5177 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
5178 			.data = flow_id,
5179 		};
5180 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
5181 		if (ret < 0)
5182 			return ret;
5183 		set_tag->id = ret;
5184 		/* Construct new actions array. */
5185 		/* Replace QUEUE/RSS action. */
5186 		split_actions[qrss_idx] = (struct rte_flow_action){
5187 			.type = (enum rte_flow_action_type)
5188 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5189 			.conf = set_tag,
5190 		};
5191 	}
5192 	/* JUMP action to jump to mreg copy table (CP_TBL). */
5193 	jump = (void *)(set_tag + 1);
5194 	*jump = (struct rte_flow_action_jump){
5195 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
5196 	};
5197 	split_actions[actions_n - 2] = (struct rte_flow_action){
5198 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
5199 		.conf = jump,
5200 	};
5201 	split_actions[actions_n - 1] = (struct rte_flow_action){
5202 		.type = RTE_FLOW_ACTION_TYPE_END,
5203 	};
5204 	return flow_id;
5205 }
5206 
5207 /**
5208  * Extend the given action list for Tx metadata copy.
5209  *
5210  * Copy the given action list to the ext_actions and add flow metadata register
5211  * copy action in order to copy reg_a set by WQE to reg_c[0].
5212  *
5213  * @param[out] ext_actions
5214  *   Pointer to the extended action list.
5215  * @param[in] actions
5216  *   Pointer to the list of actions.
5217  * @param[in] actions_n
5218  *   Number of actions in the list.
5219  * @param[out] error
5220  *   Perform verbose error reporting if not NULL.
5221  * @param[in] encap_idx
5222  *   The encap action inndex.
5223  *
5224  * @return
5225  *   0 on success, negative value otherwise
5226  */
5227 static int
5228 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
5229 		       struct rte_flow_action *ext_actions,
5230 		       const struct rte_flow_action *actions,
5231 		       int actions_n, struct rte_flow_error *error,
5232 		       int encap_idx)
5233 {
5234 	struct mlx5_flow_action_copy_mreg *cp_mreg =
5235 		(struct mlx5_flow_action_copy_mreg *)
5236 			(ext_actions + actions_n + 1);
5237 	int ret;
5238 
5239 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
5240 	if (ret < 0)
5241 		return ret;
5242 	cp_mreg->dst = ret;
5243 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
5244 	if (ret < 0)
5245 		return ret;
5246 	cp_mreg->src = ret;
5247 	if (encap_idx != 0)
5248 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
5249 	if (encap_idx == actions_n - 1) {
5250 		ext_actions[actions_n - 1] = (struct rte_flow_action){
5251 			.type = (enum rte_flow_action_type)
5252 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5253 			.conf = cp_mreg,
5254 		};
5255 		ext_actions[actions_n] = (struct rte_flow_action){
5256 			.type = RTE_FLOW_ACTION_TYPE_END,
5257 		};
5258 	} else {
5259 		ext_actions[encap_idx] = (struct rte_flow_action){
5260 			.type = (enum rte_flow_action_type)
5261 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5262 			.conf = cp_mreg,
5263 		};
5264 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
5265 				sizeof(*ext_actions) * (actions_n - encap_idx));
5266 	}
5267 	return 0;
5268 }
5269 
5270 /**
5271  * Check the match action from the action list.
5272  *
5273  * @param[in] actions
5274  *   Pointer to the list of actions.
5275  * @param[in] attr
5276  *   Flow rule attributes.
5277  * @param[in] action
5278  *   The action to be check if exist.
5279  * @param[out] match_action_pos
5280  *   Pointer to the position of the matched action if exists, otherwise is -1.
5281  * @param[out] qrss_action_pos
5282  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
5283  * @param[out] modify_after_mirror
5284  *   Pointer to the flag of modify action after FDB mirroring.
5285  *
5286  * @return
5287  *   > 0 the total number of actions.
5288  *   0 if not found match action in action list.
5289  */
5290 static int
5291 flow_check_match_action(const struct rte_flow_action actions[],
5292 			const struct rte_flow_attr *attr,
5293 			enum rte_flow_action_type action,
5294 			int *match_action_pos, int *qrss_action_pos,
5295 			int *modify_after_mirror)
5296 {
5297 	const struct rte_flow_action_sample *sample;
5298 	const struct rte_flow_action_raw_decap *decap;
5299 	int actions_n = 0;
5300 	uint32_t ratio = 0;
5301 	int sub_type = 0;
5302 	int flag = 0;
5303 	int fdb_mirror = 0;
5304 
5305 	*match_action_pos = -1;
5306 	*qrss_action_pos = -1;
5307 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5308 		if (actions->type == action) {
5309 			flag = 1;
5310 			*match_action_pos = actions_n;
5311 		}
5312 		switch (actions->type) {
5313 		case RTE_FLOW_ACTION_TYPE_QUEUE:
5314 		case RTE_FLOW_ACTION_TYPE_RSS:
5315 			*qrss_action_pos = actions_n;
5316 			break;
5317 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
5318 			sample = actions->conf;
5319 			ratio = sample->ratio;
5320 			sub_type = ((const struct rte_flow_action *)
5321 					(sample->actions))->type;
5322 			if (ratio == 1 && attr->transfer)
5323 				fdb_mirror = 1;
5324 			break;
5325 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
5326 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
5327 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
5328 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
5329 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
5330 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
5331 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
5332 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
5333 		case RTE_FLOW_ACTION_TYPE_DEC_TTL:
5334 		case RTE_FLOW_ACTION_TYPE_SET_TTL:
5335 		case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
5336 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
5337 		case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
5338 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
5339 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
5340 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
5341 		case RTE_FLOW_ACTION_TYPE_FLAG:
5342 		case RTE_FLOW_ACTION_TYPE_MARK:
5343 		case RTE_FLOW_ACTION_TYPE_SET_META:
5344 		case RTE_FLOW_ACTION_TYPE_SET_TAG:
5345 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
5346 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5347 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5348 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
5349 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5350 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5351 		case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
5352 		case RTE_FLOW_ACTION_TYPE_METER:
5353 			if (fdb_mirror)
5354 				*modify_after_mirror = 1;
5355 			break;
5356 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5357 			decap = actions->conf;
5358 			while ((++actions)->type == RTE_FLOW_ACTION_TYPE_VOID)
5359 				;
5360 			actions_n++;
5361 			if (actions->type == RTE_FLOW_ACTION_TYPE_RAW_ENCAP) {
5362 				const struct rte_flow_action_raw_encap *encap =
5363 								actions->conf;
5364 				if (decap->size <=
5365 					MLX5_ENCAPSULATION_DECISION_SIZE &&
5366 				    encap->size >
5367 					MLX5_ENCAPSULATION_DECISION_SIZE)
5368 					/* L3 encap. */
5369 					break;
5370 			}
5371 			if (fdb_mirror)
5372 				*modify_after_mirror = 1;
5373 			break;
5374 		default:
5375 			break;
5376 		}
5377 		actions_n++;
5378 	}
5379 	if (flag && fdb_mirror && !*modify_after_mirror) {
5380 		/* FDB mirroring uses the destination array to implement
5381 		 * instead of FLOW_SAMPLER object.
5382 		 */
5383 		if (sub_type != RTE_FLOW_ACTION_TYPE_END)
5384 			flag = 0;
5385 	}
5386 	/* Count RTE_FLOW_ACTION_TYPE_END. */
5387 	return flag ? actions_n + 1 : 0;
5388 }
5389 
5390 #define SAMPLE_SUFFIX_ITEM 2
5391 
5392 /**
5393  * Split the sample flow.
5394  *
5395  * As sample flow will split to two sub flow, sample flow with
5396  * sample action, the other actions will move to new suffix flow.
5397  *
5398  * Also add unique tag id with tag action in the sample flow,
5399  * the same tag id will be as match in the suffix flow.
5400  *
5401  * @param dev
5402  *   Pointer to Ethernet device.
5403  * @param[in] add_tag
5404  *   Add extra tag action flag.
5405  * @param[out] sfx_items
5406  *   Suffix flow match items (list terminated by the END pattern item).
5407  * @param[in] actions
5408  *   Associated actions (list terminated by the END action).
5409  * @param[out] actions_sfx
5410  *   Suffix flow actions.
5411  * @param[out] actions_pre
5412  *   Prefix flow actions.
5413  * @param[in] actions_n
5414  *  The total number of actions.
5415  * @param[in] sample_action_pos
5416  *   The sample action position.
5417  * @param[in] qrss_action_pos
5418  *   The Queue/RSS action position.
5419  * @param[in] jump_table
5420  *   Add extra jump action flag.
5421  * @param[out] error
5422  *   Perform verbose error reporting if not NULL.
5423  *
5424  * @return
5425  *   0 on success, or unique flow_id, a negative errno value
5426  *   otherwise and rte_errno is set.
5427  */
5428 static int
5429 flow_sample_split_prep(struct rte_eth_dev *dev,
5430 		       int add_tag,
5431 		       struct rte_flow_item sfx_items[],
5432 		       const struct rte_flow_action actions[],
5433 		       struct rte_flow_action actions_sfx[],
5434 		       struct rte_flow_action actions_pre[],
5435 		       int actions_n,
5436 		       int sample_action_pos,
5437 		       int qrss_action_pos,
5438 		       int jump_table,
5439 		       struct rte_flow_error *error)
5440 {
5441 	struct mlx5_priv *priv = dev->data->dev_private;
5442 	struct mlx5_rte_flow_action_set_tag *set_tag;
5443 	struct mlx5_rte_flow_item_tag *tag_spec;
5444 	struct mlx5_rte_flow_item_tag *tag_mask;
5445 	struct rte_flow_action_jump *jump_action;
5446 	uint32_t tag_id = 0;
5447 	int index;
5448 	int append_index = 0;
5449 	int ret;
5450 
5451 	if (sample_action_pos < 0)
5452 		return rte_flow_error_set(error, EINVAL,
5453 					  RTE_FLOW_ERROR_TYPE_ACTION,
5454 					  NULL, "invalid position of sample "
5455 					  "action in list");
5456 	/* Prepare the actions for prefix and suffix flow. */
5457 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
5458 		index = qrss_action_pos;
5459 		/* Put the preceding the Queue/RSS action into prefix flow. */
5460 		if (index != 0)
5461 			memcpy(actions_pre, actions,
5462 			       sizeof(struct rte_flow_action) * index);
5463 		/* Put others preceding the sample action into prefix flow. */
5464 		if (sample_action_pos > index + 1)
5465 			memcpy(actions_pre + index, actions + index + 1,
5466 			       sizeof(struct rte_flow_action) *
5467 			       (sample_action_pos - index - 1));
5468 		index = sample_action_pos - 1;
5469 		/* Put Queue/RSS action into Suffix flow. */
5470 		memcpy(actions_sfx, actions + qrss_action_pos,
5471 		       sizeof(struct rte_flow_action));
5472 		actions_sfx++;
5473 	} else {
5474 		index = sample_action_pos;
5475 		if (index != 0)
5476 			memcpy(actions_pre, actions,
5477 			       sizeof(struct rte_flow_action) * index);
5478 	}
5479 	/* For CX5, add an extra tag action for NIC-RX and E-Switch ingress.
5480 	 * For CX6DX and above, metadata registers Cx preserve their value,
5481 	 * add an extra tag action for NIC-RX and E-Switch Domain.
5482 	 */
5483 	if (add_tag) {
5484 		/* Prepare the prefix tag action. */
5485 		append_index++;
5486 		set_tag = (void *)(actions_pre + actions_n + append_index);
5487 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
5488 		if (ret < 0)
5489 			return ret;
5490 		mlx5_ipool_malloc(priv->sh->ipool
5491 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
5492 		*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5493 			.id = ret,
5494 			.data = tag_id,
5495 		};
5496 		/* Prepare the suffix subflow items. */
5497 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
5498 		tag_spec->data = tag_id;
5499 		tag_spec->id = set_tag->id;
5500 		tag_mask = tag_spec + 1;
5501 		tag_mask->data = UINT32_MAX;
5502 		sfx_items[0] = (struct rte_flow_item){
5503 			.type = (enum rte_flow_item_type)
5504 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5505 			.spec = tag_spec,
5506 			.last = NULL,
5507 			.mask = tag_mask,
5508 		};
5509 		sfx_items[1] = (struct rte_flow_item){
5510 			.type = (enum rte_flow_item_type)
5511 				RTE_FLOW_ITEM_TYPE_END,
5512 		};
5513 		/* Prepare the tag action in prefix subflow. */
5514 		actions_pre[index++] =
5515 			(struct rte_flow_action){
5516 			.type = (enum rte_flow_action_type)
5517 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5518 			.conf = set_tag,
5519 		};
5520 	}
5521 	memcpy(actions_pre + index, actions + sample_action_pos,
5522 	       sizeof(struct rte_flow_action));
5523 	index += 1;
5524 	/* For the modify action after the sample action in E-Switch mirroring,
5525 	 * Add the extra jump action in prefix subflow and jump into the next
5526 	 * table, then do the modify action in the new table.
5527 	 */
5528 	if (jump_table) {
5529 		/* Prepare the prefix jump action. */
5530 		append_index++;
5531 		jump_action = (void *)(actions_pre + actions_n + append_index);
5532 		jump_action->group = jump_table;
5533 		actions_pre[index++] =
5534 			(struct rte_flow_action){
5535 			.type = (enum rte_flow_action_type)
5536 				RTE_FLOW_ACTION_TYPE_JUMP,
5537 			.conf = jump_action,
5538 		};
5539 	}
5540 	actions_pre[index] = (struct rte_flow_action){
5541 		.type = (enum rte_flow_action_type)
5542 			RTE_FLOW_ACTION_TYPE_END,
5543 	};
5544 	/* Put the actions after sample into Suffix flow. */
5545 	memcpy(actions_sfx, actions + sample_action_pos + 1,
5546 	       sizeof(struct rte_flow_action) *
5547 	       (actions_n - sample_action_pos - 1));
5548 	return tag_id;
5549 }
5550 
5551 /**
5552  * The splitting for metadata feature.
5553  *
5554  * - Q/RSS action on NIC Rx should be split in order to pass by
5555  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
5556  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
5557  *
5558  * - All the actions on NIC Tx should have a mreg copy action to
5559  *   copy reg_a from WQE to reg_c[0].
5560  *
5561  * @param dev
5562  *   Pointer to Ethernet device.
5563  * @param[in] flow
5564  *   Parent flow structure pointer.
5565  * @param[in] attr
5566  *   Flow rule attributes.
5567  * @param[in] items
5568  *   Pattern specification (list terminated by the END pattern item).
5569  * @param[in] actions
5570  *   Associated actions (list terminated by the END action).
5571  * @param[in] flow_split_info
5572  *   Pointer to flow split info structure.
5573  * @param[out] error
5574  *   Perform verbose error reporting if not NULL.
5575  * @return
5576  *   0 on success, negative value otherwise
5577  */
5578 static int
5579 flow_create_split_metadata(struct rte_eth_dev *dev,
5580 			   struct rte_flow *flow,
5581 			   const struct rte_flow_attr *attr,
5582 			   const struct rte_flow_item items[],
5583 			   const struct rte_flow_action actions[],
5584 			   struct mlx5_flow_split_info *flow_split_info,
5585 			   struct rte_flow_error *error)
5586 {
5587 	struct mlx5_priv *priv = dev->data->dev_private;
5588 	struct mlx5_dev_config *config = &priv->config;
5589 	const struct rte_flow_action *qrss = NULL;
5590 	struct rte_flow_action *ext_actions = NULL;
5591 	struct mlx5_flow *dev_flow = NULL;
5592 	uint32_t qrss_id = 0;
5593 	int mtr_sfx = 0;
5594 	size_t act_size;
5595 	int actions_n;
5596 	int encap_idx;
5597 	int ret;
5598 
5599 	/* Check whether extensive metadata feature is engaged. */
5600 	if (!config->dv_flow_en ||
5601 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
5602 	    !mlx5_flow_ext_mreg_supported(dev))
5603 		return flow_create_split_inner(dev, flow, NULL, attr, items,
5604 					       actions, flow_split_info, error);
5605 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
5606 							   &encap_idx);
5607 	if (qrss) {
5608 		/* Exclude hairpin flows from splitting. */
5609 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
5610 			const struct rte_flow_action_queue *queue;
5611 
5612 			queue = qrss->conf;
5613 			if (mlx5_rxq_get_type(dev, queue->index) ==
5614 			    MLX5_RXQ_TYPE_HAIRPIN)
5615 				qrss = NULL;
5616 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
5617 			const struct rte_flow_action_rss *rss;
5618 
5619 			rss = qrss->conf;
5620 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
5621 			    MLX5_RXQ_TYPE_HAIRPIN)
5622 				qrss = NULL;
5623 		}
5624 	}
5625 	if (qrss) {
5626 		/* Check if it is in meter suffix table. */
5627 		mtr_sfx = attr->group == (attr->transfer ?
5628 			  (MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5629 			  MLX5_FLOW_TABLE_LEVEL_METER);
5630 		/*
5631 		 * Q/RSS action on NIC Rx should be split in order to pass by
5632 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
5633 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
5634 		 */
5635 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5636 			   sizeof(struct rte_flow_action_set_tag) +
5637 			   sizeof(struct rte_flow_action_jump);
5638 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5639 					  SOCKET_ID_ANY);
5640 		if (!ext_actions)
5641 			return rte_flow_error_set(error, ENOMEM,
5642 						  RTE_FLOW_ERROR_TYPE_ACTION,
5643 						  NULL, "no memory to split "
5644 						  "metadata flow");
5645 		/*
5646 		 * If we are the suffix flow of meter, tag already exist.
5647 		 * Set the tag action to void.
5648 		 */
5649 		if (mtr_sfx)
5650 			ext_actions[qrss - actions].type =
5651 						RTE_FLOW_ACTION_TYPE_VOID;
5652 		else
5653 			ext_actions[qrss - actions].type =
5654 						(enum rte_flow_action_type)
5655 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5656 		/*
5657 		 * Create the new actions list with removed Q/RSS action
5658 		 * and appended set tag and jump to register copy table
5659 		 * (RX_CP_TBL). We should preallocate unique tag ID here
5660 		 * in advance, because it is needed for set tag action.
5661 		 */
5662 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
5663 						    qrss, actions_n, error);
5664 		if (!mtr_sfx && !qrss_id) {
5665 			ret = -rte_errno;
5666 			goto exit;
5667 		}
5668 	} else if (attr->egress && !attr->transfer) {
5669 		/*
5670 		 * All the actions on NIC Tx should have a metadata register
5671 		 * copy action to copy reg_a from WQE to reg_c[meta]
5672 		 */
5673 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5674 			   sizeof(struct mlx5_flow_action_copy_mreg);
5675 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5676 					  SOCKET_ID_ANY);
5677 		if (!ext_actions)
5678 			return rte_flow_error_set(error, ENOMEM,
5679 						  RTE_FLOW_ERROR_TYPE_ACTION,
5680 						  NULL, "no memory to split "
5681 						  "metadata flow");
5682 		/* Create the action list appended with copy register. */
5683 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
5684 					     actions_n, error, encap_idx);
5685 		if (ret < 0)
5686 			goto exit;
5687 	}
5688 	/* Add the unmodified original or prefix subflow. */
5689 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5690 				      items, ext_actions ? ext_actions :
5691 				      actions, flow_split_info, error);
5692 	if (ret < 0)
5693 		goto exit;
5694 	MLX5_ASSERT(dev_flow);
5695 	if (qrss) {
5696 		const struct rte_flow_attr q_attr = {
5697 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
5698 			.ingress = 1,
5699 		};
5700 		/* Internal PMD action to set register. */
5701 		struct mlx5_rte_flow_item_tag q_tag_spec = {
5702 			.data = qrss_id,
5703 			.id = REG_NON,
5704 		};
5705 		struct rte_flow_item q_items[] = {
5706 			{
5707 				.type = (enum rte_flow_item_type)
5708 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5709 				.spec = &q_tag_spec,
5710 				.last = NULL,
5711 				.mask = NULL,
5712 			},
5713 			{
5714 				.type = RTE_FLOW_ITEM_TYPE_END,
5715 			},
5716 		};
5717 		struct rte_flow_action q_actions[] = {
5718 			{
5719 				.type = qrss->type,
5720 				.conf = qrss->conf,
5721 			},
5722 			{
5723 				.type = RTE_FLOW_ACTION_TYPE_END,
5724 			},
5725 		};
5726 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
5727 
5728 		/*
5729 		 * Configure the tag item only if there is no meter subflow.
5730 		 * Since tag is already marked in the meter suffix subflow
5731 		 * we can just use the meter suffix items as is.
5732 		 */
5733 		if (qrss_id) {
5734 			/* Not meter subflow. */
5735 			MLX5_ASSERT(!mtr_sfx);
5736 			/*
5737 			 * Put unique id in prefix flow due to it is destroyed
5738 			 * after suffix flow and id will be freed after there
5739 			 * is no actual flows with this id and identifier
5740 			 * reallocation becomes possible (for example, for
5741 			 * other flows in other threads).
5742 			 */
5743 			dev_flow->handle->split_flow_id = qrss_id;
5744 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
5745 						   error);
5746 			if (ret < 0)
5747 				goto exit;
5748 			q_tag_spec.id = ret;
5749 		}
5750 		dev_flow = NULL;
5751 		/* Add suffix subflow to execute Q/RSS. */
5752 		flow_split_info->prefix_layers = layers;
5753 		flow_split_info->prefix_mark = 0;
5754 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5755 					      &q_attr, mtr_sfx ? items :
5756 					      q_items, q_actions,
5757 					      flow_split_info, error);
5758 		if (ret < 0)
5759 			goto exit;
5760 		/* qrss ID should be freed if failed. */
5761 		qrss_id = 0;
5762 		MLX5_ASSERT(dev_flow);
5763 	}
5764 
5765 exit:
5766 	/*
5767 	 * We do not destroy the partially created sub_flows in case of error.
5768 	 * These ones are included into parent flow list and will be destroyed
5769 	 * by flow_drv_destroy.
5770 	 */
5771 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
5772 			qrss_id);
5773 	mlx5_free(ext_actions);
5774 	return ret;
5775 }
5776 
5777 /**
5778  * Create meter internal drop flow with the original pattern.
5779  *
5780  * @param dev
5781  *   Pointer to Ethernet device.
5782  * @param[in] flow
5783  *   Parent flow structure pointer.
5784  * @param[in] attr
5785  *   Flow rule attributes.
5786  * @param[in] items
5787  *   Pattern specification (list terminated by the END pattern item).
5788  * @param[in] flow_split_info
5789  *   Pointer to flow split info structure.
5790  * @param[in] fm
5791  *   Pointer to flow meter structure.
5792  * @param[out] error
5793  *   Perform verbose error reporting if not NULL.
5794  * @return
5795  *   0 on success, negative value otherwise
5796  */
5797 static uint32_t
5798 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev,
5799 			struct rte_flow *flow,
5800 			const struct rte_flow_attr *attr,
5801 			const struct rte_flow_item items[],
5802 			struct mlx5_flow_split_info *flow_split_info,
5803 			struct mlx5_flow_meter_info *fm,
5804 			struct rte_flow_error *error)
5805 {
5806 	struct mlx5_flow *dev_flow = NULL;
5807 	struct rte_flow_attr drop_attr = *attr;
5808 	struct rte_flow_action drop_actions[3];
5809 	struct mlx5_flow_split_info drop_split_info = *flow_split_info;
5810 
5811 	MLX5_ASSERT(fm->drop_cnt);
5812 	drop_actions[0].type =
5813 		(enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
5814 	drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt;
5815 	drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP;
5816 	drop_actions[1].conf = NULL;
5817 	drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END;
5818 	drop_actions[2].conf = NULL;
5819 	drop_split_info.external = false;
5820 	drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT;
5821 	drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP;
5822 	drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER;
5823 	return flow_create_split_inner(dev, flow, &dev_flow,
5824 				&drop_attr, items, drop_actions,
5825 				&drop_split_info, error);
5826 }
5827 
5828 /**
5829  * The splitting for meter feature.
5830  *
5831  * - The meter flow will be split to two flows as prefix and
5832  *   suffix flow. The packets make sense only it pass the prefix
5833  *   meter action.
5834  *
5835  * - Reg_C_5 is used for the packet to match betweend prefix and
5836  *   suffix flow.
5837  *
5838  * @param dev
5839  *   Pointer to Ethernet device.
5840  * @param[in] flow
5841  *   Parent flow structure pointer.
5842  * @param[in] attr
5843  *   Flow rule attributes.
5844  * @param[in] items
5845  *   Pattern specification (list terminated by the END pattern item).
5846  * @param[in] actions
5847  *   Associated actions (list terminated by the END action).
5848  * @param[in] flow_split_info
5849  *   Pointer to flow split info structure.
5850  * @param[out] error
5851  *   Perform verbose error reporting if not NULL.
5852  * @return
5853  *   0 on success, negative value otherwise
5854  */
5855 static int
5856 flow_create_split_meter(struct rte_eth_dev *dev,
5857 			struct rte_flow *flow,
5858 			const struct rte_flow_attr *attr,
5859 			const struct rte_flow_item items[],
5860 			const struct rte_flow_action actions[],
5861 			struct mlx5_flow_split_info *flow_split_info,
5862 			struct rte_flow_error *error)
5863 {
5864 	struct mlx5_priv *priv = dev->data->dev_private;
5865 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
5866 	struct rte_flow_action *sfx_actions = NULL;
5867 	struct rte_flow_action *pre_actions = NULL;
5868 	struct rte_flow_item *sfx_items = NULL;
5869 	struct mlx5_flow *dev_flow = NULL;
5870 	struct rte_flow_attr sfx_attr = *attr;
5871 	struct mlx5_flow_meter_info *fm = NULL;
5872 	uint8_t skip_scale_restore;
5873 	bool has_mtr = false;
5874 	bool has_modify = false;
5875 	bool set_mtr_reg = true;
5876 	bool is_mtr_hierarchy = false;
5877 	uint32_t meter_id = 0;
5878 	uint32_t mtr_idx = 0;
5879 	uint32_t mtr_flow_id = 0;
5880 	size_t act_size;
5881 	size_t item_size;
5882 	int actions_n = 0;
5883 	int ret = 0;
5884 
5885 	if (priv->mtr_en)
5886 		actions_n = flow_check_meter_action(dev, actions, &has_mtr,
5887 						    &has_modify, &meter_id);
5888 	if (has_mtr) {
5889 		if (flow->meter) {
5890 			fm = flow_dv_meter_find_by_idx(priv, flow->meter);
5891 			if (!fm)
5892 				return rte_flow_error_set(error, EINVAL,
5893 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5894 						NULL, "Meter not found.");
5895 		} else {
5896 			fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx);
5897 			if (!fm)
5898 				return rte_flow_error_set(error, EINVAL,
5899 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5900 						NULL, "Meter not found.");
5901 			ret = mlx5_flow_meter_attach(priv, fm,
5902 						     &sfx_attr, error);
5903 			if (ret)
5904 				return -rte_errno;
5905 			flow->meter = mtr_idx;
5906 		}
5907 		MLX5_ASSERT(wks);
5908 		wks->fm = fm;
5909 		if (!fm->def_policy) {
5910 			wks->policy = mlx5_flow_meter_policy_find(dev,
5911 								  fm->policy_id,
5912 								  NULL);
5913 			MLX5_ASSERT(wks->policy);
5914 			if (wks->policy->is_hierarchy) {
5915 				wks->final_policy =
5916 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
5917 								wks->policy);
5918 				if (!wks->final_policy)
5919 					return rte_flow_error_set(error,
5920 					EINVAL,
5921 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
5922 				"Failed to find terminal policy of hierarchy.");
5923 				is_mtr_hierarchy = true;
5924 			}
5925 		}
5926 		/*
5927 		 * If it isn't default-policy Meter, and
5928 		 * 1. There's no action in flow to change
5929 		 *    packet (modify/encap/decap etc.), OR
5930 		 * 2. No drop count needed for this meter.
5931 		 * 3. It's not meter hierarchy.
5932 		 * Then no need to use regC to save meter id anymore.
5933 		 */
5934 		if (!fm->def_policy && !is_mtr_hierarchy &&
5935 		    (!has_modify || !fm->drop_cnt))
5936 			set_mtr_reg = false;
5937 		/* Prefix actions: meter, decap, encap, tag, jump, end. */
5938 		act_size = sizeof(struct rte_flow_action) * (actions_n + 6) +
5939 			   sizeof(struct mlx5_rte_flow_action_set_tag);
5940 		/* Suffix items: tag, vlan, port id, end. */
5941 #define METER_SUFFIX_ITEM 4
5942 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
5943 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5944 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
5945 					  0, SOCKET_ID_ANY);
5946 		if (!sfx_actions)
5947 			return rte_flow_error_set(error, ENOMEM,
5948 						  RTE_FLOW_ERROR_TYPE_ACTION,
5949 						  NULL, "no memory to split "
5950 						  "meter flow");
5951 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
5952 			     act_size);
5953 		/* There's no suffix flow for meter of non-default policy. */
5954 		if (!fm->def_policy)
5955 			pre_actions = sfx_actions + 1;
5956 		else
5957 			pre_actions = sfx_actions + actions_n;
5958 		ret = flow_meter_split_prep(dev, flow, wks, &sfx_attr,
5959 					    items, sfx_items, actions,
5960 					    sfx_actions, pre_actions,
5961 					    (set_mtr_reg ? &mtr_flow_id : NULL),
5962 					    error);
5963 		if (ret) {
5964 			ret = -rte_errno;
5965 			goto exit;
5966 		}
5967 		/* Add the prefix subflow. */
5968 		flow_split_info->prefix_mark = 0;
5969 		skip_scale_restore = flow_split_info->skip_scale;
5970 		flow_split_info->skip_scale |=
5971 			1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
5972 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5973 					      attr, items, pre_actions,
5974 					      flow_split_info, error);
5975 		flow_split_info->skip_scale = skip_scale_restore;
5976 		if (ret) {
5977 			if (mtr_flow_id)
5978 				mlx5_ipool_free(fm->flow_ipool, mtr_flow_id);
5979 			ret = -rte_errno;
5980 			goto exit;
5981 		}
5982 		if (mtr_flow_id) {
5983 			dev_flow->handle->split_flow_id = mtr_flow_id;
5984 			dev_flow->handle->is_meter_flow_id = 1;
5985 		}
5986 		if (!fm->def_policy) {
5987 			if (!set_mtr_reg && fm->drop_cnt)
5988 				ret =
5989 			flow_meter_create_drop_flow_with_org_pattern(dev, flow,
5990 							&sfx_attr, items,
5991 							flow_split_info,
5992 							fm, error);
5993 			goto exit;
5994 		}
5995 		/* Setting the sfx group atrr. */
5996 		sfx_attr.group = sfx_attr.transfer ?
5997 				(MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5998 				 MLX5_FLOW_TABLE_LEVEL_METER;
5999 		flow_split_info->prefix_layers =
6000 				flow_get_prefix_layer_flags(dev_flow);
6001 		flow_split_info->prefix_mark = dev_flow->handle->mark;
6002 		flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX;
6003 	}
6004 	/* Add the prefix subflow. */
6005 	ret = flow_create_split_metadata(dev, flow,
6006 					 &sfx_attr, sfx_items ?
6007 					 sfx_items : items,
6008 					 sfx_actions ? sfx_actions : actions,
6009 					 flow_split_info, error);
6010 exit:
6011 	if (sfx_actions)
6012 		mlx5_free(sfx_actions);
6013 	return ret;
6014 }
6015 
6016 /**
6017  * The splitting for sample feature.
6018  *
6019  * Once Sample action is detected in the action list, the flow actions should
6020  * be split into prefix sub flow and suffix sub flow.
6021  *
6022  * The original items remain in the prefix sub flow, all actions preceding the
6023  * sample action and the sample action itself will be copied to the prefix
6024  * sub flow, the actions following the sample action will be copied to the
6025  * suffix sub flow, Queue action always be located in the suffix sub flow.
6026  *
6027  * In order to make the packet from prefix sub flow matches with suffix sub
6028  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
6029  * flow uses tag item with the unique flow id.
6030  *
6031  * @param dev
6032  *   Pointer to Ethernet device.
6033  * @param[in] flow
6034  *   Parent flow structure pointer.
6035  * @param[in] attr
6036  *   Flow rule attributes.
6037  * @param[in] items
6038  *   Pattern specification (list terminated by the END pattern item).
6039  * @param[in] actions
6040  *   Associated actions (list terminated by the END action).
6041  * @param[in] flow_split_info
6042  *   Pointer to flow split info structure.
6043  * @param[out] error
6044  *   Perform verbose error reporting if not NULL.
6045  * @return
6046  *   0 on success, negative value otherwise
6047  */
6048 static int
6049 flow_create_split_sample(struct rte_eth_dev *dev,
6050 			 struct rte_flow *flow,
6051 			 const struct rte_flow_attr *attr,
6052 			 const struct rte_flow_item items[],
6053 			 const struct rte_flow_action actions[],
6054 			 struct mlx5_flow_split_info *flow_split_info,
6055 			 struct rte_flow_error *error)
6056 {
6057 	struct mlx5_priv *priv = dev->data->dev_private;
6058 	struct rte_flow_action *sfx_actions = NULL;
6059 	struct rte_flow_action *pre_actions = NULL;
6060 	struct rte_flow_item *sfx_items = NULL;
6061 	struct mlx5_flow *dev_flow = NULL;
6062 	struct rte_flow_attr sfx_attr = *attr;
6063 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6064 	struct mlx5_flow_dv_sample_resource *sample_res;
6065 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
6066 	struct mlx5_flow_tbl_resource *sfx_tbl;
6067 #endif
6068 	size_t act_size;
6069 	size_t item_size;
6070 	uint32_t fdb_tx = 0;
6071 	int32_t tag_id = 0;
6072 	int actions_n = 0;
6073 	int sample_action_pos;
6074 	int qrss_action_pos;
6075 	int add_tag = 0;
6076 	int modify_after_mirror = 0;
6077 	uint16_t jump_table = 0;
6078 	const uint32_t next_ft_step = 1;
6079 	int ret = 0;
6080 
6081 	if (priv->sampler_en)
6082 		actions_n = flow_check_match_action(actions, attr,
6083 					RTE_FLOW_ACTION_TYPE_SAMPLE,
6084 					&sample_action_pos, &qrss_action_pos,
6085 					&modify_after_mirror);
6086 	if (actions_n) {
6087 		/* The prefix actions must includes sample, tag, end. */
6088 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
6089 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
6090 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
6091 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
6092 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
6093 					  item_size), 0, SOCKET_ID_ANY);
6094 		if (!sfx_actions)
6095 			return rte_flow_error_set(error, ENOMEM,
6096 						  RTE_FLOW_ERROR_TYPE_ACTION,
6097 						  NULL, "no memory to split "
6098 						  "sample flow");
6099 		/* The representor_id is UINT16_MAX for uplink. */
6100 		fdb_tx = (attr->transfer && priv->representor_id != UINT16_MAX);
6101 		/*
6102 		 * When reg_c_preserve is set, metadata registers Cx preserve
6103 		 * their value even through packet duplication.
6104 		 */
6105 		add_tag = (!fdb_tx || priv->config.hca_attr.reg_c_preserve);
6106 		if (add_tag)
6107 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
6108 					+ act_size);
6109 		if (modify_after_mirror)
6110 			jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR +
6111 				     next_ft_step;
6112 		pre_actions = sfx_actions + actions_n;
6113 		tag_id = flow_sample_split_prep(dev, add_tag, sfx_items,
6114 						actions, sfx_actions,
6115 						pre_actions, actions_n,
6116 						sample_action_pos,
6117 						qrss_action_pos, jump_table,
6118 						error);
6119 		if (tag_id < 0 || (add_tag && !tag_id)) {
6120 			ret = -rte_errno;
6121 			goto exit;
6122 		}
6123 		if (modify_after_mirror)
6124 			flow_split_info->skip_scale =
6125 					1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
6126 		/* Add the prefix subflow. */
6127 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
6128 					      items, pre_actions,
6129 					      flow_split_info, error);
6130 		if (ret) {
6131 			ret = -rte_errno;
6132 			goto exit;
6133 		}
6134 		dev_flow->handle->split_flow_id = tag_id;
6135 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6136 		if (!modify_after_mirror) {
6137 			/* Set the sfx group attr. */
6138 			sample_res = (struct mlx5_flow_dv_sample_resource *)
6139 						dev_flow->dv.sample_res;
6140 			sfx_tbl = (struct mlx5_flow_tbl_resource *)
6141 						sample_res->normal_path_tbl;
6142 			sfx_tbl_data = container_of(sfx_tbl,
6143 						struct mlx5_flow_tbl_data_entry,
6144 						tbl);
6145 			sfx_attr.group = sfx_attr.transfer ?
6146 			(sfx_tbl_data->level - 1) : sfx_tbl_data->level;
6147 		} else {
6148 			MLX5_ASSERT(attr->transfer);
6149 			sfx_attr.group = jump_table;
6150 		}
6151 		flow_split_info->prefix_layers =
6152 				flow_get_prefix_layer_flags(dev_flow);
6153 		flow_split_info->prefix_mark = dev_flow->handle->mark;
6154 		/* Suffix group level already be scaled with factor, set
6155 		 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale
6156 		 * again in translation.
6157 		 */
6158 		flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT;
6159 #endif
6160 	}
6161 	/* Add the suffix subflow. */
6162 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
6163 				      sfx_items ? sfx_items : items,
6164 				      sfx_actions ? sfx_actions : actions,
6165 				      flow_split_info, error);
6166 exit:
6167 	if (sfx_actions)
6168 		mlx5_free(sfx_actions);
6169 	return ret;
6170 }
6171 
6172 /**
6173  * Split the flow to subflow set. The splitters might be linked
6174  * in the chain, like this:
6175  * flow_create_split_outer() calls:
6176  *   flow_create_split_meter() calls:
6177  *     flow_create_split_metadata(meter_subflow_0) calls:
6178  *       flow_create_split_inner(metadata_subflow_0)
6179  *       flow_create_split_inner(metadata_subflow_1)
6180  *       flow_create_split_inner(metadata_subflow_2)
6181  *     flow_create_split_metadata(meter_subflow_1) calls:
6182  *       flow_create_split_inner(metadata_subflow_0)
6183  *       flow_create_split_inner(metadata_subflow_1)
6184  *       flow_create_split_inner(metadata_subflow_2)
6185  *
6186  * This provide flexible way to add new levels of flow splitting.
6187  * The all of successfully created subflows are included to the
6188  * parent flow dev_flow list.
6189  *
6190  * @param dev
6191  *   Pointer to Ethernet device.
6192  * @param[in] flow
6193  *   Parent flow structure pointer.
6194  * @param[in] attr
6195  *   Flow rule attributes.
6196  * @param[in] items
6197  *   Pattern specification (list terminated by the END pattern item).
6198  * @param[in] actions
6199  *   Associated actions (list terminated by the END action).
6200  * @param[in] flow_split_info
6201  *   Pointer to flow split info structure.
6202  * @param[out] error
6203  *   Perform verbose error reporting if not NULL.
6204  * @return
6205  *   0 on success, negative value otherwise
6206  */
6207 static int
6208 flow_create_split_outer(struct rte_eth_dev *dev,
6209 			struct rte_flow *flow,
6210 			const struct rte_flow_attr *attr,
6211 			const struct rte_flow_item items[],
6212 			const struct rte_flow_action actions[],
6213 			struct mlx5_flow_split_info *flow_split_info,
6214 			struct rte_flow_error *error)
6215 {
6216 	int ret;
6217 
6218 	ret = flow_create_split_sample(dev, flow, attr, items,
6219 				       actions, flow_split_info, error);
6220 	MLX5_ASSERT(ret <= 0);
6221 	return ret;
6222 }
6223 
6224 static inline struct mlx5_flow_tunnel *
6225 flow_tunnel_from_rule(const struct mlx5_flow *flow)
6226 {
6227 	struct mlx5_flow_tunnel *tunnel;
6228 
6229 #pragma GCC diagnostic push
6230 #pragma GCC diagnostic ignored "-Wcast-qual"
6231 	tunnel = (typeof(tunnel))flow->tunnel;
6232 #pragma GCC diagnostic pop
6233 
6234 	return tunnel;
6235 }
6236 
6237 /**
6238  * Adjust flow RSS workspace if needed.
6239  *
6240  * @param wks
6241  *   Pointer to thread flow work space.
6242  * @param rss_desc
6243  *   Pointer to RSS descriptor.
6244  * @param[in] nrssq_num
6245  *   New RSS queue number.
6246  *
6247  * @return
6248  *   0 on success, -1 otherwise and rte_errno is set.
6249  */
6250 static int
6251 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
6252 			  struct mlx5_flow_rss_desc *rss_desc,
6253 			  uint32_t nrssq_num)
6254 {
6255 	if (likely(nrssq_num <= wks->rssq_num))
6256 		return 0;
6257 	rss_desc->queue = realloc(rss_desc->queue,
6258 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
6259 	if (!rss_desc->queue) {
6260 		rte_errno = ENOMEM;
6261 		return -1;
6262 	}
6263 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
6264 	return 0;
6265 }
6266 
6267 /**
6268  * Create a flow and add it to @p list.
6269  *
6270  * @param dev
6271  *   Pointer to Ethernet device.
6272  * @param list
6273  *   Pointer to a TAILQ flow list. If this parameter NULL,
6274  *   no list insertion occurred, flow is just created,
6275  *   this is caller's responsibility to track the
6276  *   created flow.
6277  * @param[in] attr
6278  *   Flow rule attributes.
6279  * @param[in] items
6280  *   Pattern specification (list terminated by the END pattern item).
6281  * @param[in] actions
6282  *   Associated actions (list terminated by the END action).
6283  * @param[in] external
6284  *   This flow rule is created by request external to PMD.
6285  * @param[out] error
6286  *   Perform verbose error reporting if not NULL.
6287  *
6288  * @return
6289  *   A flow index on success, 0 otherwise and rte_errno is set.
6290  */
6291 static uint32_t
6292 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6293 		 const struct rte_flow_attr *attr,
6294 		 const struct rte_flow_item items[],
6295 		 const struct rte_flow_action original_actions[],
6296 		 bool external, struct rte_flow_error *error)
6297 {
6298 	struct mlx5_priv *priv = dev->data->dev_private;
6299 	struct rte_flow *flow = NULL;
6300 	struct mlx5_flow *dev_flow;
6301 	const struct rte_flow_action_rss *rss = NULL;
6302 	struct mlx5_translated_action_handle
6303 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6304 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6305 	union {
6306 		struct mlx5_flow_expand_rss buf;
6307 		uint8_t buffer[4096];
6308 	} expand_buffer;
6309 	union {
6310 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6311 		uint8_t buffer[2048];
6312 	} actions_rx;
6313 	union {
6314 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6315 		uint8_t buffer[2048];
6316 	} actions_hairpin_tx;
6317 	union {
6318 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
6319 		uint8_t buffer[2048];
6320 	} items_tx;
6321 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
6322 	struct mlx5_flow_rss_desc *rss_desc;
6323 	const struct rte_flow_action *p_actions_rx;
6324 	uint32_t i;
6325 	uint32_t idx = 0;
6326 	int hairpin_flow;
6327 	struct rte_flow_attr attr_tx = { .priority = 0 };
6328 	const struct rte_flow_action *actions;
6329 	struct rte_flow_action *translated_actions = NULL;
6330 	struct mlx5_flow_tunnel *tunnel;
6331 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
6332 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
6333 	struct mlx5_flow_split_info flow_split_info = {
6334 		.external = !!external,
6335 		.skip_scale = 0,
6336 		.flow_idx = 0,
6337 		.prefix_mark = 0,
6338 		.prefix_layers = 0,
6339 		.table_id = 0
6340 	};
6341 	int ret;
6342 
6343 	MLX5_ASSERT(wks);
6344 	rss_desc = &wks->rss_desc;
6345 	ret = flow_action_handles_translate(dev, original_actions,
6346 					    indir_actions,
6347 					    &indir_actions_n,
6348 					    &translated_actions, error);
6349 	if (ret < 0) {
6350 		MLX5_ASSERT(translated_actions == NULL);
6351 		return 0;
6352 	}
6353 	actions = translated_actions ? translated_actions : original_actions;
6354 	p_actions_rx = actions;
6355 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6356 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
6357 				external, hairpin_flow, error);
6358 	if (ret < 0)
6359 		goto error_before_hairpin_split;
6360 	flow = mlx5_ipool_zmalloc(priv->flows[type], &idx);
6361 	if (!flow) {
6362 		rte_errno = ENOMEM;
6363 		goto error_before_hairpin_split;
6364 	}
6365 	if (hairpin_flow > 0) {
6366 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
6367 			rte_errno = EINVAL;
6368 			goto error_before_hairpin_split;
6369 		}
6370 		flow_hairpin_split(dev, actions, actions_rx.actions,
6371 				   actions_hairpin_tx.actions, items_tx.items,
6372 				   idx);
6373 		p_actions_rx = actions_rx.actions;
6374 	}
6375 	flow_split_info.flow_idx = idx;
6376 	flow->drv_type = flow_get_drv_type(dev, attr);
6377 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
6378 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
6379 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
6380 	/* RSS Action only works on NIC RX domain */
6381 	if (attr->ingress && !attr->transfer)
6382 		rss = flow_get_rss_action(dev, p_actions_rx);
6383 	if (rss) {
6384 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
6385 			return 0;
6386 		/*
6387 		 * The following information is required by
6388 		 * mlx5_flow_hashfields_adjust() in advance.
6389 		 */
6390 		rss_desc->level = rss->level;
6391 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
6392 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
6393 	}
6394 	flow->dev_handles = 0;
6395 	if (rss && rss->types) {
6396 		unsigned int graph_root;
6397 
6398 		graph_root = find_graph_root(rss->level);
6399 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
6400 					   items, rss->types,
6401 					   mlx5_support_expansion, graph_root);
6402 		MLX5_ASSERT(ret > 0 &&
6403 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
6404 		if (rte_log_can_log(mlx5_logtype, RTE_LOG_DEBUG)) {
6405 			for (i = 0; i < buf->entries; ++i)
6406 				mlx5_dbg__print_pattern(buf->entry[i].pattern);
6407 		}
6408 	} else {
6409 		buf->entries = 1;
6410 		buf->entry[0].pattern = (void *)(uintptr_t)items;
6411 	}
6412 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions,
6413 						      indir_actions_n);
6414 	for (i = 0; i < buf->entries; ++i) {
6415 		/* Initialize flow split data. */
6416 		flow_split_info.prefix_layers = 0;
6417 		flow_split_info.prefix_mark = 0;
6418 		flow_split_info.skip_scale = 0;
6419 		/*
6420 		 * The splitter may create multiple dev_flows,
6421 		 * depending on configuration. In the simplest
6422 		 * case it just creates unmodified original flow.
6423 		 */
6424 		ret = flow_create_split_outer(dev, flow, attr,
6425 					      buf->entry[i].pattern,
6426 					      p_actions_rx, &flow_split_info,
6427 					      error);
6428 		if (ret < 0)
6429 			goto error;
6430 		if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) {
6431 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
6432 							   p_actions_rx,
6433 							   idx,
6434 							   wks->flows[0].tunnel,
6435 							   &default_miss_ctx,
6436 							   error);
6437 			if (ret < 0) {
6438 				mlx5_free(default_miss_ctx.queue);
6439 				goto error;
6440 			}
6441 		}
6442 	}
6443 	/* Create the tx flow. */
6444 	if (hairpin_flow) {
6445 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
6446 		attr_tx.ingress = 0;
6447 		attr_tx.egress = 1;
6448 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
6449 					 actions_hairpin_tx.actions,
6450 					 idx, error);
6451 		if (!dev_flow)
6452 			goto error;
6453 		dev_flow->flow = flow;
6454 		dev_flow->external = 0;
6455 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
6456 			      dev_flow->handle, next);
6457 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
6458 					 items_tx.items,
6459 					 actions_hairpin_tx.actions, error);
6460 		if (ret < 0)
6461 			goto error;
6462 	}
6463 	/*
6464 	 * Update the metadata register copy table. If extensive
6465 	 * metadata feature is enabled and registers are supported
6466 	 * we might create the extra rte_flow for each unique
6467 	 * MARK/FLAG action ID.
6468 	 *
6469 	 * The table is updated for ingress Flows only, because
6470 	 * the egress Flows belong to the different device and
6471 	 * copy table should be updated in peer NIC Rx domain.
6472 	 */
6473 	if (attr->ingress &&
6474 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
6475 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
6476 		if (ret)
6477 			goto error;
6478 	}
6479 	/*
6480 	 * If the flow is external (from application) OR device is started,
6481 	 * OR mreg discover, then apply immediately.
6482 	 */
6483 	if (external || dev->data->dev_started ||
6484 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
6485 	     attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) {
6486 		ret = flow_drv_apply(dev, flow, error);
6487 		if (ret < 0)
6488 			goto error;
6489 	}
6490 	flow->type = type;
6491 	flow_rxq_flags_set(dev, flow);
6492 	rte_free(translated_actions);
6493 	tunnel = flow_tunnel_from_rule(wks->flows);
6494 	if (tunnel) {
6495 		flow->tunnel = 1;
6496 		flow->tunnel_id = tunnel->tunnel_id;
6497 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
6498 		mlx5_free(default_miss_ctx.queue);
6499 	}
6500 	mlx5_flow_pop_thread_workspace();
6501 	return idx;
6502 error:
6503 	MLX5_ASSERT(flow);
6504 	ret = rte_errno; /* Save rte_errno before cleanup. */
6505 	flow_mreg_del_copy_action(dev, flow);
6506 	flow_drv_destroy(dev, flow);
6507 	if (rss_desc->shared_rss)
6508 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
6509 			mlx5_ipool_get
6510 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
6511 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
6512 	mlx5_ipool_free(priv->flows[type], idx);
6513 	rte_errno = ret; /* Restore rte_errno. */
6514 	ret = rte_errno;
6515 	rte_errno = ret;
6516 	mlx5_flow_pop_thread_workspace();
6517 error_before_hairpin_split:
6518 	rte_free(translated_actions);
6519 	return 0;
6520 }
6521 
6522 /**
6523  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
6524  * incoming packets to table 1.
6525  *
6526  * Other flow rules, requested for group n, will be created in
6527  * e-switch table n+1.
6528  * Jump action to e-switch group n will be created to group n+1.
6529  *
6530  * Used when working in switchdev mode, to utilise advantages of table 1
6531  * and above.
6532  *
6533  * @param dev
6534  *   Pointer to Ethernet device.
6535  *
6536  * @return
6537  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
6538  */
6539 struct rte_flow *
6540 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
6541 {
6542 	const struct rte_flow_attr attr = {
6543 		.group = 0,
6544 		.priority = 0,
6545 		.ingress = 1,
6546 		.egress = 0,
6547 		.transfer = 1,
6548 	};
6549 	const struct rte_flow_item pattern = {
6550 		.type = RTE_FLOW_ITEM_TYPE_END,
6551 	};
6552 	struct rte_flow_action_jump jump = {
6553 		.group = 1,
6554 	};
6555 	const struct rte_flow_action actions[] = {
6556 		{
6557 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6558 			.conf = &jump,
6559 		},
6560 		{
6561 			.type = RTE_FLOW_ACTION_TYPE_END,
6562 		},
6563 	};
6564 	struct rte_flow_error error;
6565 
6566 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
6567 						   &attr, &pattern,
6568 						   actions, false, &error);
6569 }
6570 
6571 /**
6572  * Validate a flow supported by the NIC.
6573  *
6574  * @see rte_flow_validate()
6575  * @see rte_flow_ops
6576  */
6577 int
6578 mlx5_flow_validate(struct rte_eth_dev *dev,
6579 		   const struct rte_flow_attr *attr,
6580 		   const struct rte_flow_item items[],
6581 		   const struct rte_flow_action original_actions[],
6582 		   struct rte_flow_error *error)
6583 {
6584 	int hairpin_flow;
6585 	struct mlx5_translated_action_handle
6586 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6587 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6588 	const struct rte_flow_action *actions;
6589 	struct rte_flow_action *translated_actions = NULL;
6590 	int ret = flow_action_handles_translate(dev, original_actions,
6591 						indir_actions,
6592 						&indir_actions_n,
6593 						&translated_actions, error);
6594 
6595 	if (ret)
6596 		return ret;
6597 	actions = translated_actions ? translated_actions : original_actions;
6598 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6599 	ret = flow_drv_validate(dev, attr, items, actions,
6600 				true, hairpin_flow, error);
6601 	rte_free(translated_actions);
6602 	return ret;
6603 }
6604 
6605 /**
6606  * Create a flow.
6607  *
6608  * @see rte_flow_create()
6609  * @see rte_flow_ops
6610  */
6611 struct rte_flow *
6612 mlx5_flow_create(struct rte_eth_dev *dev,
6613 		 const struct rte_flow_attr *attr,
6614 		 const struct rte_flow_item items[],
6615 		 const struct rte_flow_action actions[],
6616 		 struct rte_flow_error *error)
6617 {
6618 	/*
6619 	 * If the device is not started yet, it is not allowed to created a
6620 	 * flow from application. PMD default flows and traffic control flows
6621 	 * are not affected.
6622 	 */
6623 	if (unlikely(!dev->data->dev_started)) {
6624 		DRV_LOG(DEBUG, "port %u is not started when "
6625 			"inserting a flow", dev->data->port_id);
6626 		rte_flow_error_set(error, ENODEV,
6627 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6628 				   NULL,
6629 				   "port not started");
6630 		return NULL;
6631 	}
6632 
6633 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_GEN,
6634 						   attr, items, actions,
6635 						   true, error);
6636 }
6637 
6638 /**
6639  * Destroy a flow in a list.
6640  *
6641  * @param dev
6642  *   Pointer to Ethernet device.
6643  * @param[in] flow_idx
6644  *   Index of flow to destroy.
6645  */
6646 static void
6647 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6648 		  uint32_t flow_idx)
6649 {
6650 	struct mlx5_priv *priv = dev->data->dev_private;
6651 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[type], flow_idx);
6652 
6653 	if (!flow)
6654 		return;
6655 	MLX5_ASSERT(flow->type == type);
6656 	/*
6657 	 * Update RX queue flags only if port is started, otherwise it is
6658 	 * already clean.
6659 	 */
6660 	if (dev->data->dev_started)
6661 		flow_rxq_flags_trim(dev, flow);
6662 	flow_drv_destroy(dev, flow);
6663 	if (flow->tunnel) {
6664 		struct mlx5_flow_tunnel *tunnel;
6665 
6666 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
6667 		RTE_VERIFY(tunnel);
6668 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
6669 			mlx5_flow_tunnel_free(dev, tunnel);
6670 	}
6671 	flow_mreg_del_copy_action(dev, flow);
6672 	mlx5_ipool_free(priv->flows[type], flow_idx);
6673 }
6674 
6675 /**
6676  * Destroy all flows.
6677  *
6678  * @param dev
6679  *   Pointer to Ethernet device.
6680  * @param type
6681  *   Flow type to be flushed.
6682  * @param active
6683  *   If flushing is called avtively.
6684  */
6685 void
6686 mlx5_flow_list_flush(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6687 		     bool active)
6688 {
6689 	struct mlx5_priv *priv = dev->data->dev_private;
6690 	uint32_t num_flushed = 0, fidx = 1;
6691 	struct rte_flow *flow;
6692 
6693 	MLX5_IPOOL_FOREACH(priv->flows[type], fidx, flow) {
6694 		flow_list_destroy(dev, type, fidx);
6695 		num_flushed++;
6696 	}
6697 	if (active) {
6698 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
6699 			dev->data->port_id, num_flushed);
6700 	}
6701 }
6702 
6703 /**
6704  * Stop all default actions for flows.
6705  *
6706  * @param dev
6707  *   Pointer to Ethernet device.
6708  */
6709 void
6710 mlx5_flow_stop_default(struct rte_eth_dev *dev)
6711 {
6712 	flow_mreg_del_default_copy_action(dev);
6713 	flow_rxq_flags_clear(dev);
6714 }
6715 
6716 /**
6717  * Start all default actions for flows.
6718  *
6719  * @param dev
6720  *   Pointer to Ethernet device.
6721  * @return
6722  *   0 on success, a negative errno value otherwise and rte_errno is set.
6723  */
6724 int
6725 mlx5_flow_start_default(struct rte_eth_dev *dev)
6726 {
6727 	struct rte_flow_error error;
6728 
6729 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
6730 	return flow_mreg_add_default_copy_action(dev, &error);
6731 }
6732 
6733 /**
6734  * Release key of thread specific flow workspace data.
6735  */
6736 void
6737 flow_release_workspace(void *data)
6738 {
6739 	struct mlx5_flow_workspace *wks = data;
6740 	struct mlx5_flow_workspace *next;
6741 
6742 	while (wks) {
6743 		next = wks->next;
6744 		free(wks->rss_desc.queue);
6745 		free(wks);
6746 		wks = next;
6747 	}
6748 }
6749 
6750 /**
6751  * Get thread specific current flow workspace.
6752  *
6753  * @return pointer to thread specific flow workspace data, NULL on error.
6754  */
6755 struct mlx5_flow_workspace*
6756 mlx5_flow_get_thread_workspace(void)
6757 {
6758 	struct mlx5_flow_workspace *data;
6759 
6760 	data = mlx5_flow_os_get_specific_workspace();
6761 	MLX5_ASSERT(data && data->inuse);
6762 	if (!data || !data->inuse)
6763 		DRV_LOG(ERR, "flow workspace not initialized.");
6764 	return data;
6765 }
6766 
6767 /**
6768  * Allocate and init new flow workspace.
6769  *
6770  * @return pointer to flow workspace data, NULL on error.
6771  */
6772 static struct mlx5_flow_workspace*
6773 flow_alloc_thread_workspace(void)
6774 {
6775 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
6776 
6777 	if (!data) {
6778 		DRV_LOG(ERR, "Failed to allocate flow workspace "
6779 			"memory.");
6780 		return NULL;
6781 	}
6782 	data->rss_desc.queue = calloc(1,
6783 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
6784 	if (!data->rss_desc.queue)
6785 		goto err;
6786 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
6787 	return data;
6788 err:
6789 	if (data->rss_desc.queue)
6790 		free(data->rss_desc.queue);
6791 	free(data);
6792 	return NULL;
6793 }
6794 
6795 /**
6796  * Get new thread specific flow workspace.
6797  *
6798  * If current workspace inuse, create new one and set as current.
6799  *
6800  * @return pointer to thread specific flow workspace data, NULL on error.
6801  */
6802 static struct mlx5_flow_workspace*
6803 mlx5_flow_push_thread_workspace(void)
6804 {
6805 	struct mlx5_flow_workspace *curr;
6806 	struct mlx5_flow_workspace *data;
6807 
6808 	curr = mlx5_flow_os_get_specific_workspace();
6809 	if (!curr) {
6810 		data = flow_alloc_thread_workspace();
6811 		if (!data)
6812 			return NULL;
6813 	} else if (!curr->inuse) {
6814 		data = curr;
6815 	} else if (curr->next) {
6816 		data = curr->next;
6817 	} else {
6818 		data = flow_alloc_thread_workspace();
6819 		if (!data)
6820 			return NULL;
6821 		curr->next = data;
6822 		data->prev = curr;
6823 	}
6824 	data->inuse = 1;
6825 	data->flow_idx = 0;
6826 	/* Set as current workspace */
6827 	if (mlx5_flow_os_set_specific_workspace(data))
6828 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6829 	return data;
6830 }
6831 
6832 /**
6833  * Close current thread specific flow workspace.
6834  *
6835  * If previous workspace available, set it as current.
6836  *
6837  * @return pointer to thread specific flow workspace data, NULL on error.
6838  */
6839 static void
6840 mlx5_flow_pop_thread_workspace(void)
6841 {
6842 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
6843 
6844 	if (!data)
6845 		return;
6846 	if (!data->inuse) {
6847 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
6848 		return;
6849 	}
6850 	data->inuse = 0;
6851 	if (!data->prev)
6852 		return;
6853 	if (mlx5_flow_os_set_specific_workspace(data->prev))
6854 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6855 }
6856 
6857 /**
6858  * Verify the flow list is empty
6859  *
6860  * @param dev
6861  *  Pointer to Ethernet device.
6862  *
6863  * @return the number of flows not released.
6864  */
6865 int
6866 mlx5_flow_verify(struct rte_eth_dev *dev __rte_unused)
6867 {
6868 	struct mlx5_priv *priv = dev->data->dev_private;
6869 	struct rte_flow *flow;
6870 	uint32_t idx = 0;
6871 	int ret = 0, i;
6872 
6873 	for (i = 0; i < MLX5_FLOW_TYPE_MAXI; i++) {
6874 		MLX5_IPOOL_FOREACH(priv->flows[i], idx, flow) {
6875 			DRV_LOG(DEBUG, "port %u flow %p still referenced",
6876 				dev->data->port_id, (void *)flow);
6877 			ret++;
6878 		}
6879 	}
6880 	return ret;
6881 }
6882 
6883 /**
6884  * Enable default hairpin egress flow.
6885  *
6886  * @param dev
6887  *   Pointer to Ethernet device.
6888  * @param queue
6889  *   The queue index.
6890  *
6891  * @return
6892  *   0 on success, a negative errno value otherwise and rte_errno is set.
6893  */
6894 int
6895 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
6896 			    uint32_t queue)
6897 {
6898 	const struct rte_flow_attr attr = {
6899 		.egress = 1,
6900 		.priority = 0,
6901 	};
6902 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
6903 		.queue = queue,
6904 	};
6905 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
6906 		.queue = UINT32_MAX,
6907 	};
6908 	struct rte_flow_item items[] = {
6909 		{
6910 			.type = (enum rte_flow_item_type)
6911 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
6912 			.spec = &queue_spec,
6913 			.last = NULL,
6914 			.mask = &queue_mask,
6915 		},
6916 		{
6917 			.type = RTE_FLOW_ITEM_TYPE_END,
6918 		},
6919 	};
6920 	struct rte_flow_action_jump jump = {
6921 		.group = MLX5_HAIRPIN_TX_TABLE,
6922 	};
6923 	struct rte_flow_action actions[2];
6924 	uint32_t flow_idx;
6925 	struct rte_flow_error error;
6926 
6927 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
6928 	actions[0].conf = &jump;
6929 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
6930 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
6931 				    &attr, items, actions, false, &error);
6932 	if (!flow_idx) {
6933 		DRV_LOG(DEBUG,
6934 			"Failed to create ctrl flow: rte_errno(%d),"
6935 			" type(%d), message(%s)",
6936 			rte_errno, error.type,
6937 			error.message ? error.message : " (no stated reason)");
6938 		return -rte_errno;
6939 	}
6940 	return 0;
6941 }
6942 
6943 /**
6944  * Enable a control flow configured from the control plane.
6945  *
6946  * @param dev
6947  *   Pointer to Ethernet device.
6948  * @param eth_spec
6949  *   An Ethernet flow spec to apply.
6950  * @param eth_mask
6951  *   An Ethernet flow mask to apply.
6952  * @param vlan_spec
6953  *   A VLAN flow spec to apply.
6954  * @param vlan_mask
6955  *   A VLAN flow mask to apply.
6956  *
6957  * @return
6958  *   0 on success, a negative errno value otherwise and rte_errno is set.
6959  */
6960 int
6961 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
6962 		    struct rte_flow_item_eth *eth_spec,
6963 		    struct rte_flow_item_eth *eth_mask,
6964 		    struct rte_flow_item_vlan *vlan_spec,
6965 		    struct rte_flow_item_vlan *vlan_mask)
6966 {
6967 	struct mlx5_priv *priv = dev->data->dev_private;
6968 	const struct rte_flow_attr attr = {
6969 		.ingress = 1,
6970 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
6971 	};
6972 	struct rte_flow_item items[] = {
6973 		{
6974 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6975 			.spec = eth_spec,
6976 			.last = NULL,
6977 			.mask = eth_mask,
6978 		},
6979 		{
6980 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
6981 					      RTE_FLOW_ITEM_TYPE_END,
6982 			.spec = vlan_spec,
6983 			.last = NULL,
6984 			.mask = vlan_mask,
6985 		},
6986 		{
6987 			.type = RTE_FLOW_ITEM_TYPE_END,
6988 		},
6989 	};
6990 	uint16_t queue[priv->reta_idx_n];
6991 	struct rte_flow_action_rss action_rss = {
6992 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
6993 		.level = 0,
6994 		.types = priv->rss_conf.rss_hf,
6995 		.key_len = priv->rss_conf.rss_key_len,
6996 		.queue_num = priv->reta_idx_n,
6997 		.key = priv->rss_conf.rss_key,
6998 		.queue = queue,
6999 	};
7000 	struct rte_flow_action actions[] = {
7001 		{
7002 			.type = RTE_FLOW_ACTION_TYPE_RSS,
7003 			.conf = &action_rss,
7004 		},
7005 		{
7006 			.type = RTE_FLOW_ACTION_TYPE_END,
7007 		},
7008 	};
7009 	uint32_t flow_idx;
7010 	struct rte_flow_error error;
7011 	unsigned int i;
7012 
7013 	if (!priv->reta_idx_n || !priv->rxqs_n) {
7014 		return 0;
7015 	}
7016 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
7017 		action_rss.types = 0;
7018 	for (i = 0; i != priv->reta_idx_n; ++i)
7019 		queue[i] = (*priv->reta_idx)[i];
7020 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7021 				    &attr, items, actions, false, &error);
7022 	if (!flow_idx)
7023 		return -rte_errno;
7024 	return 0;
7025 }
7026 
7027 /**
7028  * Enable a flow control configured from the control plane.
7029  *
7030  * @param dev
7031  *   Pointer to Ethernet device.
7032  * @param eth_spec
7033  *   An Ethernet flow spec to apply.
7034  * @param eth_mask
7035  *   An Ethernet flow mask to apply.
7036  *
7037  * @return
7038  *   0 on success, a negative errno value otherwise and rte_errno is set.
7039  */
7040 int
7041 mlx5_ctrl_flow(struct rte_eth_dev *dev,
7042 	       struct rte_flow_item_eth *eth_spec,
7043 	       struct rte_flow_item_eth *eth_mask)
7044 {
7045 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
7046 }
7047 
7048 /**
7049  * Create default miss flow rule matching lacp traffic
7050  *
7051  * @param dev
7052  *   Pointer to Ethernet device.
7053  * @param eth_spec
7054  *   An Ethernet flow spec to apply.
7055  *
7056  * @return
7057  *   0 on success, a negative errno value otherwise and rte_errno is set.
7058  */
7059 int
7060 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
7061 {
7062 	/*
7063 	 * The LACP matching is done by only using ether type since using
7064 	 * a multicast dst mac causes kernel to give low priority to this flow.
7065 	 */
7066 	static const struct rte_flow_item_eth lacp_spec = {
7067 		.type = RTE_BE16(0x8809),
7068 	};
7069 	static const struct rte_flow_item_eth lacp_mask = {
7070 		.type = 0xffff,
7071 	};
7072 	const struct rte_flow_attr attr = {
7073 		.ingress = 1,
7074 	};
7075 	struct rte_flow_item items[] = {
7076 		{
7077 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7078 			.spec = &lacp_spec,
7079 			.mask = &lacp_mask,
7080 		},
7081 		{
7082 			.type = RTE_FLOW_ITEM_TYPE_END,
7083 		},
7084 	};
7085 	struct rte_flow_action actions[] = {
7086 		{
7087 			.type = (enum rte_flow_action_type)
7088 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
7089 		},
7090 		{
7091 			.type = RTE_FLOW_ACTION_TYPE_END,
7092 		},
7093 	};
7094 	struct rte_flow_error error;
7095 	uint32_t flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7096 					&attr, items, actions,
7097 					false, &error);
7098 
7099 	if (!flow_idx)
7100 		return -rte_errno;
7101 	return 0;
7102 }
7103 
7104 /**
7105  * Destroy a flow.
7106  *
7107  * @see rte_flow_destroy()
7108  * @see rte_flow_ops
7109  */
7110 int
7111 mlx5_flow_destroy(struct rte_eth_dev *dev,
7112 		  struct rte_flow *flow,
7113 		  struct rte_flow_error *error __rte_unused)
7114 {
7115 	flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN,
7116 				(uintptr_t)(void *)flow);
7117 	return 0;
7118 }
7119 
7120 /**
7121  * Destroy all flows.
7122  *
7123  * @see rte_flow_flush()
7124  * @see rte_flow_ops
7125  */
7126 int
7127 mlx5_flow_flush(struct rte_eth_dev *dev,
7128 		struct rte_flow_error *error __rte_unused)
7129 {
7130 	mlx5_flow_list_flush(dev, MLX5_FLOW_TYPE_GEN, false);
7131 	return 0;
7132 }
7133 
7134 /**
7135  * Isolated mode.
7136  *
7137  * @see rte_flow_isolate()
7138  * @see rte_flow_ops
7139  */
7140 int
7141 mlx5_flow_isolate(struct rte_eth_dev *dev,
7142 		  int enable,
7143 		  struct rte_flow_error *error)
7144 {
7145 	struct mlx5_priv *priv = dev->data->dev_private;
7146 
7147 	if (dev->data->dev_started) {
7148 		rte_flow_error_set(error, EBUSY,
7149 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7150 				   NULL,
7151 				   "port must be stopped first");
7152 		return -rte_errno;
7153 	}
7154 	priv->isolated = !!enable;
7155 	if (enable)
7156 		dev->dev_ops = &mlx5_dev_ops_isolate;
7157 	else
7158 		dev->dev_ops = &mlx5_dev_ops;
7159 
7160 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
7161 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
7162 
7163 	return 0;
7164 }
7165 
7166 /**
7167  * Query a flow.
7168  *
7169  * @see rte_flow_query()
7170  * @see rte_flow_ops
7171  */
7172 static int
7173 flow_drv_query(struct rte_eth_dev *dev,
7174 	       uint32_t flow_idx,
7175 	       const struct rte_flow_action *actions,
7176 	       void *data,
7177 	       struct rte_flow_error *error)
7178 {
7179 	struct mlx5_priv *priv = dev->data->dev_private;
7180 	const struct mlx5_flow_driver_ops *fops;
7181 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
7182 					       flow_idx);
7183 	enum mlx5_flow_drv_type ftype;
7184 
7185 	if (!flow) {
7186 		return rte_flow_error_set(error, ENOENT,
7187 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7188 			  NULL,
7189 			  "invalid flow handle");
7190 	}
7191 	ftype = flow->drv_type;
7192 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
7193 	fops = flow_get_drv_ops(ftype);
7194 
7195 	return fops->query(dev, flow, actions, data, error);
7196 }
7197 
7198 /**
7199  * Query a flow.
7200  *
7201  * @see rte_flow_query()
7202  * @see rte_flow_ops
7203  */
7204 int
7205 mlx5_flow_query(struct rte_eth_dev *dev,
7206 		struct rte_flow *flow,
7207 		const struct rte_flow_action *actions,
7208 		void *data,
7209 		struct rte_flow_error *error)
7210 {
7211 	int ret;
7212 
7213 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
7214 			     error);
7215 	if (ret < 0)
7216 		return ret;
7217 	return 0;
7218 }
7219 
7220 /**
7221  * Get rte_flow callbacks.
7222  *
7223  * @param dev
7224  *   Pointer to Ethernet device structure.
7225  * @param ops
7226  *   Pointer to operation-specific structure.
7227  *
7228  * @return 0
7229  */
7230 int
7231 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
7232 		  const struct rte_flow_ops **ops)
7233 {
7234 	*ops = &mlx5_flow_ops;
7235 	return 0;
7236 }
7237 
7238 /**
7239  * Validate meter policy actions.
7240  * Dispatcher for action type specific validation.
7241  *
7242  * @param[in] dev
7243  *   Pointer to the Ethernet device structure.
7244  * @param[in] action
7245  *   The meter policy action object to validate.
7246  * @param[in] attr
7247  *   Attributes of flow to determine steering domain.
7248  * @param[out] is_rss
7249  *   Is RSS or not.
7250  * @param[out] domain_bitmap
7251  *   Domain bitmap.
7252  * @param[out] is_def_policy
7253  *   Is default policy or not.
7254  * @param[out] error
7255  *   Perform verbose error reporting if not NULL. Initialized in case of
7256  *   error only.
7257  *
7258  * @return
7259  *   0 on success, otherwise negative errno value.
7260  */
7261 int
7262 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev,
7263 			const struct rte_flow_action *actions[RTE_COLORS],
7264 			struct rte_flow_attr *attr,
7265 			bool *is_rss,
7266 			uint8_t *domain_bitmap,
7267 			uint8_t *policy_mode,
7268 			struct rte_mtr_error *error)
7269 {
7270 	const struct mlx5_flow_driver_ops *fops;
7271 
7272 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7273 	return fops->validate_mtr_acts(dev, actions, attr, is_rss,
7274 				       domain_bitmap, policy_mode, error);
7275 }
7276 
7277 /**
7278  * Destroy the meter table set.
7279  *
7280  * @param[in] dev
7281  *   Pointer to Ethernet device.
7282  * @param[in] mtr_policy
7283  *   Meter policy struct.
7284  */
7285 void
7286 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev,
7287 		      struct mlx5_flow_meter_policy *mtr_policy)
7288 {
7289 	const struct mlx5_flow_driver_ops *fops;
7290 
7291 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7292 	fops->destroy_mtr_acts(dev, mtr_policy);
7293 }
7294 
7295 /**
7296  * Create policy action, lock free,
7297  * (mutex should be acquired by caller).
7298  * Dispatcher for action type specific call.
7299  *
7300  * @param[in] dev
7301  *   Pointer to the Ethernet device structure.
7302  * @param[in] mtr_policy
7303  *   Meter policy struct.
7304  * @param[in] action
7305  *   Action specification used to create meter actions.
7306  * @param[out] error
7307  *   Perform verbose error reporting if not NULL. Initialized in case of
7308  *   error only.
7309  *
7310  * @return
7311  *   0 on success, otherwise negative errno value.
7312  */
7313 int
7314 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev,
7315 		      struct mlx5_flow_meter_policy *mtr_policy,
7316 		      const struct rte_flow_action *actions[RTE_COLORS],
7317 		      struct rte_mtr_error *error)
7318 {
7319 	const struct mlx5_flow_driver_ops *fops;
7320 
7321 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7322 	return fops->create_mtr_acts(dev, mtr_policy, actions, error);
7323 }
7324 
7325 /**
7326  * Create policy rules, lock free,
7327  * (mutex should be acquired by caller).
7328  * Dispatcher for action type specific call.
7329  *
7330  * @param[in] dev
7331  *   Pointer to the Ethernet device structure.
7332  * @param[in] mtr_policy
7333  *   Meter policy struct.
7334  *
7335  * @return
7336  *   0 on success, -1 otherwise.
7337  */
7338 int
7339 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev,
7340 			     struct mlx5_flow_meter_policy *mtr_policy)
7341 {
7342 	const struct mlx5_flow_driver_ops *fops;
7343 
7344 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7345 	return fops->create_policy_rules(dev, mtr_policy);
7346 }
7347 
7348 /**
7349  * Destroy policy rules, lock free,
7350  * (mutex should be acquired by caller).
7351  * Dispatcher for action type specific call.
7352  *
7353  * @param[in] dev
7354  *   Pointer to the Ethernet device structure.
7355  * @param[in] mtr_policy
7356  *   Meter policy struct.
7357  */
7358 void
7359 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev,
7360 			     struct mlx5_flow_meter_policy *mtr_policy)
7361 {
7362 	const struct mlx5_flow_driver_ops *fops;
7363 
7364 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7365 	fops->destroy_policy_rules(dev, mtr_policy);
7366 }
7367 
7368 /**
7369  * Destroy the default policy table set.
7370  *
7371  * @param[in] dev
7372  *   Pointer to Ethernet device.
7373  */
7374 void
7375 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev)
7376 {
7377 	const struct mlx5_flow_driver_ops *fops;
7378 
7379 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7380 	fops->destroy_def_policy(dev);
7381 }
7382 
7383 /**
7384  * Destroy the default policy table set.
7385  *
7386  * @param[in] dev
7387  *   Pointer to Ethernet device.
7388  *
7389  * @return
7390  *   0 on success, -1 otherwise.
7391  */
7392 int
7393 mlx5_flow_create_def_policy(struct rte_eth_dev *dev)
7394 {
7395 	const struct mlx5_flow_driver_ops *fops;
7396 
7397 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7398 	return fops->create_def_policy(dev);
7399 }
7400 
7401 /**
7402  * Create the needed meter and suffix tables.
7403  *
7404  * @param[in] dev
7405  *   Pointer to Ethernet device.
7406  *
7407  * @return
7408  *   0 on success, -1 otherwise.
7409  */
7410 int
7411 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
7412 			struct mlx5_flow_meter_info *fm,
7413 			uint32_t mtr_idx,
7414 			uint8_t domain_bitmap)
7415 {
7416 	const struct mlx5_flow_driver_ops *fops;
7417 
7418 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7419 	return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap);
7420 }
7421 
7422 /**
7423  * Destroy the meter table set.
7424  *
7425  * @param[in] dev
7426  *   Pointer to Ethernet device.
7427  * @param[in] tbl
7428  *   Pointer to the meter table set.
7429  */
7430 void
7431 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
7432 			   struct mlx5_flow_meter_info *fm)
7433 {
7434 	const struct mlx5_flow_driver_ops *fops;
7435 
7436 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7437 	fops->destroy_mtr_tbls(dev, fm);
7438 }
7439 
7440 /**
7441  * Destroy the global meter drop table.
7442  *
7443  * @param[in] dev
7444  *   Pointer to Ethernet device.
7445  */
7446 void
7447 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev)
7448 {
7449 	const struct mlx5_flow_driver_ops *fops;
7450 
7451 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7452 	fops->destroy_mtr_drop_tbls(dev);
7453 }
7454 
7455 /**
7456  * Destroy the sub policy table with RX queue.
7457  *
7458  * @param[in] dev
7459  *   Pointer to Ethernet device.
7460  * @param[in] mtr_policy
7461  *   Pointer to meter policy table.
7462  */
7463 void
7464 mlx5_flow_destroy_sub_policy_with_rxq(struct rte_eth_dev *dev,
7465 		struct mlx5_flow_meter_policy *mtr_policy)
7466 {
7467 	const struct mlx5_flow_driver_ops *fops;
7468 
7469 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7470 	fops->destroy_sub_policy_with_rxq(dev, mtr_policy);
7471 }
7472 
7473 /**
7474  * Allocate the needed aso flow meter id.
7475  *
7476  * @param[in] dev
7477  *   Pointer to Ethernet device.
7478  *
7479  * @return
7480  *   Index to aso flow meter on success, NULL otherwise.
7481  */
7482 uint32_t
7483 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev)
7484 {
7485 	const struct mlx5_flow_driver_ops *fops;
7486 
7487 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7488 	return fops->create_meter(dev);
7489 }
7490 
7491 /**
7492  * Free the aso flow meter id.
7493  *
7494  * @param[in] dev
7495  *   Pointer to Ethernet device.
7496  * @param[in] mtr_idx
7497  *  Index to aso flow meter to be free.
7498  *
7499  * @return
7500  *   0 on success.
7501  */
7502 void
7503 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx)
7504 {
7505 	const struct mlx5_flow_driver_ops *fops;
7506 
7507 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7508 	fops->free_meter(dev, mtr_idx);
7509 }
7510 
7511 /**
7512  * Allocate a counter.
7513  *
7514  * @param[in] dev
7515  *   Pointer to Ethernet device structure.
7516  *
7517  * @return
7518  *   Index to allocated counter  on success, 0 otherwise.
7519  */
7520 uint32_t
7521 mlx5_counter_alloc(struct rte_eth_dev *dev)
7522 {
7523 	const struct mlx5_flow_driver_ops *fops;
7524 	struct rte_flow_attr attr = { .transfer = 0 };
7525 
7526 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7527 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7528 		return fops->counter_alloc(dev);
7529 	}
7530 	DRV_LOG(ERR,
7531 		"port %u counter allocate is not supported.",
7532 		 dev->data->port_id);
7533 	return 0;
7534 }
7535 
7536 /**
7537  * Free a counter.
7538  *
7539  * @param[in] dev
7540  *   Pointer to Ethernet device structure.
7541  * @param[in] cnt
7542  *   Index to counter to be free.
7543  */
7544 void
7545 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
7546 {
7547 	const struct mlx5_flow_driver_ops *fops;
7548 	struct rte_flow_attr attr = { .transfer = 0 };
7549 
7550 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7551 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7552 		fops->counter_free(dev, cnt);
7553 		return;
7554 	}
7555 	DRV_LOG(ERR,
7556 		"port %u counter free is not supported.",
7557 		 dev->data->port_id);
7558 }
7559 
7560 /**
7561  * Query counter statistics.
7562  *
7563  * @param[in] dev
7564  *   Pointer to Ethernet device structure.
7565  * @param[in] cnt
7566  *   Index to counter to query.
7567  * @param[in] clear
7568  *   Set to clear counter statistics.
7569  * @param[out] pkts
7570  *   The counter hits packets number to save.
7571  * @param[out] bytes
7572  *   The counter hits bytes number to save.
7573  *
7574  * @return
7575  *   0 on success, a negative errno value otherwise.
7576  */
7577 int
7578 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
7579 		   bool clear, uint64_t *pkts, uint64_t *bytes)
7580 {
7581 	const struct mlx5_flow_driver_ops *fops;
7582 	struct rte_flow_attr attr = { .transfer = 0 };
7583 
7584 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7585 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7586 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
7587 	}
7588 	DRV_LOG(ERR,
7589 		"port %u counter query is not supported.",
7590 		 dev->data->port_id);
7591 	return -ENOTSUP;
7592 }
7593 
7594 /**
7595  * Allocate a new memory for the counter values wrapped by all the needed
7596  * management.
7597  *
7598  * @param[in] sh
7599  *   Pointer to mlx5_dev_ctx_shared object.
7600  *
7601  * @return
7602  *   0 on success, a negative errno value otherwise.
7603  */
7604 static int
7605 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
7606 {
7607 	struct mlx5_devx_mkey_attr mkey_attr;
7608 	struct mlx5_counter_stats_mem_mng *mem_mng;
7609 	volatile struct flow_counter_stats *raw_data;
7610 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
7611 	int size = (sizeof(struct flow_counter_stats) *
7612 			MLX5_COUNTERS_PER_POOL +
7613 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
7614 			sizeof(struct mlx5_counter_stats_mem_mng);
7615 	size_t pgsize = rte_mem_page_size();
7616 	uint8_t *mem;
7617 	int i;
7618 
7619 	if (pgsize == (size_t)-1) {
7620 		DRV_LOG(ERR, "Failed to get mem page size");
7621 		rte_errno = ENOMEM;
7622 		return -ENOMEM;
7623 	}
7624 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
7625 	if (!mem) {
7626 		rte_errno = ENOMEM;
7627 		return -ENOMEM;
7628 	}
7629 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
7630 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
7631 	mem_mng->umem = mlx5_os_umem_reg(sh->ctx, mem, size,
7632 						 IBV_ACCESS_LOCAL_WRITE);
7633 	if (!mem_mng->umem) {
7634 		rte_errno = errno;
7635 		mlx5_free(mem);
7636 		return -rte_errno;
7637 	}
7638 	memset(&mkey_attr, 0, sizeof(mkey_attr));
7639 	mkey_attr.addr = (uintptr_t)mem;
7640 	mkey_attr.size = size;
7641 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
7642 	mkey_attr.pd = sh->pdn;
7643 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
7644 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
7645 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
7646 	if (!mem_mng->dm) {
7647 		mlx5_os_umem_dereg(mem_mng->umem);
7648 		rte_errno = errno;
7649 		mlx5_free(mem);
7650 		return -rte_errno;
7651 	}
7652 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
7653 	raw_data = (volatile struct flow_counter_stats *)mem;
7654 	for (i = 0; i < raws_n; ++i) {
7655 		mem_mng->raws[i].mem_mng = mem_mng;
7656 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
7657 	}
7658 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
7659 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
7660 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
7661 				 next);
7662 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
7663 	sh->cmng.mem_mng = mem_mng;
7664 	return 0;
7665 }
7666 
7667 /**
7668  * Set the statistic memory to the new counter pool.
7669  *
7670  * @param[in] sh
7671  *   Pointer to mlx5_dev_ctx_shared object.
7672  * @param[in] pool
7673  *   Pointer to the pool to set the statistic memory.
7674  *
7675  * @return
7676  *   0 on success, a negative errno value otherwise.
7677  */
7678 static int
7679 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
7680 			       struct mlx5_flow_counter_pool *pool)
7681 {
7682 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7683 	/* Resize statistic memory once used out. */
7684 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
7685 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
7686 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
7687 		return -1;
7688 	}
7689 	rte_spinlock_lock(&pool->sl);
7690 	pool->raw = cmng->mem_mng->raws + pool->index %
7691 		    MLX5_CNT_CONTAINER_RESIZE;
7692 	rte_spinlock_unlock(&pool->sl);
7693 	pool->raw_hw = NULL;
7694 	return 0;
7695 }
7696 
7697 #define MLX5_POOL_QUERY_FREQ_US 1000000
7698 
7699 /**
7700  * Set the periodic procedure for triggering asynchronous batch queries for all
7701  * the counter pools.
7702  *
7703  * @param[in] sh
7704  *   Pointer to mlx5_dev_ctx_shared object.
7705  */
7706 void
7707 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
7708 {
7709 	uint32_t pools_n, us;
7710 
7711 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
7712 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
7713 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
7714 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
7715 		sh->cmng.query_thread_on = 0;
7716 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
7717 	} else {
7718 		sh->cmng.query_thread_on = 1;
7719 	}
7720 }
7721 
7722 /**
7723  * The periodic procedure for triggering asynchronous batch queries for all the
7724  * counter pools. This function is probably called by the host thread.
7725  *
7726  * @param[in] arg
7727  *   The parameter for the alarm process.
7728  */
7729 void
7730 mlx5_flow_query_alarm(void *arg)
7731 {
7732 	struct mlx5_dev_ctx_shared *sh = arg;
7733 	int ret;
7734 	uint16_t pool_index = sh->cmng.pool_index;
7735 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7736 	struct mlx5_flow_counter_pool *pool;
7737 	uint16_t n_valid;
7738 
7739 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
7740 		goto set_alarm;
7741 	rte_spinlock_lock(&cmng->pool_update_sl);
7742 	pool = cmng->pools[pool_index];
7743 	n_valid = cmng->n_valid;
7744 	rte_spinlock_unlock(&cmng->pool_update_sl);
7745 	/* Set the statistic memory to the new created pool. */
7746 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
7747 		goto set_alarm;
7748 	if (pool->raw_hw)
7749 		/* There is a pool query in progress. */
7750 		goto set_alarm;
7751 	pool->raw_hw =
7752 		LIST_FIRST(&sh->cmng.free_stat_raws);
7753 	if (!pool->raw_hw)
7754 		/* No free counter statistics raw memory. */
7755 		goto set_alarm;
7756 	/*
7757 	 * Identify the counters released between query trigger and query
7758 	 * handle more efficiently. The counter released in this gap period
7759 	 * should wait for a new round of query as the new arrived packets
7760 	 * will not be taken into account.
7761 	 */
7762 	pool->query_gen++;
7763 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
7764 					       MLX5_COUNTERS_PER_POOL,
7765 					       NULL, NULL,
7766 					       pool->raw_hw->mem_mng->dm->id,
7767 					       (void *)(uintptr_t)
7768 					       pool->raw_hw->data,
7769 					       sh->devx_comp,
7770 					       (uint64_t)(uintptr_t)pool);
7771 	if (ret) {
7772 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
7773 			" %d", pool->min_dcs->id);
7774 		pool->raw_hw = NULL;
7775 		goto set_alarm;
7776 	}
7777 	LIST_REMOVE(pool->raw_hw, next);
7778 	sh->cmng.pending_queries++;
7779 	pool_index++;
7780 	if (pool_index >= n_valid)
7781 		pool_index = 0;
7782 set_alarm:
7783 	sh->cmng.pool_index = pool_index;
7784 	mlx5_set_query_alarm(sh);
7785 }
7786 
7787 /**
7788  * Check and callback event for new aged flow in the counter pool
7789  *
7790  * @param[in] sh
7791  *   Pointer to mlx5_dev_ctx_shared object.
7792  * @param[in] pool
7793  *   Pointer to Current counter pool.
7794  */
7795 static void
7796 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
7797 		   struct mlx5_flow_counter_pool *pool)
7798 {
7799 	struct mlx5_priv *priv;
7800 	struct mlx5_flow_counter *cnt;
7801 	struct mlx5_age_info *age_info;
7802 	struct mlx5_age_param *age_param;
7803 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
7804 	struct mlx5_counter_stats_raw *prev = pool->raw;
7805 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
7806 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
7807 	uint16_t expected = AGE_CANDIDATE;
7808 	uint32_t i;
7809 
7810 	pool->time_of_last_age_check = curr_time;
7811 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
7812 		cnt = MLX5_POOL_GET_CNT(pool, i);
7813 		age_param = MLX5_CNT_TO_AGE(cnt);
7814 		if (__atomic_load_n(&age_param->state,
7815 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
7816 			continue;
7817 		if (cur->data[i].hits != prev->data[i].hits) {
7818 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
7819 					 __ATOMIC_RELAXED);
7820 			continue;
7821 		}
7822 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
7823 				       time_delta,
7824 				       __ATOMIC_RELAXED) <= age_param->timeout)
7825 			continue;
7826 		/**
7827 		 * Hold the lock first, or if between the
7828 		 * state AGE_TMOUT and tailq operation the
7829 		 * release happened, the release procedure
7830 		 * may delete a non-existent tailq node.
7831 		 */
7832 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
7833 		age_info = GET_PORT_AGE_INFO(priv);
7834 		rte_spinlock_lock(&age_info->aged_sl);
7835 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
7836 						AGE_TMOUT, false,
7837 						__ATOMIC_RELAXED,
7838 						__ATOMIC_RELAXED)) {
7839 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
7840 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
7841 		}
7842 		rte_spinlock_unlock(&age_info->aged_sl);
7843 	}
7844 	mlx5_age_event_prepare(sh);
7845 }
7846 
7847 /**
7848  * Handler for the HW respond about ready values from an asynchronous batch
7849  * query. This function is probably called by the host thread.
7850  *
7851  * @param[in] sh
7852  *   The pointer to the shared device context.
7853  * @param[in] async_id
7854  *   The Devx async ID.
7855  * @param[in] status
7856  *   The status of the completion.
7857  */
7858 void
7859 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
7860 				  uint64_t async_id, int status)
7861 {
7862 	struct mlx5_flow_counter_pool *pool =
7863 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
7864 	struct mlx5_counter_stats_raw *raw_to_free;
7865 	uint8_t query_gen = pool->query_gen ^ 1;
7866 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7867 	enum mlx5_counter_type cnt_type =
7868 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
7869 				MLX5_COUNTER_TYPE_ORIGIN;
7870 
7871 	if (unlikely(status)) {
7872 		raw_to_free = pool->raw_hw;
7873 	} else {
7874 		raw_to_free = pool->raw;
7875 		if (pool->is_aged)
7876 			mlx5_flow_aging_check(sh, pool);
7877 		rte_spinlock_lock(&pool->sl);
7878 		pool->raw = pool->raw_hw;
7879 		rte_spinlock_unlock(&pool->sl);
7880 		/* Be sure the new raw counters data is updated in memory. */
7881 		rte_io_wmb();
7882 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
7883 			rte_spinlock_lock(&cmng->csl[cnt_type]);
7884 			TAILQ_CONCAT(&cmng->counters[cnt_type],
7885 				     &pool->counters[query_gen], next);
7886 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
7887 		}
7888 	}
7889 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
7890 	pool->raw_hw = NULL;
7891 	sh->cmng.pending_queries--;
7892 }
7893 
7894 static int
7895 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
7896 		    const struct flow_grp_info *grp_info,
7897 		    struct rte_flow_error *error)
7898 {
7899 	if (grp_info->transfer && grp_info->external &&
7900 	    grp_info->fdb_def_rule) {
7901 		if (group == UINT32_MAX)
7902 			return rte_flow_error_set
7903 						(error, EINVAL,
7904 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7905 						 NULL,
7906 						 "group index not supported");
7907 		*table = group + 1;
7908 	} else {
7909 		*table = group;
7910 	}
7911 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
7912 	return 0;
7913 }
7914 
7915 /**
7916  * Translate the rte_flow group index to HW table value.
7917  *
7918  * If tunnel offload is disabled, all group ids converted to flow table
7919  * id using the standard method.
7920  * If tunnel offload is enabled, group id can be converted using the
7921  * standard or tunnel conversion method. Group conversion method
7922  * selection depends on flags in `grp_info` parameter:
7923  * - Internal (grp_info.external == 0) groups conversion uses the
7924  *   standard method.
7925  * - Group ids in JUMP action converted with the tunnel conversion.
7926  * - Group id in rule attribute conversion depends on a rule type and
7927  *   group id value:
7928  *   ** non zero group attributes converted with the tunnel method
7929  *   ** zero group attribute in non-tunnel rule is converted using the
7930  *      standard method - there's only one root table
7931  *   ** zero group attribute in steer tunnel rule is converted with the
7932  *      standard method - single root table
7933  *   ** zero group attribute in match tunnel rule is a special OvS
7934  *      case: that value is used for portability reasons. That group
7935  *      id is converted with the tunnel conversion method.
7936  *
7937  * @param[in] dev
7938  *   Port device
7939  * @param[in] tunnel
7940  *   PMD tunnel offload object
7941  * @param[in] group
7942  *   rte_flow group index value.
7943  * @param[out] table
7944  *   HW table value.
7945  * @param[in] grp_info
7946  *   flags used for conversion
7947  * @param[out] error
7948  *   Pointer to error structure.
7949  *
7950  * @return
7951  *   0 on success, a negative errno value otherwise and rte_errno is set.
7952  */
7953 int
7954 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
7955 			 const struct mlx5_flow_tunnel *tunnel,
7956 			 uint32_t group, uint32_t *table,
7957 			 const struct flow_grp_info *grp_info,
7958 			 struct rte_flow_error *error)
7959 {
7960 	int ret;
7961 	bool standard_translation;
7962 
7963 	if (!grp_info->skip_scale && grp_info->external &&
7964 	    group < MLX5_MAX_TABLES_EXTERNAL)
7965 		group *= MLX5_FLOW_TABLE_FACTOR;
7966 	if (is_tunnel_offload_active(dev)) {
7967 		standard_translation = !grp_info->external ||
7968 					grp_info->std_tbl_fix;
7969 	} else {
7970 		standard_translation = true;
7971 	}
7972 	DRV_LOG(DEBUG,
7973 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
7974 		dev->data->port_id, group, grp_info->transfer,
7975 		grp_info->external, grp_info->fdb_def_rule,
7976 		standard_translation ? "STANDARD" : "TUNNEL");
7977 	if (standard_translation)
7978 		ret = flow_group_to_table(dev->data->port_id, group, table,
7979 					  grp_info, error);
7980 	else
7981 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
7982 						      table, error);
7983 
7984 	return ret;
7985 }
7986 
7987 /**
7988  * Discover availability of metadata reg_c's.
7989  *
7990  * Iteratively use test flows to check availability.
7991  *
7992  * @param[in] dev
7993  *   Pointer to the Ethernet device structure.
7994  *
7995  * @return
7996  *   0 on success, a negative errno value otherwise and rte_errno is set.
7997  */
7998 int
7999 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
8000 {
8001 	struct mlx5_priv *priv = dev->data->dev_private;
8002 	struct mlx5_dev_config *config = &priv->config;
8003 	enum modify_reg idx;
8004 	int n = 0;
8005 
8006 	/* reg_c[0] and reg_c[1] are reserved. */
8007 	config->flow_mreg_c[n++] = REG_C_0;
8008 	config->flow_mreg_c[n++] = REG_C_1;
8009 	/* Discover availability of other reg_c's. */
8010 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
8011 		struct rte_flow_attr attr = {
8012 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
8013 			.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
8014 			.ingress = 1,
8015 		};
8016 		struct rte_flow_item items[] = {
8017 			[0] = {
8018 				.type = RTE_FLOW_ITEM_TYPE_END,
8019 			},
8020 		};
8021 		struct rte_flow_action actions[] = {
8022 			[0] = {
8023 				.type = (enum rte_flow_action_type)
8024 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
8025 				.conf = &(struct mlx5_flow_action_copy_mreg){
8026 					.src = REG_C_1,
8027 					.dst = idx,
8028 				},
8029 			},
8030 			[1] = {
8031 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
8032 				.conf = &(struct rte_flow_action_jump){
8033 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
8034 				},
8035 			},
8036 			[2] = {
8037 				.type = RTE_FLOW_ACTION_TYPE_END,
8038 			},
8039 		};
8040 		uint32_t flow_idx;
8041 		struct rte_flow *flow;
8042 		struct rte_flow_error error;
8043 
8044 		if (!config->dv_flow_en)
8045 			break;
8046 		/* Create internal flow, validation skips copy action. */
8047 		flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_GEN, &attr,
8048 					items, actions, false, &error);
8049 		flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
8050 				      flow_idx);
8051 		if (!flow)
8052 			continue;
8053 		config->flow_mreg_c[n++] = idx;
8054 		flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN, flow_idx);
8055 	}
8056 	for (; n < MLX5_MREG_C_NUM; ++n)
8057 		config->flow_mreg_c[n] = REG_NON;
8058 	return 0;
8059 }
8060 
8061 int
8062 save_dump_file(const uint8_t *data, uint32_t size,
8063 	uint32_t type, uint32_t id, void *arg, FILE *file)
8064 {
8065 	char line[BUF_SIZE];
8066 	uint32_t out = 0;
8067 	uint32_t k;
8068 	uint32_t actions_num;
8069 	struct rte_flow_query_count *count;
8070 
8071 	memset(line, 0, BUF_SIZE);
8072 	switch (type) {
8073 	case DR_DUMP_REC_TYPE_PMD_MODIFY_HDR:
8074 		actions_num = *(uint32_t *)(arg);
8075 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%x,%d,",
8076 				type, id, actions_num);
8077 		break;
8078 	case DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT:
8079 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%x,",
8080 				type, id);
8081 		break;
8082 	case DR_DUMP_REC_TYPE_PMD_COUNTER:
8083 		count = (struct rte_flow_query_count *)arg;
8084 		fprintf(file, "%d,0x%x,%" PRIu64 ",%" PRIu64 "\n", type,
8085 				id, count->hits, count->bytes);
8086 		return 0;
8087 	default:
8088 		return -1;
8089 	}
8090 
8091 	for (k = 0; k < size; k++) {
8092 		/* Make sure we do not overrun the line buffer length. */
8093 		if (out >= BUF_SIZE - 4) {
8094 			line[out] = '\0';
8095 			break;
8096 		}
8097 		out += snprintf(line + out, BUF_SIZE - out, "%02x",
8098 				(data[k]) & 0xff);
8099 	}
8100 	fprintf(file, "%s\n", line);
8101 	return 0;
8102 }
8103 
8104 int
8105 mlx5_flow_query_counter(struct rte_eth_dev *dev, struct rte_flow *flow,
8106 	struct rte_flow_query_count *count, struct rte_flow_error *error)
8107 {
8108 	struct rte_flow_action action[2];
8109 	enum mlx5_flow_drv_type ftype;
8110 	const struct mlx5_flow_driver_ops *fops;
8111 
8112 	if (!flow) {
8113 		return rte_flow_error_set(error, ENOENT,
8114 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8115 				NULL,
8116 				"invalid flow handle");
8117 	}
8118 	action[0].type = RTE_FLOW_ACTION_TYPE_COUNT;
8119 	action[1].type = RTE_FLOW_ACTION_TYPE_END;
8120 	if (flow->counter) {
8121 		memset(count, 0, sizeof(struct rte_flow_query_count));
8122 		ftype = (enum mlx5_flow_drv_type)(flow->drv_type);
8123 		MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN &&
8124 						ftype < MLX5_FLOW_TYPE_MAX);
8125 		fops = flow_get_drv_ops(ftype);
8126 		return fops->query(dev, flow, action, count, error);
8127 	}
8128 	return -1;
8129 }
8130 
8131 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8132 /**
8133  * Dump flow ipool data to file
8134  *
8135  * @param[in] dev
8136  *   The pointer to Ethernet device.
8137  * @param[in] file
8138  *   A pointer to a file for output.
8139  * @param[out] error
8140  *   Perform verbose error reporting if not NULL. PMDs initialize this
8141  *   structure in case of error only.
8142  * @return
8143  *   0 on success, a negative value otherwise.
8144  */
8145 int
8146 mlx5_flow_dev_dump_ipool(struct rte_eth_dev *dev,
8147 	struct rte_flow *flow, FILE *file,
8148 	struct rte_flow_error *error)
8149 {
8150 	struct mlx5_priv *priv = dev->data->dev_private;
8151 	struct mlx5_flow_dv_modify_hdr_resource  *modify_hdr;
8152 	struct mlx5_flow_dv_encap_decap_resource *encap_decap;
8153 	uint32_t handle_idx;
8154 	struct mlx5_flow_handle *dh;
8155 	struct rte_flow_query_count count;
8156 	uint32_t actions_num;
8157 	const uint8_t *data;
8158 	size_t size;
8159 	uint32_t id;
8160 	uint32_t type;
8161 
8162 	if (!flow) {
8163 		return rte_flow_error_set(error, ENOENT,
8164 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8165 			NULL,
8166 			"invalid flow handle");
8167 	}
8168 	handle_idx = flow->dev_handles;
8169 	while (handle_idx) {
8170 		dh = mlx5_ipool_get(priv->sh->ipool
8171 			[MLX5_IPOOL_MLX5_FLOW], handle_idx);
8172 		if (!dh)
8173 			continue;
8174 		handle_idx = dh->next.next;
8175 		id = (uint32_t)(uintptr_t)dh->drv_flow;
8176 
8177 		/* query counter */
8178 		type = DR_DUMP_REC_TYPE_PMD_COUNTER;
8179 		if (!mlx5_flow_query_counter(dev, flow, &count, error))
8180 			save_dump_file(NULL, 0, type,
8181 					id, (void *)&count, file);
8182 
8183 		/* Get modify_hdr and encap_decap buf from ipools. */
8184 		encap_decap = NULL;
8185 		modify_hdr = dh->dvh.modify_hdr;
8186 
8187 		if (dh->dvh.rix_encap_decap) {
8188 			encap_decap = mlx5_ipool_get(priv->sh->ipool
8189 						[MLX5_IPOOL_DECAP_ENCAP],
8190 						dh->dvh.rix_encap_decap);
8191 		}
8192 		if (modify_hdr) {
8193 			data = (const uint8_t *)modify_hdr->actions;
8194 			size = (size_t)(modify_hdr->actions_num) * 8;
8195 			actions_num = modify_hdr->actions_num;
8196 			type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR;
8197 			save_dump_file(data, size, type, id,
8198 					(void *)(&actions_num), file);
8199 		}
8200 		if (encap_decap) {
8201 			data = encap_decap->buf;
8202 			size = encap_decap->size;
8203 			type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT;
8204 			save_dump_file(data, size, type,
8205 						id, NULL, file);
8206 		}
8207 	}
8208 	return 0;
8209 }
8210 #endif
8211 
8212 /**
8213  * Dump flow raw hw data to file
8214  *
8215  * @param[in] dev
8216  *    The pointer to Ethernet device.
8217  * @param[in] file
8218  *   A pointer to a file for output.
8219  * @param[out] error
8220  *   Perform verbose error reporting if not NULL. PMDs initialize this
8221  *   structure in case of error only.
8222  * @return
8223  *   0 on success, a nagative value otherwise.
8224  */
8225 int
8226 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx,
8227 		   FILE *file,
8228 		   struct rte_flow_error *error __rte_unused)
8229 {
8230 	struct mlx5_priv *priv = dev->data->dev_private;
8231 	struct mlx5_dev_ctx_shared *sh = priv->sh;
8232 	uint32_t handle_idx;
8233 	int ret;
8234 	struct mlx5_flow_handle *dh;
8235 	struct rte_flow *flow;
8236 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8237 	uint32_t idx;
8238 #endif
8239 
8240 	if (!priv->config.dv_flow_en) {
8241 		if (fputs("device dv flow disabled\n", file) <= 0)
8242 			return -errno;
8243 		return -ENOTSUP;
8244 	}
8245 
8246 	/* dump all */
8247 	if (!flow_idx) {
8248 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8249 		MLX5_IPOOL_FOREACH(priv->flows[MLX5_FLOW_TYPE_GEN], idx, flow)
8250 			mlx5_flow_dev_dump_ipool(dev, flow, file, error);
8251 #endif
8252 		return mlx5_devx_cmd_flow_dump(sh->fdb_domain,
8253 					sh->rx_domain,
8254 					sh->tx_domain, file);
8255 	}
8256 	/* dump one */
8257 	flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
8258 			(uintptr_t)(void *)flow_idx);
8259 	if (!flow)
8260 		return -ENOENT;
8261 
8262 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8263 	mlx5_flow_dev_dump_ipool(dev, flow, file, error);
8264 #endif
8265 	handle_idx = flow->dev_handles;
8266 	while (handle_idx) {
8267 		dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW],
8268 				handle_idx);
8269 		if (!dh)
8270 			return -ENOENT;
8271 		if (dh->drv_flow) {
8272 			ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow,
8273 					file);
8274 			if (ret)
8275 				return -ENOENT;
8276 		}
8277 		handle_idx = dh->next.next;
8278 	}
8279 	return 0;
8280 }
8281 
8282 /**
8283  * Get aged-out flows.
8284  *
8285  * @param[in] dev
8286  *   Pointer to the Ethernet device structure.
8287  * @param[in] context
8288  *   The address of an array of pointers to the aged-out flows contexts.
8289  * @param[in] nb_countexts
8290  *   The length of context array pointers.
8291  * @param[out] error
8292  *   Perform verbose error reporting if not NULL. Initialized in case of
8293  *   error only.
8294  *
8295  * @return
8296  *   how many contexts get in success, otherwise negative errno value.
8297  *   if nb_contexts is 0, return the amount of all aged contexts.
8298  *   if nb_contexts is not 0 , return the amount of aged flows reported
8299  *   in the context array.
8300  */
8301 int
8302 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
8303 			uint32_t nb_contexts, struct rte_flow_error *error)
8304 {
8305 	const struct mlx5_flow_driver_ops *fops;
8306 	struct rte_flow_attr attr = { .transfer = 0 };
8307 
8308 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
8309 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
8310 		return fops->get_aged_flows(dev, contexts, nb_contexts,
8311 						    error);
8312 	}
8313 	DRV_LOG(ERR,
8314 		"port %u get aged flows is not supported.",
8315 		 dev->data->port_id);
8316 	return -ENOTSUP;
8317 }
8318 
8319 /* Wrapper for driver action_validate op callback */
8320 static int
8321 flow_drv_action_validate(struct rte_eth_dev *dev,
8322 			 const struct rte_flow_indir_action_conf *conf,
8323 			 const struct rte_flow_action *action,
8324 			 const struct mlx5_flow_driver_ops *fops,
8325 			 struct rte_flow_error *error)
8326 {
8327 	static const char err_msg[] = "indirect action validation unsupported";
8328 
8329 	if (!fops->action_validate) {
8330 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8331 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8332 				   NULL, err_msg);
8333 		return -rte_errno;
8334 	}
8335 	return fops->action_validate(dev, conf, action, error);
8336 }
8337 
8338 /**
8339  * Destroys the shared action by handle.
8340  *
8341  * @param dev
8342  *   Pointer to Ethernet device structure.
8343  * @param[in] handle
8344  *   Handle for the indirect action object to be destroyed.
8345  * @param[out] error
8346  *   Perform verbose error reporting if not NULL. PMDs initialize this
8347  *   structure in case of error only.
8348  *
8349  * @return
8350  *   0 on success, a negative errno value otherwise and rte_errno is set.
8351  *
8352  * @note: wrapper for driver action_create op callback.
8353  */
8354 static int
8355 mlx5_action_handle_destroy(struct rte_eth_dev *dev,
8356 			   struct rte_flow_action_handle *handle,
8357 			   struct rte_flow_error *error)
8358 {
8359 	static const char err_msg[] = "indirect action destruction unsupported";
8360 	struct rte_flow_attr attr = { .transfer = 0 };
8361 	const struct mlx5_flow_driver_ops *fops =
8362 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8363 
8364 	if (!fops->action_destroy) {
8365 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8366 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8367 				   NULL, err_msg);
8368 		return -rte_errno;
8369 	}
8370 	return fops->action_destroy(dev, handle, error);
8371 }
8372 
8373 /* Wrapper for driver action_destroy op callback */
8374 static int
8375 flow_drv_action_update(struct rte_eth_dev *dev,
8376 		       struct rte_flow_action_handle *handle,
8377 		       const void *update,
8378 		       const struct mlx5_flow_driver_ops *fops,
8379 		       struct rte_flow_error *error)
8380 {
8381 	static const char err_msg[] = "indirect action update unsupported";
8382 
8383 	if (!fops->action_update) {
8384 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8385 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8386 				   NULL, err_msg);
8387 		return -rte_errno;
8388 	}
8389 	return fops->action_update(dev, handle, update, error);
8390 }
8391 
8392 /* Wrapper for driver action_destroy op callback */
8393 static int
8394 flow_drv_action_query(struct rte_eth_dev *dev,
8395 		      const struct rte_flow_action_handle *handle,
8396 		      void *data,
8397 		      const struct mlx5_flow_driver_ops *fops,
8398 		      struct rte_flow_error *error)
8399 {
8400 	static const char err_msg[] = "indirect action query unsupported";
8401 
8402 	if (!fops->action_query) {
8403 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8404 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8405 				   NULL, err_msg);
8406 		return -rte_errno;
8407 	}
8408 	return fops->action_query(dev, handle, data, error);
8409 }
8410 
8411 /**
8412  * Create indirect action for reuse in multiple flow rules.
8413  *
8414  * @param dev
8415  *   Pointer to Ethernet device structure.
8416  * @param conf
8417  *   Pointer to indirect action object configuration.
8418  * @param[in] action
8419  *   Action configuration for indirect action object creation.
8420  * @param[out] error
8421  *   Perform verbose error reporting if not NULL. PMDs initialize this
8422  *   structure in case of error only.
8423  * @return
8424  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
8425  */
8426 static struct rte_flow_action_handle *
8427 mlx5_action_handle_create(struct rte_eth_dev *dev,
8428 			  const struct rte_flow_indir_action_conf *conf,
8429 			  const struct rte_flow_action *action,
8430 			  struct rte_flow_error *error)
8431 {
8432 	static const char err_msg[] = "indirect action creation unsupported";
8433 	struct rte_flow_attr attr = { .transfer = 0 };
8434 	const struct mlx5_flow_driver_ops *fops =
8435 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8436 
8437 	if (flow_drv_action_validate(dev, conf, action, fops, error))
8438 		return NULL;
8439 	if (!fops->action_create) {
8440 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8441 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8442 				   NULL, err_msg);
8443 		return NULL;
8444 	}
8445 	return fops->action_create(dev, conf, action, error);
8446 }
8447 
8448 /**
8449  * Updates inplace the indirect action configuration pointed by *handle*
8450  * with the configuration provided as *update* argument.
8451  * The update of the indirect action configuration effects all flow rules
8452  * reusing the action via handle.
8453  *
8454  * @param dev
8455  *   Pointer to Ethernet device structure.
8456  * @param[in] handle
8457  *   Handle for the indirect action to be updated.
8458  * @param[in] update
8459  *   Action specification used to modify the action pointed by handle.
8460  *   *update* could be of same type with the action pointed by the *handle*
8461  *   handle argument, or some other structures like a wrapper, depending on
8462  *   the indirect action type.
8463  * @param[out] error
8464  *   Perform verbose error reporting if not NULL. PMDs initialize this
8465  *   structure in case of error only.
8466  *
8467  * @return
8468  *   0 on success, a negative errno value otherwise and rte_errno is set.
8469  */
8470 static int
8471 mlx5_action_handle_update(struct rte_eth_dev *dev,
8472 		struct rte_flow_action_handle *handle,
8473 		const void *update,
8474 		struct rte_flow_error *error)
8475 {
8476 	struct rte_flow_attr attr = { .transfer = 0 };
8477 	const struct mlx5_flow_driver_ops *fops =
8478 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8479 	int ret;
8480 
8481 	ret = flow_drv_action_validate(dev, NULL,
8482 			(const struct rte_flow_action *)update, fops, error);
8483 	if (ret)
8484 		return ret;
8485 	return flow_drv_action_update(dev, handle, update, fops,
8486 				      error);
8487 }
8488 
8489 /**
8490  * Query the indirect action by handle.
8491  *
8492  * This function allows retrieving action-specific data such as counters.
8493  * Data is gathered by special action which may be present/referenced in
8494  * more than one flow rule definition.
8495  *
8496  * see @RTE_FLOW_ACTION_TYPE_COUNT
8497  *
8498  * @param dev
8499  *   Pointer to Ethernet device structure.
8500  * @param[in] handle
8501  *   Handle for the indirect action to query.
8502  * @param[in, out] data
8503  *   Pointer to storage for the associated query data type.
8504  * @param[out] error
8505  *   Perform verbose error reporting if not NULL. PMDs initialize this
8506  *   structure in case of error only.
8507  *
8508  * @return
8509  *   0 on success, a negative errno value otherwise and rte_errno is set.
8510  */
8511 static int
8512 mlx5_action_handle_query(struct rte_eth_dev *dev,
8513 			 const struct rte_flow_action_handle *handle,
8514 			 void *data,
8515 			 struct rte_flow_error *error)
8516 {
8517 	struct rte_flow_attr attr = { .transfer = 0 };
8518 	const struct mlx5_flow_driver_ops *fops =
8519 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8520 
8521 	return flow_drv_action_query(dev, handle, data, fops, error);
8522 }
8523 
8524 /**
8525  * Destroy all indirect actions (shared RSS).
8526  *
8527  * @param dev
8528  *   Pointer to Ethernet device.
8529  *
8530  * @return
8531  *   0 on success, a negative errno value otherwise and rte_errno is set.
8532  */
8533 int
8534 mlx5_action_handle_flush(struct rte_eth_dev *dev)
8535 {
8536 	struct rte_flow_error error;
8537 	struct mlx5_priv *priv = dev->data->dev_private;
8538 	struct mlx5_shared_action_rss *shared_rss;
8539 	int ret = 0;
8540 	uint32_t idx;
8541 
8542 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
8543 		      priv->rss_shared_actions, idx, shared_rss, next) {
8544 		ret |= mlx5_action_handle_destroy(dev,
8545 		       (struct rte_flow_action_handle *)(uintptr_t)idx, &error);
8546 	}
8547 	return ret;
8548 }
8549 
8550 #ifndef HAVE_MLX5DV_DR
8551 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
8552 #else
8553 #define MLX5_DOMAIN_SYNC_FLOW \
8554 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
8555 #endif
8556 
8557 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
8558 {
8559 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
8560 	const struct mlx5_flow_driver_ops *fops;
8561 	int ret;
8562 	struct rte_flow_attr attr = { .transfer = 0 };
8563 
8564 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8565 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
8566 	if (ret > 0)
8567 		ret = -ret;
8568 	return ret;
8569 }
8570 
8571 const struct mlx5_flow_tunnel *
8572 mlx5_get_tof(const struct rte_flow_item *item,
8573 	     const struct rte_flow_action *action,
8574 	     enum mlx5_tof_rule_type *rule_type)
8575 {
8576 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
8577 		if (item->type == (typeof(item->type))
8578 				  MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) {
8579 			*rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE;
8580 			return flow_items_to_tunnel(item);
8581 		}
8582 	}
8583 	for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) {
8584 		if (action->type == (typeof(action->type))
8585 				    MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) {
8586 			*rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE;
8587 			return flow_actions_to_tunnel(action);
8588 		}
8589 	}
8590 	return NULL;
8591 }
8592 
8593 /**
8594  * tunnel offload functionalilty is defined for DV environment only
8595  */
8596 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8597 __extension__
8598 union tunnel_offload_mark {
8599 	uint32_t val;
8600 	struct {
8601 		uint32_t app_reserve:8;
8602 		uint32_t table_id:15;
8603 		uint32_t transfer:1;
8604 		uint32_t _unused_:8;
8605 	};
8606 };
8607 
8608 static bool
8609 mlx5_access_tunnel_offload_db
8610 	(struct rte_eth_dev *dev,
8611 	 bool (*match)(struct rte_eth_dev *,
8612 		       struct mlx5_flow_tunnel *, const void *),
8613 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8614 	 void (*miss)(struct rte_eth_dev *, void *),
8615 	 void *ctx, bool lock_op);
8616 
8617 static int
8618 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
8619 			     struct rte_flow *flow,
8620 			     const struct rte_flow_attr *attr,
8621 			     const struct rte_flow_action *app_actions,
8622 			     uint32_t flow_idx,
8623 			     const struct mlx5_flow_tunnel *tunnel,
8624 			     struct tunnel_default_miss_ctx *ctx,
8625 			     struct rte_flow_error *error)
8626 {
8627 	struct mlx5_priv *priv = dev->data->dev_private;
8628 	struct mlx5_flow *dev_flow;
8629 	struct rte_flow_attr miss_attr = *attr;
8630 	const struct rte_flow_item miss_items[2] = {
8631 		{
8632 			.type = RTE_FLOW_ITEM_TYPE_ETH,
8633 			.spec = NULL,
8634 			.last = NULL,
8635 			.mask = NULL
8636 		},
8637 		{
8638 			.type = RTE_FLOW_ITEM_TYPE_END,
8639 			.spec = NULL,
8640 			.last = NULL,
8641 			.mask = NULL
8642 		}
8643 	};
8644 	union tunnel_offload_mark mark_id;
8645 	struct rte_flow_action_mark miss_mark;
8646 	struct rte_flow_action miss_actions[3] = {
8647 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
8648 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
8649 	};
8650 	const struct rte_flow_action_jump *jump_data;
8651 	uint32_t i, flow_table = 0; /* prevent compilation warning */
8652 	struct flow_grp_info grp_info = {
8653 		.external = 1,
8654 		.transfer = attr->transfer,
8655 		.fdb_def_rule = !!priv->fdb_def_rule,
8656 		.std_tbl_fix = 0,
8657 	};
8658 	int ret;
8659 
8660 	if (!attr->transfer) {
8661 		uint32_t q_size;
8662 
8663 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
8664 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
8665 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
8666 					 0, SOCKET_ID_ANY);
8667 		if (!ctx->queue)
8668 			return rte_flow_error_set
8669 				(error, ENOMEM,
8670 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8671 				NULL, "invalid default miss RSS");
8672 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
8673 		ctx->action_rss.level = 0,
8674 		ctx->action_rss.types = priv->rss_conf.rss_hf,
8675 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
8676 		ctx->action_rss.queue_num = priv->reta_idx_n,
8677 		ctx->action_rss.key = priv->rss_conf.rss_key,
8678 		ctx->action_rss.queue = ctx->queue;
8679 		if (!priv->reta_idx_n || !priv->rxqs_n)
8680 			return rte_flow_error_set
8681 				(error, EINVAL,
8682 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8683 				NULL, "invalid port configuration");
8684 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
8685 			ctx->action_rss.types = 0;
8686 		for (i = 0; i != priv->reta_idx_n; ++i)
8687 			ctx->queue[i] = (*priv->reta_idx)[i];
8688 	} else {
8689 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
8690 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
8691 	}
8692 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
8693 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
8694 	jump_data = app_actions->conf;
8695 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
8696 	miss_attr.group = jump_data->group;
8697 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
8698 				       &flow_table, &grp_info, error);
8699 	if (ret)
8700 		return rte_flow_error_set(error, EINVAL,
8701 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8702 					  NULL, "invalid tunnel id");
8703 	mark_id.app_reserve = 0;
8704 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
8705 	mark_id.transfer = !!attr->transfer;
8706 	mark_id._unused_ = 0;
8707 	miss_mark.id = mark_id.val;
8708 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
8709 				    miss_items, miss_actions, flow_idx, error);
8710 	if (!dev_flow)
8711 		return -rte_errno;
8712 	dev_flow->flow = flow;
8713 	dev_flow->external = true;
8714 	dev_flow->tunnel = tunnel;
8715 	dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE;
8716 	/* Subflow object was created, we must include one in the list. */
8717 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
8718 		      dev_flow->handle, next);
8719 	DRV_LOG(DEBUG,
8720 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
8721 		dev->data->port_id, tunnel->app_tunnel.type,
8722 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
8723 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
8724 				  miss_actions, error);
8725 	if (!ret)
8726 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
8727 						  error);
8728 
8729 	return ret;
8730 }
8731 
8732 static const struct mlx5_flow_tbl_data_entry  *
8733 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
8734 {
8735 	struct mlx5_priv *priv = dev->data->dev_private;
8736 	struct mlx5_dev_ctx_shared *sh = priv->sh;
8737 	struct mlx5_list_entry *he;
8738 	union tunnel_offload_mark mbits = { .val = mark };
8739 	union mlx5_flow_tbl_key table_key = {
8740 		{
8741 			.level = tunnel_id_to_flow_tbl(mbits.table_id),
8742 			.id = 0,
8743 			.reserved = 0,
8744 			.dummy = 0,
8745 			.is_fdb = !!mbits.transfer,
8746 			.is_egress = 0,
8747 		}
8748 	};
8749 	struct mlx5_flow_cb_ctx ctx = {
8750 		.data = &table_key.v64,
8751 	};
8752 
8753 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, &ctx);
8754 	return he ?
8755 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
8756 }
8757 
8758 static void
8759 mlx5_flow_tunnel_grp2tbl_remove_cb(void *tool_ctx,
8760 				   struct mlx5_list_entry *entry)
8761 {
8762 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
8763 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8764 
8765 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8766 			tunnel_flow_tbl_to_id(tte->flow_table));
8767 	mlx5_free(tte);
8768 }
8769 
8770 static int
8771 mlx5_flow_tunnel_grp2tbl_match_cb(void *tool_ctx __rte_unused,
8772 				  struct mlx5_list_entry *entry, void *cb_ctx)
8773 {
8774 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
8775 	union tunnel_tbl_key tbl = {
8776 		.val = *(uint64_t *)(ctx->data),
8777 	};
8778 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8779 
8780 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
8781 }
8782 
8783 static struct mlx5_list_entry *
8784 mlx5_flow_tunnel_grp2tbl_create_cb(void *tool_ctx, void *cb_ctx)
8785 {
8786 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
8787 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
8788 	struct tunnel_tbl_entry *tte;
8789 	union tunnel_tbl_key tbl = {
8790 		.val = *(uint64_t *)(ctx->data),
8791 	};
8792 
8793 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
8794 			  sizeof(*tte), 0,
8795 			  SOCKET_ID_ANY);
8796 	if (!tte)
8797 		goto err;
8798 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8799 			  &tte->flow_table);
8800 	if (tte->flow_table >= MLX5_MAX_TABLES) {
8801 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
8802 			tte->flow_table);
8803 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8804 				tte->flow_table);
8805 		goto err;
8806 	} else if (!tte->flow_table) {
8807 		goto err;
8808 	}
8809 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
8810 	tte->tunnel_id = tbl.tunnel_id;
8811 	tte->group = tbl.group;
8812 	return &tte->hash;
8813 err:
8814 	if (tte)
8815 		mlx5_free(tte);
8816 	return NULL;
8817 }
8818 
8819 static struct mlx5_list_entry *
8820 mlx5_flow_tunnel_grp2tbl_clone_cb(void *tool_ctx __rte_unused,
8821 				  struct mlx5_list_entry *oentry,
8822 				  void *cb_ctx __rte_unused)
8823 {
8824 	struct tunnel_tbl_entry *tte = mlx5_malloc(MLX5_MEM_SYS, sizeof(*tte),
8825 						   0, SOCKET_ID_ANY);
8826 
8827 	if (!tte)
8828 		return NULL;
8829 	memcpy(tte, oentry, sizeof(*tte));
8830 	return &tte->hash;
8831 }
8832 
8833 static void
8834 mlx5_flow_tunnel_grp2tbl_clone_free_cb(void *tool_ctx __rte_unused,
8835 				       struct mlx5_list_entry *entry)
8836 {
8837 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8838 
8839 	mlx5_free(tte);
8840 }
8841 
8842 static uint32_t
8843 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
8844 				const struct mlx5_flow_tunnel *tunnel,
8845 				uint32_t group, uint32_t *table,
8846 				struct rte_flow_error *error)
8847 {
8848 	struct mlx5_list_entry *he;
8849 	struct tunnel_tbl_entry *tte;
8850 	union tunnel_tbl_key key = {
8851 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
8852 		.group = group
8853 	};
8854 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8855 	struct mlx5_hlist *group_hash;
8856 	struct mlx5_flow_cb_ctx ctx = {
8857 		.data = &key.val,
8858 	};
8859 
8860 	group_hash = tunnel ? tunnel->groups : thub->groups;
8861 	he = mlx5_hlist_register(group_hash, key.val, &ctx);
8862 	if (!he)
8863 		return rte_flow_error_set(error, EINVAL,
8864 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
8865 					  NULL,
8866 					  "tunnel group index not supported");
8867 	tte = container_of(he, typeof(*tte), hash);
8868 	*table = tte->flow_table;
8869 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
8870 		dev->data->port_id, key.tunnel_id, group, *table);
8871 	return 0;
8872 }
8873 
8874 static void
8875 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
8876 		      struct mlx5_flow_tunnel *tunnel)
8877 {
8878 	struct mlx5_priv *priv = dev->data->dev_private;
8879 	struct mlx5_indexed_pool *ipool;
8880 
8881 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
8882 		dev->data->port_id, tunnel->tunnel_id);
8883 	LIST_REMOVE(tunnel, chain);
8884 	mlx5_hlist_destroy(tunnel->groups);
8885 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8886 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
8887 }
8888 
8889 static bool
8890 mlx5_access_tunnel_offload_db
8891 	(struct rte_eth_dev *dev,
8892 	 bool (*match)(struct rte_eth_dev *,
8893 		       struct mlx5_flow_tunnel *, const void *),
8894 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8895 	 void (*miss)(struct rte_eth_dev *, void *),
8896 	 void *ctx, bool lock_op)
8897 {
8898 	bool verdict = false;
8899 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8900 	struct mlx5_flow_tunnel *tunnel;
8901 
8902 	rte_spinlock_lock(&thub->sl);
8903 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
8904 		verdict = match(dev, tunnel, (const void *)ctx);
8905 		if (verdict)
8906 			break;
8907 	}
8908 	if (!lock_op)
8909 		rte_spinlock_unlock(&thub->sl);
8910 	if (verdict && hit)
8911 		hit(dev, tunnel, ctx);
8912 	if (!verdict && miss)
8913 		miss(dev, ctx);
8914 	if (lock_op)
8915 		rte_spinlock_unlock(&thub->sl);
8916 
8917 	return verdict;
8918 }
8919 
8920 struct tunnel_db_find_tunnel_id_ctx {
8921 	uint32_t tunnel_id;
8922 	struct mlx5_flow_tunnel *tunnel;
8923 };
8924 
8925 static bool
8926 find_tunnel_id_match(struct rte_eth_dev *dev,
8927 		     struct mlx5_flow_tunnel *tunnel, const void *x)
8928 {
8929 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8930 
8931 	RTE_SET_USED(dev);
8932 	return tunnel->tunnel_id == ctx->tunnel_id;
8933 }
8934 
8935 static void
8936 find_tunnel_id_hit(struct rte_eth_dev *dev,
8937 		   struct mlx5_flow_tunnel *tunnel, void *x)
8938 {
8939 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8940 	RTE_SET_USED(dev);
8941 	ctx->tunnel = tunnel;
8942 }
8943 
8944 static struct mlx5_flow_tunnel *
8945 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
8946 {
8947 	struct tunnel_db_find_tunnel_id_ctx ctx = {
8948 		.tunnel_id = id,
8949 	};
8950 
8951 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
8952 				      find_tunnel_id_hit, NULL, &ctx, true);
8953 
8954 	return ctx.tunnel;
8955 }
8956 
8957 static struct mlx5_flow_tunnel *
8958 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
8959 			  const struct rte_flow_tunnel *app_tunnel)
8960 {
8961 	struct mlx5_priv *priv = dev->data->dev_private;
8962 	struct mlx5_indexed_pool *ipool;
8963 	struct mlx5_flow_tunnel *tunnel;
8964 	uint32_t id;
8965 
8966 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8967 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
8968 	if (!tunnel)
8969 		return NULL;
8970 	if (id >= MLX5_MAX_TUNNELS) {
8971 		mlx5_ipool_free(ipool, id);
8972 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
8973 		return NULL;
8974 	}
8975 	tunnel->groups = mlx5_hlist_create("tunnel groups", 64, false, true,
8976 					   priv->sh,
8977 					   mlx5_flow_tunnel_grp2tbl_create_cb,
8978 					   mlx5_flow_tunnel_grp2tbl_match_cb,
8979 					   mlx5_flow_tunnel_grp2tbl_remove_cb,
8980 					   mlx5_flow_tunnel_grp2tbl_clone_cb,
8981 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
8982 	if (!tunnel->groups) {
8983 		mlx5_ipool_free(ipool, id);
8984 		return NULL;
8985 	}
8986 	/* initiate new PMD tunnel */
8987 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
8988 	tunnel->tunnel_id = id;
8989 	tunnel->action.type = (typeof(tunnel->action.type))
8990 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
8991 	tunnel->action.conf = tunnel;
8992 	tunnel->item.type = (typeof(tunnel->item.type))
8993 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
8994 	tunnel->item.spec = tunnel;
8995 	tunnel->item.last = NULL;
8996 	tunnel->item.mask = NULL;
8997 
8998 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
8999 		dev->data->port_id, tunnel->tunnel_id);
9000 
9001 	return tunnel;
9002 }
9003 
9004 struct tunnel_db_get_tunnel_ctx {
9005 	const struct rte_flow_tunnel *app_tunnel;
9006 	struct mlx5_flow_tunnel *tunnel;
9007 };
9008 
9009 static bool get_tunnel_match(struct rte_eth_dev *dev,
9010 			     struct mlx5_flow_tunnel *tunnel, const void *x)
9011 {
9012 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
9013 
9014 	RTE_SET_USED(dev);
9015 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
9016 		       sizeof(*ctx->app_tunnel));
9017 }
9018 
9019 static void get_tunnel_hit(struct rte_eth_dev *dev,
9020 			   struct mlx5_flow_tunnel *tunnel, void *x)
9021 {
9022 	/* called under tunnel spinlock protection */
9023 	struct tunnel_db_get_tunnel_ctx *ctx = x;
9024 
9025 	RTE_SET_USED(dev);
9026 	tunnel->refctn++;
9027 	ctx->tunnel = tunnel;
9028 }
9029 
9030 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
9031 {
9032 	/* called under tunnel spinlock protection */
9033 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
9034 	struct tunnel_db_get_tunnel_ctx *ctx = x;
9035 
9036 	rte_spinlock_unlock(&thub->sl);
9037 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
9038 	rte_spinlock_lock(&thub->sl);
9039 	if (ctx->tunnel) {
9040 		ctx->tunnel->refctn = 1;
9041 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
9042 	}
9043 }
9044 
9045 
9046 static int
9047 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
9048 		     const struct rte_flow_tunnel *app_tunnel,
9049 		     struct mlx5_flow_tunnel **tunnel)
9050 {
9051 	struct tunnel_db_get_tunnel_ctx ctx = {
9052 		.app_tunnel = app_tunnel,
9053 	};
9054 
9055 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
9056 				      get_tunnel_miss, &ctx, true);
9057 	*tunnel = ctx.tunnel;
9058 	return ctx.tunnel ? 0 : -ENOMEM;
9059 }
9060 
9061 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
9062 {
9063 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
9064 
9065 	if (!thub)
9066 		return;
9067 	if (!LIST_EMPTY(&thub->tunnels))
9068 		DRV_LOG(WARNING, "port %u tunnels present", port_id);
9069 	mlx5_hlist_destroy(thub->groups);
9070 	mlx5_free(thub);
9071 }
9072 
9073 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
9074 {
9075 	int err;
9076 	struct mlx5_flow_tunnel_hub *thub;
9077 
9078 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
9079 			   0, SOCKET_ID_ANY);
9080 	if (!thub)
9081 		return -ENOMEM;
9082 	LIST_INIT(&thub->tunnels);
9083 	rte_spinlock_init(&thub->sl);
9084 	thub->groups = mlx5_hlist_create("flow groups", 64,
9085 					 false, true, sh,
9086 					 mlx5_flow_tunnel_grp2tbl_create_cb,
9087 					 mlx5_flow_tunnel_grp2tbl_match_cb,
9088 					 mlx5_flow_tunnel_grp2tbl_remove_cb,
9089 					 mlx5_flow_tunnel_grp2tbl_clone_cb,
9090 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
9091 	if (!thub->groups) {
9092 		err = -rte_errno;
9093 		goto err;
9094 	}
9095 	sh->tunnel_hub = thub;
9096 
9097 	return 0;
9098 
9099 err:
9100 	if (thub->groups)
9101 		mlx5_hlist_destroy(thub->groups);
9102 	if (thub)
9103 		mlx5_free(thub);
9104 	return err;
9105 }
9106 
9107 static inline bool
9108 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
9109 			  struct rte_flow_tunnel *tunnel,
9110 			  const char *err_msg)
9111 {
9112 	err_msg = NULL;
9113 	if (!is_tunnel_offload_active(dev)) {
9114 		err_msg = "tunnel offload was not activated";
9115 		goto out;
9116 	} else if (!tunnel) {
9117 		err_msg = "no application tunnel";
9118 		goto out;
9119 	}
9120 
9121 	switch (tunnel->type) {
9122 	default:
9123 		err_msg = "unsupported tunnel type";
9124 		goto out;
9125 	case RTE_FLOW_ITEM_TYPE_VXLAN:
9126 		break;
9127 	}
9128 
9129 out:
9130 	return !err_msg;
9131 }
9132 
9133 static int
9134 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
9135 		    struct rte_flow_tunnel *app_tunnel,
9136 		    struct rte_flow_action **actions,
9137 		    uint32_t *num_of_actions,
9138 		    struct rte_flow_error *error)
9139 {
9140 	int ret;
9141 	struct mlx5_flow_tunnel *tunnel;
9142 	const char *err_msg = NULL;
9143 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
9144 
9145 	if (!verdict)
9146 		return rte_flow_error_set(error, EINVAL,
9147 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
9148 					  err_msg);
9149 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
9150 	if (ret < 0) {
9151 		return rte_flow_error_set(error, ret,
9152 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
9153 					  "failed to initialize pmd tunnel");
9154 	}
9155 	*actions = &tunnel->action;
9156 	*num_of_actions = 1;
9157 	return 0;
9158 }
9159 
9160 static int
9161 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
9162 		       struct rte_flow_tunnel *app_tunnel,
9163 		       struct rte_flow_item **items,
9164 		       uint32_t *num_of_items,
9165 		       struct rte_flow_error *error)
9166 {
9167 	int ret;
9168 	struct mlx5_flow_tunnel *tunnel;
9169 	const char *err_msg = NULL;
9170 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
9171 
9172 	if (!verdict)
9173 		return rte_flow_error_set(error, EINVAL,
9174 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
9175 					  err_msg);
9176 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
9177 	if (ret < 0) {
9178 		return rte_flow_error_set(error, ret,
9179 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
9180 					  "failed to initialize pmd tunnel");
9181 	}
9182 	*items = &tunnel->item;
9183 	*num_of_items = 1;
9184 	return 0;
9185 }
9186 
9187 struct tunnel_db_element_release_ctx {
9188 	struct rte_flow_item *items;
9189 	struct rte_flow_action *actions;
9190 	uint32_t num_elements;
9191 	struct rte_flow_error *error;
9192 	int ret;
9193 };
9194 
9195 static bool
9196 tunnel_element_release_match(struct rte_eth_dev *dev,
9197 			     struct mlx5_flow_tunnel *tunnel, const void *x)
9198 {
9199 	const struct tunnel_db_element_release_ctx *ctx = x;
9200 
9201 	RTE_SET_USED(dev);
9202 	if (ctx->num_elements != 1)
9203 		return false;
9204 	else if (ctx->items)
9205 		return ctx->items == &tunnel->item;
9206 	else if (ctx->actions)
9207 		return ctx->actions == &tunnel->action;
9208 
9209 	return false;
9210 }
9211 
9212 static void
9213 tunnel_element_release_hit(struct rte_eth_dev *dev,
9214 			   struct mlx5_flow_tunnel *tunnel, void *x)
9215 {
9216 	struct tunnel_db_element_release_ctx *ctx = x;
9217 	ctx->ret = 0;
9218 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
9219 		mlx5_flow_tunnel_free(dev, tunnel);
9220 }
9221 
9222 static void
9223 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
9224 {
9225 	struct tunnel_db_element_release_ctx *ctx = x;
9226 	RTE_SET_USED(dev);
9227 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
9228 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
9229 				      "invalid argument");
9230 }
9231 
9232 static int
9233 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
9234 		       struct rte_flow_item *pmd_items,
9235 		       uint32_t num_items, struct rte_flow_error *err)
9236 {
9237 	struct tunnel_db_element_release_ctx ctx = {
9238 		.items = pmd_items,
9239 		.actions = NULL,
9240 		.num_elements = num_items,
9241 		.error = err,
9242 	};
9243 
9244 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
9245 				      tunnel_element_release_hit,
9246 				      tunnel_element_release_miss, &ctx, false);
9247 
9248 	return ctx.ret;
9249 }
9250 
9251 static int
9252 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
9253 			 struct rte_flow_action *pmd_actions,
9254 			 uint32_t num_actions, struct rte_flow_error *err)
9255 {
9256 	struct tunnel_db_element_release_ctx ctx = {
9257 		.items = NULL,
9258 		.actions = pmd_actions,
9259 		.num_elements = num_actions,
9260 		.error = err,
9261 	};
9262 
9263 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
9264 				      tunnel_element_release_hit,
9265 				      tunnel_element_release_miss, &ctx, false);
9266 
9267 	return ctx.ret;
9268 }
9269 
9270 static int
9271 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
9272 				  struct rte_mbuf *m,
9273 				  struct rte_flow_restore_info *info,
9274 				  struct rte_flow_error *err)
9275 {
9276 	uint64_t ol_flags = m->ol_flags;
9277 	const struct mlx5_flow_tbl_data_entry *tble;
9278 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
9279 
9280 	if (!is_tunnel_offload_active(dev)) {
9281 		info->flags = 0;
9282 		return 0;
9283 	}
9284 
9285 	if ((ol_flags & mask) != mask)
9286 		goto err;
9287 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
9288 	if (!tble) {
9289 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
9290 			dev->data->port_id, m->hash.fdir.hi);
9291 		goto err;
9292 	}
9293 	MLX5_ASSERT(tble->tunnel);
9294 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
9295 	info->group_id = tble->group_id;
9296 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
9297 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
9298 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
9299 
9300 	return 0;
9301 
9302 err:
9303 	return rte_flow_error_set(err, EINVAL,
9304 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
9305 				  "failed to get restore info");
9306 }
9307 
9308 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
9309 static int
9310 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
9311 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
9312 			   __rte_unused struct rte_flow_action **actions,
9313 			   __rte_unused uint32_t *num_of_actions,
9314 			   __rte_unused struct rte_flow_error *error)
9315 {
9316 	return -ENOTSUP;
9317 }
9318 
9319 static int
9320 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
9321 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
9322 		       __rte_unused struct rte_flow_item **items,
9323 		       __rte_unused uint32_t *num_of_items,
9324 		       __rte_unused struct rte_flow_error *error)
9325 {
9326 	return -ENOTSUP;
9327 }
9328 
9329 static int
9330 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
9331 			      __rte_unused struct rte_flow_item *pmd_items,
9332 			      __rte_unused uint32_t num_items,
9333 			      __rte_unused struct rte_flow_error *err)
9334 {
9335 	return -ENOTSUP;
9336 }
9337 
9338 static int
9339 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
9340 				__rte_unused struct rte_flow_action *pmd_action,
9341 				__rte_unused uint32_t num_actions,
9342 				__rte_unused struct rte_flow_error *err)
9343 {
9344 	return -ENOTSUP;
9345 }
9346 
9347 static int
9348 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
9349 				  __rte_unused struct rte_mbuf *m,
9350 				  __rte_unused struct rte_flow_restore_info *i,
9351 				  __rte_unused struct rte_flow_error *err)
9352 {
9353 	return -ENOTSUP;
9354 }
9355 
9356 static int
9357 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
9358 			     __rte_unused struct rte_flow *flow,
9359 			     __rte_unused const struct rte_flow_attr *attr,
9360 			     __rte_unused const struct rte_flow_action *actions,
9361 			     __rte_unused uint32_t flow_idx,
9362 			     __rte_unused const struct mlx5_flow_tunnel *tunnel,
9363 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
9364 			     __rte_unused struct rte_flow_error *error)
9365 {
9366 	return -ENOTSUP;
9367 }
9368 
9369 static struct mlx5_flow_tunnel *
9370 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
9371 		    __rte_unused uint32_t id)
9372 {
9373 	return NULL;
9374 }
9375 
9376 static void
9377 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
9378 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
9379 {
9380 }
9381 
9382 static uint32_t
9383 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
9384 				__rte_unused const struct mlx5_flow_tunnel *t,
9385 				__rte_unused uint32_t group,
9386 				__rte_unused uint32_t *table,
9387 				struct rte_flow_error *error)
9388 {
9389 	return rte_flow_error_set(error, ENOTSUP,
9390 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
9391 				  "tunnel offload requires DV support");
9392 }
9393 
9394 void
9395 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
9396 			__rte_unused  uint16_t port_id)
9397 {
9398 }
9399 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
9400 
9401 static void
9402 mlx5_dbg__print_pattern(const struct rte_flow_item *item)
9403 {
9404 	int ret;
9405 	struct rte_flow_error error;
9406 
9407 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
9408 		char *item_name;
9409 		ret = rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, &item_name,
9410 				    sizeof(item_name),
9411 				    (void *)(uintptr_t)item->type, &error);
9412 		if (ret > 0)
9413 			printf("%s ", item_name);
9414 		else
9415 			printf("%d\n", (int)item->type);
9416 	}
9417 	printf("END\n");
9418 }
9419