xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision c751be10272168119ea6ab50a197e5c4e9927d02)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdalign.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdbool.h>
10 #include <sys/queue.h>
11 
12 #include <rte_common.h>
13 #include <rte_ether.h>
14 #include <ethdev_driver.h>
15 #include <rte_eal_paging.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21 
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26 
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rx.h"
32 #include "mlx5_tx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     const struct mlx5_flow_tunnel *tunnel,
54 			     struct tunnel_default_miss_ctx *ctx,
55 			     struct rte_flow_error *error);
56 static struct mlx5_flow_tunnel *
57 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
58 static void
59 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
60 static uint32_t
61 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
62 				const struct mlx5_flow_tunnel *tunnel,
63 				uint32_t group, uint32_t *table,
64 				struct rte_flow_error *error);
65 
66 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
67 static void mlx5_flow_pop_thread_workspace(void);
68 
69 
70 /** Device flow drivers. */
71 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
72 
73 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
74 
75 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
76 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
77 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
78 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
79 #endif
80 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
81 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
82 };
83 
84 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
85 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
86 	(const int []){ \
87 		__VA_ARGS__, 0, \
88 	}
89 
90 /** Node object of input graph for mlx5_flow_expand_rss(). */
91 struct mlx5_flow_expand_node {
92 	const int *const next;
93 	/**<
94 	 * List of next node indexes. Index 0 is interpreted as a terminator.
95 	 */
96 	const enum rte_flow_item_type type;
97 	/**< Pattern item type of current node. */
98 	uint64_t rss_types;
99 	/**<
100 	 * RSS types bit-field associated with this node
101 	 * (see ETH_RSS_* definitions).
102 	 */
103 	uint8_t optional;
104 	/**< optional expand field. Default 0 to expand, 1 not go deeper. */
105 };
106 
107 /** Object returned by mlx5_flow_expand_rss(). */
108 struct mlx5_flow_expand_rss {
109 	uint32_t entries;
110 	/**< Number of entries @p patterns and @p priorities. */
111 	struct {
112 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
113 		uint32_t priority; /**< Priority offset for each expansion. */
114 	} entry[];
115 };
116 
117 static enum rte_flow_item_type
118 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
119 {
120 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
121 	uint16_t ether_type = 0;
122 	uint16_t ether_type_m;
123 	uint8_t ip_next_proto = 0;
124 	uint8_t ip_next_proto_m;
125 
126 	if (item == NULL || item->spec == NULL)
127 		return ret;
128 	switch (item->type) {
129 	case RTE_FLOW_ITEM_TYPE_ETH:
130 		if (item->mask)
131 			ether_type_m = ((const struct rte_flow_item_eth *)
132 						(item->mask))->type;
133 		else
134 			ether_type_m = rte_flow_item_eth_mask.type;
135 		if (ether_type_m != RTE_BE16(0xFFFF))
136 			break;
137 		ether_type = ((const struct rte_flow_item_eth *)
138 				(item->spec))->type;
139 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
140 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
141 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
142 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
143 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
144 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
145 		else
146 			ret = RTE_FLOW_ITEM_TYPE_END;
147 		break;
148 	case RTE_FLOW_ITEM_TYPE_VLAN:
149 		if (item->mask)
150 			ether_type_m = ((const struct rte_flow_item_vlan *)
151 						(item->mask))->inner_type;
152 		else
153 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
154 		if (ether_type_m != RTE_BE16(0xFFFF))
155 			break;
156 		ether_type = ((const struct rte_flow_item_vlan *)
157 				(item->spec))->inner_type;
158 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
159 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
160 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
161 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
162 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
163 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
164 		else
165 			ret = RTE_FLOW_ITEM_TYPE_END;
166 		break;
167 	case RTE_FLOW_ITEM_TYPE_IPV4:
168 		if (item->mask)
169 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
170 					(item->mask))->hdr.next_proto_id;
171 		else
172 			ip_next_proto_m =
173 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
174 		if (ip_next_proto_m != 0xFF)
175 			break;
176 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
177 				(item->spec))->hdr.next_proto_id;
178 		if (ip_next_proto == IPPROTO_UDP)
179 			ret = RTE_FLOW_ITEM_TYPE_UDP;
180 		else if (ip_next_proto == IPPROTO_TCP)
181 			ret = RTE_FLOW_ITEM_TYPE_TCP;
182 		else if (ip_next_proto == IPPROTO_IP)
183 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
184 		else if (ip_next_proto == IPPROTO_IPV6)
185 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
186 		else
187 			ret = RTE_FLOW_ITEM_TYPE_END;
188 		break;
189 	case RTE_FLOW_ITEM_TYPE_IPV6:
190 		if (item->mask)
191 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
192 						(item->mask))->hdr.proto;
193 		else
194 			ip_next_proto_m =
195 				rte_flow_item_ipv6_mask.hdr.proto;
196 		if (ip_next_proto_m != 0xFF)
197 			break;
198 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
199 				(item->spec))->hdr.proto;
200 		if (ip_next_proto == IPPROTO_UDP)
201 			ret = RTE_FLOW_ITEM_TYPE_UDP;
202 		else if (ip_next_proto == IPPROTO_TCP)
203 			ret = RTE_FLOW_ITEM_TYPE_TCP;
204 		else if (ip_next_proto == IPPROTO_IP)
205 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
206 		else if (ip_next_proto == IPPROTO_IPV6)
207 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
208 		else
209 			ret = RTE_FLOW_ITEM_TYPE_END;
210 		break;
211 	default:
212 		ret = RTE_FLOW_ITEM_TYPE_VOID;
213 		break;
214 	}
215 	return ret;
216 }
217 
218 #define MLX5_RSS_EXP_ELT_N 16
219 
220 /**
221  * Expand RSS flows into several possible flows according to the RSS hash
222  * fields requested and the driver capabilities.
223  *
224  * @param[out] buf
225  *   Buffer to store the result expansion.
226  * @param[in] size
227  *   Buffer size in bytes. If 0, @p buf can be NULL.
228  * @param[in] pattern
229  *   User flow pattern.
230  * @param[in] types
231  *   RSS types to expand (see ETH_RSS_* definitions).
232  * @param[in] graph
233  *   Input graph to expand @p pattern according to @p types.
234  * @param[in] graph_root_index
235  *   Index of root node in @p graph, typically 0.
236  *
237  * @return
238  *   A positive value representing the size of @p buf in bytes regardless of
239  *   @p size on success, a negative errno value otherwise and rte_errno is
240  *   set, the following errors are defined:
241  *
242  *   -E2BIG: graph-depth @p graph is too deep.
243  */
244 static int
245 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
246 		     const struct rte_flow_item *pattern, uint64_t types,
247 		     const struct mlx5_flow_expand_node graph[],
248 		     int graph_root_index)
249 {
250 	const struct rte_flow_item *item;
251 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
252 	const int *next_node;
253 	const int *stack[MLX5_RSS_EXP_ELT_N];
254 	int stack_pos = 0;
255 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
256 	unsigned int i;
257 	size_t lsize;
258 	size_t user_pattern_size = 0;
259 	void *addr = NULL;
260 	const struct mlx5_flow_expand_node *next = NULL;
261 	struct rte_flow_item missed_item;
262 	int missed = 0;
263 	int elt = 0;
264 	const struct rte_flow_item *last_item = NULL;
265 
266 	memset(&missed_item, 0, sizeof(missed_item));
267 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
268 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
269 	if (lsize <= size) {
270 		buf->entry[0].priority = 0;
271 		buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
272 		buf->entries = 0;
273 		addr = buf->entry[0].pattern;
274 	}
275 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
276 		if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
277 			last_item = item;
278 		for (i = 0; node->next && node->next[i]; ++i) {
279 			next = &graph[node->next[i]];
280 			if (next->type == item->type)
281 				break;
282 		}
283 		if (next)
284 			node = next;
285 		user_pattern_size += sizeof(*item);
286 	}
287 	user_pattern_size += sizeof(*item); /* Handle END item. */
288 	lsize += user_pattern_size;
289 	/* Copy the user pattern in the first entry of the buffer. */
290 	if (lsize <= size) {
291 		rte_memcpy(addr, pattern, user_pattern_size);
292 		addr = (void *)(((uintptr_t)addr) + user_pattern_size);
293 		buf->entries = 1;
294 	}
295 	/* Start expanding. */
296 	memset(flow_items, 0, sizeof(flow_items));
297 	user_pattern_size -= sizeof(*item);
298 	/*
299 	 * Check if the last valid item has spec set, need complete pattern,
300 	 * and the pattern can be used for expansion.
301 	 */
302 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
303 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
304 		/* Item type END indicates expansion is not required. */
305 		return lsize;
306 	}
307 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
308 		next = NULL;
309 		missed = 1;
310 		for (i = 0; node->next && node->next[i]; ++i) {
311 			next = &graph[node->next[i]];
312 			if (next->type == missed_item.type) {
313 				flow_items[0].type = missed_item.type;
314 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
315 				break;
316 			}
317 			next = NULL;
318 		}
319 	}
320 	if (next && missed) {
321 		elt = 2; /* missed item + item end. */
322 		node = next;
323 		lsize += elt * sizeof(*item) + user_pattern_size;
324 		if ((node->rss_types & types) && lsize <= size) {
325 			buf->entry[buf->entries].priority = 1;
326 			buf->entry[buf->entries].pattern = addr;
327 			buf->entries++;
328 			rte_memcpy(addr, buf->entry[0].pattern,
329 				   user_pattern_size);
330 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
331 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
332 			addr = (void *)(((uintptr_t)addr) +
333 					elt * sizeof(*item));
334 		}
335 	}
336 	memset(flow_items, 0, sizeof(flow_items));
337 	next_node = node->next;
338 	stack[stack_pos] = next_node;
339 	node = next_node ? &graph[*next_node] : NULL;
340 	while (node) {
341 		flow_items[stack_pos].type = node->type;
342 		if (node->rss_types & types) {
343 			/*
344 			 * compute the number of items to copy from the
345 			 * expansion and copy it.
346 			 * When the stack_pos is 0, there are 1 element in it,
347 			 * plus the addition END item.
348 			 */
349 			elt = stack_pos + 2;
350 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
351 			lsize += elt * sizeof(*item) + user_pattern_size;
352 			if (lsize <= size) {
353 				size_t n = elt * sizeof(*item);
354 
355 				buf->entry[buf->entries].priority =
356 					stack_pos + 1 + missed;
357 				buf->entry[buf->entries].pattern = addr;
358 				buf->entries++;
359 				rte_memcpy(addr, buf->entry[0].pattern,
360 					   user_pattern_size);
361 				addr = (void *)(((uintptr_t)addr) +
362 						user_pattern_size);
363 				rte_memcpy(addr, &missed_item,
364 					   missed * sizeof(*item));
365 				addr = (void *)(((uintptr_t)addr) +
366 					missed * sizeof(*item));
367 				rte_memcpy(addr, flow_items, n);
368 				addr = (void *)(((uintptr_t)addr) + n);
369 			}
370 		}
371 		/* Go deeper. */
372 		if (!node->optional && node->next) {
373 			next_node = node->next;
374 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
375 				rte_errno = E2BIG;
376 				return -rte_errno;
377 			}
378 			stack[stack_pos] = next_node;
379 		} else if (*(next_node + 1)) {
380 			/* Follow up with the next possibility. */
381 			++next_node;
382 		} else {
383 			/* Move to the next path. */
384 			if (stack_pos)
385 				next_node = stack[--stack_pos];
386 			next_node++;
387 			stack[stack_pos] = next_node;
388 		}
389 		node = *next_node ? &graph[*next_node] : NULL;
390 	};
391 	return lsize;
392 }
393 
394 enum mlx5_expansion {
395 	MLX5_EXPANSION_ROOT,
396 	MLX5_EXPANSION_ROOT_OUTER,
397 	MLX5_EXPANSION_ROOT_ETH_VLAN,
398 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
399 	MLX5_EXPANSION_OUTER_ETH,
400 	MLX5_EXPANSION_OUTER_ETH_VLAN,
401 	MLX5_EXPANSION_OUTER_VLAN,
402 	MLX5_EXPANSION_OUTER_IPV4,
403 	MLX5_EXPANSION_OUTER_IPV4_UDP,
404 	MLX5_EXPANSION_OUTER_IPV4_TCP,
405 	MLX5_EXPANSION_OUTER_IPV6,
406 	MLX5_EXPANSION_OUTER_IPV6_UDP,
407 	MLX5_EXPANSION_OUTER_IPV6_TCP,
408 	MLX5_EXPANSION_VXLAN,
409 	MLX5_EXPANSION_VXLAN_GPE,
410 	MLX5_EXPANSION_GRE,
411 	MLX5_EXPANSION_NVGRE,
412 	MLX5_EXPANSION_GRE_KEY,
413 	MLX5_EXPANSION_MPLS,
414 	MLX5_EXPANSION_ETH,
415 	MLX5_EXPANSION_ETH_VLAN,
416 	MLX5_EXPANSION_VLAN,
417 	MLX5_EXPANSION_IPV4,
418 	MLX5_EXPANSION_IPV4_UDP,
419 	MLX5_EXPANSION_IPV4_TCP,
420 	MLX5_EXPANSION_IPV6,
421 	MLX5_EXPANSION_IPV6_UDP,
422 	MLX5_EXPANSION_IPV6_TCP,
423 };
424 
425 /** Supported expansion of items. */
426 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
427 	[MLX5_EXPANSION_ROOT] = {
428 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
429 						  MLX5_EXPANSION_IPV4,
430 						  MLX5_EXPANSION_IPV6),
431 		.type = RTE_FLOW_ITEM_TYPE_END,
432 	},
433 	[MLX5_EXPANSION_ROOT_OUTER] = {
434 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
435 						  MLX5_EXPANSION_OUTER_IPV4,
436 						  MLX5_EXPANSION_OUTER_IPV6),
437 		.type = RTE_FLOW_ITEM_TYPE_END,
438 	},
439 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
440 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
441 		.type = RTE_FLOW_ITEM_TYPE_END,
442 	},
443 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
444 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
445 						(MLX5_EXPANSION_OUTER_ETH_VLAN),
446 		.type = RTE_FLOW_ITEM_TYPE_END,
447 	},
448 	[MLX5_EXPANSION_OUTER_ETH] = {
449 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
450 						  MLX5_EXPANSION_OUTER_IPV6,
451 						  MLX5_EXPANSION_MPLS),
452 		.type = RTE_FLOW_ITEM_TYPE_ETH,
453 		.rss_types = 0,
454 	},
455 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
456 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
457 		.type = RTE_FLOW_ITEM_TYPE_ETH,
458 		.rss_types = 0,
459 	},
460 	[MLX5_EXPANSION_OUTER_VLAN] = {
461 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
462 						  MLX5_EXPANSION_OUTER_IPV6),
463 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
464 	},
465 	[MLX5_EXPANSION_OUTER_IPV4] = {
466 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
467 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
468 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
469 			 MLX5_EXPANSION_GRE,
470 			 MLX5_EXPANSION_NVGRE,
471 			 MLX5_EXPANSION_IPV4,
472 			 MLX5_EXPANSION_IPV6),
473 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
474 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
475 			ETH_RSS_NONFRAG_IPV4_OTHER,
476 	},
477 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
478 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
479 						  MLX5_EXPANSION_VXLAN_GPE),
480 		.type = RTE_FLOW_ITEM_TYPE_UDP,
481 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
482 	},
483 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
484 		.type = RTE_FLOW_ITEM_TYPE_TCP,
485 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
486 	},
487 	[MLX5_EXPANSION_OUTER_IPV6] = {
488 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
489 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
490 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
491 			 MLX5_EXPANSION_IPV4,
492 			 MLX5_EXPANSION_IPV6,
493 			 MLX5_EXPANSION_GRE,
494 			 MLX5_EXPANSION_NVGRE),
495 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
496 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
497 			ETH_RSS_NONFRAG_IPV6_OTHER,
498 	},
499 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
500 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
501 						  MLX5_EXPANSION_VXLAN_GPE),
502 		.type = RTE_FLOW_ITEM_TYPE_UDP,
503 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
504 	},
505 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
506 		.type = RTE_FLOW_ITEM_TYPE_TCP,
507 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
508 	},
509 	[MLX5_EXPANSION_VXLAN] = {
510 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
511 						  MLX5_EXPANSION_IPV4,
512 						  MLX5_EXPANSION_IPV6),
513 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
514 	},
515 	[MLX5_EXPANSION_VXLAN_GPE] = {
516 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
517 						  MLX5_EXPANSION_IPV4,
518 						  MLX5_EXPANSION_IPV6),
519 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
520 	},
521 	[MLX5_EXPANSION_GRE] = {
522 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
523 						  MLX5_EXPANSION_IPV6,
524 						  MLX5_EXPANSION_GRE_KEY),
525 		.type = RTE_FLOW_ITEM_TYPE_GRE,
526 	},
527 	[MLX5_EXPANSION_GRE_KEY] = {
528 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
529 						  MLX5_EXPANSION_IPV6),
530 		.type = RTE_FLOW_ITEM_TYPE_GRE_KEY,
531 		.optional = 1,
532 	},
533 	[MLX5_EXPANSION_NVGRE] = {
534 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
535 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
536 	},
537 	[MLX5_EXPANSION_MPLS] = {
538 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
539 						  MLX5_EXPANSION_IPV6),
540 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
541 	},
542 	[MLX5_EXPANSION_ETH] = {
543 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
544 						  MLX5_EXPANSION_IPV6),
545 		.type = RTE_FLOW_ITEM_TYPE_ETH,
546 	},
547 	[MLX5_EXPANSION_ETH_VLAN] = {
548 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
549 		.type = RTE_FLOW_ITEM_TYPE_ETH,
550 	},
551 	[MLX5_EXPANSION_VLAN] = {
552 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
553 						  MLX5_EXPANSION_IPV6),
554 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
555 	},
556 	[MLX5_EXPANSION_IPV4] = {
557 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
558 						  MLX5_EXPANSION_IPV4_TCP),
559 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
560 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
561 			ETH_RSS_NONFRAG_IPV4_OTHER,
562 	},
563 	[MLX5_EXPANSION_IPV4_UDP] = {
564 		.type = RTE_FLOW_ITEM_TYPE_UDP,
565 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
566 	},
567 	[MLX5_EXPANSION_IPV4_TCP] = {
568 		.type = RTE_FLOW_ITEM_TYPE_TCP,
569 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
570 	},
571 	[MLX5_EXPANSION_IPV6] = {
572 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
573 						  MLX5_EXPANSION_IPV6_TCP),
574 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
575 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
576 			ETH_RSS_NONFRAG_IPV6_OTHER,
577 	},
578 	[MLX5_EXPANSION_IPV6_UDP] = {
579 		.type = RTE_FLOW_ITEM_TYPE_UDP,
580 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
581 	},
582 	[MLX5_EXPANSION_IPV6_TCP] = {
583 		.type = RTE_FLOW_ITEM_TYPE_TCP,
584 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
585 	},
586 };
587 
588 static struct rte_flow_action_handle *
589 mlx5_action_handle_create(struct rte_eth_dev *dev,
590 			  const struct rte_flow_indir_action_conf *conf,
591 			  const struct rte_flow_action *action,
592 			  struct rte_flow_error *error);
593 static int mlx5_action_handle_destroy
594 				(struct rte_eth_dev *dev,
595 				 struct rte_flow_action_handle *handle,
596 				 struct rte_flow_error *error);
597 static int mlx5_action_handle_update
598 				(struct rte_eth_dev *dev,
599 				 struct rte_flow_action_handle *handle,
600 				 const void *update,
601 				 struct rte_flow_error *error);
602 static int mlx5_action_handle_query
603 				(struct rte_eth_dev *dev,
604 				 const struct rte_flow_action_handle *handle,
605 				 void *data,
606 				 struct rte_flow_error *error);
607 static int
608 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
609 		    struct rte_flow_tunnel *app_tunnel,
610 		    struct rte_flow_action **actions,
611 		    uint32_t *num_of_actions,
612 		    struct rte_flow_error *error);
613 static int
614 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
615 		       struct rte_flow_tunnel *app_tunnel,
616 		       struct rte_flow_item **items,
617 		       uint32_t *num_of_items,
618 		       struct rte_flow_error *error);
619 static int
620 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
621 			      struct rte_flow_item *pmd_items,
622 			      uint32_t num_items, struct rte_flow_error *err);
623 static int
624 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
625 				struct rte_flow_action *pmd_actions,
626 				uint32_t num_actions,
627 				struct rte_flow_error *err);
628 static int
629 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
630 				  struct rte_mbuf *m,
631 				  struct rte_flow_restore_info *info,
632 				  struct rte_flow_error *err);
633 
634 static const struct rte_flow_ops mlx5_flow_ops = {
635 	.validate = mlx5_flow_validate,
636 	.create = mlx5_flow_create,
637 	.destroy = mlx5_flow_destroy,
638 	.flush = mlx5_flow_flush,
639 	.isolate = mlx5_flow_isolate,
640 	.query = mlx5_flow_query,
641 	.dev_dump = mlx5_flow_dev_dump,
642 	.get_aged_flows = mlx5_flow_get_aged_flows,
643 	.action_handle_create = mlx5_action_handle_create,
644 	.action_handle_destroy = mlx5_action_handle_destroy,
645 	.action_handle_update = mlx5_action_handle_update,
646 	.action_handle_query = mlx5_action_handle_query,
647 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
648 	.tunnel_match = mlx5_flow_tunnel_match,
649 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
650 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
651 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
652 };
653 
654 /* Tunnel information. */
655 struct mlx5_flow_tunnel_info {
656 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
657 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
658 };
659 
660 static struct mlx5_flow_tunnel_info tunnels_info[] = {
661 	{
662 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
663 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
664 	},
665 	{
666 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
667 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
668 	},
669 	{
670 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
671 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
672 	},
673 	{
674 		.tunnel = MLX5_FLOW_LAYER_GRE,
675 		.ptype = RTE_PTYPE_TUNNEL_GRE,
676 	},
677 	{
678 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
679 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
680 	},
681 	{
682 		.tunnel = MLX5_FLOW_LAYER_MPLS,
683 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
684 	},
685 	{
686 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
687 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
688 	},
689 	{
690 		.tunnel = MLX5_FLOW_LAYER_IPIP,
691 		.ptype = RTE_PTYPE_TUNNEL_IP,
692 	},
693 	{
694 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
695 		.ptype = RTE_PTYPE_TUNNEL_IP,
696 	},
697 	{
698 		.tunnel = MLX5_FLOW_LAYER_GTP,
699 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
700 	},
701 };
702 
703 
704 
705 /**
706  * Translate tag ID to register.
707  *
708  * @param[in] dev
709  *   Pointer to the Ethernet device structure.
710  * @param[in] feature
711  *   The feature that request the register.
712  * @param[in] id
713  *   The request register ID.
714  * @param[out] error
715  *   Error description in case of any.
716  *
717  * @return
718  *   The request register on success, a negative errno
719  *   value otherwise and rte_errno is set.
720  */
721 int
722 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
723 		     enum mlx5_feature_name feature,
724 		     uint32_t id,
725 		     struct rte_flow_error *error)
726 {
727 	struct mlx5_priv *priv = dev->data->dev_private;
728 	struct mlx5_dev_config *config = &priv->config;
729 	enum modify_reg start_reg;
730 	bool skip_mtr_reg = false;
731 
732 	switch (feature) {
733 	case MLX5_HAIRPIN_RX:
734 		return REG_B;
735 	case MLX5_HAIRPIN_TX:
736 		return REG_A;
737 	case MLX5_METADATA_RX:
738 		switch (config->dv_xmeta_en) {
739 		case MLX5_XMETA_MODE_LEGACY:
740 			return REG_B;
741 		case MLX5_XMETA_MODE_META16:
742 			return REG_C_0;
743 		case MLX5_XMETA_MODE_META32:
744 			return REG_C_1;
745 		}
746 		break;
747 	case MLX5_METADATA_TX:
748 		return REG_A;
749 	case MLX5_METADATA_FDB:
750 		switch (config->dv_xmeta_en) {
751 		case MLX5_XMETA_MODE_LEGACY:
752 			return REG_NON;
753 		case MLX5_XMETA_MODE_META16:
754 			return REG_C_0;
755 		case MLX5_XMETA_MODE_META32:
756 			return REG_C_1;
757 		}
758 		break;
759 	case MLX5_FLOW_MARK:
760 		switch (config->dv_xmeta_en) {
761 		case MLX5_XMETA_MODE_LEGACY:
762 			return REG_NON;
763 		case MLX5_XMETA_MODE_META16:
764 			return REG_C_1;
765 		case MLX5_XMETA_MODE_META32:
766 			return REG_C_0;
767 		}
768 		break;
769 	case MLX5_MTR_ID:
770 		/*
771 		 * If meter color and meter id share one register, flow match
772 		 * should use the meter color register for match.
773 		 */
774 		if (priv->mtr_reg_share)
775 			return priv->mtr_color_reg;
776 		else
777 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
778 			       REG_C_3;
779 	case MLX5_MTR_COLOR:
780 	case MLX5_ASO_FLOW_HIT:
781 	case MLX5_ASO_CONNTRACK:
782 		/* All features use the same REG_C. */
783 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
784 		return priv->mtr_color_reg;
785 	case MLX5_COPY_MARK:
786 		/*
787 		 * Metadata COPY_MARK register using is in meter suffix sub
788 		 * flow while with meter. It's safe to share the same register.
789 		 */
790 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
791 	case MLX5_APP_TAG:
792 		/*
793 		 * If meter is enable, it will engage the register for color
794 		 * match and flow match. If meter color match is not using the
795 		 * REG_C_2, need to skip the REG_C_x be used by meter color
796 		 * match.
797 		 * If meter is disable, free to use all available registers.
798 		 */
799 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
800 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
801 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
802 		if (id > (uint32_t)(REG_C_7 - start_reg))
803 			return rte_flow_error_set(error, EINVAL,
804 						  RTE_FLOW_ERROR_TYPE_ITEM,
805 						  NULL, "invalid tag id");
806 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
807 			return rte_flow_error_set(error, ENOTSUP,
808 						  RTE_FLOW_ERROR_TYPE_ITEM,
809 						  NULL, "unsupported tag id");
810 		/*
811 		 * This case means meter is using the REG_C_x great than 2.
812 		 * Take care not to conflict with meter color REG_C_x.
813 		 * If the available index REG_C_y >= REG_C_x, skip the
814 		 * color register.
815 		 */
816 		if (skip_mtr_reg && config->flow_mreg_c
817 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
818 			if (id >= (uint32_t)(REG_C_7 - start_reg))
819 				return rte_flow_error_set(error, EINVAL,
820 						       RTE_FLOW_ERROR_TYPE_ITEM,
821 							NULL, "invalid tag id");
822 			if (config->flow_mreg_c
823 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
824 				return config->flow_mreg_c
825 					       [id + 1 + start_reg - REG_C_0];
826 			return rte_flow_error_set(error, ENOTSUP,
827 						  RTE_FLOW_ERROR_TYPE_ITEM,
828 						  NULL, "unsupported tag id");
829 		}
830 		return config->flow_mreg_c[id + start_reg - REG_C_0];
831 	}
832 	MLX5_ASSERT(false);
833 	return rte_flow_error_set(error, EINVAL,
834 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
835 				  NULL, "invalid feature name");
836 }
837 
838 /**
839  * Check extensive flow metadata register support.
840  *
841  * @param dev
842  *   Pointer to rte_eth_dev structure.
843  *
844  * @return
845  *   True if device supports extensive flow metadata register, otherwise false.
846  */
847 bool
848 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
849 {
850 	struct mlx5_priv *priv = dev->data->dev_private;
851 	struct mlx5_dev_config *config = &priv->config;
852 
853 	/*
854 	 * Having available reg_c can be regarded inclusively as supporting
855 	 * extensive flow metadata register, which could mean,
856 	 * - metadata register copy action by modify header.
857 	 * - 16 modify header actions is supported.
858 	 * - reg_c's are preserved across different domain (FDB and NIC) on
859 	 *   packet loopback by flow lookup miss.
860 	 */
861 	return config->flow_mreg_c[2] != REG_NON;
862 }
863 
864 /**
865  * Get the lowest priority.
866  *
867  * @param[in] dev
868  *   Pointer to the Ethernet device structure.
869  * @param[in] attributes
870  *   Pointer to device flow rule attributes.
871  *
872  * @return
873  *   The value of lowest priority of flow.
874  */
875 uint32_t
876 mlx5_get_lowest_priority(struct rte_eth_dev *dev,
877 			  const struct rte_flow_attr *attr)
878 {
879 	struct mlx5_priv *priv = dev->data->dev_private;
880 
881 	if (!attr->group && !attr->transfer)
882 		return priv->config.flow_prio - 2;
883 	return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1;
884 }
885 
886 /**
887  * Calculate matcher priority of the flow.
888  *
889  * @param[in] dev
890  *   Pointer to the Ethernet device structure.
891  * @param[in] attr
892  *   Pointer to device flow rule attributes.
893  * @param[in] subpriority
894  *   The priority based on the items.
895  * @return
896  *   The matcher priority of the flow.
897  */
898 uint16_t
899 mlx5_get_matcher_priority(struct rte_eth_dev *dev,
900 			  const struct rte_flow_attr *attr,
901 			  uint32_t subpriority)
902 {
903 	uint16_t priority = (uint16_t)attr->priority;
904 	struct mlx5_priv *priv = dev->data->dev_private;
905 
906 	if (!attr->group && !attr->transfer) {
907 		if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
908 			priority = priv->config.flow_prio - 1;
909 		return mlx5_os_flow_adjust_priority(dev, priority, subpriority);
910 	}
911 	if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
912 		priority = MLX5_NON_ROOT_FLOW_MAX_PRIO;
913 	return priority * 3 + subpriority;
914 }
915 
916 /**
917  * Verify the @p item specifications (spec, last, mask) are compatible with the
918  * NIC capabilities.
919  *
920  * @param[in] item
921  *   Item specification.
922  * @param[in] mask
923  *   @p item->mask or flow default bit-masks.
924  * @param[in] nic_mask
925  *   Bit-masks covering supported fields by the NIC to compare with user mask.
926  * @param[in] size
927  *   Bit-masks size in bytes.
928  * @param[in] range_accepted
929  *   True if range of values is accepted for specific fields, false otherwise.
930  * @param[out] error
931  *   Pointer to error structure.
932  *
933  * @return
934  *   0 on success, a negative errno value otherwise and rte_errno is set.
935  */
936 int
937 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
938 			  const uint8_t *mask,
939 			  const uint8_t *nic_mask,
940 			  unsigned int size,
941 			  bool range_accepted,
942 			  struct rte_flow_error *error)
943 {
944 	unsigned int i;
945 
946 	MLX5_ASSERT(nic_mask);
947 	for (i = 0; i < size; ++i)
948 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
949 			return rte_flow_error_set(error, ENOTSUP,
950 						  RTE_FLOW_ERROR_TYPE_ITEM,
951 						  item,
952 						  "mask enables non supported"
953 						  " bits");
954 	if (!item->spec && (item->mask || item->last))
955 		return rte_flow_error_set(error, EINVAL,
956 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
957 					  "mask/last without a spec is not"
958 					  " supported");
959 	if (item->spec && item->last && !range_accepted) {
960 		uint8_t spec[size];
961 		uint8_t last[size];
962 		unsigned int i;
963 		int ret;
964 
965 		for (i = 0; i < size; ++i) {
966 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
967 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
968 		}
969 		ret = memcmp(spec, last, size);
970 		if (ret != 0)
971 			return rte_flow_error_set(error, EINVAL,
972 						  RTE_FLOW_ERROR_TYPE_ITEM,
973 						  item,
974 						  "range is not valid");
975 	}
976 	return 0;
977 }
978 
979 /**
980  * Adjust the hash fields according to the @p flow information.
981  *
982  * @param[in] dev_flow.
983  *   Pointer to the mlx5_flow.
984  * @param[in] tunnel
985  *   1 when the hash field is for a tunnel item.
986  * @param[in] layer_types
987  *   ETH_RSS_* types.
988  * @param[in] hash_fields
989  *   Item hash fields.
990  *
991  * @return
992  *   The hash fields that should be used.
993  */
994 uint64_t
995 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
996 			    int tunnel __rte_unused, uint64_t layer_types,
997 			    uint64_t hash_fields)
998 {
999 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1000 	int rss_request_inner = rss_desc->level >= 2;
1001 
1002 	/* Check RSS hash level for tunnel. */
1003 	if (tunnel && rss_request_inner)
1004 		hash_fields |= IBV_RX_HASH_INNER;
1005 	else if (tunnel || rss_request_inner)
1006 		return 0;
1007 #endif
1008 	/* Check if requested layer matches RSS hash fields. */
1009 	if (!(rss_desc->types & layer_types))
1010 		return 0;
1011 	return hash_fields;
1012 }
1013 
1014 /**
1015  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
1016  * if several tunnel rules are used on this queue, the tunnel ptype will be
1017  * cleared.
1018  *
1019  * @param rxq_ctrl
1020  *   Rx queue to update.
1021  */
1022 static void
1023 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
1024 {
1025 	unsigned int i;
1026 	uint32_t tunnel_ptype = 0;
1027 
1028 	/* Look up for the ptype to use. */
1029 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
1030 		if (!rxq_ctrl->flow_tunnels_n[i])
1031 			continue;
1032 		if (!tunnel_ptype) {
1033 			tunnel_ptype = tunnels_info[i].ptype;
1034 		} else {
1035 			tunnel_ptype = 0;
1036 			break;
1037 		}
1038 	}
1039 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
1040 }
1041 
1042 /**
1043  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
1044  * flow.
1045  *
1046  * @param[in] dev
1047  *   Pointer to the Ethernet device structure.
1048  * @param[in] dev_handle
1049  *   Pointer to device flow handle structure.
1050  */
1051 void
1052 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1053 		       struct mlx5_flow_handle *dev_handle)
1054 {
1055 	struct mlx5_priv *priv = dev->data->dev_private;
1056 	const int mark = dev_handle->mark;
1057 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1058 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1059 	unsigned int i;
1060 
1061 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1062 		struct mlx5_hrxq *hrxq;
1063 
1064 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1065 			      dev_handle->rix_hrxq);
1066 		if (hrxq)
1067 			ind_tbl = hrxq->ind_table;
1068 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1069 		struct mlx5_shared_action_rss *shared_rss;
1070 
1071 		shared_rss = mlx5_ipool_get
1072 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1073 			 dev_handle->rix_srss);
1074 		if (shared_rss)
1075 			ind_tbl = shared_rss->ind_tbl;
1076 	}
1077 	if (!ind_tbl)
1078 		return;
1079 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1080 		int idx = ind_tbl->queues[i];
1081 		struct mlx5_rxq_ctrl *rxq_ctrl =
1082 			container_of((*priv->rxqs)[idx],
1083 				     struct mlx5_rxq_ctrl, rxq);
1084 
1085 		/*
1086 		 * To support metadata register copy on Tx loopback,
1087 		 * this must be always enabled (metadata may arive
1088 		 * from other port - not from local flows only.
1089 		 */
1090 		if (priv->config.dv_flow_en &&
1091 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1092 		    mlx5_flow_ext_mreg_supported(dev)) {
1093 			rxq_ctrl->rxq.mark = 1;
1094 			rxq_ctrl->flow_mark_n = 1;
1095 		} else if (mark) {
1096 			rxq_ctrl->rxq.mark = 1;
1097 			rxq_ctrl->flow_mark_n++;
1098 		}
1099 		if (tunnel) {
1100 			unsigned int j;
1101 
1102 			/* Increase the counter matching the flow. */
1103 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1104 				if ((tunnels_info[j].tunnel &
1105 				     dev_handle->layers) ==
1106 				    tunnels_info[j].tunnel) {
1107 					rxq_ctrl->flow_tunnels_n[j]++;
1108 					break;
1109 				}
1110 			}
1111 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1112 		}
1113 	}
1114 }
1115 
1116 /**
1117  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1118  *
1119  * @param[in] dev
1120  *   Pointer to the Ethernet device structure.
1121  * @param[in] flow
1122  *   Pointer to flow structure.
1123  */
1124 static void
1125 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1126 {
1127 	struct mlx5_priv *priv = dev->data->dev_private;
1128 	uint32_t handle_idx;
1129 	struct mlx5_flow_handle *dev_handle;
1130 
1131 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1132 		       handle_idx, dev_handle, next)
1133 		flow_drv_rxq_flags_set(dev, dev_handle);
1134 }
1135 
1136 /**
1137  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1138  * device flow if no other flow uses it with the same kind of request.
1139  *
1140  * @param dev
1141  *   Pointer to Ethernet device.
1142  * @param[in] dev_handle
1143  *   Pointer to the device flow handle structure.
1144  */
1145 static void
1146 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1147 			struct mlx5_flow_handle *dev_handle)
1148 {
1149 	struct mlx5_priv *priv = dev->data->dev_private;
1150 	const int mark = dev_handle->mark;
1151 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1152 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1153 	unsigned int i;
1154 
1155 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1156 		struct mlx5_hrxq *hrxq;
1157 
1158 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1159 			      dev_handle->rix_hrxq);
1160 		if (hrxq)
1161 			ind_tbl = hrxq->ind_table;
1162 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1163 		struct mlx5_shared_action_rss *shared_rss;
1164 
1165 		shared_rss = mlx5_ipool_get
1166 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1167 			 dev_handle->rix_srss);
1168 		if (shared_rss)
1169 			ind_tbl = shared_rss->ind_tbl;
1170 	}
1171 	if (!ind_tbl)
1172 		return;
1173 	MLX5_ASSERT(dev->data->dev_started);
1174 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1175 		int idx = ind_tbl->queues[i];
1176 		struct mlx5_rxq_ctrl *rxq_ctrl =
1177 			container_of((*priv->rxqs)[idx],
1178 				     struct mlx5_rxq_ctrl, rxq);
1179 
1180 		if (priv->config.dv_flow_en &&
1181 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1182 		    mlx5_flow_ext_mreg_supported(dev)) {
1183 			rxq_ctrl->rxq.mark = 1;
1184 			rxq_ctrl->flow_mark_n = 1;
1185 		} else if (mark) {
1186 			rxq_ctrl->flow_mark_n--;
1187 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1188 		}
1189 		if (tunnel) {
1190 			unsigned int j;
1191 
1192 			/* Decrease the counter matching the flow. */
1193 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1194 				if ((tunnels_info[j].tunnel &
1195 				     dev_handle->layers) ==
1196 				    tunnels_info[j].tunnel) {
1197 					rxq_ctrl->flow_tunnels_n[j]--;
1198 					break;
1199 				}
1200 			}
1201 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1202 		}
1203 	}
1204 }
1205 
1206 /**
1207  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1208  * @p flow if no other flow uses it with the same kind of request.
1209  *
1210  * @param dev
1211  *   Pointer to Ethernet device.
1212  * @param[in] flow
1213  *   Pointer to the flow.
1214  */
1215 static void
1216 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1217 {
1218 	struct mlx5_priv *priv = dev->data->dev_private;
1219 	uint32_t handle_idx;
1220 	struct mlx5_flow_handle *dev_handle;
1221 
1222 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1223 		       handle_idx, dev_handle, next)
1224 		flow_drv_rxq_flags_trim(dev, dev_handle);
1225 }
1226 
1227 /**
1228  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1229  *
1230  * @param dev
1231  *   Pointer to Ethernet device.
1232  */
1233 static void
1234 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1235 {
1236 	struct mlx5_priv *priv = dev->data->dev_private;
1237 	unsigned int i;
1238 
1239 	for (i = 0; i != priv->rxqs_n; ++i) {
1240 		struct mlx5_rxq_ctrl *rxq_ctrl;
1241 		unsigned int j;
1242 
1243 		if (!(*priv->rxqs)[i])
1244 			continue;
1245 		rxq_ctrl = container_of((*priv->rxqs)[i],
1246 					struct mlx5_rxq_ctrl, rxq);
1247 		rxq_ctrl->flow_mark_n = 0;
1248 		rxq_ctrl->rxq.mark = 0;
1249 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1250 			rxq_ctrl->flow_tunnels_n[j] = 0;
1251 		rxq_ctrl->rxq.tunnel = 0;
1252 	}
1253 }
1254 
1255 /**
1256  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1257  *
1258  * @param[in] dev
1259  *   Pointer to the Ethernet device structure.
1260  */
1261 void
1262 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1263 {
1264 	struct mlx5_priv *priv = dev->data->dev_private;
1265 	struct mlx5_rxq_data *data;
1266 	unsigned int i;
1267 
1268 	for (i = 0; i != priv->rxqs_n; ++i) {
1269 		if (!(*priv->rxqs)[i])
1270 			continue;
1271 		data = (*priv->rxqs)[i];
1272 		if (!rte_flow_dynf_metadata_avail()) {
1273 			data->dynf_meta = 0;
1274 			data->flow_meta_mask = 0;
1275 			data->flow_meta_offset = -1;
1276 			data->flow_meta_port_mask = 0;
1277 		} else {
1278 			data->dynf_meta = 1;
1279 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1280 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1281 			data->flow_meta_port_mask = (uint32_t)~0;
1282 			if (priv->config.dv_xmeta_en == MLX5_XMETA_MODE_META16)
1283 				data->flow_meta_port_mask >>= 16;
1284 		}
1285 	}
1286 }
1287 
1288 /*
1289  * return a pointer to the desired action in the list of actions.
1290  *
1291  * @param[in] actions
1292  *   The list of actions to search the action in.
1293  * @param[in] action
1294  *   The action to find.
1295  *
1296  * @return
1297  *   Pointer to the action in the list, if found. NULL otherwise.
1298  */
1299 const struct rte_flow_action *
1300 mlx5_flow_find_action(const struct rte_flow_action *actions,
1301 		      enum rte_flow_action_type action)
1302 {
1303 	if (actions == NULL)
1304 		return NULL;
1305 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1306 		if (actions->type == action)
1307 			return actions;
1308 	return NULL;
1309 }
1310 
1311 /*
1312  * Validate the flag action.
1313  *
1314  * @param[in] action_flags
1315  *   Bit-fields that holds the actions detected until now.
1316  * @param[in] attr
1317  *   Attributes of flow that includes this action.
1318  * @param[out] error
1319  *   Pointer to error structure.
1320  *
1321  * @return
1322  *   0 on success, a negative errno value otherwise and rte_errno is set.
1323  */
1324 int
1325 mlx5_flow_validate_action_flag(uint64_t action_flags,
1326 			       const struct rte_flow_attr *attr,
1327 			       struct rte_flow_error *error)
1328 {
1329 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1330 		return rte_flow_error_set(error, EINVAL,
1331 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1332 					  "can't mark and flag in same flow");
1333 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1334 		return rte_flow_error_set(error, EINVAL,
1335 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1336 					  "can't have 2 flag"
1337 					  " actions in same flow");
1338 	if (attr->egress)
1339 		return rte_flow_error_set(error, ENOTSUP,
1340 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1341 					  "flag action not supported for "
1342 					  "egress");
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Validate the mark action.
1348  *
1349  * @param[in] action
1350  *   Pointer to the queue action.
1351  * @param[in] action_flags
1352  *   Bit-fields that holds the actions detected until now.
1353  * @param[in] attr
1354  *   Attributes of flow that includes this action.
1355  * @param[out] error
1356  *   Pointer to error structure.
1357  *
1358  * @return
1359  *   0 on success, a negative errno value otherwise and rte_errno is set.
1360  */
1361 int
1362 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1363 			       uint64_t action_flags,
1364 			       const struct rte_flow_attr *attr,
1365 			       struct rte_flow_error *error)
1366 {
1367 	const struct rte_flow_action_mark *mark = action->conf;
1368 
1369 	if (!mark)
1370 		return rte_flow_error_set(error, EINVAL,
1371 					  RTE_FLOW_ERROR_TYPE_ACTION,
1372 					  action,
1373 					  "configuration cannot be null");
1374 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1375 		return rte_flow_error_set(error, EINVAL,
1376 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1377 					  &mark->id,
1378 					  "mark id must in 0 <= id < "
1379 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1380 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1381 		return rte_flow_error_set(error, EINVAL,
1382 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1383 					  "can't flag and mark in same flow");
1384 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1385 		return rte_flow_error_set(error, EINVAL,
1386 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1387 					  "can't have 2 mark actions in same"
1388 					  " flow");
1389 	if (attr->egress)
1390 		return rte_flow_error_set(error, ENOTSUP,
1391 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1392 					  "mark action not supported for "
1393 					  "egress");
1394 	return 0;
1395 }
1396 
1397 /*
1398  * Validate the drop action.
1399  *
1400  * @param[in] action_flags
1401  *   Bit-fields that holds the actions detected until now.
1402  * @param[in] attr
1403  *   Attributes of flow that includes this action.
1404  * @param[out] error
1405  *   Pointer to error structure.
1406  *
1407  * @return
1408  *   0 on success, a negative errno value otherwise and rte_errno is set.
1409  */
1410 int
1411 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1412 			       const struct rte_flow_attr *attr,
1413 			       struct rte_flow_error *error)
1414 {
1415 	if (attr->egress)
1416 		return rte_flow_error_set(error, ENOTSUP,
1417 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1418 					  "drop action not supported for "
1419 					  "egress");
1420 	return 0;
1421 }
1422 
1423 /*
1424  * Validate the queue action.
1425  *
1426  * @param[in] action
1427  *   Pointer to the queue action.
1428  * @param[in] action_flags
1429  *   Bit-fields that holds the actions detected until now.
1430  * @param[in] dev
1431  *   Pointer to the Ethernet device structure.
1432  * @param[in] attr
1433  *   Attributes of flow that includes this action.
1434  * @param[out] error
1435  *   Pointer to error structure.
1436  *
1437  * @return
1438  *   0 on success, a negative errno value otherwise and rte_errno is set.
1439  */
1440 int
1441 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1442 				uint64_t action_flags,
1443 				struct rte_eth_dev *dev,
1444 				const struct rte_flow_attr *attr,
1445 				struct rte_flow_error *error)
1446 {
1447 	struct mlx5_priv *priv = dev->data->dev_private;
1448 	const struct rte_flow_action_queue *queue = action->conf;
1449 
1450 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1451 		return rte_flow_error_set(error, EINVAL,
1452 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1453 					  "can't have 2 fate actions in"
1454 					  " same flow");
1455 	if (!priv->rxqs_n)
1456 		return rte_flow_error_set(error, EINVAL,
1457 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1458 					  NULL, "No Rx queues configured");
1459 	if (queue->index >= priv->rxqs_n)
1460 		return rte_flow_error_set(error, EINVAL,
1461 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1462 					  &queue->index,
1463 					  "queue index out of range");
1464 	if (!(*priv->rxqs)[queue->index])
1465 		return rte_flow_error_set(error, EINVAL,
1466 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1467 					  &queue->index,
1468 					  "queue is not configured");
1469 	if (attr->egress)
1470 		return rte_flow_error_set(error, ENOTSUP,
1471 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1472 					  "queue action not supported for "
1473 					  "egress");
1474 	return 0;
1475 }
1476 
1477 /*
1478  * Validate the rss action.
1479  *
1480  * @param[in] dev
1481  *   Pointer to the Ethernet device structure.
1482  * @param[in] action
1483  *   Pointer to the queue action.
1484  * @param[out] error
1485  *   Pointer to error structure.
1486  *
1487  * @return
1488  *   0 on success, a negative errno value otherwise and rte_errno is set.
1489  */
1490 int
1491 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1492 			 const struct rte_flow_action *action,
1493 			 struct rte_flow_error *error)
1494 {
1495 	struct mlx5_priv *priv = dev->data->dev_private;
1496 	const struct rte_flow_action_rss *rss = action->conf;
1497 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1498 	unsigned int i;
1499 
1500 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1501 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1502 		return rte_flow_error_set(error, ENOTSUP,
1503 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1504 					  &rss->func,
1505 					  "RSS hash function not supported");
1506 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1507 	if (rss->level > 2)
1508 #else
1509 	if (rss->level > 1)
1510 #endif
1511 		return rte_flow_error_set(error, ENOTSUP,
1512 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1513 					  &rss->level,
1514 					  "tunnel RSS is not supported");
1515 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1516 	if (rss->key_len == 0 && rss->key != NULL)
1517 		return rte_flow_error_set(error, ENOTSUP,
1518 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1519 					  &rss->key_len,
1520 					  "RSS hash key length 0");
1521 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1522 		return rte_flow_error_set(error, ENOTSUP,
1523 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1524 					  &rss->key_len,
1525 					  "RSS hash key too small");
1526 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1527 		return rte_flow_error_set(error, ENOTSUP,
1528 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1529 					  &rss->key_len,
1530 					  "RSS hash key too large");
1531 	if (rss->queue_num > priv->config.ind_table_max_size)
1532 		return rte_flow_error_set(error, ENOTSUP,
1533 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1534 					  &rss->queue_num,
1535 					  "number of queues too large");
1536 	if (rss->types & MLX5_RSS_HF_MASK)
1537 		return rte_flow_error_set(error, ENOTSUP,
1538 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1539 					  &rss->types,
1540 					  "some RSS protocols are not"
1541 					  " supported");
1542 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1543 	    !(rss->types & ETH_RSS_IP))
1544 		return rte_flow_error_set(error, EINVAL,
1545 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1546 					  "L3 partial RSS requested but L3 RSS"
1547 					  " type not specified");
1548 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1549 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1550 		return rte_flow_error_set(error, EINVAL,
1551 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1552 					  "L4 partial RSS requested but L4 RSS"
1553 					  " type not specified");
1554 	if (!priv->rxqs_n)
1555 		return rte_flow_error_set(error, EINVAL,
1556 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1557 					  NULL, "No Rx queues configured");
1558 	if (!rss->queue_num)
1559 		return rte_flow_error_set(error, EINVAL,
1560 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1561 					  NULL, "No queues configured");
1562 	for (i = 0; i != rss->queue_num; ++i) {
1563 		struct mlx5_rxq_ctrl *rxq_ctrl;
1564 
1565 		if (rss->queue[i] >= priv->rxqs_n)
1566 			return rte_flow_error_set
1567 				(error, EINVAL,
1568 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1569 				 &rss->queue[i], "queue index out of range");
1570 		if (!(*priv->rxqs)[rss->queue[i]])
1571 			return rte_flow_error_set
1572 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1573 				 &rss->queue[i], "queue is not configured");
1574 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1575 					struct mlx5_rxq_ctrl, rxq);
1576 		if (i == 0)
1577 			rxq_type = rxq_ctrl->type;
1578 		if (rxq_type != rxq_ctrl->type)
1579 			return rte_flow_error_set
1580 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1581 				 &rss->queue[i],
1582 				 "combining hairpin and regular RSS queues is not supported");
1583 	}
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Validate the rss action.
1589  *
1590  * @param[in] action
1591  *   Pointer to the queue action.
1592  * @param[in] action_flags
1593  *   Bit-fields that holds the actions detected until now.
1594  * @param[in] dev
1595  *   Pointer to the Ethernet device structure.
1596  * @param[in] attr
1597  *   Attributes of flow that includes this action.
1598  * @param[in] item_flags
1599  *   Items that were detected.
1600  * @param[out] error
1601  *   Pointer to error structure.
1602  *
1603  * @return
1604  *   0 on success, a negative errno value otherwise and rte_errno is set.
1605  */
1606 int
1607 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1608 			      uint64_t action_flags,
1609 			      struct rte_eth_dev *dev,
1610 			      const struct rte_flow_attr *attr,
1611 			      uint64_t item_flags,
1612 			      struct rte_flow_error *error)
1613 {
1614 	const struct rte_flow_action_rss *rss = action->conf;
1615 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1616 	int ret;
1617 
1618 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1619 		return rte_flow_error_set(error, EINVAL,
1620 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1621 					  "can't have 2 fate actions"
1622 					  " in same flow");
1623 	ret = mlx5_validate_action_rss(dev, action, error);
1624 	if (ret)
1625 		return ret;
1626 	if (attr->egress)
1627 		return rte_flow_error_set(error, ENOTSUP,
1628 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1629 					  "rss action not supported for "
1630 					  "egress");
1631 	if (rss->level > 1 && !tunnel)
1632 		return rte_flow_error_set(error, EINVAL,
1633 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1634 					  "inner RSS is not supported for "
1635 					  "non-tunnel flows");
1636 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1637 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1638 		return rte_flow_error_set(error, EINVAL,
1639 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1640 					  "RSS on eCPRI is not supported now");
1641 	}
1642 	return 0;
1643 }
1644 
1645 /*
1646  * Validate the default miss action.
1647  *
1648  * @param[in] action_flags
1649  *   Bit-fields that holds the actions detected until now.
1650  * @param[out] error
1651  *   Pointer to error structure.
1652  *
1653  * @return
1654  *   0 on success, a negative errno value otherwise and rte_errno is set.
1655  */
1656 int
1657 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1658 				const struct rte_flow_attr *attr,
1659 				struct rte_flow_error *error)
1660 {
1661 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1662 		return rte_flow_error_set(error, EINVAL,
1663 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1664 					  "can't have 2 fate actions in"
1665 					  " same flow");
1666 	if (attr->egress)
1667 		return rte_flow_error_set(error, ENOTSUP,
1668 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1669 					  "default miss action not supported "
1670 					  "for egress");
1671 	if (attr->group)
1672 		return rte_flow_error_set(error, ENOTSUP,
1673 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1674 					  "only group 0 is supported");
1675 	if (attr->transfer)
1676 		return rte_flow_error_set(error, ENOTSUP,
1677 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1678 					  NULL, "transfer is not supported");
1679 	return 0;
1680 }
1681 
1682 /*
1683  * Validate the count action.
1684  *
1685  * @param[in] dev
1686  *   Pointer to the Ethernet device structure.
1687  * @param[in] attr
1688  *   Attributes of flow that includes this action.
1689  * @param[out] error
1690  *   Pointer to error structure.
1691  *
1692  * @return
1693  *   0 on success, a negative errno value otherwise and rte_errno is set.
1694  */
1695 int
1696 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1697 				const struct rte_flow_attr *attr,
1698 				struct rte_flow_error *error)
1699 {
1700 	if (attr->egress)
1701 		return rte_flow_error_set(error, ENOTSUP,
1702 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1703 					  "count action not supported for "
1704 					  "egress");
1705 	return 0;
1706 }
1707 
1708 /*
1709  * Validate the ASO CT action.
1710  *
1711  * @param[in] dev
1712  *   Pointer to the Ethernet device structure.
1713  * @param[in] conntrack
1714  *   Pointer to the CT action profile.
1715  * @param[out] error
1716  *   Pointer to error structure.
1717  *
1718  * @return
1719  *   0 on success, a negative errno value otherwise and rte_errno is set.
1720  */
1721 int
1722 mlx5_validate_action_ct(struct rte_eth_dev *dev,
1723 			const struct rte_flow_action_conntrack *conntrack,
1724 			struct rte_flow_error *error)
1725 {
1726 	RTE_SET_USED(dev);
1727 
1728 	if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT)
1729 		return rte_flow_error_set(error, EINVAL,
1730 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1731 					  "Invalid CT state");
1732 	if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST)
1733 		return rte_flow_error_set(error, EINVAL,
1734 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1735 					  "Invalid last TCP packet flag");
1736 	return 0;
1737 }
1738 
1739 /**
1740  * Verify the @p attributes will be correctly understood by the NIC and store
1741  * them in the @p flow if everything is correct.
1742  *
1743  * @param[in] dev
1744  *   Pointer to the Ethernet device structure.
1745  * @param[in] attributes
1746  *   Pointer to flow attributes
1747  * @param[out] error
1748  *   Pointer to error structure.
1749  *
1750  * @return
1751  *   0 on success, a negative errno value otherwise and rte_errno is set.
1752  */
1753 int
1754 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1755 			      const struct rte_flow_attr *attributes,
1756 			      struct rte_flow_error *error)
1757 {
1758 	struct mlx5_priv *priv = dev->data->dev_private;
1759 	uint32_t priority_max = priv->config.flow_prio - 1;
1760 
1761 	if (attributes->group)
1762 		return rte_flow_error_set(error, ENOTSUP,
1763 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1764 					  NULL, "groups is not supported");
1765 	if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR &&
1766 	    attributes->priority >= priority_max)
1767 		return rte_flow_error_set(error, ENOTSUP,
1768 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1769 					  NULL, "priority out of range");
1770 	if (attributes->egress)
1771 		return rte_flow_error_set(error, ENOTSUP,
1772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1773 					  "egress is not supported");
1774 	if (attributes->transfer && !priv->config.dv_esw_en)
1775 		return rte_flow_error_set(error, ENOTSUP,
1776 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1777 					  NULL, "transfer is not supported");
1778 	if (!attributes->ingress)
1779 		return rte_flow_error_set(error, EINVAL,
1780 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1781 					  NULL,
1782 					  "ingress attribute is mandatory");
1783 	return 0;
1784 }
1785 
1786 /**
1787  * Validate ICMP6 item.
1788  *
1789  * @param[in] item
1790  *   Item specification.
1791  * @param[in] item_flags
1792  *   Bit-fields that holds the items detected until now.
1793  * @param[in] ext_vlan_sup
1794  *   Whether extended VLAN features are supported or not.
1795  * @param[out] error
1796  *   Pointer to error structure.
1797  *
1798  * @return
1799  *   0 on success, a negative errno value otherwise and rte_errno is set.
1800  */
1801 int
1802 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1803 			       uint64_t item_flags,
1804 			       uint8_t target_protocol,
1805 			       struct rte_flow_error *error)
1806 {
1807 	const struct rte_flow_item_icmp6 *mask = item->mask;
1808 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1809 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1810 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1811 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1812 				      MLX5_FLOW_LAYER_OUTER_L4;
1813 	int ret;
1814 
1815 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1816 		return rte_flow_error_set(error, EINVAL,
1817 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1818 					  "protocol filtering not compatible"
1819 					  " with ICMP6 layer");
1820 	if (!(item_flags & l3m))
1821 		return rte_flow_error_set(error, EINVAL,
1822 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1823 					  "IPv6 is mandatory to filter on"
1824 					  " ICMP6");
1825 	if (item_flags & l4m)
1826 		return rte_flow_error_set(error, EINVAL,
1827 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1828 					  "multiple L4 layers not supported");
1829 	if (!mask)
1830 		mask = &rte_flow_item_icmp6_mask;
1831 	ret = mlx5_flow_item_acceptable
1832 		(item, (const uint8_t *)mask,
1833 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1834 		 sizeof(struct rte_flow_item_icmp6),
1835 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1836 	if (ret < 0)
1837 		return ret;
1838 	return 0;
1839 }
1840 
1841 /**
1842  * Validate ICMP item.
1843  *
1844  * @param[in] item
1845  *   Item specification.
1846  * @param[in] item_flags
1847  *   Bit-fields that holds the items detected until now.
1848  * @param[out] error
1849  *   Pointer to error structure.
1850  *
1851  * @return
1852  *   0 on success, a negative errno value otherwise and rte_errno is set.
1853  */
1854 int
1855 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1856 			     uint64_t item_flags,
1857 			     uint8_t target_protocol,
1858 			     struct rte_flow_error *error)
1859 {
1860 	const struct rte_flow_item_icmp *mask = item->mask;
1861 	const struct rte_flow_item_icmp nic_mask = {
1862 		.hdr.icmp_type = 0xff,
1863 		.hdr.icmp_code = 0xff,
1864 		.hdr.icmp_ident = RTE_BE16(0xffff),
1865 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1866 	};
1867 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1868 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1869 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1870 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1871 				      MLX5_FLOW_LAYER_OUTER_L4;
1872 	int ret;
1873 
1874 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1875 		return rte_flow_error_set(error, EINVAL,
1876 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1877 					  "protocol filtering not compatible"
1878 					  " with ICMP layer");
1879 	if (!(item_flags & l3m))
1880 		return rte_flow_error_set(error, EINVAL,
1881 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1882 					  "IPv4 is mandatory to filter"
1883 					  " on ICMP");
1884 	if (item_flags & l4m)
1885 		return rte_flow_error_set(error, EINVAL,
1886 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1887 					  "multiple L4 layers not supported");
1888 	if (!mask)
1889 		mask = &nic_mask;
1890 	ret = mlx5_flow_item_acceptable
1891 		(item, (const uint8_t *)mask,
1892 		 (const uint8_t *)&nic_mask,
1893 		 sizeof(struct rte_flow_item_icmp),
1894 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1895 	if (ret < 0)
1896 		return ret;
1897 	return 0;
1898 }
1899 
1900 /**
1901  * Validate Ethernet item.
1902  *
1903  * @param[in] item
1904  *   Item specification.
1905  * @param[in] item_flags
1906  *   Bit-fields that holds the items detected until now.
1907  * @param[out] error
1908  *   Pointer to error structure.
1909  *
1910  * @return
1911  *   0 on success, a negative errno value otherwise and rte_errno is set.
1912  */
1913 int
1914 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1915 			    uint64_t item_flags, bool ext_vlan_sup,
1916 			    struct rte_flow_error *error)
1917 {
1918 	const struct rte_flow_item_eth *mask = item->mask;
1919 	const struct rte_flow_item_eth nic_mask = {
1920 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1921 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1922 		.type = RTE_BE16(0xffff),
1923 		.has_vlan = ext_vlan_sup ? 1 : 0,
1924 	};
1925 	int ret;
1926 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1927 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1928 				       MLX5_FLOW_LAYER_OUTER_L2;
1929 
1930 	if (item_flags & ethm)
1931 		return rte_flow_error_set(error, ENOTSUP,
1932 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1933 					  "multiple L2 layers not supported");
1934 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1935 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1936 		return rte_flow_error_set(error, EINVAL,
1937 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1938 					  "L2 layer should not follow "
1939 					  "L3 layers");
1940 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1941 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1942 		return rte_flow_error_set(error, EINVAL,
1943 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1944 					  "L2 layer should not follow VLAN");
1945 	if (!mask)
1946 		mask = &rte_flow_item_eth_mask;
1947 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1948 					(const uint8_t *)&nic_mask,
1949 					sizeof(struct rte_flow_item_eth),
1950 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1951 	return ret;
1952 }
1953 
1954 /**
1955  * Validate VLAN item.
1956  *
1957  * @param[in] item
1958  *   Item specification.
1959  * @param[in] item_flags
1960  *   Bit-fields that holds the items detected until now.
1961  * @param[in] dev
1962  *   Ethernet device flow is being created on.
1963  * @param[out] error
1964  *   Pointer to error structure.
1965  *
1966  * @return
1967  *   0 on success, a negative errno value otherwise and rte_errno is set.
1968  */
1969 int
1970 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1971 			     uint64_t item_flags,
1972 			     struct rte_eth_dev *dev,
1973 			     struct rte_flow_error *error)
1974 {
1975 	const struct rte_flow_item_vlan *spec = item->spec;
1976 	const struct rte_flow_item_vlan *mask = item->mask;
1977 	const struct rte_flow_item_vlan nic_mask = {
1978 		.tci = RTE_BE16(UINT16_MAX),
1979 		.inner_type = RTE_BE16(UINT16_MAX),
1980 	};
1981 	uint16_t vlan_tag = 0;
1982 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1983 	int ret;
1984 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1985 					MLX5_FLOW_LAYER_INNER_L4) :
1986 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1987 					MLX5_FLOW_LAYER_OUTER_L4);
1988 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1989 					MLX5_FLOW_LAYER_OUTER_VLAN;
1990 
1991 	if (item_flags & vlanm)
1992 		return rte_flow_error_set(error, EINVAL,
1993 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1994 					  "multiple VLAN layers not supported");
1995 	else if ((item_flags & l34m) != 0)
1996 		return rte_flow_error_set(error, EINVAL,
1997 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1998 					  "VLAN cannot follow L3/L4 layer");
1999 	if (!mask)
2000 		mask = &rte_flow_item_vlan_mask;
2001 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2002 					(const uint8_t *)&nic_mask,
2003 					sizeof(struct rte_flow_item_vlan),
2004 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2005 	if (ret)
2006 		return ret;
2007 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
2008 		struct mlx5_priv *priv = dev->data->dev_private;
2009 
2010 		if (priv->vmwa_context) {
2011 			/*
2012 			 * Non-NULL context means we have a virtual machine
2013 			 * and SR-IOV enabled, we have to create VLAN interface
2014 			 * to make hypervisor to setup E-Switch vport
2015 			 * context correctly. We avoid creating the multiple
2016 			 * VLAN interfaces, so we cannot support VLAN tag mask.
2017 			 */
2018 			return rte_flow_error_set(error, EINVAL,
2019 						  RTE_FLOW_ERROR_TYPE_ITEM,
2020 						  item,
2021 						  "VLAN tag mask is not"
2022 						  " supported in virtual"
2023 						  " environment");
2024 		}
2025 	}
2026 	if (spec) {
2027 		vlan_tag = spec->tci;
2028 		vlan_tag &= mask->tci;
2029 	}
2030 	/*
2031 	 * From verbs perspective an empty VLAN is equivalent
2032 	 * to a packet without VLAN layer.
2033 	 */
2034 	if (!vlan_tag)
2035 		return rte_flow_error_set(error, EINVAL,
2036 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
2037 					  item->spec,
2038 					  "VLAN cannot be empty");
2039 	return 0;
2040 }
2041 
2042 /**
2043  * Validate IPV4 item.
2044  *
2045  * @param[in] item
2046  *   Item specification.
2047  * @param[in] item_flags
2048  *   Bit-fields that holds the items detected until now.
2049  * @param[in] last_item
2050  *   Previous validated item in the pattern items.
2051  * @param[in] ether_type
2052  *   Type in the ethernet layer header (including dot1q).
2053  * @param[in] acc_mask
2054  *   Acceptable mask, if NULL default internal default mask
2055  *   will be used to check whether item fields are supported.
2056  * @param[in] range_accepted
2057  *   True if range of values is accepted for specific fields, false otherwise.
2058  * @param[out] error
2059  *   Pointer to error structure.
2060  *
2061  * @return
2062  *   0 on success, a negative errno value otherwise and rte_errno is set.
2063  */
2064 int
2065 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
2066 			     uint64_t item_flags,
2067 			     uint64_t last_item,
2068 			     uint16_t ether_type,
2069 			     const struct rte_flow_item_ipv4 *acc_mask,
2070 			     bool range_accepted,
2071 			     struct rte_flow_error *error)
2072 {
2073 	const struct rte_flow_item_ipv4 *mask = item->mask;
2074 	const struct rte_flow_item_ipv4 *spec = item->spec;
2075 	const struct rte_flow_item_ipv4 nic_mask = {
2076 		.hdr = {
2077 			.src_addr = RTE_BE32(0xffffffff),
2078 			.dst_addr = RTE_BE32(0xffffffff),
2079 			.type_of_service = 0xff,
2080 			.next_proto_id = 0xff,
2081 		},
2082 	};
2083 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2084 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2085 				      MLX5_FLOW_LAYER_OUTER_L3;
2086 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2087 				      MLX5_FLOW_LAYER_OUTER_L4;
2088 	int ret;
2089 	uint8_t next_proto = 0xFF;
2090 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2091 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2092 				  MLX5_FLOW_LAYER_INNER_VLAN);
2093 
2094 	if ((last_item & l2_vlan) && ether_type &&
2095 	    ether_type != RTE_ETHER_TYPE_IPV4)
2096 		return rte_flow_error_set(error, EINVAL,
2097 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2098 					  "IPv4 cannot follow L2/VLAN layer "
2099 					  "which ether type is not IPv4");
2100 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
2101 		if (mask && spec)
2102 			next_proto = mask->hdr.next_proto_id &
2103 				     spec->hdr.next_proto_id;
2104 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2105 			return rte_flow_error_set(error, EINVAL,
2106 						  RTE_FLOW_ERROR_TYPE_ITEM,
2107 						  item,
2108 						  "multiple tunnel "
2109 						  "not supported");
2110 	}
2111 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2112 		return rte_flow_error_set(error, EINVAL,
2113 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2114 					  "wrong tunnel type - IPv6 specified "
2115 					  "but IPv4 item provided");
2116 	if (item_flags & l3m)
2117 		return rte_flow_error_set(error, ENOTSUP,
2118 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2119 					  "multiple L3 layers not supported");
2120 	else if (item_flags & l4m)
2121 		return rte_flow_error_set(error, EINVAL,
2122 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2123 					  "L3 cannot follow an L4 layer.");
2124 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2125 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2126 		return rte_flow_error_set(error, EINVAL,
2127 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2128 					  "L3 cannot follow an NVGRE layer.");
2129 	if (!mask)
2130 		mask = &rte_flow_item_ipv4_mask;
2131 	else if (mask->hdr.next_proto_id != 0 &&
2132 		 mask->hdr.next_proto_id != 0xff)
2133 		return rte_flow_error_set(error, EINVAL,
2134 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2135 					  "partial mask is not supported"
2136 					  " for protocol");
2137 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2138 					acc_mask ? (const uint8_t *)acc_mask
2139 						 : (const uint8_t *)&nic_mask,
2140 					sizeof(struct rte_flow_item_ipv4),
2141 					range_accepted, error);
2142 	if (ret < 0)
2143 		return ret;
2144 	return 0;
2145 }
2146 
2147 /**
2148  * Validate IPV6 item.
2149  *
2150  * @param[in] item
2151  *   Item specification.
2152  * @param[in] item_flags
2153  *   Bit-fields that holds the items detected until now.
2154  * @param[in] last_item
2155  *   Previous validated item in the pattern items.
2156  * @param[in] ether_type
2157  *   Type in the ethernet layer header (including dot1q).
2158  * @param[in] acc_mask
2159  *   Acceptable mask, if NULL default internal default mask
2160  *   will be used to check whether item fields are supported.
2161  * @param[out] error
2162  *   Pointer to error structure.
2163  *
2164  * @return
2165  *   0 on success, a negative errno value otherwise and rte_errno is set.
2166  */
2167 int
2168 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2169 			     uint64_t item_flags,
2170 			     uint64_t last_item,
2171 			     uint16_t ether_type,
2172 			     const struct rte_flow_item_ipv6 *acc_mask,
2173 			     struct rte_flow_error *error)
2174 {
2175 	const struct rte_flow_item_ipv6 *mask = item->mask;
2176 	const struct rte_flow_item_ipv6 *spec = item->spec;
2177 	const struct rte_flow_item_ipv6 nic_mask = {
2178 		.hdr = {
2179 			.src_addr =
2180 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2181 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2182 			.dst_addr =
2183 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2184 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2185 			.vtc_flow = RTE_BE32(0xffffffff),
2186 			.proto = 0xff,
2187 		},
2188 	};
2189 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2190 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2191 				      MLX5_FLOW_LAYER_OUTER_L3;
2192 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2193 				      MLX5_FLOW_LAYER_OUTER_L4;
2194 	int ret;
2195 	uint8_t next_proto = 0xFF;
2196 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2197 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2198 				  MLX5_FLOW_LAYER_INNER_VLAN);
2199 
2200 	if ((last_item & l2_vlan) && ether_type &&
2201 	    ether_type != RTE_ETHER_TYPE_IPV6)
2202 		return rte_flow_error_set(error, EINVAL,
2203 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2204 					  "IPv6 cannot follow L2/VLAN layer "
2205 					  "which ether type is not IPv6");
2206 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2207 		next_proto = spec->hdr.proto;
2208 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
2209 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2210 			return rte_flow_error_set(error, EINVAL,
2211 						  RTE_FLOW_ERROR_TYPE_ITEM,
2212 						  item,
2213 						  "multiple tunnel "
2214 						  "not supported");
2215 	}
2216 	if (next_proto == IPPROTO_HOPOPTS  ||
2217 	    next_proto == IPPROTO_ROUTING  ||
2218 	    next_proto == IPPROTO_FRAGMENT ||
2219 	    next_proto == IPPROTO_ESP	   ||
2220 	    next_proto == IPPROTO_AH	   ||
2221 	    next_proto == IPPROTO_DSTOPTS)
2222 		return rte_flow_error_set(error, EINVAL,
2223 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2224 					  "IPv6 proto (next header) should "
2225 					  "not be set as extension header");
2226 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2227 		return rte_flow_error_set(error, EINVAL,
2228 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2229 					  "wrong tunnel type - IPv4 specified "
2230 					  "but IPv6 item provided");
2231 	if (item_flags & l3m)
2232 		return rte_flow_error_set(error, ENOTSUP,
2233 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2234 					  "multiple L3 layers not supported");
2235 	else if (item_flags & l4m)
2236 		return rte_flow_error_set(error, EINVAL,
2237 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2238 					  "L3 cannot follow an L4 layer.");
2239 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2240 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2241 		return rte_flow_error_set(error, EINVAL,
2242 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2243 					  "L3 cannot follow an NVGRE layer.");
2244 	if (!mask)
2245 		mask = &rte_flow_item_ipv6_mask;
2246 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2247 					acc_mask ? (const uint8_t *)acc_mask
2248 						 : (const uint8_t *)&nic_mask,
2249 					sizeof(struct rte_flow_item_ipv6),
2250 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2251 	if (ret < 0)
2252 		return ret;
2253 	return 0;
2254 }
2255 
2256 /**
2257  * Validate UDP item.
2258  *
2259  * @param[in] item
2260  *   Item specification.
2261  * @param[in] item_flags
2262  *   Bit-fields that holds the items detected until now.
2263  * @param[in] target_protocol
2264  *   The next protocol in the previous item.
2265  * @param[in] flow_mask
2266  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2267  * @param[out] error
2268  *   Pointer to error structure.
2269  *
2270  * @return
2271  *   0 on success, a negative errno value otherwise and rte_errno is set.
2272  */
2273 int
2274 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2275 			    uint64_t item_flags,
2276 			    uint8_t target_protocol,
2277 			    struct rte_flow_error *error)
2278 {
2279 	const struct rte_flow_item_udp *mask = item->mask;
2280 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2281 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2282 				      MLX5_FLOW_LAYER_OUTER_L3;
2283 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2284 				      MLX5_FLOW_LAYER_OUTER_L4;
2285 	int ret;
2286 
2287 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2288 		return rte_flow_error_set(error, EINVAL,
2289 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2290 					  "protocol filtering not compatible"
2291 					  " with UDP layer");
2292 	if (!(item_flags & l3m))
2293 		return rte_flow_error_set(error, EINVAL,
2294 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2295 					  "L3 is mandatory to filter on L4");
2296 	if (item_flags & l4m)
2297 		return rte_flow_error_set(error, EINVAL,
2298 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2299 					  "multiple L4 layers not supported");
2300 	if (!mask)
2301 		mask = &rte_flow_item_udp_mask;
2302 	ret = mlx5_flow_item_acceptable
2303 		(item, (const uint8_t *)mask,
2304 		 (const uint8_t *)&rte_flow_item_udp_mask,
2305 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2306 		 error);
2307 	if (ret < 0)
2308 		return ret;
2309 	return 0;
2310 }
2311 
2312 /**
2313  * Validate TCP item.
2314  *
2315  * @param[in] item
2316  *   Item specification.
2317  * @param[in] item_flags
2318  *   Bit-fields that holds the items detected until now.
2319  * @param[in] target_protocol
2320  *   The next protocol in the previous item.
2321  * @param[out] error
2322  *   Pointer to error structure.
2323  *
2324  * @return
2325  *   0 on success, a negative errno value otherwise and rte_errno is set.
2326  */
2327 int
2328 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2329 			    uint64_t item_flags,
2330 			    uint8_t target_protocol,
2331 			    const struct rte_flow_item_tcp *flow_mask,
2332 			    struct rte_flow_error *error)
2333 {
2334 	const struct rte_flow_item_tcp *mask = item->mask;
2335 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2336 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2337 				      MLX5_FLOW_LAYER_OUTER_L3;
2338 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2339 				      MLX5_FLOW_LAYER_OUTER_L4;
2340 	int ret;
2341 
2342 	MLX5_ASSERT(flow_mask);
2343 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2344 		return rte_flow_error_set(error, EINVAL,
2345 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2346 					  "protocol filtering not compatible"
2347 					  " with TCP layer");
2348 	if (!(item_flags & l3m))
2349 		return rte_flow_error_set(error, EINVAL,
2350 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2351 					  "L3 is mandatory to filter on L4");
2352 	if (item_flags & l4m)
2353 		return rte_flow_error_set(error, EINVAL,
2354 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2355 					  "multiple L4 layers not supported");
2356 	if (!mask)
2357 		mask = &rte_flow_item_tcp_mask;
2358 	ret = mlx5_flow_item_acceptable
2359 		(item, (const uint8_t *)mask,
2360 		 (const uint8_t *)flow_mask,
2361 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2362 		 error);
2363 	if (ret < 0)
2364 		return ret;
2365 	return 0;
2366 }
2367 
2368 /**
2369  * Validate VXLAN item.
2370  *
2371  * @param[in] item
2372  *   Item specification.
2373  * @param[in] item_flags
2374  *   Bit-fields that holds the items detected until now.
2375  * @param[in] target_protocol
2376  *   The next protocol in the previous item.
2377  * @param[out] error
2378  *   Pointer to error structure.
2379  *
2380  * @return
2381  *   0 on success, a negative errno value otherwise and rte_errno is set.
2382  */
2383 int
2384 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2385 			      uint64_t item_flags,
2386 			      struct rte_flow_error *error)
2387 {
2388 	const struct rte_flow_item_vxlan *spec = item->spec;
2389 	const struct rte_flow_item_vxlan *mask = item->mask;
2390 	int ret;
2391 	union vni {
2392 		uint32_t vlan_id;
2393 		uint8_t vni[4];
2394 	} id = { .vlan_id = 0, };
2395 
2396 
2397 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2398 		return rte_flow_error_set(error, ENOTSUP,
2399 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2400 					  "multiple tunnel layers not"
2401 					  " supported");
2402 	/*
2403 	 * Verify only UDPv4 is present as defined in
2404 	 * https://tools.ietf.org/html/rfc7348
2405 	 */
2406 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2407 		return rte_flow_error_set(error, EINVAL,
2408 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2409 					  "no outer UDP layer found");
2410 	if (!mask)
2411 		mask = &rte_flow_item_vxlan_mask;
2412 	ret = mlx5_flow_item_acceptable
2413 		(item, (const uint8_t *)mask,
2414 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
2415 		 sizeof(struct rte_flow_item_vxlan),
2416 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2417 	if (ret < 0)
2418 		return ret;
2419 	if (spec) {
2420 		memcpy(&id.vni[1], spec->vni, 3);
2421 		memcpy(&id.vni[1], mask->vni, 3);
2422 	}
2423 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2424 		return rte_flow_error_set(error, ENOTSUP,
2425 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2426 					  "VXLAN tunnel must be fully defined");
2427 	return 0;
2428 }
2429 
2430 /**
2431  * Validate VXLAN_GPE item.
2432  *
2433  * @param[in] item
2434  *   Item specification.
2435  * @param[in] item_flags
2436  *   Bit-fields that holds the items detected until now.
2437  * @param[in] priv
2438  *   Pointer to the private data structure.
2439  * @param[in] target_protocol
2440  *   The next protocol in the previous item.
2441  * @param[out] error
2442  *   Pointer to error structure.
2443  *
2444  * @return
2445  *   0 on success, a negative errno value otherwise and rte_errno is set.
2446  */
2447 int
2448 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2449 				  uint64_t item_flags,
2450 				  struct rte_eth_dev *dev,
2451 				  struct rte_flow_error *error)
2452 {
2453 	struct mlx5_priv *priv = dev->data->dev_private;
2454 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2455 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2456 	int ret;
2457 	union vni {
2458 		uint32_t vlan_id;
2459 		uint8_t vni[4];
2460 	} id = { .vlan_id = 0, };
2461 
2462 	if (!priv->config.l3_vxlan_en)
2463 		return rte_flow_error_set(error, ENOTSUP,
2464 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2465 					  "L3 VXLAN is not enabled by device"
2466 					  " parameter and/or not configured in"
2467 					  " firmware");
2468 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2469 		return rte_flow_error_set(error, ENOTSUP,
2470 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2471 					  "multiple tunnel layers not"
2472 					  " supported");
2473 	/*
2474 	 * Verify only UDPv4 is present as defined in
2475 	 * https://tools.ietf.org/html/rfc7348
2476 	 */
2477 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2478 		return rte_flow_error_set(error, EINVAL,
2479 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2480 					  "no outer UDP layer found");
2481 	if (!mask)
2482 		mask = &rte_flow_item_vxlan_gpe_mask;
2483 	ret = mlx5_flow_item_acceptable
2484 		(item, (const uint8_t *)mask,
2485 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2486 		 sizeof(struct rte_flow_item_vxlan_gpe),
2487 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2488 	if (ret < 0)
2489 		return ret;
2490 	if (spec) {
2491 		if (spec->protocol)
2492 			return rte_flow_error_set(error, ENOTSUP,
2493 						  RTE_FLOW_ERROR_TYPE_ITEM,
2494 						  item,
2495 						  "VxLAN-GPE protocol"
2496 						  " not supported");
2497 		memcpy(&id.vni[1], spec->vni, 3);
2498 		memcpy(&id.vni[1], mask->vni, 3);
2499 	}
2500 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2501 		return rte_flow_error_set(error, ENOTSUP,
2502 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2503 					  "VXLAN-GPE tunnel must be fully"
2504 					  " defined");
2505 	return 0;
2506 }
2507 /**
2508  * Validate GRE Key item.
2509  *
2510  * @param[in] item
2511  *   Item specification.
2512  * @param[in] item_flags
2513  *   Bit flags to mark detected items.
2514  * @param[in] gre_item
2515  *   Pointer to gre_item
2516  * @param[out] error
2517  *   Pointer to error structure.
2518  *
2519  * @return
2520  *   0 on success, a negative errno value otherwise and rte_errno is set.
2521  */
2522 int
2523 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2524 				uint64_t item_flags,
2525 				const struct rte_flow_item *gre_item,
2526 				struct rte_flow_error *error)
2527 {
2528 	const rte_be32_t *mask = item->mask;
2529 	int ret = 0;
2530 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2531 	const struct rte_flow_item_gre *gre_spec;
2532 	const struct rte_flow_item_gre *gre_mask;
2533 
2534 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2535 		return rte_flow_error_set(error, ENOTSUP,
2536 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2537 					  "Multiple GRE key not support");
2538 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2539 		return rte_flow_error_set(error, ENOTSUP,
2540 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2541 					  "No preceding GRE header");
2542 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2543 		return rte_flow_error_set(error, ENOTSUP,
2544 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2545 					  "GRE key following a wrong item");
2546 	gre_mask = gre_item->mask;
2547 	if (!gre_mask)
2548 		gre_mask = &rte_flow_item_gre_mask;
2549 	gre_spec = gre_item->spec;
2550 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2551 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2552 		return rte_flow_error_set(error, EINVAL,
2553 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2554 					  "Key bit must be on");
2555 
2556 	if (!mask)
2557 		mask = &gre_key_default_mask;
2558 	ret = mlx5_flow_item_acceptable
2559 		(item, (const uint8_t *)mask,
2560 		 (const uint8_t *)&gre_key_default_mask,
2561 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2562 	return ret;
2563 }
2564 
2565 /**
2566  * Validate GRE item.
2567  *
2568  * @param[in] item
2569  *   Item specification.
2570  * @param[in] item_flags
2571  *   Bit flags to mark detected items.
2572  * @param[in] target_protocol
2573  *   The next protocol in the previous item.
2574  * @param[out] error
2575  *   Pointer to error structure.
2576  *
2577  * @return
2578  *   0 on success, a negative errno value otherwise and rte_errno is set.
2579  */
2580 int
2581 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2582 			    uint64_t item_flags,
2583 			    uint8_t target_protocol,
2584 			    struct rte_flow_error *error)
2585 {
2586 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2587 	const struct rte_flow_item_gre *mask = item->mask;
2588 	int ret;
2589 	const struct rte_flow_item_gre nic_mask = {
2590 		.c_rsvd0_ver = RTE_BE16(0xB000),
2591 		.protocol = RTE_BE16(UINT16_MAX),
2592 	};
2593 
2594 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2595 		return rte_flow_error_set(error, EINVAL,
2596 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2597 					  "protocol filtering not compatible"
2598 					  " with this GRE layer");
2599 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2600 		return rte_flow_error_set(error, ENOTSUP,
2601 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2602 					  "multiple tunnel layers not"
2603 					  " supported");
2604 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2605 		return rte_flow_error_set(error, ENOTSUP,
2606 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2607 					  "L3 Layer is missing");
2608 	if (!mask)
2609 		mask = &rte_flow_item_gre_mask;
2610 	ret = mlx5_flow_item_acceptable
2611 		(item, (const uint8_t *)mask,
2612 		 (const uint8_t *)&nic_mask,
2613 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2614 		 error);
2615 	if (ret < 0)
2616 		return ret;
2617 #ifndef HAVE_MLX5DV_DR
2618 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2619 	if (spec && (spec->protocol & mask->protocol))
2620 		return rte_flow_error_set(error, ENOTSUP,
2621 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2622 					  "without MPLS support the"
2623 					  " specification cannot be used for"
2624 					  " filtering");
2625 #endif
2626 #endif
2627 	return 0;
2628 }
2629 
2630 /**
2631  * Validate Geneve item.
2632  *
2633  * @param[in] item
2634  *   Item specification.
2635  * @param[in] itemFlags
2636  *   Bit-fields that holds the items detected until now.
2637  * @param[in] enPriv
2638  *   Pointer to the private data structure.
2639  * @param[out] error
2640  *   Pointer to error structure.
2641  *
2642  * @return
2643  *   0 on success, a negative errno value otherwise and rte_errno is set.
2644  */
2645 
2646 int
2647 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2648 			       uint64_t item_flags,
2649 			       struct rte_eth_dev *dev,
2650 			       struct rte_flow_error *error)
2651 {
2652 	struct mlx5_priv *priv = dev->data->dev_private;
2653 	const struct rte_flow_item_geneve *spec = item->spec;
2654 	const struct rte_flow_item_geneve *mask = item->mask;
2655 	int ret;
2656 	uint16_t gbhdr;
2657 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2658 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2659 	const struct rte_flow_item_geneve nic_mask = {
2660 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2661 		.vni = "\xff\xff\xff",
2662 		.protocol = RTE_BE16(UINT16_MAX),
2663 	};
2664 
2665 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2666 		return rte_flow_error_set(error, ENOTSUP,
2667 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2668 					  "L3 Geneve is not enabled by device"
2669 					  " parameter and/or not configured in"
2670 					  " firmware");
2671 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2672 		return rte_flow_error_set(error, ENOTSUP,
2673 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2674 					  "multiple tunnel layers not"
2675 					  " supported");
2676 	/*
2677 	 * Verify only UDPv4 is present as defined in
2678 	 * https://tools.ietf.org/html/rfc7348
2679 	 */
2680 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2681 		return rte_flow_error_set(error, EINVAL,
2682 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2683 					  "no outer UDP layer found");
2684 	if (!mask)
2685 		mask = &rte_flow_item_geneve_mask;
2686 	ret = mlx5_flow_item_acceptable
2687 				  (item, (const uint8_t *)mask,
2688 				   (const uint8_t *)&nic_mask,
2689 				   sizeof(struct rte_flow_item_geneve),
2690 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2691 	if (ret)
2692 		return ret;
2693 	if (spec) {
2694 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2695 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2696 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2697 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2698 			return rte_flow_error_set(error, ENOTSUP,
2699 						  RTE_FLOW_ERROR_TYPE_ITEM,
2700 						  item,
2701 						  "Geneve protocol unsupported"
2702 						  " fields are being used");
2703 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2704 			return rte_flow_error_set
2705 					(error, ENOTSUP,
2706 					 RTE_FLOW_ERROR_TYPE_ITEM,
2707 					 item,
2708 					 "Unsupported Geneve options length");
2709 	}
2710 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2711 		return rte_flow_error_set
2712 				    (error, ENOTSUP,
2713 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2714 				     "Geneve tunnel must be fully defined");
2715 	return 0;
2716 }
2717 
2718 /**
2719  * Validate Geneve TLV option item.
2720  *
2721  * @param[in] item
2722  *   Item specification.
2723  * @param[in] last_item
2724  *   Previous validated item in the pattern items.
2725  * @param[in] geneve_item
2726  *   Previous GENEVE item specification.
2727  * @param[in] dev
2728  *   Pointer to the rte_eth_dev structure.
2729  * @param[out] error
2730  *   Pointer to error structure.
2731  *
2732  * @return
2733  *   0 on success, a negative errno value otherwise and rte_errno is set.
2734  */
2735 int
2736 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item,
2737 				   uint64_t last_item,
2738 				   const struct rte_flow_item *geneve_item,
2739 				   struct rte_eth_dev *dev,
2740 				   struct rte_flow_error *error)
2741 {
2742 	struct mlx5_priv *priv = dev->data->dev_private;
2743 	struct mlx5_dev_ctx_shared *sh = priv->sh;
2744 	struct mlx5_geneve_tlv_option_resource *geneve_opt_resource;
2745 	struct mlx5_hca_attr *hca_attr = &priv->config.hca_attr;
2746 	uint8_t data_max_supported =
2747 			hca_attr->max_geneve_tlv_option_data_len * 4;
2748 	struct mlx5_dev_config *config = &priv->config;
2749 	const struct rte_flow_item_geneve *geneve_spec;
2750 	const struct rte_flow_item_geneve *geneve_mask;
2751 	const struct rte_flow_item_geneve_opt *spec = item->spec;
2752 	const struct rte_flow_item_geneve_opt *mask = item->mask;
2753 	unsigned int i;
2754 	unsigned int data_len;
2755 	uint8_t tlv_option_len;
2756 	uint16_t optlen_m, optlen_v;
2757 	const struct rte_flow_item_geneve_opt full_mask = {
2758 		.option_class = RTE_BE16(0xffff),
2759 		.option_type = 0xff,
2760 		.option_len = 0x1f,
2761 	};
2762 
2763 	if (!mask)
2764 		mask = &rte_flow_item_geneve_opt_mask;
2765 	if (!spec)
2766 		return rte_flow_error_set
2767 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2768 			"Geneve TLV opt class/type/length must be specified");
2769 	if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK)
2770 		return rte_flow_error_set
2771 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2772 			"Geneve TLV opt length exceeeds the limit (31)");
2773 	/* Check if class type and length masks are full. */
2774 	if (full_mask.option_class != mask->option_class ||
2775 	    full_mask.option_type != mask->option_type ||
2776 	    full_mask.option_len != (mask->option_len & full_mask.option_len))
2777 		return rte_flow_error_set
2778 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2779 			"Geneve TLV opt class/type/length masks must be full");
2780 	/* Check if length is supported */
2781 	if ((uint32_t)spec->option_len >
2782 			config->hca_attr.max_geneve_tlv_option_data_len)
2783 		return rte_flow_error_set
2784 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2785 			"Geneve TLV opt length not supported");
2786 	if (config->hca_attr.max_geneve_tlv_options > 1)
2787 		DRV_LOG(DEBUG,
2788 			"max_geneve_tlv_options supports more than 1 option");
2789 	/* Check GENEVE item preceding. */
2790 	if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE))
2791 		return rte_flow_error_set
2792 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2793 			"Geneve opt item must be preceded with Geneve item");
2794 	geneve_spec = geneve_item->spec;
2795 	geneve_mask = geneve_item->mask ? geneve_item->mask :
2796 					  &rte_flow_item_geneve_mask;
2797 	/* Check if GENEVE TLV option size doesn't exceed option length */
2798 	if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 ||
2799 			    geneve_spec->ver_opt_len_o_c_rsvd0)) {
2800 		tlv_option_len = spec->option_len & mask->option_len;
2801 		optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0);
2802 		optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v);
2803 		optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0);
2804 		optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m);
2805 		if ((optlen_v & optlen_m) <= tlv_option_len)
2806 			return rte_flow_error_set
2807 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2808 				 "GENEVE TLV option length exceeds optlen");
2809 	}
2810 	/* Check if length is 0 or data is 0. */
2811 	if (spec->data == NULL || spec->option_len == 0)
2812 		return rte_flow_error_set
2813 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2814 			"Geneve TLV opt with zero data/length not supported");
2815 	/* Check not all data & mask are 0. */
2816 	data_len = spec->option_len * 4;
2817 	if (mask->data == NULL) {
2818 		for (i = 0; i < data_len; i++)
2819 			if (spec->data[i])
2820 				break;
2821 		if (i == data_len)
2822 			return rte_flow_error_set(error, ENOTSUP,
2823 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2824 				"Can't match on Geneve option data 0");
2825 	} else {
2826 		for (i = 0; i < data_len; i++)
2827 			if (spec->data[i] & mask->data[i])
2828 				break;
2829 		if (i == data_len)
2830 			return rte_flow_error_set(error, ENOTSUP,
2831 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2832 				"Can't match on Geneve option data and mask 0");
2833 		/* Check data mask supported. */
2834 		for (i = data_max_supported; i < data_len ; i++)
2835 			if (mask->data[i])
2836 				return rte_flow_error_set(error, ENOTSUP,
2837 					RTE_FLOW_ERROR_TYPE_ITEM, item,
2838 					"Data mask is of unsupported size");
2839 	}
2840 	/* Check GENEVE option is supported in NIC. */
2841 	if (!config->hca_attr.geneve_tlv_opt)
2842 		return rte_flow_error_set
2843 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2844 			"Geneve TLV opt not supported");
2845 	/* Check if we already have geneve option with different type/class. */
2846 	rte_spinlock_lock(&sh->geneve_tlv_opt_sl);
2847 	geneve_opt_resource = sh->geneve_tlv_option_resource;
2848 	if (geneve_opt_resource != NULL)
2849 		if (geneve_opt_resource->option_class != spec->option_class ||
2850 		    geneve_opt_resource->option_type != spec->option_type ||
2851 		    geneve_opt_resource->length != spec->option_len) {
2852 			rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2853 			return rte_flow_error_set(error, ENOTSUP,
2854 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2855 				"Only one Geneve TLV option supported");
2856 		}
2857 	rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2858 	return 0;
2859 }
2860 
2861 /**
2862  * Validate MPLS item.
2863  *
2864  * @param[in] dev
2865  *   Pointer to the rte_eth_dev structure.
2866  * @param[in] item
2867  *   Item specification.
2868  * @param[in] item_flags
2869  *   Bit-fields that holds the items detected until now.
2870  * @param[in] prev_layer
2871  *   The protocol layer indicated in previous item.
2872  * @param[out] error
2873  *   Pointer to error structure.
2874  *
2875  * @return
2876  *   0 on success, a negative errno value otherwise and rte_errno is set.
2877  */
2878 int
2879 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2880 			     const struct rte_flow_item *item __rte_unused,
2881 			     uint64_t item_flags __rte_unused,
2882 			     uint64_t prev_layer __rte_unused,
2883 			     struct rte_flow_error *error)
2884 {
2885 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2886 	const struct rte_flow_item_mpls *mask = item->mask;
2887 	struct mlx5_priv *priv = dev->data->dev_private;
2888 	int ret;
2889 
2890 	if (!priv->config.mpls_en)
2891 		return rte_flow_error_set(error, ENOTSUP,
2892 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2893 					  "MPLS not supported or"
2894 					  " disabled in firmware"
2895 					  " configuration.");
2896 	/* MPLS over IP, UDP, GRE is allowed */
2897 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2898 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2899 			    MLX5_FLOW_LAYER_GRE |
2900 			    MLX5_FLOW_LAYER_GRE_KEY)))
2901 		return rte_flow_error_set(error, EINVAL,
2902 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2903 					  "protocol filtering not compatible"
2904 					  " with MPLS layer");
2905 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2906 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2907 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2908 		return rte_flow_error_set(error, ENOTSUP,
2909 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2910 					  "multiple tunnel layers not"
2911 					  " supported");
2912 	if (!mask)
2913 		mask = &rte_flow_item_mpls_mask;
2914 	ret = mlx5_flow_item_acceptable
2915 		(item, (const uint8_t *)mask,
2916 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2917 		 sizeof(struct rte_flow_item_mpls),
2918 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2919 	if (ret < 0)
2920 		return ret;
2921 	return 0;
2922 #else
2923 	return rte_flow_error_set(error, ENOTSUP,
2924 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2925 				  "MPLS is not supported by Verbs, please"
2926 				  " update.");
2927 #endif
2928 }
2929 
2930 /**
2931  * Validate NVGRE item.
2932  *
2933  * @param[in] item
2934  *   Item specification.
2935  * @param[in] item_flags
2936  *   Bit flags to mark detected items.
2937  * @param[in] target_protocol
2938  *   The next protocol in the previous item.
2939  * @param[out] error
2940  *   Pointer to error structure.
2941  *
2942  * @return
2943  *   0 on success, a negative errno value otherwise and rte_errno is set.
2944  */
2945 int
2946 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2947 			      uint64_t item_flags,
2948 			      uint8_t target_protocol,
2949 			      struct rte_flow_error *error)
2950 {
2951 	const struct rte_flow_item_nvgre *mask = item->mask;
2952 	int ret;
2953 
2954 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2955 		return rte_flow_error_set(error, EINVAL,
2956 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2957 					  "protocol filtering not compatible"
2958 					  " with this GRE layer");
2959 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2960 		return rte_flow_error_set(error, ENOTSUP,
2961 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2962 					  "multiple tunnel layers not"
2963 					  " supported");
2964 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2965 		return rte_flow_error_set(error, ENOTSUP,
2966 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2967 					  "L3 Layer is missing");
2968 	if (!mask)
2969 		mask = &rte_flow_item_nvgre_mask;
2970 	ret = mlx5_flow_item_acceptable
2971 		(item, (const uint8_t *)mask,
2972 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2973 		 sizeof(struct rte_flow_item_nvgre),
2974 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2975 	if (ret < 0)
2976 		return ret;
2977 	return 0;
2978 }
2979 
2980 /**
2981  * Validate eCPRI item.
2982  *
2983  * @param[in] item
2984  *   Item specification.
2985  * @param[in] item_flags
2986  *   Bit-fields that holds the items detected until now.
2987  * @param[in] last_item
2988  *   Previous validated item in the pattern items.
2989  * @param[in] ether_type
2990  *   Type in the ethernet layer header (including dot1q).
2991  * @param[in] acc_mask
2992  *   Acceptable mask, if NULL default internal default mask
2993  *   will be used to check whether item fields are supported.
2994  * @param[out] error
2995  *   Pointer to error structure.
2996  *
2997  * @return
2998  *   0 on success, a negative errno value otherwise and rte_errno is set.
2999  */
3000 int
3001 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
3002 			      uint64_t item_flags,
3003 			      uint64_t last_item,
3004 			      uint16_t ether_type,
3005 			      const struct rte_flow_item_ecpri *acc_mask,
3006 			      struct rte_flow_error *error)
3007 {
3008 	const struct rte_flow_item_ecpri *mask = item->mask;
3009 	const struct rte_flow_item_ecpri nic_mask = {
3010 		.hdr = {
3011 			.common = {
3012 				.u32 =
3013 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
3014 					.type = 0xFF,
3015 					}).u32),
3016 			},
3017 			.dummy[0] = 0xFFFFFFFF,
3018 		},
3019 	};
3020 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
3021 					MLX5_FLOW_LAYER_OUTER_VLAN);
3022 	struct rte_flow_item_ecpri mask_lo;
3023 
3024 	if (!(last_item & outer_l2_vlan) &&
3025 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
3026 		return rte_flow_error_set(error, EINVAL,
3027 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3028 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
3029 	if ((last_item & outer_l2_vlan) && ether_type &&
3030 	    ether_type != RTE_ETHER_TYPE_ECPRI)
3031 		return rte_flow_error_set(error, EINVAL,
3032 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3033 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
3034 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3035 		return rte_flow_error_set(error, EINVAL,
3036 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3037 					  "eCPRI with tunnel is not supported right now");
3038 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
3039 		return rte_flow_error_set(error, ENOTSUP,
3040 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3041 					  "multiple L3 layers not supported");
3042 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
3043 		return rte_flow_error_set(error, EINVAL,
3044 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3045 					  "eCPRI cannot coexist with a TCP layer");
3046 	/* In specification, eCPRI could be over UDP layer. */
3047 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
3048 		return rte_flow_error_set(error, EINVAL,
3049 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3050 					  "eCPRI over UDP layer is not yet supported right now");
3051 	/* Mask for type field in common header could be zero. */
3052 	if (!mask)
3053 		mask = &rte_flow_item_ecpri_mask;
3054 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
3055 	/* Input mask is in big-endian format. */
3056 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
3057 		return rte_flow_error_set(error, EINVAL,
3058 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3059 					  "partial mask is not supported for protocol");
3060 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
3061 		return rte_flow_error_set(error, EINVAL,
3062 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3063 					  "message header mask must be after a type mask");
3064 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
3065 					 acc_mask ? (const uint8_t *)acc_mask
3066 						  : (const uint8_t *)&nic_mask,
3067 					 sizeof(struct rte_flow_item_ecpri),
3068 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3069 }
3070 
3071 /**
3072  * Release resource related QUEUE/RSS action split.
3073  *
3074  * @param dev
3075  *   Pointer to Ethernet device.
3076  * @param flow
3077  *   Flow to release id's from.
3078  */
3079 static void
3080 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
3081 			     struct rte_flow *flow)
3082 {
3083 	struct mlx5_priv *priv = dev->data->dev_private;
3084 	uint32_t handle_idx;
3085 	struct mlx5_flow_handle *dev_handle;
3086 
3087 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
3088 		       handle_idx, dev_handle, next)
3089 		if (dev_handle->split_flow_id &&
3090 		    !dev_handle->is_meter_flow_id)
3091 			mlx5_ipool_free(priv->sh->ipool
3092 					[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
3093 					dev_handle->split_flow_id);
3094 }
3095 
3096 static int
3097 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
3098 		   const struct rte_flow_attr *attr __rte_unused,
3099 		   const struct rte_flow_item items[] __rte_unused,
3100 		   const struct rte_flow_action actions[] __rte_unused,
3101 		   bool external __rte_unused,
3102 		   int hairpin __rte_unused,
3103 		   struct rte_flow_error *error)
3104 {
3105 	return rte_flow_error_set(error, ENOTSUP,
3106 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3107 }
3108 
3109 static struct mlx5_flow *
3110 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
3111 		  const struct rte_flow_attr *attr __rte_unused,
3112 		  const struct rte_flow_item items[] __rte_unused,
3113 		  const struct rte_flow_action actions[] __rte_unused,
3114 		  struct rte_flow_error *error)
3115 {
3116 	rte_flow_error_set(error, ENOTSUP,
3117 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3118 	return NULL;
3119 }
3120 
3121 static int
3122 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
3123 		    struct mlx5_flow *dev_flow __rte_unused,
3124 		    const struct rte_flow_attr *attr __rte_unused,
3125 		    const struct rte_flow_item items[] __rte_unused,
3126 		    const struct rte_flow_action actions[] __rte_unused,
3127 		    struct rte_flow_error *error)
3128 {
3129 	return rte_flow_error_set(error, ENOTSUP,
3130 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3131 }
3132 
3133 static int
3134 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
3135 		struct rte_flow *flow __rte_unused,
3136 		struct rte_flow_error *error)
3137 {
3138 	return rte_flow_error_set(error, ENOTSUP,
3139 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3140 }
3141 
3142 static void
3143 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
3144 		 struct rte_flow *flow __rte_unused)
3145 {
3146 }
3147 
3148 static void
3149 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
3150 		  struct rte_flow *flow __rte_unused)
3151 {
3152 }
3153 
3154 static int
3155 flow_null_query(struct rte_eth_dev *dev __rte_unused,
3156 		struct rte_flow *flow __rte_unused,
3157 		const struct rte_flow_action *actions __rte_unused,
3158 		void *data __rte_unused,
3159 		struct rte_flow_error *error)
3160 {
3161 	return rte_flow_error_set(error, ENOTSUP,
3162 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3163 }
3164 
3165 static int
3166 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
3167 		      uint32_t domains __rte_unused,
3168 		      uint32_t flags __rte_unused)
3169 {
3170 	return 0;
3171 }
3172 
3173 /* Void driver to protect from null pointer reference. */
3174 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
3175 	.validate = flow_null_validate,
3176 	.prepare = flow_null_prepare,
3177 	.translate = flow_null_translate,
3178 	.apply = flow_null_apply,
3179 	.remove = flow_null_remove,
3180 	.destroy = flow_null_destroy,
3181 	.query = flow_null_query,
3182 	.sync_domain = flow_null_sync_domain,
3183 };
3184 
3185 /**
3186  * Select flow driver type according to flow attributes and device
3187  * configuration.
3188  *
3189  * @param[in] dev
3190  *   Pointer to the dev structure.
3191  * @param[in] attr
3192  *   Pointer to the flow attributes.
3193  *
3194  * @return
3195  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
3196  */
3197 static enum mlx5_flow_drv_type
3198 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
3199 {
3200 	struct mlx5_priv *priv = dev->data->dev_private;
3201 	/* The OS can determine first a specific flow type (DV, VERBS) */
3202 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
3203 
3204 	if (type != MLX5_FLOW_TYPE_MAX)
3205 		return type;
3206 	/* If no OS specific type - continue with DV/VERBS selection */
3207 	if (attr->transfer && priv->config.dv_esw_en)
3208 		type = MLX5_FLOW_TYPE_DV;
3209 	if (!attr->transfer)
3210 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
3211 						 MLX5_FLOW_TYPE_VERBS;
3212 	return type;
3213 }
3214 
3215 #define flow_get_drv_ops(type) flow_drv_ops[type]
3216 
3217 /**
3218  * Flow driver validation API. This abstracts calling driver specific functions.
3219  * The type of flow driver is determined according to flow attributes.
3220  *
3221  * @param[in] dev
3222  *   Pointer to the dev structure.
3223  * @param[in] attr
3224  *   Pointer to the flow attributes.
3225  * @param[in] items
3226  *   Pointer to the list of items.
3227  * @param[in] actions
3228  *   Pointer to the list of actions.
3229  * @param[in] external
3230  *   This flow rule is created by request external to PMD.
3231  * @param[in] hairpin
3232  *   Number of hairpin TX actions, 0 means classic flow.
3233  * @param[out] error
3234  *   Pointer to the error structure.
3235  *
3236  * @return
3237  *   0 on success, a negative errno value otherwise and rte_errno is set.
3238  */
3239 static inline int
3240 flow_drv_validate(struct rte_eth_dev *dev,
3241 		  const struct rte_flow_attr *attr,
3242 		  const struct rte_flow_item items[],
3243 		  const struct rte_flow_action actions[],
3244 		  bool external, int hairpin, struct rte_flow_error *error)
3245 {
3246 	const struct mlx5_flow_driver_ops *fops;
3247 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3248 
3249 	fops = flow_get_drv_ops(type);
3250 	return fops->validate(dev, attr, items, actions, external,
3251 			      hairpin, error);
3252 }
3253 
3254 /**
3255  * Flow driver preparation API. This abstracts calling driver specific
3256  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3257  * calculates the size of memory required for device flow, allocates the memory,
3258  * initializes the device flow and returns the pointer.
3259  *
3260  * @note
3261  *   This function initializes device flow structure such as dv or verbs in
3262  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3263  *   rest. For example, adding returning device flow to flow->dev_flow list and
3264  *   setting backward reference to the flow should be done out of this function.
3265  *   layers field is not filled either.
3266  *
3267  * @param[in] dev
3268  *   Pointer to the dev structure.
3269  * @param[in] attr
3270  *   Pointer to the flow attributes.
3271  * @param[in] items
3272  *   Pointer to the list of items.
3273  * @param[in] actions
3274  *   Pointer to the list of actions.
3275  * @param[in] flow_idx
3276  *   This memory pool index to the flow.
3277  * @param[out] error
3278  *   Pointer to the error structure.
3279  *
3280  * @return
3281  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3282  */
3283 static inline struct mlx5_flow *
3284 flow_drv_prepare(struct rte_eth_dev *dev,
3285 		 const struct rte_flow *flow,
3286 		 const struct rte_flow_attr *attr,
3287 		 const struct rte_flow_item items[],
3288 		 const struct rte_flow_action actions[],
3289 		 uint32_t flow_idx,
3290 		 struct rte_flow_error *error)
3291 {
3292 	const struct mlx5_flow_driver_ops *fops;
3293 	enum mlx5_flow_drv_type type = flow->drv_type;
3294 	struct mlx5_flow *mlx5_flow = NULL;
3295 
3296 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3297 	fops = flow_get_drv_ops(type);
3298 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3299 	if (mlx5_flow)
3300 		mlx5_flow->flow_idx = flow_idx;
3301 	return mlx5_flow;
3302 }
3303 
3304 /**
3305  * Flow driver translation API. This abstracts calling driver specific
3306  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3307  * translates a generic flow into a driver flow. flow_drv_prepare() must
3308  * precede.
3309  *
3310  * @note
3311  *   dev_flow->layers could be filled as a result of parsing during translation
3312  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3313  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3314  *   flow->actions could be overwritten even though all the expanded dev_flows
3315  *   have the same actions.
3316  *
3317  * @param[in] dev
3318  *   Pointer to the rte dev structure.
3319  * @param[in, out] dev_flow
3320  *   Pointer to the mlx5 flow.
3321  * @param[in] attr
3322  *   Pointer to the flow attributes.
3323  * @param[in] items
3324  *   Pointer to the list of items.
3325  * @param[in] actions
3326  *   Pointer to the list of actions.
3327  * @param[out] error
3328  *   Pointer to the error structure.
3329  *
3330  * @return
3331  *   0 on success, a negative errno value otherwise and rte_errno is set.
3332  */
3333 static inline int
3334 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3335 		   const struct rte_flow_attr *attr,
3336 		   const struct rte_flow_item items[],
3337 		   const struct rte_flow_action actions[],
3338 		   struct rte_flow_error *error)
3339 {
3340 	const struct mlx5_flow_driver_ops *fops;
3341 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3342 
3343 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3344 	fops = flow_get_drv_ops(type);
3345 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3346 }
3347 
3348 /**
3349  * Flow driver apply API. This abstracts calling driver specific functions.
3350  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3351  * translated driver flows on to device. flow_drv_translate() must precede.
3352  *
3353  * @param[in] dev
3354  *   Pointer to Ethernet device structure.
3355  * @param[in, out] flow
3356  *   Pointer to flow structure.
3357  * @param[out] error
3358  *   Pointer to error structure.
3359  *
3360  * @return
3361  *   0 on success, a negative errno value otherwise and rte_errno is set.
3362  */
3363 static inline int
3364 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3365 	       struct rte_flow_error *error)
3366 {
3367 	const struct mlx5_flow_driver_ops *fops;
3368 	enum mlx5_flow_drv_type type = flow->drv_type;
3369 
3370 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3371 	fops = flow_get_drv_ops(type);
3372 	return fops->apply(dev, flow, error);
3373 }
3374 
3375 /**
3376  * Flow driver destroy API. This abstracts calling driver specific functions.
3377  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3378  * on device and releases resources of the flow.
3379  *
3380  * @param[in] dev
3381  *   Pointer to Ethernet device.
3382  * @param[in, out] flow
3383  *   Pointer to flow structure.
3384  */
3385 static inline void
3386 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3387 {
3388 	const struct mlx5_flow_driver_ops *fops;
3389 	enum mlx5_flow_drv_type type = flow->drv_type;
3390 
3391 	flow_mreg_split_qrss_release(dev, flow);
3392 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3393 	fops = flow_get_drv_ops(type);
3394 	fops->destroy(dev, flow);
3395 }
3396 
3397 /**
3398  * Flow driver find RSS policy tbl API. This abstracts calling driver
3399  * specific functions. Parent flow (rte_flow) should have driver
3400  * type (drv_type). It will find the RSS policy table that has the rss_desc.
3401  *
3402  * @param[in] dev
3403  *   Pointer to Ethernet device.
3404  * @param[in, out] flow
3405  *   Pointer to flow structure.
3406  * @param[in] policy
3407  *   Pointer to meter policy table.
3408  * @param[in] rss_desc
3409  *   Pointer to rss_desc
3410  */
3411 static struct mlx5_flow_meter_sub_policy *
3412 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev,
3413 		struct rte_flow *flow,
3414 		struct mlx5_flow_meter_policy *policy,
3415 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS])
3416 {
3417 	const struct mlx5_flow_driver_ops *fops;
3418 	enum mlx5_flow_drv_type type = flow->drv_type;
3419 
3420 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3421 	fops = flow_get_drv_ops(type);
3422 	return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc);
3423 }
3424 
3425 /**
3426  * Get RSS action from the action list.
3427  *
3428  * @param[in] dev
3429  *   Pointer to Ethernet device.
3430  * @param[in] actions
3431  *   Pointer to the list of actions.
3432  * @param[in] flow
3433  *   Parent flow structure pointer.
3434  *
3435  * @return
3436  *   Pointer to the RSS action if exist, else return NULL.
3437  */
3438 static const struct rte_flow_action_rss*
3439 flow_get_rss_action(struct rte_eth_dev *dev,
3440 		    const struct rte_flow_action actions[])
3441 {
3442 	struct mlx5_priv *priv = dev->data->dev_private;
3443 	const struct rte_flow_action_rss *rss = NULL;
3444 
3445 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3446 		switch (actions->type) {
3447 		case RTE_FLOW_ACTION_TYPE_RSS:
3448 			rss = actions->conf;
3449 			break;
3450 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
3451 		{
3452 			const struct rte_flow_action_sample *sample =
3453 								actions->conf;
3454 			const struct rte_flow_action *act = sample->actions;
3455 			for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++)
3456 				if (act->type == RTE_FLOW_ACTION_TYPE_RSS)
3457 					rss = act->conf;
3458 			break;
3459 		}
3460 		case RTE_FLOW_ACTION_TYPE_METER:
3461 		{
3462 			uint32_t mtr_idx;
3463 			struct mlx5_flow_meter_info *fm;
3464 			struct mlx5_flow_meter_policy *policy;
3465 			const struct rte_flow_action_meter *mtr = actions->conf;
3466 
3467 			fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx);
3468 			if (fm) {
3469 				policy = mlx5_flow_meter_policy_find(dev,
3470 						fm->policy_id, NULL);
3471 				if (policy && policy->is_rss)
3472 					rss =
3473 				policy->act_cnt[RTE_COLOR_GREEN].rss->conf;
3474 			}
3475 			break;
3476 		}
3477 		default:
3478 			break;
3479 		}
3480 	}
3481 	return rss;
3482 }
3483 
3484 /**
3485  * Get ASO age action by index.
3486  *
3487  * @param[in] dev
3488  *   Pointer to the Ethernet device structure.
3489  * @param[in] age_idx
3490  *   Index to the ASO age action.
3491  *
3492  * @return
3493  *   The specified ASO age action.
3494  */
3495 struct mlx5_aso_age_action*
3496 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3497 {
3498 	uint16_t pool_idx = age_idx & UINT16_MAX;
3499 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3500 	struct mlx5_priv *priv = dev->data->dev_private;
3501 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3502 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3503 
3504 	return &pool->actions[offset - 1];
3505 }
3506 
3507 /* maps indirect action to translated direct in some actions array */
3508 struct mlx5_translated_action_handle {
3509 	struct rte_flow_action_handle *action; /**< Indirect action handle. */
3510 	int index; /**< Index in related array of rte_flow_action. */
3511 };
3512 
3513 /**
3514  * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related
3515  * direct action if translation possible.
3516  * This functionality used to run same execution path for both direct and
3517  * indirect actions on flow create. All necessary preparations for indirect
3518  * action handling should be performed on *handle* actions list returned
3519  * from this call.
3520  *
3521  * @param[in] dev
3522  *   Pointer to Ethernet device.
3523  * @param[in] actions
3524  *   List of actions to translate.
3525  * @param[out] handle
3526  *   List to store translated indirect action object handles.
3527  * @param[in, out] indir_n
3528  *   Size of *handle* array. On return should be updated with number of
3529  *   indirect actions retrieved from the *actions* list.
3530  * @param[out] translated_actions
3531  *   List of actions where all indirect actions were translated to direct
3532  *   if possible. NULL if no translation took place.
3533  * @param[out] error
3534  *   Pointer to the error structure.
3535  *
3536  * @return
3537  *   0 on success, a negative errno value otherwise and rte_errno is set.
3538  */
3539 static int
3540 flow_action_handles_translate(struct rte_eth_dev *dev,
3541 			      const struct rte_flow_action actions[],
3542 			      struct mlx5_translated_action_handle *handle,
3543 			      int *indir_n,
3544 			      struct rte_flow_action **translated_actions,
3545 			      struct rte_flow_error *error)
3546 {
3547 	struct mlx5_priv *priv = dev->data->dev_private;
3548 	struct rte_flow_action *translated = NULL;
3549 	size_t actions_size;
3550 	int n;
3551 	int copied_n = 0;
3552 	struct mlx5_translated_action_handle *handle_end = NULL;
3553 
3554 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3555 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT)
3556 			continue;
3557 		if (copied_n == *indir_n) {
3558 			return rte_flow_error_set
3559 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3560 				 NULL, "too many shared actions");
3561 		}
3562 		rte_memcpy(&handle[copied_n].action, &actions[n].conf,
3563 			   sizeof(actions[n].conf));
3564 		handle[copied_n].index = n;
3565 		copied_n++;
3566 	}
3567 	n++;
3568 	*indir_n = copied_n;
3569 	if (!copied_n)
3570 		return 0;
3571 	actions_size = sizeof(struct rte_flow_action) * n;
3572 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3573 	if (!translated) {
3574 		rte_errno = ENOMEM;
3575 		return -ENOMEM;
3576 	}
3577 	memcpy(translated, actions, actions_size);
3578 	for (handle_end = handle + copied_n; handle < handle_end; handle++) {
3579 		struct mlx5_shared_action_rss *shared_rss;
3580 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3581 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3582 		uint32_t idx = act_idx &
3583 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3584 
3585 		switch (type) {
3586 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3587 			shared_rss = mlx5_ipool_get
3588 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3589 			translated[handle->index].type =
3590 				RTE_FLOW_ACTION_TYPE_RSS;
3591 			translated[handle->index].conf =
3592 				&shared_rss->origin;
3593 			break;
3594 		case MLX5_INDIRECT_ACTION_TYPE_COUNT:
3595 			translated[handle->index].type =
3596 						(enum rte_flow_action_type)
3597 						MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
3598 			translated[handle->index].conf = (void *)(uintptr_t)idx;
3599 			break;
3600 		case MLX5_INDIRECT_ACTION_TYPE_AGE:
3601 			if (priv->sh->flow_hit_aso_en) {
3602 				translated[handle->index].type =
3603 					(enum rte_flow_action_type)
3604 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3605 				translated[handle->index].conf =
3606 							 (void *)(uintptr_t)idx;
3607 				break;
3608 			}
3609 			/* Fall-through */
3610 		case MLX5_INDIRECT_ACTION_TYPE_CT:
3611 			if (priv->sh->ct_aso_en) {
3612 				translated[handle->index].type =
3613 					RTE_FLOW_ACTION_TYPE_CONNTRACK;
3614 				translated[handle->index].conf =
3615 							 (void *)(uintptr_t)idx;
3616 				break;
3617 			}
3618 			/* Fall-through */
3619 		default:
3620 			mlx5_free(translated);
3621 			return rte_flow_error_set
3622 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3623 				 NULL, "invalid indirect action type");
3624 		}
3625 	}
3626 	*translated_actions = translated;
3627 	return 0;
3628 }
3629 
3630 /**
3631  * Get Shared RSS action from the action list.
3632  *
3633  * @param[in] dev
3634  *   Pointer to Ethernet device.
3635  * @param[in] shared
3636  *   Pointer to the list of actions.
3637  * @param[in] shared_n
3638  *   Actions list length.
3639  *
3640  * @return
3641  *   The MLX5 RSS action ID if exists, otherwise return 0.
3642  */
3643 static uint32_t
3644 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3645 			   struct mlx5_translated_action_handle *handle,
3646 			   int shared_n)
3647 {
3648 	struct mlx5_translated_action_handle *handle_end;
3649 	struct mlx5_priv *priv = dev->data->dev_private;
3650 	struct mlx5_shared_action_rss *shared_rss;
3651 
3652 
3653 	for (handle_end = handle + shared_n; handle < handle_end; handle++) {
3654 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3655 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3656 		uint32_t idx = act_idx &
3657 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3658 		switch (type) {
3659 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3660 			shared_rss = mlx5_ipool_get
3661 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3662 									   idx);
3663 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3664 					   __ATOMIC_RELAXED);
3665 			return idx;
3666 		default:
3667 			break;
3668 		}
3669 	}
3670 	return 0;
3671 }
3672 
3673 static unsigned int
3674 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3675 {
3676 	const struct rte_flow_item *item;
3677 	unsigned int has_vlan = 0;
3678 
3679 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3680 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3681 			has_vlan = 1;
3682 			break;
3683 		}
3684 	}
3685 	if (has_vlan)
3686 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3687 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3688 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3689 			       MLX5_EXPANSION_ROOT_OUTER;
3690 }
3691 
3692 /**
3693  *  Get layer flags from the prefix flow.
3694  *
3695  *  Some flows may be split to several subflows, the prefix subflow gets the
3696  *  match items and the suffix sub flow gets the actions.
3697  *  Some actions need the user defined match item flags to get the detail for
3698  *  the action.
3699  *  This function helps the suffix flow to get the item layer flags from prefix
3700  *  subflow.
3701  *
3702  * @param[in] dev_flow
3703  *   Pointer the created preifx subflow.
3704  *
3705  * @return
3706  *   The layers get from prefix subflow.
3707  */
3708 static inline uint64_t
3709 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3710 {
3711 	uint64_t layers = 0;
3712 
3713 	/*
3714 	 * Layers bits could be localization, but usually the compiler will
3715 	 * help to do the optimization work for source code.
3716 	 * If no decap actions, use the layers directly.
3717 	 */
3718 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3719 		return dev_flow->handle->layers;
3720 	/* Convert L3 layers with decap action. */
3721 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3722 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3723 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3724 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3725 	/* Convert L4 layers with decap action.  */
3726 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3727 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3728 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3729 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3730 	return layers;
3731 }
3732 
3733 /**
3734  * Get metadata split action information.
3735  *
3736  * @param[in] actions
3737  *   Pointer to the list of actions.
3738  * @param[out] qrss
3739  *   Pointer to the return pointer.
3740  * @param[out] qrss_type
3741  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3742  *   if no QUEUE/RSS is found.
3743  * @param[out] encap_idx
3744  *   Pointer to the index of the encap action if exists, otherwise the last
3745  *   action index.
3746  *
3747  * @return
3748  *   Total number of actions.
3749  */
3750 static int
3751 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3752 				       const struct rte_flow_action **qrss,
3753 				       int *encap_idx)
3754 {
3755 	const struct rte_flow_action_raw_encap *raw_encap;
3756 	int actions_n = 0;
3757 	int raw_decap_idx = -1;
3758 
3759 	*encap_idx = -1;
3760 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3761 		switch (actions->type) {
3762 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3763 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3764 			*encap_idx = actions_n;
3765 			break;
3766 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3767 			raw_decap_idx = actions_n;
3768 			break;
3769 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3770 			raw_encap = actions->conf;
3771 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3772 				*encap_idx = raw_decap_idx != -1 ?
3773 						      raw_decap_idx : actions_n;
3774 			break;
3775 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3776 		case RTE_FLOW_ACTION_TYPE_RSS:
3777 			*qrss = actions;
3778 			break;
3779 		default:
3780 			break;
3781 		}
3782 		actions_n++;
3783 	}
3784 	if (*encap_idx == -1)
3785 		*encap_idx = actions_n;
3786 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3787 	return actions_n + 1;
3788 }
3789 
3790 /**
3791  * Check if the action will change packet.
3792  *
3793  * @param dev
3794  *   Pointer to Ethernet device.
3795  * @param[in] type
3796  *   action type.
3797  *
3798  * @return
3799  *   true if action will change packet, false otherwise.
3800  */
3801 static bool flow_check_modify_action_type(struct rte_eth_dev *dev,
3802 					  enum rte_flow_action_type type)
3803 {
3804 	struct mlx5_priv *priv = dev->data->dev_private;
3805 
3806 	switch (type) {
3807 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
3808 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
3809 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
3810 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
3811 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
3812 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
3813 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
3814 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
3815 	case RTE_FLOW_ACTION_TYPE_DEC_TTL:
3816 	case RTE_FLOW_ACTION_TYPE_SET_TTL:
3817 	case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
3818 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
3819 	case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
3820 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
3821 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
3822 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
3823 	case RTE_FLOW_ACTION_TYPE_SET_META:
3824 	case RTE_FLOW_ACTION_TYPE_SET_TAG:
3825 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
3826 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3827 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3828 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3829 	case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3830 	case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3831 	case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3832 	case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
3833 	case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3834 	case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3835 	case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
3836 		return true;
3837 	case RTE_FLOW_ACTION_TYPE_FLAG:
3838 	case RTE_FLOW_ACTION_TYPE_MARK:
3839 		if (priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY)
3840 			return true;
3841 		else
3842 			return false;
3843 	default:
3844 		return false;
3845 	}
3846 }
3847 
3848 /**
3849  * Check meter action from the action list.
3850  *
3851  * @param dev
3852  *   Pointer to Ethernet device.
3853  * @param[in] actions
3854  *   Pointer to the list of actions.
3855  * @param[out] has_mtr
3856  *   Pointer to the meter exist flag.
3857  * @param[out] has_modify
3858  *   Pointer to the flag showing there's packet change action.
3859  * @param[out] meter_id
3860  *   Pointer to the meter id.
3861  *
3862  * @return
3863  *   Total number of actions.
3864  */
3865 static int
3866 flow_check_meter_action(struct rte_eth_dev *dev,
3867 			const struct rte_flow_action actions[],
3868 			bool *has_mtr, bool *has_modify, uint32_t *meter_id)
3869 {
3870 	const struct rte_flow_action_meter *mtr = NULL;
3871 	int actions_n = 0;
3872 
3873 	MLX5_ASSERT(has_mtr);
3874 	*has_mtr = false;
3875 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3876 		switch (actions->type) {
3877 		case RTE_FLOW_ACTION_TYPE_METER:
3878 			mtr = actions->conf;
3879 			*meter_id = mtr->mtr_id;
3880 			*has_mtr = true;
3881 			break;
3882 		default:
3883 			break;
3884 		}
3885 		if (!*has_mtr)
3886 			*has_modify |= flow_check_modify_action_type(dev,
3887 								actions->type);
3888 		actions_n++;
3889 	}
3890 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3891 	return actions_n + 1;
3892 }
3893 
3894 /**
3895  * Check if the flow should be split due to hairpin.
3896  * The reason for the split is that in current HW we can't
3897  * support encap and push-vlan on Rx, so if a flow contains
3898  * these actions we move it to Tx.
3899  *
3900  * @param dev
3901  *   Pointer to Ethernet device.
3902  * @param[in] attr
3903  *   Flow rule attributes.
3904  * @param[in] actions
3905  *   Associated actions (list terminated by the END action).
3906  *
3907  * @return
3908  *   > 0 the number of actions and the flow should be split,
3909  *   0 when no split required.
3910  */
3911 static int
3912 flow_check_hairpin_split(struct rte_eth_dev *dev,
3913 			 const struct rte_flow_attr *attr,
3914 			 const struct rte_flow_action actions[])
3915 {
3916 	int queue_action = 0;
3917 	int action_n = 0;
3918 	int split = 0;
3919 	const struct rte_flow_action_queue *queue;
3920 	const struct rte_flow_action_rss *rss;
3921 	const struct rte_flow_action_raw_encap *raw_encap;
3922 	const struct rte_eth_hairpin_conf *conf;
3923 
3924 	if (!attr->ingress)
3925 		return 0;
3926 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3927 		switch (actions->type) {
3928 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3929 			queue = actions->conf;
3930 			if (queue == NULL)
3931 				return 0;
3932 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
3933 			if (conf == NULL || conf->tx_explicit != 0)
3934 				return 0;
3935 			queue_action = 1;
3936 			action_n++;
3937 			break;
3938 		case RTE_FLOW_ACTION_TYPE_RSS:
3939 			rss = actions->conf;
3940 			if (rss == NULL || rss->queue_num == 0)
3941 				return 0;
3942 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
3943 			if (conf == NULL || conf->tx_explicit != 0)
3944 				return 0;
3945 			queue_action = 1;
3946 			action_n++;
3947 			break;
3948 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3949 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3950 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3951 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3952 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3953 			split++;
3954 			action_n++;
3955 			break;
3956 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3957 			raw_encap = actions->conf;
3958 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3959 				split++;
3960 			action_n++;
3961 			break;
3962 		default:
3963 			action_n++;
3964 			break;
3965 		}
3966 	}
3967 	if (split && queue_action)
3968 		return action_n;
3969 	return 0;
3970 }
3971 
3972 /* Declare flow create/destroy prototype in advance. */
3973 static uint32_t
3974 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3975 		 const struct rte_flow_attr *attr,
3976 		 const struct rte_flow_item items[],
3977 		 const struct rte_flow_action actions[],
3978 		 bool external, struct rte_flow_error *error);
3979 
3980 static void
3981 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3982 		  uint32_t flow_idx);
3983 
3984 int
3985 flow_dv_mreg_match_cb(struct mlx5_hlist *list __rte_unused,
3986 		      struct mlx5_hlist_entry *entry,
3987 		      uint64_t key, void *cb_ctx __rte_unused)
3988 {
3989 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3990 		container_of(entry, typeof(*mcp_res), hlist_ent);
3991 
3992 	return mcp_res->mark_id != key;
3993 }
3994 
3995 struct mlx5_hlist_entry *
3996 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key,
3997 		       void *cb_ctx)
3998 {
3999 	struct rte_eth_dev *dev = list->ctx;
4000 	struct mlx5_priv *priv = dev->data->dev_private;
4001 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4002 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4003 	struct rte_flow_error *error = ctx->error;
4004 	uint32_t idx = 0;
4005 	int ret;
4006 	uint32_t mark_id = key;
4007 	struct rte_flow_attr attr = {
4008 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4009 		.ingress = 1,
4010 	};
4011 	struct mlx5_rte_flow_item_tag tag_spec = {
4012 		.data = mark_id,
4013 	};
4014 	struct rte_flow_item items[] = {
4015 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
4016 	};
4017 	struct rte_flow_action_mark ftag = {
4018 		.id = mark_id,
4019 	};
4020 	struct mlx5_flow_action_copy_mreg cp_mreg = {
4021 		.dst = REG_B,
4022 		.src = REG_NON,
4023 	};
4024 	struct rte_flow_action_jump jump = {
4025 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4026 	};
4027 	struct rte_flow_action actions[] = {
4028 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
4029 	};
4030 
4031 	/* Fill the register fileds in the flow. */
4032 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
4033 	if (ret < 0)
4034 		return NULL;
4035 	tag_spec.id = ret;
4036 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4037 	if (ret < 0)
4038 		return NULL;
4039 	cp_mreg.src = ret;
4040 	/* Provide the full width of FLAG specific value. */
4041 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
4042 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
4043 	/* Build a new flow. */
4044 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
4045 		items[0] = (struct rte_flow_item){
4046 			.type = (enum rte_flow_item_type)
4047 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4048 			.spec = &tag_spec,
4049 		};
4050 		items[1] = (struct rte_flow_item){
4051 			.type = RTE_FLOW_ITEM_TYPE_END,
4052 		};
4053 		actions[0] = (struct rte_flow_action){
4054 			.type = (enum rte_flow_action_type)
4055 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
4056 			.conf = &ftag,
4057 		};
4058 		actions[1] = (struct rte_flow_action){
4059 			.type = (enum rte_flow_action_type)
4060 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4061 			.conf = &cp_mreg,
4062 		};
4063 		actions[2] = (struct rte_flow_action){
4064 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4065 			.conf = &jump,
4066 		};
4067 		actions[3] = (struct rte_flow_action){
4068 			.type = RTE_FLOW_ACTION_TYPE_END,
4069 		};
4070 	} else {
4071 		/* Default rule, wildcard match. */
4072 		attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR;
4073 		items[0] = (struct rte_flow_item){
4074 			.type = RTE_FLOW_ITEM_TYPE_END,
4075 		};
4076 		actions[0] = (struct rte_flow_action){
4077 			.type = (enum rte_flow_action_type)
4078 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4079 			.conf = &cp_mreg,
4080 		};
4081 		actions[1] = (struct rte_flow_action){
4082 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4083 			.conf = &jump,
4084 		};
4085 		actions[2] = (struct rte_flow_action){
4086 			.type = RTE_FLOW_ACTION_TYPE_END,
4087 		};
4088 	}
4089 	/* Build a new entry. */
4090 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4091 	if (!mcp_res) {
4092 		rte_errno = ENOMEM;
4093 		return NULL;
4094 	}
4095 	mcp_res->idx = idx;
4096 	mcp_res->mark_id = mark_id;
4097 	/*
4098 	 * The copy Flows are not included in any list. There
4099 	 * ones are referenced from other Flows and can not
4100 	 * be applied, removed, deleted in ardbitrary order
4101 	 * by list traversing.
4102 	 */
4103 	mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
4104 					 actions, false, error);
4105 	if (!mcp_res->rix_flow) {
4106 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
4107 		return NULL;
4108 	}
4109 	return &mcp_res->hlist_ent;
4110 }
4111 
4112 /**
4113  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4114  *
4115  * As mark_id is unique, if there's already a registered flow for the mark_id,
4116  * return by increasing the reference counter of the resource. Otherwise, create
4117  * the resource (mcp_res) and flow.
4118  *
4119  * Flow looks like,
4120  *   - If ingress port is ANY and reg_c[1] is mark_id,
4121  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4122  *
4123  * For default flow (zero mark_id), flow is like,
4124  *   - If ingress port is ANY,
4125  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
4126  *
4127  * @param dev
4128  *   Pointer to Ethernet device.
4129  * @param mark_id
4130  *   ID of MARK action, zero means default flow for META.
4131  * @param[out] error
4132  *   Perform verbose error reporting if not NULL.
4133  *
4134  * @return
4135  *   Associated resource on success, NULL otherwise and rte_errno is set.
4136  */
4137 static struct mlx5_flow_mreg_copy_resource *
4138 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
4139 			  struct rte_flow_error *error)
4140 {
4141 	struct mlx5_priv *priv = dev->data->dev_private;
4142 	struct mlx5_hlist_entry *entry;
4143 	struct mlx5_flow_cb_ctx ctx = {
4144 		.dev = dev,
4145 		.error = error,
4146 	};
4147 
4148 	/* Check if already registered. */
4149 	MLX5_ASSERT(priv->mreg_cp_tbl);
4150 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
4151 	if (!entry)
4152 		return NULL;
4153 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
4154 			    hlist_ent);
4155 }
4156 
4157 void
4158 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry)
4159 {
4160 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4161 		container_of(entry, typeof(*mcp_res), hlist_ent);
4162 	struct rte_eth_dev *dev = list->ctx;
4163 	struct mlx5_priv *priv = dev->data->dev_private;
4164 
4165 	MLX5_ASSERT(mcp_res->rix_flow);
4166 	flow_list_destroy(dev, NULL, mcp_res->rix_flow);
4167 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4168 }
4169 
4170 /**
4171  * Release flow in RX_CP_TBL.
4172  *
4173  * @param dev
4174  *   Pointer to Ethernet device.
4175  * @flow
4176  *   Parent flow for wich copying is provided.
4177  */
4178 static void
4179 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
4180 			  struct rte_flow *flow)
4181 {
4182 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4183 	struct mlx5_priv *priv = dev->data->dev_private;
4184 
4185 	if (!flow->rix_mreg_copy)
4186 		return;
4187 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
4188 				 flow->rix_mreg_copy);
4189 	if (!mcp_res || !priv->mreg_cp_tbl)
4190 		return;
4191 	MLX5_ASSERT(mcp_res->rix_flow);
4192 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
4193 	flow->rix_mreg_copy = 0;
4194 }
4195 
4196 /**
4197  * Remove the default copy action from RX_CP_TBL.
4198  *
4199  * This functions is called in the mlx5_dev_start(). No thread safe
4200  * is guaranteed.
4201  *
4202  * @param dev
4203  *   Pointer to Ethernet device.
4204  */
4205 static void
4206 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
4207 {
4208 	struct mlx5_hlist_entry *entry;
4209 	struct mlx5_priv *priv = dev->data->dev_private;
4210 
4211 	/* Check if default flow is registered. */
4212 	if (!priv->mreg_cp_tbl)
4213 		return;
4214 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl,
4215 				  MLX5_DEFAULT_COPY_ID, NULL);
4216 	if (!entry)
4217 		return;
4218 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
4219 }
4220 
4221 /**
4222  * Add the default copy action in in RX_CP_TBL.
4223  *
4224  * This functions is called in the mlx5_dev_start(). No thread safe
4225  * is guaranteed.
4226  *
4227  * @param dev
4228  *   Pointer to Ethernet device.
4229  * @param[out] error
4230  *   Perform verbose error reporting if not NULL.
4231  *
4232  * @return
4233  *   0 for success, negative value otherwise and rte_errno is set.
4234  */
4235 static int
4236 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
4237 				  struct rte_flow_error *error)
4238 {
4239 	struct mlx5_priv *priv = dev->data->dev_private;
4240 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4241 
4242 	/* Check whether extensive metadata feature is engaged. */
4243 	if (!priv->config.dv_flow_en ||
4244 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4245 	    !mlx5_flow_ext_mreg_supported(dev) ||
4246 	    !priv->sh->dv_regc0_mask)
4247 		return 0;
4248 	/*
4249 	 * Add default mreg copy flow may be called multiple time, but
4250 	 * only be called once in stop. Avoid register it twice.
4251 	 */
4252 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL))
4253 		return 0;
4254 	mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
4255 	if (!mcp_res)
4256 		return -rte_errno;
4257 	return 0;
4258 }
4259 
4260 /**
4261  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4262  *
4263  * All the flow having Q/RSS action should be split by
4264  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
4265  * performs the following,
4266  *   - CQE->flow_tag := reg_c[1] (MARK)
4267  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4268  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
4269  * but there should be a flow per each MARK ID set by MARK action.
4270  *
4271  * For the aforementioned reason, if there's a MARK action in flow's action
4272  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
4273  * the MARK ID to CQE's flow_tag like,
4274  *   - If reg_c[1] is mark_id,
4275  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4276  *
4277  * For SET_META action which stores value in reg_c[0], as the destination is
4278  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
4279  * MARK ID means the default flow. The default flow looks like,
4280  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4281  *
4282  * @param dev
4283  *   Pointer to Ethernet device.
4284  * @param flow
4285  *   Pointer to flow structure.
4286  * @param[in] actions
4287  *   Pointer to the list of actions.
4288  * @param[out] error
4289  *   Perform verbose error reporting if not NULL.
4290  *
4291  * @return
4292  *   0 on success, negative value otherwise and rte_errno is set.
4293  */
4294 static int
4295 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
4296 			    struct rte_flow *flow,
4297 			    const struct rte_flow_action *actions,
4298 			    struct rte_flow_error *error)
4299 {
4300 	struct mlx5_priv *priv = dev->data->dev_private;
4301 	struct mlx5_dev_config *config = &priv->config;
4302 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4303 	const struct rte_flow_action_mark *mark;
4304 
4305 	/* Check whether extensive metadata feature is engaged. */
4306 	if (!config->dv_flow_en ||
4307 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4308 	    !mlx5_flow_ext_mreg_supported(dev) ||
4309 	    !priv->sh->dv_regc0_mask)
4310 		return 0;
4311 	/* Find MARK action. */
4312 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4313 		switch (actions->type) {
4314 		case RTE_FLOW_ACTION_TYPE_FLAG:
4315 			mcp_res = flow_mreg_add_copy_action
4316 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
4317 			if (!mcp_res)
4318 				return -rte_errno;
4319 			flow->rix_mreg_copy = mcp_res->idx;
4320 			return 0;
4321 		case RTE_FLOW_ACTION_TYPE_MARK:
4322 			mark = (const struct rte_flow_action_mark *)
4323 				actions->conf;
4324 			mcp_res =
4325 				flow_mreg_add_copy_action(dev, mark->id, error);
4326 			if (!mcp_res)
4327 				return -rte_errno;
4328 			flow->rix_mreg_copy = mcp_res->idx;
4329 			return 0;
4330 		default:
4331 			break;
4332 		}
4333 	}
4334 	return 0;
4335 }
4336 
4337 #define MLX5_MAX_SPLIT_ACTIONS 24
4338 #define MLX5_MAX_SPLIT_ITEMS 24
4339 
4340 /**
4341  * Split the hairpin flow.
4342  * Since HW can't support encap and push-vlan on Rx, we move these
4343  * actions to Tx.
4344  * If the count action is after the encap then we also
4345  * move the count action. in this case the count will also measure
4346  * the outer bytes.
4347  *
4348  * @param dev
4349  *   Pointer to Ethernet device.
4350  * @param[in] actions
4351  *   Associated actions (list terminated by the END action).
4352  * @param[out] actions_rx
4353  *   Rx flow actions.
4354  * @param[out] actions_tx
4355  *   Tx flow actions..
4356  * @param[out] pattern_tx
4357  *   The pattern items for the Tx flow.
4358  * @param[out] flow_id
4359  *   The flow ID connected to this flow.
4360  *
4361  * @return
4362  *   0 on success.
4363  */
4364 static int
4365 flow_hairpin_split(struct rte_eth_dev *dev,
4366 		   const struct rte_flow_action actions[],
4367 		   struct rte_flow_action actions_rx[],
4368 		   struct rte_flow_action actions_tx[],
4369 		   struct rte_flow_item pattern_tx[],
4370 		   uint32_t flow_id)
4371 {
4372 	const struct rte_flow_action_raw_encap *raw_encap;
4373 	const struct rte_flow_action_raw_decap *raw_decap;
4374 	struct mlx5_rte_flow_action_set_tag *set_tag;
4375 	struct rte_flow_action *tag_action;
4376 	struct mlx5_rte_flow_item_tag *tag_item;
4377 	struct rte_flow_item *item;
4378 	char *addr;
4379 	int encap = 0;
4380 
4381 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4382 		switch (actions->type) {
4383 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4384 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4385 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4386 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4387 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4388 			rte_memcpy(actions_tx, actions,
4389 			       sizeof(struct rte_flow_action));
4390 			actions_tx++;
4391 			break;
4392 		case RTE_FLOW_ACTION_TYPE_COUNT:
4393 			if (encap) {
4394 				rte_memcpy(actions_tx, actions,
4395 					   sizeof(struct rte_flow_action));
4396 				actions_tx++;
4397 			} else {
4398 				rte_memcpy(actions_rx, actions,
4399 					   sizeof(struct rte_flow_action));
4400 				actions_rx++;
4401 			}
4402 			break;
4403 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4404 			raw_encap = actions->conf;
4405 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4406 				memcpy(actions_tx, actions,
4407 				       sizeof(struct rte_flow_action));
4408 				actions_tx++;
4409 				encap = 1;
4410 			} else {
4411 				rte_memcpy(actions_rx, actions,
4412 					   sizeof(struct rte_flow_action));
4413 				actions_rx++;
4414 			}
4415 			break;
4416 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4417 			raw_decap = actions->conf;
4418 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4419 				memcpy(actions_tx, actions,
4420 				       sizeof(struct rte_flow_action));
4421 				actions_tx++;
4422 			} else {
4423 				rte_memcpy(actions_rx, actions,
4424 					   sizeof(struct rte_flow_action));
4425 				actions_rx++;
4426 			}
4427 			break;
4428 		default:
4429 			rte_memcpy(actions_rx, actions,
4430 				   sizeof(struct rte_flow_action));
4431 			actions_rx++;
4432 			break;
4433 		}
4434 	}
4435 	/* Add set meta action and end action for the Rx flow. */
4436 	tag_action = actions_rx;
4437 	tag_action->type = (enum rte_flow_action_type)
4438 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4439 	actions_rx++;
4440 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4441 	actions_rx++;
4442 	set_tag = (void *)actions_rx;
4443 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4444 		.id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL),
4445 		.data = flow_id,
4446 	};
4447 	MLX5_ASSERT(set_tag->id > REG_NON);
4448 	tag_action->conf = set_tag;
4449 	/* Create Tx item list. */
4450 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4451 	addr = (void *)&pattern_tx[2];
4452 	item = pattern_tx;
4453 	item->type = (enum rte_flow_item_type)
4454 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4455 	tag_item = (void *)addr;
4456 	tag_item->data = flow_id;
4457 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4458 	MLX5_ASSERT(set_tag->id > REG_NON);
4459 	item->spec = tag_item;
4460 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4461 	tag_item = (void *)addr;
4462 	tag_item->data = UINT32_MAX;
4463 	tag_item->id = UINT16_MAX;
4464 	item->mask = tag_item;
4465 	item->last = NULL;
4466 	item++;
4467 	item->type = RTE_FLOW_ITEM_TYPE_END;
4468 	return 0;
4469 }
4470 
4471 /**
4472  * The last stage of splitting chain, just creates the subflow
4473  * without any modification.
4474  *
4475  * @param[in] dev
4476  *   Pointer to Ethernet device.
4477  * @param[in] flow
4478  *   Parent flow structure pointer.
4479  * @param[in, out] sub_flow
4480  *   Pointer to return the created subflow, may be NULL.
4481  * @param[in] attr
4482  *   Flow rule attributes.
4483  * @param[in] items
4484  *   Pattern specification (list terminated by the END pattern item).
4485  * @param[in] actions
4486  *   Associated actions (list terminated by the END action).
4487  * @param[in] flow_split_info
4488  *   Pointer to flow split info structure.
4489  * @param[out] error
4490  *   Perform verbose error reporting if not NULL.
4491  * @return
4492  *   0 on success, negative value otherwise
4493  */
4494 static int
4495 flow_create_split_inner(struct rte_eth_dev *dev,
4496 			struct rte_flow *flow,
4497 			struct mlx5_flow **sub_flow,
4498 			const struct rte_flow_attr *attr,
4499 			const struct rte_flow_item items[],
4500 			const struct rte_flow_action actions[],
4501 			struct mlx5_flow_split_info *flow_split_info,
4502 			struct rte_flow_error *error)
4503 {
4504 	struct mlx5_flow *dev_flow;
4505 
4506 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4507 				    flow_split_info->flow_idx, error);
4508 	if (!dev_flow)
4509 		return -rte_errno;
4510 	dev_flow->flow = flow;
4511 	dev_flow->external = flow_split_info->external;
4512 	dev_flow->skip_scale = flow_split_info->skip_scale;
4513 	/* Subflow object was created, we must include one in the list. */
4514 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4515 		      dev_flow->handle, next);
4516 	/*
4517 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4518 	 * flow may need some user defined item layer flags, and pass the
4519 	 * Metadate rxq mark flag to suffix flow as well.
4520 	 */
4521 	if (flow_split_info->prefix_layers)
4522 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4523 	if (flow_split_info->prefix_mark)
4524 		dev_flow->handle->mark = 1;
4525 	if (sub_flow)
4526 		*sub_flow = dev_flow;
4527 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4528 	dev_flow->dv.table_id = flow_split_info->table_id;
4529 #endif
4530 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4531 }
4532 
4533 /**
4534  * Get the sub policy of a meter.
4535  *
4536  * @param[in] dev
4537  *   Pointer to Ethernet device.
4538  * @param[in] flow
4539  *   Parent flow structure pointer.
4540  * @param[in] policy_id;
4541  *   Meter Policy id.
4542  * @param[in] attr
4543  *   Flow rule attributes.
4544  * @param[in] items
4545  *   Pattern specification (list terminated by the END pattern item).
4546  * @param[out] error
4547  *   Perform verbose error reporting if not NULL.
4548  *
4549  * @return
4550  *   Pointer to the meter sub policy, NULL otherwise and rte_errno is set.
4551  */
4552 static struct mlx5_flow_meter_sub_policy *
4553 get_meter_sub_policy(struct rte_eth_dev *dev,
4554 		     struct rte_flow *flow,
4555 		     uint32_t policy_id,
4556 		     const struct rte_flow_attr *attr,
4557 		     const struct rte_flow_item items[],
4558 		     struct rte_flow_error *error)
4559 {
4560 	struct mlx5_flow_meter_policy *policy;
4561 	struct mlx5_flow_meter_sub_policy *sub_policy = NULL;
4562 
4563 	policy = mlx5_flow_meter_policy_find(dev, policy_id, NULL);
4564 	if (!policy) {
4565 		rte_flow_error_set(error, EINVAL,
4566 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4567 				   "Failed to find Meter Policy.");
4568 		goto exit;
4569 	}
4570 	if (policy->is_rss) {
4571 		struct mlx5_flow_workspace *wks =
4572 				mlx5_flow_get_thread_workspace();
4573 		struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS];
4574 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0};
4575 		uint32_t i;
4576 
4577 		MLX5_ASSERT(wks);
4578 		/**
4579 		 * This is a tmp dev_flow,
4580 		 * no need to register any matcher for it in translate.
4581 		 */
4582 		wks->skip_matcher_reg = 1;
4583 		for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) {
4584 			struct mlx5_flow dev_flow = {0};
4585 			struct mlx5_flow_handle dev_handle = { {0} };
4586 			const void *rss_act = policy->act_cnt[i].rss->conf;
4587 			struct rte_flow_action rss_actions[2] = {
4588 				[0] = {
4589 					.type = RTE_FLOW_ACTION_TYPE_RSS,
4590 					.conf = rss_act
4591 				},
4592 				[1] = {
4593 					.type = RTE_FLOW_ACTION_TYPE_END,
4594 					.conf = NULL
4595 				}
4596 			};
4597 
4598 			dev_flow.handle = &dev_handle;
4599 			dev_flow.ingress = attr->ingress;
4600 			dev_flow.flow = flow;
4601 			dev_flow.external = 0;
4602 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4603 			dev_flow.dv.transfer = attr->transfer;
4604 #endif
4605 			/* Translate RSS action to get rss hash fields. */
4606 			if (flow_drv_translate(dev, &dev_flow, attr,
4607 						items, rss_actions, error))
4608 				goto exit;
4609 			rss_desc_v[i] = wks->rss_desc;
4610 			rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN;
4611 			rss_desc_v[i].hash_fields = dev_flow.hash_fields;
4612 			rss_desc_v[i].queue_num = rss_desc_v[i].hash_fields ?
4613 						  rss_desc_v[i].queue_num : 1;
4614 			rss_desc[i] = &rss_desc_v[i];
4615 		}
4616 		sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev,
4617 						flow, policy, rss_desc);
4618 	} else {
4619 		enum mlx5_meter_domain mtr_domain =
4620 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
4621 				attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
4622 					MLX5_MTR_DOMAIN_INGRESS;
4623 		sub_policy = policy->sub_policys[mtr_domain][0];
4624 	}
4625 	if (!sub_policy) {
4626 		rte_flow_error_set(error, EINVAL,
4627 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4628 			"Failed to get meter sub-policy.");
4629 		goto exit;
4630 	}
4631 exit:
4632 	return sub_policy;
4633 }
4634 
4635 /**
4636  * Split the meter flow.
4637  *
4638  * As meter flow will split to three sub flow, other than meter
4639  * action, the other actions make sense to only meter accepts
4640  * the packet. If it need to be dropped, no other additional
4641  * actions should be take.
4642  *
4643  * One kind of special action which decapsulates the L3 tunnel
4644  * header will be in the prefix sub flow, as not to take the
4645  * L3 tunnel header into account.
4646  *
4647  * @param[in] dev
4648  *   Pointer to Ethernet device.
4649  * @param[in] flow
4650  *   Parent flow structure pointer.
4651  * @param[in] fm
4652  *   Pointer to flow meter structure.
4653  * @param[in] attr
4654  *   Flow rule attributes.
4655  * @param[in] items
4656  *   Pattern specification (list terminated by the END pattern item).
4657  * @param[out] sfx_items
4658  *   Suffix flow match items (list terminated by the END pattern item).
4659  * @param[in] actions
4660  *   Associated actions (list terminated by the END action).
4661  * @param[out] actions_sfx
4662  *   Suffix flow actions.
4663  * @param[out] actions_pre
4664  *   Prefix flow actions.
4665  * @param[out] mtr_flow_id
4666  *   Pointer to meter flow id.
4667  * @param[out] error
4668  *   Perform verbose error reporting if not NULL.
4669  *
4670  * @return
4671  *   0 on success, a negative errno value otherwise and rte_errno is set.
4672  */
4673 static int
4674 flow_meter_split_prep(struct rte_eth_dev *dev,
4675 		      struct rte_flow *flow,
4676 		      struct mlx5_flow_meter_info *fm,
4677 		      const struct rte_flow_attr *attr,
4678 		      const struct rte_flow_item items[],
4679 		      struct rte_flow_item sfx_items[],
4680 		      const struct rte_flow_action actions[],
4681 		      struct rte_flow_action actions_sfx[],
4682 		      struct rte_flow_action actions_pre[],
4683 		      uint32_t *mtr_flow_id,
4684 		      struct rte_flow_error *error)
4685 {
4686 	struct mlx5_priv *priv = dev->data->dev_private;
4687 	struct rte_flow_action *tag_action = NULL;
4688 	struct rte_flow_item *tag_item;
4689 	struct mlx5_rte_flow_action_set_tag *set_tag;
4690 	const struct rte_flow_action_raw_encap *raw_encap;
4691 	const struct rte_flow_action_raw_decap *raw_decap;
4692 	struct mlx5_rte_flow_item_tag *tag_item_spec;
4693 	struct mlx5_rte_flow_item_tag *tag_item_mask;
4694 	uint32_t tag_id = 0;
4695 	bool copy_vlan = false;
4696 	struct rte_flow_action *hw_mtr_action;
4697 	struct rte_flow_action *action_pre_head = NULL;
4698 	bool mtr_first = priv->sh->meter_aso_en &&
4699 			(attr->egress ||
4700 			(attr->transfer && priv->representor_id != UINT16_MAX));
4701 	uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0;
4702 	uint8_t mtr_reg_bits = priv->mtr_reg_share ?
4703 				MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS;
4704 	uint32_t flow_id = 0;
4705 	uint32_t flow_id_reversed = 0;
4706 	uint8_t flow_id_bits = 0;
4707 	int shift;
4708 
4709 	/* For ASO meter, meter must be before tag in TX direction. */
4710 	if (mtr_first) {
4711 		action_pre_head = actions_pre++;
4712 		/* Leave space for tag action. */
4713 		tag_action = actions_pre++;
4714 	}
4715 	/* Prepare the actions for prefix and suffix flow. */
4716 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4717 		struct rte_flow_action *action_cur = NULL;
4718 
4719 		switch (actions->type) {
4720 		case RTE_FLOW_ACTION_TYPE_METER:
4721 			if (mtr_first) {
4722 				action_cur = action_pre_head;
4723 			} else {
4724 				/* Leave space for tag action. */
4725 				tag_action = actions_pre++;
4726 				action_cur = actions_pre++;
4727 			}
4728 			break;
4729 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4730 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4731 			action_cur = actions_pre++;
4732 			break;
4733 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4734 			raw_encap = actions->conf;
4735 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4736 				action_cur = actions_pre++;
4737 			break;
4738 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4739 			raw_decap = actions->conf;
4740 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4741 				action_cur = actions_pre++;
4742 			break;
4743 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4744 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4745 			copy_vlan = true;
4746 			break;
4747 		default:
4748 			break;
4749 		}
4750 		if (!action_cur)
4751 			action_cur = (fm->def_policy) ?
4752 					actions_sfx++ : actions_pre++;
4753 		memcpy(action_cur, actions, sizeof(struct rte_flow_action));
4754 	}
4755 	/* Add end action to the actions. */
4756 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4757 	if (priv->sh->meter_aso_en) {
4758 		/**
4759 		 * For ASO meter, need to add an extra jump action explicitly,
4760 		 * to jump from meter to policer table.
4761 		 */
4762 		struct mlx5_flow_meter_sub_policy *sub_policy;
4763 		struct mlx5_flow_tbl_data_entry *tbl_data;
4764 
4765 		if (!fm->def_policy) {
4766 			sub_policy = get_meter_sub_policy(dev, flow,
4767 							  fm->policy_id, attr,
4768 							  items, error);
4769 			if (!sub_policy)
4770 				return -rte_errno;
4771 		} else {
4772 			enum mlx5_meter_domain mtr_domain =
4773 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
4774 				attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
4775 					MLX5_MTR_DOMAIN_INGRESS;
4776 
4777 			sub_policy =
4778 			&priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy;
4779 		}
4780 		tbl_data = container_of(sub_policy->tbl_rsc,
4781 					struct mlx5_flow_tbl_data_entry, tbl);
4782 		hw_mtr_action = actions_pre++;
4783 		hw_mtr_action->type = (enum rte_flow_action_type)
4784 				      MLX5_RTE_FLOW_ACTION_TYPE_JUMP;
4785 		hw_mtr_action->conf = tbl_data->jump.action;
4786 	}
4787 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4788 	actions_pre++;
4789 	if (!tag_action)
4790 		return rte_flow_error_set(error, ENOMEM,
4791 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4792 					"No tag action space.");
4793 	if (!mtr_flow_id) {
4794 		tag_action->type = RTE_FLOW_ACTION_TYPE_VOID;
4795 		goto exit;
4796 	}
4797 	/* Only default-policy Meter creates mtr flow id. */
4798 	if (fm->def_policy) {
4799 		mlx5_ipool_malloc(fm->flow_ipool, &tag_id);
4800 		if (!tag_id)
4801 			return rte_flow_error_set(error, ENOMEM,
4802 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4803 					"Failed to allocate meter flow id.");
4804 		flow_id = tag_id - 1;
4805 		flow_id_bits = (!flow_id) ? 1 :
4806 				(MLX5_REG_BITS - __builtin_clz(flow_id));
4807 		if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) >
4808 		    mtr_reg_bits) {
4809 			mlx5_ipool_free(fm->flow_ipool, tag_id);
4810 			return rte_flow_error_set(error, EINVAL,
4811 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4812 					"Meter flow id exceeds max limit.");
4813 		}
4814 		if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits)
4815 			priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits;
4816 	}
4817 	/* Prepare the suffix subflow items. */
4818 	tag_item = sfx_items++;
4819 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4820 		int item_type = items->type;
4821 
4822 		switch (item_type) {
4823 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4824 			memcpy(sfx_items, items, sizeof(*sfx_items));
4825 			sfx_items++;
4826 			break;
4827 		case RTE_FLOW_ITEM_TYPE_VLAN:
4828 			if (copy_vlan) {
4829 				memcpy(sfx_items, items, sizeof(*sfx_items));
4830 				/*
4831 				 * Convert to internal match item, it is used
4832 				 * for vlan push and set vid.
4833 				 */
4834 				sfx_items->type = (enum rte_flow_item_type)
4835 						  MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4836 				sfx_items++;
4837 			}
4838 			break;
4839 		default:
4840 			break;
4841 		}
4842 	}
4843 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4844 	sfx_items++;
4845 	/* Build tag actions and items for meter_id/meter flow_id. */
4846 	set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre;
4847 	tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4848 	tag_item_mask = tag_item_spec + 1;
4849 	/* Both flow_id and meter_id share the same register. */
4850 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4851 		.id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID,
4852 							    0, error),
4853 		.offset = mtr_id_offset,
4854 		.length = mtr_reg_bits,
4855 		.data = flow->meter,
4856 	};
4857 	/*
4858 	 * The color Reg bits used by flow_id are growing from
4859 	 * msb to lsb, so must do bit reverse for flow_id val in RegC.
4860 	 */
4861 	for (shift = 0; shift < flow_id_bits; shift++)
4862 		flow_id_reversed = (flow_id_reversed << 1) |
4863 				((flow_id >> shift) & 0x1);
4864 	set_tag->data |=
4865 		flow_id_reversed << (mtr_reg_bits - flow_id_bits);
4866 	tag_item_spec->id = set_tag->id;
4867 	tag_item_spec->data = set_tag->data << mtr_id_offset;
4868 	tag_item_mask->data = UINT32_MAX << mtr_id_offset;
4869 	tag_action->type = (enum rte_flow_action_type)
4870 				MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4871 	tag_action->conf = set_tag;
4872 	tag_item->type = (enum rte_flow_item_type)
4873 				MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4874 	tag_item->spec = tag_item_spec;
4875 	tag_item->last = NULL;
4876 	tag_item->mask = tag_item_mask;
4877 exit:
4878 	if (mtr_flow_id)
4879 		*mtr_flow_id = tag_id;
4880 	return 0;
4881 }
4882 
4883 /**
4884  * Split action list having QUEUE/RSS for metadata register copy.
4885  *
4886  * Once Q/RSS action is detected in user's action list, the flow action
4887  * should be split in order to copy metadata registers, which will happen in
4888  * RX_CP_TBL like,
4889  *   - CQE->flow_tag := reg_c[1] (MARK)
4890  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4891  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4892  * This is because the last action of each flow must be a terminal action
4893  * (QUEUE, RSS or DROP).
4894  *
4895  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4896  * stored and kept in the mlx5_flow structure per each sub_flow.
4897  *
4898  * The Q/RSS action is replaced with,
4899  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4900  * And the following JUMP action is added at the end,
4901  *   - JUMP, to RX_CP_TBL.
4902  *
4903  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4904  * flow_create_split_metadata() routine. The flow will look like,
4905  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4906  *
4907  * @param dev
4908  *   Pointer to Ethernet device.
4909  * @param[out] split_actions
4910  *   Pointer to store split actions to jump to CP_TBL.
4911  * @param[in] actions
4912  *   Pointer to the list of original flow actions.
4913  * @param[in] qrss
4914  *   Pointer to the Q/RSS action.
4915  * @param[in] actions_n
4916  *   Number of original actions.
4917  * @param[out] error
4918  *   Perform verbose error reporting if not NULL.
4919  *
4920  * @return
4921  *   non-zero unique flow_id on success, otherwise 0 and
4922  *   error/rte_error are set.
4923  */
4924 static uint32_t
4925 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4926 			  struct rte_flow_action *split_actions,
4927 			  const struct rte_flow_action *actions,
4928 			  const struct rte_flow_action *qrss,
4929 			  int actions_n, struct rte_flow_error *error)
4930 {
4931 	struct mlx5_priv *priv = dev->data->dev_private;
4932 	struct mlx5_rte_flow_action_set_tag *set_tag;
4933 	struct rte_flow_action_jump *jump;
4934 	const int qrss_idx = qrss - actions;
4935 	uint32_t flow_id = 0;
4936 	int ret = 0;
4937 
4938 	/*
4939 	 * Given actions will be split
4940 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4941 	 * - Add jump to mreg CP_TBL.
4942 	 * As a result, there will be one more action.
4943 	 */
4944 	++actions_n;
4945 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4946 	set_tag = (void *)(split_actions + actions_n);
4947 	/*
4948 	 * If tag action is not set to void(it means we are not the meter
4949 	 * suffix flow), add the tag action. Since meter suffix flow already
4950 	 * has the tag added.
4951 	 */
4952 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4953 		/*
4954 		 * Allocate the new subflow ID. This one is unique within
4955 		 * device and not shared with representors. Otherwise,
4956 		 * we would have to resolve multi-thread access synch
4957 		 * issue. Each flow on the shared device is appended
4958 		 * with source vport identifier, so the resulting
4959 		 * flows will be unique in the shared (by master and
4960 		 * representors) domain even if they have coinciding
4961 		 * IDs.
4962 		 */
4963 		mlx5_ipool_malloc(priv->sh->ipool
4964 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
4965 		if (!flow_id)
4966 			return rte_flow_error_set(error, ENOMEM,
4967 						  RTE_FLOW_ERROR_TYPE_ACTION,
4968 						  NULL, "can't allocate id "
4969 						  "for split Q/RSS subflow");
4970 		/* Internal SET_TAG action to set flow ID. */
4971 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
4972 			.data = flow_id,
4973 		};
4974 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4975 		if (ret < 0)
4976 			return ret;
4977 		set_tag->id = ret;
4978 		/* Construct new actions array. */
4979 		/* Replace QUEUE/RSS action. */
4980 		split_actions[qrss_idx] = (struct rte_flow_action){
4981 			.type = (enum rte_flow_action_type)
4982 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4983 			.conf = set_tag,
4984 		};
4985 	}
4986 	/* JUMP action to jump to mreg copy table (CP_TBL). */
4987 	jump = (void *)(set_tag + 1);
4988 	*jump = (struct rte_flow_action_jump){
4989 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4990 	};
4991 	split_actions[actions_n - 2] = (struct rte_flow_action){
4992 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
4993 		.conf = jump,
4994 	};
4995 	split_actions[actions_n - 1] = (struct rte_flow_action){
4996 		.type = RTE_FLOW_ACTION_TYPE_END,
4997 	};
4998 	return flow_id;
4999 }
5000 
5001 /**
5002  * Extend the given action list for Tx metadata copy.
5003  *
5004  * Copy the given action list to the ext_actions and add flow metadata register
5005  * copy action in order to copy reg_a set by WQE to reg_c[0].
5006  *
5007  * @param[out] ext_actions
5008  *   Pointer to the extended action list.
5009  * @param[in] actions
5010  *   Pointer to the list of actions.
5011  * @param[in] actions_n
5012  *   Number of actions in the list.
5013  * @param[out] error
5014  *   Perform verbose error reporting if not NULL.
5015  * @param[in] encap_idx
5016  *   The encap action inndex.
5017  *
5018  * @return
5019  *   0 on success, negative value otherwise
5020  */
5021 static int
5022 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
5023 		       struct rte_flow_action *ext_actions,
5024 		       const struct rte_flow_action *actions,
5025 		       int actions_n, struct rte_flow_error *error,
5026 		       int encap_idx)
5027 {
5028 	struct mlx5_flow_action_copy_mreg *cp_mreg =
5029 		(struct mlx5_flow_action_copy_mreg *)
5030 			(ext_actions + actions_n + 1);
5031 	int ret;
5032 
5033 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
5034 	if (ret < 0)
5035 		return ret;
5036 	cp_mreg->dst = ret;
5037 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
5038 	if (ret < 0)
5039 		return ret;
5040 	cp_mreg->src = ret;
5041 	if (encap_idx != 0)
5042 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
5043 	if (encap_idx == actions_n - 1) {
5044 		ext_actions[actions_n - 1] = (struct rte_flow_action){
5045 			.type = (enum rte_flow_action_type)
5046 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5047 			.conf = cp_mreg,
5048 		};
5049 		ext_actions[actions_n] = (struct rte_flow_action){
5050 			.type = RTE_FLOW_ACTION_TYPE_END,
5051 		};
5052 	} else {
5053 		ext_actions[encap_idx] = (struct rte_flow_action){
5054 			.type = (enum rte_flow_action_type)
5055 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5056 			.conf = cp_mreg,
5057 		};
5058 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
5059 				sizeof(*ext_actions) * (actions_n - encap_idx));
5060 	}
5061 	return 0;
5062 }
5063 
5064 /**
5065  * Check the match action from the action list.
5066  *
5067  * @param[in] actions
5068  *   Pointer to the list of actions.
5069  * @param[in] attr
5070  *   Flow rule attributes.
5071  * @param[in] action
5072  *   The action to be check if exist.
5073  * @param[out] match_action_pos
5074  *   Pointer to the position of the matched action if exists, otherwise is -1.
5075  * @param[out] qrss_action_pos
5076  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
5077  * @param[out] modify_after_mirror
5078  *   Pointer to the flag of modify action after FDB mirroring.
5079  *
5080  * @return
5081  *   > 0 the total number of actions.
5082  *   0 if not found match action in action list.
5083  */
5084 static int
5085 flow_check_match_action(const struct rte_flow_action actions[],
5086 			const struct rte_flow_attr *attr,
5087 			enum rte_flow_action_type action,
5088 			int *match_action_pos, int *qrss_action_pos,
5089 			int *modify_after_mirror)
5090 {
5091 	const struct rte_flow_action_sample *sample;
5092 	int actions_n = 0;
5093 	uint32_t ratio = 0;
5094 	int sub_type = 0;
5095 	int flag = 0;
5096 	int fdb_mirror = 0;
5097 
5098 	*match_action_pos = -1;
5099 	*qrss_action_pos = -1;
5100 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5101 		if (actions->type == action) {
5102 			flag = 1;
5103 			*match_action_pos = actions_n;
5104 		}
5105 		switch (actions->type) {
5106 		case RTE_FLOW_ACTION_TYPE_QUEUE:
5107 		case RTE_FLOW_ACTION_TYPE_RSS:
5108 			*qrss_action_pos = actions_n;
5109 			break;
5110 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
5111 			sample = actions->conf;
5112 			ratio = sample->ratio;
5113 			sub_type = ((const struct rte_flow_action *)
5114 					(sample->actions))->type;
5115 			if (ratio == 1 && attr->transfer)
5116 				fdb_mirror = 1;
5117 			break;
5118 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
5119 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
5120 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
5121 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
5122 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
5123 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
5124 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
5125 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
5126 		case RTE_FLOW_ACTION_TYPE_DEC_TTL:
5127 		case RTE_FLOW_ACTION_TYPE_SET_TTL:
5128 		case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
5129 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
5130 		case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
5131 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
5132 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
5133 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
5134 		case RTE_FLOW_ACTION_TYPE_FLAG:
5135 		case RTE_FLOW_ACTION_TYPE_MARK:
5136 		case RTE_FLOW_ACTION_TYPE_SET_META:
5137 		case RTE_FLOW_ACTION_TYPE_SET_TAG:
5138 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
5139 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5140 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5141 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
5142 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5143 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5144 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5145 		case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
5146 		case RTE_FLOW_ACTION_TYPE_METER:
5147 			if (fdb_mirror)
5148 				*modify_after_mirror = 1;
5149 			break;
5150 		default:
5151 			break;
5152 		}
5153 		actions_n++;
5154 	}
5155 	if (flag && fdb_mirror && !*modify_after_mirror) {
5156 		/* FDB mirroring uses the destination array to implement
5157 		 * instead of FLOW_SAMPLER object.
5158 		 */
5159 		if (sub_type != RTE_FLOW_ACTION_TYPE_END)
5160 			flag = 0;
5161 	}
5162 	/* Count RTE_FLOW_ACTION_TYPE_END. */
5163 	return flag ? actions_n + 1 : 0;
5164 }
5165 
5166 #define SAMPLE_SUFFIX_ITEM 2
5167 
5168 /**
5169  * Split the sample flow.
5170  *
5171  * As sample flow will split to two sub flow, sample flow with
5172  * sample action, the other actions will move to new suffix flow.
5173  *
5174  * Also add unique tag id with tag action in the sample flow,
5175  * the same tag id will be as match in the suffix flow.
5176  *
5177  * @param dev
5178  *   Pointer to Ethernet device.
5179  * @param[in] add_tag
5180  *   Add extra tag action flag.
5181  * @param[out] sfx_items
5182  *   Suffix flow match items (list terminated by the END pattern item).
5183  * @param[in] actions
5184  *   Associated actions (list terminated by the END action).
5185  * @param[out] actions_sfx
5186  *   Suffix flow actions.
5187  * @param[out] actions_pre
5188  *   Prefix flow actions.
5189  * @param[in] actions_n
5190  *  The total number of actions.
5191  * @param[in] sample_action_pos
5192  *   The sample action position.
5193  * @param[in] qrss_action_pos
5194  *   The Queue/RSS action position.
5195  * @param[in] jump_table
5196  *   Add extra jump action flag.
5197  * @param[out] error
5198  *   Perform verbose error reporting if not NULL.
5199  *
5200  * @return
5201  *   0 on success, or unique flow_id, a negative errno value
5202  *   otherwise and rte_errno is set.
5203  */
5204 static int
5205 flow_sample_split_prep(struct rte_eth_dev *dev,
5206 		       int add_tag,
5207 		       struct rte_flow_item sfx_items[],
5208 		       const struct rte_flow_action actions[],
5209 		       struct rte_flow_action actions_sfx[],
5210 		       struct rte_flow_action actions_pre[],
5211 		       int actions_n,
5212 		       int sample_action_pos,
5213 		       int qrss_action_pos,
5214 		       int jump_table,
5215 		       struct rte_flow_error *error)
5216 {
5217 	struct mlx5_priv *priv = dev->data->dev_private;
5218 	struct mlx5_rte_flow_action_set_tag *set_tag;
5219 	struct mlx5_rte_flow_item_tag *tag_spec;
5220 	struct mlx5_rte_flow_item_tag *tag_mask;
5221 	struct rte_flow_action_jump *jump_action;
5222 	uint32_t tag_id = 0;
5223 	int index;
5224 	int append_index = 0;
5225 	int ret;
5226 
5227 	if (sample_action_pos < 0)
5228 		return rte_flow_error_set(error, EINVAL,
5229 					  RTE_FLOW_ERROR_TYPE_ACTION,
5230 					  NULL, "invalid position of sample "
5231 					  "action in list");
5232 	/* Prepare the actions for prefix and suffix flow. */
5233 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
5234 		index = qrss_action_pos;
5235 		/* Put the preceding the Queue/RSS action into prefix flow. */
5236 		if (index != 0)
5237 			memcpy(actions_pre, actions,
5238 			       sizeof(struct rte_flow_action) * index);
5239 		/* Put others preceding the sample action into prefix flow. */
5240 		if (sample_action_pos > index + 1)
5241 			memcpy(actions_pre + index, actions + index + 1,
5242 			       sizeof(struct rte_flow_action) *
5243 			       (sample_action_pos - index - 1));
5244 		index = sample_action_pos - 1;
5245 		/* Put Queue/RSS action into Suffix flow. */
5246 		memcpy(actions_sfx, actions + qrss_action_pos,
5247 		       sizeof(struct rte_flow_action));
5248 		actions_sfx++;
5249 	} else {
5250 		index = sample_action_pos;
5251 		if (index != 0)
5252 			memcpy(actions_pre, actions,
5253 			       sizeof(struct rte_flow_action) * index);
5254 	}
5255 	/* For CX5, add an extra tag action for NIC-RX and E-Switch ingress.
5256 	 * For CX6DX and above, metadata registers Cx preserve their value,
5257 	 * add an extra tag action for NIC-RX and E-Switch Domain.
5258 	 */
5259 	if (add_tag) {
5260 		/* Prepare the prefix tag action. */
5261 		append_index++;
5262 		set_tag = (void *)(actions_pre + actions_n + append_index);
5263 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
5264 		if (ret < 0)
5265 			return ret;
5266 		mlx5_ipool_malloc(priv->sh->ipool
5267 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
5268 		*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5269 			.id = ret,
5270 			.data = tag_id,
5271 		};
5272 		/* Prepare the suffix subflow items. */
5273 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
5274 		tag_spec->data = tag_id;
5275 		tag_spec->id = set_tag->id;
5276 		tag_mask = tag_spec + 1;
5277 		tag_mask->data = UINT32_MAX;
5278 		sfx_items[0] = (struct rte_flow_item){
5279 			.type = (enum rte_flow_item_type)
5280 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5281 			.spec = tag_spec,
5282 			.last = NULL,
5283 			.mask = tag_mask,
5284 		};
5285 		sfx_items[1] = (struct rte_flow_item){
5286 			.type = (enum rte_flow_item_type)
5287 				RTE_FLOW_ITEM_TYPE_END,
5288 		};
5289 		/* Prepare the tag action in prefix subflow. */
5290 		actions_pre[index++] =
5291 			(struct rte_flow_action){
5292 			.type = (enum rte_flow_action_type)
5293 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5294 			.conf = set_tag,
5295 		};
5296 	}
5297 	memcpy(actions_pre + index, actions + sample_action_pos,
5298 	       sizeof(struct rte_flow_action));
5299 	index += 1;
5300 	/* For the modify action after the sample action in E-Switch mirroring,
5301 	 * Add the extra jump action in prefix subflow and jump into the next
5302 	 * table, then do the modify action in the new table.
5303 	 */
5304 	if (jump_table) {
5305 		/* Prepare the prefix jump action. */
5306 		append_index++;
5307 		jump_action = (void *)(actions_pre + actions_n + append_index);
5308 		jump_action->group = jump_table;
5309 		actions_pre[index++] =
5310 			(struct rte_flow_action){
5311 			.type = (enum rte_flow_action_type)
5312 				RTE_FLOW_ACTION_TYPE_JUMP,
5313 			.conf = jump_action,
5314 		};
5315 	}
5316 	actions_pre[index] = (struct rte_flow_action){
5317 		.type = (enum rte_flow_action_type)
5318 			RTE_FLOW_ACTION_TYPE_END,
5319 	};
5320 	/* Put the actions after sample into Suffix flow. */
5321 	memcpy(actions_sfx, actions + sample_action_pos + 1,
5322 	       sizeof(struct rte_flow_action) *
5323 	       (actions_n - sample_action_pos - 1));
5324 	return tag_id;
5325 }
5326 
5327 /**
5328  * The splitting for metadata feature.
5329  *
5330  * - Q/RSS action on NIC Rx should be split in order to pass by
5331  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
5332  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
5333  *
5334  * - All the actions on NIC Tx should have a mreg copy action to
5335  *   copy reg_a from WQE to reg_c[0].
5336  *
5337  * @param dev
5338  *   Pointer to Ethernet device.
5339  * @param[in] flow
5340  *   Parent flow structure pointer.
5341  * @param[in] attr
5342  *   Flow rule attributes.
5343  * @param[in] items
5344  *   Pattern specification (list terminated by the END pattern item).
5345  * @param[in] actions
5346  *   Associated actions (list terminated by the END action).
5347  * @param[in] flow_split_info
5348  *   Pointer to flow split info structure.
5349  * @param[out] error
5350  *   Perform verbose error reporting if not NULL.
5351  * @return
5352  *   0 on success, negative value otherwise
5353  */
5354 static int
5355 flow_create_split_metadata(struct rte_eth_dev *dev,
5356 			   struct rte_flow *flow,
5357 			   const struct rte_flow_attr *attr,
5358 			   const struct rte_flow_item items[],
5359 			   const struct rte_flow_action actions[],
5360 			   struct mlx5_flow_split_info *flow_split_info,
5361 			   struct rte_flow_error *error)
5362 {
5363 	struct mlx5_priv *priv = dev->data->dev_private;
5364 	struct mlx5_dev_config *config = &priv->config;
5365 	const struct rte_flow_action *qrss = NULL;
5366 	struct rte_flow_action *ext_actions = NULL;
5367 	struct mlx5_flow *dev_flow = NULL;
5368 	uint32_t qrss_id = 0;
5369 	int mtr_sfx = 0;
5370 	size_t act_size;
5371 	int actions_n;
5372 	int encap_idx;
5373 	int ret;
5374 
5375 	/* Check whether extensive metadata feature is engaged. */
5376 	if (!config->dv_flow_en ||
5377 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
5378 	    !mlx5_flow_ext_mreg_supported(dev))
5379 		return flow_create_split_inner(dev, flow, NULL, attr, items,
5380 					       actions, flow_split_info, error);
5381 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
5382 							   &encap_idx);
5383 	if (qrss) {
5384 		/* Exclude hairpin flows from splitting. */
5385 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
5386 			const struct rte_flow_action_queue *queue;
5387 
5388 			queue = qrss->conf;
5389 			if (mlx5_rxq_get_type(dev, queue->index) ==
5390 			    MLX5_RXQ_TYPE_HAIRPIN)
5391 				qrss = NULL;
5392 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
5393 			const struct rte_flow_action_rss *rss;
5394 
5395 			rss = qrss->conf;
5396 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
5397 			    MLX5_RXQ_TYPE_HAIRPIN)
5398 				qrss = NULL;
5399 		}
5400 	}
5401 	if (qrss) {
5402 		/* Check if it is in meter suffix table. */
5403 		mtr_sfx = attr->group == (attr->transfer ?
5404 			  (MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5405 			  MLX5_FLOW_TABLE_LEVEL_METER);
5406 		/*
5407 		 * Q/RSS action on NIC Rx should be split in order to pass by
5408 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
5409 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
5410 		 */
5411 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5412 			   sizeof(struct rte_flow_action_set_tag) +
5413 			   sizeof(struct rte_flow_action_jump);
5414 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5415 					  SOCKET_ID_ANY);
5416 		if (!ext_actions)
5417 			return rte_flow_error_set(error, ENOMEM,
5418 						  RTE_FLOW_ERROR_TYPE_ACTION,
5419 						  NULL, "no memory to split "
5420 						  "metadata flow");
5421 		/*
5422 		 * If we are the suffix flow of meter, tag already exist.
5423 		 * Set the tag action to void.
5424 		 */
5425 		if (mtr_sfx)
5426 			ext_actions[qrss - actions].type =
5427 						RTE_FLOW_ACTION_TYPE_VOID;
5428 		else
5429 			ext_actions[qrss - actions].type =
5430 						(enum rte_flow_action_type)
5431 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5432 		/*
5433 		 * Create the new actions list with removed Q/RSS action
5434 		 * and appended set tag and jump to register copy table
5435 		 * (RX_CP_TBL). We should preallocate unique tag ID here
5436 		 * in advance, because it is needed for set tag action.
5437 		 */
5438 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
5439 						    qrss, actions_n, error);
5440 		if (!mtr_sfx && !qrss_id) {
5441 			ret = -rte_errno;
5442 			goto exit;
5443 		}
5444 	} else if (attr->egress && !attr->transfer) {
5445 		/*
5446 		 * All the actions on NIC Tx should have a metadata register
5447 		 * copy action to copy reg_a from WQE to reg_c[meta]
5448 		 */
5449 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5450 			   sizeof(struct mlx5_flow_action_copy_mreg);
5451 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5452 					  SOCKET_ID_ANY);
5453 		if (!ext_actions)
5454 			return rte_flow_error_set(error, ENOMEM,
5455 						  RTE_FLOW_ERROR_TYPE_ACTION,
5456 						  NULL, "no memory to split "
5457 						  "metadata flow");
5458 		/* Create the action list appended with copy register. */
5459 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
5460 					     actions_n, error, encap_idx);
5461 		if (ret < 0)
5462 			goto exit;
5463 	}
5464 	/* Add the unmodified original or prefix subflow. */
5465 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5466 				      items, ext_actions ? ext_actions :
5467 				      actions, flow_split_info, error);
5468 	if (ret < 0)
5469 		goto exit;
5470 	MLX5_ASSERT(dev_flow);
5471 	if (qrss) {
5472 		const struct rte_flow_attr q_attr = {
5473 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
5474 			.ingress = 1,
5475 		};
5476 		/* Internal PMD action to set register. */
5477 		struct mlx5_rte_flow_item_tag q_tag_spec = {
5478 			.data = qrss_id,
5479 			.id = REG_NON,
5480 		};
5481 		struct rte_flow_item q_items[] = {
5482 			{
5483 				.type = (enum rte_flow_item_type)
5484 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5485 				.spec = &q_tag_spec,
5486 				.last = NULL,
5487 				.mask = NULL,
5488 			},
5489 			{
5490 				.type = RTE_FLOW_ITEM_TYPE_END,
5491 			},
5492 		};
5493 		struct rte_flow_action q_actions[] = {
5494 			{
5495 				.type = qrss->type,
5496 				.conf = qrss->conf,
5497 			},
5498 			{
5499 				.type = RTE_FLOW_ACTION_TYPE_END,
5500 			},
5501 		};
5502 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
5503 
5504 		/*
5505 		 * Configure the tag item only if there is no meter subflow.
5506 		 * Since tag is already marked in the meter suffix subflow
5507 		 * we can just use the meter suffix items as is.
5508 		 */
5509 		if (qrss_id) {
5510 			/* Not meter subflow. */
5511 			MLX5_ASSERT(!mtr_sfx);
5512 			/*
5513 			 * Put unique id in prefix flow due to it is destroyed
5514 			 * after suffix flow and id will be freed after there
5515 			 * is no actual flows with this id and identifier
5516 			 * reallocation becomes possible (for example, for
5517 			 * other flows in other threads).
5518 			 */
5519 			dev_flow->handle->split_flow_id = qrss_id;
5520 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
5521 						   error);
5522 			if (ret < 0)
5523 				goto exit;
5524 			q_tag_spec.id = ret;
5525 		}
5526 		dev_flow = NULL;
5527 		/* Add suffix subflow to execute Q/RSS. */
5528 		flow_split_info->prefix_layers = layers;
5529 		flow_split_info->prefix_mark = 0;
5530 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5531 					      &q_attr, mtr_sfx ? items :
5532 					      q_items, q_actions,
5533 					      flow_split_info, error);
5534 		if (ret < 0)
5535 			goto exit;
5536 		/* qrss ID should be freed if failed. */
5537 		qrss_id = 0;
5538 		MLX5_ASSERT(dev_flow);
5539 	}
5540 
5541 exit:
5542 	/*
5543 	 * We do not destroy the partially created sub_flows in case of error.
5544 	 * These ones are included into parent flow list and will be destroyed
5545 	 * by flow_drv_destroy.
5546 	 */
5547 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
5548 			qrss_id);
5549 	mlx5_free(ext_actions);
5550 	return ret;
5551 }
5552 
5553 /**
5554  * Create meter internal drop flow with the original pattern.
5555  *
5556  * @param dev
5557  *   Pointer to Ethernet device.
5558  * @param[in] flow
5559  *   Parent flow structure pointer.
5560  * @param[in] attr
5561  *   Flow rule attributes.
5562  * @param[in] items
5563  *   Pattern specification (list terminated by the END pattern item).
5564  * @param[in] flow_split_info
5565  *   Pointer to flow split info structure.
5566  * @param[in] fm
5567  *   Pointer to flow meter structure.
5568  * @param[out] error
5569  *   Perform verbose error reporting if not NULL.
5570  * @return
5571  *   0 on success, negative value otherwise
5572  */
5573 static uint32_t
5574 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev,
5575 			struct rte_flow *flow,
5576 			const struct rte_flow_attr *attr,
5577 			const struct rte_flow_item items[],
5578 			struct mlx5_flow_split_info *flow_split_info,
5579 			struct mlx5_flow_meter_info *fm,
5580 			struct rte_flow_error *error)
5581 {
5582 	struct mlx5_flow *dev_flow = NULL;
5583 	struct rte_flow_attr drop_attr = *attr;
5584 	struct rte_flow_action drop_actions[3];
5585 	struct mlx5_flow_split_info drop_split_info = *flow_split_info;
5586 
5587 	MLX5_ASSERT(fm->drop_cnt);
5588 	drop_actions[0].type =
5589 		(enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
5590 	drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt;
5591 	drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP;
5592 	drop_actions[1].conf = NULL;
5593 	drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END;
5594 	drop_actions[2].conf = NULL;
5595 	drop_split_info.external = false;
5596 	drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT;
5597 	drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP;
5598 	drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER;
5599 	return flow_create_split_inner(dev, flow, &dev_flow,
5600 				&drop_attr, items, drop_actions,
5601 				&drop_split_info, error);
5602 }
5603 
5604 /**
5605  * The splitting for meter feature.
5606  *
5607  * - The meter flow will be split to two flows as prefix and
5608  *   suffix flow. The packets make sense only it pass the prefix
5609  *   meter action.
5610  *
5611  * - Reg_C_5 is used for the packet to match betweend prefix and
5612  *   suffix flow.
5613  *
5614  * @param dev
5615  *   Pointer to Ethernet device.
5616  * @param[in] flow
5617  *   Parent flow structure pointer.
5618  * @param[in] attr
5619  *   Flow rule attributes.
5620  * @param[in] items
5621  *   Pattern specification (list terminated by the END pattern item).
5622  * @param[in] actions
5623  *   Associated actions (list terminated by the END action).
5624  * @param[in] flow_split_info
5625  *   Pointer to flow split info structure.
5626  * @param[out] error
5627  *   Perform verbose error reporting if not NULL.
5628  * @return
5629  *   0 on success, negative value otherwise
5630  */
5631 static int
5632 flow_create_split_meter(struct rte_eth_dev *dev,
5633 			struct rte_flow *flow,
5634 			const struct rte_flow_attr *attr,
5635 			const struct rte_flow_item items[],
5636 			const struct rte_flow_action actions[],
5637 			struct mlx5_flow_split_info *flow_split_info,
5638 			struct rte_flow_error *error)
5639 {
5640 	struct mlx5_priv *priv = dev->data->dev_private;
5641 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
5642 	struct rte_flow_action *sfx_actions = NULL;
5643 	struct rte_flow_action *pre_actions = NULL;
5644 	struct rte_flow_item *sfx_items = NULL;
5645 	struct mlx5_flow *dev_flow = NULL;
5646 	struct rte_flow_attr sfx_attr = *attr;
5647 	struct mlx5_flow_meter_info *fm = NULL;
5648 	uint8_t skip_scale_restore;
5649 	bool has_mtr = false;
5650 	bool has_modify = false;
5651 	bool set_mtr_reg = true;
5652 	uint32_t meter_id = 0;
5653 	uint32_t mtr_idx = 0;
5654 	uint32_t mtr_flow_id = 0;
5655 	size_t act_size;
5656 	size_t item_size;
5657 	int actions_n = 0;
5658 	int ret = 0;
5659 
5660 	if (priv->mtr_en)
5661 		actions_n = flow_check_meter_action(dev, actions, &has_mtr,
5662 						    &has_modify, &meter_id);
5663 	if (has_mtr) {
5664 		if (flow->meter) {
5665 			fm = flow_dv_meter_find_by_idx(priv, flow->meter);
5666 			if (!fm)
5667 				return rte_flow_error_set(error, EINVAL,
5668 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5669 						NULL, "Meter not found.");
5670 		} else {
5671 			fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx);
5672 			if (!fm)
5673 				return rte_flow_error_set(error, EINVAL,
5674 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5675 						NULL, "Meter not found.");
5676 			ret = mlx5_flow_meter_attach(priv, fm,
5677 						     &sfx_attr, error);
5678 			if (ret)
5679 				return -rte_errno;
5680 			flow->meter = mtr_idx;
5681 		}
5682 		MLX5_ASSERT(wks);
5683 		wks->fm = fm;
5684 		/*
5685 		 * If it isn't default-policy Meter, and
5686 		 * 1. There's no action in flow to change
5687 		 *    packet (modify/encap/decap etc.), OR
5688 		 * 2. No drop count needed for this meter.
5689 		 * no need to use regC to save meter id anymore.
5690 		 */
5691 		if (!fm->def_policy && (!has_modify || !fm->drop_cnt))
5692 			set_mtr_reg = false;
5693 		/* Prefix actions: meter, decap, encap, tag, jump, end. */
5694 		act_size = sizeof(struct rte_flow_action) * (actions_n + 6) +
5695 			   sizeof(struct mlx5_rte_flow_action_set_tag);
5696 		/* Suffix items: tag, vlan, port id, end. */
5697 #define METER_SUFFIX_ITEM 4
5698 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
5699 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5700 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
5701 					  0, SOCKET_ID_ANY);
5702 		if (!sfx_actions)
5703 			return rte_flow_error_set(error, ENOMEM,
5704 						  RTE_FLOW_ERROR_TYPE_ACTION,
5705 						  NULL, "no memory to split "
5706 						  "meter flow");
5707 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
5708 			     act_size);
5709 		/* There's no suffix flow for meter of non-default policy. */
5710 		if (!fm->def_policy)
5711 			pre_actions = sfx_actions + 1;
5712 		else
5713 			pre_actions = sfx_actions + actions_n;
5714 		ret = flow_meter_split_prep(dev, flow, fm, &sfx_attr,
5715 					    items, sfx_items, actions,
5716 					    sfx_actions, pre_actions,
5717 					    (set_mtr_reg ? &mtr_flow_id : NULL),
5718 					    error);
5719 		if (ret) {
5720 			ret = -rte_errno;
5721 			goto exit;
5722 		}
5723 		/* Add the prefix subflow. */
5724 		flow_split_info->prefix_mark = 0;
5725 		skip_scale_restore = flow_split_info->skip_scale;
5726 		flow_split_info->skip_scale |=
5727 			1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
5728 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5729 					      attr, items, pre_actions,
5730 					      flow_split_info, error);
5731 		flow_split_info->skip_scale = skip_scale_restore;
5732 		if (ret) {
5733 			if (mtr_flow_id)
5734 				mlx5_ipool_free(fm->flow_ipool, mtr_flow_id);
5735 			ret = -rte_errno;
5736 			goto exit;
5737 		}
5738 		if (mtr_flow_id) {
5739 			dev_flow->handle->split_flow_id = mtr_flow_id;
5740 			dev_flow->handle->is_meter_flow_id = 1;
5741 		}
5742 		if (!fm->def_policy) {
5743 			if (!set_mtr_reg && fm->drop_cnt)
5744 				ret =
5745 			flow_meter_create_drop_flow_with_org_pattern(dev, flow,
5746 							&sfx_attr, items,
5747 							flow_split_info,
5748 							fm, error);
5749 			goto exit;
5750 		}
5751 		/* Setting the sfx group atrr. */
5752 		sfx_attr.group = sfx_attr.transfer ?
5753 				(MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5754 				 MLX5_FLOW_TABLE_LEVEL_METER;
5755 		flow_split_info->prefix_layers =
5756 				flow_get_prefix_layer_flags(dev_flow);
5757 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5758 		flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX;
5759 	}
5760 	/* Add the prefix subflow. */
5761 	ret = flow_create_split_metadata(dev, flow,
5762 					 &sfx_attr, sfx_items ?
5763 					 sfx_items : items,
5764 					 sfx_actions ? sfx_actions : actions,
5765 					 flow_split_info, error);
5766 exit:
5767 	if (sfx_actions)
5768 		mlx5_free(sfx_actions);
5769 	return ret;
5770 }
5771 
5772 /**
5773  * The splitting for sample feature.
5774  *
5775  * Once Sample action is detected in the action list, the flow actions should
5776  * be split into prefix sub flow and suffix sub flow.
5777  *
5778  * The original items remain in the prefix sub flow, all actions preceding the
5779  * sample action and the sample action itself will be copied to the prefix
5780  * sub flow, the actions following the sample action will be copied to the
5781  * suffix sub flow, Queue action always be located in the suffix sub flow.
5782  *
5783  * In order to make the packet from prefix sub flow matches with suffix sub
5784  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
5785  * flow uses tag item with the unique flow id.
5786  *
5787  * @param dev
5788  *   Pointer to Ethernet device.
5789  * @param[in] flow
5790  *   Parent flow structure pointer.
5791  * @param[in] attr
5792  *   Flow rule attributes.
5793  * @param[in] items
5794  *   Pattern specification (list terminated by the END pattern item).
5795  * @param[in] actions
5796  *   Associated actions (list terminated by the END action).
5797  * @param[in] flow_split_info
5798  *   Pointer to flow split info structure.
5799  * @param[out] error
5800  *   Perform verbose error reporting if not NULL.
5801  * @return
5802  *   0 on success, negative value otherwise
5803  */
5804 static int
5805 flow_create_split_sample(struct rte_eth_dev *dev,
5806 			 struct rte_flow *flow,
5807 			 const struct rte_flow_attr *attr,
5808 			 const struct rte_flow_item items[],
5809 			 const struct rte_flow_action actions[],
5810 			 struct mlx5_flow_split_info *flow_split_info,
5811 			 struct rte_flow_error *error)
5812 {
5813 	struct mlx5_priv *priv = dev->data->dev_private;
5814 	struct rte_flow_action *sfx_actions = NULL;
5815 	struct rte_flow_action *pre_actions = NULL;
5816 	struct rte_flow_item *sfx_items = NULL;
5817 	struct mlx5_flow *dev_flow = NULL;
5818 	struct rte_flow_attr sfx_attr = *attr;
5819 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5820 	struct mlx5_flow_dv_sample_resource *sample_res;
5821 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
5822 	struct mlx5_flow_tbl_resource *sfx_tbl;
5823 #endif
5824 	size_t act_size;
5825 	size_t item_size;
5826 	uint32_t fdb_tx = 0;
5827 	int32_t tag_id = 0;
5828 	int actions_n = 0;
5829 	int sample_action_pos;
5830 	int qrss_action_pos;
5831 	int add_tag = 0;
5832 	int modify_after_mirror = 0;
5833 	uint16_t jump_table = 0;
5834 	const uint32_t next_ft_step = 1;
5835 	int ret = 0;
5836 
5837 	if (priv->sampler_en)
5838 		actions_n = flow_check_match_action(actions, attr,
5839 					RTE_FLOW_ACTION_TYPE_SAMPLE,
5840 					&sample_action_pos, &qrss_action_pos,
5841 					&modify_after_mirror);
5842 	if (actions_n) {
5843 		/* The prefix actions must includes sample, tag, end. */
5844 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
5845 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
5846 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
5847 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5848 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
5849 					  item_size), 0, SOCKET_ID_ANY);
5850 		if (!sfx_actions)
5851 			return rte_flow_error_set(error, ENOMEM,
5852 						  RTE_FLOW_ERROR_TYPE_ACTION,
5853 						  NULL, "no memory to split "
5854 						  "sample flow");
5855 		/* The representor_id is -1 for uplink. */
5856 		fdb_tx = (attr->transfer && priv->representor_id != -1);
5857 		/*
5858 		 * When reg_c_preserve is set, metadata registers Cx preserve
5859 		 * their value even through packet duplication.
5860 		 */
5861 		add_tag = (!fdb_tx || priv->config.hca_attr.reg_c_preserve);
5862 		if (add_tag)
5863 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
5864 					+ act_size);
5865 		if (modify_after_mirror)
5866 			jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR +
5867 				     next_ft_step;
5868 		pre_actions = sfx_actions + actions_n;
5869 		tag_id = flow_sample_split_prep(dev, add_tag, sfx_items,
5870 						actions, sfx_actions,
5871 						pre_actions, actions_n,
5872 						sample_action_pos,
5873 						qrss_action_pos, jump_table,
5874 						error);
5875 		if (tag_id < 0 || (add_tag && !tag_id)) {
5876 			ret = -rte_errno;
5877 			goto exit;
5878 		}
5879 		if (modify_after_mirror)
5880 			flow_split_info->skip_scale =
5881 					1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
5882 		/* Add the prefix subflow. */
5883 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5884 					      items, pre_actions,
5885 					      flow_split_info, error);
5886 		if (ret) {
5887 			ret = -rte_errno;
5888 			goto exit;
5889 		}
5890 		dev_flow->handle->split_flow_id = tag_id;
5891 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5892 		if (!modify_after_mirror) {
5893 			/* Set the sfx group attr. */
5894 			sample_res = (struct mlx5_flow_dv_sample_resource *)
5895 						dev_flow->dv.sample_res;
5896 			sfx_tbl = (struct mlx5_flow_tbl_resource *)
5897 						sample_res->normal_path_tbl;
5898 			sfx_tbl_data = container_of(sfx_tbl,
5899 						struct mlx5_flow_tbl_data_entry,
5900 						tbl);
5901 			sfx_attr.group = sfx_attr.transfer ?
5902 			(sfx_tbl_data->level - 1) : sfx_tbl_data->level;
5903 		} else {
5904 			MLX5_ASSERT(attr->transfer);
5905 			sfx_attr.group = jump_table;
5906 		}
5907 		flow_split_info->prefix_layers =
5908 				flow_get_prefix_layer_flags(dev_flow);
5909 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5910 		/* Suffix group level already be scaled with factor, set
5911 		 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale
5912 		 * again in translation.
5913 		 */
5914 		flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT;
5915 #endif
5916 	}
5917 	/* Add the suffix subflow. */
5918 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
5919 				      sfx_items ? sfx_items : items,
5920 				      sfx_actions ? sfx_actions : actions,
5921 				      flow_split_info, error);
5922 exit:
5923 	if (sfx_actions)
5924 		mlx5_free(sfx_actions);
5925 	return ret;
5926 }
5927 
5928 /**
5929  * Split the flow to subflow set. The splitters might be linked
5930  * in the chain, like this:
5931  * flow_create_split_outer() calls:
5932  *   flow_create_split_meter() calls:
5933  *     flow_create_split_metadata(meter_subflow_0) calls:
5934  *       flow_create_split_inner(metadata_subflow_0)
5935  *       flow_create_split_inner(metadata_subflow_1)
5936  *       flow_create_split_inner(metadata_subflow_2)
5937  *     flow_create_split_metadata(meter_subflow_1) calls:
5938  *       flow_create_split_inner(metadata_subflow_0)
5939  *       flow_create_split_inner(metadata_subflow_1)
5940  *       flow_create_split_inner(metadata_subflow_2)
5941  *
5942  * This provide flexible way to add new levels of flow splitting.
5943  * The all of successfully created subflows are included to the
5944  * parent flow dev_flow list.
5945  *
5946  * @param dev
5947  *   Pointer to Ethernet device.
5948  * @param[in] flow
5949  *   Parent flow structure pointer.
5950  * @param[in] attr
5951  *   Flow rule attributes.
5952  * @param[in] items
5953  *   Pattern specification (list terminated by the END pattern item).
5954  * @param[in] actions
5955  *   Associated actions (list terminated by the END action).
5956  * @param[in] flow_split_info
5957  *   Pointer to flow split info structure.
5958  * @param[out] error
5959  *   Perform verbose error reporting if not NULL.
5960  * @return
5961  *   0 on success, negative value otherwise
5962  */
5963 static int
5964 flow_create_split_outer(struct rte_eth_dev *dev,
5965 			struct rte_flow *flow,
5966 			const struct rte_flow_attr *attr,
5967 			const struct rte_flow_item items[],
5968 			const struct rte_flow_action actions[],
5969 			struct mlx5_flow_split_info *flow_split_info,
5970 			struct rte_flow_error *error)
5971 {
5972 	int ret;
5973 
5974 	ret = flow_create_split_sample(dev, flow, attr, items,
5975 				       actions, flow_split_info, error);
5976 	MLX5_ASSERT(ret <= 0);
5977 	return ret;
5978 }
5979 
5980 static inline struct mlx5_flow_tunnel *
5981 flow_tunnel_from_rule(const struct mlx5_flow *flow)
5982 {
5983 	struct mlx5_flow_tunnel *tunnel;
5984 
5985 #pragma GCC diagnostic push
5986 #pragma GCC diagnostic ignored "-Wcast-qual"
5987 	tunnel = (typeof(tunnel))flow->tunnel;
5988 #pragma GCC diagnostic pop
5989 
5990 	return tunnel;
5991 }
5992 
5993 /**
5994  * Adjust flow RSS workspace if needed.
5995  *
5996  * @param wks
5997  *   Pointer to thread flow work space.
5998  * @param rss_desc
5999  *   Pointer to RSS descriptor.
6000  * @param[in] nrssq_num
6001  *   New RSS queue number.
6002  *
6003  * @return
6004  *   0 on success, -1 otherwise and rte_errno is set.
6005  */
6006 static int
6007 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
6008 			  struct mlx5_flow_rss_desc *rss_desc,
6009 			  uint32_t nrssq_num)
6010 {
6011 	if (likely(nrssq_num <= wks->rssq_num))
6012 		return 0;
6013 	rss_desc->queue = realloc(rss_desc->queue,
6014 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
6015 	if (!rss_desc->queue) {
6016 		rte_errno = ENOMEM;
6017 		return -1;
6018 	}
6019 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
6020 	return 0;
6021 }
6022 
6023 /**
6024  * Create a flow and add it to @p list.
6025  *
6026  * @param dev
6027  *   Pointer to Ethernet device.
6028  * @param list
6029  *   Pointer to a TAILQ flow list. If this parameter NULL,
6030  *   no list insertion occurred, flow is just created,
6031  *   this is caller's responsibility to track the
6032  *   created flow.
6033  * @param[in] attr
6034  *   Flow rule attributes.
6035  * @param[in] items
6036  *   Pattern specification (list terminated by the END pattern item).
6037  * @param[in] actions
6038  *   Associated actions (list terminated by the END action).
6039  * @param[in] external
6040  *   This flow rule is created by request external to PMD.
6041  * @param[out] error
6042  *   Perform verbose error reporting if not NULL.
6043  *
6044  * @return
6045  *   A flow index on success, 0 otherwise and rte_errno is set.
6046  */
6047 static uint32_t
6048 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
6049 		 const struct rte_flow_attr *attr,
6050 		 const struct rte_flow_item items[],
6051 		 const struct rte_flow_action original_actions[],
6052 		 bool external, struct rte_flow_error *error)
6053 {
6054 	struct mlx5_priv *priv = dev->data->dev_private;
6055 	struct rte_flow *flow = NULL;
6056 	struct mlx5_flow *dev_flow;
6057 	const struct rte_flow_action_rss *rss = NULL;
6058 	struct mlx5_translated_action_handle
6059 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6060 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6061 	union {
6062 		struct mlx5_flow_expand_rss buf;
6063 		uint8_t buffer[2048];
6064 	} expand_buffer;
6065 	union {
6066 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6067 		uint8_t buffer[2048];
6068 	} actions_rx;
6069 	union {
6070 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6071 		uint8_t buffer[2048];
6072 	} actions_hairpin_tx;
6073 	union {
6074 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
6075 		uint8_t buffer[2048];
6076 	} items_tx;
6077 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
6078 	struct mlx5_flow_rss_desc *rss_desc;
6079 	const struct rte_flow_action *p_actions_rx;
6080 	uint32_t i;
6081 	uint32_t idx = 0;
6082 	int hairpin_flow;
6083 	struct rte_flow_attr attr_tx = { .priority = 0 };
6084 	const struct rte_flow_action *actions;
6085 	struct rte_flow_action *translated_actions = NULL;
6086 	struct mlx5_flow_tunnel *tunnel;
6087 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
6088 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
6089 	struct mlx5_flow_split_info flow_split_info = {
6090 		.external = !!external,
6091 		.skip_scale = 0,
6092 		.flow_idx = 0,
6093 		.prefix_mark = 0,
6094 		.prefix_layers = 0,
6095 		.table_id = 0
6096 	};
6097 	int ret;
6098 
6099 	MLX5_ASSERT(wks);
6100 	rss_desc = &wks->rss_desc;
6101 	ret = flow_action_handles_translate(dev, original_actions,
6102 					    indir_actions,
6103 					    &indir_actions_n,
6104 					    &translated_actions, error);
6105 	if (ret < 0) {
6106 		MLX5_ASSERT(translated_actions == NULL);
6107 		return 0;
6108 	}
6109 	actions = translated_actions ? translated_actions : original_actions;
6110 	p_actions_rx = actions;
6111 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6112 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
6113 				external, hairpin_flow, error);
6114 	if (ret < 0)
6115 		goto error_before_hairpin_split;
6116 	flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
6117 	if (!flow) {
6118 		rte_errno = ENOMEM;
6119 		goto error_before_hairpin_split;
6120 	}
6121 	if (hairpin_flow > 0) {
6122 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
6123 			rte_errno = EINVAL;
6124 			goto error_before_hairpin_split;
6125 		}
6126 		flow_hairpin_split(dev, actions, actions_rx.actions,
6127 				   actions_hairpin_tx.actions, items_tx.items,
6128 				   idx);
6129 		p_actions_rx = actions_rx.actions;
6130 	}
6131 	flow_split_info.flow_idx = idx;
6132 	flow->drv_type = flow_get_drv_type(dev, attr);
6133 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
6134 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
6135 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
6136 	/* RSS Action only works on NIC RX domain */
6137 	if (attr->ingress && !attr->transfer)
6138 		rss = flow_get_rss_action(dev, p_actions_rx);
6139 	if (rss) {
6140 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
6141 			return 0;
6142 		/*
6143 		 * The following information is required by
6144 		 * mlx5_flow_hashfields_adjust() in advance.
6145 		 */
6146 		rss_desc->level = rss->level;
6147 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
6148 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
6149 	}
6150 	flow->dev_handles = 0;
6151 	if (rss && rss->types) {
6152 		unsigned int graph_root;
6153 
6154 		graph_root = find_graph_root(items, rss->level);
6155 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
6156 					   items, rss->types,
6157 					   mlx5_support_expansion, graph_root);
6158 		MLX5_ASSERT(ret > 0 &&
6159 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
6160 	} else {
6161 		buf->entries = 1;
6162 		buf->entry[0].pattern = (void *)(uintptr_t)items;
6163 	}
6164 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions,
6165 						      indir_actions_n);
6166 	for (i = 0; i < buf->entries; ++i) {
6167 		/* Initialize flow split data. */
6168 		flow_split_info.prefix_layers = 0;
6169 		flow_split_info.prefix_mark = 0;
6170 		flow_split_info.skip_scale = 0;
6171 		/*
6172 		 * The splitter may create multiple dev_flows,
6173 		 * depending on configuration. In the simplest
6174 		 * case it just creates unmodified original flow.
6175 		 */
6176 		ret = flow_create_split_outer(dev, flow, attr,
6177 					      buf->entry[i].pattern,
6178 					      p_actions_rx, &flow_split_info,
6179 					      error);
6180 		if (ret < 0)
6181 			goto error;
6182 		if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) {
6183 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
6184 							   p_actions_rx,
6185 							   idx,
6186 							   wks->flows[0].tunnel,
6187 							   &default_miss_ctx,
6188 							   error);
6189 			if (ret < 0) {
6190 				mlx5_free(default_miss_ctx.queue);
6191 				goto error;
6192 			}
6193 		}
6194 	}
6195 	/* Create the tx flow. */
6196 	if (hairpin_flow) {
6197 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
6198 		attr_tx.ingress = 0;
6199 		attr_tx.egress = 1;
6200 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
6201 					 actions_hairpin_tx.actions,
6202 					 idx, error);
6203 		if (!dev_flow)
6204 			goto error;
6205 		dev_flow->flow = flow;
6206 		dev_flow->external = 0;
6207 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
6208 			      dev_flow->handle, next);
6209 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
6210 					 items_tx.items,
6211 					 actions_hairpin_tx.actions, error);
6212 		if (ret < 0)
6213 			goto error;
6214 	}
6215 	/*
6216 	 * Update the metadata register copy table. If extensive
6217 	 * metadata feature is enabled and registers are supported
6218 	 * we might create the extra rte_flow for each unique
6219 	 * MARK/FLAG action ID.
6220 	 *
6221 	 * The table is updated for ingress Flows only, because
6222 	 * the egress Flows belong to the different device and
6223 	 * copy table should be updated in peer NIC Rx domain.
6224 	 */
6225 	if (attr->ingress &&
6226 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
6227 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
6228 		if (ret)
6229 			goto error;
6230 	}
6231 	/*
6232 	 * If the flow is external (from application) OR device is started,
6233 	 * OR mreg discover, then apply immediately.
6234 	 */
6235 	if (external || dev->data->dev_started ||
6236 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
6237 	     attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) {
6238 		ret = flow_drv_apply(dev, flow, error);
6239 		if (ret < 0)
6240 			goto error;
6241 	}
6242 	if (list) {
6243 		rte_spinlock_lock(&priv->flow_list_lock);
6244 		ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
6245 			     flow, next);
6246 		rte_spinlock_unlock(&priv->flow_list_lock);
6247 	}
6248 	flow_rxq_flags_set(dev, flow);
6249 	rte_free(translated_actions);
6250 	tunnel = flow_tunnel_from_rule(wks->flows);
6251 	if (tunnel) {
6252 		flow->tunnel = 1;
6253 		flow->tunnel_id = tunnel->tunnel_id;
6254 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
6255 		mlx5_free(default_miss_ctx.queue);
6256 	}
6257 	mlx5_flow_pop_thread_workspace();
6258 	return idx;
6259 error:
6260 	MLX5_ASSERT(flow);
6261 	ret = rte_errno; /* Save rte_errno before cleanup. */
6262 	flow_mreg_del_copy_action(dev, flow);
6263 	flow_drv_destroy(dev, flow);
6264 	if (rss_desc->shared_rss)
6265 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
6266 			mlx5_ipool_get
6267 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
6268 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
6269 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
6270 	rte_errno = ret; /* Restore rte_errno. */
6271 	ret = rte_errno;
6272 	rte_errno = ret;
6273 	mlx5_flow_pop_thread_workspace();
6274 error_before_hairpin_split:
6275 	rte_free(translated_actions);
6276 	return 0;
6277 }
6278 
6279 /**
6280  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
6281  * incoming packets to table 1.
6282  *
6283  * Other flow rules, requested for group n, will be created in
6284  * e-switch table n+1.
6285  * Jump action to e-switch group n will be created to group n+1.
6286  *
6287  * Used when working in switchdev mode, to utilise advantages of table 1
6288  * and above.
6289  *
6290  * @param dev
6291  *   Pointer to Ethernet device.
6292  *
6293  * @return
6294  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
6295  */
6296 struct rte_flow *
6297 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
6298 {
6299 	const struct rte_flow_attr attr = {
6300 		.group = 0,
6301 		.priority = 0,
6302 		.ingress = 1,
6303 		.egress = 0,
6304 		.transfer = 1,
6305 	};
6306 	const struct rte_flow_item pattern = {
6307 		.type = RTE_FLOW_ITEM_TYPE_END,
6308 	};
6309 	struct rte_flow_action_jump jump = {
6310 		.group = 1,
6311 	};
6312 	const struct rte_flow_action actions[] = {
6313 		{
6314 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6315 			.conf = &jump,
6316 		},
6317 		{
6318 			.type = RTE_FLOW_ACTION_TYPE_END,
6319 		},
6320 	};
6321 	struct mlx5_priv *priv = dev->data->dev_private;
6322 	struct rte_flow_error error;
6323 
6324 	return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
6325 						   &attr, &pattern,
6326 						   actions, false, &error);
6327 }
6328 
6329 /**
6330  * Validate a flow supported by the NIC.
6331  *
6332  * @see rte_flow_validate()
6333  * @see rte_flow_ops
6334  */
6335 int
6336 mlx5_flow_validate(struct rte_eth_dev *dev,
6337 		   const struct rte_flow_attr *attr,
6338 		   const struct rte_flow_item items[],
6339 		   const struct rte_flow_action original_actions[],
6340 		   struct rte_flow_error *error)
6341 {
6342 	int hairpin_flow;
6343 	struct mlx5_translated_action_handle
6344 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6345 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6346 	const struct rte_flow_action *actions;
6347 	struct rte_flow_action *translated_actions = NULL;
6348 	int ret = flow_action_handles_translate(dev, original_actions,
6349 						indir_actions,
6350 						&indir_actions_n,
6351 						&translated_actions, error);
6352 
6353 	if (ret)
6354 		return ret;
6355 	actions = translated_actions ? translated_actions : original_actions;
6356 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6357 	ret = flow_drv_validate(dev, attr, items, actions,
6358 				true, hairpin_flow, error);
6359 	rte_free(translated_actions);
6360 	return ret;
6361 }
6362 
6363 /**
6364  * Create a flow.
6365  *
6366  * @see rte_flow_create()
6367  * @see rte_flow_ops
6368  */
6369 struct rte_flow *
6370 mlx5_flow_create(struct rte_eth_dev *dev,
6371 		 const struct rte_flow_attr *attr,
6372 		 const struct rte_flow_item items[],
6373 		 const struct rte_flow_action actions[],
6374 		 struct rte_flow_error *error)
6375 {
6376 	struct mlx5_priv *priv = dev->data->dev_private;
6377 
6378 	/*
6379 	 * If the device is not started yet, it is not allowed to created a
6380 	 * flow from application. PMD default flows and traffic control flows
6381 	 * are not affected.
6382 	 */
6383 	if (unlikely(!dev->data->dev_started)) {
6384 		DRV_LOG(DEBUG, "port %u is not started when "
6385 			"inserting a flow", dev->data->port_id);
6386 		rte_flow_error_set(error, ENODEV,
6387 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6388 				   NULL,
6389 				   "port not started");
6390 		return NULL;
6391 	}
6392 
6393 	return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
6394 				  attr, items, actions, true, error);
6395 }
6396 
6397 /**
6398  * Destroy a flow in a list.
6399  *
6400  * @param dev
6401  *   Pointer to Ethernet device.
6402  * @param list
6403  *   Pointer to the Indexed flow list. If this parameter NULL,
6404  *   there is no flow removal from the list. Be noted that as
6405  *   flow is add to the indexed list, memory of the indexed
6406  *   list points to maybe changed as flow destroyed.
6407  * @param[in] flow_idx
6408  *   Index of flow to destroy.
6409  */
6410 static void
6411 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
6412 		  uint32_t flow_idx)
6413 {
6414 	struct mlx5_priv *priv = dev->data->dev_private;
6415 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6416 					       [MLX5_IPOOL_RTE_FLOW], flow_idx);
6417 
6418 	if (!flow)
6419 		return;
6420 	/*
6421 	 * Update RX queue flags only if port is started, otherwise it is
6422 	 * already clean.
6423 	 */
6424 	if (dev->data->dev_started)
6425 		flow_rxq_flags_trim(dev, flow);
6426 	flow_drv_destroy(dev, flow);
6427 	if (list) {
6428 		rte_spinlock_lock(&priv->flow_list_lock);
6429 		ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
6430 			     flow_idx, flow, next);
6431 		rte_spinlock_unlock(&priv->flow_list_lock);
6432 	}
6433 	if (flow->tunnel) {
6434 		struct mlx5_flow_tunnel *tunnel;
6435 
6436 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
6437 		RTE_VERIFY(tunnel);
6438 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
6439 			mlx5_flow_tunnel_free(dev, tunnel);
6440 	}
6441 	flow_mreg_del_copy_action(dev, flow);
6442 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
6443 }
6444 
6445 /**
6446  * Destroy all flows.
6447  *
6448  * @param dev
6449  *   Pointer to Ethernet device.
6450  * @param list
6451  *   Pointer to the Indexed flow list.
6452  * @param active
6453  *   If flushing is called avtively.
6454  */
6455 void
6456 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
6457 {
6458 	uint32_t num_flushed = 0;
6459 
6460 	while (*list) {
6461 		flow_list_destroy(dev, list, *list);
6462 		num_flushed++;
6463 	}
6464 	if (active) {
6465 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
6466 			dev->data->port_id, num_flushed);
6467 	}
6468 }
6469 
6470 /**
6471  * Stop all default actions for flows.
6472  *
6473  * @param dev
6474  *   Pointer to Ethernet device.
6475  */
6476 void
6477 mlx5_flow_stop_default(struct rte_eth_dev *dev)
6478 {
6479 	flow_mreg_del_default_copy_action(dev);
6480 	flow_rxq_flags_clear(dev);
6481 }
6482 
6483 /**
6484  * Start all default actions for flows.
6485  *
6486  * @param dev
6487  *   Pointer to Ethernet device.
6488  * @return
6489  *   0 on success, a negative errno value otherwise and rte_errno is set.
6490  */
6491 int
6492 mlx5_flow_start_default(struct rte_eth_dev *dev)
6493 {
6494 	struct rte_flow_error error;
6495 
6496 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
6497 	return flow_mreg_add_default_copy_action(dev, &error);
6498 }
6499 
6500 /**
6501  * Release key of thread specific flow workspace data.
6502  */
6503 void
6504 flow_release_workspace(void *data)
6505 {
6506 	struct mlx5_flow_workspace *wks = data;
6507 	struct mlx5_flow_workspace *next;
6508 
6509 	while (wks) {
6510 		next = wks->next;
6511 		free(wks->rss_desc.queue);
6512 		free(wks);
6513 		wks = next;
6514 	}
6515 }
6516 
6517 /**
6518  * Get thread specific current flow workspace.
6519  *
6520  * @return pointer to thread specific flow workspace data, NULL on error.
6521  */
6522 struct mlx5_flow_workspace*
6523 mlx5_flow_get_thread_workspace(void)
6524 {
6525 	struct mlx5_flow_workspace *data;
6526 
6527 	data = mlx5_flow_os_get_specific_workspace();
6528 	MLX5_ASSERT(data && data->inuse);
6529 	if (!data || !data->inuse)
6530 		DRV_LOG(ERR, "flow workspace not initialized.");
6531 	return data;
6532 }
6533 
6534 /**
6535  * Allocate and init new flow workspace.
6536  *
6537  * @return pointer to flow workspace data, NULL on error.
6538  */
6539 static struct mlx5_flow_workspace*
6540 flow_alloc_thread_workspace(void)
6541 {
6542 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
6543 
6544 	if (!data) {
6545 		DRV_LOG(ERR, "Failed to allocate flow workspace "
6546 			"memory.");
6547 		return NULL;
6548 	}
6549 	data->rss_desc.queue = calloc(1,
6550 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
6551 	if (!data->rss_desc.queue)
6552 		goto err;
6553 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
6554 	return data;
6555 err:
6556 	if (data->rss_desc.queue)
6557 		free(data->rss_desc.queue);
6558 	free(data);
6559 	return NULL;
6560 }
6561 
6562 /**
6563  * Get new thread specific flow workspace.
6564  *
6565  * If current workspace inuse, create new one and set as current.
6566  *
6567  * @return pointer to thread specific flow workspace data, NULL on error.
6568  */
6569 static struct mlx5_flow_workspace*
6570 mlx5_flow_push_thread_workspace(void)
6571 {
6572 	struct mlx5_flow_workspace *curr;
6573 	struct mlx5_flow_workspace *data;
6574 
6575 	curr = mlx5_flow_os_get_specific_workspace();
6576 	if (!curr) {
6577 		data = flow_alloc_thread_workspace();
6578 		if (!data)
6579 			return NULL;
6580 	} else if (!curr->inuse) {
6581 		data = curr;
6582 	} else if (curr->next) {
6583 		data = curr->next;
6584 	} else {
6585 		data = flow_alloc_thread_workspace();
6586 		if (!data)
6587 			return NULL;
6588 		curr->next = data;
6589 		data->prev = curr;
6590 	}
6591 	data->inuse = 1;
6592 	data->flow_idx = 0;
6593 	/* Set as current workspace */
6594 	if (mlx5_flow_os_set_specific_workspace(data))
6595 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6596 	return data;
6597 }
6598 
6599 /**
6600  * Close current thread specific flow workspace.
6601  *
6602  * If previous workspace available, set it as current.
6603  *
6604  * @return pointer to thread specific flow workspace data, NULL on error.
6605  */
6606 static void
6607 mlx5_flow_pop_thread_workspace(void)
6608 {
6609 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
6610 
6611 	if (!data)
6612 		return;
6613 	if (!data->inuse) {
6614 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
6615 		return;
6616 	}
6617 	data->inuse = 0;
6618 	if (!data->prev)
6619 		return;
6620 	if (mlx5_flow_os_set_specific_workspace(data->prev))
6621 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6622 }
6623 
6624 /**
6625  * Verify the flow list is empty
6626  *
6627  * @param dev
6628  *  Pointer to Ethernet device.
6629  *
6630  * @return the number of flows not released.
6631  */
6632 int
6633 mlx5_flow_verify(struct rte_eth_dev *dev)
6634 {
6635 	struct mlx5_priv *priv = dev->data->dev_private;
6636 	struct rte_flow *flow;
6637 	uint32_t idx;
6638 	int ret = 0;
6639 
6640 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
6641 		      flow, next) {
6642 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
6643 			dev->data->port_id, (void *)flow);
6644 		++ret;
6645 	}
6646 	return ret;
6647 }
6648 
6649 /**
6650  * Enable default hairpin egress flow.
6651  *
6652  * @param dev
6653  *   Pointer to Ethernet device.
6654  * @param queue
6655  *   The queue index.
6656  *
6657  * @return
6658  *   0 on success, a negative errno value otherwise and rte_errno is set.
6659  */
6660 int
6661 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
6662 			    uint32_t queue)
6663 {
6664 	struct mlx5_priv *priv = dev->data->dev_private;
6665 	const struct rte_flow_attr attr = {
6666 		.egress = 1,
6667 		.priority = 0,
6668 	};
6669 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
6670 		.queue = queue,
6671 	};
6672 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
6673 		.queue = UINT32_MAX,
6674 	};
6675 	struct rte_flow_item items[] = {
6676 		{
6677 			.type = (enum rte_flow_item_type)
6678 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
6679 			.spec = &queue_spec,
6680 			.last = NULL,
6681 			.mask = &queue_mask,
6682 		},
6683 		{
6684 			.type = RTE_FLOW_ITEM_TYPE_END,
6685 		},
6686 	};
6687 	struct rte_flow_action_jump jump = {
6688 		.group = MLX5_HAIRPIN_TX_TABLE,
6689 	};
6690 	struct rte_flow_action actions[2];
6691 	uint32_t flow_idx;
6692 	struct rte_flow_error error;
6693 
6694 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
6695 	actions[0].conf = &jump;
6696 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
6697 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6698 				&attr, items, actions, false, &error);
6699 	if (!flow_idx) {
6700 		DRV_LOG(DEBUG,
6701 			"Failed to create ctrl flow: rte_errno(%d),"
6702 			" type(%d), message(%s)",
6703 			rte_errno, error.type,
6704 			error.message ? error.message : " (no stated reason)");
6705 		return -rte_errno;
6706 	}
6707 	return 0;
6708 }
6709 
6710 /**
6711  * Enable a control flow configured from the control plane.
6712  *
6713  * @param dev
6714  *   Pointer to Ethernet device.
6715  * @param eth_spec
6716  *   An Ethernet flow spec to apply.
6717  * @param eth_mask
6718  *   An Ethernet flow mask to apply.
6719  * @param vlan_spec
6720  *   A VLAN flow spec to apply.
6721  * @param vlan_mask
6722  *   A VLAN flow mask to apply.
6723  *
6724  * @return
6725  *   0 on success, a negative errno value otherwise and rte_errno is set.
6726  */
6727 int
6728 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
6729 		    struct rte_flow_item_eth *eth_spec,
6730 		    struct rte_flow_item_eth *eth_mask,
6731 		    struct rte_flow_item_vlan *vlan_spec,
6732 		    struct rte_flow_item_vlan *vlan_mask)
6733 {
6734 	struct mlx5_priv *priv = dev->data->dev_private;
6735 	const struct rte_flow_attr attr = {
6736 		.ingress = 1,
6737 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
6738 	};
6739 	struct rte_flow_item items[] = {
6740 		{
6741 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6742 			.spec = eth_spec,
6743 			.last = NULL,
6744 			.mask = eth_mask,
6745 		},
6746 		{
6747 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
6748 					      RTE_FLOW_ITEM_TYPE_END,
6749 			.spec = vlan_spec,
6750 			.last = NULL,
6751 			.mask = vlan_mask,
6752 		},
6753 		{
6754 			.type = RTE_FLOW_ITEM_TYPE_END,
6755 		},
6756 	};
6757 	uint16_t queue[priv->reta_idx_n];
6758 	struct rte_flow_action_rss action_rss = {
6759 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
6760 		.level = 0,
6761 		.types = priv->rss_conf.rss_hf,
6762 		.key_len = priv->rss_conf.rss_key_len,
6763 		.queue_num = priv->reta_idx_n,
6764 		.key = priv->rss_conf.rss_key,
6765 		.queue = queue,
6766 	};
6767 	struct rte_flow_action actions[] = {
6768 		{
6769 			.type = RTE_FLOW_ACTION_TYPE_RSS,
6770 			.conf = &action_rss,
6771 		},
6772 		{
6773 			.type = RTE_FLOW_ACTION_TYPE_END,
6774 		},
6775 	};
6776 	uint32_t flow_idx;
6777 	struct rte_flow_error error;
6778 	unsigned int i;
6779 
6780 	if (!priv->reta_idx_n || !priv->rxqs_n) {
6781 		return 0;
6782 	}
6783 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
6784 		action_rss.types = 0;
6785 	for (i = 0; i != priv->reta_idx_n; ++i)
6786 		queue[i] = (*priv->reta_idx)[i];
6787 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6788 				&attr, items, actions, false, &error);
6789 	if (!flow_idx)
6790 		return -rte_errno;
6791 	return 0;
6792 }
6793 
6794 /**
6795  * Enable a flow control configured from the control plane.
6796  *
6797  * @param dev
6798  *   Pointer to Ethernet device.
6799  * @param eth_spec
6800  *   An Ethernet flow spec to apply.
6801  * @param eth_mask
6802  *   An Ethernet flow mask to apply.
6803  *
6804  * @return
6805  *   0 on success, a negative errno value otherwise and rte_errno is set.
6806  */
6807 int
6808 mlx5_ctrl_flow(struct rte_eth_dev *dev,
6809 	       struct rte_flow_item_eth *eth_spec,
6810 	       struct rte_flow_item_eth *eth_mask)
6811 {
6812 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
6813 }
6814 
6815 /**
6816  * Create default miss flow rule matching lacp traffic
6817  *
6818  * @param dev
6819  *   Pointer to Ethernet device.
6820  * @param eth_spec
6821  *   An Ethernet flow spec to apply.
6822  *
6823  * @return
6824  *   0 on success, a negative errno value otherwise and rte_errno is set.
6825  */
6826 int
6827 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
6828 {
6829 	struct mlx5_priv *priv = dev->data->dev_private;
6830 	/*
6831 	 * The LACP matching is done by only using ether type since using
6832 	 * a multicast dst mac causes kernel to give low priority to this flow.
6833 	 */
6834 	static const struct rte_flow_item_eth lacp_spec = {
6835 		.type = RTE_BE16(0x8809),
6836 	};
6837 	static const struct rte_flow_item_eth lacp_mask = {
6838 		.type = 0xffff,
6839 	};
6840 	const struct rte_flow_attr attr = {
6841 		.ingress = 1,
6842 	};
6843 	struct rte_flow_item items[] = {
6844 		{
6845 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6846 			.spec = &lacp_spec,
6847 			.mask = &lacp_mask,
6848 		},
6849 		{
6850 			.type = RTE_FLOW_ITEM_TYPE_END,
6851 		},
6852 	};
6853 	struct rte_flow_action actions[] = {
6854 		{
6855 			.type = (enum rte_flow_action_type)
6856 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
6857 		},
6858 		{
6859 			.type = RTE_FLOW_ACTION_TYPE_END,
6860 		},
6861 	};
6862 	struct rte_flow_error error;
6863 	uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6864 				&attr, items, actions, false, &error);
6865 
6866 	if (!flow_idx)
6867 		return -rte_errno;
6868 	return 0;
6869 }
6870 
6871 /**
6872  * Destroy a flow.
6873  *
6874  * @see rte_flow_destroy()
6875  * @see rte_flow_ops
6876  */
6877 int
6878 mlx5_flow_destroy(struct rte_eth_dev *dev,
6879 		  struct rte_flow *flow,
6880 		  struct rte_flow_error *error __rte_unused)
6881 {
6882 	struct mlx5_priv *priv = dev->data->dev_private;
6883 
6884 	flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
6885 	return 0;
6886 }
6887 
6888 /**
6889  * Destroy all flows.
6890  *
6891  * @see rte_flow_flush()
6892  * @see rte_flow_ops
6893  */
6894 int
6895 mlx5_flow_flush(struct rte_eth_dev *dev,
6896 		struct rte_flow_error *error __rte_unused)
6897 {
6898 	struct mlx5_priv *priv = dev->data->dev_private;
6899 
6900 	mlx5_flow_list_flush(dev, &priv->flows, false);
6901 	return 0;
6902 }
6903 
6904 /**
6905  * Isolated mode.
6906  *
6907  * @see rte_flow_isolate()
6908  * @see rte_flow_ops
6909  */
6910 int
6911 mlx5_flow_isolate(struct rte_eth_dev *dev,
6912 		  int enable,
6913 		  struct rte_flow_error *error)
6914 {
6915 	struct mlx5_priv *priv = dev->data->dev_private;
6916 
6917 	if (dev->data->dev_started) {
6918 		rte_flow_error_set(error, EBUSY,
6919 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6920 				   NULL,
6921 				   "port must be stopped first");
6922 		return -rte_errno;
6923 	}
6924 	priv->isolated = !!enable;
6925 	if (enable)
6926 		dev->dev_ops = &mlx5_dev_ops_isolate;
6927 	else
6928 		dev->dev_ops = &mlx5_dev_ops;
6929 
6930 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
6931 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
6932 
6933 	return 0;
6934 }
6935 
6936 /**
6937  * Query a flow.
6938  *
6939  * @see rte_flow_query()
6940  * @see rte_flow_ops
6941  */
6942 static int
6943 flow_drv_query(struct rte_eth_dev *dev,
6944 	       uint32_t flow_idx,
6945 	       const struct rte_flow_action *actions,
6946 	       void *data,
6947 	       struct rte_flow_error *error)
6948 {
6949 	struct mlx5_priv *priv = dev->data->dev_private;
6950 	const struct mlx5_flow_driver_ops *fops;
6951 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6952 					       [MLX5_IPOOL_RTE_FLOW],
6953 					       flow_idx);
6954 	enum mlx5_flow_drv_type ftype;
6955 
6956 	if (!flow) {
6957 		return rte_flow_error_set(error, ENOENT,
6958 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6959 			  NULL,
6960 			  "invalid flow handle");
6961 	}
6962 	ftype = flow->drv_type;
6963 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
6964 	fops = flow_get_drv_ops(ftype);
6965 
6966 	return fops->query(dev, flow, actions, data, error);
6967 }
6968 
6969 /**
6970  * Query a flow.
6971  *
6972  * @see rte_flow_query()
6973  * @see rte_flow_ops
6974  */
6975 int
6976 mlx5_flow_query(struct rte_eth_dev *dev,
6977 		struct rte_flow *flow,
6978 		const struct rte_flow_action *actions,
6979 		void *data,
6980 		struct rte_flow_error *error)
6981 {
6982 	int ret;
6983 
6984 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
6985 			     error);
6986 	if (ret < 0)
6987 		return ret;
6988 	return 0;
6989 }
6990 
6991 /**
6992  * Get rte_flow callbacks.
6993  *
6994  * @param dev
6995  *   Pointer to Ethernet device structure.
6996  * @param ops
6997  *   Pointer to operation-specific structure.
6998  *
6999  * @return 0
7000  */
7001 int
7002 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
7003 		  const struct rte_flow_ops **ops)
7004 {
7005 	*ops = &mlx5_flow_ops;
7006 	return 0;
7007 }
7008 
7009 /**
7010  * Validate meter policy actions.
7011  * Dispatcher for action type specific validation.
7012  *
7013  * @param[in] dev
7014  *   Pointer to the Ethernet device structure.
7015  * @param[in] action
7016  *   The meter policy action object to validate.
7017  * @param[in] attr
7018  *   Attributes of flow to determine steering domain.
7019  * @param[out] is_rss
7020  *   Is RSS or not.
7021  * @param[out] domain_bitmap
7022  *   Domain bitmap.
7023  * @param[out] is_def_policy
7024  *   Is default policy or not.
7025  * @param[out] error
7026  *   Perform verbose error reporting if not NULL. Initialized in case of
7027  *   error only.
7028  *
7029  * @return
7030  *   0 on success, otherwise negative errno value.
7031  */
7032 int
7033 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev,
7034 			const struct rte_flow_action *actions[RTE_COLORS],
7035 			struct rte_flow_attr *attr,
7036 			bool *is_rss,
7037 			uint8_t *domain_bitmap,
7038 			bool *is_def_policy,
7039 			struct rte_mtr_error *error)
7040 {
7041 	const struct mlx5_flow_driver_ops *fops;
7042 
7043 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7044 	return fops->validate_mtr_acts(dev, actions, attr,
7045 			is_rss, domain_bitmap, is_def_policy, error);
7046 }
7047 
7048 /**
7049  * Destroy the meter table set.
7050  *
7051  * @param[in] dev
7052  *   Pointer to Ethernet device.
7053  * @param[in] mtr_policy
7054  *   Meter policy struct.
7055  */
7056 void
7057 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev,
7058 		      struct mlx5_flow_meter_policy *mtr_policy)
7059 {
7060 	const struct mlx5_flow_driver_ops *fops;
7061 
7062 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7063 	fops->destroy_mtr_acts(dev, mtr_policy);
7064 }
7065 
7066 /**
7067  * Create policy action, lock free,
7068  * (mutex should be acquired by caller).
7069  * Dispatcher for action type specific call.
7070  *
7071  * @param[in] dev
7072  *   Pointer to the Ethernet device structure.
7073  * @param[in] mtr_policy
7074  *   Meter policy struct.
7075  * @param[in] action
7076  *   Action specification used to create meter actions.
7077  * @param[out] error
7078  *   Perform verbose error reporting if not NULL. Initialized in case of
7079  *   error only.
7080  *
7081  * @return
7082  *   0 on success, otherwise negative errno value.
7083  */
7084 int
7085 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev,
7086 		      struct mlx5_flow_meter_policy *mtr_policy,
7087 		      const struct rte_flow_action *actions[RTE_COLORS],
7088 		      struct rte_mtr_error *error)
7089 {
7090 	const struct mlx5_flow_driver_ops *fops;
7091 
7092 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7093 	return fops->create_mtr_acts(dev, mtr_policy, actions, error);
7094 }
7095 
7096 /**
7097  * Create policy rules, lock free,
7098  * (mutex should be acquired by caller).
7099  * Dispatcher for action type specific call.
7100  *
7101  * @param[in] dev
7102  *   Pointer to the Ethernet device structure.
7103  * @param[in] mtr_policy
7104  *   Meter policy struct.
7105  *
7106  * @return
7107  *   0 on success, -1 otherwise.
7108  */
7109 int
7110 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev,
7111 			     struct mlx5_flow_meter_policy *mtr_policy)
7112 {
7113 	const struct mlx5_flow_driver_ops *fops;
7114 
7115 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7116 	return fops->create_policy_rules(dev, mtr_policy);
7117 }
7118 
7119 /**
7120  * Destroy policy rules, lock free,
7121  * (mutex should be acquired by caller).
7122  * Dispatcher for action type specific call.
7123  *
7124  * @param[in] dev
7125  *   Pointer to the Ethernet device structure.
7126  * @param[in] mtr_policy
7127  *   Meter policy struct.
7128  */
7129 void
7130 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev,
7131 			     struct mlx5_flow_meter_policy *mtr_policy)
7132 {
7133 	const struct mlx5_flow_driver_ops *fops;
7134 
7135 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7136 	fops->destroy_policy_rules(dev, mtr_policy);
7137 }
7138 
7139 /**
7140  * Destroy the default policy table set.
7141  *
7142  * @param[in] dev
7143  *   Pointer to Ethernet device.
7144  */
7145 void
7146 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev)
7147 {
7148 	const struct mlx5_flow_driver_ops *fops;
7149 
7150 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7151 	fops->destroy_def_policy(dev);
7152 }
7153 
7154 /**
7155  * Destroy the default policy table set.
7156  *
7157  * @param[in] dev
7158  *   Pointer to Ethernet device.
7159  *
7160  * @return
7161  *   0 on success, -1 otherwise.
7162  */
7163 int
7164 mlx5_flow_create_def_policy(struct rte_eth_dev *dev)
7165 {
7166 	const struct mlx5_flow_driver_ops *fops;
7167 
7168 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7169 	return fops->create_def_policy(dev);
7170 }
7171 
7172 /**
7173  * Create the needed meter and suffix tables.
7174  *
7175  * @param[in] dev
7176  *   Pointer to Ethernet device.
7177  *
7178  * @return
7179  *   0 on success, -1 otherwise.
7180  */
7181 int
7182 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
7183 			struct mlx5_flow_meter_info *fm,
7184 			uint32_t mtr_idx,
7185 			uint8_t domain_bitmap)
7186 {
7187 	const struct mlx5_flow_driver_ops *fops;
7188 
7189 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7190 	return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap);
7191 }
7192 
7193 /**
7194  * Destroy the meter table set.
7195  *
7196  * @param[in] dev
7197  *   Pointer to Ethernet device.
7198  * @param[in] tbl
7199  *   Pointer to the meter table set.
7200  */
7201 void
7202 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
7203 			   struct mlx5_flow_meter_info *fm)
7204 {
7205 	const struct mlx5_flow_driver_ops *fops;
7206 
7207 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7208 	fops->destroy_mtr_tbls(dev, fm);
7209 }
7210 
7211 /**
7212  * Destroy the global meter drop table.
7213  *
7214  * @param[in] dev
7215  *   Pointer to Ethernet device.
7216  */
7217 void
7218 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev)
7219 {
7220 	const struct mlx5_flow_driver_ops *fops;
7221 
7222 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7223 	fops->destroy_mtr_drop_tbls(dev);
7224 }
7225 
7226 /**
7227  * Allocate the needed aso flow meter id.
7228  *
7229  * @param[in] dev
7230  *   Pointer to Ethernet device.
7231  *
7232  * @return
7233  *   Index to aso flow meter on success, NULL otherwise.
7234  */
7235 uint32_t
7236 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev)
7237 {
7238 	const struct mlx5_flow_driver_ops *fops;
7239 
7240 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7241 	return fops->create_meter(dev);
7242 }
7243 
7244 /**
7245  * Free the aso flow meter id.
7246  *
7247  * @param[in] dev
7248  *   Pointer to Ethernet device.
7249  * @param[in] mtr_idx
7250  *  Index to aso flow meter to be free.
7251  *
7252  * @return
7253  *   0 on success.
7254  */
7255 void
7256 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx)
7257 {
7258 	const struct mlx5_flow_driver_ops *fops;
7259 
7260 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7261 	fops->free_meter(dev, mtr_idx);
7262 }
7263 
7264 /**
7265  * Allocate a counter.
7266  *
7267  * @param[in] dev
7268  *   Pointer to Ethernet device structure.
7269  *
7270  * @return
7271  *   Index to allocated counter  on success, 0 otherwise.
7272  */
7273 uint32_t
7274 mlx5_counter_alloc(struct rte_eth_dev *dev)
7275 {
7276 	const struct mlx5_flow_driver_ops *fops;
7277 	struct rte_flow_attr attr = { .transfer = 0 };
7278 
7279 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7280 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7281 		return fops->counter_alloc(dev);
7282 	}
7283 	DRV_LOG(ERR,
7284 		"port %u counter allocate is not supported.",
7285 		 dev->data->port_id);
7286 	return 0;
7287 }
7288 
7289 /**
7290  * Free a counter.
7291  *
7292  * @param[in] dev
7293  *   Pointer to Ethernet device structure.
7294  * @param[in] cnt
7295  *   Index to counter to be free.
7296  */
7297 void
7298 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
7299 {
7300 	const struct mlx5_flow_driver_ops *fops;
7301 	struct rte_flow_attr attr = { .transfer = 0 };
7302 
7303 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7304 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7305 		fops->counter_free(dev, cnt);
7306 		return;
7307 	}
7308 	DRV_LOG(ERR,
7309 		"port %u counter free is not supported.",
7310 		 dev->data->port_id);
7311 }
7312 
7313 /**
7314  * Query counter statistics.
7315  *
7316  * @param[in] dev
7317  *   Pointer to Ethernet device structure.
7318  * @param[in] cnt
7319  *   Index to counter to query.
7320  * @param[in] clear
7321  *   Set to clear counter statistics.
7322  * @param[out] pkts
7323  *   The counter hits packets number to save.
7324  * @param[out] bytes
7325  *   The counter hits bytes number to save.
7326  *
7327  * @return
7328  *   0 on success, a negative errno value otherwise.
7329  */
7330 int
7331 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
7332 		   bool clear, uint64_t *pkts, uint64_t *bytes)
7333 {
7334 	const struct mlx5_flow_driver_ops *fops;
7335 	struct rte_flow_attr attr = { .transfer = 0 };
7336 
7337 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7338 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7339 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
7340 	}
7341 	DRV_LOG(ERR,
7342 		"port %u counter query is not supported.",
7343 		 dev->data->port_id);
7344 	return -ENOTSUP;
7345 }
7346 
7347 /**
7348  * Allocate a new memory for the counter values wrapped by all the needed
7349  * management.
7350  *
7351  * @param[in] sh
7352  *   Pointer to mlx5_dev_ctx_shared object.
7353  *
7354  * @return
7355  *   0 on success, a negative errno value otherwise.
7356  */
7357 static int
7358 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
7359 {
7360 	struct mlx5_devx_mkey_attr mkey_attr;
7361 	struct mlx5_counter_stats_mem_mng *mem_mng;
7362 	volatile struct flow_counter_stats *raw_data;
7363 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
7364 	int size = (sizeof(struct flow_counter_stats) *
7365 			MLX5_COUNTERS_PER_POOL +
7366 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
7367 			sizeof(struct mlx5_counter_stats_mem_mng);
7368 	size_t pgsize = rte_mem_page_size();
7369 	uint8_t *mem;
7370 	int i;
7371 
7372 	if (pgsize == (size_t)-1) {
7373 		DRV_LOG(ERR, "Failed to get mem page size");
7374 		rte_errno = ENOMEM;
7375 		return -ENOMEM;
7376 	}
7377 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
7378 	if (!mem) {
7379 		rte_errno = ENOMEM;
7380 		return -ENOMEM;
7381 	}
7382 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
7383 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
7384 	mem_mng->umem = mlx5_os_umem_reg(sh->ctx, mem, size,
7385 						 IBV_ACCESS_LOCAL_WRITE);
7386 	if (!mem_mng->umem) {
7387 		rte_errno = errno;
7388 		mlx5_free(mem);
7389 		return -rte_errno;
7390 	}
7391 	memset(&mkey_attr, 0, sizeof(mkey_attr));
7392 	mkey_attr.addr = (uintptr_t)mem;
7393 	mkey_attr.size = size;
7394 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
7395 	mkey_attr.pd = sh->pdn;
7396 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
7397 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
7398 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
7399 	if (!mem_mng->dm) {
7400 		mlx5_os_umem_dereg(mem_mng->umem);
7401 		rte_errno = errno;
7402 		mlx5_free(mem);
7403 		return -rte_errno;
7404 	}
7405 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
7406 	raw_data = (volatile struct flow_counter_stats *)mem;
7407 	for (i = 0; i < raws_n; ++i) {
7408 		mem_mng->raws[i].mem_mng = mem_mng;
7409 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
7410 	}
7411 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
7412 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
7413 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
7414 				 next);
7415 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
7416 	sh->cmng.mem_mng = mem_mng;
7417 	return 0;
7418 }
7419 
7420 /**
7421  * Set the statistic memory to the new counter pool.
7422  *
7423  * @param[in] sh
7424  *   Pointer to mlx5_dev_ctx_shared object.
7425  * @param[in] pool
7426  *   Pointer to the pool to set the statistic memory.
7427  *
7428  * @return
7429  *   0 on success, a negative errno value otherwise.
7430  */
7431 static int
7432 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
7433 			       struct mlx5_flow_counter_pool *pool)
7434 {
7435 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7436 	/* Resize statistic memory once used out. */
7437 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
7438 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
7439 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
7440 		return -1;
7441 	}
7442 	rte_spinlock_lock(&pool->sl);
7443 	pool->raw = cmng->mem_mng->raws + pool->index %
7444 		    MLX5_CNT_CONTAINER_RESIZE;
7445 	rte_spinlock_unlock(&pool->sl);
7446 	pool->raw_hw = NULL;
7447 	return 0;
7448 }
7449 
7450 #define MLX5_POOL_QUERY_FREQ_US 1000000
7451 
7452 /**
7453  * Set the periodic procedure for triggering asynchronous batch queries for all
7454  * the counter pools.
7455  *
7456  * @param[in] sh
7457  *   Pointer to mlx5_dev_ctx_shared object.
7458  */
7459 void
7460 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
7461 {
7462 	uint32_t pools_n, us;
7463 
7464 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
7465 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
7466 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
7467 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
7468 		sh->cmng.query_thread_on = 0;
7469 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
7470 	} else {
7471 		sh->cmng.query_thread_on = 1;
7472 	}
7473 }
7474 
7475 /**
7476  * The periodic procedure for triggering asynchronous batch queries for all the
7477  * counter pools. This function is probably called by the host thread.
7478  *
7479  * @param[in] arg
7480  *   The parameter for the alarm process.
7481  */
7482 void
7483 mlx5_flow_query_alarm(void *arg)
7484 {
7485 	struct mlx5_dev_ctx_shared *sh = arg;
7486 	int ret;
7487 	uint16_t pool_index = sh->cmng.pool_index;
7488 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7489 	struct mlx5_flow_counter_pool *pool;
7490 	uint16_t n_valid;
7491 
7492 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
7493 		goto set_alarm;
7494 	rte_spinlock_lock(&cmng->pool_update_sl);
7495 	pool = cmng->pools[pool_index];
7496 	n_valid = cmng->n_valid;
7497 	rte_spinlock_unlock(&cmng->pool_update_sl);
7498 	/* Set the statistic memory to the new created pool. */
7499 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
7500 		goto set_alarm;
7501 	if (pool->raw_hw)
7502 		/* There is a pool query in progress. */
7503 		goto set_alarm;
7504 	pool->raw_hw =
7505 		LIST_FIRST(&sh->cmng.free_stat_raws);
7506 	if (!pool->raw_hw)
7507 		/* No free counter statistics raw memory. */
7508 		goto set_alarm;
7509 	/*
7510 	 * Identify the counters released between query trigger and query
7511 	 * handle more efficiently. The counter released in this gap period
7512 	 * should wait for a new round of query as the new arrived packets
7513 	 * will not be taken into account.
7514 	 */
7515 	pool->query_gen++;
7516 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
7517 					       MLX5_COUNTERS_PER_POOL,
7518 					       NULL, NULL,
7519 					       pool->raw_hw->mem_mng->dm->id,
7520 					       (void *)(uintptr_t)
7521 					       pool->raw_hw->data,
7522 					       sh->devx_comp,
7523 					       (uint64_t)(uintptr_t)pool);
7524 	if (ret) {
7525 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
7526 			" %d", pool->min_dcs->id);
7527 		pool->raw_hw = NULL;
7528 		goto set_alarm;
7529 	}
7530 	LIST_REMOVE(pool->raw_hw, next);
7531 	sh->cmng.pending_queries++;
7532 	pool_index++;
7533 	if (pool_index >= n_valid)
7534 		pool_index = 0;
7535 set_alarm:
7536 	sh->cmng.pool_index = pool_index;
7537 	mlx5_set_query_alarm(sh);
7538 }
7539 
7540 /**
7541  * Check and callback event for new aged flow in the counter pool
7542  *
7543  * @param[in] sh
7544  *   Pointer to mlx5_dev_ctx_shared object.
7545  * @param[in] pool
7546  *   Pointer to Current counter pool.
7547  */
7548 static void
7549 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
7550 		   struct mlx5_flow_counter_pool *pool)
7551 {
7552 	struct mlx5_priv *priv;
7553 	struct mlx5_flow_counter *cnt;
7554 	struct mlx5_age_info *age_info;
7555 	struct mlx5_age_param *age_param;
7556 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
7557 	struct mlx5_counter_stats_raw *prev = pool->raw;
7558 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
7559 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
7560 	uint16_t expected = AGE_CANDIDATE;
7561 	uint32_t i;
7562 
7563 	pool->time_of_last_age_check = curr_time;
7564 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
7565 		cnt = MLX5_POOL_GET_CNT(pool, i);
7566 		age_param = MLX5_CNT_TO_AGE(cnt);
7567 		if (__atomic_load_n(&age_param->state,
7568 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
7569 			continue;
7570 		if (cur->data[i].hits != prev->data[i].hits) {
7571 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
7572 					 __ATOMIC_RELAXED);
7573 			continue;
7574 		}
7575 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
7576 				       time_delta,
7577 				       __ATOMIC_RELAXED) <= age_param->timeout)
7578 			continue;
7579 		/**
7580 		 * Hold the lock first, or if between the
7581 		 * state AGE_TMOUT and tailq operation the
7582 		 * release happened, the release procedure
7583 		 * may delete a non-existent tailq node.
7584 		 */
7585 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
7586 		age_info = GET_PORT_AGE_INFO(priv);
7587 		rte_spinlock_lock(&age_info->aged_sl);
7588 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
7589 						AGE_TMOUT, false,
7590 						__ATOMIC_RELAXED,
7591 						__ATOMIC_RELAXED)) {
7592 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
7593 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
7594 		}
7595 		rte_spinlock_unlock(&age_info->aged_sl);
7596 	}
7597 	mlx5_age_event_prepare(sh);
7598 }
7599 
7600 /**
7601  * Handler for the HW respond about ready values from an asynchronous batch
7602  * query. This function is probably called by the host thread.
7603  *
7604  * @param[in] sh
7605  *   The pointer to the shared device context.
7606  * @param[in] async_id
7607  *   The Devx async ID.
7608  * @param[in] status
7609  *   The status of the completion.
7610  */
7611 void
7612 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
7613 				  uint64_t async_id, int status)
7614 {
7615 	struct mlx5_flow_counter_pool *pool =
7616 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
7617 	struct mlx5_counter_stats_raw *raw_to_free;
7618 	uint8_t query_gen = pool->query_gen ^ 1;
7619 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7620 	enum mlx5_counter_type cnt_type =
7621 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
7622 				MLX5_COUNTER_TYPE_ORIGIN;
7623 
7624 	if (unlikely(status)) {
7625 		raw_to_free = pool->raw_hw;
7626 	} else {
7627 		raw_to_free = pool->raw;
7628 		if (pool->is_aged)
7629 			mlx5_flow_aging_check(sh, pool);
7630 		rte_spinlock_lock(&pool->sl);
7631 		pool->raw = pool->raw_hw;
7632 		rte_spinlock_unlock(&pool->sl);
7633 		/* Be sure the new raw counters data is updated in memory. */
7634 		rte_io_wmb();
7635 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
7636 			rte_spinlock_lock(&cmng->csl[cnt_type]);
7637 			TAILQ_CONCAT(&cmng->counters[cnt_type],
7638 				     &pool->counters[query_gen], next);
7639 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
7640 		}
7641 	}
7642 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
7643 	pool->raw_hw = NULL;
7644 	sh->cmng.pending_queries--;
7645 }
7646 
7647 static int
7648 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
7649 		    const struct flow_grp_info *grp_info,
7650 		    struct rte_flow_error *error)
7651 {
7652 	if (grp_info->transfer && grp_info->external &&
7653 	    grp_info->fdb_def_rule) {
7654 		if (group == UINT32_MAX)
7655 			return rte_flow_error_set
7656 						(error, EINVAL,
7657 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7658 						 NULL,
7659 						 "group index not supported");
7660 		*table = group + 1;
7661 	} else {
7662 		*table = group;
7663 	}
7664 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
7665 	return 0;
7666 }
7667 
7668 /**
7669  * Translate the rte_flow group index to HW table value.
7670  *
7671  * If tunnel offload is disabled, all group ids converted to flow table
7672  * id using the standard method.
7673  * If tunnel offload is enabled, group id can be converted using the
7674  * standard or tunnel conversion method. Group conversion method
7675  * selection depends on flags in `grp_info` parameter:
7676  * - Internal (grp_info.external == 0) groups conversion uses the
7677  *   standard method.
7678  * - Group ids in JUMP action converted with the tunnel conversion.
7679  * - Group id in rule attribute conversion depends on a rule type and
7680  *   group id value:
7681  *   ** non zero group attributes converted with the tunnel method
7682  *   ** zero group attribute in non-tunnel rule is converted using the
7683  *      standard method - there's only one root table
7684  *   ** zero group attribute in steer tunnel rule is converted with the
7685  *      standard method - single root table
7686  *   ** zero group attribute in match tunnel rule is a special OvS
7687  *      case: that value is used for portability reasons. That group
7688  *      id is converted with the tunnel conversion method.
7689  *
7690  * @param[in] dev
7691  *   Port device
7692  * @param[in] tunnel
7693  *   PMD tunnel offload object
7694  * @param[in] group
7695  *   rte_flow group index value.
7696  * @param[out] table
7697  *   HW table value.
7698  * @param[in] grp_info
7699  *   flags used for conversion
7700  * @param[out] error
7701  *   Pointer to error structure.
7702  *
7703  * @return
7704  *   0 on success, a negative errno value otherwise and rte_errno is set.
7705  */
7706 int
7707 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
7708 			 const struct mlx5_flow_tunnel *tunnel,
7709 			 uint32_t group, uint32_t *table,
7710 			 const struct flow_grp_info *grp_info,
7711 			 struct rte_flow_error *error)
7712 {
7713 	int ret;
7714 	bool standard_translation;
7715 
7716 	if (!grp_info->skip_scale && grp_info->external &&
7717 	    group < MLX5_MAX_TABLES_EXTERNAL)
7718 		group *= MLX5_FLOW_TABLE_FACTOR;
7719 	if (is_tunnel_offload_active(dev)) {
7720 		standard_translation = !grp_info->external ||
7721 					grp_info->std_tbl_fix;
7722 	} else {
7723 		standard_translation = true;
7724 	}
7725 	DRV_LOG(DEBUG,
7726 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
7727 		dev->data->port_id, group, grp_info->transfer,
7728 		grp_info->external, grp_info->fdb_def_rule,
7729 		standard_translation ? "STANDARD" : "TUNNEL");
7730 	if (standard_translation)
7731 		ret = flow_group_to_table(dev->data->port_id, group, table,
7732 					  grp_info, error);
7733 	else
7734 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
7735 						      table, error);
7736 
7737 	return ret;
7738 }
7739 
7740 /**
7741  * Discover availability of metadata reg_c's.
7742  *
7743  * Iteratively use test flows to check availability.
7744  *
7745  * @param[in] dev
7746  *   Pointer to the Ethernet device structure.
7747  *
7748  * @return
7749  *   0 on success, a negative errno value otherwise and rte_errno is set.
7750  */
7751 int
7752 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
7753 {
7754 	struct mlx5_priv *priv = dev->data->dev_private;
7755 	struct mlx5_dev_config *config = &priv->config;
7756 	enum modify_reg idx;
7757 	int n = 0;
7758 
7759 	/* reg_c[0] and reg_c[1] are reserved. */
7760 	config->flow_mreg_c[n++] = REG_C_0;
7761 	config->flow_mreg_c[n++] = REG_C_1;
7762 	/* Discover availability of other reg_c's. */
7763 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
7764 		struct rte_flow_attr attr = {
7765 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
7766 			.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
7767 			.ingress = 1,
7768 		};
7769 		struct rte_flow_item items[] = {
7770 			[0] = {
7771 				.type = RTE_FLOW_ITEM_TYPE_END,
7772 			},
7773 		};
7774 		struct rte_flow_action actions[] = {
7775 			[0] = {
7776 				.type = (enum rte_flow_action_type)
7777 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
7778 				.conf = &(struct mlx5_flow_action_copy_mreg){
7779 					.src = REG_C_1,
7780 					.dst = idx,
7781 				},
7782 			},
7783 			[1] = {
7784 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
7785 				.conf = &(struct rte_flow_action_jump){
7786 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
7787 				},
7788 			},
7789 			[2] = {
7790 				.type = RTE_FLOW_ACTION_TYPE_END,
7791 			},
7792 		};
7793 		uint32_t flow_idx;
7794 		struct rte_flow *flow;
7795 		struct rte_flow_error error;
7796 
7797 		if (!config->dv_flow_en)
7798 			break;
7799 		/* Create internal flow, validation skips copy action. */
7800 		flow_idx = flow_list_create(dev, NULL, &attr, items,
7801 					    actions, false, &error);
7802 		flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
7803 				      flow_idx);
7804 		if (!flow)
7805 			continue;
7806 		config->flow_mreg_c[n++] = idx;
7807 		flow_list_destroy(dev, NULL, flow_idx);
7808 	}
7809 	for (; n < MLX5_MREG_C_NUM; ++n)
7810 		config->flow_mreg_c[n] = REG_NON;
7811 	return 0;
7812 }
7813 
7814 /**
7815  * Dump flow raw hw data to file
7816  *
7817  * @param[in] dev
7818  *    The pointer to Ethernet device.
7819  * @param[in] file
7820  *   A pointer to a file for output.
7821  * @param[out] error
7822  *   Perform verbose error reporting if not NULL. PMDs initialize this
7823  *   structure in case of error only.
7824  * @return
7825  *   0 on success, a nagative value otherwise.
7826  */
7827 int
7828 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx,
7829 		   FILE *file,
7830 		   struct rte_flow_error *error __rte_unused)
7831 {
7832 	struct mlx5_priv *priv = dev->data->dev_private;
7833 	struct mlx5_dev_ctx_shared *sh = priv->sh;
7834 	uint32_t handle_idx;
7835 	int ret;
7836 	struct mlx5_flow_handle *dh;
7837 	struct rte_flow *flow;
7838 
7839 	if (!priv->config.dv_flow_en) {
7840 		if (fputs("device dv flow disabled\n", file) <= 0)
7841 			return -errno;
7842 		return -ENOTSUP;
7843 	}
7844 
7845 	/* dump all */
7846 	if (!flow_idx)
7847 		return mlx5_devx_cmd_flow_dump(sh->fdb_domain,
7848 					sh->rx_domain,
7849 					sh->tx_domain, file);
7850 	/* dump one */
7851 	flow = mlx5_ipool_get(priv->sh->ipool
7852 			[MLX5_IPOOL_RTE_FLOW], (uintptr_t)(void *)flow_idx);
7853 	if (!flow)
7854 		return -ENOENT;
7855 
7856 	handle_idx = flow->dev_handles;
7857 	while (handle_idx) {
7858 		dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW],
7859 				handle_idx);
7860 		if (!dh)
7861 			return -ENOENT;
7862 		if (dh->drv_flow) {
7863 			ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow,
7864 					file);
7865 			if (ret)
7866 				return -ENOENT;
7867 		}
7868 		handle_idx = dh->next.next;
7869 	}
7870 	return 0;
7871 }
7872 
7873 /**
7874  * Get aged-out flows.
7875  *
7876  * @param[in] dev
7877  *   Pointer to the Ethernet device structure.
7878  * @param[in] context
7879  *   The address of an array of pointers to the aged-out flows contexts.
7880  * @param[in] nb_countexts
7881  *   The length of context array pointers.
7882  * @param[out] error
7883  *   Perform verbose error reporting if not NULL. Initialized in case of
7884  *   error only.
7885  *
7886  * @return
7887  *   how many contexts get in success, otherwise negative errno value.
7888  *   if nb_contexts is 0, return the amount of all aged contexts.
7889  *   if nb_contexts is not 0 , return the amount of aged flows reported
7890  *   in the context array.
7891  */
7892 int
7893 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
7894 			uint32_t nb_contexts, struct rte_flow_error *error)
7895 {
7896 	const struct mlx5_flow_driver_ops *fops;
7897 	struct rte_flow_attr attr = { .transfer = 0 };
7898 
7899 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7900 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7901 		return fops->get_aged_flows(dev, contexts, nb_contexts,
7902 						    error);
7903 	}
7904 	DRV_LOG(ERR,
7905 		"port %u get aged flows is not supported.",
7906 		 dev->data->port_id);
7907 	return -ENOTSUP;
7908 }
7909 
7910 /* Wrapper for driver action_validate op callback */
7911 static int
7912 flow_drv_action_validate(struct rte_eth_dev *dev,
7913 			 const struct rte_flow_indir_action_conf *conf,
7914 			 const struct rte_flow_action *action,
7915 			 const struct mlx5_flow_driver_ops *fops,
7916 			 struct rte_flow_error *error)
7917 {
7918 	static const char err_msg[] = "indirect action validation unsupported";
7919 
7920 	if (!fops->action_validate) {
7921 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7922 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7923 				   NULL, err_msg);
7924 		return -rte_errno;
7925 	}
7926 	return fops->action_validate(dev, conf, action, error);
7927 }
7928 
7929 /**
7930  * Destroys the shared action by handle.
7931  *
7932  * @param dev
7933  *   Pointer to Ethernet device structure.
7934  * @param[in] handle
7935  *   Handle for the indirect action object to be destroyed.
7936  * @param[out] error
7937  *   Perform verbose error reporting if not NULL. PMDs initialize this
7938  *   structure in case of error only.
7939  *
7940  * @return
7941  *   0 on success, a negative errno value otherwise and rte_errno is set.
7942  *
7943  * @note: wrapper for driver action_create op callback.
7944  */
7945 static int
7946 mlx5_action_handle_destroy(struct rte_eth_dev *dev,
7947 			   struct rte_flow_action_handle *handle,
7948 			   struct rte_flow_error *error)
7949 {
7950 	static const char err_msg[] = "indirect action destruction unsupported";
7951 	struct rte_flow_attr attr = { .transfer = 0 };
7952 	const struct mlx5_flow_driver_ops *fops =
7953 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7954 
7955 	if (!fops->action_destroy) {
7956 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7957 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7958 				   NULL, err_msg);
7959 		return -rte_errno;
7960 	}
7961 	return fops->action_destroy(dev, handle, error);
7962 }
7963 
7964 /* Wrapper for driver action_destroy op callback */
7965 static int
7966 flow_drv_action_update(struct rte_eth_dev *dev,
7967 		       struct rte_flow_action_handle *handle,
7968 		       const void *update,
7969 		       const struct mlx5_flow_driver_ops *fops,
7970 		       struct rte_flow_error *error)
7971 {
7972 	static const char err_msg[] = "indirect action update unsupported";
7973 
7974 	if (!fops->action_update) {
7975 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7976 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7977 				   NULL, err_msg);
7978 		return -rte_errno;
7979 	}
7980 	return fops->action_update(dev, handle, update, error);
7981 }
7982 
7983 /* Wrapper for driver action_destroy op callback */
7984 static int
7985 flow_drv_action_query(struct rte_eth_dev *dev,
7986 		      const struct rte_flow_action_handle *handle,
7987 		      void *data,
7988 		      const struct mlx5_flow_driver_ops *fops,
7989 		      struct rte_flow_error *error)
7990 {
7991 	static const char err_msg[] = "indirect action query unsupported";
7992 
7993 	if (!fops->action_query) {
7994 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7995 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7996 				   NULL, err_msg);
7997 		return -rte_errno;
7998 	}
7999 	return fops->action_query(dev, handle, data, error);
8000 }
8001 
8002 /**
8003  * Create indirect action for reuse in multiple flow rules.
8004  *
8005  * @param dev
8006  *   Pointer to Ethernet device structure.
8007  * @param conf
8008  *   Pointer to indirect action object configuration.
8009  * @param[in] action
8010  *   Action configuration for indirect action object creation.
8011  * @param[out] error
8012  *   Perform verbose error reporting if not NULL. PMDs initialize this
8013  *   structure in case of error only.
8014  * @return
8015  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
8016  */
8017 static struct rte_flow_action_handle *
8018 mlx5_action_handle_create(struct rte_eth_dev *dev,
8019 			  const struct rte_flow_indir_action_conf *conf,
8020 			  const struct rte_flow_action *action,
8021 			  struct rte_flow_error *error)
8022 {
8023 	static const char err_msg[] = "indirect action creation unsupported";
8024 	struct rte_flow_attr attr = { .transfer = 0 };
8025 	const struct mlx5_flow_driver_ops *fops =
8026 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8027 
8028 	if (flow_drv_action_validate(dev, conf, action, fops, error))
8029 		return NULL;
8030 	if (!fops->action_create) {
8031 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8032 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8033 				   NULL, err_msg);
8034 		return NULL;
8035 	}
8036 	return fops->action_create(dev, conf, action, error);
8037 }
8038 
8039 /**
8040  * Updates inplace the indirect action configuration pointed by *handle*
8041  * with the configuration provided as *update* argument.
8042  * The update of the indirect action configuration effects all flow rules
8043  * reusing the action via handle.
8044  *
8045  * @param dev
8046  *   Pointer to Ethernet device structure.
8047  * @param[in] handle
8048  *   Handle for the indirect action to be updated.
8049  * @param[in] update
8050  *   Action specification used to modify the action pointed by handle.
8051  *   *update* could be of same type with the action pointed by the *handle*
8052  *   handle argument, or some other structures like a wrapper, depending on
8053  *   the indirect action type.
8054  * @param[out] error
8055  *   Perform verbose error reporting if not NULL. PMDs initialize this
8056  *   structure in case of error only.
8057  *
8058  * @return
8059  *   0 on success, a negative errno value otherwise and rte_errno is set.
8060  */
8061 static int
8062 mlx5_action_handle_update(struct rte_eth_dev *dev,
8063 		struct rte_flow_action_handle *handle,
8064 		const void *update,
8065 		struct rte_flow_error *error)
8066 {
8067 	struct rte_flow_attr attr = { .transfer = 0 };
8068 	const struct mlx5_flow_driver_ops *fops =
8069 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8070 	int ret;
8071 
8072 	ret = flow_drv_action_validate(dev, NULL,
8073 			(const struct rte_flow_action *)update, fops, error);
8074 	if (ret)
8075 		return ret;
8076 	return flow_drv_action_update(dev, handle, update, fops,
8077 				      error);
8078 }
8079 
8080 /**
8081  * Query the indirect action by handle.
8082  *
8083  * This function allows retrieving action-specific data such as counters.
8084  * Data is gathered by special action which may be present/referenced in
8085  * more than one flow rule definition.
8086  *
8087  * see @RTE_FLOW_ACTION_TYPE_COUNT
8088  *
8089  * @param dev
8090  *   Pointer to Ethernet device structure.
8091  * @param[in] handle
8092  *   Handle for the indirect action to query.
8093  * @param[in, out] data
8094  *   Pointer to storage for the associated query data type.
8095  * @param[out] error
8096  *   Perform verbose error reporting if not NULL. PMDs initialize this
8097  *   structure in case of error only.
8098  *
8099  * @return
8100  *   0 on success, a negative errno value otherwise and rte_errno is set.
8101  */
8102 static int
8103 mlx5_action_handle_query(struct rte_eth_dev *dev,
8104 			 const struct rte_flow_action_handle *handle,
8105 			 void *data,
8106 			 struct rte_flow_error *error)
8107 {
8108 	struct rte_flow_attr attr = { .transfer = 0 };
8109 	const struct mlx5_flow_driver_ops *fops =
8110 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8111 
8112 	return flow_drv_action_query(dev, handle, data, fops, error);
8113 }
8114 
8115 /**
8116  * Destroy all indirect actions (shared RSS).
8117  *
8118  * @param dev
8119  *   Pointer to Ethernet device.
8120  *
8121  * @return
8122  *   0 on success, a negative errno value otherwise and rte_errno is set.
8123  */
8124 int
8125 mlx5_action_handle_flush(struct rte_eth_dev *dev)
8126 {
8127 	struct rte_flow_error error;
8128 	struct mlx5_priv *priv = dev->data->dev_private;
8129 	struct mlx5_shared_action_rss *shared_rss;
8130 	int ret = 0;
8131 	uint32_t idx;
8132 
8133 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
8134 		      priv->rss_shared_actions, idx, shared_rss, next) {
8135 		ret |= mlx5_action_handle_destroy(dev,
8136 		       (struct rte_flow_action_handle *)(uintptr_t)idx, &error);
8137 	}
8138 	return ret;
8139 }
8140 
8141 #ifndef HAVE_MLX5DV_DR
8142 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
8143 #else
8144 #define MLX5_DOMAIN_SYNC_FLOW \
8145 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
8146 #endif
8147 
8148 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
8149 {
8150 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
8151 	const struct mlx5_flow_driver_ops *fops;
8152 	int ret;
8153 	struct rte_flow_attr attr = { .transfer = 0 };
8154 
8155 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8156 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
8157 	if (ret > 0)
8158 		ret = -ret;
8159 	return ret;
8160 }
8161 
8162 const struct mlx5_flow_tunnel *
8163 mlx5_get_tof(const struct rte_flow_item *item,
8164 	     const struct rte_flow_action *action,
8165 	     enum mlx5_tof_rule_type *rule_type)
8166 {
8167 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
8168 		if (item->type == (typeof(item->type))
8169 				  MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) {
8170 			*rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE;
8171 			return flow_items_to_tunnel(item);
8172 		}
8173 	}
8174 	for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) {
8175 		if (action->type == (typeof(action->type))
8176 				    MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) {
8177 			*rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE;
8178 			return flow_actions_to_tunnel(action);
8179 		}
8180 	}
8181 	return NULL;
8182 }
8183 
8184 /**
8185  * tunnel offload functionalilty is defined for DV environment only
8186  */
8187 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8188 __extension__
8189 union tunnel_offload_mark {
8190 	uint32_t val;
8191 	struct {
8192 		uint32_t app_reserve:8;
8193 		uint32_t table_id:15;
8194 		uint32_t transfer:1;
8195 		uint32_t _unused_:8;
8196 	};
8197 };
8198 
8199 static bool
8200 mlx5_access_tunnel_offload_db
8201 	(struct rte_eth_dev *dev,
8202 	 bool (*match)(struct rte_eth_dev *,
8203 		       struct mlx5_flow_tunnel *, const void *),
8204 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8205 	 void (*miss)(struct rte_eth_dev *, void *),
8206 	 void *ctx, bool lock_op);
8207 
8208 static int
8209 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
8210 			     struct rte_flow *flow,
8211 			     const struct rte_flow_attr *attr,
8212 			     const struct rte_flow_action *app_actions,
8213 			     uint32_t flow_idx,
8214 			     const struct mlx5_flow_tunnel *tunnel,
8215 			     struct tunnel_default_miss_ctx *ctx,
8216 			     struct rte_flow_error *error)
8217 {
8218 	struct mlx5_priv *priv = dev->data->dev_private;
8219 	struct mlx5_flow *dev_flow;
8220 	struct rte_flow_attr miss_attr = *attr;
8221 	const struct rte_flow_item miss_items[2] = {
8222 		{
8223 			.type = RTE_FLOW_ITEM_TYPE_ETH,
8224 			.spec = NULL,
8225 			.last = NULL,
8226 			.mask = NULL
8227 		},
8228 		{
8229 			.type = RTE_FLOW_ITEM_TYPE_END,
8230 			.spec = NULL,
8231 			.last = NULL,
8232 			.mask = NULL
8233 		}
8234 	};
8235 	union tunnel_offload_mark mark_id;
8236 	struct rte_flow_action_mark miss_mark;
8237 	struct rte_flow_action miss_actions[3] = {
8238 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
8239 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
8240 	};
8241 	const struct rte_flow_action_jump *jump_data;
8242 	uint32_t i, flow_table = 0; /* prevent compilation warning */
8243 	struct flow_grp_info grp_info = {
8244 		.external = 1,
8245 		.transfer = attr->transfer,
8246 		.fdb_def_rule = !!priv->fdb_def_rule,
8247 		.std_tbl_fix = 0,
8248 	};
8249 	int ret;
8250 
8251 	if (!attr->transfer) {
8252 		uint32_t q_size;
8253 
8254 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
8255 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
8256 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
8257 					 0, SOCKET_ID_ANY);
8258 		if (!ctx->queue)
8259 			return rte_flow_error_set
8260 				(error, ENOMEM,
8261 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8262 				NULL, "invalid default miss RSS");
8263 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
8264 		ctx->action_rss.level = 0,
8265 		ctx->action_rss.types = priv->rss_conf.rss_hf,
8266 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
8267 		ctx->action_rss.queue_num = priv->reta_idx_n,
8268 		ctx->action_rss.key = priv->rss_conf.rss_key,
8269 		ctx->action_rss.queue = ctx->queue;
8270 		if (!priv->reta_idx_n || !priv->rxqs_n)
8271 			return rte_flow_error_set
8272 				(error, EINVAL,
8273 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8274 				NULL, "invalid port configuration");
8275 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
8276 			ctx->action_rss.types = 0;
8277 		for (i = 0; i != priv->reta_idx_n; ++i)
8278 			ctx->queue[i] = (*priv->reta_idx)[i];
8279 	} else {
8280 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
8281 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
8282 	}
8283 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
8284 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
8285 	jump_data = app_actions->conf;
8286 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
8287 	miss_attr.group = jump_data->group;
8288 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
8289 				       &flow_table, &grp_info, error);
8290 	if (ret)
8291 		return rte_flow_error_set(error, EINVAL,
8292 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8293 					  NULL, "invalid tunnel id");
8294 	mark_id.app_reserve = 0;
8295 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
8296 	mark_id.transfer = !!attr->transfer;
8297 	mark_id._unused_ = 0;
8298 	miss_mark.id = mark_id.val;
8299 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
8300 				    miss_items, miss_actions, flow_idx, error);
8301 	if (!dev_flow)
8302 		return -rte_errno;
8303 	dev_flow->flow = flow;
8304 	dev_flow->external = true;
8305 	dev_flow->tunnel = tunnel;
8306 	dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE;
8307 	/* Subflow object was created, we must include one in the list. */
8308 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
8309 		      dev_flow->handle, next);
8310 	DRV_LOG(DEBUG,
8311 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
8312 		dev->data->port_id, tunnel->app_tunnel.type,
8313 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
8314 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
8315 				  miss_actions, error);
8316 	if (!ret)
8317 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
8318 						  error);
8319 
8320 	return ret;
8321 }
8322 
8323 static const struct mlx5_flow_tbl_data_entry  *
8324 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
8325 {
8326 	struct mlx5_priv *priv = dev->data->dev_private;
8327 	struct mlx5_dev_ctx_shared *sh = priv->sh;
8328 	struct mlx5_hlist_entry *he;
8329 	union tunnel_offload_mark mbits = { .val = mark };
8330 	union mlx5_flow_tbl_key table_key = {
8331 		{
8332 			.level = tunnel_id_to_flow_tbl(mbits.table_id),
8333 			.id = 0,
8334 			.reserved = 0,
8335 			.dummy = 0,
8336 			.is_fdb = !!mbits.transfer,
8337 			.is_egress = 0,
8338 		}
8339 	};
8340 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL);
8341 	return he ?
8342 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
8343 }
8344 
8345 static void
8346 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list,
8347 				   struct mlx5_hlist_entry *entry)
8348 {
8349 	struct mlx5_dev_ctx_shared *sh = list->ctx;
8350 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8351 
8352 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8353 			tunnel_flow_tbl_to_id(tte->flow_table));
8354 	mlx5_free(tte);
8355 }
8356 
8357 static int
8358 mlx5_flow_tunnel_grp2tbl_match_cb(struct mlx5_hlist *list __rte_unused,
8359 				  struct mlx5_hlist_entry *entry,
8360 				  uint64_t key, void *cb_ctx __rte_unused)
8361 {
8362 	union tunnel_tbl_key tbl = {
8363 		.val = key,
8364 	};
8365 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8366 
8367 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
8368 }
8369 
8370 static struct mlx5_hlist_entry *
8371 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list, uint64_t key,
8372 				   void *ctx __rte_unused)
8373 {
8374 	struct mlx5_dev_ctx_shared *sh = list->ctx;
8375 	struct tunnel_tbl_entry *tte;
8376 	union tunnel_tbl_key tbl = {
8377 		.val = key,
8378 	};
8379 
8380 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
8381 			  sizeof(*tte), 0,
8382 			  SOCKET_ID_ANY);
8383 	if (!tte)
8384 		goto err;
8385 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8386 			  &tte->flow_table);
8387 	if (tte->flow_table >= MLX5_MAX_TABLES) {
8388 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
8389 			tte->flow_table);
8390 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8391 				tte->flow_table);
8392 		goto err;
8393 	} else if (!tte->flow_table) {
8394 		goto err;
8395 	}
8396 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
8397 	tte->tunnel_id = tbl.tunnel_id;
8398 	tte->group = tbl.group;
8399 	return &tte->hash;
8400 err:
8401 	if (tte)
8402 		mlx5_free(tte);
8403 	return NULL;
8404 }
8405 
8406 static uint32_t
8407 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
8408 				const struct mlx5_flow_tunnel *tunnel,
8409 				uint32_t group, uint32_t *table,
8410 				struct rte_flow_error *error)
8411 {
8412 	struct mlx5_hlist_entry *he;
8413 	struct tunnel_tbl_entry *tte;
8414 	union tunnel_tbl_key key = {
8415 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
8416 		.group = group
8417 	};
8418 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8419 	struct mlx5_hlist *group_hash;
8420 
8421 	group_hash = tunnel ? tunnel->groups : thub->groups;
8422 	he = mlx5_hlist_register(group_hash, key.val, NULL);
8423 	if (!he)
8424 		return rte_flow_error_set(error, EINVAL,
8425 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
8426 					  NULL,
8427 					  "tunnel group index not supported");
8428 	tte = container_of(he, typeof(*tte), hash);
8429 	*table = tte->flow_table;
8430 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
8431 		dev->data->port_id, key.tunnel_id, group, *table);
8432 	return 0;
8433 }
8434 
8435 static void
8436 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
8437 		      struct mlx5_flow_tunnel *tunnel)
8438 {
8439 	struct mlx5_priv *priv = dev->data->dev_private;
8440 	struct mlx5_indexed_pool *ipool;
8441 
8442 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
8443 		dev->data->port_id, tunnel->tunnel_id);
8444 	LIST_REMOVE(tunnel, chain);
8445 	mlx5_hlist_destroy(tunnel->groups);
8446 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8447 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
8448 }
8449 
8450 static bool
8451 mlx5_access_tunnel_offload_db
8452 	(struct rte_eth_dev *dev,
8453 	 bool (*match)(struct rte_eth_dev *,
8454 		       struct mlx5_flow_tunnel *, const void *),
8455 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8456 	 void (*miss)(struct rte_eth_dev *, void *),
8457 	 void *ctx, bool lock_op)
8458 {
8459 	bool verdict = false;
8460 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8461 	struct mlx5_flow_tunnel *tunnel;
8462 
8463 	rte_spinlock_lock(&thub->sl);
8464 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
8465 		verdict = match(dev, tunnel, (const void *)ctx);
8466 		if (verdict)
8467 			break;
8468 	}
8469 	if (!lock_op)
8470 		rte_spinlock_unlock(&thub->sl);
8471 	if (verdict && hit)
8472 		hit(dev, tunnel, ctx);
8473 	if (!verdict && miss)
8474 		miss(dev, ctx);
8475 	if (lock_op)
8476 		rte_spinlock_unlock(&thub->sl);
8477 
8478 	return verdict;
8479 }
8480 
8481 struct tunnel_db_find_tunnel_id_ctx {
8482 	uint32_t tunnel_id;
8483 	struct mlx5_flow_tunnel *tunnel;
8484 };
8485 
8486 static bool
8487 find_tunnel_id_match(struct rte_eth_dev *dev,
8488 		     struct mlx5_flow_tunnel *tunnel, const void *x)
8489 {
8490 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8491 
8492 	RTE_SET_USED(dev);
8493 	return tunnel->tunnel_id == ctx->tunnel_id;
8494 }
8495 
8496 static void
8497 find_tunnel_id_hit(struct rte_eth_dev *dev,
8498 		   struct mlx5_flow_tunnel *tunnel, void *x)
8499 {
8500 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8501 	RTE_SET_USED(dev);
8502 	ctx->tunnel = tunnel;
8503 }
8504 
8505 static struct mlx5_flow_tunnel *
8506 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
8507 {
8508 	struct tunnel_db_find_tunnel_id_ctx ctx = {
8509 		.tunnel_id = id,
8510 	};
8511 
8512 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
8513 				      find_tunnel_id_hit, NULL, &ctx, true);
8514 
8515 	return ctx.tunnel;
8516 }
8517 
8518 static struct mlx5_flow_tunnel *
8519 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
8520 			  const struct rte_flow_tunnel *app_tunnel)
8521 {
8522 	struct mlx5_priv *priv = dev->data->dev_private;
8523 	struct mlx5_indexed_pool *ipool;
8524 	struct mlx5_flow_tunnel *tunnel;
8525 	uint32_t id;
8526 
8527 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8528 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
8529 	if (!tunnel)
8530 		return NULL;
8531 	if (id >= MLX5_MAX_TUNNELS) {
8532 		mlx5_ipool_free(ipool, id);
8533 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
8534 		return NULL;
8535 	}
8536 	tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0,
8537 					   mlx5_flow_tunnel_grp2tbl_create_cb,
8538 					   mlx5_flow_tunnel_grp2tbl_match_cb,
8539 					   mlx5_flow_tunnel_grp2tbl_remove_cb);
8540 	if (!tunnel->groups) {
8541 		mlx5_ipool_free(ipool, id);
8542 		return NULL;
8543 	}
8544 	tunnel->groups->ctx = priv->sh;
8545 	/* initiate new PMD tunnel */
8546 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
8547 	tunnel->tunnel_id = id;
8548 	tunnel->action.type = (typeof(tunnel->action.type))
8549 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
8550 	tunnel->action.conf = tunnel;
8551 	tunnel->item.type = (typeof(tunnel->item.type))
8552 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
8553 	tunnel->item.spec = tunnel;
8554 	tunnel->item.last = NULL;
8555 	tunnel->item.mask = NULL;
8556 
8557 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
8558 		dev->data->port_id, tunnel->tunnel_id);
8559 
8560 	return tunnel;
8561 }
8562 
8563 struct tunnel_db_get_tunnel_ctx {
8564 	const struct rte_flow_tunnel *app_tunnel;
8565 	struct mlx5_flow_tunnel *tunnel;
8566 };
8567 
8568 static bool get_tunnel_match(struct rte_eth_dev *dev,
8569 			     struct mlx5_flow_tunnel *tunnel, const void *x)
8570 {
8571 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
8572 
8573 	RTE_SET_USED(dev);
8574 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
8575 		       sizeof(*ctx->app_tunnel));
8576 }
8577 
8578 static void get_tunnel_hit(struct rte_eth_dev *dev,
8579 			   struct mlx5_flow_tunnel *tunnel, void *x)
8580 {
8581 	/* called under tunnel spinlock protection */
8582 	struct tunnel_db_get_tunnel_ctx *ctx = x;
8583 
8584 	RTE_SET_USED(dev);
8585 	tunnel->refctn++;
8586 	ctx->tunnel = tunnel;
8587 }
8588 
8589 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
8590 {
8591 	/* called under tunnel spinlock protection */
8592 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8593 	struct tunnel_db_get_tunnel_ctx *ctx = x;
8594 
8595 	rte_spinlock_unlock(&thub->sl);
8596 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
8597 	rte_spinlock_lock(&thub->sl);
8598 	if (ctx->tunnel) {
8599 		ctx->tunnel->refctn = 1;
8600 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
8601 	}
8602 }
8603 
8604 
8605 static int
8606 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
8607 		     const struct rte_flow_tunnel *app_tunnel,
8608 		     struct mlx5_flow_tunnel **tunnel)
8609 {
8610 	struct tunnel_db_get_tunnel_ctx ctx = {
8611 		.app_tunnel = app_tunnel,
8612 	};
8613 
8614 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
8615 				      get_tunnel_miss, &ctx, true);
8616 	*tunnel = ctx.tunnel;
8617 	return ctx.tunnel ? 0 : -ENOMEM;
8618 }
8619 
8620 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
8621 {
8622 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
8623 
8624 	if (!thub)
8625 		return;
8626 	if (!LIST_EMPTY(&thub->tunnels))
8627 		DRV_LOG(WARNING, "port %u tunnels present", port_id);
8628 	mlx5_hlist_destroy(thub->groups);
8629 	mlx5_free(thub);
8630 }
8631 
8632 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
8633 {
8634 	int err;
8635 	struct mlx5_flow_tunnel_hub *thub;
8636 
8637 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
8638 			   0, SOCKET_ID_ANY);
8639 	if (!thub)
8640 		return -ENOMEM;
8641 	LIST_INIT(&thub->tunnels);
8642 	rte_spinlock_init(&thub->sl);
8643 	thub->groups = mlx5_hlist_create("flow groups",
8644 					 rte_align32pow2(MLX5_MAX_TABLES), 0,
8645 					 0, mlx5_flow_tunnel_grp2tbl_create_cb,
8646 					 mlx5_flow_tunnel_grp2tbl_match_cb,
8647 					 mlx5_flow_tunnel_grp2tbl_remove_cb);
8648 	if (!thub->groups) {
8649 		err = -rte_errno;
8650 		goto err;
8651 	}
8652 	thub->groups->ctx = sh;
8653 	sh->tunnel_hub = thub;
8654 
8655 	return 0;
8656 
8657 err:
8658 	if (thub->groups)
8659 		mlx5_hlist_destroy(thub->groups);
8660 	if (thub)
8661 		mlx5_free(thub);
8662 	return err;
8663 }
8664 
8665 static inline bool
8666 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
8667 			  struct rte_flow_tunnel *tunnel,
8668 			  const char *err_msg)
8669 {
8670 	err_msg = NULL;
8671 	if (!is_tunnel_offload_active(dev)) {
8672 		err_msg = "tunnel offload was not activated";
8673 		goto out;
8674 	} else if (!tunnel) {
8675 		err_msg = "no application tunnel";
8676 		goto out;
8677 	}
8678 
8679 	switch (tunnel->type) {
8680 	default:
8681 		err_msg = "unsupported tunnel type";
8682 		goto out;
8683 	case RTE_FLOW_ITEM_TYPE_VXLAN:
8684 		break;
8685 	}
8686 
8687 out:
8688 	return !err_msg;
8689 }
8690 
8691 static int
8692 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
8693 		    struct rte_flow_tunnel *app_tunnel,
8694 		    struct rte_flow_action **actions,
8695 		    uint32_t *num_of_actions,
8696 		    struct rte_flow_error *error)
8697 {
8698 	int ret;
8699 	struct mlx5_flow_tunnel *tunnel;
8700 	const char *err_msg = NULL;
8701 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
8702 
8703 	if (!verdict)
8704 		return rte_flow_error_set(error, EINVAL,
8705 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
8706 					  err_msg);
8707 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
8708 	if (ret < 0) {
8709 		return rte_flow_error_set(error, ret,
8710 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
8711 					  "failed to initialize pmd tunnel");
8712 	}
8713 	*actions = &tunnel->action;
8714 	*num_of_actions = 1;
8715 	return 0;
8716 }
8717 
8718 static int
8719 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
8720 		       struct rte_flow_tunnel *app_tunnel,
8721 		       struct rte_flow_item **items,
8722 		       uint32_t *num_of_items,
8723 		       struct rte_flow_error *error)
8724 {
8725 	int ret;
8726 	struct mlx5_flow_tunnel *tunnel;
8727 	const char *err_msg = NULL;
8728 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
8729 
8730 	if (!verdict)
8731 		return rte_flow_error_set(error, EINVAL,
8732 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
8733 					  err_msg);
8734 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
8735 	if (ret < 0) {
8736 		return rte_flow_error_set(error, ret,
8737 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
8738 					  "failed to initialize pmd tunnel");
8739 	}
8740 	*items = &tunnel->item;
8741 	*num_of_items = 1;
8742 	return 0;
8743 }
8744 
8745 struct tunnel_db_element_release_ctx {
8746 	struct rte_flow_item *items;
8747 	struct rte_flow_action *actions;
8748 	uint32_t num_elements;
8749 	struct rte_flow_error *error;
8750 	int ret;
8751 };
8752 
8753 static bool
8754 tunnel_element_release_match(struct rte_eth_dev *dev,
8755 			     struct mlx5_flow_tunnel *tunnel, const void *x)
8756 {
8757 	const struct tunnel_db_element_release_ctx *ctx = x;
8758 
8759 	RTE_SET_USED(dev);
8760 	if (ctx->num_elements != 1)
8761 		return false;
8762 	else if (ctx->items)
8763 		return ctx->items == &tunnel->item;
8764 	else if (ctx->actions)
8765 		return ctx->actions == &tunnel->action;
8766 
8767 	return false;
8768 }
8769 
8770 static void
8771 tunnel_element_release_hit(struct rte_eth_dev *dev,
8772 			   struct mlx5_flow_tunnel *tunnel, void *x)
8773 {
8774 	struct tunnel_db_element_release_ctx *ctx = x;
8775 	ctx->ret = 0;
8776 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
8777 		mlx5_flow_tunnel_free(dev, tunnel);
8778 }
8779 
8780 static void
8781 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
8782 {
8783 	struct tunnel_db_element_release_ctx *ctx = x;
8784 	RTE_SET_USED(dev);
8785 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
8786 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
8787 				      "invalid argument");
8788 }
8789 
8790 static int
8791 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
8792 		       struct rte_flow_item *pmd_items,
8793 		       uint32_t num_items, struct rte_flow_error *err)
8794 {
8795 	struct tunnel_db_element_release_ctx ctx = {
8796 		.items = pmd_items,
8797 		.actions = NULL,
8798 		.num_elements = num_items,
8799 		.error = err,
8800 	};
8801 
8802 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
8803 				      tunnel_element_release_hit,
8804 				      tunnel_element_release_miss, &ctx, false);
8805 
8806 	return ctx.ret;
8807 }
8808 
8809 static int
8810 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
8811 			 struct rte_flow_action *pmd_actions,
8812 			 uint32_t num_actions, struct rte_flow_error *err)
8813 {
8814 	struct tunnel_db_element_release_ctx ctx = {
8815 		.items = NULL,
8816 		.actions = pmd_actions,
8817 		.num_elements = num_actions,
8818 		.error = err,
8819 	};
8820 
8821 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
8822 				      tunnel_element_release_hit,
8823 				      tunnel_element_release_miss, &ctx, false);
8824 
8825 	return ctx.ret;
8826 }
8827 
8828 static int
8829 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
8830 				  struct rte_mbuf *m,
8831 				  struct rte_flow_restore_info *info,
8832 				  struct rte_flow_error *err)
8833 {
8834 	uint64_t ol_flags = m->ol_flags;
8835 	const struct mlx5_flow_tbl_data_entry *tble;
8836 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
8837 
8838 	if (!is_tunnel_offload_active(dev)) {
8839 		info->flags = 0;
8840 		return 0;
8841 	}
8842 
8843 	if ((ol_flags & mask) != mask)
8844 		goto err;
8845 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
8846 	if (!tble) {
8847 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
8848 			dev->data->port_id, m->hash.fdir.hi);
8849 		goto err;
8850 	}
8851 	MLX5_ASSERT(tble->tunnel);
8852 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
8853 	info->group_id = tble->group_id;
8854 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
8855 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
8856 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
8857 
8858 	return 0;
8859 
8860 err:
8861 	return rte_flow_error_set(err, EINVAL,
8862 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
8863 				  "failed to get restore info");
8864 }
8865 
8866 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
8867 static int
8868 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
8869 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
8870 			   __rte_unused struct rte_flow_action **actions,
8871 			   __rte_unused uint32_t *num_of_actions,
8872 			   __rte_unused struct rte_flow_error *error)
8873 {
8874 	return -ENOTSUP;
8875 }
8876 
8877 static int
8878 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
8879 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
8880 		       __rte_unused struct rte_flow_item **items,
8881 		       __rte_unused uint32_t *num_of_items,
8882 		       __rte_unused struct rte_flow_error *error)
8883 {
8884 	return -ENOTSUP;
8885 }
8886 
8887 static int
8888 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
8889 			      __rte_unused struct rte_flow_item *pmd_items,
8890 			      __rte_unused uint32_t num_items,
8891 			      __rte_unused struct rte_flow_error *err)
8892 {
8893 	return -ENOTSUP;
8894 }
8895 
8896 static int
8897 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
8898 				__rte_unused struct rte_flow_action *pmd_action,
8899 				__rte_unused uint32_t num_actions,
8900 				__rte_unused struct rte_flow_error *err)
8901 {
8902 	return -ENOTSUP;
8903 }
8904 
8905 static int
8906 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
8907 				  __rte_unused struct rte_mbuf *m,
8908 				  __rte_unused struct rte_flow_restore_info *i,
8909 				  __rte_unused struct rte_flow_error *err)
8910 {
8911 	return -ENOTSUP;
8912 }
8913 
8914 static int
8915 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
8916 			     __rte_unused struct rte_flow *flow,
8917 			     __rte_unused const struct rte_flow_attr *attr,
8918 			     __rte_unused const struct rte_flow_action *actions,
8919 			     __rte_unused uint32_t flow_idx,
8920 			     __rte_unused const struct mlx5_flow_tunnel *tunnel,
8921 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
8922 			     __rte_unused struct rte_flow_error *error)
8923 {
8924 	return -ENOTSUP;
8925 }
8926 
8927 static struct mlx5_flow_tunnel *
8928 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
8929 		    __rte_unused uint32_t id)
8930 {
8931 	return NULL;
8932 }
8933 
8934 static void
8935 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
8936 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
8937 {
8938 }
8939 
8940 static uint32_t
8941 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
8942 				__rte_unused const struct mlx5_flow_tunnel *t,
8943 				__rte_unused uint32_t group,
8944 				__rte_unused uint32_t *table,
8945 				struct rte_flow_error *error)
8946 {
8947 	return rte_flow_error_set(error, ENOTSUP,
8948 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
8949 				  "tunnel offload requires DV support");
8950 }
8951 
8952 void
8953 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
8954 			__rte_unused  uint16_t port_id)
8955 {
8956 }
8957 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
8958