xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision c5c507100ea58e24f812401c77c66cdb9bceee36)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdalign.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdbool.h>
10 #include <sys/queue.h>
11 
12 #include <rte_common.h>
13 #include <rte_ether.h>
14 #include <ethdev_driver.h>
15 #include <rte_eal_paging.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21 
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26 
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rx.h"
32 #include "mlx5_tx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     const struct mlx5_flow_tunnel *tunnel,
54 			     struct tunnel_default_miss_ctx *ctx,
55 			     struct rte_flow_error *error);
56 static struct mlx5_flow_tunnel *
57 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
58 static void
59 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
60 static uint32_t
61 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
62 				const struct mlx5_flow_tunnel *tunnel,
63 				uint32_t group, uint32_t *table,
64 				struct rte_flow_error *error);
65 
66 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
67 static void mlx5_flow_pop_thread_workspace(void);
68 
69 
70 /** Device flow drivers. */
71 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
72 
73 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
74 
75 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
76 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
77 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
78 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
79 #endif
80 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
81 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
82 };
83 
84 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
85 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
86 	(const int []){ \
87 		__VA_ARGS__, 0, \
88 	}
89 
90 /** Node object of input graph for mlx5_flow_expand_rss(). */
91 struct mlx5_flow_expand_node {
92 	const int *const next;
93 	/**<
94 	 * List of next node indexes. Index 0 is interpreted as a terminator.
95 	 */
96 	const enum rte_flow_item_type type;
97 	/**< Pattern item type of current node. */
98 	uint64_t rss_types;
99 	/**<
100 	 * RSS types bit-field associated with this node
101 	 * (see ETH_RSS_* definitions).
102 	 */
103 	uint8_t optional;
104 	/**< optional expand field. Default 0 to expand, 1 not go deeper. */
105 };
106 
107 /** Object returned by mlx5_flow_expand_rss(). */
108 struct mlx5_flow_expand_rss {
109 	uint32_t entries;
110 	/**< Number of entries @p patterns and @p priorities. */
111 	struct {
112 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
113 		uint32_t priority; /**< Priority offset for each expansion. */
114 	} entry[];
115 };
116 
117 static enum rte_flow_item_type
118 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
119 {
120 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
121 	uint16_t ether_type = 0;
122 	uint16_t ether_type_m;
123 	uint8_t ip_next_proto = 0;
124 	uint8_t ip_next_proto_m;
125 
126 	if (item == NULL || item->spec == NULL)
127 		return ret;
128 	switch (item->type) {
129 	case RTE_FLOW_ITEM_TYPE_ETH:
130 		if (item->mask)
131 			ether_type_m = ((const struct rte_flow_item_eth *)
132 						(item->mask))->type;
133 		else
134 			ether_type_m = rte_flow_item_eth_mask.type;
135 		if (ether_type_m != RTE_BE16(0xFFFF))
136 			break;
137 		ether_type = ((const struct rte_flow_item_eth *)
138 				(item->spec))->type;
139 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
140 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
141 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
142 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
143 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
144 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
145 		else
146 			ret = RTE_FLOW_ITEM_TYPE_END;
147 		break;
148 	case RTE_FLOW_ITEM_TYPE_VLAN:
149 		if (item->mask)
150 			ether_type_m = ((const struct rte_flow_item_vlan *)
151 						(item->mask))->inner_type;
152 		else
153 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
154 		if (ether_type_m != RTE_BE16(0xFFFF))
155 			break;
156 		ether_type = ((const struct rte_flow_item_vlan *)
157 				(item->spec))->inner_type;
158 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
159 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
160 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
161 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
162 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
163 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
164 		else
165 			ret = RTE_FLOW_ITEM_TYPE_END;
166 		break;
167 	case RTE_FLOW_ITEM_TYPE_IPV4:
168 		if (item->mask)
169 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
170 					(item->mask))->hdr.next_proto_id;
171 		else
172 			ip_next_proto_m =
173 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
174 		if (ip_next_proto_m != 0xFF)
175 			break;
176 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
177 				(item->spec))->hdr.next_proto_id;
178 		if (ip_next_proto == IPPROTO_UDP)
179 			ret = RTE_FLOW_ITEM_TYPE_UDP;
180 		else if (ip_next_proto == IPPROTO_TCP)
181 			ret = RTE_FLOW_ITEM_TYPE_TCP;
182 		else if (ip_next_proto == IPPROTO_IP)
183 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
184 		else if (ip_next_proto == IPPROTO_IPV6)
185 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
186 		else
187 			ret = RTE_FLOW_ITEM_TYPE_END;
188 		break;
189 	case RTE_FLOW_ITEM_TYPE_IPV6:
190 		if (item->mask)
191 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
192 						(item->mask))->hdr.proto;
193 		else
194 			ip_next_proto_m =
195 				rte_flow_item_ipv6_mask.hdr.proto;
196 		if (ip_next_proto_m != 0xFF)
197 			break;
198 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
199 				(item->spec))->hdr.proto;
200 		if (ip_next_proto == IPPROTO_UDP)
201 			ret = RTE_FLOW_ITEM_TYPE_UDP;
202 		else if (ip_next_proto == IPPROTO_TCP)
203 			ret = RTE_FLOW_ITEM_TYPE_TCP;
204 		else if (ip_next_proto == IPPROTO_IP)
205 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
206 		else if (ip_next_proto == IPPROTO_IPV6)
207 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
208 		else
209 			ret = RTE_FLOW_ITEM_TYPE_END;
210 		break;
211 	default:
212 		ret = RTE_FLOW_ITEM_TYPE_VOID;
213 		break;
214 	}
215 	return ret;
216 }
217 
218 #define MLX5_RSS_EXP_ELT_N 16
219 
220 /**
221  * Expand RSS flows into several possible flows according to the RSS hash
222  * fields requested and the driver capabilities.
223  *
224  * @param[out] buf
225  *   Buffer to store the result expansion.
226  * @param[in] size
227  *   Buffer size in bytes. If 0, @p buf can be NULL.
228  * @param[in] pattern
229  *   User flow pattern.
230  * @param[in] types
231  *   RSS types to expand (see ETH_RSS_* definitions).
232  * @param[in] graph
233  *   Input graph to expand @p pattern according to @p types.
234  * @param[in] graph_root_index
235  *   Index of root node in @p graph, typically 0.
236  *
237  * @return
238  *   A positive value representing the size of @p buf in bytes regardless of
239  *   @p size on success, a negative errno value otherwise and rte_errno is
240  *   set, the following errors are defined:
241  *
242  *   -E2BIG: graph-depth @p graph is too deep.
243  */
244 static int
245 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
246 		     const struct rte_flow_item *pattern, uint64_t types,
247 		     const struct mlx5_flow_expand_node graph[],
248 		     int graph_root_index)
249 {
250 	const struct rte_flow_item *item;
251 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
252 	const int *next_node;
253 	const int *stack[MLX5_RSS_EXP_ELT_N];
254 	int stack_pos = 0;
255 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
256 	unsigned int i;
257 	size_t lsize;
258 	size_t user_pattern_size = 0;
259 	void *addr = NULL;
260 	const struct mlx5_flow_expand_node *next = NULL;
261 	struct rte_flow_item missed_item;
262 	int missed = 0;
263 	int elt = 0;
264 	const struct rte_flow_item *last_item = NULL;
265 
266 	memset(&missed_item, 0, sizeof(missed_item));
267 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
268 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
269 	if (lsize <= size) {
270 		buf->entry[0].priority = 0;
271 		buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
272 		buf->entries = 0;
273 		addr = buf->entry[0].pattern;
274 	}
275 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
276 		if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
277 			last_item = item;
278 		for (i = 0; node->next && node->next[i]; ++i) {
279 			next = &graph[node->next[i]];
280 			if (next->type == item->type)
281 				break;
282 		}
283 		if (next)
284 			node = next;
285 		user_pattern_size += sizeof(*item);
286 	}
287 	user_pattern_size += sizeof(*item); /* Handle END item. */
288 	lsize += user_pattern_size;
289 	/* Copy the user pattern in the first entry of the buffer. */
290 	if (lsize <= size) {
291 		rte_memcpy(addr, pattern, user_pattern_size);
292 		addr = (void *)(((uintptr_t)addr) + user_pattern_size);
293 		buf->entries = 1;
294 	}
295 	/* Start expanding. */
296 	memset(flow_items, 0, sizeof(flow_items));
297 	user_pattern_size -= sizeof(*item);
298 	/*
299 	 * Check if the last valid item has spec set, need complete pattern,
300 	 * and the pattern can be used for expansion.
301 	 */
302 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
303 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
304 		/* Item type END indicates expansion is not required. */
305 		return lsize;
306 	}
307 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
308 		next = NULL;
309 		missed = 1;
310 		for (i = 0; node->next && node->next[i]; ++i) {
311 			next = &graph[node->next[i]];
312 			if (next->type == missed_item.type) {
313 				flow_items[0].type = missed_item.type;
314 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
315 				break;
316 			}
317 			next = NULL;
318 		}
319 	}
320 	if (next && missed) {
321 		elt = 2; /* missed item + item end. */
322 		node = next;
323 		lsize += elt * sizeof(*item) + user_pattern_size;
324 		if ((node->rss_types & types) && lsize <= size) {
325 			buf->entry[buf->entries].priority = 1;
326 			buf->entry[buf->entries].pattern = addr;
327 			buf->entries++;
328 			rte_memcpy(addr, buf->entry[0].pattern,
329 				   user_pattern_size);
330 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
331 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
332 			addr = (void *)(((uintptr_t)addr) +
333 					elt * sizeof(*item));
334 		}
335 	}
336 	memset(flow_items, 0, sizeof(flow_items));
337 	next_node = node->next;
338 	stack[stack_pos] = next_node;
339 	node = next_node ? &graph[*next_node] : NULL;
340 	while (node) {
341 		flow_items[stack_pos].type = node->type;
342 		if (node->rss_types & types) {
343 			/*
344 			 * compute the number of items to copy from the
345 			 * expansion and copy it.
346 			 * When the stack_pos is 0, there are 1 element in it,
347 			 * plus the addition END item.
348 			 */
349 			elt = stack_pos + 2;
350 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
351 			lsize += elt * sizeof(*item) + user_pattern_size;
352 			if (lsize <= size) {
353 				size_t n = elt * sizeof(*item);
354 
355 				buf->entry[buf->entries].priority =
356 					stack_pos + 1 + missed;
357 				buf->entry[buf->entries].pattern = addr;
358 				buf->entries++;
359 				rte_memcpy(addr, buf->entry[0].pattern,
360 					   user_pattern_size);
361 				addr = (void *)(((uintptr_t)addr) +
362 						user_pattern_size);
363 				rte_memcpy(addr, &missed_item,
364 					   missed * sizeof(*item));
365 				addr = (void *)(((uintptr_t)addr) +
366 					missed * sizeof(*item));
367 				rte_memcpy(addr, flow_items, n);
368 				addr = (void *)(((uintptr_t)addr) + n);
369 			}
370 		}
371 		/* Go deeper. */
372 		if (!node->optional && node->next) {
373 			next_node = node->next;
374 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
375 				rte_errno = E2BIG;
376 				return -rte_errno;
377 			}
378 			stack[stack_pos] = next_node;
379 		} else if (*(next_node + 1)) {
380 			/* Follow up with the next possibility. */
381 			++next_node;
382 		} else {
383 			/* Move to the next path. */
384 			if (stack_pos)
385 				next_node = stack[--stack_pos];
386 			next_node++;
387 			stack[stack_pos] = next_node;
388 		}
389 		node = *next_node ? &graph[*next_node] : NULL;
390 	};
391 	return lsize;
392 }
393 
394 enum mlx5_expansion {
395 	MLX5_EXPANSION_ROOT,
396 	MLX5_EXPANSION_ROOT_OUTER,
397 	MLX5_EXPANSION_ROOT_ETH_VLAN,
398 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
399 	MLX5_EXPANSION_OUTER_ETH,
400 	MLX5_EXPANSION_OUTER_ETH_VLAN,
401 	MLX5_EXPANSION_OUTER_VLAN,
402 	MLX5_EXPANSION_OUTER_IPV4,
403 	MLX5_EXPANSION_OUTER_IPV4_UDP,
404 	MLX5_EXPANSION_OUTER_IPV4_TCP,
405 	MLX5_EXPANSION_OUTER_IPV6,
406 	MLX5_EXPANSION_OUTER_IPV6_UDP,
407 	MLX5_EXPANSION_OUTER_IPV6_TCP,
408 	MLX5_EXPANSION_VXLAN,
409 	MLX5_EXPANSION_VXLAN_GPE,
410 	MLX5_EXPANSION_GRE,
411 	MLX5_EXPANSION_GRE_KEY,
412 	MLX5_EXPANSION_MPLS,
413 	MLX5_EXPANSION_ETH,
414 	MLX5_EXPANSION_ETH_VLAN,
415 	MLX5_EXPANSION_VLAN,
416 	MLX5_EXPANSION_IPV4,
417 	MLX5_EXPANSION_IPV4_UDP,
418 	MLX5_EXPANSION_IPV4_TCP,
419 	MLX5_EXPANSION_IPV6,
420 	MLX5_EXPANSION_IPV6_UDP,
421 	MLX5_EXPANSION_IPV6_TCP,
422 };
423 
424 /** Supported expansion of items. */
425 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
426 	[MLX5_EXPANSION_ROOT] = {
427 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
428 						  MLX5_EXPANSION_IPV4,
429 						  MLX5_EXPANSION_IPV6),
430 		.type = RTE_FLOW_ITEM_TYPE_END,
431 	},
432 	[MLX5_EXPANSION_ROOT_OUTER] = {
433 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
434 						  MLX5_EXPANSION_OUTER_IPV4,
435 						  MLX5_EXPANSION_OUTER_IPV6),
436 		.type = RTE_FLOW_ITEM_TYPE_END,
437 	},
438 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
439 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
440 		.type = RTE_FLOW_ITEM_TYPE_END,
441 	},
442 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
443 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
444 						(MLX5_EXPANSION_OUTER_ETH_VLAN),
445 		.type = RTE_FLOW_ITEM_TYPE_END,
446 	},
447 	[MLX5_EXPANSION_OUTER_ETH] = {
448 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
449 						  MLX5_EXPANSION_OUTER_IPV6,
450 						  MLX5_EXPANSION_MPLS),
451 		.type = RTE_FLOW_ITEM_TYPE_ETH,
452 		.rss_types = 0,
453 	},
454 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
455 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
456 		.type = RTE_FLOW_ITEM_TYPE_ETH,
457 		.rss_types = 0,
458 	},
459 	[MLX5_EXPANSION_OUTER_VLAN] = {
460 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
461 						  MLX5_EXPANSION_OUTER_IPV6),
462 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
463 	},
464 	[MLX5_EXPANSION_OUTER_IPV4] = {
465 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
466 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
467 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
468 			 MLX5_EXPANSION_GRE,
469 			 MLX5_EXPANSION_IPV4,
470 			 MLX5_EXPANSION_IPV6),
471 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
472 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
473 			ETH_RSS_NONFRAG_IPV4_OTHER,
474 	},
475 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
476 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
477 						  MLX5_EXPANSION_VXLAN_GPE),
478 		.type = RTE_FLOW_ITEM_TYPE_UDP,
479 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
480 	},
481 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
482 		.type = RTE_FLOW_ITEM_TYPE_TCP,
483 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
484 	},
485 	[MLX5_EXPANSION_OUTER_IPV6] = {
486 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
487 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
488 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
489 			 MLX5_EXPANSION_IPV4,
490 			 MLX5_EXPANSION_IPV6,
491 			 MLX5_EXPANSION_GRE),
492 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
493 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
494 			ETH_RSS_NONFRAG_IPV6_OTHER,
495 	},
496 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
497 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
498 						  MLX5_EXPANSION_VXLAN_GPE),
499 		.type = RTE_FLOW_ITEM_TYPE_UDP,
500 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
501 	},
502 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
503 		.type = RTE_FLOW_ITEM_TYPE_TCP,
504 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
505 	},
506 	[MLX5_EXPANSION_VXLAN] = {
507 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
508 						  MLX5_EXPANSION_IPV4,
509 						  MLX5_EXPANSION_IPV6),
510 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
511 	},
512 	[MLX5_EXPANSION_VXLAN_GPE] = {
513 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
514 						  MLX5_EXPANSION_IPV4,
515 						  MLX5_EXPANSION_IPV6),
516 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
517 	},
518 	[MLX5_EXPANSION_GRE] = {
519 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
520 						  MLX5_EXPANSION_IPV6,
521 						  MLX5_EXPANSION_GRE_KEY),
522 		.type = RTE_FLOW_ITEM_TYPE_GRE,
523 	},
524 	[MLX5_EXPANSION_GRE_KEY] = {
525 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
526 						  MLX5_EXPANSION_IPV6),
527 		.type = RTE_FLOW_ITEM_TYPE_GRE_KEY,
528 		.optional = 1,
529 	},
530 	[MLX5_EXPANSION_MPLS] = {
531 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
532 						  MLX5_EXPANSION_IPV6),
533 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
534 	},
535 	[MLX5_EXPANSION_ETH] = {
536 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
537 						  MLX5_EXPANSION_IPV6),
538 		.type = RTE_FLOW_ITEM_TYPE_ETH,
539 	},
540 	[MLX5_EXPANSION_ETH_VLAN] = {
541 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
542 		.type = RTE_FLOW_ITEM_TYPE_ETH,
543 	},
544 	[MLX5_EXPANSION_VLAN] = {
545 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
546 						  MLX5_EXPANSION_IPV6),
547 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
548 	},
549 	[MLX5_EXPANSION_IPV4] = {
550 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
551 						  MLX5_EXPANSION_IPV4_TCP),
552 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
553 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
554 			ETH_RSS_NONFRAG_IPV4_OTHER,
555 	},
556 	[MLX5_EXPANSION_IPV4_UDP] = {
557 		.type = RTE_FLOW_ITEM_TYPE_UDP,
558 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
559 	},
560 	[MLX5_EXPANSION_IPV4_TCP] = {
561 		.type = RTE_FLOW_ITEM_TYPE_TCP,
562 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
563 	},
564 	[MLX5_EXPANSION_IPV6] = {
565 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
566 						  MLX5_EXPANSION_IPV6_TCP),
567 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
568 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
569 			ETH_RSS_NONFRAG_IPV6_OTHER,
570 	},
571 	[MLX5_EXPANSION_IPV6_UDP] = {
572 		.type = RTE_FLOW_ITEM_TYPE_UDP,
573 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
574 	},
575 	[MLX5_EXPANSION_IPV6_TCP] = {
576 		.type = RTE_FLOW_ITEM_TYPE_TCP,
577 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
578 	},
579 };
580 
581 static struct rte_flow_action_handle *
582 mlx5_action_handle_create(struct rte_eth_dev *dev,
583 			  const struct rte_flow_indir_action_conf *conf,
584 			  const struct rte_flow_action *action,
585 			  struct rte_flow_error *error);
586 static int mlx5_action_handle_destroy
587 				(struct rte_eth_dev *dev,
588 				 struct rte_flow_action_handle *handle,
589 				 struct rte_flow_error *error);
590 static int mlx5_action_handle_update
591 				(struct rte_eth_dev *dev,
592 				 struct rte_flow_action_handle *handle,
593 				 const void *update,
594 				 struct rte_flow_error *error);
595 static int mlx5_action_handle_query
596 				(struct rte_eth_dev *dev,
597 				 const struct rte_flow_action_handle *handle,
598 				 void *data,
599 				 struct rte_flow_error *error);
600 static int
601 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
602 		    struct rte_flow_tunnel *app_tunnel,
603 		    struct rte_flow_action **actions,
604 		    uint32_t *num_of_actions,
605 		    struct rte_flow_error *error);
606 static int
607 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
608 		       struct rte_flow_tunnel *app_tunnel,
609 		       struct rte_flow_item **items,
610 		       uint32_t *num_of_items,
611 		       struct rte_flow_error *error);
612 static int
613 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
614 			      struct rte_flow_item *pmd_items,
615 			      uint32_t num_items, struct rte_flow_error *err);
616 static int
617 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
618 				struct rte_flow_action *pmd_actions,
619 				uint32_t num_actions,
620 				struct rte_flow_error *err);
621 static int
622 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
623 				  struct rte_mbuf *m,
624 				  struct rte_flow_restore_info *info,
625 				  struct rte_flow_error *err);
626 
627 static const struct rte_flow_ops mlx5_flow_ops = {
628 	.validate = mlx5_flow_validate,
629 	.create = mlx5_flow_create,
630 	.destroy = mlx5_flow_destroy,
631 	.flush = mlx5_flow_flush,
632 	.isolate = mlx5_flow_isolate,
633 	.query = mlx5_flow_query,
634 	.dev_dump = mlx5_flow_dev_dump,
635 	.get_aged_flows = mlx5_flow_get_aged_flows,
636 	.action_handle_create = mlx5_action_handle_create,
637 	.action_handle_destroy = mlx5_action_handle_destroy,
638 	.action_handle_update = mlx5_action_handle_update,
639 	.action_handle_query = mlx5_action_handle_query,
640 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
641 	.tunnel_match = mlx5_flow_tunnel_match,
642 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
643 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
644 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
645 };
646 
647 /* Tunnel information. */
648 struct mlx5_flow_tunnel_info {
649 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
650 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
651 };
652 
653 static struct mlx5_flow_tunnel_info tunnels_info[] = {
654 	{
655 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
656 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
657 	},
658 	{
659 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
660 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
661 	},
662 	{
663 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
664 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
665 	},
666 	{
667 		.tunnel = MLX5_FLOW_LAYER_GRE,
668 		.ptype = RTE_PTYPE_TUNNEL_GRE,
669 	},
670 	{
671 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
672 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
673 	},
674 	{
675 		.tunnel = MLX5_FLOW_LAYER_MPLS,
676 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
677 	},
678 	{
679 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
680 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
681 	},
682 	{
683 		.tunnel = MLX5_FLOW_LAYER_IPIP,
684 		.ptype = RTE_PTYPE_TUNNEL_IP,
685 	},
686 	{
687 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
688 		.ptype = RTE_PTYPE_TUNNEL_IP,
689 	},
690 	{
691 		.tunnel = MLX5_FLOW_LAYER_GTP,
692 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
693 	},
694 };
695 
696 
697 
698 /**
699  * Translate tag ID to register.
700  *
701  * @param[in] dev
702  *   Pointer to the Ethernet device structure.
703  * @param[in] feature
704  *   The feature that request the register.
705  * @param[in] id
706  *   The request register ID.
707  * @param[out] error
708  *   Error description in case of any.
709  *
710  * @return
711  *   The request register on success, a negative errno
712  *   value otherwise and rte_errno is set.
713  */
714 int
715 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
716 		     enum mlx5_feature_name feature,
717 		     uint32_t id,
718 		     struct rte_flow_error *error)
719 {
720 	struct mlx5_priv *priv = dev->data->dev_private;
721 	struct mlx5_dev_config *config = &priv->config;
722 	enum modify_reg start_reg;
723 	bool skip_mtr_reg = false;
724 
725 	switch (feature) {
726 	case MLX5_HAIRPIN_RX:
727 		return REG_B;
728 	case MLX5_HAIRPIN_TX:
729 		return REG_A;
730 	case MLX5_METADATA_RX:
731 		switch (config->dv_xmeta_en) {
732 		case MLX5_XMETA_MODE_LEGACY:
733 			return REG_B;
734 		case MLX5_XMETA_MODE_META16:
735 			return REG_C_0;
736 		case MLX5_XMETA_MODE_META32:
737 			return REG_C_1;
738 		}
739 		break;
740 	case MLX5_METADATA_TX:
741 		return REG_A;
742 	case MLX5_METADATA_FDB:
743 		switch (config->dv_xmeta_en) {
744 		case MLX5_XMETA_MODE_LEGACY:
745 			return REG_NON;
746 		case MLX5_XMETA_MODE_META16:
747 			return REG_C_0;
748 		case MLX5_XMETA_MODE_META32:
749 			return REG_C_1;
750 		}
751 		break;
752 	case MLX5_FLOW_MARK:
753 		switch (config->dv_xmeta_en) {
754 		case MLX5_XMETA_MODE_LEGACY:
755 			return REG_NON;
756 		case MLX5_XMETA_MODE_META16:
757 			return REG_C_1;
758 		case MLX5_XMETA_MODE_META32:
759 			return REG_C_0;
760 		}
761 		break;
762 	case MLX5_MTR_ID:
763 		/*
764 		 * If meter color and meter id share one register, flow match
765 		 * should use the meter color register for match.
766 		 */
767 		if (priv->mtr_reg_share)
768 			return priv->mtr_color_reg;
769 		else
770 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
771 			       REG_C_3;
772 	case MLX5_MTR_COLOR:
773 	case MLX5_ASO_FLOW_HIT:
774 	case MLX5_ASO_CONNTRACK:
775 		/* All features use the same REG_C. */
776 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
777 		return priv->mtr_color_reg;
778 	case MLX5_COPY_MARK:
779 		/*
780 		 * Metadata COPY_MARK register using is in meter suffix sub
781 		 * flow while with meter. It's safe to share the same register.
782 		 */
783 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
784 	case MLX5_APP_TAG:
785 		/*
786 		 * If meter is enable, it will engage the register for color
787 		 * match and flow match. If meter color match is not using the
788 		 * REG_C_2, need to skip the REG_C_x be used by meter color
789 		 * match.
790 		 * If meter is disable, free to use all available registers.
791 		 */
792 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
793 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
794 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
795 		if (id > (uint32_t)(REG_C_7 - start_reg))
796 			return rte_flow_error_set(error, EINVAL,
797 						  RTE_FLOW_ERROR_TYPE_ITEM,
798 						  NULL, "invalid tag id");
799 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
800 			return rte_flow_error_set(error, ENOTSUP,
801 						  RTE_FLOW_ERROR_TYPE_ITEM,
802 						  NULL, "unsupported tag id");
803 		/*
804 		 * This case means meter is using the REG_C_x great than 2.
805 		 * Take care not to conflict with meter color REG_C_x.
806 		 * If the available index REG_C_y >= REG_C_x, skip the
807 		 * color register.
808 		 */
809 		if (skip_mtr_reg && config->flow_mreg_c
810 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
811 			if (id >= (uint32_t)(REG_C_7 - start_reg))
812 				return rte_flow_error_set(error, EINVAL,
813 						       RTE_FLOW_ERROR_TYPE_ITEM,
814 							NULL, "invalid tag id");
815 			if (config->flow_mreg_c
816 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
817 				return config->flow_mreg_c
818 					       [id + 1 + start_reg - REG_C_0];
819 			return rte_flow_error_set(error, ENOTSUP,
820 						  RTE_FLOW_ERROR_TYPE_ITEM,
821 						  NULL, "unsupported tag id");
822 		}
823 		return config->flow_mreg_c[id + start_reg - REG_C_0];
824 	}
825 	MLX5_ASSERT(false);
826 	return rte_flow_error_set(error, EINVAL,
827 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
828 				  NULL, "invalid feature name");
829 }
830 
831 /**
832  * Check extensive flow metadata register support.
833  *
834  * @param dev
835  *   Pointer to rte_eth_dev structure.
836  *
837  * @return
838  *   True if device supports extensive flow metadata register, otherwise false.
839  */
840 bool
841 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
842 {
843 	struct mlx5_priv *priv = dev->data->dev_private;
844 	struct mlx5_dev_config *config = &priv->config;
845 
846 	/*
847 	 * Having available reg_c can be regarded inclusively as supporting
848 	 * extensive flow metadata register, which could mean,
849 	 * - metadata register copy action by modify header.
850 	 * - 16 modify header actions is supported.
851 	 * - reg_c's are preserved across different domain (FDB and NIC) on
852 	 *   packet loopback by flow lookup miss.
853 	 */
854 	return config->flow_mreg_c[2] != REG_NON;
855 }
856 
857 /**
858  * Get the lowest priority.
859  *
860  * @param[in] dev
861  *   Pointer to the Ethernet device structure.
862  * @param[in] attributes
863  *   Pointer to device flow rule attributes.
864  *
865  * @return
866  *   The value of lowest priority of flow.
867  */
868 uint32_t
869 mlx5_get_lowest_priority(struct rte_eth_dev *dev,
870 			  const struct rte_flow_attr *attr)
871 {
872 	struct mlx5_priv *priv = dev->data->dev_private;
873 
874 	if (!attr->group && !attr->transfer)
875 		return priv->config.flow_prio - 2;
876 	return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1;
877 }
878 
879 /**
880  * Calculate matcher priority of the flow.
881  *
882  * @param[in] dev
883  *   Pointer to the Ethernet device structure.
884  * @param[in] attr
885  *   Pointer to device flow rule attributes.
886  * @param[in] subpriority
887  *   The priority based on the items.
888  * @return
889  *   The matcher priority of the flow.
890  */
891 uint16_t
892 mlx5_get_matcher_priority(struct rte_eth_dev *dev,
893 			  const struct rte_flow_attr *attr,
894 			  uint32_t subpriority)
895 {
896 	uint16_t priority = (uint16_t)attr->priority;
897 	struct mlx5_priv *priv = dev->data->dev_private;
898 
899 	if (!attr->group && !attr->transfer) {
900 		if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
901 			priority = priv->config.flow_prio - 1;
902 		return mlx5_os_flow_adjust_priority(dev, priority, subpriority);
903 	}
904 	if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
905 		priority = MLX5_NON_ROOT_FLOW_MAX_PRIO;
906 	return priority * 3 + subpriority;
907 }
908 
909 /**
910  * Verify the @p item specifications (spec, last, mask) are compatible with the
911  * NIC capabilities.
912  *
913  * @param[in] item
914  *   Item specification.
915  * @param[in] mask
916  *   @p item->mask or flow default bit-masks.
917  * @param[in] nic_mask
918  *   Bit-masks covering supported fields by the NIC to compare with user mask.
919  * @param[in] size
920  *   Bit-masks size in bytes.
921  * @param[in] range_accepted
922  *   True if range of values is accepted for specific fields, false otherwise.
923  * @param[out] error
924  *   Pointer to error structure.
925  *
926  * @return
927  *   0 on success, a negative errno value otherwise and rte_errno is set.
928  */
929 int
930 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
931 			  const uint8_t *mask,
932 			  const uint8_t *nic_mask,
933 			  unsigned int size,
934 			  bool range_accepted,
935 			  struct rte_flow_error *error)
936 {
937 	unsigned int i;
938 
939 	MLX5_ASSERT(nic_mask);
940 	for (i = 0; i < size; ++i)
941 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
942 			return rte_flow_error_set(error, ENOTSUP,
943 						  RTE_FLOW_ERROR_TYPE_ITEM,
944 						  item,
945 						  "mask enables non supported"
946 						  " bits");
947 	if (!item->spec && (item->mask || item->last))
948 		return rte_flow_error_set(error, EINVAL,
949 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
950 					  "mask/last without a spec is not"
951 					  " supported");
952 	if (item->spec && item->last && !range_accepted) {
953 		uint8_t spec[size];
954 		uint8_t last[size];
955 		unsigned int i;
956 		int ret;
957 
958 		for (i = 0; i < size; ++i) {
959 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
960 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
961 		}
962 		ret = memcmp(spec, last, size);
963 		if (ret != 0)
964 			return rte_flow_error_set(error, EINVAL,
965 						  RTE_FLOW_ERROR_TYPE_ITEM,
966 						  item,
967 						  "range is not valid");
968 	}
969 	return 0;
970 }
971 
972 /**
973  * Adjust the hash fields according to the @p flow information.
974  *
975  * @param[in] dev_flow.
976  *   Pointer to the mlx5_flow.
977  * @param[in] tunnel
978  *   1 when the hash field is for a tunnel item.
979  * @param[in] layer_types
980  *   ETH_RSS_* types.
981  * @param[in] hash_fields
982  *   Item hash fields.
983  *
984  * @return
985  *   The hash fields that should be used.
986  */
987 uint64_t
988 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
989 			    int tunnel __rte_unused, uint64_t layer_types,
990 			    uint64_t hash_fields)
991 {
992 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
993 	int rss_request_inner = rss_desc->level >= 2;
994 
995 	/* Check RSS hash level for tunnel. */
996 	if (tunnel && rss_request_inner)
997 		hash_fields |= IBV_RX_HASH_INNER;
998 	else if (tunnel || rss_request_inner)
999 		return 0;
1000 #endif
1001 	/* Check if requested layer matches RSS hash fields. */
1002 	if (!(rss_desc->types & layer_types))
1003 		return 0;
1004 	return hash_fields;
1005 }
1006 
1007 /**
1008  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
1009  * if several tunnel rules are used on this queue, the tunnel ptype will be
1010  * cleared.
1011  *
1012  * @param rxq_ctrl
1013  *   Rx queue to update.
1014  */
1015 static void
1016 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
1017 {
1018 	unsigned int i;
1019 	uint32_t tunnel_ptype = 0;
1020 
1021 	/* Look up for the ptype to use. */
1022 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
1023 		if (!rxq_ctrl->flow_tunnels_n[i])
1024 			continue;
1025 		if (!tunnel_ptype) {
1026 			tunnel_ptype = tunnels_info[i].ptype;
1027 		} else {
1028 			tunnel_ptype = 0;
1029 			break;
1030 		}
1031 	}
1032 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
1033 }
1034 
1035 /**
1036  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
1037  * flow.
1038  *
1039  * @param[in] dev
1040  *   Pointer to the Ethernet device structure.
1041  * @param[in] dev_handle
1042  *   Pointer to device flow handle structure.
1043  */
1044 void
1045 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1046 		       struct mlx5_flow_handle *dev_handle)
1047 {
1048 	struct mlx5_priv *priv = dev->data->dev_private;
1049 	const int mark = dev_handle->mark;
1050 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1051 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1052 	unsigned int i;
1053 
1054 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1055 		struct mlx5_hrxq *hrxq;
1056 
1057 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1058 			      dev_handle->rix_hrxq);
1059 		if (hrxq)
1060 			ind_tbl = hrxq->ind_table;
1061 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1062 		struct mlx5_shared_action_rss *shared_rss;
1063 
1064 		shared_rss = mlx5_ipool_get
1065 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1066 			 dev_handle->rix_srss);
1067 		if (shared_rss)
1068 			ind_tbl = shared_rss->ind_tbl;
1069 	}
1070 	if (!ind_tbl)
1071 		return;
1072 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1073 		int idx = ind_tbl->queues[i];
1074 		struct mlx5_rxq_ctrl *rxq_ctrl =
1075 			container_of((*priv->rxqs)[idx],
1076 				     struct mlx5_rxq_ctrl, rxq);
1077 
1078 		/*
1079 		 * To support metadata register copy on Tx loopback,
1080 		 * this must be always enabled (metadata may arive
1081 		 * from other port - not from local flows only.
1082 		 */
1083 		if (priv->config.dv_flow_en &&
1084 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1085 		    mlx5_flow_ext_mreg_supported(dev)) {
1086 			rxq_ctrl->rxq.mark = 1;
1087 			rxq_ctrl->flow_mark_n = 1;
1088 		} else if (mark) {
1089 			rxq_ctrl->rxq.mark = 1;
1090 			rxq_ctrl->flow_mark_n++;
1091 		}
1092 		if (tunnel) {
1093 			unsigned int j;
1094 
1095 			/* Increase the counter matching the flow. */
1096 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1097 				if ((tunnels_info[j].tunnel &
1098 				     dev_handle->layers) ==
1099 				    tunnels_info[j].tunnel) {
1100 					rxq_ctrl->flow_tunnels_n[j]++;
1101 					break;
1102 				}
1103 			}
1104 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1105 		}
1106 	}
1107 }
1108 
1109 /**
1110  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1111  *
1112  * @param[in] dev
1113  *   Pointer to the Ethernet device structure.
1114  * @param[in] flow
1115  *   Pointer to flow structure.
1116  */
1117 static void
1118 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1119 {
1120 	struct mlx5_priv *priv = dev->data->dev_private;
1121 	uint32_t handle_idx;
1122 	struct mlx5_flow_handle *dev_handle;
1123 
1124 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1125 		       handle_idx, dev_handle, next)
1126 		flow_drv_rxq_flags_set(dev, dev_handle);
1127 }
1128 
1129 /**
1130  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1131  * device flow if no other flow uses it with the same kind of request.
1132  *
1133  * @param dev
1134  *   Pointer to Ethernet device.
1135  * @param[in] dev_handle
1136  *   Pointer to the device flow handle structure.
1137  */
1138 static void
1139 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1140 			struct mlx5_flow_handle *dev_handle)
1141 {
1142 	struct mlx5_priv *priv = dev->data->dev_private;
1143 	const int mark = dev_handle->mark;
1144 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1145 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1146 	unsigned int i;
1147 
1148 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1149 		struct mlx5_hrxq *hrxq;
1150 
1151 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1152 			      dev_handle->rix_hrxq);
1153 		if (hrxq)
1154 			ind_tbl = hrxq->ind_table;
1155 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1156 		struct mlx5_shared_action_rss *shared_rss;
1157 
1158 		shared_rss = mlx5_ipool_get
1159 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1160 			 dev_handle->rix_srss);
1161 		if (shared_rss)
1162 			ind_tbl = shared_rss->ind_tbl;
1163 	}
1164 	if (!ind_tbl)
1165 		return;
1166 	MLX5_ASSERT(dev->data->dev_started);
1167 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1168 		int idx = ind_tbl->queues[i];
1169 		struct mlx5_rxq_ctrl *rxq_ctrl =
1170 			container_of((*priv->rxqs)[idx],
1171 				     struct mlx5_rxq_ctrl, rxq);
1172 
1173 		if (priv->config.dv_flow_en &&
1174 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1175 		    mlx5_flow_ext_mreg_supported(dev)) {
1176 			rxq_ctrl->rxq.mark = 1;
1177 			rxq_ctrl->flow_mark_n = 1;
1178 		} else if (mark) {
1179 			rxq_ctrl->flow_mark_n--;
1180 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1181 		}
1182 		if (tunnel) {
1183 			unsigned int j;
1184 
1185 			/* Decrease the counter matching the flow. */
1186 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1187 				if ((tunnels_info[j].tunnel &
1188 				     dev_handle->layers) ==
1189 				    tunnels_info[j].tunnel) {
1190 					rxq_ctrl->flow_tunnels_n[j]--;
1191 					break;
1192 				}
1193 			}
1194 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1195 		}
1196 	}
1197 }
1198 
1199 /**
1200  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1201  * @p flow if no other flow uses it with the same kind of request.
1202  *
1203  * @param dev
1204  *   Pointer to Ethernet device.
1205  * @param[in] flow
1206  *   Pointer to the flow.
1207  */
1208 static void
1209 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1210 {
1211 	struct mlx5_priv *priv = dev->data->dev_private;
1212 	uint32_t handle_idx;
1213 	struct mlx5_flow_handle *dev_handle;
1214 
1215 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1216 		       handle_idx, dev_handle, next)
1217 		flow_drv_rxq_flags_trim(dev, dev_handle);
1218 }
1219 
1220 /**
1221  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1222  *
1223  * @param dev
1224  *   Pointer to Ethernet device.
1225  */
1226 static void
1227 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1228 {
1229 	struct mlx5_priv *priv = dev->data->dev_private;
1230 	unsigned int i;
1231 
1232 	for (i = 0; i != priv->rxqs_n; ++i) {
1233 		struct mlx5_rxq_ctrl *rxq_ctrl;
1234 		unsigned int j;
1235 
1236 		if (!(*priv->rxqs)[i])
1237 			continue;
1238 		rxq_ctrl = container_of((*priv->rxqs)[i],
1239 					struct mlx5_rxq_ctrl, rxq);
1240 		rxq_ctrl->flow_mark_n = 0;
1241 		rxq_ctrl->rxq.mark = 0;
1242 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1243 			rxq_ctrl->flow_tunnels_n[j] = 0;
1244 		rxq_ctrl->rxq.tunnel = 0;
1245 	}
1246 }
1247 
1248 /**
1249  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1250  *
1251  * @param[in] dev
1252  *   Pointer to the Ethernet device structure.
1253  */
1254 void
1255 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1256 {
1257 	struct mlx5_priv *priv = dev->data->dev_private;
1258 	struct mlx5_rxq_data *data;
1259 	unsigned int i;
1260 
1261 	for (i = 0; i != priv->rxqs_n; ++i) {
1262 		if (!(*priv->rxqs)[i])
1263 			continue;
1264 		data = (*priv->rxqs)[i];
1265 		if (!rte_flow_dynf_metadata_avail()) {
1266 			data->dynf_meta = 0;
1267 			data->flow_meta_mask = 0;
1268 			data->flow_meta_offset = -1;
1269 			data->flow_meta_port_mask = 0;
1270 		} else {
1271 			data->dynf_meta = 1;
1272 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1273 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1274 			data->flow_meta_port_mask = (uint32_t)~0;
1275 			if (priv->config.dv_xmeta_en == MLX5_XMETA_MODE_META16)
1276 				data->flow_meta_port_mask >>= 16;
1277 		}
1278 	}
1279 }
1280 
1281 /*
1282  * return a pointer to the desired action in the list of actions.
1283  *
1284  * @param[in] actions
1285  *   The list of actions to search the action in.
1286  * @param[in] action
1287  *   The action to find.
1288  *
1289  * @return
1290  *   Pointer to the action in the list, if found. NULL otherwise.
1291  */
1292 const struct rte_flow_action *
1293 mlx5_flow_find_action(const struct rte_flow_action *actions,
1294 		      enum rte_flow_action_type action)
1295 {
1296 	if (actions == NULL)
1297 		return NULL;
1298 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1299 		if (actions->type == action)
1300 			return actions;
1301 	return NULL;
1302 }
1303 
1304 /*
1305  * Validate the flag action.
1306  *
1307  * @param[in] action_flags
1308  *   Bit-fields that holds the actions detected until now.
1309  * @param[in] attr
1310  *   Attributes of flow that includes this action.
1311  * @param[out] error
1312  *   Pointer to error structure.
1313  *
1314  * @return
1315  *   0 on success, a negative errno value otherwise and rte_errno is set.
1316  */
1317 int
1318 mlx5_flow_validate_action_flag(uint64_t action_flags,
1319 			       const struct rte_flow_attr *attr,
1320 			       struct rte_flow_error *error)
1321 {
1322 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1323 		return rte_flow_error_set(error, EINVAL,
1324 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1325 					  "can't mark and flag in same flow");
1326 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1327 		return rte_flow_error_set(error, EINVAL,
1328 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1329 					  "can't have 2 flag"
1330 					  " actions in same flow");
1331 	if (attr->egress)
1332 		return rte_flow_error_set(error, ENOTSUP,
1333 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1334 					  "flag action not supported for "
1335 					  "egress");
1336 	return 0;
1337 }
1338 
1339 /*
1340  * Validate the mark action.
1341  *
1342  * @param[in] action
1343  *   Pointer to the queue action.
1344  * @param[in] action_flags
1345  *   Bit-fields that holds the actions detected until now.
1346  * @param[in] attr
1347  *   Attributes of flow that includes this action.
1348  * @param[out] error
1349  *   Pointer to error structure.
1350  *
1351  * @return
1352  *   0 on success, a negative errno value otherwise and rte_errno is set.
1353  */
1354 int
1355 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1356 			       uint64_t action_flags,
1357 			       const struct rte_flow_attr *attr,
1358 			       struct rte_flow_error *error)
1359 {
1360 	const struct rte_flow_action_mark *mark = action->conf;
1361 
1362 	if (!mark)
1363 		return rte_flow_error_set(error, EINVAL,
1364 					  RTE_FLOW_ERROR_TYPE_ACTION,
1365 					  action,
1366 					  "configuration cannot be null");
1367 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1368 		return rte_flow_error_set(error, EINVAL,
1369 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1370 					  &mark->id,
1371 					  "mark id must in 0 <= id < "
1372 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1373 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1374 		return rte_flow_error_set(error, EINVAL,
1375 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1376 					  "can't flag and mark in same flow");
1377 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1378 		return rte_flow_error_set(error, EINVAL,
1379 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1380 					  "can't have 2 mark actions in same"
1381 					  " flow");
1382 	if (attr->egress)
1383 		return rte_flow_error_set(error, ENOTSUP,
1384 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1385 					  "mark action not supported for "
1386 					  "egress");
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Validate the drop action.
1392  *
1393  * @param[in] action_flags
1394  *   Bit-fields that holds the actions detected until now.
1395  * @param[in] attr
1396  *   Attributes of flow that includes this action.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1405 			       const struct rte_flow_attr *attr,
1406 			       struct rte_flow_error *error)
1407 {
1408 	if (attr->egress)
1409 		return rte_flow_error_set(error, ENOTSUP,
1410 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1411 					  "drop action not supported for "
1412 					  "egress");
1413 	return 0;
1414 }
1415 
1416 /*
1417  * Validate the queue action.
1418  *
1419  * @param[in] action
1420  *   Pointer to the queue action.
1421  * @param[in] action_flags
1422  *   Bit-fields that holds the actions detected until now.
1423  * @param[in] dev
1424  *   Pointer to the Ethernet device structure.
1425  * @param[in] attr
1426  *   Attributes of flow that includes this action.
1427  * @param[out] error
1428  *   Pointer to error structure.
1429  *
1430  * @return
1431  *   0 on success, a negative errno value otherwise and rte_errno is set.
1432  */
1433 int
1434 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1435 				uint64_t action_flags,
1436 				struct rte_eth_dev *dev,
1437 				const struct rte_flow_attr *attr,
1438 				struct rte_flow_error *error)
1439 {
1440 	struct mlx5_priv *priv = dev->data->dev_private;
1441 	const struct rte_flow_action_queue *queue = action->conf;
1442 
1443 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1444 		return rte_flow_error_set(error, EINVAL,
1445 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1446 					  "can't have 2 fate actions in"
1447 					  " same flow");
1448 	if (!priv->rxqs_n)
1449 		return rte_flow_error_set(error, EINVAL,
1450 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1451 					  NULL, "No Rx queues configured");
1452 	if (queue->index >= priv->rxqs_n)
1453 		return rte_flow_error_set(error, EINVAL,
1454 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1455 					  &queue->index,
1456 					  "queue index out of range");
1457 	if (!(*priv->rxqs)[queue->index])
1458 		return rte_flow_error_set(error, EINVAL,
1459 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1460 					  &queue->index,
1461 					  "queue is not configured");
1462 	if (attr->egress)
1463 		return rte_flow_error_set(error, ENOTSUP,
1464 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1465 					  "queue action not supported for "
1466 					  "egress");
1467 	return 0;
1468 }
1469 
1470 /*
1471  * Validate the rss action.
1472  *
1473  * @param[in] dev
1474  *   Pointer to the Ethernet device structure.
1475  * @param[in] action
1476  *   Pointer to the queue action.
1477  * @param[out] error
1478  *   Pointer to error structure.
1479  *
1480  * @return
1481  *   0 on success, a negative errno value otherwise and rte_errno is set.
1482  */
1483 int
1484 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1485 			 const struct rte_flow_action *action,
1486 			 struct rte_flow_error *error)
1487 {
1488 	struct mlx5_priv *priv = dev->data->dev_private;
1489 	const struct rte_flow_action_rss *rss = action->conf;
1490 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1491 	unsigned int i;
1492 
1493 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1494 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1495 		return rte_flow_error_set(error, ENOTSUP,
1496 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1497 					  &rss->func,
1498 					  "RSS hash function not supported");
1499 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1500 	if (rss->level > 2)
1501 #else
1502 	if (rss->level > 1)
1503 #endif
1504 		return rte_flow_error_set(error, ENOTSUP,
1505 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1506 					  &rss->level,
1507 					  "tunnel RSS is not supported");
1508 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1509 	if (rss->key_len == 0 && rss->key != NULL)
1510 		return rte_flow_error_set(error, ENOTSUP,
1511 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1512 					  &rss->key_len,
1513 					  "RSS hash key length 0");
1514 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1515 		return rte_flow_error_set(error, ENOTSUP,
1516 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1517 					  &rss->key_len,
1518 					  "RSS hash key too small");
1519 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1520 		return rte_flow_error_set(error, ENOTSUP,
1521 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1522 					  &rss->key_len,
1523 					  "RSS hash key too large");
1524 	if (rss->queue_num > priv->config.ind_table_max_size)
1525 		return rte_flow_error_set(error, ENOTSUP,
1526 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1527 					  &rss->queue_num,
1528 					  "number of queues too large");
1529 	if (rss->types & MLX5_RSS_HF_MASK)
1530 		return rte_flow_error_set(error, ENOTSUP,
1531 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1532 					  &rss->types,
1533 					  "some RSS protocols are not"
1534 					  " supported");
1535 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1536 	    !(rss->types & ETH_RSS_IP))
1537 		return rte_flow_error_set(error, EINVAL,
1538 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1539 					  "L3 partial RSS requested but L3 RSS"
1540 					  " type not specified");
1541 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1542 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1543 		return rte_flow_error_set(error, EINVAL,
1544 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1545 					  "L4 partial RSS requested but L4 RSS"
1546 					  " type not specified");
1547 	if (!priv->rxqs_n)
1548 		return rte_flow_error_set(error, EINVAL,
1549 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1550 					  NULL, "No Rx queues configured");
1551 	if (!rss->queue_num)
1552 		return rte_flow_error_set(error, EINVAL,
1553 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1554 					  NULL, "No queues configured");
1555 	for (i = 0; i != rss->queue_num; ++i) {
1556 		struct mlx5_rxq_ctrl *rxq_ctrl;
1557 
1558 		if (rss->queue[i] >= priv->rxqs_n)
1559 			return rte_flow_error_set
1560 				(error, EINVAL,
1561 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1562 				 &rss->queue[i], "queue index out of range");
1563 		if (!(*priv->rxqs)[rss->queue[i]])
1564 			return rte_flow_error_set
1565 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1566 				 &rss->queue[i], "queue is not configured");
1567 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1568 					struct mlx5_rxq_ctrl, rxq);
1569 		if (i == 0)
1570 			rxq_type = rxq_ctrl->type;
1571 		if (rxq_type != rxq_ctrl->type)
1572 			return rte_flow_error_set
1573 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1574 				 &rss->queue[i],
1575 				 "combining hairpin and regular RSS queues is not supported");
1576 	}
1577 	return 0;
1578 }
1579 
1580 /*
1581  * Validate the rss action.
1582  *
1583  * @param[in] action
1584  *   Pointer to the queue action.
1585  * @param[in] action_flags
1586  *   Bit-fields that holds the actions detected until now.
1587  * @param[in] dev
1588  *   Pointer to the Ethernet device structure.
1589  * @param[in] attr
1590  *   Attributes of flow that includes this action.
1591  * @param[in] item_flags
1592  *   Items that were detected.
1593  * @param[out] error
1594  *   Pointer to error structure.
1595  *
1596  * @return
1597  *   0 on success, a negative errno value otherwise and rte_errno is set.
1598  */
1599 int
1600 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1601 			      uint64_t action_flags,
1602 			      struct rte_eth_dev *dev,
1603 			      const struct rte_flow_attr *attr,
1604 			      uint64_t item_flags,
1605 			      struct rte_flow_error *error)
1606 {
1607 	const struct rte_flow_action_rss *rss = action->conf;
1608 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1609 	int ret;
1610 
1611 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1612 		return rte_flow_error_set(error, EINVAL,
1613 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1614 					  "can't have 2 fate actions"
1615 					  " in same flow");
1616 	ret = mlx5_validate_action_rss(dev, action, error);
1617 	if (ret)
1618 		return ret;
1619 	if (attr->egress)
1620 		return rte_flow_error_set(error, ENOTSUP,
1621 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1622 					  "rss action not supported for "
1623 					  "egress");
1624 	if (rss->level > 1 && !tunnel)
1625 		return rte_flow_error_set(error, EINVAL,
1626 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1627 					  "inner RSS is not supported for "
1628 					  "non-tunnel flows");
1629 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1630 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1631 		return rte_flow_error_set(error, EINVAL,
1632 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1633 					  "RSS on eCPRI is not supported now");
1634 	}
1635 	return 0;
1636 }
1637 
1638 /*
1639  * Validate the default miss action.
1640  *
1641  * @param[in] action_flags
1642  *   Bit-fields that holds the actions detected until now.
1643  * @param[out] error
1644  *   Pointer to error structure.
1645  *
1646  * @return
1647  *   0 on success, a negative errno value otherwise and rte_errno is set.
1648  */
1649 int
1650 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1651 				const struct rte_flow_attr *attr,
1652 				struct rte_flow_error *error)
1653 {
1654 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1655 		return rte_flow_error_set(error, EINVAL,
1656 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1657 					  "can't have 2 fate actions in"
1658 					  " same flow");
1659 	if (attr->egress)
1660 		return rte_flow_error_set(error, ENOTSUP,
1661 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1662 					  "default miss action not supported "
1663 					  "for egress");
1664 	if (attr->group)
1665 		return rte_flow_error_set(error, ENOTSUP,
1666 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1667 					  "only group 0 is supported");
1668 	if (attr->transfer)
1669 		return rte_flow_error_set(error, ENOTSUP,
1670 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1671 					  NULL, "transfer is not supported");
1672 	return 0;
1673 }
1674 
1675 /*
1676  * Validate the count action.
1677  *
1678  * @param[in] dev
1679  *   Pointer to the Ethernet device structure.
1680  * @param[in] attr
1681  *   Attributes of flow that includes this action.
1682  * @param[out] error
1683  *   Pointer to error structure.
1684  *
1685  * @return
1686  *   0 on success, a negative errno value otherwise and rte_errno is set.
1687  */
1688 int
1689 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1690 				const struct rte_flow_attr *attr,
1691 				struct rte_flow_error *error)
1692 {
1693 	if (attr->egress)
1694 		return rte_flow_error_set(error, ENOTSUP,
1695 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1696 					  "count action not supported for "
1697 					  "egress");
1698 	return 0;
1699 }
1700 
1701 /*
1702  * Validate the ASO CT action.
1703  *
1704  * @param[in] dev
1705  *   Pointer to the Ethernet device structure.
1706  * @param[in] conntrack
1707  *   Pointer to the CT action profile.
1708  * @param[out] error
1709  *   Pointer to error structure.
1710  *
1711  * @return
1712  *   0 on success, a negative errno value otherwise and rte_errno is set.
1713  */
1714 int
1715 mlx5_validate_action_ct(struct rte_eth_dev *dev,
1716 			const struct rte_flow_action_conntrack *conntrack,
1717 			struct rte_flow_error *error)
1718 {
1719 	RTE_SET_USED(dev);
1720 
1721 	if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT)
1722 		return rte_flow_error_set(error, EINVAL,
1723 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1724 					  "Invalid CT state");
1725 	if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST)
1726 		return rte_flow_error_set(error, EINVAL,
1727 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1728 					  "Invalid last TCP packet flag");
1729 	return 0;
1730 }
1731 
1732 /**
1733  * Verify the @p attributes will be correctly understood by the NIC and store
1734  * them in the @p flow if everything is correct.
1735  *
1736  * @param[in] dev
1737  *   Pointer to the Ethernet device structure.
1738  * @param[in] attributes
1739  *   Pointer to flow attributes
1740  * @param[out] error
1741  *   Pointer to error structure.
1742  *
1743  * @return
1744  *   0 on success, a negative errno value otherwise and rte_errno is set.
1745  */
1746 int
1747 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1748 			      const struct rte_flow_attr *attributes,
1749 			      struct rte_flow_error *error)
1750 {
1751 	struct mlx5_priv *priv = dev->data->dev_private;
1752 	uint32_t priority_max = priv->config.flow_prio - 1;
1753 
1754 	if (attributes->group)
1755 		return rte_flow_error_set(error, ENOTSUP,
1756 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1757 					  NULL, "groups is not supported");
1758 	if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR &&
1759 	    attributes->priority >= priority_max)
1760 		return rte_flow_error_set(error, ENOTSUP,
1761 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1762 					  NULL, "priority out of range");
1763 	if (attributes->egress)
1764 		return rte_flow_error_set(error, ENOTSUP,
1765 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1766 					  "egress is not supported");
1767 	if (attributes->transfer && !priv->config.dv_esw_en)
1768 		return rte_flow_error_set(error, ENOTSUP,
1769 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1770 					  NULL, "transfer is not supported");
1771 	if (!attributes->ingress)
1772 		return rte_flow_error_set(error, EINVAL,
1773 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1774 					  NULL,
1775 					  "ingress attribute is mandatory");
1776 	return 0;
1777 }
1778 
1779 /**
1780  * Validate ICMP6 item.
1781  *
1782  * @param[in] item
1783  *   Item specification.
1784  * @param[in] item_flags
1785  *   Bit-fields that holds the items detected until now.
1786  * @param[in] ext_vlan_sup
1787  *   Whether extended VLAN features are supported or not.
1788  * @param[out] error
1789  *   Pointer to error structure.
1790  *
1791  * @return
1792  *   0 on success, a negative errno value otherwise and rte_errno is set.
1793  */
1794 int
1795 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1796 			       uint64_t item_flags,
1797 			       uint8_t target_protocol,
1798 			       struct rte_flow_error *error)
1799 {
1800 	const struct rte_flow_item_icmp6 *mask = item->mask;
1801 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1802 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1803 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1804 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1805 				      MLX5_FLOW_LAYER_OUTER_L4;
1806 	int ret;
1807 
1808 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1809 		return rte_flow_error_set(error, EINVAL,
1810 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1811 					  "protocol filtering not compatible"
1812 					  " with ICMP6 layer");
1813 	if (!(item_flags & l3m))
1814 		return rte_flow_error_set(error, EINVAL,
1815 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1816 					  "IPv6 is mandatory to filter on"
1817 					  " ICMP6");
1818 	if (item_flags & l4m)
1819 		return rte_flow_error_set(error, EINVAL,
1820 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1821 					  "multiple L4 layers not supported");
1822 	if (!mask)
1823 		mask = &rte_flow_item_icmp6_mask;
1824 	ret = mlx5_flow_item_acceptable
1825 		(item, (const uint8_t *)mask,
1826 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1827 		 sizeof(struct rte_flow_item_icmp6),
1828 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1829 	if (ret < 0)
1830 		return ret;
1831 	return 0;
1832 }
1833 
1834 /**
1835  * Validate ICMP item.
1836  *
1837  * @param[in] item
1838  *   Item specification.
1839  * @param[in] item_flags
1840  *   Bit-fields that holds the items detected until now.
1841  * @param[out] error
1842  *   Pointer to error structure.
1843  *
1844  * @return
1845  *   0 on success, a negative errno value otherwise and rte_errno is set.
1846  */
1847 int
1848 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1849 			     uint64_t item_flags,
1850 			     uint8_t target_protocol,
1851 			     struct rte_flow_error *error)
1852 {
1853 	const struct rte_flow_item_icmp *mask = item->mask;
1854 	const struct rte_flow_item_icmp nic_mask = {
1855 		.hdr.icmp_type = 0xff,
1856 		.hdr.icmp_code = 0xff,
1857 		.hdr.icmp_ident = RTE_BE16(0xffff),
1858 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1859 	};
1860 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1861 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1862 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1863 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1864 				      MLX5_FLOW_LAYER_OUTER_L4;
1865 	int ret;
1866 
1867 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1868 		return rte_flow_error_set(error, EINVAL,
1869 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1870 					  "protocol filtering not compatible"
1871 					  " with ICMP layer");
1872 	if (!(item_flags & l3m))
1873 		return rte_flow_error_set(error, EINVAL,
1874 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1875 					  "IPv4 is mandatory to filter"
1876 					  " on ICMP");
1877 	if (item_flags & l4m)
1878 		return rte_flow_error_set(error, EINVAL,
1879 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1880 					  "multiple L4 layers not supported");
1881 	if (!mask)
1882 		mask = &nic_mask;
1883 	ret = mlx5_flow_item_acceptable
1884 		(item, (const uint8_t *)mask,
1885 		 (const uint8_t *)&nic_mask,
1886 		 sizeof(struct rte_flow_item_icmp),
1887 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1888 	if (ret < 0)
1889 		return ret;
1890 	return 0;
1891 }
1892 
1893 /**
1894  * Validate Ethernet item.
1895  *
1896  * @param[in] item
1897  *   Item specification.
1898  * @param[in] item_flags
1899  *   Bit-fields that holds the items detected until now.
1900  * @param[out] error
1901  *   Pointer to error structure.
1902  *
1903  * @return
1904  *   0 on success, a negative errno value otherwise and rte_errno is set.
1905  */
1906 int
1907 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1908 			    uint64_t item_flags, bool ext_vlan_sup,
1909 			    struct rte_flow_error *error)
1910 {
1911 	const struct rte_flow_item_eth *mask = item->mask;
1912 	const struct rte_flow_item_eth nic_mask = {
1913 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1914 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1915 		.type = RTE_BE16(0xffff),
1916 		.has_vlan = ext_vlan_sup ? 1 : 0,
1917 	};
1918 	int ret;
1919 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1920 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1921 				       MLX5_FLOW_LAYER_OUTER_L2;
1922 
1923 	if (item_flags & ethm)
1924 		return rte_flow_error_set(error, ENOTSUP,
1925 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1926 					  "multiple L2 layers not supported");
1927 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1928 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1929 		return rte_flow_error_set(error, EINVAL,
1930 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1931 					  "L2 layer should not follow "
1932 					  "L3 layers");
1933 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1934 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1935 		return rte_flow_error_set(error, EINVAL,
1936 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1937 					  "L2 layer should not follow VLAN");
1938 	if (!mask)
1939 		mask = &rte_flow_item_eth_mask;
1940 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1941 					(const uint8_t *)&nic_mask,
1942 					sizeof(struct rte_flow_item_eth),
1943 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1944 	return ret;
1945 }
1946 
1947 /**
1948  * Validate VLAN item.
1949  *
1950  * @param[in] item
1951  *   Item specification.
1952  * @param[in] item_flags
1953  *   Bit-fields that holds the items detected until now.
1954  * @param[in] dev
1955  *   Ethernet device flow is being created on.
1956  * @param[out] error
1957  *   Pointer to error structure.
1958  *
1959  * @return
1960  *   0 on success, a negative errno value otherwise and rte_errno is set.
1961  */
1962 int
1963 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1964 			     uint64_t item_flags,
1965 			     struct rte_eth_dev *dev,
1966 			     struct rte_flow_error *error)
1967 {
1968 	const struct rte_flow_item_vlan *spec = item->spec;
1969 	const struct rte_flow_item_vlan *mask = item->mask;
1970 	const struct rte_flow_item_vlan nic_mask = {
1971 		.tci = RTE_BE16(UINT16_MAX),
1972 		.inner_type = RTE_BE16(UINT16_MAX),
1973 	};
1974 	uint16_t vlan_tag = 0;
1975 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1976 	int ret;
1977 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1978 					MLX5_FLOW_LAYER_INNER_L4) :
1979 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1980 					MLX5_FLOW_LAYER_OUTER_L4);
1981 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1982 					MLX5_FLOW_LAYER_OUTER_VLAN;
1983 
1984 	if (item_flags & vlanm)
1985 		return rte_flow_error_set(error, EINVAL,
1986 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1987 					  "multiple VLAN layers not supported");
1988 	else if ((item_flags & l34m) != 0)
1989 		return rte_flow_error_set(error, EINVAL,
1990 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1991 					  "VLAN cannot follow L3/L4 layer");
1992 	if (!mask)
1993 		mask = &rte_flow_item_vlan_mask;
1994 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1995 					(const uint8_t *)&nic_mask,
1996 					sizeof(struct rte_flow_item_vlan),
1997 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1998 	if (ret)
1999 		return ret;
2000 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
2001 		struct mlx5_priv *priv = dev->data->dev_private;
2002 
2003 		if (priv->vmwa_context) {
2004 			/*
2005 			 * Non-NULL context means we have a virtual machine
2006 			 * and SR-IOV enabled, we have to create VLAN interface
2007 			 * to make hypervisor to setup E-Switch vport
2008 			 * context correctly. We avoid creating the multiple
2009 			 * VLAN interfaces, so we cannot support VLAN tag mask.
2010 			 */
2011 			return rte_flow_error_set(error, EINVAL,
2012 						  RTE_FLOW_ERROR_TYPE_ITEM,
2013 						  item,
2014 						  "VLAN tag mask is not"
2015 						  " supported in virtual"
2016 						  " environment");
2017 		}
2018 	}
2019 	if (spec) {
2020 		vlan_tag = spec->tci;
2021 		vlan_tag &= mask->tci;
2022 	}
2023 	/*
2024 	 * From verbs perspective an empty VLAN is equivalent
2025 	 * to a packet without VLAN layer.
2026 	 */
2027 	if (!vlan_tag)
2028 		return rte_flow_error_set(error, EINVAL,
2029 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
2030 					  item->spec,
2031 					  "VLAN cannot be empty");
2032 	return 0;
2033 }
2034 
2035 /**
2036  * Validate IPV4 item.
2037  *
2038  * @param[in] item
2039  *   Item specification.
2040  * @param[in] item_flags
2041  *   Bit-fields that holds the items detected until now.
2042  * @param[in] last_item
2043  *   Previous validated item in the pattern items.
2044  * @param[in] ether_type
2045  *   Type in the ethernet layer header (including dot1q).
2046  * @param[in] acc_mask
2047  *   Acceptable mask, if NULL default internal default mask
2048  *   will be used to check whether item fields are supported.
2049  * @param[in] range_accepted
2050  *   True if range of values is accepted for specific fields, false otherwise.
2051  * @param[out] error
2052  *   Pointer to error structure.
2053  *
2054  * @return
2055  *   0 on success, a negative errno value otherwise and rte_errno is set.
2056  */
2057 int
2058 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
2059 			     uint64_t item_flags,
2060 			     uint64_t last_item,
2061 			     uint16_t ether_type,
2062 			     const struct rte_flow_item_ipv4 *acc_mask,
2063 			     bool range_accepted,
2064 			     struct rte_flow_error *error)
2065 {
2066 	const struct rte_flow_item_ipv4 *mask = item->mask;
2067 	const struct rte_flow_item_ipv4 *spec = item->spec;
2068 	const struct rte_flow_item_ipv4 nic_mask = {
2069 		.hdr = {
2070 			.src_addr = RTE_BE32(0xffffffff),
2071 			.dst_addr = RTE_BE32(0xffffffff),
2072 			.type_of_service = 0xff,
2073 			.next_proto_id = 0xff,
2074 		},
2075 	};
2076 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2077 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2078 				      MLX5_FLOW_LAYER_OUTER_L3;
2079 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2080 				      MLX5_FLOW_LAYER_OUTER_L4;
2081 	int ret;
2082 	uint8_t next_proto = 0xFF;
2083 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2084 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2085 				  MLX5_FLOW_LAYER_INNER_VLAN);
2086 
2087 	if ((last_item & l2_vlan) && ether_type &&
2088 	    ether_type != RTE_ETHER_TYPE_IPV4)
2089 		return rte_flow_error_set(error, EINVAL,
2090 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2091 					  "IPv4 cannot follow L2/VLAN layer "
2092 					  "which ether type is not IPv4");
2093 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
2094 		if (mask && spec)
2095 			next_proto = mask->hdr.next_proto_id &
2096 				     spec->hdr.next_proto_id;
2097 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2098 			return rte_flow_error_set(error, EINVAL,
2099 						  RTE_FLOW_ERROR_TYPE_ITEM,
2100 						  item,
2101 						  "multiple tunnel "
2102 						  "not supported");
2103 	}
2104 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2105 		return rte_flow_error_set(error, EINVAL,
2106 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2107 					  "wrong tunnel type - IPv6 specified "
2108 					  "but IPv4 item provided");
2109 	if (item_flags & l3m)
2110 		return rte_flow_error_set(error, ENOTSUP,
2111 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2112 					  "multiple L3 layers not supported");
2113 	else if (item_flags & l4m)
2114 		return rte_flow_error_set(error, EINVAL,
2115 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2116 					  "L3 cannot follow an L4 layer.");
2117 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2118 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2119 		return rte_flow_error_set(error, EINVAL,
2120 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2121 					  "L3 cannot follow an NVGRE layer.");
2122 	if (!mask)
2123 		mask = &rte_flow_item_ipv4_mask;
2124 	else if (mask->hdr.next_proto_id != 0 &&
2125 		 mask->hdr.next_proto_id != 0xff)
2126 		return rte_flow_error_set(error, EINVAL,
2127 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2128 					  "partial mask is not supported"
2129 					  " for protocol");
2130 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2131 					acc_mask ? (const uint8_t *)acc_mask
2132 						 : (const uint8_t *)&nic_mask,
2133 					sizeof(struct rte_flow_item_ipv4),
2134 					range_accepted, error);
2135 	if (ret < 0)
2136 		return ret;
2137 	return 0;
2138 }
2139 
2140 /**
2141  * Validate IPV6 item.
2142  *
2143  * @param[in] item
2144  *   Item specification.
2145  * @param[in] item_flags
2146  *   Bit-fields that holds the items detected until now.
2147  * @param[in] last_item
2148  *   Previous validated item in the pattern items.
2149  * @param[in] ether_type
2150  *   Type in the ethernet layer header (including dot1q).
2151  * @param[in] acc_mask
2152  *   Acceptable mask, if NULL default internal default mask
2153  *   will be used to check whether item fields are supported.
2154  * @param[out] error
2155  *   Pointer to error structure.
2156  *
2157  * @return
2158  *   0 on success, a negative errno value otherwise and rte_errno is set.
2159  */
2160 int
2161 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2162 			     uint64_t item_flags,
2163 			     uint64_t last_item,
2164 			     uint16_t ether_type,
2165 			     const struct rte_flow_item_ipv6 *acc_mask,
2166 			     struct rte_flow_error *error)
2167 {
2168 	const struct rte_flow_item_ipv6 *mask = item->mask;
2169 	const struct rte_flow_item_ipv6 *spec = item->spec;
2170 	const struct rte_flow_item_ipv6 nic_mask = {
2171 		.hdr = {
2172 			.src_addr =
2173 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2174 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2175 			.dst_addr =
2176 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2177 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2178 			.vtc_flow = RTE_BE32(0xffffffff),
2179 			.proto = 0xff,
2180 		},
2181 	};
2182 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2183 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2184 				      MLX5_FLOW_LAYER_OUTER_L3;
2185 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2186 				      MLX5_FLOW_LAYER_OUTER_L4;
2187 	int ret;
2188 	uint8_t next_proto = 0xFF;
2189 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2190 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2191 				  MLX5_FLOW_LAYER_INNER_VLAN);
2192 
2193 	if ((last_item & l2_vlan) && ether_type &&
2194 	    ether_type != RTE_ETHER_TYPE_IPV6)
2195 		return rte_flow_error_set(error, EINVAL,
2196 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2197 					  "IPv6 cannot follow L2/VLAN layer "
2198 					  "which ether type is not IPv6");
2199 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2200 		next_proto = spec->hdr.proto;
2201 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
2202 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2203 			return rte_flow_error_set(error, EINVAL,
2204 						  RTE_FLOW_ERROR_TYPE_ITEM,
2205 						  item,
2206 						  "multiple tunnel "
2207 						  "not supported");
2208 	}
2209 	if (next_proto == IPPROTO_HOPOPTS  ||
2210 	    next_proto == IPPROTO_ROUTING  ||
2211 	    next_proto == IPPROTO_FRAGMENT ||
2212 	    next_proto == IPPROTO_ESP	   ||
2213 	    next_proto == IPPROTO_AH	   ||
2214 	    next_proto == IPPROTO_DSTOPTS)
2215 		return rte_flow_error_set(error, EINVAL,
2216 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2217 					  "IPv6 proto (next header) should "
2218 					  "not be set as extension header");
2219 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2220 		return rte_flow_error_set(error, EINVAL,
2221 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2222 					  "wrong tunnel type - IPv4 specified "
2223 					  "but IPv6 item provided");
2224 	if (item_flags & l3m)
2225 		return rte_flow_error_set(error, ENOTSUP,
2226 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2227 					  "multiple L3 layers not supported");
2228 	else if (item_flags & l4m)
2229 		return rte_flow_error_set(error, EINVAL,
2230 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2231 					  "L3 cannot follow an L4 layer.");
2232 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2233 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2234 		return rte_flow_error_set(error, EINVAL,
2235 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2236 					  "L3 cannot follow an NVGRE layer.");
2237 	if (!mask)
2238 		mask = &rte_flow_item_ipv6_mask;
2239 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2240 					acc_mask ? (const uint8_t *)acc_mask
2241 						 : (const uint8_t *)&nic_mask,
2242 					sizeof(struct rte_flow_item_ipv6),
2243 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2244 	if (ret < 0)
2245 		return ret;
2246 	return 0;
2247 }
2248 
2249 /**
2250  * Validate UDP item.
2251  *
2252  * @param[in] item
2253  *   Item specification.
2254  * @param[in] item_flags
2255  *   Bit-fields that holds the items detected until now.
2256  * @param[in] target_protocol
2257  *   The next protocol in the previous item.
2258  * @param[in] flow_mask
2259  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2260  * @param[out] error
2261  *   Pointer to error structure.
2262  *
2263  * @return
2264  *   0 on success, a negative errno value otherwise and rte_errno is set.
2265  */
2266 int
2267 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2268 			    uint64_t item_flags,
2269 			    uint8_t target_protocol,
2270 			    struct rte_flow_error *error)
2271 {
2272 	const struct rte_flow_item_udp *mask = item->mask;
2273 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2274 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2275 				      MLX5_FLOW_LAYER_OUTER_L3;
2276 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2277 				      MLX5_FLOW_LAYER_OUTER_L4;
2278 	int ret;
2279 
2280 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2281 		return rte_flow_error_set(error, EINVAL,
2282 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2283 					  "protocol filtering not compatible"
2284 					  " with UDP layer");
2285 	if (!(item_flags & l3m))
2286 		return rte_flow_error_set(error, EINVAL,
2287 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2288 					  "L3 is mandatory to filter on L4");
2289 	if (item_flags & l4m)
2290 		return rte_flow_error_set(error, EINVAL,
2291 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2292 					  "multiple L4 layers not supported");
2293 	if (!mask)
2294 		mask = &rte_flow_item_udp_mask;
2295 	ret = mlx5_flow_item_acceptable
2296 		(item, (const uint8_t *)mask,
2297 		 (const uint8_t *)&rte_flow_item_udp_mask,
2298 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2299 		 error);
2300 	if (ret < 0)
2301 		return ret;
2302 	return 0;
2303 }
2304 
2305 /**
2306  * Validate TCP item.
2307  *
2308  * @param[in] item
2309  *   Item specification.
2310  * @param[in] item_flags
2311  *   Bit-fields that holds the items detected until now.
2312  * @param[in] target_protocol
2313  *   The next protocol in the previous item.
2314  * @param[out] error
2315  *   Pointer to error structure.
2316  *
2317  * @return
2318  *   0 on success, a negative errno value otherwise and rte_errno is set.
2319  */
2320 int
2321 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2322 			    uint64_t item_flags,
2323 			    uint8_t target_protocol,
2324 			    const struct rte_flow_item_tcp *flow_mask,
2325 			    struct rte_flow_error *error)
2326 {
2327 	const struct rte_flow_item_tcp *mask = item->mask;
2328 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2329 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2330 				      MLX5_FLOW_LAYER_OUTER_L3;
2331 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2332 				      MLX5_FLOW_LAYER_OUTER_L4;
2333 	int ret;
2334 
2335 	MLX5_ASSERT(flow_mask);
2336 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2337 		return rte_flow_error_set(error, EINVAL,
2338 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2339 					  "protocol filtering not compatible"
2340 					  " with TCP layer");
2341 	if (!(item_flags & l3m))
2342 		return rte_flow_error_set(error, EINVAL,
2343 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2344 					  "L3 is mandatory to filter on L4");
2345 	if (item_flags & l4m)
2346 		return rte_flow_error_set(error, EINVAL,
2347 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2348 					  "multiple L4 layers not supported");
2349 	if (!mask)
2350 		mask = &rte_flow_item_tcp_mask;
2351 	ret = mlx5_flow_item_acceptable
2352 		(item, (const uint8_t *)mask,
2353 		 (const uint8_t *)flow_mask,
2354 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2355 		 error);
2356 	if (ret < 0)
2357 		return ret;
2358 	return 0;
2359 }
2360 
2361 /**
2362  * Validate VXLAN item.
2363  *
2364  * @param[in] item
2365  *   Item specification.
2366  * @param[in] item_flags
2367  *   Bit-fields that holds the items detected until now.
2368  * @param[in] target_protocol
2369  *   The next protocol in the previous item.
2370  * @param[out] error
2371  *   Pointer to error structure.
2372  *
2373  * @return
2374  *   0 on success, a negative errno value otherwise and rte_errno is set.
2375  */
2376 int
2377 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2378 			      uint64_t item_flags,
2379 			      struct rte_flow_error *error)
2380 {
2381 	const struct rte_flow_item_vxlan *spec = item->spec;
2382 	const struct rte_flow_item_vxlan *mask = item->mask;
2383 	int ret;
2384 	union vni {
2385 		uint32_t vlan_id;
2386 		uint8_t vni[4];
2387 	} id = { .vlan_id = 0, };
2388 
2389 
2390 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2391 		return rte_flow_error_set(error, ENOTSUP,
2392 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2393 					  "multiple tunnel layers not"
2394 					  " supported");
2395 	/*
2396 	 * Verify only UDPv4 is present as defined in
2397 	 * https://tools.ietf.org/html/rfc7348
2398 	 */
2399 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2400 		return rte_flow_error_set(error, EINVAL,
2401 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2402 					  "no outer UDP layer found");
2403 	if (!mask)
2404 		mask = &rte_flow_item_vxlan_mask;
2405 	ret = mlx5_flow_item_acceptable
2406 		(item, (const uint8_t *)mask,
2407 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
2408 		 sizeof(struct rte_flow_item_vxlan),
2409 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2410 	if (ret < 0)
2411 		return ret;
2412 	if (spec) {
2413 		memcpy(&id.vni[1], spec->vni, 3);
2414 		memcpy(&id.vni[1], mask->vni, 3);
2415 	}
2416 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2417 		return rte_flow_error_set(error, ENOTSUP,
2418 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2419 					  "VXLAN tunnel must be fully defined");
2420 	return 0;
2421 }
2422 
2423 /**
2424  * Validate VXLAN_GPE item.
2425  *
2426  * @param[in] item
2427  *   Item specification.
2428  * @param[in] item_flags
2429  *   Bit-fields that holds the items detected until now.
2430  * @param[in] priv
2431  *   Pointer to the private data structure.
2432  * @param[in] target_protocol
2433  *   The next protocol in the previous item.
2434  * @param[out] error
2435  *   Pointer to error structure.
2436  *
2437  * @return
2438  *   0 on success, a negative errno value otherwise and rte_errno is set.
2439  */
2440 int
2441 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2442 				  uint64_t item_flags,
2443 				  struct rte_eth_dev *dev,
2444 				  struct rte_flow_error *error)
2445 {
2446 	struct mlx5_priv *priv = dev->data->dev_private;
2447 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2448 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2449 	int ret;
2450 	union vni {
2451 		uint32_t vlan_id;
2452 		uint8_t vni[4];
2453 	} id = { .vlan_id = 0, };
2454 
2455 	if (!priv->config.l3_vxlan_en)
2456 		return rte_flow_error_set(error, ENOTSUP,
2457 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2458 					  "L3 VXLAN is not enabled by device"
2459 					  " parameter and/or not configured in"
2460 					  " firmware");
2461 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2462 		return rte_flow_error_set(error, ENOTSUP,
2463 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2464 					  "multiple tunnel layers not"
2465 					  " supported");
2466 	/*
2467 	 * Verify only UDPv4 is present as defined in
2468 	 * https://tools.ietf.org/html/rfc7348
2469 	 */
2470 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2471 		return rte_flow_error_set(error, EINVAL,
2472 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2473 					  "no outer UDP layer found");
2474 	if (!mask)
2475 		mask = &rte_flow_item_vxlan_gpe_mask;
2476 	ret = mlx5_flow_item_acceptable
2477 		(item, (const uint8_t *)mask,
2478 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2479 		 sizeof(struct rte_flow_item_vxlan_gpe),
2480 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2481 	if (ret < 0)
2482 		return ret;
2483 	if (spec) {
2484 		if (spec->protocol)
2485 			return rte_flow_error_set(error, ENOTSUP,
2486 						  RTE_FLOW_ERROR_TYPE_ITEM,
2487 						  item,
2488 						  "VxLAN-GPE protocol"
2489 						  " not supported");
2490 		memcpy(&id.vni[1], spec->vni, 3);
2491 		memcpy(&id.vni[1], mask->vni, 3);
2492 	}
2493 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2494 		return rte_flow_error_set(error, ENOTSUP,
2495 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2496 					  "VXLAN-GPE tunnel must be fully"
2497 					  " defined");
2498 	return 0;
2499 }
2500 /**
2501  * Validate GRE Key item.
2502  *
2503  * @param[in] item
2504  *   Item specification.
2505  * @param[in] item_flags
2506  *   Bit flags to mark detected items.
2507  * @param[in] gre_item
2508  *   Pointer to gre_item
2509  * @param[out] error
2510  *   Pointer to error structure.
2511  *
2512  * @return
2513  *   0 on success, a negative errno value otherwise and rte_errno is set.
2514  */
2515 int
2516 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2517 				uint64_t item_flags,
2518 				const struct rte_flow_item *gre_item,
2519 				struct rte_flow_error *error)
2520 {
2521 	const rte_be32_t *mask = item->mask;
2522 	int ret = 0;
2523 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2524 	const struct rte_flow_item_gre *gre_spec;
2525 	const struct rte_flow_item_gre *gre_mask;
2526 
2527 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2528 		return rte_flow_error_set(error, ENOTSUP,
2529 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2530 					  "Multiple GRE key not support");
2531 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2532 		return rte_flow_error_set(error, ENOTSUP,
2533 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2534 					  "No preceding GRE header");
2535 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2536 		return rte_flow_error_set(error, ENOTSUP,
2537 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2538 					  "GRE key following a wrong item");
2539 	gre_mask = gre_item->mask;
2540 	if (!gre_mask)
2541 		gre_mask = &rte_flow_item_gre_mask;
2542 	gre_spec = gre_item->spec;
2543 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2544 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2545 		return rte_flow_error_set(error, EINVAL,
2546 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2547 					  "Key bit must be on");
2548 
2549 	if (!mask)
2550 		mask = &gre_key_default_mask;
2551 	ret = mlx5_flow_item_acceptable
2552 		(item, (const uint8_t *)mask,
2553 		 (const uint8_t *)&gre_key_default_mask,
2554 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2555 	return ret;
2556 }
2557 
2558 /**
2559  * Validate GRE item.
2560  *
2561  * @param[in] item
2562  *   Item specification.
2563  * @param[in] item_flags
2564  *   Bit flags to mark detected items.
2565  * @param[in] target_protocol
2566  *   The next protocol in the previous item.
2567  * @param[out] error
2568  *   Pointer to error structure.
2569  *
2570  * @return
2571  *   0 on success, a negative errno value otherwise and rte_errno is set.
2572  */
2573 int
2574 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2575 			    uint64_t item_flags,
2576 			    uint8_t target_protocol,
2577 			    struct rte_flow_error *error)
2578 {
2579 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2580 	const struct rte_flow_item_gre *mask = item->mask;
2581 	int ret;
2582 	const struct rte_flow_item_gre nic_mask = {
2583 		.c_rsvd0_ver = RTE_BE16(0xB000),
2584 		.protocol = RTE_BE16(UINT16_MAX),
2585 	};
2586 
2587 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2588 		return rte_flow_error_set(error, EINVAL,
2589 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2590 					  "protocol filtering not compatible"
2591 					  " with this GRE layer");
2592 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2593 		return rte_flow_error_set(error, ENOTSUP,
2594 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2595 					  "multiple tunnel layers not"
2596 					  " supported");
2597 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2598 		return rte_flow_error_set(error, ENOTSUP,
2599 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2600 					  "L3 Layer is missing");
2601 	if (!mask)
2602 		mask = &rte_flow_item_gre_mask;
2603 	ret = mlx5_flow_item_acceptable
2604 		(item, (const uint8_t *)mask,
2605 		 (const uint8_t *)&nic_mask,
2606 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2607 		 error);
2608 	if (ret < 0)
2609 		return ret;
2610 #ifndef HAVE_MLX5DV_DR
2611 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2612 	if (spec && (spec->protocol & mask->protocol))
2613 		return rte_flow_error_set(error, ENOTSUP,
2614 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2615 					  "without MPLS support the"
2616 					  " specification cannot be used for"
2617 					  " filtering");
2618 #endif
2619 #endif
2620 	return 0;
2621 }
2622 
2623 /**
2624  * Validate Geneve item.
2625  *
2626  * @param[in] item
2627  *   Item specification.
2628  * @param[in] itemFlags
2629  *   Bit-fields that holds the items detected until now.
2630  * @param[in] enPriv
2631  *   Pointer to the private data structure.
2632  * @param[out] error
2633  *   Pointer to error structure.
2634  *
2635  * @return
2636  *   0 on success, a negative errno value otherwise and rte_errno is set.
2637  */
2638 
2639 int
2640 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2641 			       uint64_t item_flags,
2642 			       struct rte_eth_dev *dev,
2643 			       struct rte_flow_error *error)
2644 {
2645 	struct mlx5_priv *priv = dev->data->dev_private;
2646 	const struct rte_flow_item_geneve *spec = item->spec;
2647 	const struct rte_flow_item_geneve *mask = item->mask;
2648 	int ret;
2649 	uint16_t gbhdr;
2650 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2651 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2652 	const struct rte_flow_item_geneve nic_mask = {
2653 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2654 		.vni = "\xff\xff\xff",
2655 		.protocol = RTE_BE16(UINT16_MAX),
2656 	};
2657 
2658 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2659 		return rte_flow_error_set(error, ENOTSUP,
2660 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2661 					  "L3 Geneve is not enabled by device"
2662 					  " parameter and/or not configured in"
2663 					  " firmware");
2664 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2665 		return rte_flow_error_set(error, ENOTSUP,
2666 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2667 					  "multiple tunnel layers not"
2668 					  " supported");
2669 	/*
2670 	 * Verify only UDPv4 is present as defined in
2671 	 * https://tools.ietf.org/html/rfc7348
2672 	 */
2673 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2674 		return rte_flow_error_set(error, EINVAL,
2675 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2676 					  "no outer UDP layer found");
2677 	if (!mask)
2678 		mask = &rte_flow_item_geneve_mask;
2679 	ret = mlx5_flow_item_acceptable
2680 				  (item, (const uint8_t *)mask,
2681 				   (const uint8_t *)&nic_mask,
2682 				   sizeof(struct rte_flow_item_geneve),
2683 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2684 	if (ret)
2685 		return ret;
2686 	if (spec) {
2687 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2688 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2689 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2690 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2691 			return rte_flow_error_set(error, ENOTSUP,
2692 						  RTE_FLOW_ERROR_TYPE_ITEM,
2693 						  item,
2694 						  "Geneve protocol unsupported"
2695 						  " fields are being used");
2696 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2697 			return rte_flow_error_set
2698 					(error, ENOTSUP,
2699 					 RTE_FLOW_ERROR_TYPE_ITEM,
2700 					 item,
2701 					 "Unsupported Geneve options length");
2702 	}
2703 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2704 		return rte_flow_error_set
2705 				    (error, ENOTSUP,
2706 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2707 				     "Geneve tunnel must be fully defined");
2708 	return 0;
2709 }
2710 
2711 /**
2712  * Validate Geneve TLV option item.
2713  *
2714  * @param[in] item
2715  *   Item specification.
2716  * @param[in] last_item
2717  *   Previous validated item in the pattern items.
2718  * @param[in] geneve_item
2719  *   Previous GENEVE item specification.
2720  * @param[in] dev
2721  *   Pointer to the rte_eth_dev structure.
2722  * @param[out] error
2723  *   Pointer to error structure.
2724  *
2725  * @return
2726  *   0 on success, a negative errno value otherwise and rte_errno is set.
2727  */
2728 int
2729 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item,
2730 				   uint64_t last_item,
2731 				   const struct rte_flow_item *geneve_item,
2732 				   struct rte_eth_dev *dev,
2733 				   struct rte_flow_error *error)
2734 {
2735 	struct mlx5_priv *priv = dev->data->dev_private;
2736 	struct mlx5_dev_ctx_shared *sh = priv->sh;
2737 	struct mlx5_geneve_tlv_option_resource *geneve_opt_resource;
2738 	struct mlx5_hca_attr *hca_attr = &priv->config.hca_attr;
2739 	uint8_t data_max_supported =
2740 			hca_attr->max_geneve_tlv_option_data_len * 4;
2741 	struct mlx5_dev_config *config = &priv->config;
2742 	const struct rte_flow_item_geneve *geneve_spec;
2743 	const struct rte_flow_item_geneve *geneve_mask;
2744 	const struct rte_flow_item_geneve_opt *spec = item->spec;
2745 	const struct rte_flow_item_geneve_opt *mask = item->mask;
2746 	unsigned int i;
2747 	unsigned int data_len;
2748 	uint8_t tlv_option_len;
2749 	uint16_t optlen_m, optlen_v;
2750 	const struct rte_flow_item_geneve_opt full_mask = {
2751 		.option_class = RTE_BE16(0xffff),
2752 		.option_type = 0xff,
2753 		.option_len = 0x1f,
2754 	};
2755 
2756 	if (!mask)
2757 		mask = &rte_flow_item_geneve_opt_mask;
2758 	if (!spec)
2759 		return rte_flow_error_set
2760 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2761 			"Geneve TLV opt class/type/length must be specified");
2762 	if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK)
2763 		return rte_flow_error_set
2764 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2765 			"Geneve TLV opt length exceeeds the limit (31)");
2766 	/* Check if class type and length masks are full. */
2767 	if (full_mask.option_class != mask->option_class ||
2768 	    full_mask.option_type != mask->option_type ||
2769 	    full_mask.option_len != (mask->option_len & full_mask.option_len))
2770 		return rte_flow_error_set
2771 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2772 			"Geneve TLV opt class/type/length masks must be full");
2773 	/* Check if length is supported */
2774 	if ((uint32_t)spec->option_len >
2775 			config->hca_attr.max_geneve_tlv_option_data_len)
2776 		return rte_flow_error_set
2777 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2778 			"Geneve TLV opt length not supported");
2779 	if (config->hca_attr.max_geneve_tlv_options > 1)
2780 		DRV_LOG(DEBUG,
2781 			"max_geneve_tlv_options supports more than 1 option");
2782 	/* Check GENEVE item preceding. */
2783 	if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE))
2784 		return rte_flow_error_set
2785 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2786 			"Geneve opt item must be preceded with Geneve item");
2787 	geneve_spec = geneve_item->spec;
2788 	geneve_mask = geneve_item->mask ? geneve_item->mask :
2789 					  &rte_flow_item_geneve_mask;
2790 	/* Check if GENEVE TLV option size doesn't exceed option length */
2791 	if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 ||
2792 			    geneve_spec->ver_opt_len_o_c_rsvd0)) {
2793 		tlv_option_len = spec->option_len & mask->option_len;
2794 		optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0);
2795 		optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v);
2796 		optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0);
2797 		optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m);
2798 		if ((optlen_v & optlen_m) <= tlv_option_len)
2799 			return rte_flow_error_set
2800 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2801 				 "GENEVE TLV option length exceeds optlen");
2802 	}
2803 	/* Check if length is 0 or data is 0. */
2804 	if (spec->data == NULL || spec->option_len == 0)
2805 		return rte_flow_error_set
2806 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2807 			"Geneve TLV opt with zero data/length not supported");
2808 	/* Check not all data & mask are 0. */
2809 	data_len = spec->option_len * 4;
2810 	if (mask->data == NULL) {
2811 		for (i = 0; i < data_len; i++)
2812 			if (spec->data[i])
2813 				break;
2814 		if (i == data_len)
2815 			return rte_flow_error_set(error, ENOTSUP,
2816 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2817 				"Can't match on Geneve option data 0");
2818 	} else {
2819 		for (i = 0; i < data_len; i++)
2820 			if (spec->data[i] & mask->data[i])
2821 				break;
2822 		if (i == data_len)
2823 			return rte_flow_error_set(error, ENOTSUP,
2824 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2825 				"Can't match on Geneve option data and mask 0");
2826 		/* Check data mask supported. */
2827 		for (i = data_max_supported; i < data_len ; i++)
2828 			if (mask->data[i])
2829 				return rte_flow_error_set(error, ENOTSUP,
2830 					RTE_FLOW_ERROR_TYPE_ITEM, item,
2831 					"Data mask is of unsupported size");
2832 	}
2833 	/* Check GENEVE option is supported in NIC. */
2834 	if (!config->hca_attr.geneve_tlv_opt)
2835 		return rte_flow_error_set
2836 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2837 			"Geneve TLV opt not supported");
2838 	/* Check if we already have geneve option with different type/class. */
2839 	rte_spinlock_lock(&sh->geneve_tlv_opt_sl);
2840 	geneve_opt_resource = sh->geneve_tlv_option_resource;
2841 	if (geneve_opt_resource != NULL)
2842 		if (geneve_opt_resource->option_class != spec->option_class ||
2843 		    geneve_opt_resource->option_type != spec->option_type ||
2844 		    geneve_opt_resource->length != spec->option_len) {
2845 			rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2846 			return rte_flow_error_set(error, ENOTSUP,
2847 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2848 				"Only one Geneve TLV option supported");
2849 		}
2850 	rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2851 	return 0;
2852 }
2853 
2854 /**
2855  * Validate MPLS item.
2856  *
2857  * @param[in] dev
2858  *   Pointer to the rte_eth_dev structure.
2859  * @param[in] item
2860  *   Item specification.
2861  * @param[in] item_flags
2862  *   Bit-fields that holds the items detected until now.
2863  * @param[in] prev_layer
2864  *   The protocol layer indicated in previous item.
2865  * @param[out] error
2866  *   Pointer to error structure.
2867  *
2868  * @return
2869  *   0 on success, a negative errno value otherwise and rte_errno is set.
2870  */
2871 int
2872 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2873 			     const struct rte_flow_item *item __rte_unused,
2874 			     uint64_t item_flags __rte_unused,
2875 			     uint64_t prev_layer __rte_unused,
2876 			     struct rte_flow_error *error)
2877 {
2878 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2879 	const struct rte_flow_item_mpls *mask = item->mask;
2880 	struct mlx5_priv *priv = dev->data->dev_private;
2881 	int ret;
2882 
2883 	if (!priv->config.mpls_en)
2884 		return rte_flow_error_set(error, ENOTSUP,
2885 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2886 					  "MPLS not supported or"
2887 					  " disabled in firmware"
2888 					  " configuration.");
2889 	/* MPLS over IP, UDP, GRE is allowed */
2890 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2891 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2892 			    MLX5_FLOW_LAYER_GRE |
2893 			    MLX5_FLOW_LAYER_GRE_KEY)))
2894 		return rte_flow_error_set(error, EINVAL,
2895 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2896 					  "protocol filtering not compatible"
2897 					  " with MPLS layer");
2898 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2899 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2900 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2901 		return rte_flow_error_set(error, ENOTSUP,
2902 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2903 					  "multiple tunnel layers not"
2904 					  " supported");
2905 	if (!mask)
2906 		mask = &rte_flow_item_mpls_mask;
2907 	ret = mlx5_flow_item_acceptable
2908 		(item, (const uint8_t *)mask,
2909 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2910 		 sizeof(struct rte_flow_item_mpls),
2911 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2912 	if (ret < 0)
2913 		return ret;
2914 	return 0;
2915 #else
2916 	return rte_flow_error_set(error, ENOTSUP,
2917 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2918 				  "MPLS is not supported by Verbs, please"
2919 				  " update.");
2920 #endif
2921 }
2922 
2923 /**
2924  * Validate NVGRE item.
2925  *
2926  * @param[in] item
2927  *   Item specification.
2928  * @param[in] item_flags
2929  *   Bit flags to mark detected items.
2930  * @param[in] target_protocol
2931  *   The next protocol in the previous item.
2932  * @param[out] error
2933  *   Pointer to error structure.
2934  *
2935  * @return
2936  *   0 on success, a negative errno value otherwise and rte_errno is set.
2937  */
2938 int
2939 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2940 			      uint64_t item_flags,
2941 			      uint8_t target_protocol,
2942 			      struct rte_flow_error *error)
2943 {
2944 	const struct rte_flow_item_nvgre *mask = item->mask;
2945 	int ret;
2946 
2947 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2948 		return rte_flow_error_set(error, EINVAL,
2949 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2950 					  "protocol filtering not compatible"
2951 					  " with this GRE layer");
2952 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2953 		return rte_flow_error_set(error, ENOTSUP,
2954 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2955 					  "multiple tunnel layers not"
2956 					  " supported");
2957 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2958 		return rte_flow_error_set(error, ENOTSUP,
2959 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2960 					  "L3 Layer is missing");
2961 	if (!mask)
2962 		mask = &rte_flow_item_nvgre_mask;
2963 	ret = mlx5_flow_item_acceptable
2964 		(item, (const uint8_t *)mask,
2965 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2966 		 sizeof(struct rte_flow_item_nvgre),
2967 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2968 	if (ret < 0)
2969 		return ret;
2970 	return 0;
2971 }
2972 
2973 /**
2974  * Validate eCPRI item.
2975  *
2976  * @param[in] item
2977  *   Item specification.
2978  * @param[in] item_flags
2979  *   Bit-fields that holds the items detected until now.
2980  * @param[in] last_item
2981  *   Previous validated item in the pattern items.
2982  * @param[in] ether_type
2983  *   Type in the ethernet layer header (including dot1q).
2984  * @param[in] acc_mask
2985  *   Acceptable mask, if NULL default internal default mask
2986  *   will be used to check whether item fields are supported.
2987  * @param[out] error
2988  *   Pointer to error structure.
2989  *
2990  * @return
2991  *   0 on success, a negative errno value otherwise and rte_errno is set.
2992  */
2993 int
2994 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2995 			      uint64_t item_flags,
2996 			      uint64_t last_item,
2997 			      uint16_t ether_type,
2998 			      const struct rte_flow_item_ecpri *acc_mask,
2999 			      struct rte_flow_error *error)
3000 {
3001 	const struct rte_flow_item_ecpri *mask = item->mask;
3002 	const struct rte_flow_item_ecpri nic_mask = {
3003 		.hdr = {
3004 			.common = {
3005 				.u32 =
3006 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
3007 					.type = 0xFF,
3008 					}).u32),
3009 			},
3010 			.dummy[0] = 0xFFFFFFFF,
3011 		},
3012 	};
3013 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
3014 					MLX5_FLOW_LAYER_OUTER_VLAN);
3015 	struct rte_flow_item_ecpri mask_lo;
3016 
3017 	if (!(last_item & outer_l2_vlan) &&
3018 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
3019 		return rte_flow_error_set(error, EINVAL,
3020 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3021 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
3022 	if ((last_item & outer_l2_vlan) && ether_type &&
3023 	    ether_type != RTE_ETHER_TYPE_ECPRI)
3024 		return rte_flow_error_set(error, EINVAL,
3025 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3026 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
3027 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3028 		return rte_flow_error_set(error, EINVAL,
3029 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3030 					  "eCPRI with tunnel is not supported right now");
3031 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
3032 		return rte_flow_error_set(error, ENOTSUP,
3033 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3034 					  "multiple L3 layers not supported");
3035 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
3036 		return rte_flow_error_set(error, EINVAL,
3037 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3038 					  "eCPRI cannot coexist with a TCP layer");
3039 	/* In specification, eCPRI could be over UDP layer. */
3040 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
3041 		return rte_flow_error_set(error, EINVAL,
3042 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3043 					  "eCPRI over UDP layer is not yet supported right now");
3044 	/* Mask for type field in common header could be zero. */
3045 	if (!mask)
3046 		mask = &rte_flow_item_ecpri_mask;
3047 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
3048 	/* Input mask is in big-endian format. */
3049 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
3050 		return rte_flow_error_set(error, EINVAL,
3051 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3052 					  "partial mask is not supported for protocol");
3053 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
3054 		return rte_flow_error_set(error, EINVAL,
3055 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3056 					  "message header mask must be after a type mask");
3057 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
3058 					 acc_mask ? (const uint8_t *)acc_mask
3059 						  : (const uint8_t *)&nic_mask,
3060 					 sizeof(struct rte_flow_item_ecpri),
3061 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3062 }
3063 
3064 /**
3065  * Release resource related QUEUE/RSS action split.
3066  *
3067  * @param dev
3068  *   Pointer to Ethernet device.
3069  * @param flow
3070  *   Flow to release id's from.
3071  */
3072 static void
3073 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
3074 			     struct rte_flow *flow)
3075 {
3076 	struct mlx5_priv *priv = dev->data->dev_private;
3077 	uint32_t handle_idx;
3078 	struct mlx5_flow_handle *dev_handle;
3079 
3080 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
3081 		       handle_idx, dev_handle, next)
3082 		if (dev_handle->split_flow_id &&
3083 		    !dev_handle->is_meter_flow_id)
3084 			mlx5_ipool_free(priv->sh->ipool
3085 					[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
3086 					dev_handle->split_flow_id);
3087 }
3088 
3089 static int
3090 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
3091 		   const struct rte_flow_attr *attr __rte_unused,
3092 		   const struct rte_flow_item items[] __rte_unused,
3093 		   const struct rte_flow_action actions[] __rte_unused,
3094 		   bool external __rte_unused,
3095 		   int hairpin __rte_unused,
3096 		   struct rte_flow_error *error)
3097 {
3098 	return rte_flow_error_set(error, ENOTSUP,
3099 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3100 }
3101 
3102 static struct mlx5_flow *
3103 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
3104 		  const struct rte_flow_attr *attr __rte_unused,
3105 		  const struct rte_flow_item items[] __rte_unused,
3106 		  const struct rte_flow_action actions[] __rte_unused,
3107 		  struct rte_flow_error *error)
3108 {
3109 	rte_flow_error_set(error, ENOTSUP,
3110 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3111 	return NULL;
3112 }
3113 
3114 static int
3115 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
3116 		    struct mlx5_flow *dev_flow __rte_unused,
3117 		    const struct rte_flow_attr *attr __rte_unused,
3118 		    const struct rte_flow_item items[] __rte_unused,
3119 		    const struct rte_flow_action actions[] __rte_unused,
3120 		    struct rte_flow_error *error)
3121 {
3122 	return rte_flow_error_set(error, ENOTSUP,
3123 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3124 }
3125 
3126 static int
3127 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
3128 		struct rte_flow *flow __rte_unused,
3129 		struct rte_flow_error *error)
3130 {
3131 	return rte_flow_error_set(error, ENOTSUP,
3132 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3133 }
3134 
3135 static void
3136 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
3137 		 struct rte_flow *flow __rte_unused)
3138 {
3139 }
3140 
3141 static void
3142 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
3143 		  struct rte_flow *flow __rte_unused)
3144 {
3145 }
3146 
3147 static int
3148 flow_null_query(struct rte_eth_dev *dev __rte_unused,
3149 		struct rte_flow *flow __rte_unused,
3150 		const struct rte_flow_action *actions __rte_unused,
3151 		void *data __rte_unused,
3152 		struct rte_flow_error *error)
3153 {
3154 	return rte_flow_error_set(error, ENOTSUP,
3155 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3156 }
3157 
3158 static int
3159 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
3160 		      uint32_t domains __rte_unused,
3161 		      uint32_t flags __rte_unused)
3162 {
3163 	return 0;
3164 }
3165 
3166 /* Void driver to protect from null pointer reference. */
3167 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
3168 	.validate = flow_null_validate,
3169 	.prepare = flow_null_prepare,
3170 	.translate = flow_null_translate,
3171 	.apply = flow_null_apply,
3172 	.remove = flow_null_remove,
3173 	.destroy = flow_null_destroy,
3174 	.query = flow_null_query,
3175 	.sync_domain = flow_null_sync_domain,
3176 };
3177 
3178 /**
3179  * Select flow driver type according to flow attributes and device
3180  * configuration.
3181  *
3182  * @param[in] dev
3183  *   Pointer to the dev structure.
3184  * @param[in] attr
3185  *   Pointer to the flow attributes.
3186  *
3187  * @return
3188  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
3189  */
3190 static enum mlx5_flow_drv_type
3191 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
3192 {
3193 	struct mlx5_priv *priv = dev->data->dev_private;
3194 	/* The OS can determine first a specific flow type (DV, VERBS) */
3195 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
3196 
3197 	if (type != MLX5_FLOW_TYPE_MAX)
3198 		return type;
3199 	/* If no OS specific type - continue with DV/VERBS selection */
3200 	if (attr->transfer && priv->config.dv_esw_en)
3201 		type = MLX5_FLOW_TYPE_DV;
3202 	if (!attr->transfer)
3203 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
3204 						 MLX5_FLOW_TYPE_VERBS;
3205 	return type;
3206 }
3207 
3208 #define flow_get_drv_ops(type) flow_drv_ops[type]
3209 
3210 /**
3211  * Flow driver validation API. This abstracts calling driver specific functions.
3212  * The type of flow driver is determined according to flow attributes.
3213  *
3214  * @param[in] dev
3215  *   Pointer to the dev structure.
3216  * @param[in] attr
3217  *   Pointer to the flow attributes.
3218  * @param[in] items
3219  *   Pointer to the list of items.
3220  * @param[in] actions
3221  *   Pointer to the list of actions.
3222  * @param[in] external
3223  *   This flow rule is created by request external to PMD.
3224  * @param[in] hairpin
3225  *   Number of hairpin TX actions, 0 means classic flow.
3226  * @param[out] error
3227  *   Pointer to the error structure.
3228  *
3229  * @return
3230  *   0 on success, a negative errno value otherwise and rte_errno is set.
3231  */
3232 static inline int
3233 flow_drv_validate(struct rte_eth_dev *dev,
3234 		  const struct rte_flow_attr *attr,
3235 		  const struct rte_flow_item items[],
3236 		  const struct rte_flow_action actions[],
3237 		  bool external, int hairpin, struct rte_flow_error *error)
3238 {
3239 	const struct mlx5_flow_driver_ops *fops;
3240 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3241 
3242 	fops = flow_get_drv_ops(type);
3243 	return fops->validate(dev, attr, items, actions, external,
3244 			      hairpin, error);
3245 }
3246 
3247 /**
3248  * Flow driver preparation API. This abstracts calling driver specific
3249  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3250  * calculates the size of memory required for device flow, allocates the memory,
3251  * initializes the device flow and returns the pointer.
3252  *
3253  * @note
3254  *   This function initializes device flow structure such as dv or verbs in
3255  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3256  *   rest. For example, adding returning device flow to flow->dev_flow list and
3257  *   setting backward reference to the flow should be done out of this function.
3258  *   layers field is not filled either.
3259  *
3260  * @param[in] dev
3261  *   Pointer to the dev structure.
3262  * @param[in] attr
3263  *   Pointer to the flow attributes.
3264  * @param[in] items
3265  *   Pointer to the list of items.
3266  * @param[in] actions
3267  *   Pointer to the list of actions.
3268  * @param[in] flow_idx
3269  *   This memory pool index to the flow.
3270  * @param[out] error
3271  *   Pointer to the error structure.
3272  *
3273  * @return
3274  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3275  */
3276 static inline struct mlx5_flow *
3277 flow_drv_prepare(struct rte_eth_dev *dev,
3278 		 const struct rte_flow *flow,
3279 		 const struct rte_flow_attr *attr,
3280 		 const struct rte_flow_item items[],
3281 		 const struct rte_flow_action actions[],
3282 		 uint32_t flow_idx,
3283 		 struct rte_flow_error *error)
3284 {
3285 	const struct mlx5_flow_driver_ops *fops;
3286 	enum mlx5_flow_drv_type type = flow->drv_type;
3287 	struct mlx5_flow *mlx5_flow = NULL;
3288 
3289 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3290 	fops = flow_get_drv_ops(type);
3291 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3292 	if (mlx5_flow)
3293 		mlx5_flow->flow_idx = flow_idx;
3294 	return mlx5_flow;
3295 }
3296 
3297 /**
3298  * Flow driver translation API. This abstracts calling driver specific
3299  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3300  * translates a generic flow into a driver flow. flow_drv_prepare() must
3301  * precede.
3302  *
3303  * @note
3304  *   dev_flow->layers could be filled as a result of parsing during translation
3305  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3306  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3307  *   flow->actions could be overwritten even though all the expanded dev_flows
3308  *   have the same actions.
3309  *
3310  * @param[in] dev
3311  *   Pointer to the rte dev structure.
3312  * @param[in, out] dev_flow
3313  *   Pointer to the mlx5 flow.
3314  * @param[in] attr
3315  *   Pointer to the flow attributes.
3316  * @param[in] items
3317  *   Pointer to the list of items.
3318  * @param[in] actions
3319  *   Pointer to the list of actions.
3320  * @param[out] error
3321  *   Pointer to the error structure.
3322  *
3323  * @return
3324  *   0 on success, a negative errno value otherwise and rte_errno is set.
3325  */
3326 static inline int
3327 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3328 		   const struct rte_flow_attr *attr,
3329 		   const struct rte_flow_item items[],
3330 		   const struct rte_flow_action actions[],
3331 		   struct rte_flow_error *error)
3332 {
3333 	const struct mlx5_flow_driver_ops *fops;
3334 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3335 
3336 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3337 	fops = flow_get_drv_ops(type);
3338 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3339 }
3340 
3341 /**
3342  * Flow driver apply API. This abstracts calling driver specific functions.
3343  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3344  * translated driver flows on to device. flow_drv_translate() must precede.
3345  *
3346  * @param[in] dev
3347  *   Pointer to Ethernet device structure.
3348  * @param[in, out] flow
3349  *   Pointer to flow structure.
3350  * @param[out] error
3351  *   Pointer to error structure.
3352  *
3353  * @return
3354  *   0 on success, a negative errno value otherwise and rte_errno is set.
3355  */
3356 static inline int
3357 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3358 	       struct rte_flow_error *error)
3359 {
3360 	const struct mlx5_flow_driver_ops *fops;
3361 	enum mlx5_flow_drv_type type = flow->drv_type;
3362 
3363 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3364 	fops = flow_get_drv_ops(type);
3365 	return fops->apply(dev, flow, error);
3366 }
3367 
3368 /**
3369  * Flow driver destroy API. This abstracts calling driver specific functions.
3370  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3371  * on device and releases resources of the flow.
3372  *
3373  * @param[in] dev
3374  *   Pointer to Ethernet device.
3375  * @param[in, out] flow
3376  *   Pointer to flow structure.
3377  */
3378 static inline void
3379 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3380 {
3381 	const struct mlx5_flow_driver_ops *fops;
3382 	enum mlx5_flow_drv_type type = flow->drv_type;
3383 
3384 	flow_mreg_split_qrss_release(dev, flow);
3385 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3386 	fops = flow_get_drv_ops(type);
3387 	fops->destroy(dev, flow);
3388 }
3389 
3390 /**
3391  * Flow driver find RSS policy tbl API. This abstracts calling driver
3392  * specific functions. Parent flow (rte_flow) should have driver
3393  * type (drv_type). It will find the RSS policy table that has the rss_desc.
3394  *
3395  * @param[in] dev
3396  *   Pointer to Ethernet device.
3397  * @param[in, out] flow
3398  *   Pointer to flow structure.
3399  * @param[in] policy
3400  *   Pointer to meter policy table.
3401  * @param[in] rss_desc
3402  *   Pointer to rss_desc
3403  */
3404 static struct mlx5_flow_meter_sub_policy *
3405 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev,
3406 		struct rte_flow *flow,
3407 		struct mlx5_flow_meter_policy *policy,
3408 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS])
3409 {
3410 	const struct mlx5_flow_driver_ops *fops;
3411 	enum mlx5_flow_drv_type type = flow->drv_type;
3412 
3413 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3414 	fops = flow_get_drv_ops(type);
3415 	return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc);
3416 }
3417 
3418 /**
3419  * Get RSS action from the action list.
3420  *
3421  * @param[in] dev
3422  *   Pointer to Ethernet device.
3423  * @param[in] actions
3424  *   Pointer to the list of actions.
3425  * @param[in] flow
3426  *   Parent flow structure pointer.
3427  *
3428  * @return
3429  *   Pointer to the RSS action if exist, else return NULL.
3430  */
3431 static const struct rte_flow_action_rss*
3432 flow_get_rss_action(struct rte_eth_dev *dev,
3433 		    const struct rte_flow_action actions[])
3434 {
3435 	struct mlx5_priv *priv = dev->data->dev_private;
3436 	const struct rte_flow_action_rss *rss = NULL;
3437 
3438 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3439 		switch (actions->type) {
3440 		case RTE_FLOW_ACTION_TYPE_RSS:
3441 			rss = actions->conf;
3442 			break;
3443 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
3444 		{
3445 			const struct rte_flow_action_sample *sample =
3446 								actions->conf;
3447 			const struct rte_flow_action *act = sample->actions;
3448 			for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++)
3449 				if (act->type == RTE_FLOW_ACTION_TYPE_RSS)
3450 					rss = act->conf;
3451 			break;
3452 		}
3453 		case RTE_FLOW_ACTION_TYPE_METER:
3454 		{
3455 			uint32_t mtr_idx;
3456 			struct mlx5_flow_meter_info *fm;
3457 			struct mlx5_flow_meter_policy *policy;
3458 			const struct rte_flow_action_meter *mtr = actions->conf;
3459 
3460 			fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx);
3461 			if (fm) {
3462 				policy = mlx5_flow_meter_policy_find(dev,
3463 						fm->policy_id, NULL);
3464 				if (policy && policy->is_rss)
3465 					rss =
3466 				policy->act_cnt[RTE_COLOR_GREEN].rss->conf;
3467 			}
3468 			break;
3469 		}
3470 		default:
3471 			break;
3472 		}
3473 	}
3474 	return rss;
3475 }
3476 
3477 /**
3478  * Get ASO age action by index.
3479  *
3480  * @param[in] dev
3481  *   Pointer to the Ethernet device structure.
3482  * @param[in] age_idx
3483  *   Index to the ASO age action.
3484  *
3485  * @return
3486  *   The specified ASO age action.
3487  */
3488 struct mlx5_aso_age_action*
3489 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3490 {
3491 	uint16_t pool_idx = age_idx & UINT16_MAX;
3492 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3493 	struct mlx5_priv *priv = dev->data->dev_private;
3494 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3495 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3496 
3497 	return &pool->actions[offset - 1];
3498 }
3499 
3500 /* maps indirect action to translated direct in some actions array */
3501 struct mlx5_translated_action_handle {
3502 	struct rte_flow_action_handle *action; /**< Indirect action handle. */
3503 	int index; /**< Index in related array of rte_flow_action. */
3504 };
3505 
3506 /**
3507  * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related
3508  * direct action if translation possible.
3509  * This functionality used to run same execution path for both direct and
3510  * indirect actions on flow create. All necessary preparations for indirect
3511  * action handling should be performed on *handle* actions list returned
3512  * from this call.
3513  *
3514  * @param[in] dev
3515  *   Pointer to Ethernet device.
3516  * @param[in] actions
3517  *   List of actions to translate.
3518  * @param[out] handle
3519  *   List to store translated indirect action object handles.
3520  * @param[in, out] indir_n
3521  *   Size of *handle* array. On return should be updated with number of
3522  *   indirect actions retrieved from the *actions* list.
3523  * @param[out] translated_actions
3524  *   List of actions where all indirect actions were translated to direct
3525  *   if possible. NULL if no translation took place.
3526  * @param[out] error
3527  *   Pointer to the error structure.
3528  *
3529  * @return
3530  *   0 on success, a negative errno value otherwise and rte_errno is set.
3531  */
3532 static int
3533 flow_action_handles_translate(struct rte_eth_dev *dev,
3534 			      const struct rte_flow_action actions[],
3535 			      struct mlx5_translated_action_handle *handle,
3536 			      int *indir_n,
3537 			      struct rte_flow_action **translated_actions,
3538 			      struct rte_flow_error *error)
3539 {
3540 	struct mlx5_priv *priv = dev->data->dev_private;
3541 	struct rte_flow_action *translated = NULL;
3542 	size_t actions_size;
3543 	int n;
3544 	int copied_n = 0;
3545 	struct mlx5_translated_action_handle *handle_end = NULL;
3546 
3547 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3548 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT)
3549 			continue;
3550 		if (copied_n == *indir_n) {
3551 			return rte_flow_error_set
3552 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3553 				 NULL, "too many shared actions");
3554 		}
3555 		rte_memcpy(&handle[copied_n].action, &actions[n].conf,
3556 			   sizeof(actions[n].conf));
3557 		handle[copied_n].index = n;
3558 		copied_n++;
3559 	}
3560 	n++;
3561 	*indir_n = copied_n;
3562 	if (!copied_n)
3563 		return 0;
3564 	actions_size = sizeof(struct rte_flow_action) * n;
3565 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3566 	if (!translated) {
3567 		rte_errno = ENOMEM;
3568 		return -ENOMEM;
3569 	}
3570 	memcpy(translated, actions, actions_size);
3571 	for (handle_end = handle + copied_n; handle < handle_end; handle++) {
3572 		struct mlx5_shared_action_rss *shared_rss;
3573 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3574 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3575 		uint32_t idx = act_idx &
3576 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3577 
3578 		switch (type) {
3579 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3580 			shared_rss = mlx5_ipool_get
3581 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3582 			translated[handle->index].type =
3583 				RTE_FLOW_ACTION_TYPE_RSS;
3584 			translated[handle->index].conf =
3585 				&shared_rss->origin;
3586 			break;
3587 		case MLX5_INDIRECT_ACTION_TYPE_COUNT:
3588 			translated[handle->index].type =
3589 						(enum rte_flow_action_type)
3590 						MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
3591 			translated[handle->index].conf = (void *)(uintptr_t)idx;
3592 			break;
3593 		case MLX5_INDIRECT_ACTION_TYPE_AGE:
3594 			if (priv->sh->flow_hit_aso_en) {
3595 				translated[handle->index].type =
3596 					(enum rte_flow_action_type)
3597 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3598 				translated[handle->index].conf =
3599 							 (void *)(uintptr_t)idx;
3600 				break;
3601 			}
3602 			/* Fall-through */
3603 		case MLX5_INDIRECT_ACTION_TYPE_CT:
3604 			if (priv->sh->ct_aso_en) {
3605 				translated[handle->index].type =
3606 					RTE_FLOW_ACTION_TYPE_CONNTRACK;
3607 				translated[handle->index].conf =
3608 							 (void *)(uintptr_t)idx;
3609 				break;
3610 			}
3611 			/* Fall-through */
3612 		default:
3613 			mlx5_free(translated);
3614 			return rte_flow_error_set
3615 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3616 				 NULL, "invalid indirect action type");
3617 		}
3618 	}
3619 	*translated_actions = translated;
3620 	return 0;
3621 }
3622 
3623 /**
3624  * Get Shared RSS action from the action list.
3625  *
3626  * @param[in] dev
3627  *   Pointer to Ethernet device.
3628  * @param[in] shared
3629  *   Pointer to the list of actions.
3630  * @param[in] shared_n
3631  *   Actions list length.
3632  *
3633  * @return
3634  *   The MLX5 RSS action ID if exists, otherwise return 0.
3635  */
3636 static uint32_t
3637 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3638 			   struct mlx5_translated_action_handle *handle,
3639 			   int shared_n)
3640 {
3641 	struct mlx5_translated_action_handle *handle_end;
3642 	struct mlx5_priv *priv = dev->data->dev_private;
3643 	struct mlx5_shared_action_rss *shared_rss;
3644 
3645 
3646 	for (handle_end = handle + shared_n; handle < handle_end; handle++) {
3647 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3648 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3649 		uint32_t idx = act_idx &
3650 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3651 		switch (type) {
3652 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3653 			shared_rss = mlx5_ipool_get
3654 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3655 									   idx);
3656 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3657 					   __ATOMIC_RELAXED);
3658 			return idx;
3659 		default:
3660 			break;
3661 		}
3662 	}
3663 	return 0;
3664 }
3665 
3666 static unsigned int
3667 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3668 {
3669 	const struct rte_flow_item *item;
3670 	unsigned int has_vlan = 0;
3671 
3672 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3673 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3674 			has_vlan = 1;
3675 			break;
3676 		}
3677 	}
3678 	if (has_vlan)
3679 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3680 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3681 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3682 			       MLX5_EXPANSION_ROOT_OUTER;
3683 }
3684 
3685 /**
3686  *  Get layer flags from the prefix flow.
3687  *
3688  *  Some flows may be split to several subflows, the prefix subflow gets the
3689  *  match items and the suffix sub flow gets the actions.
3690  *  Some actions need the user defined match item flags to get the detail for
3691  *  the action.
3692  *  This function helps the suffix flow to get the item layer flags from prefix
3693  *  subflow.
3694  *
3695  * @param[in] dev_flow
3696  *   Pointer the created preifx subflow.
3697  *
3698  * @return
3699  *   The layers get from prefix subflow.
3700  */
3701 static inline uint64_t
3702 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3703 {
3704 	uint64_t layers = 0;
3705 
3706 	/*
3707 	 * Layers bits could be localization, but usually the compiler will
3708 	 * help to do the optimization work for source code.
3709 	 * If no decap actions, use the layers directly.
3710 	 */
3711 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3712 		return dev_flow->handle->layers;
3713 	/* Convert L3 layers with decap action. */
3714 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3715 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3716 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3717 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3718 	/* Convert L4 layers with decap action.  */
3719 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3720 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3721 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3722 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3723 	return layers;
3724 }
3725 
3726 /**
3727  * Get metadata split action information.
3728  *
3729  * @param[in] actions
3730  *   Pointer to the list of actions.
3731  * @param[out] qrss
3732  *   Pointer to the return pointer.
3733  * @param[out] qrss_type
3734  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3735  *   if no QUEUE/RSS is found.
3736  * @param[out] encap_idx
3737  *   Pointer to the index of the encap action if exists, otherwise the last
3738  *   action index.
3739  *
3740  * @return
3741  *   Total number of actions.
3742  */
3743 static int
3744 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3745 				       const struct rte_flow_action **qrss,
3746 				       int *encap_idx)
3747 {
3748 	const struct rte_flow_action_raw_encap *raw_encap;
3749 	int actions_n = 0;
3750 	int raw_decap_idx = -1;
3751 
3752 	*encap_idx = -1;
3753 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3754 		switch (actions->type) {
3755 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3756 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3757 			*encap_idx = actions_n;
3758 			break;
3759 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3760 			raw_decap_idx = actions_n;
3761 			break;
3762 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3763 			raw_encap = actions->conf;
3764 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3765 				*encap_idx = raw_decap_idx != -1 ?
3766 						      raw_decap_idx : actions_n;
3767 			break;
3768 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3769 		case RTE_FLOW_ACTION_TYPE_RSS:
3770 			*qrss = actions;
3771 			break;
3772 		default:
3773 			break;
3774 		}
3775 		actions_n++;
3776 	}
3777 	if (*encap_idx == -1)
3778 		*encap_idx = actions_n;
3779 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3780 	return actions_n + 1;
3781 }
3782 
3783 /**
3784  * Check if the action will change packet.
3785  *
3786  * @param dev
3787  *   Pointer to Ethernet device.
3788  * @param[in] type
3789  *   action type.
3790  *
3791  * @return
3792  *   true if action will change packet, false otherwise.
3793  */
3794 static bool flow_check_modify_action_type(struct rte_eth_dev *dev,
3795 					  enum rte_flow_action_type type)
3796 {
3797 	struct mlx5_priv *priv = dev->data->dev_private;
3798 
3799 	switch (type) {
3800 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
3801 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
3802 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
3803 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
3804 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
3805 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
3806 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
3807 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
3808 	case RTE_FLOW_ACTION_TYPE_DEC_TTL:
3809 	case RTE_FLOW_ACTION_TYPE_SET_TTL:
3810 	case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
3811 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
3812 	case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
3813 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
3814 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
3815 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
3816 	case RTE_FLOW_ACTION_TYPE_SET_META:
3817 	case RTE_FLOW_ACTION_TYPE_SET_TAG:
3818 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
3819 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3820 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3821 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3822 	case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3823 	case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3824 	case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3825 	case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
3826 	case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3827 	case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3828 	case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
3829 		return true;
3830 	case RTE_FLOW_ACTION_TYPE_FLAG:
3831 	case RTE_FLOW_ACTION_TYPE_MARK:
3832 		if (priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY)
3833 			return true;
3834 		else
3835 			return false;
3836 	default:
3837 		return false;
3838 	}
3839 }
3840 
3841 /**
3842  * Check meter action from the action list.
3843  *
3844  * @param dev
3845  *   Pointer to Ethernet device.
3846  * @param[in] actions
3847  *   Pointer to the list of actions.
3848  * @param[out] has_mtr
3849  *   Pointer to the meter exist flag.
3850  * @param[out] has_modify
3851  *   Pointer to the flag showing there's packet change action.
3852  * @param[out] meter_id
3853  *   Pointer to the meter id.
3854  *
3855  * @return
3856  *   Total number of actions.
3857  */
3858 static int
3859 flow_check_meter_action(struct rte_eth_dev *dev,
3860 			const struct rte_flow_action actions[],
3861 			bool *has_mtr, bool *has_modify, uint32_t *meter_id)
3862 {
3863 	const struct rte_flow_action_meter *mtr = NULL;
3864 	int actions_n = 0;
3865 
3866 	MLX5_ASSERT(has_mtr);
3867 	*has_mtr = false;
3868 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3869 		switch (actions->type) {
3870 		case RTE_FLOW_ACTION_TYPE_METER:
3871 			mtr = actions->conf;
3872 			*meter_id = mtr->mtr_id;
3873 			*has_mtr = true;
3874 			break;
3875 		default:
3876 			break;
3877 		}
3878 		if (!*has_mtr)
3879 			*has_modify |= flow_check_modify_action_type(dev,
3880 								actions->type);
3881 		actions_n++;
3882 	}
3883 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3884 	return actions_n + 1;
3885 }
3886 
3887 /**
3888  * Check if the flow should be split due to hairpin.
3889  * The reason for the split is that in current HW we can't
3890  * support encap and push-vlan on Rx, so if a flow contains
3891  * these actions we move it to Tx.
3892  *
3893  * @param dev
3894  *   Pointer to Ethernet device.
3895  * @param[in] attr
3896  *   Flow rule attributes.
3897  * @param[in] actions
3898  *   Associated actions (list terminated by the END action).
3899  *
3900  * @return
3901  *   > 0 the number of actions and the flow should be split,
3902  *   0 when no split required.
3903  */
3904 static int
3905 flow_check_hairpin_split(struct rte_eth_dev *dev,
3906 			 const struct rte_flow_attr *attr,
3907 			 const struct rte_flow_action actions[])
3908 {
3909 	int queue_action = 0;
3910 	int action_n = 0;
3911 	int split = 0;
3912 	const struct rte_flow_action_queue *queue;
3913 	const struct rte_flow_action_rss *rss;
3914 	const struct rte_flow_action_raw_encap *raw_encap;
3915 	const struct rte_eth_hairpin_conf *conf;
3916 
3917 	if (!attr->ingress)
3918 		return 0;
3919 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3920 		switch (actions->type) {
3921 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3922 			queue = actions->conf;
3923 			if (queue == NULL)
3924 				return 0;
3925 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
3926 			if (conf == NULL || conf->tx_explicit != 0)
3927 				return 0;
3928 			queue_action = 1;
3929 			action_n++;
3930 			break;
3931 		case RTE_FLOW_ACTION_TYPE_RSS:
3932 			rss = actions->conf;
3933 			if (rss == NULL || rss->queue_num == 0)
3934 				return 0;
3935 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
3936 			if (conf == NULL || conf->tx_explicit != 0)
3937 				return 0;
3938 			queue_action = 1;
3939 			action_n++;
3940 			break;
3941 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3942 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3943 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3944 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3945 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3946 			split++;
3947 			action_n++;
3948 			break;
3949 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3950 			raw_encap = actions->conf;
3951 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3952 				split++;
3953 			action_n++;
3954 			break;
3955 		default:
3956 			action_n++;
3957 			break;
3958 		}
3959 	}
3960 	if (split && queue_action)
3961 		return action_n;
3962 	return 0;
3963 }
3964 
3965 /* Declare flow create/destroy prototype in advance. */
3966 static uint32_t
3967 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3968 		 const struct rte_flow_attr *attr,
3969 		 const struct rte_flow_item items[],
3970 		 const struct rte_flow_action actions[],
3971 		 bool external, struct rte_flow_error *error);
3972 
3973 static void
3974 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3975 		  uint32_t flow_idx);
3976 
3977 int
3978 flow_dv_mreg_match_cb(struct mlx5_hlist *list __rte_unused,
3979 		      struct mlx5_hlist_entry *entry,
3980 		      uint64_t key, void *cb_ctx __rte_unused)
3981 {
3982 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3983 		container_of(entry, typeof(*mcp_res), hlist_ent);
3984 
3985 	return mcp_res->mark_id != key;
3986 }
3987 
3988 struct mlx5_hlist_entry *
3989 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key,
3990 		       void *cb_ctx)
3991 {
3992 	struct rte_eth_dev *dev = list->ctx;
3993 	struct mlx5_priv *priv = dev->data->dev_private;
3994 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
3995 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3996 	struct rte_flow_error *error = ctx->error;
3997 	uint32_t idx = 0;
3998 	int ret;
3999 	uint32_t mark_id = key;
4000 	struct rte_flow_attr attr = {
4001 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4002 		.ingress = 1,
4003 	};
4004 	struct mlx5_rte_flow_item_tag tag_spec = {
4005 		.data = mark_id,
4006 	};
4007 	struct rte_flow_item items[] = {
4008 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
4009 	};
4010 	struct rte_flow_action_mark ftag = {
4011 		.id = mark_id,
4012 	};
4013 	struct mlx5_flow_action_copy_mreg cp_mreg = {
4014 		.dst = REG_B,
4015 		.src = REG_NON,
4016 	};
4017 	struct rte_flow_action_jump jump = {
4018 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4019 	};
4020 	struct rte_flow_action actions[] = {
4021 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
4022 	};
4023 
4024 	/* Fill the register fileds in the flow. */
4025 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
4026 	if (ret < 0)
4027 		return NULL;
4028 	tag_spec.id = ret;
4029 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4030 	if (ret < 0)
4031 		return NULL;
4032 	cp_mreg.src = ret;
4033 	/* Provide the full width of FLAG specific value. */
4034 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
4035 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
4036 	/* Build a new flow. */
4037 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
4038 		items[0] = (struct rte_flow_item){
4039 			.type = (enum rte_flow_item_type)
4040 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4041 			.spec = &tag_spec,
4042 		};
4043 		items[1] = (struct rte_flow_item){
4044 			.type = RTE_FLOW_ITEM_TYPE_END,
4045 		};
4046 		actions[0] = (struct rte_flow_action){
4047 			.type = (enum rte_flow_action_type)
4048 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
4049 			.conf = &ftag,
4050 		};
4051 		actions[1] = (struct rte_flow_action){
4052 			.type = (enum rte_flow_action_type)
4053 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4054 			.conf = &cp_mreg,
4055 		};
4056 		actions[2] = (struct rte_flow_action){
4057 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4058 			.conf = &jump,
4059 		};
4060 		actions[3] = (struct rte_flow_action){
4061 			.type = RTE_FLOW_ACTION_TYPE_END,
4062 		};
4063 	} else {
4064 		/* Default rule, wildcard match. */
4065 		attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR;
4066 		items[0] = (struct rte_flow_item){
4067 			.type = RTE_FLOW_ITEM_TYPE_END,
4068 		};
4069 		actions[0] = (struct rte_flow_action){
4070 			.type = (enum rte_flow_action_type)
4071 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4072 			.conf = &cp_mreg,
4073 		};
4074 		actions[1] = (struct rte_flow_action){
4075 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4076 			.conf = &jump,
4077 		};
4078 		actions[2] = (struct rte_flow_action){
4079 			.type = RTE_FLOW_ACTION_TYPE_END,
4080 		};
4081 	}
4082 	/* Build a new entry. */
4083 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4084 	if (!mcp_res) {
4085 		rte_errno = ENOMEM;
4086 		return NULL;
4087 	}
4088 	mcp_res->idx = idx;
4089 	mcp_res->mark_id = mark_id;
4090 	/*
4091 	 * The copy Flows are not included in any list. There
4092 	 * ones are referenced from other Flows and can not
4093 	 * be applied, removed, deleted in ardbitrary order
4094 	 * by list traversing.
4095 	 */
4096 	mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
4097 					 actions, false, error);
4098 	if (!mcp_res->rix_flow) {
4099 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
4100 		return NULL;
4101 	}
4102 	return &mcp_res->hlist_ent;
4103 }
4104 
4105 /**
4106  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4107  *
4108  * As mark_id is unique, if there's already a registered flow for the mark_id,
4109  * return by increasing the reference counter of the resource. Otherwise, create
4110  * the resource (mcp_res) and flow.
4111  *
4112  * Flow looks like,
4113  *   - If ingress port is ANY and reg_c[1] is mark_id,
4114  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4115  *
4116  * For default flow (zero mark_id), flow is like,
4117  *   - If ingress port is ANY,
4118  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
4119  *
4120  * @param dev
4121  *   Pointer to Ethernet device.
4122  * @param mark_id
4123  *   ID of MARK action, zero means default flow for META.
4124  * @param[out] error
4125  *   Perform verbose error reporting if not NULL.
4126  *
4127  * @return
4128  *   Associated resource on success, NULL otherwise and rte_errno is set.
4129  */
4130 static struct mlx5_flow_mreg_copy_resource *
4131 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
4132 			  struct rte_flow_error *error)
4133 {
4134 	struct mlx5_priv *priv = dev->data->dev_private;
4135 	struct mlx5_hlist_entry *entry;
4136 	struct mlx5_flow_cb_ctx ctx = {
4137 		.dev = dev,
4138 		.error = error,
4139 	};
4140 
4141 	/* Check if already registered. */
4142 	MLX5_ASSERT(priv->mreg_cp_tbl);
4143 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
4144 	if (!entry)
4145 		return NULL;
4146 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
4147 			    hlist_ent);
4148 }
4149 
4150 void
4151 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry)
4152 {
4153 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4154 		container_of(entry, typeof(*mcp_res), hlist_ent);
4155 	struct rte_eth_dev *dev = list->ctx;
4156 	struct mlx5_priv *priv = dev->data->dev_private;
4157 
4158 	MLX5_ASSERT(mcp_res->rix_flow);
4159 	flow_list_destroy(dev, NULL, mcp_res->rix_flow);
4160 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4161 }
4162 
4163 /**
4164  * Release flow in RX_CP_TBL.
4165  *
4166  * @param dev
4167  *   Pointer to Ethernet device.
4168  * @flow
4169  *   Parent flow for wich copying is provided.
4170  */
4171 static void
4172 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
4173 			  struct rte_flow *flow)
4174 {
4175 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4176 	struct mlx5_priv *priv = dev->data->dev_private;
4177 
4178 	if (!flow->rix_mreg_copy)
4179 		return;
4180 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
4181 				 flow->rix_mreg_copy);
4182 	if (!mcp_res || !priv->mreg_cp_tbl)
4183 		return;
4184 	MLX5_ASSERT(mcp_res->rix_flow);
4185 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
4186 	flow->rix_mreg_copy = 0;
4187 }
4188 
4189 /**
4190  * Remove the default copy action from RX_CP_TBL.
4191  *
4192  * This functions is called in the mlx5_dev_start(). No thread safe
4193  * is guaranteed.
4194  *
4195  * @param dev
4196  *   Pointer to Ethernet device.
4197  */
4198 static void
4199 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
4200 {
4201 	struct mlx5_hlist_entry *entry;
4202 	struct mlx5_priv *priv = dev->data->dev_private;
4203 
4204 	/* Check if default flow is registered. */
4205 	if (!priv->mreg_cp_tbl)
4206 		return;
4207 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl,
4208 				  MLX5_DEFAULT_COPY_ID, NULL);
4209 	if (!entry)
4210 		return;
4211 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
4212 }
4213 
4214 /**
4215  * Add the default copy action in in RX_CP_TBL.
4216  *
4217  * This functions is called in the mlx5_dev_start(). No thread safe
4218  * is guaranteed.
4219  *
4220  * @param dev
4221  *   Pointer to Ethernet device.
4222  * @param[out] error
4223  *   Perform verbose error reporting if not NULL.
4224  *
4225  * @return
4226  *   0 for success, negative value otherwise and rte_errno is set.
4227  */
4228 static int
4229 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
4230 				  struct rte_flow_error *error)
4231 {
4232 	struct mlx5_priv *priv = dev->data->dev_private;
4233 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4234 
4235 	/* Check whether extensive metadata feature is engaged. */
4236 	if (!priv->config.dv_flow_en ||
4237 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4238 	    !mlx5_flow_ext_mreg_supported(dev) ||
4239 	    !priv->sh->dv_regc0_mask)
4240 		return 0;
4241 	/*
4242 	 * Add default mreg copy flow may be called multiple time, but
4243 	 * only be called once in stop. Avoid register it twice.
4244 	 */
4245 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL))
4246 		return 0;
4247 	mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
4248 	if (!mcp_res)
4249 		return -rte_errno;
4250 	return 0;
4251 }
4252 
4253 /**
4254  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4255  *
4256  * All the flow having Q/RSS action should be split by
4257  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
4258  * performs the following,
4259  *   - CQE->flow_tag := reg_c[1] (MARK)
4260  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4261  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
4262  * but there should be a flow per each MARK ID set by MARK action.
4263  *
4264  * For the aforementioned reason, if there's a MARK action in flow's action
4265  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
4266  * the MARK ID to CQE's flow_tag like,
4267  *   - If reg_c[1] is mark_id,
4268  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4269  *
4270  * For SET_META action which stores value in reg_c[0], as the destination is
4271  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
4272  * MARK ID means the default flow. The default flow looks like,
4273  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4274  *
4275  * @param dev
4276  *   Pointer to Ethernet device.
4277  * @param flow
4278  *   Pointer to flow structure.
4279  * @param[in] actions
4280  *   Pointer to the list of actions.
4281  * @param[out] error
4282  *   Perform verbose error reporting if not NULL.
4283  *
4284  * @return
4285  *   0 on success, negative value otherwise and rte_errno is set.
4286  */
4287 static int
4288 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
4289 			    struct rte_flow *flow,
4290 			    const struct rte_flow_action *actions,
4291 			    struct rte_flow_error *error)
4292 {
4293 	struct mlx5_priv *priv = dev->data->dev_private;
4294 	struct mlx5_dev_config *config = &priv->config;
4295 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4296 	const struct rte_flow_action_mark *mark;
4297 
4298 	/* Check whether extensive metadata feature is engaged. */
4299 	if (!config->dv_flow_en ||
4300 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4301 	    !mlx5_flow_ext_mreg_supported(dev) ||
4302 	    !priv->sh->dv_regc0_mask)
4303 		return 0;
4304 	/* Find MARK action. */
4305 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4306 		switch (actions->type) {
4307 		case RTE_FLOW_ACTION_TYPE_FLAG:
4308 			mcp_res = flow_mreg_add_copy_action
4309 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
4310 			if (!mcp_res)
4311 				return -rte_errno;
4312 			flow->rix_mreg_copy = mcp_res->idx;
4313 			return 0;
4314 		case RTE_FLOW_ACTION_TYPE_MARK:
4315 			mark = (const struct rte_flow_action_mark *)
4316 				actions->conf;
4317 			mcp_res =
4318 				flow_mreg_add_copy_action(dev, mark->id, error);
4319 			if (!mcp_res)
4320 				return -rte_errno;
4321 			flow->rix_mreg_copy = mcp_res->idx;
4322 			return 0;
4323 		default:
4324 			break;
4325 		}
4326 	}
4327 	return 0;
4328 }
4329 
4330 #define MLX5_MAX_SPLIT_ACTIONS 24
4331 #define MLX5_MAX_SPLIT_ITEMS 24
4332 
4333 /**
4334  * Split the hairpin flow.
4335  * Since HW can't support encap and push-vlan on Rx, we move these
4336  * actions to Tx.
4337  * If the count action is after the encap then we also
4338  * move the count action. in this case the count will also measure
4339  * the outer bytes.
4340  *
4341  * @param dev
4342  *   Pointer to Ethernet device.
4343  * @param[in] actions
4344  *   Associated actions (list terminated by the END action).
4345  * @param[out] actions_rx
4346  *   Rx flow actions.
4347  * @param[out] actions_tx
4348  *   Tx flow actions..
4349  * @param[out] pattern_tx
4350  *   The pattern items for the Tx flow.
4351  * @param[out] flow_id
4352  *   The flow ID connected to this flow.
4353  *
4354  * @return
4355  *   0 on success.
4356  */
4357 static int
4358 flow_hairpin_split(struct rte_eth_dev *dev,
4359 		   const struct rte_flow_action actions[],
4360 		   struct rte_flow_action actions_rx[],
4361 		   struct rte_flow_action actions_tx[],
4362 		   struct rte_flow_item pattern_tx[],
4363 		   uint32_t flow_id)
4364 {
4365 	const struct rte_flow_action_raw_encap *raw_encap;
4366 	const struct rte_flow_action_raw_decap *raw_decap;
4367 	struct mlx5_rte_flow_action_set_tag *set_tag;
4368 	struct rte_flow_action *tag_action;
4369 	struct mlx5_rte_flow_item_tag *tag_item;
4370 	struct rte_flow_item *item;
4371 	char *addr;
4372 	int encap = 0;
4373 
4374 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4375 		switch (actions->type) {
4376 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4377 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4378 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4379 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4380 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4381 			rte_memcpy(actions_tx, actions,
4382 			       sizeof(struct rte_flow_action));
4383 			actions_tx++;
4384 			break;
4385 		case RTE_FLOW_ACTION_TYPE_COUNT:
4386 			if (encap) {
4387 				rte_memcpy(actions_tx, actions,
4388 					   sizeof(struct rte_flow_action));
4389 				actions_tx++;
4390 			} else {
4391 				rte_memcpy(actions_rx, actions,
4392 					   sizeof(struct rte_flow_action));
4393 				actions_rx++;
4394 			}
4395 			break;
4396 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4397 			raw_encap = actions->conf;
4398 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4399 				memcpy(actions_tx, actions,
4400 				       sizeof(struct rte_flow_action));
4401 				actions_tx++;
4402 				encap = 1;
4403 			} else {
4404 				rte_memcpy(actions_rx, actions,
4405 					   sizeof(struct rte_flow_action));
4406 				actions_rx++;
4407 			}
4408 			break;
4409 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4410 			raw_decap = actions->conf;
4411 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4412 				memcpy(actions_tx, actions,
4413 				       sizeof(struct rte_flow_action));
4414 				actions_tx++;
4415 			} else {
4416 				rte_memcpy(actions_rx, actions,
4417 					   sizeof(struct rte_flow_action));
4418 				actions_rx++;
4419 			}
4420 			break;
4421 		default:
4422 			rte_memcpy(actions_rx, actions,
4423 				   sizeof(struct rte_flow_action));
4424 			actions_rx++;
4425 			break;
4426 		}
4427 	}
4428 	/* Add set meta action and end action for the Rx flow. */
4429 	tag_action = actions_rx;
4430 	tag_action->type = (enum rte_flow_action_type)
4431 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4432 	actions_rx++;
4433 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4434 	actions_rx++;
4435 	set_tag = (void *)actions_rx;
4436 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4437 		.id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL),
4438 		.data = flow_id,
4439 	};
4440 	MLX5_ASSERT(set_tag->id > REG_NON);
4441 	tag_action->conf = set_tag;
4442 	/* Create Tx item list. */
4443 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4444 	addr = (void *)&pattern_tx[2];
4445 	item = pattern_tx;
4446 	item->type = (enum rte_flow_item_type)
4447 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4448 	tag_item = (void *)addr;
4449 	tag_item->data = flow_id;
4450 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4451 	MLX5_ASSERT(set_tag->id > REG_NON);
4452 	item->spec = tag_item;
4453 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4454 	tag_item = (void *)addr;
4455 	tag_item->data = UINT32_MAX;
4456 	tag_item->id = UINT16_MAX;
4457 	item->mask = tag_item;
4458 	item->last = NULL;
4459 	item++;
4460 	item->type = RTE_FLOW_ITEM_TYPE_END;
4461 	return 0;
4462 }
4463 
4464 /**
4465  * The last stage of splitting chain, just creates the subflow
4466  * without any modification.
4467  *
4468  * @param[in] dev
4469  *   Pointer to Ethernet device.
4470  * @param[in] flow
4471  *   Parent flow structure pointer.
4472  * @param[in, out] sub_flow
4473  *   Pointer to return the created subflow, may be NULL.
4474  * @param[in] attr
4475  *   Flow rule attributes.
4476  * @param[in] items
4477  *   Pattern specification (list terminated by the END pattern item).
4478  * @param[in] actions
4479  *   Associated actions (list terminated by the END action).
4480  * @param[in] flow_split_info
4481  *   Pointer to flow split info structure.
4482  * @param[out] error
4483  *   Perform verbose error reporting if not NULL.
4484  * @return
4485  *   0 on success, negative value otherwise
4486  */
4487 static int
4488 flow_create_split_inner(struct rte_eth_dev *dev,
4489 			struct rte_flow *flow,
4490 			struct mlx5_flow **sub_flow,
4491 			const struct rte_flow_attr *attr,
4492 			const struct rte_flow_item items[],
4493 			const struct rte_flow_action actions[],
4494 			struct mlx5_flow_split_info *flow_split_info,
4495 			struct rte_flow_error *error)
4496 {
4497 	struct mlx5_flow *dev_flow;
4498 
4499 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4500 				    flow_split_info->flow_idx, error);
4501 	if (!dev_flow)
4502 		return -rte_errno;
4503 	dev_flow->flow = flow;
4504 	dev_flow->external = flow_split_info->external;
4505 	dev_flow->skip_scale = flow_split_info->skip_scale;
4506 	/* Subflow object was created, we must include one in the list. */
4507 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4508 		      dev_flow->handle, next);
4509 	/*
4510 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4511 	 * flow may need some user defined item layer flags, and pass the
4512 	 * Metadate rxq mark flag to suffix flow as well.
4513 	 */
4514 	if (flow_split_info->prefix_layers)
4515 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4516 	if (flow_split_info->prefix_mark)
4517 		dev_flow->handle->mark = 1;
4518 	if (sub_flow)
4519 		*sub_flow = dev_flow;
4520 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4521 	dev_flow->dv.table_id = flow_split_info->table_id;
4522 #endif
4523 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4524 }
4525 
4526 /**
4527  * Get the sub policy of a meter.
4528  *
4529  * @param[in] dev
4530  *   Pointer to Ethernet device.
4531  * @param[in] flow
4532  *   Parent flow structure pointer.
4533  * @param[in] policy_id;
4534  *   Meter Policy id.
4535  * @param[in] attr
4536  *   Flow rule attributes.
4537  * @param[in] items
4538  *   Pattern specification (list terminated by the END pattern item).
4539  * @param[out] error
4540  *   Perform verbose error reporting if not NULL.
4541  *
4542  * @return
4543  *   Pointer to the meter sub policy, NULL otherwise and rte_errno is set.
4544  */
4545 static struct mlx5_flow_meter_sub_policy *
4546 get_meter_sub_policy(struct rte_eth_dev *dev,
4547 		     struct rte_flow *flow,
4548 		     uint32_t policy_id,
4549 		     const struct rte_flow_attr *attr,
4550 		     const struct rte_flow_item items[],
4551 		     struct rte_flow_error *error)
4552 {
4553 	struct mlx5_flow_meter_policy *policy;
4554 	struct mlx5_flow_meter_sub_policy *sub_policy = NULL;
4555 
4556 	policy = mlx5_flow_meter_policy_find(dev, policy_id, NULL);
4557 	if (!policy) {
4558 		rte_flow_error_set(error, EINVAL,
4559 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4560 				   "Failed to find Meter Policy.");
4561 		goto exit;
4562 	}
4563 	if (policy->is_rss) {
4564 		struct mlx5_flow_workspace *wks =
4565 				mlx5_flow_get_thread_workspace();
4566 		struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS];
4567 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0};
4568 		uint32_t i;
4569 
4570 		MLX5_ASSERT(wks);
4571 		/**
4572 		 * This is a tmp dev_flow,
4573 		 * no need to register any matcher for it in translate.
4574 		 */
4575 		wks->skip_matcher_reg = 1;
4576 		for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) {
4577 			struct mlx5_flow dev_flow = {0};
4578 			struct mlx5_flow_handle dev_handle = { {0} };
4579 			const void *rss_act = policy->act_cnt[i].rss->conf;
4580 			struct rte_flow_action rss_actions[2] = {
4581 				[0] = {
4582 					.type = RTE_FLOW_ACTION_TYPE_RSS,
4583 					.conf = rss_act
4584 				},
4585 				[1] = {
4586 					.type = RTE_FLOW_ACTION_TYPE_END,
4587 					.conf = NULL
4588 				}
4589 			};
4590 
4591 			dev_flow.handle = &dev_handle;
4592 			dev_flow.ingress = attr->ingress;
4593 			dev_flow.flow = flow;
4594 			dev_flow.external = 0;
4595 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4596 			dev_flow.dv.transfer = attr->transfer;
4597 #endif
4598 			/* Translate RSS action to get rss hash fields. */
4599 			if (flow_drv_translate(dev, &dev_flow, attr,
4600 						items, rss_actions, error))
4601 				goto exit;
4602 			rss_desc_v[i] = wks->rss_desc;
4603 			rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN;
4604 			rss_desc_v[i].hash_fields = dev_flow.hash_fields;
4605 			rss_desc_v[i].queue_num = rss_desc_v[i].hash_fields ?
4606 						  rss_desc_v[i].queue_num : 1;
4607 			rss_desc[i] = &rss_desc_v[i];
4608 		}
4609 		sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev,
4610 						flow, policy, rss_desc);
4611 	} else {
4612 		enum mlx5_meter_domain mtr_domain =
4613 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
4614 				attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
4615 					MLX5_MTR_DOMAIN_INGRESS;
4616 		sub_policy = policy->sub_policys[mtr_domain][0];
4617 	}
4618 	if (!sub_policy) {
4619 		rte_flow_error_set(error, EINVAL,
4620 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4621 			"Failed to get meter sub-policy.");
4622 		goto exit;
4623 	}
4624 exit:
4625 	return sub_policy;
4626 }
4627 
4628 /**
4629  * Split the meter flow.
4630  *
4631  * As meter flow will split to three sub flow, other than meter
4632  * action, the other actions make sense to only meter accepts
4633  * the packet. If it need to be dropped, no other additional
4634  * actions should be take.
4635  *
4636  * One kind of special action which decapsulates the L3 tunnel
4637  * header will be in the prefix sub flow, as not to take the
4638  * L3 tunnel header into account.
4639  *
4640  * @param[in] dev
4641  *   Pointer to Ethernet device.
4642  * @param[in] flow
4643  *   Parent flow structure pointer.
4644  * @param[in] fm
4645  *   Pointer to flow meter structure.
4646  * @param[in] attr
4647  *   Flow rule attributes.
4648  * @param[in] items
4649  *   Pattern specification (list terminated by the END pattern item).
4650  * @param[out] sfx_items
4651  *   Suffix flow match items (list terminated by the END pattern item).
4652  * @param[in] actions
4653  *   Associated actions (list terminated by the END action).
4654  * @param[out] actions_sfx
4655  *   Suffix flow actions.
4656  * @param[out] actions_pre
4657  *   Prefix flow actions.
4658  * @param[out] mtr_flow_id
4659  *   Pointer to meter flow id.
4660  * @param[out] error
4661  *   Perform verbose error reporting if not NULL.
4662  *
4663  * @return
4664  *   0 on success, a negative errno value otherwise and rte_errno is set.
4665  */
4666 static int
4667 flow_meter_split_prep(struct rte_eth_dev *dev,
4668 		      struct rte_flow *flow,
4669 		      struct mlx5_flow_meter_info *fm,
4670 		      const struct rte_flow_attr *attr,
4671 		      const struct rte_flow_item items[],
4672 		      struct rte_flow_item sfx_items[],
4673 		      const struct rte_flow_action actions[],
4674 		      struct rte_flow_action actions_sfx[],
4675 		      struct rte_flow_action actions_pre[],
4676 		      uint32_t *mtr_flow_id,
4677 		      struct rte_flow_error *error)
4678 {
4679 	struct mlx5_priv *priv = dev->data->dev_private;
4680 	struct rte_flow_action *tag_action = NULL;
4681 	struct rte_flow_item *tag_item;
4682 	struct mlx5_rte_flow_action_set_tag *set_tag;
4683 	const struct rte_flow_action_raw_encap *raw_encap;
4684 	const struct rte_flow_action_raw_decap *raw_decap;
4685 	struct mlx5_rte_flow_item_tag *tag_item_spec;
4686 	struct mlx5_rte_flow_item_tag *tag_item_mask;
4687 	uint32_t tag_id = 0;
4688 	bool copy_vlan = false;
4689 	struct rte_flow_action *hw_mtr_action;
4690 	struct rte_flow_action *action_pre_head = NULL;
4691 	bool mtr_first = priv->sh->meter_aso_en &&
4692 			(attr->egress ||
4693 			(attr->transfer && priv->representor_id != UINT16_MAX));
4694 	uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0;
4695 	uint8_t mtr_reg_bits = priv->mtr_reg_share ?
4696 				MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS;
4697 	uint32_t flow_id = 0;
4698 	uint32_t flow_id_reversed = 0;
4699 	uint8_t flow_id_bits = 0;
4700 	int shift;
4701 
4702 	/* For ASO meter, meter must be before tag in TX direction. */
4703 	if (mtr_first) {
4704 		action_pre_head = actions_pre++;
4705 		/* Leave space for tag action. */
4706 		tag_action = actions_pre++;
4707 	}
4708 	/* Prepare the actions for prefix and suffix flow. */
4709 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4710 		struct rte_flow_action *action_cur = NULL;
4711 
4712 		switch (actions->type) {
4713 		case RTE_FLOW_ACTION_TYPE_METER:
4714 			if (mtr_first) {
4715 				action_cur = action_pre_head;
4716 			} else {
4717 				/* Leave space for tag action. */
4718 				tag_action = actions_pre++;
4719 				action_cur = actions_pre++;
4720 			}
4721 			break;
4722 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4723 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4724 			action_cur = actions_pre++;
4725 			break;
4726 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4727 			raw_encap = actions->conf;
4728 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4729 				action_cur = actions_pre++;
4730 			break;
4731 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4732 			raw_decap = actions->conf;
4733 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4734 				action_cur = actions_pre++;
4735 			break;
4736 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4737 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4738 			copy_vlan = true;
4739 			break;
4740 		default:
4741 			break;
4742 		}
4743 		if (!action_cur)
4744 			action_cur = (fm->def_policy) ?
4745 					actions_sfx++ : actions_pre++;
4746 		memcpy(action_cur, actions, sizeof(struct rte_flow_action));
4747 	}
4748 	/* Add end action to the actions. */
4749 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4750 	if (priv->sh->meter_aso_en) {
4751 		/**
4752 		 * For ASO meter, need to add an extra jump action explicitly,
4753 		 * to jump from meter to policer table.
4754 		 */
4755 		struct mlx5_flow_meter_sub_policy *sub_policy;
4756 		struct mlx5_flow_tbl_data_entry *tbl_data;
4757 
4758 		if (!fm->def_policy) {
4759 			sub_policy = get_meter_sub_policy(dev, flow,
4760 							  fm->policy_id, attr,
4761 							  items, error);
4762 			if (!sub_policy)
4763 				return -rte_errno;
4764 		} else {
4765 			enum mlx5_meter_domain mtr_domain =
4766 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
4767 				attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
4768 					MLX5_MTR_DOMAIN_INGRESS;
4769 
4770 			sub_policy =
4771 			&priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy;
4772 		}
4773 		tbl_data = container_of(sub_policy->tbl_rsc,
4774 					struct mlx5_flow_tbl_data_entry, tbl);
4775 		hw_mtr_action = actions_pre++;
4776 		hw_mtr_action->type = (enum rte_flow_action_type)
4777 				      MLX5_RTE_FLOW_ACTION_TYPE_JUMP;
4778 		hw_mtr_action->conf = tbl_data->jump.action;
4779 	}
4780 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4781 	actions_pre++;
4782 	if (!tag_action)
4783 		return rte_flow_error_set(error, ENOMEM,
4784 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4785 					"No tag action space.");
4786 	if (!mtr_flow_id) {
4787 		tag_action->type = RTE_FLOW_ACTION_TYPE_VOID;
4788 		goto exit;
4789 	}
4790 	/* Only default-policy Meter creates mtr flow id. */
4791 	if (fm->def_policy) {
4792 		mlx5_ipool_malloc(fm->flow_ipool, &tag_id);
4793 		if (!tag_id)
4794 			return rte_flow_error_set(error, ENOMEM,
4795 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4796 					"Failed to allocate meter flow id.");
4797 		flow_id = tag_id - 1;
4798 		flow_id_bits = MLX5_REG_BITS - __builtin_clz(flow_id);
4799 		flow_id_bits = flow_id_bits ? flow_id_bits : 1;
4800 		if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) >
4801 		    mtr_reg_bits) {
4802 			mlx5_ipool_free(fm->flow_ipool, tag_id);
4803 			return rte_flow_error_set(error, EINVAL,
4804 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4805 					"Meter flow id exceeds max limit.");
4806 		}
4807 		if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits)
4808 			priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits;
4809 	}
4810 	/* Prepare the suffix subflow items. */
4811 	tag_item = sfx_items++;
4812 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4813 		int item_type = items->type;
4814 
4815 		switch (item_type) {
4816 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4817 			memcpy(sfx_items, items, sizeof(*sfx_items));
4818 			sfx_items++;
4819 			break;
4820 		case RTE_FLOW_ITEM_TYPE_VLAN:
4821 			if (copy_vlan) {
4822 				memcpy(sfx_items, items, sizeof(*sfx_items));
4823 				/*
4824 				 * Convert to internal match item, it is used
4825 				 * for vlan push and set vid.
4826 				 */
4827 				sfx_items->type = (enum rte_flow_item_type)
4828 						  MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4829 				sfx_items++;
4830 			}
4831 			break;
4832 		default:
4833 			break;
4834 		}
4835 	}
4836 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4837 	sfx_items++;
4838 	/* Build tag actions and items for meter_id/meter flow_id. */
4839 	set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre;
4840 	tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4841 	tag_item_mask = tag_item_spec + 1;
4842 	/* Both flow_id and meter_id share the same register. */
4843 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4844 		.id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID,
4845 							    0, error),
4846 		.offset = mtr_id_offset,
4847 		.length = mtr_reg_bits,
4848 		.data = flow->meter,
4849 	};
4850 	/*
4851 	 * The color Reg bits used by flow_id are growing from
4852 	 * msb to lsb, so must do bit reverse for flow_id val in RegC.
4853 	 */
4854 	for (shift = 0; shift < flow_id_bits; shift++)
4855 		flow_id_reversed = (flow_id_reversed << 1) |
4856 				((flow_id >> shift) & 0x1);
4857 	set_tag->data |=
4858 		flow_id_reversed << (mtr_reg_bits - flow_id_bits);
4859 	tag_item_spec->id = set_tag->id;
4860 	tag_item_spec->data = set_tag->data << mtr_id_offset;
4861 	tag_item_mask->data = UINT32_MAX << mtr_id_offset;
4862 	tag_action->type = (enum rte_flow_action_type)
4863 				MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4864 	tag_action->conf = set_tag;
4865 	tag_item->type = (enum rte_flow_item_type)
4866 				MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4867 	tag_item->spec = tag_item_spec;
4868 	tag_item->last = NULL;
4869 	tag_item->mask = tag_item_mask;
4870 exit:
4871 	if (mtr_flow_id)
4872 		*mtr_flow_id = tag_id;
4873 	return 0;
4874 }
4875 
4876 /**
4877  * Split action list having QUEUE/RSS for metadata register copy.
4878  *
4879  * Once Q/RSS action is detected in user's action list, the flow action
4880  * should be split in order to copy metadata registers, which will happen in
4881  * RX_CP_TBL like,
4882  *   - CQE->flow_tag := reg_c[1] (MARK)
4883  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4884  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4885  * This is because the last action of each flow must be a terminal action
4886  * (QUEUE, RSS or DROP).
4887  *
4888  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4889  * stored and kept in the mlx5_flow structure per each sub_flow.
4890  *
4891  * The Q/RSS action is replaced with,
4892  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4893  * And the following JUMP action is added at the end,
4894  *   - JUMP, to RX_CP_TBL.
4895  *
4896  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4897  * flow_create_split_metadata() routine. The flow will look like,
4898  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4899  *
4900  * @param dev
4901  *   Pointer to Ethernet device.
4902  * @param[out] split_actions
4903  *   Pointer to store split actions to jump to CP_TBL.
4904  * @param[in] actions
4905  *   Pointer to the list of original flow actions.
4906  * @param[in] qrss
4907  *   Pointer to the Q/RSS action.
4908  * @param[in] actions_n
4909  *   Number of original actions.
4910  * @param[out] error
4911  *   Perform verbose error reporting if not NULL.
4912  *
4913  * @return
4914  *   non-zero unique flow_id on success, otherwise 0 and
4915  *   error/rte_error are set.
4916  */
4917 static uint32_t
4918 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4919 			  struct rte_flow_action *split_actions,
4920 			  const struct rte_flow_action *actions,
4921 			  const struct rte_flow_action *qrss,
4922 			  int actions_n, struct rte_flow_error *error)
4923 {
4924 	struct mlx5_priv *priv = dev->data->dev_private;
4925 	struct mlx5_rte_flow_action_set_tag *set_tag;
4926 	struct rte_flow_action_jump *jump;
4927 	const int qrss_idx = qrss - actions;
4928 	uint32_t flow_id = 0;
4929 	int ret = 0;
4930 
4931 	/*
4932 	 * Given actions will be split
4933 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4934 	 * - Add jump to mreg CP_TBL.
4935 	 * As a result, there will be one more action.
4936 	 */
4937 	++actions_n;
4938 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4939 	set_tag = (void *)(split_actions + actions_n);
4940 	/*
4941 	 * If tag action is not set to void(it means we are not the meter
4942 	 * suffix flow), add the tag action. Since meter suffix flow already
4943 	 * has the tag added.
4944 	 */
4945 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4946 		/*
4947 		 * Allocate the new subflow ID. This one is unique within
4948 		 * device and not shared with representors. Otherwise,
4949 		 * we would have to resolve multi-thread access synch
4950 		 * issue. Each flow on the shared device is appended
4951 		 * with source vport identifier, so the resulting
4952 		 * flows will be unique in the shared (by master and
4953 		 * representors) domain even if they have coinciding
4954 		 * IDs.
4955 		 */
4956 		mlx5_ipool_malloc(priv->sh->ipool
4957 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
4958 		if (!flow_id)
4959 			return rte_flow_error_set(error, ENOMEM,
4960 						  RTE_FLOW_ERROR_TYPE_ACTION,
4961 						  NULL, "can't allocate id "
4962 						  "for split Q/RSS subflow");
4963 		/* Internal SET_TAG action to set flow ID. */
4964 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
4965 			.data = flow_id,
4966 		};
4967 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4968 		if (ret < 0)
4969 			return ret;
4970 		set_tag->id = ret;
4971 		/* Construct new actions array. */
4972 		/* Replace QUEUE/RSS action. */
4973 		split_actions[qrss_idx] = (struct rte_flow_action){
4974 			.type = (enum rte_flow_action_type)
4975 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4976 			.conf = set_tag,
4977 		};
4978 	}
4979 	/* JUMP action to jump to mreg copy table (CP_TBL). */
4980 	jump = (void *)(set_tag + 1);
4981 	*jump = (struct rte_flow_action_jump){
4982 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4983 	};
4984 	split_actions[actions_n - 2] = (struct rte_flow_action){
4985 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
4986 		.conf = jump,
4987 	};
4988 	split_actions[actions_n - 1] = (struct rte_flow_action){
4989 		.type = RTE_FLOW_ACTION_TYPE_END,
4990 	};
4991 	return flow_id;
4992 }
4993 
4994 /**
4995  * Extend the given action list for Tx metadata copy.
4996  *
4997  * Copy the given action list to the ext_actions and add flow metadata register
4998  * copy action in order to copy reg_a set by WQE to reg_c[0].
4999  *
5000  * @param[out] ext_actions
5001  *   Pointer to the extended action list.
5002  * @param[in] actions
5003  *   Pointer to the list of actions.
5004  * @param[in] actions_n
5005  *   Number of actions in the list.
5006  * @param[out] error
5007  *   Perform verbose error reporting if not NULL.
5008  * @param[in] encap_idx
5009  *   The encap action inndex.
5010  *
5011  * @return
5012  *   0 on success, negative value otherwise
5013  */
5014 static int
5015 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
5016 		       struct rte_flow_action *ext_actions,
5017 		       const struct rte_flow_action *actions,
5018 		       int actions_n, struct rte_flow_error *error,
5019 		       int encap_idx)
5020 {
5021 	struct mlx5_flow_action_copy_mreg *cp_mreg =
5022 		(struct mlx5_flow_action_copy_mreg *)
5023 			(ext_actions + actions_n + 1);
5024 	int ret;
5025 
5026 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
5027 	if (ret < 0)
5028 		return ret;
5029 	cp_mreg->dst = ret;
5030 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
5031 	if (ret < 0)
5032 		return ret;
5033 	cp_mreg->src = ret;
5034 	if (encap_idx != 0)
5035 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
5036 	if (encap_idx == actions_n - 1) {
5037 		ext_actions[actions_n - 1] = (struct rte_flow_action){
5038 			.type = (enum rte_flow_action_type)
5039 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5040 			.conf = cp_mreg,
5041 		};
5042 		ext_actions[actions_n] = (struct rte_flow_action){
5043 			.type = RTE_FLOW_ACTION_TYPE_END,
5044 		};
5045 	} else {
5046 		ext_actions[encap_idx] = (struct rte_flow_action){
5047 			.type = (enum rte_flow_action_type)
5048 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5049 			.conf = cp_mreg,
5050 		};
5051 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
5052 				sizeof(*ext_actions) * (actions_n - encap_idx));
5053 	}
5054 	return 0;
5055 }
5056 
5057 /**
5058  * Check the match action from the action list.
5059  *
5060  * @param[in] actions
5061  *   Pointer to the list of actions.
5062  * @param[in] attr
5063  *   Flow rule attributes.
5064  * @param[in] action
5065  *   The action to be check if exist.
5066  * @param[out] match_action_pos
5067  *   Pointer to the position of the matched action if exists, otherwise is -1.
5068  * @param[out] qrss_action_pos
5069  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
5070  * @param[out] modify_after_mirror
5071  *   Pointer to the flag of modify action after FDB mirroring.
5072  *
5073  * @return
5074  *   > 0 the total number of actions.
5075  *   0 if not found match action in action list.
5076  */
5077 static int
5078 flow_check_match_action(const struct rte_flow_action actions[],
5079 			const struct rte_flow_attr *attr,
5080 			enum rte_flow_action_type action,
5081 			int *match_action_pos, int *qrss_action_pos,
5082 			int *modify_after_mirror)
5083 {
5084 	const struct rte_flow_action_sample *sample;
5085 	int actions_n = 0;
5086 	uint32_t ratio = 0;
5087 	int sub_type = 0;
5088 	int flag = 0;
5089 	int fdb_mirror = 0;
5090 
5091 	*match_action_pos = -1;
5092 	*qrss_action_pos = -1;
5093 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5094 		if (actions->type == action) {
5095 			flag = 1;
5096 			*match_action_pos = actions_n;
5097 		}
5098 		switch (actions->type) {
5099 		case RTE_FLOW_ACTION_TYPE_QUEUE:
5100 		case RTE_FLOW_ACTION_TYPE_RSS:
5101 			*qrss_action_pos = actions_n;
5102 			break;
5103 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
5104 			sample = actions->conf;
5105 			ratio = sample->ratio;
5106 			sub_type = ((const struct rte_flow_action *)
5107 					(sample->actions))->type;
5108 			if (ratio == 1 && attr->transfer)
5109 				fdb_mirror = 1;
5110 			break;
5111 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
5112 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
5113 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
5114 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
5115 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
5116 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
5117 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
5118 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
5119 		case RTE_FLOW_ACTION_TYPE_DEC_TTL:
5120 		case RTE_FLOW_ACTION_TYPE_SET_TTL:
5121 		case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
5122 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
5123 		case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
5124 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
5125 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
5126 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
5127 		case RTE_FLOW_ACTION_TYPE_FLAG:
5128 		case RTE_FLOW_ACTION_TYPE_MARK:
5129 		case RTE_FLOW_ACTION_TYPE_SET_META:
5130 		case RTE_FLOW_ACTION_TYPE_SET_TAG:
5131 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
5132 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5133 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5134 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
5135 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5136 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5137 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5138 		case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
5139 			if (fdb_mirror)
5140 				*modify_after_mirror = 1;
5141 			break;
5142 		default:
5143 			break;
5144 		}
5145 		actions_n++;
5146 	}
5147 	if (flag && fdb_mirror && !*modify_after_mirror) {
5148 		/* FDB mirroring uses the destination array to implement
5149 		 * instead of FLOW_SAMPLER object.
5150 		 */
5151 		if (sub_type != RTE_FLOW_ACTION_TYPE_END)
5152 			flag = 0;
5153 	}
5154 	/* Count RTE_FLOW_ACTION_TYPE_END. */
5155 	return flag ? actions_n + 1 : 0;
5156 }
5157 
5158 #define SAMPLE_SUFFIX_ITEM 2
5159 
5160 /**
5161  * Split the sample flow.
5162  *
5163  * As sample flow will split to two sub flow, sample flow with
5164  * sample action, the other actions will move to new suffix flow.
5165  *
5166  * Also add unique tag id with tag action in the sample flow,
5167  * the same tag id will be as match in the suffix flow.
5168  *
5169  * @param dev
5170  *   Pointer to Ethernet device.
5171  * @param[in] add_tag
5172  *   Add extra tag action flag.
5173  * @param[out] sfx_items
5174  *   Suffix flow match items (list terminated by the END pattern item).
5175  * @param[in] actions
5176  *   Associated actions (list terminated by the END action).
5177  * @param[out] actions_sfx
5178  *   Suffix flow actions.
5179  * @param[out] actions_pre
5180  *   Prefix flow actions.
5181  * @param[in] actions_n
5182  *  The total number of actions.
5183  * @param[in] sample_action_pos
5184  *   The sample action position.
5185  * @param[in] qrss_action_pos
5186  *   The Queue/RSS action position.
5187  * @param[in] jump_table
5188  *   Add extra jump action flag.
5189  * @param[out] error
5190  *   Perform verbose error reporting if not NULL.
5191  *
5192  * @return
5193  *   0 on success, or unique flow_id, a negative errno value
5194  *   otherwise and rte_errno is set.
5195  */
5196 static int
5197 flow_sample_split_prep(struct rte_eth_dev *dev,
5198 		       int add_tag,
5199 		       struct rte_flow_item sfx_items[],
5200 		       const struct rte_flow_action actions[],
5201 		       struct rte_flow_action actions_sfx[],
5202 		       struct rte_flow_action actions_pre[],
5203 		       int actions_n,
5204 		       int sample_action_pos,
5205 		       int qrss_action_pos,
5206 		       int jump_table,
5207 		       struct rte_flow_error *error)
5208 {
5209 	struct mlx5_priv *priv = dev->data->dev_private;
5210 	struct mlx5_rte_flow_action_set_tag *set_tag;
5211 	struct mlx5_rte_flow_item_tag *tag_spec;
5212 	struct mlx5_rte_flow_item_tag *tag_mask;
5213 	struct rte_flow_action_jump *jump_action;
5214 	uint32_t tag_id = 0;
5215 	int index;
5216 	int append_index = 0;
5217 	int ret;
5218 
5219 	if (sample_action_pos < 0)
5220 		return rte_flow_error_set(error, EINVAL,
5221 					  RTE_FLOW_ERROR_TYPE_ACTION,
5222 					  NULL, "invalid position of sample "
5223 					  "action in list");
5224 	/* Prepare the actions for prefix and suffix flow. */
5225 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
5226 		index = qrss_action_pos;
5227 		/* Put the preceding the Queue/RSS action into prefix flow. */
5228 		if (index != 0)
5229 			memcpy(actions_pre, actions,
5230 			       sizeof(struct rte_flow_action) * index);
5231 		/* Put others preceding the sample action into prefix flow. */
5232 		if (sample_action_pos > index + 1)
5233 			memcpy(actions_pre + index, actions + index + 1,
5234 			       sizeof(struct rte_flow_action) *
5235 			       (sample_action_pos - index - 1));
5236 		index = sample_action_pos - 1;
5237 		/* Put Queue/RSS action into Suffix flow. */
5238 		memcpy(actions_sfx, actions + qrss_action_pos,
5239 		       sizeof(struct rte_flow_action));
5240 		actions_sfx++;
5241 	} else {
5242 		index = sample_action_pos;
5243 		if (index != 0)
5244 			memcpy(actions_pre, actions,
5245 			       sizeof(struct rte_flow_action) * index);
5246 	}
5247 	/* For CX5, add an extra tag action for NIC-RX and E-Switch ingress.
5248 	 * For CX6DX and above, metadata registers Cx preserve their value,
5249 	 * add an extra tag action for NIC-RX and E-Switch Domain.
5250 	 */
5251 	if (add_tag) {
5252 		/* Prepare the prefix tag action. */
5253 		append_index++;
5254 		set_tag = (void *)(actions_pre + actions_n + append_index);
5255 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
5256 		if (ret < 0)
5257 			return ret;
5258 		mlx5_ipool_malloc(priv->sh->ipool
5259 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
5260 		*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5261 			.id = ret,
5262 			.data = tag_id,
5263 		};
5264 		/* Prepare the suffix subflow items. */
5265 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
5266 		tag_spec->data = tag_id;
5267 		tag_spec->id = set_tag->id;
5268 		tag_mask = tag_spec + 1;
5269 		tag_mask->data = UINT32_MAX;
5270 		sfx_items[0] = (struct rte_flow_item){
5271 			.type = (enum rte_flow_item_type)
5272 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5273 			.spec = tag_spec,
5274 			.last = NULL,
5275 			.mask = tag_mask,
5276 		};
5277 		sfx_items[1] = (struct rte_flow_item){
5278 			.type = (enum rte_flow_item_type)
5279 				RTE_FLOW_ITEM_TYPE_END,
5280 		};
5281 		/* Prepare the tag action in prefix subflow. */
5282 		actions_pre[index++] =
5283 			(struct rte_flow_action){
5284 			.type = (enum rte_flow_action_type)
5285 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5286 			.conf = set_tag,
5287 		};
5288 	}
5289 	memcpy(actions_pre + index, actions + sample_action_pos,
5290 	       sizeof(struct rte_flow_action));
5291 	index += 1;
5292 	/* For the modify action after the sample action in E-Switch mirroring,
5293 	 * Add the extra jump action in prefix subflow and jump into the next
5294 	 * table, then do the modify action in the new table.
5295 	 */
5296 	if (jump_table) {
5297 		/* Prepare the prefix jump action. */
5298 		append_index++;
5299 		jump_action = (void *)(actions_pre + actions_n + append_index);
5300 		jump_action->group = jump_table;
5301 		actions_pre[index++] =
5302 			(struct rte_flow_action){
5303 			.type = (enum rte_flow_action_type)
5304 				RTE_FLOW_ACTION_TYPE_JUMP,
5305 			.conf = jump_action,
5306 		};
5307 	}
5308 	actions_pre[index] = (struct rte_flow_action){
5309 		.type = (enum rte_flow_action_type)
5310 			RTE_FLOW_ACTION_TYPE_END,
5311 	};
5312 	/* Put the actions after sample into Suffix flow. */
5313 	memcpy(actions_sfx, actions + sample_action_pos + 1,
5314 	       sizeof(struct rte_flow_action) *
5315 	       (actions_n - sample_action_pos - 1));
5316 	return tag_id;
5317 }
5318 
5319 /**
5320  * The splitting for metadata feature.
5321  *
5322  * - Q/RSS action on NIC Rx should be split in order to pass by
5323  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
5324  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
5325  *
5326  * - All the actions on NIC Tx should have a mreg copy action to
5327  *   copy reg_a from WQE to reg_c[0].
5328  *
5329  * @param dev
5330  *   Pointer to Ethernet device.
5331  * @param[in] flow
5332  *   Parent flow structure pointer.
5333  * @param[in] attr
5334  *   Flow rule attributes.
5335  * @param[in] items
5336  *   Pattern specification (list terminated by the END pattern item).
5337  * @param[in] actions
5338  *   Associated actions (list terminated by the END action).
5339  * @param[in] flow_split_info
5340  *   Pointer to flow split info structure.
5341  * @param[out] error
5342  *   Perform verbose error reporting if not NULL.
5343  * @return
5344  *   0 on success, negative value otherwise
5345  */
5346 static int
5347 flow_create_split_metadata(struct rte_eth_dev *dev,
5348 			   struct rte_flow *flow,
5349 			   const struct rte_flow_attr *attr,
5350 			   const struct rte_flow_item items[],
5351 			   const struct rte_flow_action actions[],
5352 			   struct mlx5_flow_split_info *flow_split_info,
5353 			   struct rte_flow_error *error)
5354 {
5355 	struct mlx5_priv *priv = dev->data->dev_private;
5356 	struct mlx5_dev_config *config = &priv->config;
5357 	const struct rte_flow_action *qrss = NULL;
5358 	struct rte_flow_action *ext_actions = NULL;
5359 	struct mlx5_flow *dev_flow = NULL;
5360 	uint32_t qrss_id = 0;
5361 	int mtr_sfx = 0;
5362 	size_t act_size;
5363 	int actions_n;
5364 	int encap_idx;
5365 	int ret;
5366 
5367 	/* Check whether extensive metadata feature is engaged. */
5368 	if (!config->dv_flow_en ||
5369 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
5370 	    !mlx5_flow_ext_mreg_supported(dev))
5371 		return flow_create_split_inner(dev, flow, NULL, attr, items,
5372 					       actions, flow_split_info, error);
5373 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
5374 							   &encap_idx);
5375 	if (qrss) {
5376 		/* Exclude hairpin flows from splitting. */
5377 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
5378 			const struct rte_flow_action_queue *queue;
5379 
5380 			queue = qrss->conf;
5381 			if (mlx5_rxq_get_type(dev, queue->index) ==
5382 			    MLX5_RXQ_TYPE_HAIRPIN)
5383 				qrss = NULL;
5384 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
5385 			const struct rte_flow_action_rss *rss;
5386 
5387 			rss = qrss->conf;
5388 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
5389 			    MLX5_RXQ_TYPE_HAIRPIN)
5390 				qrss = NULL;
5391 		}
5392 	}
5393 	if (qrss) {
5394 		/* Check if it is in meter suffix table. */
5395 		mtr_sfx = attr->group == (attr->transfer ?
5396 			  (MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5397 			  MLX5_FLOW_TABLE_LEVEL_METER);
5398 		/*
5399 		 * Q/RSS action on NIC Rx should be split in order to pass by
5400 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
5401 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
5402 		 */
5403 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5404 			   sizeof(struct rte_flow_action_set_tag) +
5405 			   sizeof(struct rte_flow_action_jump);
5406 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5407 					  SOCKET_ID_ANY);
5408 		if (!ext_actions)
5409 			return rte_flow_error_set(error, ENOMEM,
5410 						  RTE_FLOW_ERROR_TYPE_ACTION,
5411 						  NULL, "no memory to split "
5412 						  "metadata flow");
5413 		/*
5414 		 * If we are the suffix flow of meter, tag already exist.
5415 		 * Set the tag action to void.
5416 		 */
5417 		if (mtr_sfx)
5418 			ext_actions[qrss - actions].type =
5419 						RTE_FLOW_ACTION_TYPE_VOID;
5420 		else
5421 			ext_actions[qrss - actions].type =
5422 						(enum rte_flow_action_type)
5423 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5424 		/*
5425 		 * Create the new actions list with removed Q/RSS action
5426 		 * and appended set tag and jump to register copy table
5427 		 * (RX_CP_TBL). We should preallocate unique tag ID here
5428 		 * in advance, because it is needed for set tag action.
5429 		 */
5430 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
5431 						    qrss, actions_n, error);
5432 		if (!mtr_sfx && !qrss_id) {
5433 			ret = -rte_errno;
5434 			goto exit;
5435 		}
5436 	} else if (attr->egress && !attr->transfer) {
5437 		/*
5438 		 * All the actions on NIC Tx should have a metadata register
5439 		 * copy action to copy reg_a from WQE to reg_c[meta]
5440 		 */
5441 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5442 			   sizeof(struct mlx5_flow_action_copy_mreg);
5443 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5444 					  SOCKET_ID_ANY);
5445 		if (!ext_actions)
5446 			return rte_flow_error_set(error, ENOMEM,
5447 						  RTE_FLOW_ERROR_TYPE_ACTION,
5448 						  NULL, "no memory to split "
5449 						  "metadata flow");
5450 		/* Create the action list appended with copy register. */
5451 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
5452 					     actions_n, error, encap_idx);
5453 		if (ret < 0)
5454 			goto exit;
5455 	}
5456 	/* Add the unmodified original or prefix subflow. */
5457 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5458 				      items, ext_actions ? ext_actions :
5459 				      actions, flow_split_info, error);
5460 	if (ret < 0)
5461 		goto exit;
5462 	MLX5_ASSERT(dev_flow);
5463 	if (qrss) {
5464 		const struct rte_flow_attr q_attr = {
5465 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
5466 			.ingress = 1,
5467 		};
5468 		/* Internal PMD action to set register. */
5469 		struct mlx5_rte_flow_item_tag q_tag_spec = {
5470 			.data = qrss_id,
5471 			.id = REG_NON,
5472 		};
5473 		struct rte_flow_item q_items[] = {
5474 			{
5475 				.type = (enum rte_flow_item_type)
5476 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5477 				.spec = &q_tag_spec,
5478 				.last = NULL,
5479 				.mask = NULL,
5480 			},
5481 			{
5482 				.type = RTE_FLOW_ITEM_TYPE_END,
5483 			},
5484 		};
5485 		struct rte_flow_action q_actions[] = {
5486 			{
5487 				.type = qrss->type,
5488 				.conf = qrss->conf,
5489 			},
5490 			{
5491 				.type = RTE_FLOW_ACTION_TYPE_END,
5492 			},
5493 		};
5494 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
5495 
5496 		/*
5497 		 * Configure the tag item only if there is no meter subflow.
5498 		 * Since tag is already marked in the meter suffix subflow
5499 		 * we can just use the meter suffix items as is.
5500 		 */
5501 		if (qrss_id) {
5502 			/* Not meter subflow. */
5503 			MLX5_ASSERT(!mtr_sfx);
5504 			/*
5505 			 * Put unique id in prefix flow due to it is destroyed
5506 			 * after suffix flow and id will be freed after there
5507 			 * is no actual flows with this id and identifier
5508 			 * reallocation becomes possible (for example, for
5509 			 * other flows in other threads).
5510 			 */
5511 			dev_flow->handle->split_flow_id = qrss_id;
5512 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
5513 						   error);
5514 			if (ret < 0)
5515 				goto exit;
5516 			q_tag_spec.id = ret;
5517 		}
5518 		dev_flow = NULL;
5519 		/* Add suffix subflow to execute Q/RSS. */
5520 		flow_split_info->prefix_layers = layers;
5521 		flow_split_info->prefix_mark = 0;
5522 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5523 					      &q_attr, mtr_sfx ? items :
5524 					      q_items, q_actions,
5525 					      flow_split_info, error);
5526 		if (ret < 0)
5527 			goto exit;
5528 		/* qrss ID should be freed if failed. */
5529 		qrss_id = 0;
5530 		MLX5_ASSERT(dev_flow);
5531 	}
5532 
5533 exit:
5534 	/*
5535 	 * We do not destroy the partially created sub_flows in case of error.
5536 	 * These ones are included into parent flow list and will be destroyed
5537 	 * by flow_drv_destroy.
5538 	 */
5539 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
5540 			qrss_id);
5541 	mlx5_free(ext_actions);
5542 	return ret;
5543 }
5544 
5545 /**
5546  * Create meter internal drop flow with the original pattern.
5547  *
5548  * @param dev
5549  *   Pointer to Ethernet device.
5550  * @param[in] flow
5551  *   Parent flow structure pointer.
5552  * @param[in] attr
5553  *   Flow rule attributes.
5554  * @param[in] items
5555  *   Pattern specification (list terminated by the END pattern item).
5556  * @param[in] flow_split_info
5557  *   Pointer to flow split info structure.
5558  * @param[in] fm
5559  *   Pointer to flow meter structure.
5560  * @param[out] error
5561  *   Perform verbose error reporting if not NULL.
5562  * @return
5563  *   0 on success, negative value otherwise
5564  */
5565 static uint32_t
5566 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev,
5567 			struct rte_flow *flow,
5568 			const struct rte_flow_attr *attr,
5569 			const struct rte_flow_item items[],
5570 			struct mlx5_flow_split_info *flow_split_info,
5571 			struct mlx5_flow_meter_info *fm,
5572 			struct rte_flow_error *error)
5573 {
5574 	struct mlx5_flow *dev_flow = NULL;
5575 	struct rte_flow_attr drop_attr = *attr;
5576 	struct rte_flow_action drop_actions[3];
5577 	struct mlx5_flow_split_info drop_split_info = *flow_split_info;
5578 
5579 	MLX5_ASSERT(fm->drop_cnt);
5580 	drop_actions[0].type =
5581 		(enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
5582 	drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt;
5583 	drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP;
5584 	drop_actions[1].conf = NULL;
5585 	drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END;
5586 	drop_actions[2].conf = NULL;
5587 	drop_split_info.external = false;
5588 	drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT;
5589 	drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP;
5590 	drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER;
5591 	return flow_create_split_inner(dev, flow, &dev_flow,
5592 				&drop_attr, items, drop_actions,
5593 				&drop_split_info, error);
5594 }
5595 
5596 /**
5597  * The splitting for meter feature.
5598  *
5599  * - The meter flow will be split to two flows as prefix and
5600  *   suffix flow. The packets make sense only it pass the prefix
5601  *   meter action.
5602  *
5603  * - Reg_C_5 is used for the packet to match betweend prefix and
5604  *   suffix flow.
5605  *
5606  * @param dev
5607  *   Pointer to Ethernet device.
5608  * @param[in] flow
5609  *   Parent flow structure pointer.
5610  * @param[in] attr
5611  *   Flow rule attributes.
5612  * @param[in] items
5613  *   Pattern specification (list terminated by the END pattern item).
5614  * @param[in] actions
5615  *   Associated actions (list terminated by the END action).
5616  * @param[in] flow_split_info
5617  *   Pointer to flow split info structure.
5618  * @param[out] error
5619  *   Perform verbose error reporting if not NULL.
5620  * @return
5621  *   0 on success, negative value otherwise
5622  */
5623 static int
5624 flow_create_split_meter(struct rte_eth_dev *dev,
5625 			struct rte_flow *flow,
5626 			const struct rte_flow_attr *attr,
5627 			const struct rte_flow_item items[],
5628 			const struct rte_flow_action actions[],
5629 			struct mlx5_flow_split_info *flow_split_info,
5630 			struct rte_flow_error *error)
5631 {
5632 	struct mlx5_priv *priv = dev->data->dev_private;
5633 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
5634 	struct rte_flow_action *sfx_actions = NULL;
5635 	struct rte_flow_action *pre_actions = NULL;
5636 	struct rte_flow_item *sfx_items = NULL;
5637 	struct mlx5_flow *dev_flow = NULL;
5638 	struct rte_flow_attr sfx_attr = *attr;
5639 	struct mlx5_flow_meter_info *fm = NULL;
5640 	uint8_t skip_scale_restore;
5641 	bool has_mtr = false;
5642 	bool has_modify = false;
5643 	bool set_mtr_reg = true;
5644 	uint32_t meter_id = 0;
5645 	uint32_t mtr_idx = 0;
5646 	uint32_t mtr_flow_id = 0;
5647 	size_t act_size;
5648 	size_t item_size;
5649 	int actions_n = 0;
5650 	int ret = 0;
5651 
5652 	if (priv->mtr_en)
5653 		actions_n = flow_check_meter_action(dev, actions, &has_mtr,
5654 						    &has_modify, &meter_id);
5655 	if (has_mtr) {
5656 		if (flow->meter) {
5657 			fm = flow_dv_meter_find_by_idx(priv, flow->meter);
5658 			if (!fm)
5659 				return rte_flow_error_set(error, EINVAL,
5660 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5661 						NULL, "Meter not found.");
5662 		} else {
5663 			fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx);
5664 			if (!fm)
5665 				return rte_flow_error_set(error, EINVAL,
5666 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5667 						NULL, "Meter not found.");
5668 			ret = mlx5_flow_meter_attach(priv, fm,
5669 						     &sfx_attr, error);
5670 			if (ret)
5671 				return -rte_errno;
5672 			flow->meter = mtr_idx;
5673 		}
5674 		MLX5_ASSERT(wks);
5675 		wks->fm = fm;
5676 		/*
5677 		 * If it isn't default-policy Meter, and
5678 		 * 1. There's no action in flow to change
5679 		 *    packet (modify/encap/decap etc.), OR
5680 		 * 2. No drop count needed for this meter.
5681 		 * no need to use regC to save meter id anymore.
5682 		 */
5683 		if (!fm->def_policy && (!has_modify || !fm->drop_cnt))
5684 			set_mtr_reg = false;
5685 		/* Prefix actions: meter, decap, encap, tag, jump, end. */
5686 		act_size = sizeof(struct rte_flow_action) * (actions_n + 6) +
5687 			   sizeof(struct mlx5_rte_flow_action_set_tag);
5688 		/* Suffix items: tag, vlan, port id, end. */
5689 #define METER_SUFFIX_ITEM 4
5690 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
5691 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5692 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
5693 					  0, SOCKET_ID_ANY);
5694 		if (!sfx_actions)
5695 			return rte_flow_error_set(error, ENOMEM,
5696 						  RTE_FLOW_ERROR_TYPE_ACTION,
5697 						  NULL, "no memory to split "
5698 						  "meter flow");
5699 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
5700 			     act_size);
5701 		/* There's no suffix flow for meter of non-default policy. */
5702 		if (!fm->def_policy)
5703 			pre_actions = sfx_actions + 1;
5704 		else
5705 			pre_actions = sfx_actions + actions_n;
5706 		ret = flow_meter_split_prep(dev, flow, fm, &sfx_attr,
5707 					    items, sfx_items, actions,
5708 					    sfx_actions, pre_actions,
5709 					    (set_mtr_reg ? &mtr_flow_id : NULL),
5710 					    error);
5711 		if (ret) {
5712 			ret = -rte_errno;
5713 			goto exit;
5714 		}
5715 		/* Add the prefix subflow. */
5716 		flow_split_info->prefix_mark = 0;
5717 		skip_scale_restore = flow_split_info->skip_scale;
5718 		flow_split_info->skip_scale |=
5719 			1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
5720 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5721 					      attr, items, pre_actions,
5722 					      flow_split_info, error);
5723 		flow_split_info->skip_scale = skip_scale_restore;
5724 		if (ret) {
5725 			if (mtr_flow_id)
5726 				mlx5_ipool_free(fm->flow_ipool, mtr_flow_id);
5727 			ret = -rte_errno;
5728 			goto exit;
5729 		}
5730 		if (mtr_flow_id) {
5731 			dev_flow->handle->split_flow_id = mtr_flow_id;
5732 			dev_flow->handle->is_meter_flow_id = 1;
5733 		}
5734 		if (!fm->def_policy) {
5735 			if (!set_mtr_reg && fm->drop_cnt)
5736 				ret =
5737 			flow_meter_create_drop_flow_with_org_pattern(dev, flow,
5738 							&sfx_attr, items,
5739 							flow_split_info,
5740 							fm, error);
5741 			goto exit;
5742 		}
5743 		/* Setting the sfx group atrr. */
5744 		sfx_attr.group = sfx_attr.transfer ?
5745 				(MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5746 				 MLX5_FLOW_TABLE_LEVEL_METER;
5747 		flow_split_info->prefix_layers =
5748 				flow_get_prefix_layer_flags(dev_flow);
5749 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5750 		flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX;
5751 	}
5752 	/* Add the prefix subflow. */
5753 	ret = flow_create_split_metadata(dev, flow,
5754 					 &sfx_attr, sfx_items ?
5755 					 sfx_items : items,
5756 					 sfx_actions ? sfx_actions : actions,
5757 					 flow_split_info, error);
5758 exit:
5759 	if (sfx_actions)
5760 		mlx5_free(sfx_actions);
5761 	return ret;
5762 }
5763 
5764 /**
5765  * The splitting for sample feature.
5766  *
5767  * Once Sample action is detected in the action list, the flow actions should
5768  * be split into prefix sub flow and suffix sub flow.
5769  *
5770  * The original items remain in the prefix sub flow, all actions preceding the
5771  * sample action and the sample action itself will be copied to the prefix
5772  * sub flow, the actions following the sample action will be copied to the
5773  * suffix sub flow, Queue action always be located in the suffix sub flow.
5774  *
5775  * In order to make the packet from prefix sub flow matches with suffix sub
5776  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
5777  * flow uses tag item with the unique flow id.
5778  *
5779  * @param dev
5780  *   Pointer to Ethernet device.
5781  * @param[in] flow
5782  *   Parent flow structure pointer.
5783  * @param[in] attr
5784  *   Flow rule attributes.
5785  * @param[in] items
5786  *   Pattern specification (list terminated by the END pattern item).
5787  * @param[in] actions
5788  *   Associated actions (list terminated by the END action).
5789  * @param[in] flow_split_info
5790  *   Pointer to flow split info structure.
5791  * @param[out] error
5792  *   Perform verbose error reporting if not NULL.
5793  * @return
5794  *   0 on success, negative value otherwise
5795  */
5796 static int
5797 flow_create_split_sample(struct rte_eth_dev *dev,
5798 			 struct rte_flow *flow,
5799 			 const struct rte_flow_attr *attr,
5800 			 const struct rte_flow_item items[],
5801 			 const struct rte_flow_action actions[],
5802 			 struct mlx5_flow_split_info *flow_split_info,
5803 			 struct rte_flow_error *error)
5804 {
5805 	struct mlx5_priv *priv = dev->data->dev_private;
5806 	struct rte_flow_action *sfx_actions = NULL;
5807 	struct rte_flow_action *pre_actions = NULL;
5808 	struct rte_flow_item *sfx_items = NULL;
5809 	struct mlx5_flow *dev_flow = NULL;
5810 	struct rte_flow_attr sfx_attr = *attr;
5811 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5812 	struct mlx5_flow_dv_sample_resource *sample_res;
5813 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
5814 	struct mlx5_flow_tbl_resource *sfx_tbl;
5815 #endif
5816 	size_t act_size;
5817 	size_t item_size;
5818 	uint32_t fdb_tx = 0;
5819 	int32_t tag_id = 0;
5820 	int actions_n = 0;
5821 	int sample_action_pos;
5822 	int qrss_action_pos;
5823 	int add_tag = 0;
5824 	int modify_after_mirror = 0;
5825 	uint16_t jump_table = 0;
5826 	const uint32_t next_ft_step = 1;
5827 	int ret = 0;
5828 
5829 	if (priv->sampler_en)
5830 		actions_n = flow_check_match_action(actions, attr,
5831 					RTE_FLOW_ACTION_TYPE_SAMPLE,
5832 					&sample_action_pos, &qrss_action_pos,
5833 					&modify_after_mirror);
5834 	if (actions_n) {
5835 		/* The prefix actions must includes sample, tag, end. */
5836 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
5837 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
5838 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
5839 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5840 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
5841 					  item_size), 0, SOCKET_ID_ANY);
5842 		if (!sfx_actions)
5843 			return rte_flow_error_set(error, ENOMEM,
5844 						  RTE_FLOW_ERROR_TYPE_ACTION,
5845 						  NULL, "no memory to split "
5846 						  "sample flow");
5847 		/* The representor_id is -1 for uplink. */
5848 		fdb_tx = (attr->transfer && priv->representor_id != -1);
5849 		/*
5850 		 * When reg_c_preserve is set, metadata registers Cx preserve
5851 		 * their value even through packet duplication.
5852 		 */
5853 		add_tag = (!fdb_tx || priv->config.hca_attr.reg_c_preserve);
5854 		if (add_tag)
5855 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
5856 					+ act_size);
5857 		if (modify_after_mirror)
5858 			jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR +
5859 				     next_ft_step;
5860 		pre_actions = sfx_actions + actions_n;
5861 		tag_id = flow_sample_split_prep(dev, add_tag, sfx_items,
5862 						actions, sfx_actions,
5863 						pre_actions, actions_n,
5864 						sample_action_pos,
5865 						qrss_action_pos, jump_table,
5866 						error);
5867 		if (tag_id < 0 || (add_tag && !tag_id)) {
5868 			ret = -rte_errno;
5869 			goto exit;
5870 		}
5871 		if (modify_after_mirror)
5872 			flow_split_info->skip_scale =
5873 					1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
5874 		/* Add the prefix subflow. */
5875 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5876 					      items, pre_actions,
5877 					      flow_split_info, error);
5878 		if (ret) {
5879 			ret = -rte_errno;
5880 			goto exit;
5881 		}
5882 		dev_flow->handle->split_flow_id = tag_id;
5883 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5884 		if (!modify_after_mirror) {
5885 			/* Set the sfx group attr. */
5886 			sample_res = (struct mlx5_flow_dv_sample_resource *)
5887 						dev_flow->dv.sample_res;
5888 			sfx_tbl = (struct mlx5_flow_tbl_resource *)
5889 						sample_res->normal_path_tbl;
5890 			sfx_tbl_data = container_of(sfx_tbl,
5891 						struct mlx5_flow_tbl_data_entry,
5892 						tbl);
5893 			sfx_attr.group = sfx_attr.transfer ?
5894 			(sfx_tbl_data->level - 1) : sfx_tbl_data->level;
5895 		} else {
5896 			MLX5_ASSERT(attr->transfer);
5897 			sfx_attr.group = jump_table;
5898 		}
5899 		flow_split_info->prefix_layers =
5900 				flow_get_prefix_layer_flags(dev_flow);
5901 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5902 		/* Suffix group level already be scaled with factor, set
5903 		 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale
5904 		 * again in translation.
5905 		 */
5906 		flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT;
5907 #endif
5908 	}
5909 	/* Add the suffix subflow. */
5910 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
5911 				      sfx_items ? sfx_items : items,
5912 				      sfx_actions ? sfx_actions : actions,
5913 				      flow_split_info, error);
5914 exit:
5915 	if (sfx_actions)
5916 		mlx5_free(sfx_actions);
5917 	return ret;
5918 }
5919 
5920 /**
5921  * Split the flow to subflow set. The splitters might be linked
5922  * in the chain, like this:
5923  * flow_create_split_outer() calls:
5924  *   flow_create_split_meter() calls:
5925  *     flow_create_split_metadata(meter_subflow_0) calls:
5926  *       flow_create_split_inner(metadata_subflow_0)
5927  *       flow_create_split_inner(metadata_subflow_1)
5928  *       flow_create_split_inner(metadata_subflow_2)
5929  *     flow_create_split_metadata(meter_subflow_1) calls:
5930  *       flow_create_split_inner(metadata_subflow_0)
5931  *       flow_create_split_inner(metadata_subflow_1)
5932  *       flow_create_split_inner(metadata_subflow_2)
5933  *
5934  * This provide flexible way to add new levels of flow splitting.
5935  * The all of successfully created subflows are included to the
5936  * parent flow dev_flow list.
5937  *
5938  * @param dev
5939  *   Pointer to Ethernet device.
5940  * @param[in] flow
5941  *   Parent flow structure pointer.
5942  * @param[in] attr
5943  *   Flow rule attributes.
5944  * @param[in] items
5945  *   Pattern specification (list terminated by the END pattern item).
5946  * @param[in] actions
5947  *   Associated actions (list terminated by the END action).
5948  * @param[in] flow_split_info
5949  *   Pointer to flow split info structure.
5950  * @param[out] error
5951  *   Perform verbose error reporting if not NULL.
5952  * @return
5953  *   0 on success, negative value otherwise
5954  */
5955 static int
5956 flow_create_split_outer(struct rte_eth_dev *dev,
5957 			struct rte_flow *flow,
5958 			const struct rte_flow_attr *attr,
5959 			const struct rte_flow_item items[],
5960 			const struct rte_flow_action actions[],
5961 			struct mlx5_flow_split_info *flow_split_info,
5962 			struct rte_flow_error *error)
5963 {
5964 	int ret;
5965 
5966 	ret = flow_create_split_sample(dev, flow, attr, items,
5967 				       actions, flow_split_info, error);
5968 	MLX5_ASSERT(ret <= 0);
5969 	return ret;
5970 }
5971 
5972 static inline struct mlx5_flow_tunnel *
5973 flow_tunnel_from_rule(const struct mlx5_flow *flow)
5974 {
5975 	struct mlx5_flow_tunnel *tunnel;
5976 
5977 #pragma GCC diagnostic push
5978 #pragma GCC diagnostic ignored "-Wcast-qual"
5979 	tunnel = (typeof(tunnel))flow->tunnel;
5980 #pragma GCC diagnostic pop
5981 
5982 	return tunnel;
5983 }
5984 
5985 /**
5986  * Adjust flow RSS workspace if needed.
5987  *
5988  * @param wks
5989  *   Pointer to thread flow work space.
5990  * @param rss_desc
5991  *   Pointer to RSS descriptor.
5992  * @param[in] nrssq_num
5993  *   New RSS queue number.
5994  *
5995  * @return
5996  *   0 on success, -1 otherwise and rte_errno is set.
5997  */
5998 static int
5999 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
6000 			  struct mlx5_flow_rss_desc *rss_desc,
6001 			  uint32_t nrssq_num)
6002 {
6003 	if (likely(nrssq_num <= wks->rssq_num))
6004 		return 0;
6005 	rss_desc->queue = realloc(rss_desc->queue,
6006 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
6007 	if (!rss_desc->queue) {
6008 		rte_errno = ENOMEM;
6009 		return -1;
6010 	}
6011 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
6012 	return 0;
6013 }
6014 
6015 /**
6016  * Create a flow and add it to @p list.
6017  *
6018  * @param dev
6019  *   Pointer to Ethernet device.
6020  * @param list
6021  *   Pointer to a TAILQ flow list. If this parameter NULL,
6022  *   no list insertion occurred, flow is just created,
6023  *   this is caller's responsibility to track the
6024  *   created flow.
6025  * @param[in] attr
6026  *   Flow rule attributes.
6027  * @param[in] items
6028  *   Pattern specification (list terminated by the END pattern item).
6029  * @param[in] actions
6030  *   Associated actions (list terminated by the END action).
6031  * @param[in] external
6032  *   This flow rule is created by request external to PMD.
6033  * @param[out] error
6034  *   Perform verbose error reporting if not NULL.
6035  *
6036  * @return
6037  *   A flow index on success, 0 otherwise and rte_errno is set.
6038  */
6039 static uint32_t
6040 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
6041 		 const struct rte_flow_attr *attr,
6042 		 const struct rte_flow_item items[],
6043 		 const struct rte_flow_action original_actions[],
6044 		 bool external, struct rte_flow_error *error)
6045 {
6046 	struct mlx5_priv *priv = dev->data->dev_private;
6047 	struct rte_flow *flow = NULL;
6048 	struct mlx5_flow *dev_flow;
6049 	const struct rte_flow_action_rss *rss = NULL;
6050 	struct mlx5_translated_action_handle
6051 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6052 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6053 	union {
6054 		struct mlx5_flow_expand_rss buf;
6055 		uint8_t buffer[2048];
6056 	} expand_buffer;
6057 	union {
6058 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6059 		uint8_t buffer[2048];
6060 	} actions_rx;
6061 	union {
6062 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6063 		uint8_t buffer[2048];
6064 	} actions_hairpin_tx;
6065 	union {
6066 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
6067 		uint8_t buffer[2048];
6068 	} items_tx;
6069 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
6070 	struct mlx5_flow_rss_desc *rss_desc;
6071 	const struct rte_flow_action *p_actions_rx;
6072 	uint32_t i;
6073 	uint32_t idx = 0;
6074 	int hairpin_flow;
6075 	struct rte_flow_attr attr_tx = { .priority = 0 };
6076 	const struct rte_flow_action *actions;
6077 	struct rte_flow_action *translated_actions = NULL;
6078 	struct mlx5_flow_tunnel *tunnel;
6079 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
6080 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
6081 	struct mlx5_flow_split_info flow_split_info = {
6082 		.external = !!external,
6083 		.skip_scale = 0,
6084 		.flow_idx = 0,
6085 		.prefix_mark = 0,
6086 		.prefix_layers = 0,
6087 		.table_id = 0
6088 	};
6089 	int ret;
6090 
6091 	MLX5_ASSERT(wks);
6092 	rss_desc = &wks->rss_desc;
6093 	ret = flow_action_handles_translate(dev, original_actions,
6094 					    indir_actions,
6095 					    &indir_actions_n,
6096 					    &translated_actions, error);
6097 	if (ret < 0) {
6098 		MLX5_ASSERT(translated_actions == NULL);
6099 		return 0;
6100 	}
6101 	actions = translated_actions ? translated_actions : original_actions;
6102 	p_actions_rx = actions;
6103 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6104 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
6105 				external, hairpin_flow, error);
6106 	if (ret < 0)
6107 		goto error_before_hairpin_split;
6108 	flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
6109 	if (!flow) {
6110 		rte_errno = ENOMEM;
6111 		goto error_before_hairpin_split;
6112 	}
6113 	if (hairpin_flow > 0) {
6114 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
6115 			rte_errno = EINVAL;
6116 			goto error_before_hairpin_split;
6117 		}
6118 		flow_hairpin_split(dev, actions, actions_rx.actions,
6119 				   actions_hairpin_tx.actions, items_tx.items,
6120 				   idx);
6121 		p_actions_rx = actions_rx.actions;
6122 	}
6123 	flow_split_info.flow_idx = idx;
6124 	flow->drv_type = flow_get_drv_type(dev, attr);
6125 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
6126 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
6127 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
6128 	/* RSS Action only works on NIC RX domain */
6129 	if (attr->ingress && !attr->transfer)
6130 		rss = flow_get_rss_action(dev, p_actions_rx);
6131 	if (rss) {
6132 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
6133 			return 0;
6134 		/*
6135 		 * The following information is required by
6136 		 * mlx5_flow_hashfields_adjust() in advance.
6137 		 */
6138 		rss_desc->level = rss->level;
6139 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
6140 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
6141 	}
6142 	flow->dev_handles = 0;
6143 	if (rss && rss->types) {
6144 		unsigned int graph_root;
6145 
6146 		graph_root = find_graph_root(items, rss->level);
6147 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
6148 					   items, rss->types,
6149 					   mlx5_support_expansion, graph_root);
6150 		MLX5_ASSERT(ret > 0 &&
6151 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
6152 	} else {
6153 		buf->entries = 1;
6154 		buf->entry[0].pattern = (void *)(uintptr_t)items;
6155 	}
6156 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions,
6157 						      indir_actions_n);
6158 	for (i = 0; i < buf->entries; ++i) {
6159 		/* Initialize flow split data. */
6160 		flow_split_info.prefix_layers = 0;
6161 		flow_split_info.prefix_mark = 0;
6162 		flow_split_info.skip_scale = 0;
6163 		/*
6164 		 * The splitter may create multiple dev_flows,
6165 		 * depending on configuration. In the simplest
6166 		 * case it just creates unmodified original flow.
6167 		 */
6168 		ret = flow_create_split_outer(dev, flow, attr,
6169 					      buf->entry[i].pattern,
6170 					      p_actions_rx, &flow_split_info,
6171 					      error);
6172 		if (ret < 0)
6173 			goto error;
6174 		if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) {
6175 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
6176 							   p_actions_rx,
6177 							   idx,
6178 							   wks->flows[0].tunnel,
6179 							   &default_miss_ctx,
6180 							   error);
6181 			if (ret < 0) {
6182 				mlx5_free(default_miss_ctx.queue);
6183 				goto error;
6184 			}
6185 		}
6186 	}
6187 	/* Create the tx flow. */
6188 	if (hairpin_flow) {
6189 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
6190 		attr_tx.ingress = 0;
6191 		attr_tx.egress = 1;
6192 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
6193 					 actions_hairpin_tx.actions,
6194 					 idx, error);
6195 		if (!dev_flow)
6196 			goto error;
6197 		dev_flow->flow = flow;
6198 		dev_flow->external = 0;
6199 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
6200 			      dev_flow->handle, next);
6201 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
6202 					 items_tx.items,
6203 					 actions_hairpin_tx.actions, error);
6204 		if (ret < 0)
6205 			goto error;
6206 	}
6207 	/*
6208 	 * Update the metadata register copy table. If extensive
6209 	 * metadata feature is enabled and registers are supported
6210 	 * we might create the extra rte_flow for each unique
6211 	 * MARK/FLAG action ID.
6212 	 *
6213 	 * The table is updated for ingress Flows only, because
6214 	 * the egress Flows belong to the different device and
6215 	 * copy table should be updated in peer NIC Rx domain.
6216 	 */
6217 	if (attr->ingress &&
6218 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
6219 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
6220 		if (ret)
6221 			goto error;
6222 	}
6223 	/*
6224 	 * If the flow is external (from application) OR device is started,
6225 	 * OR mreg discover, then apply immediately.
6226 	 */
6227 	if (external || dev->data->dev_started ||
6228 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
6229 	     attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) {
6230 		ret = flow_drv_apply(dev, flow, error);
6231 		if (ret < 0)
6232 			goto error;
6233 	}
6234 	if (list) {
6235 		rte_spinlock_lock(&priv->flow_list_lock);
6236 		ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
6237 			     flow, next);
6238 		rte_spinlock_unlock(&priv->flow_list_lock);
6239 	}
6240 	flow_rxq_flags_set(dev, flow);
6241 	rte_free(translated_actions);
6242 	tunnel = flow_tunnel_from_rule(wks->flows);
6243 	if (tunnel) {
6244 		flow->tunnel = 1;
6245 		flow->tunnel_id = tunnel->tunnel_id;
6246 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
6247 		mlx5_free(default_miss_ctx.queue);
6248 	}
6249 	mlx5_flow_pop_thread_workspace();
6250 	return idx;
6251 error:
6252 	MLX5_ASSERT(flow);
6253 	ret = rte_errno; /* Save rte_errno before cleanup. */
6254 	flow_mreg_del_copy_action(dev, flow);
6255 	flow_drv_destroy(dev, flow);
6256 	if (rss_desc->shared_rss)
6257 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
6258 			mlx5_ipool_get
6259 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
6260 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
6261 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
6262 	rte_errno = ret; /* Restore rte_errno. */
6263 	ret = rte_errno;
6264 	rte_errno = ret;
6265 	mlx5_flow_pop_thread_workspace();
6266 error_before_hairpin_split:
6267 	rte_free(translated_actions);
6268 	return 0;
6269 }
6270 
6271 /**
6272  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
6273  * incoming packets to table 1.
6274  *
6275  * Other flow rules, requested for group n, will be created in
6276  * e-switch table n+1.
6277  * Jump action to e-switch group n will be created to group n+1.
6278  *
6279  * Used when working in switchdev mode, to utilise advantages of table 1
6280  * and above.
6281  *
6282  * @param dev
6283  *   Pointer to Ethernet device.
6284  *
6285  * @return
6286  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
6287  */
6288 struct rte_flow *
6289 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
6290 {
6291 	const struct rte_flow_attr attr = {
6292 		.group = 0,
6293 		.priority = 0,
6294 		.ingress = 1,
6295 		.egress = 0,
6296 		.transfer = 1,
6297 	};
6298 	const struct rte_flow_item pattern = {
6299 		.type = RTE_FLOW_ITEM_TYPE_END,
6300 	};
6301 	struct rte_flow_action_jump jump = {
6302 		.group = 1,
6303 	};
6304 	const struct rte_flow_action actions[] = {
6305 		{
6306 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6307 			.conf = &jump,
6308 		},
6309 		{
6310 			.type = RTE_FLOW_ACTION_TYPE_END,
6311 		},
6312 	};
6313 	struct mlx5_priv *priv = dev->data->dev_private;
6314 	struct rte_flow_error error;
6315 
6316 	return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
6317 						   &attr, &pattern,
6318 						   actions, false, &error);
6319 }
6320 
6321 /**
6322  * Validate a flow supported by the NIC.
6323  *
6324  * @see rte_flow_validate()
6325  * @see rte_flow_ops
6326  */
6327 int
6328 mlx5_flow_validate(struct rte_eth_dev *dev,
6329 		   const struct rte_flow_attr *attr,
6330 		   const struct rte_flow_item items[],
6331 		   const struct rte_flow_action original_actions[],
6332 		   struct rte_flow_error *error)
6333 {
6334 	int hairpin_flow;
6335 	struct mlx5_translated_action_handle
6336 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6337 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6338 	const struct rte_flow_action *actions;
6339 	struct rte_flow_action *translated_actions = NULL;
6340 	int ret = flow_action_handles_translate(dev, original_actions,
6341 						indir_actions,
6342 						&indir_actions_n,
6343 						&translated_actions, error);
6344 
6345 	if (ret)
6346 		return ret;
6347 	actions = translated_actions ? translated_actions : original_actions;
6348 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6349 	ret = flow_drv_validate(dev, attr, items, actions,
6350 				true, hairpin_flow, error);
6351 	rte_free(translated_actions);
6352 	return ret;
6353 }
6354 
6355 /**
6356  * Create a flow.
6357  *
6358  * @see rte_flow_create()
6359  * @see rte_flow_ops
6360  */
6361 struct rte_flow *
6362 mlx5_flow_create(struct rte_eth_dev *dev,
6363 		 const struct rte_flow_attr *attr,
6364 		 const struct rte_flow_item items[],
6365 		 const struct rte_flow_action actions[],
6366 		 struct rte_flow_error *error)
6367 {
6368 	struct mlx5_priv *priv = dev->data->dev_private;
6369 
6370 	/*
6371 	 * If the device is not started yet, it is not allowed to created a
6372 	 * flow from application. PMD default flows and traffic control flows
6373 	 * are not affected.
6374 	 */
6375 	if (unlikely(!dev->data->dev_started)) {
6376 		DRV_LOG(DEBUG, "port %u is not started when "
6377 			"inserting a flow", dev->data->port_id);
6378 		rte_flow_error_set(error, ENODEV,
6379 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6380 				   NULL,
6381 				   "port not started");
6382 		return NULL;
6383 	}
6384 
6385 	return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
6386 				  attr, items, actions, true, error);
6387 }
6388 
6389 /**
6390  * Destroy a flow in a list.
6391  *
6392  * @param dev
6393  *   Pointer to Ethernet device.
6394  * @param list
6395  *   Pointer to the Indexed flow list. If this parameter NULL,
6396  *   there is no flow removal from the list. Be noted that as
6397  *   flow is add to the indexed list, memory of the indexed
6398  *   list points to maybe changed as flow destroyed.
6399  * @param[in] flow_idx
6400  *   Index of flow to destroy.
6401  */
6402 static void
6403 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
6404 		  uint32_t flow_idx)
6405 {
6406 	struct mlx5_priv *priv = dev->data->dev_private;
6407 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6408 					       [MLX5_IPOOL_RTE_FLOW], flow_idx);
6409 
6410 	if (!flow)
6411 		return;
6412 	/*
6413 	 * Update RX queue flags only if port is started, otherwise it is
6414 	 * already clean.
6415 	 */
6416 	if (dev->data->dev_started)
6417 		flow_rxq_flags_trim(dev, flow);
6418 	flow_drv_destroy(dev, flow);
6419 	if (list) {
6420 		rte_spinlock_lock(&priv->flow_list_lock);
6421 		ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
6422 			     flow_idx, flow, next);
6423 		rte_spinlock_unlock(&priv->flow_list_lock);
6424 	}
6425 	if (flow->tunnel) {
6426 		struct mlx5_flow_tunnel *tunnel;
6427 
6428 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
6429 		RTE_VERIFY(tunnel);
6430 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
6431 			mlx5_flow_tunnel_free(dev, tunnel);
6432 	}
6433 	flow_mreg_del_copy_action(dev, flow);
6434 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
6435 }
6436 
6437 /**
6438  * Destroy all flows.
6439  *
6440  * @param dev
6441  *   Pointer to Ethernet device.
6442  * @param list
6443  *   Pointer to the Indexed flow list.
6444  * @param active
6445  *   If flushing is called avtively.
6446  */
6447 void
6448 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
6449 {
6450 	uint32_t num_flushed = 0;
6451 
6452 	while (*list) {
6453 		flow_list_destroy(dev, list, *list);
6454 		num_flushed++;
6455 	}
6456 	if (active) {
6457 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
6458 			dev->data->port_id, num_flushed);
6459 	}
6460 }
6461 
6462 /**
6463  * Stop all default actions for flows.
6464  *
6465  * @param dev
6466  *   Pointer to Ethernet device.
6467  */
6468 void
6469 mlx5_flow_stop_default(struct rte_eth_dev *dev)
6470 {
6471 	flow_mreg_del_default_copy_action(dev);
6472 	flow_rxq_flags_clear(dev);
6473 }
6474 
6475 /**
6476  * Start all default actions for flows.
6477  *
6478  * @param dev
6479  *   Pointer to Ethernet device.
6480  * @return
6481  *   0 on success, a negative errno value otherwise and rte_errno is set.
6482  */
6483 int
6484 mlx5_flow_start_default(struct rte_eth_dev *dev)
6485 {
6486 	struct rte_flow_error error;
6487 
6488 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
6489 	return flow_mreg_add_default_copy_action(dev, &error);
6490 }
6491 
6492 /**
6493  * Release key of thread specific flow workspace data.
6494  */
6495 void
6496 flow_release_workspace(void *data)
6497 {
6498 	struct mlx5_flow_workspace *wks = data;
6499 	struct mlx5_flow_workspace *next;
6500 
6501 	while (wks) {
6502 		next = wks->next;
6503 		free(wks->rss_desc.queue);
6504 		free(wks);
6505 		wks = next;
6506 	}
6507 }
6508 
6509 /**
6510  * Get thread specific current flow workspace.
6511  *
6512  * @return pointer to thread specific flow workspace data, NULL on error.
6513  */
6514 struct mlx5_flow_workspace*
6515 mlx5_flow_get_thread_workspace(void)
6516 {
6517 	struct mlx5_flow_workspace *data;
6518 
6519 	data = mlx5_flow_os_get_specific_workspace();
6520 	MLX5_ASSERT(data && data->inuse);
6521 	if (!data || !data->inuse)
6522 		DRV_LOG(ERR, "flow workspace not initialized.");
6523 	return data;
6524 }
6525 
6526 /**
6527  * Allocate and init new flow workspace.
6528  *
6529  * @return pointer to flow workspace data, NULL on error.
6530  */
6531 static struct mlx5_flow_workspace*
6532 flow_alloc_thread_workspace(void)
6533 {
6534 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
6535 
6536 	if (!data) {
6537 		DRV_LOG(ERR, "Failed to allocate flow workspace "
6538 			"memory.");
6539 		return NULL;
6540 	}
6541 	data->rss_desc.queue = calloc(1,
6542 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
6543 	if (!data->rss_desc.queue)
6544 		goto err;
6545 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
6546 	return data;
6547 err:
6548 	if (data->rss_desc.queue)
6549 		free(data->rss_desc.queue);
6550 	free(data);
6551 	return NULL;
6552 }
6553 
6554 /**
6555  * Get new thread specific flow workspace.
6556  *
6557  * If current workspace inuse, create new one and set as current.
6558  *
6559  * @return pointer to thread specific flow workspace data, NULL on error.
6560  */
6561 static struct mlx5_flow_workspace*
6562 mlx5_flow_push_thread_workspace(void)
6563 {
6564 	struct mlx5_flow_workspace *curr;
6565 	struct mlx5_flow_workspace *data;
6566 
6567 	curr = mlx5_flow_os_get_specific_workspace();
6568 	if (!curr) {
6569 		data = flow_alloc_thread_workspace();
6570 		if (!data)
6571 			return NULL;
6572 	} else if (!curr->inuse) {
6573 		data = curr;
6574 	} else if (curr->next) {
6575 		data = curr->next;
6576 	} else {
6577 		data = flow_alloc_thread_workspace();
6578 		if (!data)
6579 			return NULL;
6580 		curr->next = data;
6581 		data->prev = curr;
6582 	}
6583 	data->inuse = 1;
6584 	data->flow_idx = 0;
6585 	/* Set as current workspace */
6586 	if (mlx5_flow_os_set_specific_workspace(data))
6587 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6588 	return data;
6589 }
6590 
6591 /**
6592  * Close current thread specific flow workspace.
6593  *
6594  * If previous workspace available, set it as current.
6595  *
6596  * @return pointer to thread specific flow workspace data, NULL on error.
6597  */
6598 static void
6599 mlx5_flow_pop_thread_workspace(void)
6600 {
6601 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
6602 
6603 	if (!data)
6604 		return;
6605 	if (!data->inuse) {
6606 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
6607 		return;
6608 	}
6609 	data->inuse = 0;
6610 	if (!data->prev)
6611 		return;
6612 	if (mlx5_flow_os_set_specific_workspace(data->prev))
6613 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6614 }
6615 
6616 /**
6617  * Verify the flow list is empty
6618  *
6619  * @param dev
6620  *  Pointer to Ethernet device.
6621  *
6622  * @return the number of flows not released.
6623  */
6624 int
6625 mlx5_flow_verify(struct rte_eth_dev *dev)
6626 {
6627 	struct mlx5_priv *priv = dev->data->dev_private;
6628 	struct rte_flow *flow;
6629 	uint32_t idx;
6630 	int ret = 0;
6631 
6632 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
6633 		      flow, next) {
6634 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
6635 			dev->data->port_id, (void *)flow);
6636 		++ret;
6637 	}
6638 	return ret;
6639 }
6640 
6641 /**
6642  * Enable default hairpin egress flow.
6643  *
6644  * @param dev
6645  *   Pointer to Ethernet device.
6646  * @param queue
6647  *   The queue index.
6648  *
6649  * @return
6650  *   0 on success, a negative errno value otherwise and rte_errno is set.
6651  */
6652 int
6653 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
6654 			    uint32_t queue)
6655 {
6656 	struct mlx5_priv *priv = dev->data->dev_private;
6657 	const struct rte_flow_attr attr = {
6658 		.egress = 1,
6659 		.priority = 0,
6660 	};
6661 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
6662 		.queue = queue,
6663 	};
6664 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
6665 		.queue = UINT32_MAX,
6666 	};
6667 	struct rte_flow_item items[] = {
6668 		{
6669 			.type = (enum rte_flow_item_type)
6670 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
6671 			.spec = &queue_spec,
6672 			.last = NULL,
6673 			.mask = &queue_mask,
6674 		},
6675 		{
6676 			.type = RTE_FLOW_ITEM_TYPE_END,
6677 		},
6678 	};
6679 	struct rte_flow_action_jump jump = {
6680 		.group = MLX5_HAIRPIN_TX_TABLE,
6681 	};
6682 	struct rte_flow_action actions[2];
6683 	uint32_t flow_idx;
6684 	struct rte_flow_error error;
6685 
6686 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
6687 	actions[0].conf = &jump;
6688 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
6689 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6690 				&attr, items, actions, false, &error);
6691 	if (!flow_idx) {
6692 		DRV_LOG(DEBUG,
6693 			"Failed to create ctrl flow: rte_errno(%d),"
6694 			" type(%d), message(%s)",
6695 			rte_errno, error.type,
6696 			error.message ? error.message : " (no stated reason)");
6697 		return -rte_errno;
6698 	}
6699 	return 0;
6700 }
6701 
6702 /**
6703  * Enable a control flow configured from the control plane.
6704  *
6705  * @param dev
6706  *   Pointer to Ethernet device.
6707  * @param eth_spec
6708  *   An Ethernet flow spec to apply.
6709  * @param eth_mask
6710  *   An Ethernet flow mask to apply.
6711  * @param vlan_spec
6712  *   A VLAN flow spec to apply.
6713  * @param vlan_mask
6714  *   A VLAN flow mask to apply.
6715  *
6716  * @return
6717  *   0 on success, a negative errno value otherwise and rte_errno is set.
6718  */
6719 int
6720 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
6721 		    struct rte_flow_item_eth *eth_spec,
6722 		    struct rte_flow_item_eth *eth_mask,
6723 		    struct rte_flow_item_vlan *vlan_spec,
6724 		    struct rte_flow_item_vlan *vlan_mask)
6725 {
6726 	struct mlx5_priv *priv = dev->data->dev_private;
6727 	const struct rte_flow_attr attr = {
6728 		.ingress = 1,
6729 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
6730 	};
6731 	struct rte_flow_item items[] = {
6732 		{
6733 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6734 			.spec = eth_spec,
6735 			.last = NULL,
6736 			.mask = eth_mask,
6737 		},
6738 		{
6739 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
6740 					      RTE_FLOW_ITEM_TYPE_END,
6741 			.spec = vlan_spec,
6742 			.last = NULL,
6743 			.mask = vlan_mask,
6744 		},
6745 		{
6746 			.type = RTE_FLOW_ITEM_TYPE_END,
6747 		},
6748 	};
6749 	uint16_t queue[priv->reta_idx_n];
6750 	struct rte_flow_action_rss action_rss = {
6751 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
6752 		.level = 0,
6753 		.types = priv->rss_conf.rss_hf,
6754 		.key_len = priv->rss_conf.rss_key_len,
6755 		.queue_num = priv->reta_idx_n,
6756 		.key = priv->rss_conf.rss_key,
6757 		.queue = queue,
6758 	};
6759 	struct rte_flow_action actions[] = {
6760 		{
6761 			.type = RTE_FLOW_ACTION_TYPE_RSS,
6762 			.conf = &action_rss,
6763 		},
6764 		{
6765 			.type = RTE_FLOW_ACTION_TYPE_END,
6766 		},
6767 	};
6768 	uint32_t flow_idx;
6769 	struct rte_flow_error error;
6770 	unsigned int i;
6771 
6772 	if (!priv->reta_idx_n || !priv->rxqs_n) {
6773 		return 0;
6774 	}
6775 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
6776 		action_rss.types = 0;
6777 	for (i = 0; i != priv->reta_idx_n; ++i)
6778 		queue[i] = (*priv->reta_idx)[i];
6779 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6780 				&attr, items, actions, false, &error);
6781 	if (!flow_idx)
6782 		return -rte_errno;
6783 	return 0;
6784 }
6785 
6786 /**
6787  * Enable a flow control configured from the control plane.
6788  *
6789  * @param dev
6790  *   Pointer to Ethernet device.
6791  * @param eth_spec
6792  *   An Ethernet flow spec to apply.
6793  * @param eth_mask
6794  *   An Ethernet flow mask to apply.
6795  *
6796  * @return
6797  *   0 on success, a negative errno value otherwise and rte_errno is set.
6798  */
6799 int
6800 mlx5_ctrl_flow(struct rte_eth_dev *dev,
6801 	       struct rte_flow_item_eth *eth_spec,
6802 	       struct rte_flow_item_eth *eth_mask)
6803 {
6804 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
6805 }
6806 
6807 /**
6808  * Create default miss flow rule matching lacp traffic
6809  *
6810  * @param dev
6811  *   Pointer to Ethernet device.
6812  * @param eth_spec
6813  *   An Ethernet flow spec to apply.
6814  *
6815  * @return
6816  *   0 on success, a negative errno value otherwise and rte_errno is set.
6817  */
6818 int
6819 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
6820 {
6821 	struct mlx5_priv *priv = dev->data->dev_private;
6822 	/*
6823 	 * The LACP matching is done by only using ether type since using
6824 	 * a multicast dst mac causes kernel to give low priority to this flow.
6825 	 */
6826 	static const struct rte_flow_item_eth lacp_spec = {
6827 		.type = RTE_BE16(0x8809),
6828 	};
6829 	static const struct rte_flow_item_eth lacp_mask = {
6830 		.type = 0xffff,
6831 	};
6832 	const struct rte_flow_attr attr = {
6833 		.ingress = 1,
6834 	};
6835 	struct rte_flow_item items[] = {
6836 		{
6837 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6838 			.spec = &lacp_spec,
6839 			.mask = &lacp_mask,
6840 		},
6841 		{
6842 			.type = RTE_FLOW_ITEM_TYPE_END,
6843 		},
6844 	};
6845 	struct rte_flow_action actions[] = {
6846 		{
6847 			.type = (enum rte_flow_action_type)
6848 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
6849 		},
6850 		{
6851 			.type = RTE_FLOW_ACTION_TYPE_END,
6852 		},
6853 	};
6854 	struct rte_flow_error error;
6855 	uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6856 				&attr, items, actions, false, &error);
6857 
6858 	if (!flow_idx)
6859 		return -rte_errno;
6860 	return 0;
6861 }
6862 
6863 /**
6864  * Destroy a flow.
6865  *
6866  * @see rte_flow_destroy()
6867  * @see rte_flow_ops
6868  */
6869 int
6870 mlx5_flow_destroy(struct rte_eth_dev *dev,
6871 		  struct rte_flow *flow,
6872 		  struct rte_flow_error *error __rte_unused)
6873 {
6874 	struct mlx5_priv *priv = dev->data->dev_private;
6875 
6876 	flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
6877 	return 0;
6878 }
6879 
6880 /**
6881  * Destroy all flows.
6882  *
6883  * @see rte_flow_flush()
6884  * @see rte_flow_ops
6885  */
6886 int
6887 mlx5_flow_flush(struct rte_eth_dev *dev,
6888 		struct rte_flow_error *error __rte_unused)
6889 {
6890 	struct mlx5_priv *priv = dev->data->dev_private;
6891 
6892 	mlx5_flow_list_flush(dev, &priv->flows, false);
6893 	return 0;
6894 }
6895 
6896 /**
6897  * Isolated mode.
6898  *
6899  * @see rte_flow_isolate()
6900  * @see rte_flow_ops
6901  */
6902 int
6903 mlx5_flow_isolate(struct rte_eth_dev *dev,
6904 		  int enable,
6905 		  struct rte_flow_error *error)
6906 {
6907 	struct mlx5_priv *priv = dev->data->dev_private;
6908 
6909 	if (dev->data->dev_started) {
6910 		rte_flow_error_set(error, EBUSY,
6911 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6912 				   NULL,
6913 				   "port must be stopped first");
6914 		return -rte_errno;
6915 	}
6916 	priv->isolated = !!enable;
6917 	if (enable)
6918 		dev->dev_ops = &mlx5_dev_ops_isolate;
6919 	else
6920 		dev->dev_ops = &mlx5_dev_ops;
6921 
6922 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
6923 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
6924 
6925 	return 0;
6926 }
6927 
6928 /**
6929  * Query a flow.
6930  *
6931  * @see rte_flow_query()
6932  * @see rte_flow_ops
6933  */
6934 static int
6935 flow_drv_query(struct rte_eth_dev *dev,
6936 	       uint32_t flow_idx,
6937 	       const struct rte_flow_action *actions,
6938 	       void *data,
6939 	       struct rte_flow_error *error)
6940 {
6941 	struct mlx5_priv *priv = dev->data->dev_private;
6942 	const struct mlx5_flow_driver_ops *fops;
6943 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6944 					       [MLX5_IPOOL_RTE_FLOW],
6945 					       flow_idx);
6946 	enum mlx5_flow_drv_type ftype;
6947 
6948 	if (!flow) {
6949 		return rte_flow_error_set(error, ENOENT,
6950 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6951 			  NULL,
6952 			  "invalid flow handle");
6953 	}
6954 	ftype = flow->drv_type;
6955 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
6956 	fops = flow_get_drv_ops(ftype);
6957 
6958 	return fops->query(dev, flow, actions, data, error);
6959 }
6960 
6961 /**
6962  * Query a flow.
6963  *
6964  * @see rte_flow_query()
6965  * @see rte_flow_ops
6966  */
6967 int
6968 mlx5_flow_query(struct rte_eth_dev *dev,
6969 		struct rte_flow *flow,
6970 		const struct rte_flow_action *actions,
6971 		void *data,
6972 		struct rte_flow_error *error)
6973 {
6974 	int ret;
6975 
6976 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
6977 			     error);
6978 	if (ret < 0)
6979 		return ret;
6980 	return 0;
6981 }
6982 
6983 /**
6984  * Get rte_flow callbacks.
6985  *
6986  * @param dev
6987  *   Pointer to Ethernet device structure.
6988  * @param ops
6989  *   Pointer to operation-specific structure.
6990  *
6991  * @return 0
6992  */
6993 int
6994 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
6995 		  const struct rte_flow_ops **ops)
6996 {
6997 	*ops = &mlx5_flow_ops;
6998 	return 0;
6999 }
7000 
7001 /**
7002  * Validate meter policy actions.
7003  * Dispatcher for action type specific validation.
7004  *
7005  * @param[in] dev
7006  *   Pointer to the Ethernet device structure.
7007  * @param[in] action
7008  *   The meter policy action object to validate.
7009  * @param[in] attr
7010  *   Attributes of flow to determine steering domain.
7011  * @param[out] is_rss
7012  *   Is RSS or not.
7013  * @param[out] domain_bitmap
7014  *   Domain bitmap.
7015  * @param[out] is_def_policy
7016  *   Is default policy or not.
7017  * @param[out] error
7018  *   Perform verbose error reporting if not NULL. Initialized in case of
7019  *   error only.
7020  *
7021  * @return
7022  *   0 on success, otherwise negative errno value.
7023  */
7024 int
7025 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev,
7026 			const struct rte_flow_action *actions[RTE_COLORS],
7027 			struct rte_flow_attr *attr,
7028 			bool *is_rss,
7029 			uint8_t *domain_bitmap,
7030 			bool *is_def_policy,
7031 			struct rte_mtr_error *error)
7032 {
7033 	const struct mlx5_flow_driver_ops *fops;
7034 
7035 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7036 	return fops->validate_mtr_acts(dev, actions, attr,
7037 			is_rss, domain_bitmap, is_def_policy, error);
7038 }
7039 
7040 /**
7041  * Destroy the meter table set.
7042  *
7043  * @param[in] dev
7044  *   Pointer to Ethernet device.
7045  * @param[in] mtr_policy
7046  *   Meter policy struct.
7047  */
7048 void
7049 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev,
7050 		      struct mlx5_flow_meter_policy *mtr_policy)
7051 {
7052 	const struct mlx5_flow_driver_ops *fops;
7053 
7054 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7055 	fops->destroy_mtr_acts(dev, mtr_policy);
7056 }
7057 
7058 /**
7059  * Create policy action, lock free,
7060  * (mutex should be acquired by caller).
7061  * Dispatcher for action type specific call.
7062  *
7063  * @param[in] dev
7064  *   Pointer to the Ethernet device structure.
7065  * @param[in] mtr_policy
7066  *   Meter policy struct.
7067  * @param[in] action
7068  *   Action specification used to create meter actions.
7069  * @param[out] error
7070  *   Perform verbose error reporting if not NULL. Initialized in case of
7071  *   error only.
7072  *
7073  * @return
7074  *   0 on success, otherwise negative errno value.
7075  */
7076 int
7077 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev,
7078 		      struct mlx5_flow_meter_policy *mtr_policy,
7079 		      const struct rte_flow_action *actions[RTE_COLORS],
7080 		      struct rte_mtr_error *error)
7081 {
7082 	const struct mlx5_flow_driver_ops *fops;
7083 
7084 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7085 	return fops->create_mtr_acts(dev, mtr_policy, actions, error);
7086 }
7087 
7088 /**
7089  * Create policy rules, lock free,
7090  * (mutex should be acquired by caller).
7091  * Dispatcher for action type specific call.
7092  *
7093  * @param[in] dev
7094  *   Pointer to the Ethernet device structure.
7095  * @param[in] mtr_policy
7096  *   Meter policy struct.
7097  *
7098  * @return
7099  *   0 on success, -1 otherwise.
7100  */
7101 int
7102 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev,
7103 			     struct mlx5_flow_meter_policy *mtr_policy)
7104 {
7105 	const struct mlx5_flow_driver_ops *fops;
7106 
7107 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7108 	return fops->create_policy_rules(dev, mtr_policy);
7109 }
7110 
7111 /**
7112  * Destroy policy rules, lock free,
7113  * (mutex should be acquired by caller).
7114  * Dispatcher for action type specific call.
7115  *
7116  * @param[in] dev
7117  *   Pointer to the Ethernet device structure.
7118  * @param[in] mtr_policy
7119  *   Meter policy struct.
7120  */
7121 void
7122 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev,
7123 			     struct mlx5_flow_meter_policy *mtr_policy)
7124 {
7125 	const struct mlx5_flow_driver_ops *fops;
7126 
7127 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7128 	fops->destroy_policy_rules(dev, mtr_policy);
7129 }
7130 
7131 /**
7132  * Destroy the default policy table set.
7133  *
7134  * @param[in] dev
7135  *   Pointer to Ethernet device.
7136  */
7137 void
7138 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev)
7139 {
7140 	const struct mlx5_flow_driver_ops *fops;
7141 
7142 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7143 	fops->destroy_def_policy(dev);
7144 }
7145 
7146 /**
7147  * Destroy the default policy table set.
7148  *
7149  * @param[in] dev
7150  *   Pointer to Ethernet device.
7151  *
7152  * @return
7153  *   0 on success, -1 otherwise.
7154  */
7155 int
7156 mlx5_flow_create_def_policy(struct rte_eth_dev *dev)
7157 {
7158 	const struct mlx5_flow_driver_ops *fops;
7159 
7160 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7161 	return fops->create_def_policy(dev);
7162 }
7163 
7164 /**
7165  * Create the needed meter and suffix tables.
7166  *
7167  * @param[in] dev
7168  *   Pointer to Ethernet device.
7169  *
7170  * @return
7171  *   0 on success, -1 otherwise.
7172  */
7173 int
7174 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
7175 			struct mlx5_flow_meter_info *fm,
7176 			uint32_t mtr_idx,
7177 			uint8_t domain_bitmap)
7178 {
7179 	const struct mlx5_flow_driver_ops *fops;
7180 
7181 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7182 	return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap);
7183 }
7184 
7185 /**
7186  * Destroy the meter table set.
7187  *
7188  * @param[in] dev
7189  *   Pointer to Ethernet device.
7190  * @param[in] tbl
7191  *   Pointer to the meter table set.
7192  */
7193 void
7194 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
7195 			   struct mlx5_flow_meter_info *fm)
7196 {
7197 	const struct mlx5_flow_driver_ops *fops;
7198 
7199 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7200 	fops->destroy_mtr_tbls(dev, fm);
7201 }
7202 
7203 /**
7204  * Destroy the global meter drop table.
7205  *
7206  * @param[in] dev
7207  *   Pointer to Ethernet device.
7208  */
7209 void
7210 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev)
7211 {
7212 	const struct mlx5_flow_driver_ops *fops;
7213 
7214 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7215 	fops->destroy_mtr_drop_tbls(dev);
7216 }
7217 
7218 /**
7219  * Allocate the needed aso flow meter id.
7220  *
7221  * @param[in] dev
7222  *   Pointer to Ethernet device.
7223  *
7224  * @return
7225  *   Index to aso flow meter on success, NULL otherwise.
7226  */
7227 uint32_t
7228 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev)
7229 {
7230 	const struct mlx5_flow_driver_ops *fops;
7231 
7232 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7233 	return fops->create_meter(dev);
7234 }
7235 
7236 /**
7237  * Free the aso flow meter id.
7238  *
7239  * @param[in] dev
7240  *   Pointer to Ethernet device.
7241  * @param[in] mtr_idx
7242  *  Index to aso flow meter to be free.
7243  *
7244  * @return
7245  *   0 on success.
7246  */
7247 void
7248 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx)
7249 {
7250 	const struct mlx5_flow_driver_ops *fops;
7251 
7252 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7253 	fops->free_meter(dev, mtr_idx);
7254 }
7255 
7256 /**
7257  * Allocate a counter.
7258  *
7259  * @param[in] dev
7260  *   Pointer to Ethernet device structure.
7261  *
7262  * @return
7263  *   Index to allocated counter  on success, 0 otherwise.
7264  */
7265 uint32_t
7266 mlx5_counter_alloc(struct rte_eth_dev *dev)
7267 {
7268 	const struct mlx5_flow_driver_ops *fops;
7269 	struct rte_flow_attr attr = { .transfer = 0 };
7270 
7271 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7272 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7273 		return fops->counter_alloc(dev);
7274 	}
7275 	DRV_LOG(ERR,
7276 		"port %u counter allocate is not supported.",
7277 		 dev->data->port_id);
7278 	return 0;
7279 }
7280 
7281 /**
7282  * Free a counter.
7283  *
7284  * @param[in] dev
7285  *   Pointer to Ethernet device structure.
7286  * @param[in] cnt
7287  *   Index to counter to be free.
7288  */
7289 void
7290 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
7291 {
7292 	const struct mlx5_flow_driver_ops *fops;
7293 	struct rte_flow_attr attr = { .transfer = 0 };
7294 
7295 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7296 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7297 		fops->counter_free(dev, cnt);
7298 		return;
7299 	}
7300 	DRV_LOG(ERR,
7301 		"port %u counter free is not supported.",
7302 		 dev->data->port_id);
7303 }
7304 
7305 /**
7306  * Query counter statistics.
7307  *
7308  * @param[in] dev
7309  *   Pointer to Ethernet device structure.
7310  * @param[in] cnt
7311  *   Index to counter to query.
7312  * @param[in] clear
7313  *   Set to clear counter statistics.
7314  * @param[out] pkts
7315  *   The counter hits packets number to save.
7316  * @param[out] bytes
7317  *   The counter hits bytes number to save.
7318  *
7319  * @return
7320  *   0 on success, a negative errno value otherwise.
7321  */
7322 int
7323 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
7324 		   bool clear, uint64_t *pkts, uint64_t *bytes)
7325 {
7326 	const struct mlx5_flow_driver_ops *fops;
7327 	struct rte_flow_attr attr = { .transfer = 0 };
7328 
7329 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7330 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7331 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
7332 	}
7333 	DRV_LOG(ERR,
7334 		"port %u counter query is not supported.",
7335 		 dev->data->port_id);
7336 	return -ENOTSUP;
7337 }
7338 
7339 /**
7340  * Allocate a new memory for the counter values wrapped by all the needed
7341  * management.
7342  *
7343  * @param[in] sh
7344  *   Pointer to mlx5_dev_ctx_shared object.
7345  *
7346  * @return
7347  *   0 on success, a negative errno value otherwise.
7348  */
7349 static int
7350 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
7351 {
7352 	struct mlx5_devx_mkey_attr mkey_attr;
7353 	struct mlx5_counter_stats_mem_mng *mem_mng;
7354 	volatile struct flow_counter_stats *raw_data;
7355 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
7356 	int size = (sizeof(struct flow_counter_stats) *
7357 			MLX5_COUNTERS_PER_POOL +
7358 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
7359 			sizeof(struct mlx5_counter_stats_mem_mng);
7360 	size_t pgsize = rte_mem_page_size();
7361 	uint8_t *mem;
7362 	int i;
7363 
7364 	if (pgsize == (size_t)-1) {
7365 		DRV_LOG(ERR, "Failed to get mem page size");
7366 		rte_errno = ENOMEM;
7367 		return -ENOMEM;
7368 	}
7369 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
7370 	if (!mem) {
7371 		rte_errno = ENOMEM;
7372 		return -ENOMEM;
7373 	}
7374 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
7375 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
7376 	mem_mng->umem = mlx5_os_umem_reg(sh->ctx, mem, size,
7377 						 IBV_ACCESS_LOCAL_WRITE);
7378 	if (!mem_mng->umem) {
7379 		rte_errno = errno;
7380 		mlx5_free(mem);
7381 		return -rte_errno;
7382 	}
7383 	memset(&mkey_attr, 0, sizeof(mkey_attr));
7384 	mkey_attr.addr = (uintptr_t)mem;
7385 	mkey_attr.size = size;
7386 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
7387 	mkey_attr.pd = sh->pdn;
7388 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
7389 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
7390 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
7391 	if (!mem_mng->dm) {
7392 		mlx5_os_umem_dereg(mem_mng->umem);
7393 		rte_errno = errno;
7394 		mlx5_free(mem);
7395 		return -rte_errno;
7396 	}
7397 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
7398 	raw_data = (volatile struct flow_counter_stats *)mem;
7399 	for (i = 0; i < raws_n; ++i) {
7400 		mem_mng->raws[i].mem_mng = mem_mng;
7401 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
7402 	}
7403 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
7404 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
7405 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
7406 				 next);
7407 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
7408 	sh->cmng.mem_mng = mem_mng;
7409 	return 0;
7410 }
7411 
7412 /**
7413  * Set the statistic memory to the new counter pool.
7414  *
7415  * @param[in] sh
7416  *   Pointer to mlx5_dev_ctx_shared object.
7417  * @param[in] pool
7418  *   Pointer to the pool to set the statistic memory.
7419  *
7420  * @return
7421  *   0 on success, a negative errno value otherwise.
7422  */
7423 static int
7424 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
7425 			       struct mlx5_flow_counter_pool *pool)
7426 {
7427 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7428 	/* Resize statistic memory once used out. */
7429 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
7430 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
7431 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
7432 		return -1;
7433 	}
7434 	rte_spinlock_lock(&pool->sl);
7435 	pool->raw = cmng->mem_mng->raws + pool->index %
7436 		    MLX5_CNT_CONTAINER_RESIZE;
7437 	rte_spinlock_unlock(&pool->sl);
7438 	pool->raw_hw = NULL;
7439 	return 0;
7440 }
7441 
7442 #define MLX5_POOL_QUERY_FREQ_US 1000000
7443 
7444 /**
7445  * Set the periodic procedure for triggering asynchronous batch queries for all
7446  * the counter pools.
7447  *
7448  * @param[in] sh
7449  *   Pointer to mlx5_dev_ctx_shared object.
7450  */
7451 void
7452 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
7453 {
7454 	uint32_t pools_n, us;
7455 
7456 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
7457 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
7458 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
7459 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
7460 		sh->cmng.query_thread_on = 0;
7461 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
7462 	} else {
7463 		sh->cmng.query_thread_on = 1;
7464 	}
7465 }
7466 
7467 /**
7468  * The periodic procedure for triggering asynchronous batch queries for all the
7469  * counter pools. This function is probably called by the host thread.
7470  *
7471  * @param[in] arg
7472  *   The parameter for the alarm process.
7473  */
7474 void
7475 mlx5_flow_query_alarm(void *arg)
7476 {
7477 	struct mlx5_dev_ctx_shared *sh = arg;
7478 	int ret;
7479 	uint16_t pool_index = sh->cmng.pool_index;
7480 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7481 	struct mlx5_flow_counter_pool *pool;
7482 	uint16_t n_valid;
7483 
7484 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
7485 		goto set_alarm;
7486 	rte_spinlock_lock(&cmng->pool_update_sl);
7487 	pool = cmng->pools[pool_index];
7488 	n_valid = cmng->n_valid;
7489 	rte_spinlock_unlock(&cmng->pool_update_sl);
7490 	/* Set the statistic memory to the new created pool. */
7491 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
7492 		goto set_alarm;
7493 	if (pool->raw_hw)
7494 		/* There is a pool query in progress. */
7495 		goto set_alarm;
7496 	pool->raw_hw =
7497 		LIST_FIRST(&sh->cmng.free_stat_raws);
7498 	if (!pool->raw_hw)
7499 		/* No free counter statistics raw memory. */
7500 		goto set_alarm;
7501 	/*
7502 	 * Identify the counters released between query trigger and query
7503 	 * handle more efficiently. The counter released in this gap period
7504 	 * should wait for a new round of query as the new arrived packets
7505 	 * will not be taken into account.
7506 	 */
7507 	pool->query_gen++;
7508 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
7509 					       MLX5_COUNTERS_PER_POOL,
7510 					       NULL, NULL,
7511 					       pool->raw_hw->mem_mng->dm->id,
7512 					       (void *)(uintptr_t)
7513 					       pool->raw_hw->data,
7514 					       sh->devx_comp,
7515 					       (uint64_t)(uintptr_t)pool);
7516 	if (ret) {
7517 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
7518 			" %d", pool->min_dcs->id);
7519 		pool->raw_hw = NULL;
7520 		goto set_alarm;
7521 	}
7522 	LIST_REMOVE(pool->raw_hw, next);
7523 	sh->cmng.pending_queries++;
7524 	pool_index++;
7525 	if (pool_index >= n_valid)
7526 		pool_index = 0;
7527 set_alarm:
7528 	sh->cmng.pool_index = pool_index;
7529 	mlx5_set_query_alarm(sh);
7530 }
7531 
7532 /**
7533  * Check and callback event for new aged flow in the counter pool
7534  *
7535  * @param[in] sh
7536  *   Pointer to mlx5_dev_ctx_shared object.
7537  * @param[in] pool
7538  *   Pointer to Current counter pool.
7539  */
7540 static void
7541 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
7542 		   struct mlx5_flow_counter_pool *pool)
7543 {
7544 	struct mlx5_priv *priv;
7545 	struct mlx5_flow_counter *cnt;
7546 	struct mlx5_age_info *age_info;
7547 	struct mlx5_age_param *age_param;
7548 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
7549 	struct mlx5_counter_stats_raw *prev = pool->raw;
7550 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
7551 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
7552 	uint16_t expected = AGE_CANDIDATE;
7553 	uint32_t i;
7554 
7555 	pool->time_of_last_age_check = curr_time;
7556 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
7557 		cnt = MLX5_POOL_GET_CNT(pool, i);
7558 		age_param = MLX5_CNT_TO_AGE(cnt);
7559 		if (__atomic_load_n(&age_param->state,
7560 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
7561 			continue;
7562 		if (cur->data[i].hits != prev->data[i].hits) {
7563 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
7564 					 __ATOMIC_RELAXED);
7565 			continue;
7566 		}
7567 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
7568 				       time_delta,
7569 				       __ATOMIC_RELAXED) <= age_param->timeout)
7570 			continue;
7571 		/**
7572 		 * Hold the lock first, or if between the
7573 		 * state AGE_TMOUT and tailq operation the
7574 		 * release happened, the release procedure
7575 		 * may delete a non-existent tailq node.
7576 		 */
7577 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
7578 		age_info = GET_PORT_AGE_INFO(priv);
7579 		rte_spinlock_lock(&age_info->aged_sl);
7580 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
7581 						AGE_TMOUT, false,
7582 						__ATOMIC_RELAXED,
7583 						__ATOMIC_RELAXED)) {
7584 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
7585 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
7586 		}
7587 		rte_spinlock_unlock(&age_info->aged_sl);
7588 	}
7589 	mlx5_age_event_prepare(sh);
7590 }
7591 
7592 /**
7593  * Handler for the HW respond about ready values from an asynchronous batch
7594  * query. This function is probably called by the host thread.
7595  *
7596  * @param[in] sh
7597  *   The pointer to the shared device context.
7598  * @param[in] async_id
7599  *   The Devx async ID.
7600  * @param[in] status
7601  *   The status of the completion.
7602  */
7603 void
7604 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
7605 				  uint64_t async_id, int status)
7606 {
7607 	struct mlx5_flow_counter_pool *pool =
7608 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
7609 	struct mlx5_counter_stats_raw *raw_to_free;
7610 	uint8_t query_gen = pool->query_gen ^ 1;
7611 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7612 	enum mlx5_counter_type cnt_type =
7613 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
7614 				MLX5_COUNTER_TYPE_ORIGIN;
7615 
7616 	if (unlikely(status)) {
7617 		raw_to_free = pool->raw_hw;
7618 	} else {
7619 		raw_to_free = pool->raw;
7620 		if (pool->is_aged)
7621 			mlx5_flow_aging_check(sh, pool);
7622 		rte_spinlock_lock(&pool->sl);
7623 		pool->raw = pool->raw_hw;
7624 		rte_spinlock_unlock(&pool->sl);
7625 		/* Be sure the new raw counters data is updated in memory. */
7626 		rte_io_wmb();
7627 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
7628 			rte_spinlock_lock(&cmng->csl[cnt_type]);
7629 			TAILQ_CONCAT(&cmng->counters[cnt_type],
7630 				     &pool->counters[query_gen], next);
7631 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
7632 		}
7633 	}
7634 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
7635 	pool->raw_hw = NULL;
7636 	sh->cmng.pending_queries--;
7637 }
7638 
7639 static int
7640 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
7641 		    const struct flow_grp_info *grp_info,
7642 		    struct rte_flow_error *error)
7643 {
7644 	if (grp_info->transfer && grp_info->external &&
7645 	    grp_info->fdb_def_rule) {
7646 		if (group == UINT32_MAX)
7647 			return rte_flow_error_set
7648 						(error, EINVAL,
7649 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7650 						 NULL,
7651 						 "group index not supported");
7652 		*table = group + 1;
7653 	} else {
7654 		*table = group;
7655 	}
7656 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
7657 	return 0;
7658 }
7659 
7660 /**
7661  * Translate the rte_flow group index to HW table value.
7662  *
7663  * If tunnel offload is disabled, all group ids converted to flow table
7664  * id using the standard method.
7665  * If tunnel offload is enabled, group id can be converted using the
7666  * standard or tunnel conversion method. Group conversion method
7667  * selection depends on flags in `grp_info` parameter:
7668  * - Internal (grp_info.external == 0) groups conversion uses the
7669  *   standard method.
7670  * - Group ids in JUMP action converted with the tunnel conversion.
7671  * - Group id in rule attribute conversion depends on a rule type and
7672  *   group id value:
7673  *   ** non zero group attributes converted with the tunnel method
7674  *   ** zero group attribute in non-tunnel rule is converted using the
7675  *      standard method - there's only one root table
7676  *   ** zero group attribute in steer tunnel rule is converted with the
7677  *      standard method - single root table
7678  *   ** zero group attribute in match tunnel rule is a special OvS
7679  *      case: that value is used for portability reasons. That group
7680  *      id is converted with the tunnel conversion method.
7681  *
7682  * @param[in] dev
7683  *   Port device
7684  * @param[in] tunnel
7685  *   PMD tunnel offload object
7686  * @param[in] group
7687  *   rte_flow group index value.
7688  * @param[out] table
7689  *   HW table value.
7690  * @param[in] grp_info
7691  *   flags used for conversion
7692  * @param[out] error
7693  *   Pointer to error structure.
7694  *
7695  * @return
7696  *   0 on success, a negative errno value otherwise and rte_errno is set.
7697  */
7698 int
7699 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
7700 			 const struct mlx5_flow_tunnel *tunnel,
7701 			 uint32_t group, uint32_t *table,
7702 			 const struct flow_grp_info *grp_info,
7703 			 struct rte_flow_error *error)
7704 {
7705 	int ret;
7706 	bool standard_translation;
7707 
7708 	if (!grp_info->skip_scale && grp_info->external &&
7709 	    group < MLX5_MAX_TABLES_EXTERNAL)
7710 		group *= MLX5_FLOW_TABLE_FACTOR;
7711 	if (is_tunnel_offload_active(dev)) {
7712 		standard_translation = !grp_info->external ||
7713 					grp_info->std_tbl_fix;
7714 	} else {
7715 		standard_translation = true;
7716 	}
7717 	DRV_LOG(DEBUG,
7718 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
7719 		dev->data->port_id, group, grp_info->transfer,
7720 		grp_info->external, grp_info->fdb_def_rule,
7721 		standard_translation ? "STANDARD" : "TUNNEL");
7722 	if (standard_translation)
7723 		ret = flow_group_to_table(dev->data->port_id, group, table,
7724 					  grp_info, error);
7725 	else
7726 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
7727 						      table, error);
7728 
7729 	return ret;
7730 }
7731 
7732 /**
7733  * Discover availability of metadata reg_c's.
7734  *
7735  * Iteratively use test flows to check availability.
7736  *
7737  * @param[in] dev
7738  *   Pointer to the Ethernet device structure.
7739  *
7740  * @return
7741  *   0 on success, a negative errno value otherwise and rte_errno is set.
7742  */
7743 int
7744 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
7745 {
7746 	struct mlx5_priv *priv = dev->data->dev_private;
7747 	struct mlx5_dev_config *config = &priv->config;
7748 	enum modify_reg idx;
7749 	int n = 0;
7750 
7751 	/* reg_c[0] and reg_c[1] are reserved. */
7752 	config->flow_mreg_c[n++] = REG_C_0;
7753 	config->flow_mreg_c[n++] = REG_C_1;
7754 	/* Discover availability of other reg_c's. */
7755 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
7756 		struct rte_flow_attr attr = {
7757 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
7758 			.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
7759 			.ingress = 1,
7760 		};
7761 		struct rte_flow_item items[] = {
7762 			[0] = {
7763 				.type = RTE_FLOW_ITEM_TYPE_END,
7764 			},
7765 		};
7766 		struct rte_flow_action actions[] = {
7767 			[0] = {
7768 				.type = (enum rte_flow_action_type)
7769 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
7770 				.conf = &(struct mlx5_flow_action_copy_mreg){
7771 					.src = REG_C_1,
7772 					.dst = idx,
7773 				},
7774 			},
7775 			[1] = {
7776 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
7777 				.conf = &(struct rte_flow_action_jump){
7778 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
7779 				},
7780 			},
7781 			[2] = {
7782 				.type = RTE_FLOW_ACTION_TYPE_END,
7783 			},
7784 		};
7785 		uint32_t flow_idx;
7786 		struct rte_flow *flow;
7787 		struct rte_flow_error error;
7788 
7789 		if (!config->dv_flow_en)
7790 			break;
7791 		/* Create internal flow, validation skips copy action. */
7792 		flow_idx = flow_list_create(dev, NULL, &attr, items,
7793 					    actions, false, &error);
7794 		flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
7795 				      flow_idx);
7796 		if (!flow)
7797 			continue;
7798 		config->flow_mreg_c[n++] = idx;
7799 		flow_list_destroy(dev, NULL, flow_idx);
7800 	}
7801 	for (; n < MLX5_MREG_C_NUM; ++n)
7802 		config->flow_mreg_c[n] = REG_NON;
7803 	return 0;
7804 }
7805 
7806 /**
7807  * Dump flow raw hw data to file
7808  *
7809  * @param[in] dev
7810  *    The pointer to Ethernet device.
7811  * @param[in] file
7812  *   A pointer to a file for output.
7813  * @param[out] error
7814  *   Perform verbose error reporting if not NULL. PMDs initialize this
7815  *   structure in case of error only.
7816  * @return
7817  *   0 on success, a nagative value otherwise.
7818  */
7819 int
7820 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx,
7821 		   FILE *file,
7822 		   struct rte_flow_error *error __rte_unused)
7823 {
7824 	struct mlx5_priv *priv = dev->data->dev_private;
7825 	struct mlx5_dev_ctx_shared *sh = priv->sh;
7826 	uint32_t handle_idx;
7827 	int ret;
7828 	struct mlx5_flow_handle *dh;
7829 	struct rte_flow *flow;
7830 
7831 	if (!priv->config.dv_flow_en) {
7832 		if (fputs("device dv flow disabled\n", file) <= 0)
7833 			return -errno;
7834 		return -ENOTSUP;
7835 	}
7836 
7837 	/* dump all */
7838 	if (!flow_idx)
7839 		return mlx5_devx_cmd_flow_dump(sh->fdb_domain,
7840 					sh->rx_domain,
7841 					sh->tx_domain, file);
7842 	/* dump one */
7843 	flow = mlx5_ipool_get(priv->sh->ipool
7844 			[MLX5_IPOOL_RTE_FLOW], (uintptr_t)(void *)flow_idx);
7845 	if (!flow)
7846 		return -ENOENT;
7847 
7848 	handle_idx = flow->dev_handles;
7849 	while (handle_idx) {
7850 		dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW],
7851 				handle_idx);
7852 		if (!dh)
7853 			return -ENOENT;
7854 		if (dh->drv_flow) {
7855 			ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow,
7856 					file);
7857 			if (ret)
7858 				return -ENOENT;
7859 		}
7860 		handle_idx = dh->next.next;
7861 	}
7862 	return 0;
7863 }
7864 
7865 /**
7866  * Get aged-out flows.
7867  *
7868  * @param[in] dev
7869  *   Pointer to the Ethernet device structure.
7870  * @param[in] context
7871  *   The address of an array of pointers to the aged-out flows contexts.
7872  * @param[in] nb_countexts
7873  *   The length of context array pointers.
7874  * @param[out] error
7875  *   Perform verbose error reporting if not NULL. Initialized in case of
7876  *   error only.
7877  *
7878  * @return
7879  *   how many contexts get in success, otherwise negative errno value.
7880  *   if nb_contexts is 0, return the amount of all aged contexts.
7881  *   if nb_contexts is not 0 , return the amount of aged flows reported
7882  *   in the context array.
7883  */
7884 int
7885 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
7886 			uint32_t nb_contexts, struct rte_flow_error *error)
7887 {
7888 	const struct mlx5_flow_driver_ops *fops;
7889 	struct rte_flow_attr attr = { .transfer = 0 };
7890 
7891 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7892 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7893 		return fops->get_aged_flows(dev, contexts, nb_contexts,
7894 						    error);
7895 	}
7896 	DRV_LOG(ERR,
7897 		"port %u get aged flows is not supported.",
7898 		 dev->data->port_id);
7899 	return -ENOTSUP;
7900 }
7901 
7902 /* Wrapper for driver action_validate op callback */
7903 static int
7904 flow_drv_action_validate(struct rte_eth_dev *dev,
7905 			 const struct rte_flow_indir_action_conf *conf,
7906 			 const struct rte_flow_action *action,
7907 			 const struct mlx5_flow_driver_ops *fops,
7908 			 struct rte_flow_error *error)
7909 {
7910 	static const char err_msg[] = "indirect action validation unsupported";
7911 
7912 	if (!fops->action_validate) {
7913 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7914 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7915 				   NULL, err_msg);
7916 		return -rte_errno;
7917 	}
7918 	return fops->action_validate(dev, conf, action, error);
7919 }
7920 
7921 /**
7922  * Destroys the shared action by handle.
7923  *
7924  * @param dev
7925  *   Pointer to Ethernet device structure.
7926  * @param[in] handle
7927  *   Handle for the indirect action object to be destroyed.
7928  * @param[out] error
7929  *   Perform verbose error reporting if not NULL. PMDs initialize this
7930  *   structure in case of error only.
7931  *
7932  * @return
7933  *   0 on success, a negative errno value otherwise and rte_errno is set.
7934  *
7935  * @note: wrapper for driver action_create op callback.
7936  */
7937 static int
7938 mlx5_action_handle_destroy(struct rte_eth_dev *dev,
7939 			   struct rte_flow_action_handle *handle,
7940 			   struct rte_flow_error *error)
7941 {
7942 	static const char err_msg[] = "indirect action destruction unsupported";
7943 	struct rte_flow_attr attr = { .transfer = 0 };
7944 	const struct mlx5_flow_driver_ops *fops =
7945 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7946 
7947 	if (!fops->action_destroy) {
7948 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7949 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7950 				   NULL, err_msg);
7951 		return -rte_errno;
7952 	}
7953 	return fops->action_destroy(dev, handle, error);
7954 }
7955 
7956 /* Wrapper for driver action_destroy op callback */
7957 static int
7958 flow_drv_action_update(struct rte_eth_dev *dev,
7959 		       struct rte_flow_action_handle *handle,
7960 		       const void *update,
7961 		       const struct mlx5_flow_driver_ops *fops,
7962 		       struct rte_flow_error *error)
7963 {
7964 	static const char err_msg[] = "indirect action update unsupported";
7965 
7966 	if (!fops->action_update) {
7967 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7968 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7969 				   NULL, err_msg);
7970 		return -rte_errno;
7971 	}
7972 	return fops->action_update(dev, handle, update, error);
7973 }
7974 
7975 /* Wrapper for driver action_destroy op callback */
7976 static int
7977 flow_drv_action_query(struct rte_eth_dev *dev,
7978 		      const struct rte_flow_action_handle *handle,
7979 		      void *data,
7980 		      const struct mlx5_flow_driver_ops *fops,
7981 		      struct rte_flow_error *error)
7982 {
7983 	static const char err_msg[] = "indirect action query unsupported";
7984 
7985 	if (!fops->action_query) {
7986 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7987 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7988 				   NULL, err_msg);
7989 		return -rte_errno;
7990 	}
7991 	return fops->action_query(dev, handle, data, error);
7992 }
7993 
7994 /**
7995  * Create indirect action for reuse in multiple flow rules.
7996  *
7997  * @param dev
7998  *   Pointer to Ethernet device structure.
7999  * @param conf
8000  *   Pointer to indirect action object configuration.
8001  * @param[in] action
8002  *   Action configuration for indirect action object creation.
8003  * @param[out] error
8004  *   Perform verbose error reporting if not NULL. PMDs initialize this
8005  *   structure in case of error only.
8006  * @return
8007  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
8008  */
8009 static struct rte_flow_action_handle *
8010 mlx5_action_handle_create(struct rte_eth_dev *dev,
8011 			  const struct rte_flow_indir_action_conf *conf,
8012 			  const struct rte_flow_action *action,
8013 			  struct rte_flow_error *error)
8014 {
8015 	static const char err_msg[] = "indirect action creation unsupported";
8016 	struct rte_flow_attr attr = { .transfer = 0 };
8017 	const struct mlx5_flow_driver_ops *fops =
8018 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8019 
8020 	if (flow_drv_action_validate(dev, conf, action, fops, error))
8021 		return NULL;
8022 	if (!fops->action_create) {
8023 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8024 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8025 				   NULL, err_msg);
8026 		return NULL;
8027 	}
8028 	return fops->action_create(dev, conf, action, error);
8029 }
8030 
8031 /**
8032  * Updates inplace the indirect action configuration pointed by *handle*
8033  * with the configuration provided as *update* argument.
8034  * The update of the indirect action configuration effects all flow rules
8035  * reusing the action via handle.
8036  *
8037  * @param dev
8038  *   Pointer to Ethernet device structure.
8039  * @param[in] handle
8040  *   Handle for the indirect action to be updated.
8041  * @param[in] update
8042  *   Action specification used to modify the action pointed by handle.
8043  *   *update* could be of same type with the action pointed by the *handle*
8044  *   handle argument, or some other structures like a wrapper, depending on
8045  *   the indirect action type.
8046  * @param[out] error
8047  *   Perform verbose error reporting if not NULL. PMDs initialize this
8048  *   structure in case of error only.
8049  *
8050  * @return
8051  *   0 on success, a negative errno value otherwise and rte_errno is set.
8052  */
8053 static int
8054 mlx5_action_handle_update(struct rte_eth_dev *dev,
8055 		struct rte_flow_action_handle *handle,
8056 		const void *update,
8057 		struct rte_flow_error *error)
8058 {
8059 	struct rte_flow_attr attr = { .transfer = 0 };
8060 	const struct mlx5_flow_driver_ops *fops =
8061 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8062 	int ret;
8063 
8064 	ret = flow_drv_action_validate(dev, NULL,
8065 			(const struct rte_flow_action *)update, fops, error);
8066 	if (ret)
8067 		return ret;
8068 	return flow_drv_action_update(dev, handle, update, fops,
8069 				      error);
8070 }
8071 
8072 /**
8073  * Query the indirect action by handle.
8074  *
8075  * This function allows retrieving action-specific data such as counters.
8076  * Data is gathered by special action which may be present/referenced in
8077  * more than one flow rule definition.
8078  *
8079  * see @RTE_FLOW_ACTION_TYPE_COUNT
8080  *
8081  * @param dev
8082  *   Pointer to Ethernet device structure.
8083  * @param[in] handle
8084  *   Handle for the indirect action to query.
8085  * @param[in, out] data
8086  *   Pointer to storage for the associated query data type.
8087  * @param[out] error
8088  *   Perform verbose error reporting if not NULL. PMDs initialize this
8089  *   structure in case of error only.
8090  *
8091  * @return
8092  *   0 on success, a negative errno value otherwise and rte_errno is set.
8093  */
8094 static int
8095 mlx5_action_handle_query(struct rte_eth_dev *dev,
8096 			 const struct rte_flow_action_handle *handle,
8097 			 void *data,
8098 			 struct rte_flow_error *error)
8099 {
8100 	struct rte_flow_attr attr = { .transfer = 0 };
8101 	const struct mlx5_flow_driver_ops *fops =
8102 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8103 
8104 	return flow_drv_action_query(dev, handle, data, fops, error);
8105 }
8106 
8107 /**
8108  * Destroy all indirect actions (shared RSS).
8109  *
8110  * @param dev
8111  *   Pointer to Ethernet device.
8112  *
8113  * @return
8114  *   0 on success, a negative errno value otherwise and rte_errno is set.
8115  */
8116 int
8117 mlx5_action_handle_flush(struct rte_eth_dev *dev)
8118 {
8119 	struct rte_flow_error error;
8120 	struct mlx5_priv *priv = dev->data->dev_private;
8121 	struct mlx5_shared_action_rss *shared_rss;
8122 	int ret = 0;
8123 	uint32_t idx;
8124 
8125 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
8126 		      priv->rss_shared_actions, idx, shared_rss, next) {
8127 		ret |= mlx5_action_handle_destroy(dev,
8128 		       (struct rte_flow_action_handle *)(uintptr_t)idx, &error);
8129 	}
8130 	return ret;
8131 }
8132 
8133 #ifndef HAVE_MLX5DV_DR
8134 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
8135 #else
8136 #define MLX5_DOMAIN_SYNC_FLOW \
8137 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
8138 #endif
8139 
8140 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
8141 {
8142 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
8143 	const struct mlx5_flow_driver_ops *fops;
8144 	int ret;
8145 	struct rte_flow_attr attr = { .transfer = 0 };
8146 
8147 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8148 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
8149 	if (ret > 0)
8150 		ret = -ret;
8151 	return ret;
8152 }
8153 
8154 const struct mlx5_flow_tunnel *
8155 mlx5_get_tof(const struct rte_flow_item *item,
8156 	     const struct rte_flow_action *action,
8157 	     enum mlx5_tof_rule_type *rule_type)
8158 {
8159 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
8160 		if (item->type == (typeof(item->type))
8161 				  MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) {
8162 			*rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE;
8163 			return flow_items_to_tunnel(item);
8164 		}
8165 	}
8166 	for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) {
8167 		if (action->type == (typeof(action->type))
8168 				    MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) {
8169 			*rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE;
8170 			return flow_actions_to_tunnel(action);
8171 		}
8172 	}
8173 	return NULL;
8174 }
8175 
8176 /**
8177  * tunnel offload functionalilty is defined for DV environment only
8178  */
8179 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8180 __extension__
8181 union tunnel_offload_mark {
8182 	uint32_t val;
8183 	struct {
8184 		uint32_t app_reserve:8;
8185 		uint32_t table_id:15;
8186 		uint32_t transfer:1;
8187 		uint32_t _unused_:8;
8188 	};
8189 };
8190 
8191 static bool
8192 mlx5_access_tunnel_offload_db
8193 	(struct rte_eth_dev *dev,
8194 	 bool (*match)(struct rte_eth_dev *,
8195 		       struct mlx5_flow_tunnel *, const void *),
8196 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8197 	 void (*miss)(struct rte_eth_dev *, void *),
8198 	 void *ctx, bool lock_op);
8199 
8200 static int
8201 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
8202 			     struct rte_flow *flow,
8203 			     const struct rte_flow_attr *attr,
8204 			     const struct rte_flow_action *app_actions,
8205 			     uint32_t flow_idx,
8206 			     const struct mlx5_flow_tunnel *tunnel,
8207 			     struct tunnel_default_miss_ctx *ctx,
8208 			     struct rte_flow_error *error)
8209 {
8210 	struct mlx5_priv *priv = dev->data->dev_private;
8211 	struct mlx5_flow *dev_flow;
8212 	struct rte_flow_attr miss_attr = *attr;
8213 	const struct rte_flow_item miss_items[2] = {
8214 		{
8215 			.type = RTE_FLOW_ITEM_TYPE_ETH,
8216 			.spec = NULL,
8217 			.last = NULL,
8218 			.mask = NULL
8219 		},
8220 		{
8221 			.type = RTE_FLOW_ITEM_TYPE_END,
8222 			.spec = NULL,
8223 			.last = NULL,
8224 			.mask = NULL
8225 		}
8226 	};
8227 	union tunnel_offload_mark mark_id;
8228 	struct rte_flow_action_mark miss_mark;
8229 	struct rte_flow_action miss_actions[3] = {
8230 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
8231 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
8232 	};
8233 	const struct rte_flow_action_jump *jump_data;
8234 	uint32_t i, flow_table = 0; /* prevent compilation warning */
8235 	struct flow_grp_info grp_info = {
8236 		.external = 1,
8237 		.transfer = attr->transfer,
8238 		.fdb_def_rule = !!priv->fdb_def_rule,
8239 		.std_tbl_fix = 0,
8240 	};
8241 	int ret;
8242 
8243 	if (!attr->transfer) {
8244 		uint32_t q_size;
8245 
8246 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
8247 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
8248 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
8249 					 0, SOCKET_ID_ANY);
8250 		if (!ctx->queue)
8251 			return rte_flow_error_set
8252 				(error, ENOMEM,
8253 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8254 				NULL, "invalid default miss RSS");
8255 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
8256 		ctx->action_rss.level = 0,
8257 		ctx->action_rss.types = priv->rss_conf.rss_hf,
8258 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
8259 		ctx->action_rss.queue_num = priv->reta_idx_n,
8260 		ctx->action_rss.key = priv->rss_conf.rss_key,
8261 		ctx->action_rss.queue = ctx->queue;
8262 		if (!priv->reta_idx_n || !priv->rxqs_n)
8263 			return rte_flow_error_set
8264 				(error, EINVAL,
8265 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8266 				NULL, "invalid port configuration");
8267 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
8268 			ctx->action_rss.types = 0;
8269 		for (i = 0; i != priv->reta_idx_n; ++i)
8270 			ctx->queue[i] = (*priv->reta_idx)[i];
8271 	} else {
8272 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
8273 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
8274 	}
8275 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
8276 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
8277 	jump_data = app_actions->conf;
8278 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
8279 	miss_attr.group = jump_data->group;
8280 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
8281 				       &flow_table, &grp_info, error);
8282 	if (ret)
8283 		return rte_flow_error_set(error, EINVAL,
8284 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8285 					  NULL, "invalid tunnel id");
8286 	mark_id.app_reserve = 0;
8287 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
8288 	mark_id.transfer = !!attr->transfer;
8289 	mark_id._unused_ = 0;
8290 	miss_mark.id = mark_id.val;
8291 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
8292 				    miss_items, miss_actions, flow_idx, error);
8293 	if (!dev_flow)
8294 		return -rte_errno;
8295 	dev_flow->flow = flow;
8296 	dev_flow->external = true;
8297 	dev_flow->tunnel = tunnel;
8298 	dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE;
8299 	/* Subflow object was created, we must include one in the list. */
8300 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
8301 		      dev_flow->handle, next);
8302 	DRV_LOG(DEBUG,
8303 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
8304 		dev->data->port_id, tunnel->app_tunnel.type,
8305 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
8306 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
8307 				  miss_actions, error);
8308 	if (!ret)
8309 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
8310 						  error);
8311 
8312 	return ret;
8313 }
8314 
8315 static const struct mlx5_flow_tbl_data_entry  *
8316 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
8317 {
8318 	struct mlx5_priv *priv = dev->data->dev_private;
8319 	struct mlx5_dev_ctx_shared *sh = priv->sh;
8320 	struct mlx5_hlist_entry *he;
8321 	union tunnel_offload_mark mbits = { .val = mark };
8322 	union mlx5_flow_tbl_key table_key = {
8323 		{
8324 			.level = tunnel_id_to_flow_tbl(mbits.table_id),
8325 			.id = 0,
8326 			.reserved = 0,
8327 			.dummy = 0,
8328 			.is_fdb = !!mbits.transfer,
8329 			.is_egress = 0,
8330 		}
8331 	};
8332 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL);
8333 	return he ?
8334 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
8335 }
8336 
8337 static void
8338 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list,
8339 				   struct mlx5_hlist_entry *entry)
8340 {
8341 	struct mlx5_dev_ctx_shared *sh = list->ctx;
8342 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8343 
8344 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8345 			tunnel_flow_tbl_to_id(tte->flow_table));
8346 	mlx5_free(tte);
8347 }
8348 
8349 static int
8350 mlx5_flow_tunnel_grp2tbl_match_cb(struct mlx5_hlist *list __rte_unused,
8351 				  struct mlx5_hlist_entry *entry,
8352 				  uint64_t key, void *cb_ctx __rte_unused)
8353 {
8354 	union tunnel_tbl_key tbl = {
8355 		.val = key,
8356 	};
8357 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8358 
8359 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
8360 }
8361 
8362 static struct mlx5_hlist_entry *
8363 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list, uint64_t key,
8364 				   void *ctx __rte_unused)
8365 {
8366 	struct mlx5_dev_ctx_shared *sh = list->ctx;
8367 	struct tunnel_tbl_entry *tte;
8368 	union tunnel_tbl_key tbl = {
8369 		.val = key,
8370 	};
8371 
8372 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
8373 			  sizeof(*tte), 0,
8374 			  SOCKET_ID_ANY);
8375 	if (!tte)
8376 		goto err;
8377 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8378 			  &tte->flow_table);
8379 	if (tte->flow_table >= MLX5_MAX_TABLES) {
8380 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
8381 			tte->flow_table);
8382 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8383 				tte->flow_table);
8384 		goto err;
8385 	} else if (!tte->flow_table) {
8386 		goto err;
8387 	}
8388 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
8389 	tte->tunnel_id = tbl.tunnel_id;
8390 	tte->group = tbl.group;
8391 	return &tte->hash;
8392 err:
8393 	if (tte)
8394 		mlx5_free(tte);
8395 	return NULL;
8396 }
8397 
8398 static uint32_t
8399 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
8400 				const struct mlx5_flow_tunnel *tunnel,
8401 				uint32_t group, uint32_t *table,
8402 				struct rte_flow_error *error)
8403 {
8404 	struct mlx5_hlist_entry *he;
8405 	struct tunnel_tbl_entry *tte;
8406 	union tunnel_tbl_key key = {
8407 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
8408 		.group = group
8409 	};
8410 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8411 	struct mlx5_hlist *group_hash;
8412 
8413 	group_hash = tunnel ? tunnel->groups : thub->groups;
8414 	he = mlx5_hlist_register(group_hash, key.val, NULL);
8415 	if (!he)
8416 		return rte_flow_error_set(error, EINVAL,
8417 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
8418 					  NULL,
8419 					  "tunnel group index not supported");
8420 	tte = container_of(he, typeof(*tte), hash);
8421 	*table = tte->flow_table;
8422 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
8423 		dev->data->port_id, key.tunnel_id, group, *table);
8424 	return 0;
8425 }
8426 
8427 static void
8428 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
8429 		      struct mlx5_flow_tunnel *tunnel)
8430 {
8431 	struct mlx5_priv *priv = dev->data->dev_private;
8432 	struct mlx5_indexed_pool *ipool;
8433 
8434 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
8435 		dev->data->port_id, tunnel->tunnel_id);
8436 	LIST_REMOVE(tunnel, chain);
8437 	mlx5_hlist_destroy(tunnel->groups);
8438 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8439 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
8440 }
8441 
8442 static bool
8443 mlx5_access_tunnel_offload_db
8444 	(struct rte_eth_dev *dev,
8445 	 bool (*match)(struct rte_eth_dev *,
8446 		       struct mlx5_flow_tunnel *, const void *),
8447 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8448 	 void (*miss)(struct rte_eth_dev *, void *),
8449 	 void *ctx, bool lock_op)
8450 {
8451 	bool verdict = false;
8452 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8453 	struct mlx5_flow_tunnel *tunnel;
8454 
8455 	rte_spinlock_lock(&thub->sl);
8456 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
8457 		verdict = match(dev, tunnel, (const void *)ctx);
8458 		if (verdict)
8459 			break;
8460 	}
8461 	if (!lock_op)
8462 		rte_spinlock_unlock(&thub->sl);
8463 	if (verdict && hit)
8464 		hit(dev, tunnel, ctx);
8465 	if (!verdict && miss)
8466 		miss(dev, ctx);
8467 	if (lock_op)
8468 		rte_spinlock_unlock(&thub->sl);
8469 
8470 	return verdict;
8471 }
8472 
8473 struct tunnel_db_find_tunnel_id_ctx {
8474 	uint32_t tunnel_id;
8475 	struct mlx5_flow_tunnel *tunnel;
8476 };
8477 
8478 static bool
8479 find_tunnel_id_match(struct rte_eth_dev *dev,
8480 		     struct mlx5_flow_tunnel *tunnel, const void *x)
8481 {
8482 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8483 
8484 	RTE_SET_USED(dev);
8485 	return tunnel->tunnel_id == ctx->tunnel_id;
8486 }
8487 
8488 static void
8489 find_tunnel_id_hit(struct rte_eth_dev *dev,
8490 		   struct mlx5_flow_tunnel *tunnel, void *x)
8491 {
8492 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8493 	RTE_SET_USED(dev);
8494 	ctx->tunnel = tunnel;
8495 }
8496 
8497 static struct mlx5_flow_tunnel *
8498 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
8499 {
8500 	struct tunnel_db_find_tunnel_id_ctx ctx = {
8501 		.tunnel_id = id,
8502 	};
8503 
8504 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
8505 				      find_tunnel_id_hit, NULL, &ctx, true);
8506 
8507 	return ctx.tunnel;
8508 }
8509 
8510 static struct mlx5_flow_tunnel *
8511 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
8512 			  const struct rte_flow_tunnel *app_tunnel)
8513 {
8514 	struct mlx5_priv *priv = dev->data->dev_private;
8515 	struct mlx5_indexed_pool *ipool;
8516 	struct mlx5_flow_tunnel *tunnel;
8517 	uint32_t id;
8518 
8519 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8520 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
8521 	if (!tunnel)
8522 		return NULL;
8523 	if (id >= MLX5_MAX_TUNNELS) {
8524 		mlx5_ipool_free(ipool, id);
8525 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
8526 		return NULL;
8527 	}
8528 	tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0,
8529 					   mlx5_flow_tunnel_grp2tbl_create_cb,
8530 					   mlx5_flow_tunnel_grp2tbl_match_cb,
8531 					   mlx5_flow_tunnel_grp2tbl_remove_cb);
8532 	if (!tunnel->groups) {
8533 		mlx5_ipool_free(ipool, id);
8534 		return NULL;
8535 	}
8536 	tunnel->groups->ctx = priv->sh;
8537 	/* initiate new PMD tunnel */
8538 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
8539 	tunnel->tunnel_id = id;
8540 	tunnel->action.type = (typeof(tunnel->action.type))
8541 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
8542 	tunnel->action.conf = tunnel;
8543 	tunnel->item.type = (typeof(tunnel->item.type))
8544 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
8545 	tunnel->item.spec = tunnel;
8546 	tunnel->item.last = NULL;
8547 	tunnel->item.mask = NULL;
8548 
8549 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
8550 		dev->data->port_id, tunnel->tunnel_id);
8551 
8552 	return tunnel;
8553 }
8554 
8555 struct tunnel_db_get_tunnel_ctx {
8556 	const struct rte_flow_tunnel *app_tunnel;
8557 	struct mlx5_flow_tunnel *tunnel;
8558 };
8559 
8560 static bool get_tunnel_match(struct rte_eth_dev *dev,
8561 			     struct mlx5_flow_tunnel *tunnel, const void *x)
8562 {
8563 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
8564 
8565 	RTE_SET_USED(dev);
8566 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
8567 		       sizeof(*ctx->app_tunnel));
8568 }
8569 
8570 static void get_tunnel_hit(struct rte_eth_dev *dev,
8571 			   struct mlx5_flow_tunnel *tunnel, void *x)
8572 {
8573 	/* called under tunnel spinlock protection */
8574 	struct tunnel_db_get_tunnel_ctx *ctx = x;
8575 
8576 	RTE_SET_USED(dev);
8577 	tunnel->refctn++;
8578 	ctx->tunnel = tunnel;
8579 }
8580 
8581 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
8582 {
8583 	/* called under tunnel spinlock protection */
8584 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8585 	struct tunnel_db_get_tunnel_ctx *ctx = x;
8586 
8587 	rte_spinlock_unlock(&thub->sl);
8588 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
8589 	rte_spinlock_lock(&thub->sl);
8590 	if (ctx->tunnel) {
8591 		ctx->tunnel->refctn = 1;
8592 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
8593 	}
8594 }
8595 
8596 
8597 static int
8598 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
8599 		     const struct rte_flow_tunnel *app_tunnel,
8600 		     struct mlx5_flow_tunnel **tunnel)
8601 {
8602 	struct tunnel_db_get_tunnel_ctx ctx = {
8603 		.app_tunnel = app_tunnel,
8604 	};
8605 
8606 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
8607 				      get_tunnel_miss, &ctx, true);
8608 	*tunnel = ctx.tunnel;
8609 	return ctx.tunnel ? 0 : -ENOMEM;
8610 }
8611 
8612 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
8613 {
8614 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
8615 
8616 	if (!thub)
8617 		return;
8618 	if (!LIST_EMPTY(&thub->tunnels))
8619 		DRV_LOG(WARNING, "port %u tunnels present", port_id);
8620 	mlx5_hlist_destroy(thub->groups);
8621 	mlx5_free(thub);
8622 }
8623 
8624 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
8625 {
8626 	int err;
8627 	struct mlx5_flow_tunnel_hub *thub;
8628 
8629 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
8630 			   0, SOCKET_ID_ANY);
8631 	if (!thub)
8632 		return -ENOMEM;
8633 	LIST_INIT(&thub->tunnels);
8634 	rte_spinlock_init(&thub->sl);
8635 	thub->groups = mlx5_hlist_create("flow groups",
8636 					 rte_align32pow2(MLX5_MAX_TABLES), 0,
8637 					 0, mlx5_flow_tunnel_grp2tbl_create_cb,
8638 					 mlx5_flow_tunnel_grp2tbl_match_cb,
8639 					 mlx5_flow_tunnel_grp2tbl_remove_cb);
8640 	if (!thub->groups) {
8641 		err = -rte_errno;
8642 		goto err;
8643 	}
8644 	thub->groups->ctx = sh;
8645 	sh->tunnel_hub = thub;
8646 
8647 	return 0;
8648 
8649 err:
8650 	if (thub->groups)
8651 		mlx5_hlist_destroy(thub->groups);
8652 	if (thub)
8653 		mlx5_free(thub);
8654 	return err;
8655 }
8656 
8657 static inline bool
8658 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
8659 			  struct rte_flow_tunnel *tunnel,
8660 			  const char *err_msg)
8661 {
8662 	err_msg = NULL;
8663 	if (!is_tunnel_offload_active(dev)) {
8664 		err_msg = "tunnel offload was not activated";
8665 		goto out;
8666 	} else if (!tunnel) {
8667 		err_msg = "no application tunnel";
8668 		goto out;
8669 	}
8670 
8671 	switch (tunnel->type) {
8672 	default:
8673 		err_msg = "unsupported tunnel type";
8674 		goto out;
8675 	case RTE_FLOW_ITEM_TYPE_VXLAN:
8676 		break;
8677 	}
8678 
8679 out:
8680 	return !err_msg;
8681 }
8682 
8683 static int
8684 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
8685 		    struct rte_flow_tunnel *app_tunnel,
8686 		    struct rte_flow_action **actions,
8687 		    uint32_t *num_of_actions,
8688 		    struct rte_flow_error *error)
8689 {
8690 	int ret;
8691 	struct mlx5_flow_tunnel *tunnel;
8692 	const char *err_msg = NULL;
8693 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
8694 
8695 	if (!verdict)
8696 		return rte_flow_error_set(error, EINVAL,
8697 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
8698 					  err_msg);
8699 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
8700 	if (ret < 0) {
8701 		return rte_flow_error_set(error, ret,
8702 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
8703 					  "failed to initialize pmd tunnel");
8704 	}
8705 	*actions = &tunnel->action;
8706 	*num_of_actions = 1;
8707 	return 0;
8708 }
8709 
8710 static int
8711 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
8712 		       struct rte_flow_tunnel *app_tunnel,
8713 		       struct rte_flow_item **items,
8714 		       uint32_t *num_of_items,
8715 		       struct rte_flow_error *error)
8716 {
8717 	int ret;
8718 	struct mlx5_flow_tunnel *tunnel;
8719 	const char *err_msg = NULL;
8720 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
8721 
8722 	if (!verdict)
8723 		return rte_flow_error_set(error, EINVAL,
8724 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
8725 					  err_msg);
8726 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
8727 	if (ret < 0) {
8728 		return rte_flow_error_set(error, ret,
8729 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
8730 					  "failed to initialize pmd tunnel");
8731 	}
8732 	*items = &tunnel->item;
8733 	*num_of_items = 1;
8734 	return 0;
8735 }
8736 
8737 struct tunnel_db_element_release_ctx {
8738 	struct rte_flow_item *items;
8739 	struct rte_flow_action *actions;
8740 	uint32_t num_elements;
8741 	struct rte_flow_error *error;
8742 	int ret;
8743 };
8744 
8745 static bool
8746 tunnel_element_release_match(struct rte_eth_dev *dev,
8747 			     struct mlx5_flow_tunnel *tunnel, const void *x)
8748 {
8749 	const struct tunnel_db_element_release_ctx *ctx = x;
8750 
8751 	RTE_SET_USED(dev);
8752 	if (ctx->num_elements != 1)
8753 		return false;
8754 	else if (ctx->items)
8755 		return ctx->items == &tunnel->item;
8756 	else if (ctx->actions)
8757 		return ctx->actions == &tunnel->action;
8758 
8759 	return false;
8760 }
8761 
8762 static void
8763 tunnel_element_release_hit(struct rte_eth_dev *dev,
8764 			   struct mlx5_flow_tunnel *tunnel, void *x)
8765 {
8766 	struct tunnel_db_element_release_ctx *ctx = x;
8767 	ctx->ret = 0;
8768 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
8769 		mlx5_flow_tunnel_free(dev, tunnel);
8770 }
8771 
8772 static void
8773 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
8774 {
8775 	struct tunnel_db_element_release_ctx *ctx = x;
8776 	RTE_SET_USED(dev);
8777 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
8778 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
8779 				      "invalid argument");
8780 }
8781 
8782 static int
8783 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
8784 		       struct rte_flow_item *pmd_items,
8785 		       uint32_t num_items, struct rte_flow_error *err)
8786 {
8787 	struct tunnel_db_element_release_ctx ctx = {
8788 		.items = pmd_items,
8789 		.actions = NULL,
8790 		.num_elements = num_items,
8791 		.error = err,
8792 	};
8793 
8794 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
8795 				      tunnel_element_release_hit,
8796 				      tunnel_element_release_miss, &ctx, false);
8797 
8798 	return ctx.ret;
8799 }
8800 
8801 static int
8802 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
8803 			 struct rte_flow_action *pmd_actions,
8804 			 uint32_t num_actions, struct rte_flow_error *err)
8805 {
8806 	struct tunnel_db_element_release_ctx ctx = {
8807 		.items = NULL,
8808 		.actions = pmd_actions,
8809 		.num_elements = num_actions,
8810 		.error = err,
8811 	};
8812 
8813 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
8814 				      tunnel_element_release_hit,
8815 				      tunnel_element_release_miss, &ctx, false);
8816 
8817 	return ctx.ret;
8818 }
8819 
8820 static int
8821 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
8822 				  struct rte_mbuf *m,
8823 				  struct rte_flow_restore_info *info,
8824 				  struct rte_flow_error *err)
8825 {
8826 	uint64_t ol_flags = m->ol_flags;
8827 	const struct mlx5_flow_tbl_data_entry *tble;
8828 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
8829 
8830 	if (!is_tunnel_offload_active(dev)) {
8831 		info->flags = 0;
8832 		return 0;
8833 	}
8834 
8835 	if ((ol_flags & mask) != mask)
8836 		goto err;
8837 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
8838 	if (!tble) {
8839 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
8840 			dev->data->port_id, m->hash.fdir.hi);
8841 		goto err;
8842 	}
8843 	MLX5_ASSERT(tble->tunnel);
8844 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
8845 	info->group_id = tble->group_id;
8846 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
8847 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
8848 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
8849 
8850 	return 0;
8851 
8852 err:
8853 	return rte_flow_error_set(err, EINVAL,
8854 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
8855 				  "failed to get restore info");
8856 }
8857 
8858 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
8859 static int
8860 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
8861 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
8862 			   __rte_unused struct rte_flow_action **actions,
8863 			   __rte_unused uint32_t *num_of_actions,
8864 			   __rte_unused struct rte_flow_error *error)
8865 {
8866 	return -ENOTSUP;
8867 }
8868 
8869 static int
8870 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
8871 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
8872 		       __rte_unused struct rte_flow_item **items,
8873 		       __rte_unused uint32_t *num_of_items,
8874 		       __rte_unused struct rte_flow_error *error)
8875 {
8876 	return -ENOTSUP;
8877 }
8878 
8879 static int
8880 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
8881 			      __rte_unused struct rte_flow_item *pmd_items,
8882 			      __rte_unused uint32_t num_items,
8883 			      __rte_unused struct rte_flow_error *err)
8884 {
8885 	return -ENOTSUP;
8886 }
8887 
8888 static int
8889 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
8890 				__rte_unused struct rte_flow_action *pmd_action,
8891 				__rte_unused uint32_t num_actions,
8892 				__rte_unused struct rte_flow_error *err)
8893 {
8894 	return -ENOTSUP;
8895 }
8896 
8897 static int
8898 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
8899 				  __rte_unused struct rte_mbuf *m,
8900 				  __rte_unused struct rte_flow_restore_info *i,
8901 				  __rte_unused struct rte_flow_error *err)
8902 {
8903 	return -ENOTSUP;
8904 }
8905 
8906 static int
8907 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
8908 			     __rte_unused struct rte_flow *flow,
8909 			     __rte_unused const struct rte_flow_attr *attr,
8910 			     __rte_unused const struct rte_flow_action *actions,
8911 			     __rte_unused uint32_t flow_idx,
8912 			     __rte_unused const struct mlx5_flow_tunnel *tunnel,
8913 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
8914 			     __rte_unused struct rte_flow_error *error)
8915 {
8916 	return -ENOTSUP;
8917 }
8918 
8919 static struct mlx5_flow_tunnel *
8920 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
8921 		    __rte_unused uint32_t id)
8922 {
8923 	return NULL;
8924 }
8925 
8926 static void
8927 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
8928 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
8929 {
8930 }
8931 
8932 static uint32_t
8933 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
8934 				__rte_unused const struct mlx5_flow_tunnel *t,
8935 				__rte_unused uint32_t group,
8936 				__rte_unused uint32_t *table,
8937 				struct rte_flow_error *error)
8938 {
8939 	return rte_flow_error_set(error, ENOTSUP,
8940 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
8941 				  "tunnel offload requires DV support");
8942 }
8943 
8944 void
8945 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
8946 			__rte_unused  uint16_t port_id)
8947 {
8948 }
8949 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
8950