1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 12 /* Verbs header. */ 13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 14 #ifdef PEDANTIC 15 #pragma GCC diagnostic ignored "-Wpedantic" 16 #endif 17 #include <infiniband/verbs.h> 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic error "-Wpedantic" 20 #endif 21 22 #include <rte_common.h> 23 #include <rte_ether.h> 24 #include <rte_eth_ctrl.h> 25 #include <rte_ethdev_driver.h> 26 #include <rte_flow.h> 27 #include <rte_flow_driver.h> 28 #include <rte_malloc.h> 29 #include <rte_ip.h> 30 31 #include "mlx5.h" 32 #include "mlx5_defs.h" 33 #include "mlx5_prm.h" 34 #include "mlx5_glue.h" 35 #include "mlx5_flow.h" 36 37 /* Dev ops structure defined in mlx5.c */ 38 extern const struct eth_dev_ops mlx5_dev_ops; 39 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 40 41 /** Device flow drivers. */ 42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops; 44 #endif 45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops; 46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 47 48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 49 50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 51 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 53 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 54 #endif 55 [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops, 56 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 57 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 58 }; 59 60 enum mlx5_expansion { 61 MLX5_EXPANSION_ROOT, 62 MLX5_EXPANSION_ROOT_OUTER, 63 MLX5_EXPANSION_ROOT_ETH_VLAN, 64 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 65 MLX5_EXPANSION_OUTER_ETH, 66 MLX5_EXPANSION_OUTER_ETH_VLAN, 67 MLX5_EXPANSION_OUTER_VLAN, 68 MLX5_EXPANSION_OUTER_IPV4, 69 MLX5_EXPANSION_OUTER_IPV4_UDP, 70 MLX5_EXPANSION_OUTER_IPV4_TCP, 71 MLX5_EXPANSION_OUTER_IPV6, 72 MLX5_EXPANSION_OUTER_IPV6_UDP, 73 MLX5_EXPANSION_OUTER_IPV6_TCP, 74 MLX5_EXPANSION_VXLAN, 75 MLX5_EXPANSION_VXLAN_GPE, 76 MLX5_EXPANSION_GRE, 77 MLX5_EXPANSION_MPLS, 78 MLX5_EXPANSION_ETH, 79 MLX5_EXPANSION_ETH_VLAN, 80 MLX5_EXPANSION_VLAN, 81 MLX5_EXPANSION_IPV4, 82 MLX5_EXPANSION_IPV4_UDP, 83 MLX5_EXPANSION_IPV4_TCP, 84 MLX5_EXPANSION_IPV6, 85 MLX5_EXPANSION_IPV6_UDP, 86 MLX5_EXPANSION_IPV6_TCP, 87 }; 88 89 /** Supported expansion of items. */ 90 static const struct rte_flow_expand_node mlx5_support_expansion[] = { 91 [MLX5_EXPANSION_ROOT] = { 92 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 93 MLX5_EXPANSION_IPV4, 94 MLX5_EXPANSION_IPV6), 95 .type = RTE_FLOW_ITEM_TYPE_END, 96 }, 97 [MLX5_EXPANSION_ROOT_OUTER] = { 98 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 99 MLX5_EXPANSION_OUTER_IPV4, 100 MLX5_EXPANSION_OUTER_IPV6), 101 .type = RTE_FLOW_ITEM_TYPE_END, 102 }, 103 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 104 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 105 .type = RTE_FLOW_ITEM_TYPE_END, 106 }, 107 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 108 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), 109 .type = RTE_FLOW_ITEM_TYPE_END, 110 }, 111 [MLX5_EXPANSION_OUTER_ETH] = { 112 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 113 MLX5_EXPANSION_OUTER_IPV6, 114 MLX5_EXPANSION_MPLS), 115 .type = RTE_FLOW_ITEM_TYPE_ETH, 116 .rss_types = 0, 117 }, 118 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 119 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 120 .type = RTE_FLOW_ITEM_TYPE_ETH, 121 .rss_types = 0, 122 }, 123 [MLX5_EXPANSION_OUTER_VLAN] = { 124 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 125 MLX5_EXPANSION_OUTER_IPV6), 126 .type = RTE_FLOW_ITEM_TYPE_VLAN, 127 }, 128 [MLX5_EXPANSION_OUTER_IPV4] = { 129 .next = RTE_FLOW_EXPAND_RSS_NEXT 130 (MLX5_EXPANSION_OUTER_IPV4_UDP, 131 MLX5_EXPANSION_OUTER_IPV4_TCP, 132 MLX5_EXPANSION_GRE), 133 .type = RTE_FLOW_ITEM_TYPE_IPV4, 134 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 135 ETH_RSS_NONFRAG_IPV4_OTHER, 136 }, 137 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 138 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 139 MLX5_EXPANSION_VXLAN_GPE), 140 .type = RTE_FLOW_ITEM_TYPE_UDP, 141 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 142 }, 143 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 144 .type = RTE_FLOW_ITEM_TYPE_TCP, 145 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 146 }, 147 [MLX5_EXPANSION_OUTER_IPV6] = { 148 .next = RTE_FLOW_EXPAND_RSS_NEXT 149 (MLX5_EXPANSION_OUTER_IPV6_UDP, 150 MLX5_EXPANSION_OUTER_IPV6_TCP), 151 .type = RTE_FLOW_ITEM_TYPE_IPV6, 152 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 153 ETH_RSS_NONFRAG_IPV6_OTHER, 154 }, 155 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 156 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 157 MLX5_EXPANSION_VXLAN_GPE), 158 .type = RTE_FLOW_ITEM_TYPE_UDP, 159 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 160 }, 161 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 162 .type = RTE_FLOW_ITEM_TYPE_TCP, 163 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 164 }, 165 [MLX5_EXPANSION_VXLAN] = { 166 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 167 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 168 }, 169 [MLX5_EXPANSION_VXLAN_GPE] = { 170 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 171 MLX5_EXPANSION_IPV4, 172 MLX5_EXPANSION_IPV6), 173 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 174 }, 175 [MLX5_EXPANSION_GRE] = { 176 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 177 .type = RTE_FLOW_ITEM_TYPE_GRE, 178 }, 179 [MLX5_EXPANSION_MPLS] = { 180 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 181 MLX5_EXPANSION_IPV6), 182 .type = RTE_FLOW_ITEM_TYPE_MPLS, 183 }, 184 [MLX5_EXPANSION_ETH] = { 185 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 186 MLX5_EXPANSION_IPV6), 187 .type = RTE_FLOW_ITEM_TYPE_ETH, 188 }, 189 [MLX5_EXPANSION_ETH_VLAN] = { 190 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 191 .type = RTE_FLOW_ITEM_TYPE_ETH, 192 }, 193 [MLX5_EXPANSION_VLAN] = { 194 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 195 MLX5_EXPANSION_IPV6), 196 .type = RTE_FLOW_ITEM_TYPE_VLAN, 197 }, 198 [MLX5_EXPANSION_IPV4] = { 199 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 200 MLX5_EXPANSION_IPV4_TCP), 201 .type = RTE_FLOW_ITEM_TYPE_IPV4, 202 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 203 ETH_RSS_NONFRAG_IPV4_OTHER, 204 }, 205 [MLX5_EXPANSION_IPV4_UDP] = { 206 .type = RTE_FLOW_ITEM_TYPE_UDP, 207 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 208 }, 209 [MLX5_EXPANSION_IPV4_TCP] = { 210 .type = RTE_FLOW_ITEM_TYPE_TCP, 211 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 212 }, 213 [MLX5_EXPANSION_IPV6] = { 214 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 215 MLX5_EXPANSION_IPV6_TCP), 216 .type = RTE_FLOW_ITEM_TYPE_IPV6, 217 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 218 ETH_RSS_NONFRAG_IPV6_OTHER, 219 }, 220 [MLX5_EXPANSION_IPV6_UDP] = { 221 .type = RTE_FLOW_ITEM_TYPE_UDP, 222 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 223 }, 224 [MLX5_EXPANSION_IPV6_TCP] = { 225 .type = RTE_FLOW_ITEM_TYPE_TCP, 226 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 227 }, 228 }; 229 230 static const struct rte_flow_ops mlx5_flow_ops = { 231 .validate = mlx5_flow_validate, 232 .create = mlx5_flow_create, 233 .destroy = mlx5_flow_destroy, 234 .flush = mlx5_flow_flush, 235 .isolate = mlx5_flow_isolate, 236 .query = mlx5_flow_query, 237 }; 238 239 /* Convert FDIR request to Generic flow. */ 240 struct mlx5_fdir { 241 struct rte_flow_attr attr; 242 struct rte_flow_item items[4]; 243 struct rte_flow_item_eth l2; 244 struct rte_flow_item_eth l2_mask; 245 union { 246 struct rte_flow_item_ipv4 ipv4; 247 struct rte_flow_item_ipv6 ipv6; 248 } l3; 249 union { 250 struct rte_flow_item_ipv4 ipv4; 251 struct rte_flow_item_ipv6 ipv6; 252 } l3_mask; 253 union { 254 struct rte_flow_item_udp udp; 255 struct rte_flow_item_tcp tcp; 256 } l4; 257 union { 258 struct rte_flow_item_udp udp; 259 struct rte_flow_item_tcp tcp; 260 } l4_mask; 261 struct rte_flow_action actions[2]; 262 struct rte_flow_action_queue queue; 263 }; 264 265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 267 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 268 }; 269 270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 272 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 273 { 9, 10, 11 }, { 12, 13, 14 }, 274 }; 275 276 /* Tunnel information. */ 277 struct mlx5_flow_tunnel_info { 278 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 279 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 280 }; 281 282 static struct mlx5_flow_tunnel_info tunnels_info[] = { 283 { 284 .tunnel = MLX5_FLOW_LAYER_VXLAN, 285 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 286 }, 287 { 288 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 289 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 290 }, 291 { 292 .tunnel = MLX5_FLOW_LAYER_GRE, 293 .ptype = RTE_PTYPE_TUNNEL_GRE, 294 }, 295 { 296 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 297 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP, 298 }, 299 { 300 .tunnel = MLX5_FLOW_LAYER_MPLS, 301 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 302 }, 303 }; 304 305 /** 306 * Discover the maximum number of priority available. 307 * 308 * @param[in] dev 309 * Pointer to the Ethernet device structure. 310 * 311 * @return 312 * number of supported flow priority on success, a negative errno 313 * value otherwise and rte_errno is set. 314 */ 315 int 316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 317 { 318 struct { 319 struct ibv_flow_attr attr; 320 struct ibv_flow_spec_eth eth; 321 struct ibv_flow_spec_action_drop drop; 322 } flow_attr = { 323 .attr = { 324 .num_of_specs = 2, 325 }, 326 .eth = { 327 .type = IBV_FLOW_SPEC_ETH, 328 .size = sizeof(struct ibv_flow_spec_eth), 329 }, 330 .drop = { 331 .size = sizeof(struct ibv_flow_spec_action_drop), 332 .type = IBV_FLOW_SPEC_ACTION_DROP, 333 }, 334 }; 335 struct ibv_flow *flow; 336 struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); 337 uint16_t vprio[] = { 8, 16 }; 338 int i; 339 int priority = 0; 340 341 if (!drop) { 342 rte_errno = ENOTSUP; 343 return -rte_errno; 344 } 345 for (i = 0; i != RTE_DIM(vprio); i++) { 346 flow_attr.attr.priority = vprio[i] - 1; 347 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 348 if (!flow) 349 break; 350 claim_zero(mlx5_glue->destroy_flow(flow)); 351 priority = vprio[i]; 352 } 353 switch (priority) { 354 case 8: 355 priority = RTE_DIM(priority_map_3); 356 break; 357 case 16: 358 priority = RTE_DIM(priority_map_5); 359 break; 360 default: 361 rte_errno = ENOTSUP; 362 DRV_LOG(ERR, 363 "port %u verbs maximum priority: %d expected 8/16", 364 dev->data->port_id, vprio[i]); 365 return -rte_errno; 366 } 367 mlx5_hrxq_drop_release(dev); 368 DRV_LOG(INFO, "port %u flow maximum priority: %d", 369 dev->data->port_id, priority); 370 return priority; 371 } 372 373 /** 374 * Adjust flow priority based on the highest layer and the request priority. 375 * 376 * @param[in] dev 377 * Pointer to the Ethernet device structure. 378 * @param[in] priority 379 * The rule base priority. 380 * @param[in] subpriority 381 * The priority based on the items. 382 * 383 * @return 384 * The new priority. 385 */ 386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 387 uint32_t subpriority) 388 { 389 uint32_t res = 0; 390 struct priv *priv = dev->data->dev_private; 391 392 switch (priv->config.flow_prio) { 393 case RTE_DIM(priority_map_3): 394 res = priority_map_3[priority][subpriority]; 395 break; 396 case RTE_DIM(priority_map_5): 397 res = priority_map_5[priority][subpriority]; 398 break; 399 } 400 return res; 401 } 402 403 /** 404 * Verify the @p item specifications (spec, last, mask) are compatible with the 405 * NIC capabilities. 406 * 407 * @param[in] item 408 * Item specification. 409 * @param[in] mask 410 * @p item->mask or flow default bit-masks. 411 * @param[in] nic_mask 412 * Bit-masks covering supported fields by the NIC to compare with user mask. 413 * @param[in] size 414 * Bit-masks size in bytes. 415 * @param[out] error 416 * Pointer to error structure. 417 * 418 * @return 419 * 0 on success, a negative errno value otherwise and rte_errno is set. 420 */ 421 int 422 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 423 const uint8_t *mask, 424 const uint8_t *nic_mask, 425 unsigned int size, 426 struct rte_flow_error *error) 427 { 428 unsigned int i; 429 430 assert(nic_mask); 431 for (i = 0; i < size; ++i) 432 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 433 return rte_flow_error_set(error, ENOTSUP, 434 RTE_FLOW_ERROR_TYPE_ITEM, 435 item, 436 "mask enables non supported" 437 " bits"); 438 if (!item->spec && (item->mask || item->last)) 439 return rte_flow_error_set(error, EINVAL, 440 RTE_FLOW_ERROR_TYPE_ITEM, item, 441 "mask/last without a spec is not" 442 " supported"); 443 if (item->spec && item->last) { 444 uint8_t spec[size]; 445 uint8_t last[size]; 446 unsigned int i; 447 int ret; 448 449 for (i = 0; i < size; ++i) { 450 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 451 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 452 } 453 ret = memcmp(spec, last, size); 454 if (ret != 0) 455 return rte_flow_error_set(error, EINVAL, 456 RTE_FLOW_ERROR_TYPE_ITEM, 457 item, 458 "range is not valid"); 459 } 460 return 0; 461 } 462 463 /** 464 * Adjust the hash fields according to the @p flow information. 465 * 466 * @param[in] dev_flow. 467 * Pointer to the mlx5_flow. 468 * @param[in] tunnel 469 * 1 when the hash field is for a tunnel item. 470 * @param[in] layer_types 471 * ETH_RSS_* types. 472 * @param[in] hash_fields 473 * Item hash fields. 474 * 475 * @return 476 * The hash fileds that should be used. 477 */ 478 uint64_t 479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow, 480 int tunnel __rte_unused, uint64_t layer_types, 481 uint64_t hash_fields) 482 { 483 struct rte_flow *flow = dev_flow->flow; 484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 485 int rss_request_inner = flow->rss.level >= 2; 486 487 /* Check RSS hash level for tunnel. */ 488 if (tunnel && rss_request_inner) 489 hash_fields |= IBV_RX_HASH_INNER; 490 else if (tunnel || rss_request_inner) 491 return 0; 492 #endif 493 /* Check if requested layer matches RSS hash fields. */ 494 if (!(flow->rss.types & layer_types)) 495 return 0; 496 return hash_fields; 497 } 498 499 /** 500 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 501 * if several tunnel rules are used on this queue, the tunnel ptype will be 502 * cleared. 503 * 504 * @param rxq_ctrl 505 * Rx queue to update. 506 */ 507 static void 508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 509 { 510 unsigned int i; 511 uint32_t tunnel_ptype = 0; 512 513 /* Look up for the ptype to use. */ 514 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 515 if (!rxq_ctrl->flow_tunnels_n[i]) 516 continue; 517 if (!tunnel_ptype) { 518 tunnel_ptype = tunnels_info[i].ptype; 519 } else { 520 tunnel_ptype = 0; 521 break; 522 } 523 } 524 rxq_ctrl->rxq.tunnel = tunnel_ptype; 525 } 526 527 /** 528 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 529 * flow. 530 * 531 * @param[in] dev 532 * Pointer to the Ethernet device structure. 533 * @param[in] dev_flow 534 * Pointer to device flow structure. 535 */ 536 static void 537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 538 { 539 struct priv *priv = dev->data->dev_private; 540 struct rte_flow *flow = dev_flow->flow; 541 const int mark = !!(flow->actions & 542 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 543 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 544 unsigned int i; 545 546 for (i = 0; i != flow->rss.queue_num; ++i) { 547 int idx = (*flow->queue)[i]; 548 struct mlx5_rxq_ctrl *rxq_ctrl = 549 container_of((*priv->rxqs)[idx], 550 struct mlx5_rxq_ctrl, rxq); 551 552 if (mark) { 553 rxq_ctrl->rxq.mark = 1; 554 rxq_ctrl->flow_mark_n++; 555 } 556 if (tunnel) { 557 unsigned int j; 558 559 /* Increase the counter matching the flow. */ 560 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 561 if ((tunnels_info[j].tunnel & 562 dev_flow->layers) == 563 tunnels_info[j].tunnel) { 564 rxq_ctrl->flow_tunnels_n[j]++; 565 break; 566 } 567 } 568 flow_rxq_tunnel_ptype_update(rxq_ctrl); 569 } 570 } 571 } 572 573 /** 574 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 575 * 576 * @param[in] dev 577 * Pointer to the Ethernet device structure. 578 * @param[in] flow 579 * Pointer to flow structure. 580 */ 581 static void 582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 583 { 584 struct mlx5_flow *dev_flow; 585 586 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 587 flow_drv_rxq_flags_set(dev, dev_flow); 588 } 589 590 /** 591 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 592 * device flow if no other flow uses it with the same kind of request. 593 * 594 * @param dev 595 * Pointer to Ethernet device. 596 * @param[in] dev_flow 597 * Pointer to the device flow. 598 */ 599 static void 600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 601 { 602 struct priv *priv = dev->data->dev_private; 603 struct rte_flow *flow = dev_flow->flow; 604 const int mark = !!(flow->actions & 605 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 606 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 607 unsigned int i; 608 609 assert(dev->data->dev_started); 610 for (i = 0; i != flow->rss.queue_num; ++i) { 611 int idx = (*flow->queue)[i]; 612 struct mlx5_rxq_ctrl *rxq_ctrl = 613 container_of((*priv->rxqs)[idx], 614 struct mlx5_rxq_ctrl, rxq); 615 616 if (mark) { 617 rxq_ctrl->flow_mark_n--; 618 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 619 } 620 if (tunnel) { 621 unsigned int j; 622 623 /* Decrease the counter matching the flow. */ 624 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 625 if ((tunnels_info[j].tunnel & 626 dev_flow->layers) == 627 tunnels_info[j].tunnel) { 628 rxq_ctrl->flow_tunnels_n[j]--; 629 break; 630 } 631 } 632 flow_rxq_tunnel_ptype_update(rxq_ctrl); 633 } 634 } 635 } 636 637 /** 638 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 639 * @p flow if no other flow uses it with the same kind of request. 640 * 641 * @param dev 642 * Pointer to Ethernet device. 643 * @param[in] flow 644 * Pointer to the flow. 645 */ 646 static void 647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 648 { 649 struct mlx5_flow *dev_flow; 650 651 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 652 flow_drv_rxq_flags_trim(dev, dev_flow); 653 } 654 655 /** 656 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 657 * 658 * @param dev 659 * Pointer to Ethernet device. 660 */ 661 static void 662 flow_rxq_flags_clear(struct rte_eth_dev *dev) 663 { 664 struct priv *priv = dev->data->dev_private; 665 unsigned int i; 666 667 for (i = 0; i != priv->rxqs_n; ++i) { 668 struct mlx5_rxq_ctrl *rxq_ctrl; 669 unsigned int j; 670 671 if (!(*priv->rxqs)[i]) 672 continue; 673 rxq_ctrl = container_of((*priv->rxqs)[i], 674 struct mlx5_rxq_ctrl, rxq); 675 rxq_ctrl->flow_mark_n = 0; 676 rxq_ctrl->rxq.mark = 0; 677 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 678 rxq_ctrl->flow_tunnels_n[j] = 0; 679 rxq_ctrl->rxq.tunnel = 0; 680 } 681 } 682 683 /* 684 * Validate the flag action. 685 * 686 * @param[in] action_flags 687 * Bit-fields that holds the actions detected until now. 688 * @param[in] attr 689 * Attributes of flow that includes this action. 690 * @param[out] error 691 * Pointer to error structure. 692 * 693 * @return 694 * 0 on success, a negative errno value otherwise and rte_errno is set. 695 */ 696 int 697 mlx5_flow_validate_action_flag(uint64_t action_flags, 698 const struct rte_flow_attr *attr, 699 struct rte_flow_error *error) 700 { 701 702 if (action_flags & MLX5_FLOW_ACTION_DROP) 703 return rte_flow_error_set(error, EINVAL, 704 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 705 "can't drop and flag in same flow"); 706 if (action_flags & MLX5_FLOW_ACTION_MARK) 707 return rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 709 "can't mark and flag in same flow"); 710 if (action_flags & MLX5_FLOW_ACTION_FLAG) 711 return rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 713 "can't have 2 flag" 714 " actions in same flow"); 715 if (attr->egress) 716 return rte_flow_error_set(error, ENOTSUP, 717 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 718 "flag action not supported for " 719 "egress"); 720 return 0; 721 } 722 723 /* 724 * Validate the mark action. 725 * 726 * @param[in] action 727 * Pointer to the queue action. 728 * @param[in] action_flags 729 * Bit-fields that holds the actions detected until now. 730 * @param[in] attr 731 * Attributes of flow that includes this action. 732 * @param[out] error 733 * Pointer to error structure. 734 * 735 * @return 736 * 0 on success, a negative errno value otherwise and rte_errno is set. 737 */ 738 int 739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 740 uint64_t action_flags, 741 const struct rte_flow_attr *attr, 742 struct rte_flow_error *error) 743 { 744 const struct rte_flow_action_mark *mark = action->conf; 745 746 if (!mark) 747 return rte_flow_error_set(error, EINVAL, 748 RTE_FLOW_ERROR_TYPE_ACTION, 749 action, 750 "configuration cannot be null"); 751 if (mark->id >= MLX5_FLOW_MARK_MAX) 752 return rte_flow_error_set(error, EINVAL, 753 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 754 &mark->id, 755 "mark id must in 0 <= id < " 756 RTE_STR(MLX5_FLOW_MARK_MAX)); 757 if (action_flags & MLX5_FLOW_ACTION_DROP) 758 return rte_flow_error_set(error, EINVAL, 759 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 760 "can't drop and mark in same flow"); 761 if (action_flags & MLX5_FLOW_ACTION_FLAG) 762 return rte_flow_error_set(error, EINVAL, 763 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 764 "can't flag and mark in same flow"); 765 if (action_flags & MLX5_FLOW_ACTION_MARK) 766 return rte_flow_error_set(error, EINVAL, 767 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 768 "can't have 2 mark actions in same" 769 " flow"); 770 if (attr->egress) 771 return rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 773 "mark action not supported for " 774 "egress"); 775 return 0; 776 } 777 778 /* 779 * Validate the drop action. 780 * 781 * @param[in] action_flags 782 * Bit-fields that holds the actions detected until now. 783 * @param[in] attr 784 * Attributes of flow that includes this action. 785 * @param[out] error 786 * Pointer to error structure. 787 * 788 * @return 789 * 0 on success, a negative errno value otherwise and rte_ernno is set. 790 */ 791 int 792 mlx5_flow_validate_action_drop(uint64_t action_flags, 793 const struct rte_flow_attr *attr, 794 struct rte_flow_error *error) 795 { 796 if (action_flags & MLX5_FLOW_ACTION_FLAG) 797 return rte_flow_error_set(error, EINVAL, 798 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 799 "can't drop and flag in same flow"); 800 if (action_flags & MLX5_FLOW_ACTION_MARK) 801 return rte_flow_error_set(error, EINVAL, 802 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 803 "can't drop and mark in same flow"); 804 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 805 return rte_flow_error_set(error, EINVAL, 806 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 807 "can't have 2 fate actions in" 808 " same flow"); 809 if (attr->egress) 810 return rte_flow_error_set(error, ENOTSUP, 811 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 812 "drop action not supported for " 813 "egress"); 814 return 0; 815 } 816 817 /* 818 * Validate the queue action. 819 * 820 * @param[in] action 821 * Pointer to the queue action. 822 * @param[in] action_flags 823 * Bit-fields that holds the actions detected until now. 824 * @param[in] dev 825 * Pointer to the Ethernet device structure. 826 * @param[in] attr 827 * Attributes of flow that includes this action. 828 * @param[out] error 829 * Pointer to error structure. 830 * 831 * @return 832 * 0 on success, a negative errno value otherwise and rte_ernno is set. 833 */ 834 int 835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 836 uint64_t action_flags, 837 struct rte_eth_dev *dev, 838 const struct rte_flow_attr *attr, 839 struct rte_flow_error *error) 840 { 841 struct priv *priv = dev->data->dev_private; 842 const struct rte_flow_action_queue *queue = action->conf; 843 844 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 845 return rte_flow_error_set(error, EINVAL, 846 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 847 "can't have 2 fate actions in" 848 " same flow"); 849 if (queue->index >= priv->rxqs_n) 850 return rte_flow_error_set(error, EINVAL, 851 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 852 &queue->index, 853 "queue index out of range"); 854 if (!(*priv->rxqs)[queue->index]) 855 return rte_flow_error_set(error, EINVAL, 856 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 857 &queue->index, 858 "queue is not configured"); 859 if (attr->egress) 860 return rte_flow_error_set(error, ENOTSUP, 861 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 862 "queue action not supported for " 863 "egress"); 864 return 0; 865 } 866 867 /* 868 * Validate the rss action. 869 * 870 * @param[in] action 871 * Pointer to the queue action. 872 * @param[in] action_flags 873 * Bit-fields that holds the actions detected until now. 874 * @param[in] dev 875 * Pointer to the Ethernet device structure. 876 * @param[in] attr 877 * Attributes of flow that includes this action. 878 * @param[out] error 879 * Pointer to error structure. 880 * 881 * @return 882 * 0 on success, a negative errno value otherwise and rte_ernno is set. 883 */ 884 int 885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 886 uint64_t action_flags, 887 struct rte_eth_dev *dev, 888 const struct rte_flow_attr *attr, 889 struct rte_flow_error *error) 890 { 891 struct priv *priv = dev->data->dev_private; 892 const struct rte_flow_action_rss *rss = action->conf; 893 unsigned int i; 894 895 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 896 return rte_flow_error_set(error, EINVAL, 897 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 898 "can't have 2 fate actions" 899 " in same flow"); 900 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 901 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 902 return rte_flow_error_set(error, ENOTSUP, 903 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 904 &rss->func, 905 "RSS hash function not supported"); 906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 907 if (rss->level > 2) 908 #else 909 if (rss->level > 1) 910 #endif 911 return rte_flow_error_set(error, ENOTSUP, 912 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 913 &rss->level, 914 "tunnel RSS is not supported"); 915 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 916 if (rss->key_len == 0 && rss->key != NULL) 917 return rte_flow_error_set(error, ENOTSUP, 918 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 919 &rss->key_len, 920 "RSS hash key length 0"); 921 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 922 return rte_flow_error_set(error, ENOTSUP, 923 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 924 &rss->key_len, 925 "RSS hash key too small"); 926 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 927 return rte_flow_error_set(error, ENOTSUP, 928 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 929 &rss->key_len, 930 "RSS hash key too large"); 931 if (rss->queue_num > priv->config.ind_table_max_size) 932 return rte_flow_error_set(error, ENOTSUP, 933 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 934 &rss->queue_num, 935 "number of queues too large"); 936 if (rss->types & MLX5_RSS_HF_MASK) 937 return rte_flow_error_set(error, ENOTSUP, 938 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 939 &rss->types, 940 "some RSS protocols are not" 941 " supported"); 942 for (i = 0; i != rss->queue_num; ++i) { 943 if (!(*priv->rxqs)[rss->queue[i]]) 944 return rte_flow_error_set 945 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 946 &rss->queue[i], "queue is not configured"); 947 } 948 if (attr->egress) 949 return rte_flow_error_set(error, ENOTSUP, 950 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 951 "rss action not supported for " 952 "egress"); 953 return 0; 954 } 955 956 /* 957 * Validate the count action. 958 * 959 * @param[in] dev 960 * Pointer to the Ethernet device structure. 961 * @param[in] attr 962 * Attributes of flow that includes this action. 963 * @param[out] error 964 * Pointer to error structure. 965 * 966 * @return 967 * 0 on success, a negative errno value otherwise and rte_ernno is set. 968 */ 969 int 970 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 971 const struct rte_flow_attr *attr, 972 struct rte_flow_error *error) 973 { 974 if (attr->egress) 975 return rte_flow_error_set(error, ENOTSUP, 976 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 977 "count action not supported for " 978 "egress"); 979 return 0; 980 } 981 982 /** 983 * Verify the @p attributes will be correctly understood by the NIC and store 984 * them in the @p flow if everything is correct. 985 * 986 * @param[in] dev 987 * Pointer to the Ethernet device structure. 988 * @param[in] attributes 989 * Pointer to flow attributes 990 * @param[out] error 991 * Pointer to error structure. 992 * 993 * @return 994 * 0 on success, a negative errno value otherwise and rte_errno is set. 995 */ 996 int 997 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 998 const struct rte_flow_attr *attributes, 999 struct rte_flow_error *error) 1000 { 1001 struct priv *priv = dev->data->dev_private; 1002 uint32_t priority_max = priv->config.flow_prio - 1; 1003 1004 if (attributes->group) 1005 return rte_flow_error_set(error, ENOTSUP, 1006 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1007 NULL, "groups is not supported"); 1008 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1009 attributes->priority >= priority_max) 1010 return rte_flow_error_set(error, ENOTSUP, 1011 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1012 NULL, "priority out of range"); 1013 if (attributes->egress) 1014 return rte_flow_error_set(error, ENOTSUP, 1015 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1016 "egress is not supported"); 1017 if (attributes->transfer) 1018 return rte_flow_error_set(error, ENOTSUP, 1019 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1020 NULL, "transfer is not supported"); 1021 if (!attributes->ingress) 1022 return rte_flow_error_set(error, EINVAL, 1023 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1024 NULL, 1025 "ingress attribute is mandatory"); 1026 return 0; 1027 } 1028 1029 /** 1030 * Validate Ethernet item. 1031 * 1032 * @param[in] item 1033 * Item specification. 1034 * @param[in] item_flags 1035 * Bit-fields that holds the items detected until now. 1036 * @param[out] error 1037 * Pointer to error structure. 1038 * 1039 * @return 1040 * 0 on success, a negative errno value otherwise and rte_errno is set. 1041 */ 1042 int 1043 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1044 uint64_t item_flags, 1045 struct rte_flow_error *error) 1046 { 1047 const struct rte_flow_item_eth *mask = item->mask; 1048 const struct rte_flow_item_eth nic_mask = { 1049 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1050 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1051 .type = RTE_BE16(0xffff), 1052 }; 1053 int ret; 1054 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1055 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1056 MLX5_FLOW_LAYER_OUTER_L2; 1057 1058 if (item_flags & ethm) 1059 return rte_flow_error_set(error, ENOTSUP, 1060 RTE_FLOW_ERROR_TYPE_ITEM, item, 1061 "multiple L2 layers not supported"); 1062 if (!mask) 1063 mask = &rte_flow_item_eth_mask; 1064 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1065 (const uint8_t *)&nic_mask, 1066 sizeof(struct rte_flow_item_eth), 1067 error); 1068 return ret; 1069 } 1070 1071 /** 1072 * Validate VLAN item. 1073 * 1074 * @param[in] item 1075 * Item specification. 1076 * @param[in] item_flags 1077 * Bit-fields that holds the items detected until now. 1078 * @param[out] error 1079 * Pointer to error structure. 1080 * 1081 * @return 1082 * 0 on success, a negative errno value otherwise and rte_errno is set. 1083 */ 1084 int 1085 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1086 uint64_t item_flags, 1087 struct rte_flow_error *error) 1088 { 1089 const struct rte_flow_item_vlan *spec = item->spec; 1090 const struct rte_flow_item_vlan *mask = item->mask; 1091 const struct rte_flow_item_vlan nic_mask = { 1092 .tci = RTE_BE16(0x0fff), 1093 .inner_type = RTE_BE16(0xffff), 1094 }; 1095 uint16_t vlan_tag = 0; 1096 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1097 int ret; 1098 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1099 MLX5_FLOW_LAYER_INNER_L4) : 1100 (MLX5_FLOW_LAYER_OUTER_L3 | 1101 MLX5_FLOW_LAYER_OUTER_L4); 1102 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1103 MLX5_FLOW_LAYER_OUTER_VLAN; 1104 1105 if (item_flags & vlanm) 1106 return rte_flow_error_set(error, EINVAL, 1107 RTE_FLOW_ERROR_TYPE_ITEM, item, 1108 "multiple VLAN layers not supported"); 1109 else if ((item_flags & l34m) != 0) 1110 return rte_flow_error_set(error, EINVAL, 1111 RTE_FLOW_ERROR_TYPE_ITEM, item, 1112 "L2 layer cannot follow L3/L4 layer"); 1113 if (!mask) 1114 mask = &rte_flow_item_vlan_mask; 1115 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1116 (const uint8_t *)&nic_mask, 1117 sizeof(struct rte_flow_item_vlan), 1118 error); 1119 if (ret) 1120 return ret; 1121 if (spec) { 1122 vlan_tag = spec->tci; 1123 vlan_tag &= mask->tci; 1124 } 1125 /* 1126 * From verbs perspective an empty VLAN is equivalent 1127 * to a packet without VLAN layer. 1128 */ 1129 if (!vlan_tag) 1130 return rte_flow_error_set(error, EINVAL, 1131 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1132 item->spec, 1133 "VLAN cannot be empty"); 1134 return 0; 1135 } 1136 1137 /** 1138 * Validate IPV4 item. 1139 * 1140 * @param[in] item 1141 * Item specification. 1142 * @param[in] item_flags 1143 * Bit-fields that holds the items detected until now. 1144 * @param[out] error 1145 * Pointer to error structure. 1146 * 1147 * @return 1148 * 0 on success, a negative errno value otherwise and rte_errno is set. 1149 */ 1150 int 1151 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1152 uint64_t item_flags, 1153 struct rte_flow_error *error) 1154 { 1155 const struct rte_flow_item_ipv4 *mask = item->mask; 1156 const struct rte_flow_item_ipv4 nic_mask = { 1157 .hdr = { 1158 .src_addr = RTE_BE32(0xffffffff), 1159 .dst_addr = RTE_BE32(0xffffffff), 1160 .type_of_service = 0xff, 1161 .next_proto_id = 0xff, 1162 }, 1163 }; 1164 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1165 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1166 MLX5_FLOW_LAYER_OUTER_L3; 1167 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1168 MLX5_FLOW_LAYER_OUTER_L4; 1169 int ret; 1170 1171 if (item_flags & l3m) 1172 return rte_flow_error_set(error, ENOTSUP, 1173 RTE_FLOW_ERROR_TYPE_ITEM, item, 1174 "multiple L3 layers not supported"); 1175 else if (item_flags & l4m) 1176 return rte_flow_error_set(error, EINVAL, 1177 RTE_FLOW_ERROR_TYPE_ITEM, item, 1178 "L3 cannot follow an L4 layer."); 1179 if (!mask) 1180 mask = &rte_flow_item_ipv4_mask; 1181 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1182 (const uint8_t *)&nic_mask, 1183 sizeof(struct rte_flow_item_ipv4), 1184 error); 1185 if (ret < 0) 1186 return ret; 1187 return 0; 1188 } 1189 1190 /** 1191 * Validate IPV6 item. 1192 * 1193 * @param[in] item 1194 * Item specification. 1195 * @param[in] item_flags 1196 * Bit-fields that holds the items detected until now. 1197 * @param[out] error 1198 * Pointer to error structure. 1199 * 1200 * @return 1201 * 0 on success, a negative errno value otherwise and rte_errno is set. 1202 */ 1203 int 1204 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 1205 uint64_t item_flags, 1206 struct rte_flow_error *error) 1207 { 1208 const struct rte_flow_item_ipv6 *mask = item->mask; 1209 const struct rte_flow_item_ipv6 nic_mask = { 1210 .hdr = { 1211 .src_addr = 1212 "\xff\xff\xff\xff\xff\xff\xff\xff" 1213 "\xff\xff\xff\xff\xff\xff\xff\xff", 1214 .dst_addr = 1215 "\xff\xff\xff\xff\xff\xff\xff\xff" 1216 "\xff\xff\xff\xff\xff\xff\xff\xff", 1217 .vtc_flow = RTE_BE32(0xffffffff), 1218 .proto = 0xff, 1219 .hop_limits = 0xff, 1220 }, 1221 }; 1222 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1223 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1224 MLX5_FLOW_LAYER_OUTER_L3; 1225 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1226 MLX5_FLOW_LAYER_OUTER_L4; 1227 int ret; 1228 1229 if (item_flags & l3m) 1230 return rte_flow_error_set(error, ENOTSUP, 1231 RTE_FLOW_ERROR_TYPE_ITEM, item, 1232 "multiple L3 layers not supported"); 1233 else if (item_flags & l4m) 1234 return rte_flow_error_set(error, EINVAL, 1235 RTE_FLOW_ERROR_TYPE_ITEM, item, 1236 "L3 cannot follow an L4 layer."); 1237 /* 1238 * IPv6 is not recognised by the NIC inside a GRE tunnel. 1239 * Such support has to be disabled as the rule will be 1240 * accepted. Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and 1241 * Mellanox OFED 4.4-1.0.0.0. 1242 */ 1243 if (tunnel && item_flags & MLX5_FLOW_LAYER_GRE) 1244 return rte_flow_error_set(error, ENOTSUP, 1245 RTE_FLOW_ERROR_TYPE_ITEM, item, 1246 "IPv6 inside a GRE tunnel is" 1247 " not recognised."); 1248 if (!mask) 1249 mask = &rte_flow_item_ipv6_mask; 1250 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1251 (const uint8_t *)&nic_mask, 1252 sizeof(struct rte_flow_item_ipv6), 1253 error); 1254 if (ret < 0) 1255 return ret; 1256 return 0; 1257 } 1258 1259 /** 1260 * Validate UDP item. 1261 * 1262 * @param[in] item 1263 * Item specification. 1264 * @param[in] item_flags 1265 * Bit-fields that holds the items detected until now. 1266 * @param[in] target_protocol 1267 * The next protocol in the previous item. 1268 * @param[in] flow_mask 1269 * mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask. 1270 * @param[out] error 1271 * Pointer to error structure. 1272 * 1273 * @return 1274 * 0 on success, a negative errno value otherwise and rte_errno is set. 1275 */ 1276 int 1277 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 1278 uint64_t item_flags, 1279 uint8_t target_protocol, 1280 struct rte_flow_error *error) 1281 { 1282 const struct rte_flow_item_udp *mask = item->mask; 1283 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1284 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1285 MLX5_FLOW_LAYER_OUTER_L3; 1286 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1287 MLX5_FLOW_LAYER_OUTER_L4; 1288 int ret; 1289 1290 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 1291 return rte_flow_error_set(error, EINVAL, 1292 RTE_FLOW_ERROR_TYPE_ITEM, item, 1293 "protocol filtering not compatible" 1294 " with UDP layer"); 1295 if (!(item_flags & l3m)) 1296 return rte_flow_error_set(error, EINVAL, 1297 RTE_FLOW_ERROR_TYPE_ITEM, item, 1298 "L3 is mandatory to filter on L4"); 1299 if (item_flags & l4m) 1300 return rte_flow_error_set(error, EINVAL, 1301 RTE_FLOW_ERROR_TYPE_ITEM, item, 1302 "multiple L4 layers not supported"); 1303 if (!mask) 1304 mask = &rte_flow_item_udp_mask; 1305 ret = mlx5_flow_item_acceptable 1306 (item, (const uint8_t *)mask, 1307 (const uint8_t *)&rte_flow_item_udp_mask, 1308 sizeof(struct rte_flow_item_udp), error); 1309 if (ret < 0) 1310 return ret; 1311 return 0; 1312 } 1313 1314 /** 1315 * Validate TCP item. 1316 * 1317 * @param[in] item 1318 * Item specification. 1319 * @param[in] item_flags 1320 * Bit-fields that holds the items detected until now. 1321 * @param[in] target_protocol 1322 * The next protocol in the previous item. 1323 * @param[out] error 1324 * Pointer to error structure. 1325 * 1326 * @return 1327 * 0 on success, a negative errno value otherwise and rte_errno is set. 1328 */ 1329 int 1330 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 1331 uint64_t item_flags, 1332 uint8_t target_protocol, 1333 const struct rte_flow_item_tcp *flow_mask, 1334 struct rte_flow_error *error) 1335 { 1336 const struct rte_flow_item_tcp *mask = item->mask; 1337 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1338 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1339 MLX5_FLOW_LAYER_OUTER_L3; 1340 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1341 MLX5_FLOW_LAYER_OUTER_L4; 1342 int ret; 1343 1344 assert(flow_mask); 1345 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 1346 return rte_flow_error_set(error, EINVAL, 1347 RTE_FLOW_ERROR_TYPE_ITEM, item, 1348 "protocol filtering not compatible" 1349 " with TCP layer"); 1350 if (!(item_flags & l3m)) 1351 return rte_flow_error_set(error, EINVAL, 1352 RTE_FLOW_ERROR_TYPE_ITEM, item, 1353 "L3 is mandatory to filter on L4"); 1354 if (item_flags & l4m) 1355 return rte_flow_error_set(error, EINVAL, 1356 RTE_FLOW_ERROR_TYPE_ITEM, item, 1357 "multiple L4 layers not supported"); 1358 if (!mask) 1359 mask = &rte_flow_item_tcp_mask; 1360 ret = mlx5_flow_item_acceptable 1361 (item, (const uint8_t *)mask, 1362 (const uint8_t *)flow_mask, 1363 sizeof(struct rte_flow_item_tcp), error); 1364 if (ret < 0) 1365 return ret; 1366 return 0; 1367 } 1368 1369 /** 1370 * Validate VXLAN item. 1371 * 1372 * @param[in] item 1373 * Item specification. 1374 * @param[in] item_flags 1375 * Bit-fields that holds the items detected until now. 1376 * @param[in] target_protocol 1377 * The next protocol in the previous item. 1378 * @param[out] error 1379 * Pointer to error structure. 1380 * 1381 * @return 1382 * 0 on success, a negative errno value otherwise and rte_errno is set. 1383 */ 1384 int 1385 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 1386 uint64_t item_flags, 1387 struct rte_flow_error *error) 1388 { 1389 const struct rte_flow_item_vxlan *spec = item->spec; 1390 const struct rte_flow_item_vxlan *mask = item->mask; 1391 int ret; 1392 union vni { 1393 uint32_t vlan_id; 1394 uint8_t vni[4]; 1395 } id = { .vlan_id = 0, }; 1396 uint32_t vlan_id = 0; 1397 1398 1399 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1400 return rte_flow_error_set(error, ENOTSUP, 1401 RTE_FLOW_ERROR_TYPE_ITEM, item, 1402 "multiple tunnel layers not" 1403 " supported"); 1404 /* 1405 * Verify only UDPv4 is present as defined in 1406 * https://tools.ietf.org/html/rfc7348 1407 */ 1408 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1409 return rte_flow_error_set(error, EINVAL, 1410 RTE_FLOW_ERROR_TYPE_ITEM, item, 1411 "no outer UDP layer found"); 1412 if (!mask) 1413 mask = &rte_flow_item_vxlan_mask; 1414 ret = mlx5_flow_item_acceptable 1415 (item, (const uint8_t *)mask, 1416 (const uint8_t *)&rte_flow_item_vxlan_mask, 1417 sizeof(struct rte_flow_item_vxlan), 1418 error); 1419 if (ret < 0) 1420 return ret; 1421 if (spec) { 1422 memcpy(&id.vni[1], spec->vni, 3); 1423 vlan_id = id.vlan_id; 1424 memcpy(&id.vni[1], mask->vni, 3); 1425 vlan_id &= id.vlan_id; 1426 } 1427 /* 1428 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if 1429 * only this layer is defined in the Verbs specification it is 1430 * interpreted as wildcard and all packets will match this 1431 * rule, if it follows a full stack layer (ex: eth / ipv4 / 1432 * udp), all packets matching the layers before will also 1433 * match this rule. To avoid such situation, VNI 0 is 1434 * currently refused. 1435 */ 1436 if (!vlan_id) 1437 return rte_flow_error_set(error, ENOTSUP, 1438 RTE_FLOW_ERROR_TYPE_ITEM, item, 1439 "VXLAN vni cannot be 0"); 1440 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1441 return rte_flow_error_set(error, ENOTSUP, 1442 RTE_FLOW_ERROR_TYPE_ITEM, item, 1443 "VXLAN tunnel must be fully defined"); 1444 return 0; 1445 } 1446 1447 /** 1448 * Validate VXLAN_GPE item. 1449 * 1450 * @param[in] item 1451 * Item specification. 1452 * @param[in] item_flags 1453 * Bit-fields that holds the items detected until now. 1454 * @param[in] priv 1455 * Pointer to the private data structure. 1456 * @param[in] target_protocol 1457 * The next protocol in the previous item. 1458 * @param[out] error 1459 * Pointer to error structure. 1460 * 1461 * @return 1462 * 0 on success, a negative errno value otherwise and rte_errno is set. 1463 */ 1464 int 1465 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 1466 uint64_t item_flags, 1467 struct rte_eth_dev *dev, 1468 struct rte_flow_error *error) 1469 { 1470 struct priv *priv = dev->data->dev_private; 1471 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 1472 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 1473 int ret; 1474 union vni { 1475 uint32_t vlan_id; 1476 uint8_t vni[4]; 1477 } id = { .vlan_id = 0, }; 1478 uint32_t vlan_id = 0; 1479 1480 if (!priv->config.l3_vxlan_en) 1481 return rte_flow_error_set(error, ENOTSUP, 1482 RTE_FLOW_ERROR_TYPE_ITEM, item, 1483 "L3 VXLAN is not enabled by device" 1484 " parameter and/or not configured in" 1485 " firmware"); 1486 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1487 return rte_flow_error_set(error, ENOTSUP, 1488 RTE_FLOW_ERROR_TYPE_ITEM, item, 1489 "multiple tunnel layers not" 1490 " supported"); 1491 /* 1492 * Verify only UDPv4 is present as defined in 1493 * https://tools.ietf.org/html/rfc7348 1494 */ 1495 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1496 return rte_flow_error_set(error, EINVAL, 1497 RTE_FLOW_ERROR_TYPE_ITEM, item, 1498 "no outer UDP layer found"); 1499 if (!mask) 1500 mask = &rte_flow_item_vxlan_gpe_mask; 1501 ret = mlx5_flow_item_acceptable 1502 (item, (const uint8_t *)mask, 1503 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 1504 sizeof(struct rte_flow_item_vxlan_gpe), 1505 error); 1506 if (ret < 0) 1507 return ret; 1508 if (spec) { 1509 if (spec->protocol) 1510 return rte_flow_error_set(error, ENOTSUP, 1511 RTE_FLOW_ERROR_TYPE_ITEM, 1512 item, 1513 "VxLAN-GPE protocol" 1514 " not supported"); 1515 memcpy(&id.vni[1], spec->vni, 3); 1516 vlan_id = id.vlan_id; 1517 memcpy(&id.vni[1], mask->vni, 3); 1518 vlan_id &= id.vlan_id; 1519 } 1520 /* 1521 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1522 * layer is defined in the Verbs specification it is interpreted as 1523 * wildcard and all packets will match this rule, if it follows a full 1524 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1525 * before will also match this rule. To avoid such situation, VNI 0 1526 * is currently refused. 1527 */ 1528 if (!vlan_id) 1529 return rte_flow_error_set(error, ENOTSUP, 1530 RTE_FLOW_ERROR_TYPE_ITEM, item, 1531 "VXLAN-GPE vni cannot be 0"); 1532 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1533 return rte_flow_error_set(error, ENOTSUP, 1534 RTE_FLOW_ERROR_TYPE_ITEM, item, 1535 "VXLAN-GPE tunnel must be fully" 1536 " defined"); 1537 return 0; 1538 } 1539 1540 /** 1541 * Validate GRE item. 1542 * 1543 * @param[in] item 1544 * Item specification. 1545 * @param[in] item_flags 1546 * Bit flags to mark detected items. 1547 * @param[in] target_protocol 1548 * The next protocol in the previous item. 1549 * @param[out] error 1550 * Pointer to error structure. 1551 * 1552 * @return 1553 * 0 on success, a negative errno value otherwise and rte_errno is set. 1554 */ 1555 int 1556 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 1557 uint64_t item_flags, 1558 uint8_t target_protocol, 1559 struct rte_flow_error *error) 1560 { 1561 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 1562 const struct rte_flow_item_gre *mask = item->mask; 1563 int ret; 1564 1565 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1566 return rte_flow_error_set(error, EINVAL, 1567 RTE_FLOW_ERROR_TYPE_ITEM, item, 1568 "protocol filtering not compatible" 1569 " with this GRE layer"); 1570 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1571 return rte_flow_error_set(error, ENOTSUP, 1572 RTE_FLOW_ERROR_TYPE_ITEM, item, 1573 "multiple tunnel layers not" 1574 " supported"); 1575 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1576 return rte_flow_error_set(error, ENOTSUP, 1577 RTE_FLOW_ERROR_TYPE_ITEM, item, 1578 "L3 Layer is missing"); 1579 if (!mask) 1580 mask = &rte_flow_item_gre_mask; 1581 ret = mlx5_flow_item_acceptable 1582 (item, (const uint8_t *)mask, 1583 (const uint8_t *)&rte_flow_item_gre_mask, 1584 sizeof(struct rte_flow_item_gre), error); 1585 if (ret < 0) 1586 return ret; 1587 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 1588 if (spec && (spec->protocol & mask->protocol)) 1589 return rte_flow_error_set(error, ENOTSUP, 1590 RTE_FLOW_ERROR_TYPE_ITEM, item, 1591 "without MPLS support the" 1592 " specification cannot be used for" 1593 " filtering"); 1594 #endif 1595 return 0; 1596 } 1597 1598 /** 1599 * Validate MPLS item. 1600 * 1601 * @param[in] item 1602 * Item specification. 1603 * @param[in] item_flags 1604 * Bit-fields that holds the items detected until now. 1605 * @param[in] target_protocol 1606 * The next protocol in the previous item. 1607 * @param[out] error 1608 * Pointer to error structure. 1609 * 1610 * @return 1611 * 0 on success, a negative errno value otherwise and rte_errno is set. 1612 */ 1613 int 1614 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused, 1615 uint64_t item_flags __rte_unused, 1616 uint8_t target_protocol __rte_unused, 1617 struct rte_flow_error *error) 1618 { 1619 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1620 const struct rte_flow_item_mpls *mask = item->mask; 1621 int ret; 1622 1623 if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS) 1624 return rte_flow_error_set(error, EINVAL, 1625 RTE_FLOW_ERROR_TYPE_ITEM, item, 1626 "protocol filtering not compatible" 1627 " with MPLS layer"); 1628 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 1629 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 1630 !(item_flags & MLX5_FLOW_LAYER_GRE)) 1631 return rte_flow_error_set(error, ENOTSUP, 1632 RTE_FLOW_ERROR_TYPE_ITEM, item, 1633 "multiple tunnel layers not" 1634 " supported"); 1635 if (!mask) 1636 mask = &rte_flow_item_mpls_mask; 1637 ret = mlx5_flow_item_acceptable 1638 (item, (const uint8_t *)mask, 1639 (const uint8_t *)&rte_flow_item_mpls_mask, 1640 sizeof(struct rte_flow_item_mpls), error); 1641 if (ret < 0) 1642 return ret; 1643 return 0; 1644 #endif 1645 return rte_flow_error_set(error, ENOTSUP, 1646 RTE_FLOW_ERROR_TYPE_ITEM, item, 1647 "MPLS is not supported by Verbs, please" 1648 " update."); 1649 } 1650 1651 static int 1652 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 1653 const struct rte_flow_attr *attr __rte_unused, 1654 const struct rte_flow_item items[] __rte_unused, 1655 const struct rte_flow_action actions[] __rte_unused, 1656 struct rte_flow_error *error __rte_unused) 1657 { 1658 rte_errno = ENOTSUP; 1659 return -rte_errno; 1660 } 1661 1662 static struct mlx5_flow * 1663 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused, 1664 const struct rte_flow_item items[] __rte_unused, 1665 const struct rte_flow_action actions[] __rte_unused, 1666 struct rte_flow_error *error __rte_unused) 1667 { 1668 rte_errno = ENOTSUP; 1669 return NULL; 1670 } 1671 1672 static int 1673 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 1674 struct mlx5_flow *dev_flow __rte_unused, 1675 const struct rte_flow_attr *attr __rte_unused, 1676 const struct rte_flow_item items[] __rte_unused, 1677 const struct rte_flow_action actions[] __rte_unused, 1678 struct rte_flow_error *error __rte_unused) 1679 { 1680 rte_errno = ENOTSUP; 1681 return -rte_errno; 1682 } 1683 1684 static int 1685 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 1686 struct rte_flow *flow __rte_unused, 1687 struct rte_flow_error *error __rte_unused) 1688 { 1689 rte_errno = ENOTSUP; 1690 return -rte_errno; 1691 } 1692 1693 static void 1694 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 1695 struct rte_flow *flow __rte_unused) 1696 { 1697 } 1698 1699 static void 1700 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 1701 struct rte_flow *flow __rte_unused) 1702 { 1703 } 1704 1705 static int 1706 flow_null_query(struct rte_eth_dev *dev __rte_unused, 1707 struct rte_flow *flow __rte_unused, 1708 const struct rte_flow_action *actions __rte_unused, 1709 void *data __rte_unused, 1710 struct rte_flow_error *error __rte_unused) 1711 { 1712 rte_errno = ENOTSUP; 1713 return -rte_errno; 1714 } 1715 1716 /* Void driver to protect from null pointer reference. */ 1717 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 1718 .validate = flow_null_validate, 1719 .prepare = flow_null_prepare, 1720 .translate = flow_null_translate, 1721 .apply = flow_null_apply, 1722 .remove = flow_null_remove, 1723 .destroy = flow_null_destroy, 1724 .query = flow_null_query, 1725 }; 1726 1727 /** 1728 * Select flow driver type according to flow attributes and device 1729 * configuration. 1730 * 1731 * @param[in] dev 1732 * Pointer to the dev structure. 1733 * @param[in] attr 1734 * Pointer to the flow attributes. 1735 * 1736 * @return 1737 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 1738 */ 1739 static enum mlx5_flow_drv_type 1740 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 1741 { 1742 struct priv *priv = dev->data->dev_private; 1743 enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX; 1744 1745 if (attr->transfer) 1746 type = MLX5_FLOW_TYPE_TCF; 1747 else 1748 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 1749 MLX5_FLOW_TYPE_VERBS; 1750 return type; 1751 } 1752 1753 #define flow_get_drv_ops(type) flow_drv_ops[type] 1754 1755 /** 1756 * Flow driver validation API. This abstracts calling driver specific functions. 1757 * The type of flow driver is determined according to flow attributes. 1758 * 1759 * @param[in] dev 1760 * Pointer to the dev structure. 1761 * @param[in] attr 1762 * Pointer to the flow attributes. 1763 * @param[in] items 1764 * Pointer to the list of items. 1765 * @param[in] actions 1766 * Pointer to the list of actions. 1767 * @param[out] error 1768 * Pointer to the error structure. 1769 * 1770 * @return 1771 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1772 */ 1773 static inline int 1774 flow_drv_validate(struct rte_eth_dev *dev, 1775 const struct rte_flow_attr *attr, 1776 const struct rte_flow_item items[], 1777 const struct rte_flow_action actions[], 1778 struct rte_flow_error *error) 1779 { 1780 const struct mlx5_flow_driver_ops *fops; 1781 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 1782 1783 fops = flow_get_drv_ops(type); 1784 return fops->validate(dev, attr, items, actions, error); 1785 } 1786 1787 /** 1788 * Flow driver preparation API. This abstracts calling driver specific 1789 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1790 * calculates the size of memory required for device flow, allocates the memory, 1791 * initializes the device flow and returns the pointer. 1792 * 1793 * @note 1794 * This function initializes device flow structure such as dv, tcf or verbs in 1795 * struct mlx5_flow. However, it is caller's responsibility to initialize the 1796 * rest. For example, adding returning device flow to flow->dev_flow list and 1797 * setting backward reference to the flow should be done out of this function. 1798 * layers field is not filled either. 1799 * 1800 * @param[in] attr 1801 * Pointer to the flow attributes. 1802 * @param[in] items 1803 * Pointer to the list of items. 1804 * @param[in] actions 1805 * Pointer to the list of actions. 1806 * @param[out] error 1807 * Pointer to the error structure. 1808 * 1809 * @return 1810 * Pointer to device flow on success, otherwise NULL and rte_ernno is set. 1811 */ 1812 static inline struct mlx5_flow * 1813 flow_drv_prepare(const struct rte_flow *flow, 1814 const struct rte_flow_attr *attr, 1815 const struct rte_flow_item items[], 1816 const struct rte_flow_action actions[], 1817 struct rte_flow_error *error) 1818 { 1819 const struct mlx5_flow_driver_ops *fops; 1820 enum mlx5_flow_drv_type type = flow->drv_type; 1821 1822 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1823 fops = flow_get_drv_ops(type); 1824 return fops->prepare(attr, items, actions, error); 1825 } 1826 1827 /** 1828 * Flow driver translation API. This abstracts calling driver specific 1829 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1830 * translates a generic flow into a driver flow. flow_drv_prepare() must 1831 * precede. 1832 * 1833 * @note 1834 * dev_flow->layers could be filled as a result of parsing during translation 1835 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 1836 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 1837 * flow->actions could be overwritten even though all the expanded dev_flows 1838 * have the same actions. 1839 * 1840 * @param[in] dev 1841 * Pointer to the rte dev structure. 1842 * @param[in, out] dev_flow 1843 * Pointer to the mlx5 flow. 1844 * @param[in] attr 1845 * Pointer to the flow attributes. 1846 * @param[in] items 1847 * Pointer to the list of items. 1848 * @param[in] actions 1849 * Pointer to the list of actions. 1850 * @param[out] error 1851 * Pointer to the error structure. 1852 * 1853 * @return 1854 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1855 */ 1856 static inline int 1857 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 1858 const struct rte_flow_attr *attr, 1859 const struct rte_flow_item items[], 1860 const struct rte_flow_action actions[], 1861 struct rte_flow_error *error) 1862 { 1863 const struct mlx5_flow_driver_ops *fops; 1864 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 1865 1866 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1867 fops = flow_get_drv_ops(type); 1868 return fops->translate(dev, dev_flow, attr, items, actions, error); 1869 } 1870 1871 /** 1872 * Flow driver apply API. This abstracts calling driver specific functions. 1873 * Parent flow (rte_flow) should have driver type (drv_type). It applies 1874 * translated driver flows on to device. flow_drv_translate() must precede. 1875 * 1876 * @param[in] dev 1877 * Pointer to Ethernet device structure. 1878 * @param[in, out] flow 1879 * Pointer to flow structure. 1880 * @param[out] error 1881 * Pointer to error structure. 1882 * 1883 * @return 1884 * 0 on success, a negative errno value otherwise and rte_errno is set. 1885 */ 1886 static inline int 1887 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 1888 struct rte_flow_error *error) 1889 { 1890 const struct mlx5_flow_driver_ops *fops; 1891 enum mlx5_flow_drv_type type = flow->drv_type; 1892 1893 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1894 fops = flow_get_drv_ops(type); 1895 return fops->apply(dev, flow, error); 1896 } 1897 1898 /** 1899 * Flow driver remove API. This abstracts calling driver specific functions. 1900 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1901 * on device. All the resources of the flow should be freed by calling 1902 * flow_drv_destroy(). 1903 * 1904 * @param[in] dev 1905 * Pointer to Ethernet device. 1906 * @param[in, out] flow 1907 * Pointer to flow structure. 1908 */ 1909 static inline void 1910 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 1911 { 1912 const struct mlx5_flow_driver_ops *fops; 1913 enum mlx5_flow_drv_type type = flow->drv_type; 1914 1915 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1916 fops = flow_get_drv_ops(type); 1917 fops->remove(dev, flow); 1918 } 1919 1920 /** 1921 * Flow driver destroy API. This abstracts calling driver specific functions. 1922 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1923 * on device and releases resources of the flow. 1924 * 1925 * @param[in] dev 1926 * Pointer to Ethernet device. 1927 * @param[in, out] flow 1928 * Pointer to flow structure. 1929 */ 1930 static inline void 1931 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 1932 { 1933 const struct mlx5_flow_driver_ops *fops; 1934 enum mlx5_flow_drv_type type = flow->drv_type; 1935 1936 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1937 fops = flow_get_drv_ops(type); 1938 fops->destroy(dev, flow); 1939 } 1940 1941 /** 1942 * Validate a flow supported by the NIC. 1943 * 1944 * @see rte_flow_validate() 1945 * @see rte_flow_ops 1946 */ 1947 int 1948 mlx5_flow_validate(struct rte_eth_dev *dev, 1949 const struct rte_flow_attr *attr, 1950 const struct rte_flow_item items[], 1951 const struct rte_flow_action actions[], 1952 struct rte_flow_error *error) 1953 { 1954 int ret; 1955 1956 ret = flow_drv_validate(dev, attr, items, actions, error); 1957 if (ret < 0) 1958 return ret; 1959 return 0; 1960 } 1961 1962 /** 1963 * Get RSS action from the action list. 1964 * 1965 * @param[in] actions 1966 * Pointer to the list of actions. 1967 * 1968 * @return 1969 * Pointer to the RSS action if exist, else return NULL. 1970 */ 1971 static const struct rte_flow_action_rss* 1972 flow_get_rss_action(const struct rte_flow_action actions[]) 1973 { 1974 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1975 switch (actions->type) { 1976 case RTE_FLOW_ACTION_TYPE_RSS: 1977 return (const struct rte_flow_action_rss *) 1978 actions->conf; 1979 default: 1980 break; 1981 } 1982 } 1983 return NULL; 1984 } 1985 1986 static unsigned int 1987 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 1988 { 1989 const struct rte_flow_item *item; 1990 unsigned int has_vlan = 0; 1991 1992 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 1993 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 1994 has_vlan = 1; 1995 break; 1996 } 1997 } 1998 if (has_vlan) 1999 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 2000 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 2001 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 2002 MLX5_EXPANSION_ROOT_OUTER; 2003 } 2004 2005 /** 2006 * Create a flow and add it to @p list. 2007 * 2008 * @param dev 2009 * Pointer to Ethernet device. 2010 * @param list 2011 * Pointer to a TAILQ flow list. 2012 * @param[in] attr 2013 * Flow rule attributes. 2014 * @param[in] items 2015 * Pattern specification (list terminated by the END pattern item). 2016 * @param[in] actions 2017 * Associated actions (list terminated by the END action). 2018 * @param[out] error 2019 * Perform verbose error reporting if not NULL. 2020 * 2021 * @return 2022 * A flow on success, NULL otherwise and rte_errno is set. 2023 */ 2024 static struct rte_flow * 2025 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, 2026 const struct rte_flow_attr *attr, 2027 const struct rte_flow_item items[], 2028 const struct rte_flow_action actions[], 2029 struct rte_flow_error *error) 2030 { 2031 struct rte_flow *flow = NULL; 2032 struct mlx5_flow *dev_flow; 2033 const struct rte_flow_action_rss *rss; 2034 union { 2035 struct rte_flow_expand_rss buf; 2036 uint8_t buffer[2048]; 2037 } expand_buffer; 2038 struct rte_flow_expand_rss *buf = &expand_buffer.buf; 2039 int ret; 2040 uint32_t i; 2041 uint32_t flow_size; 2042 2043 ret = flow_drv_validate(dev, attr, items, actions, error); 2044 if (ret < 0) 2045 return NULL; 2046 flow_size = sizeof(struct rte_flow); 2047 rss = flow_get_rss_action(actions); 2048 if (rss) 2049 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t), 2050 sizeof(void *)); 2051 else 2052 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *)); 2053 flow = rte_calloc(__func__, 1, flow_size, 0); 2054 flow->drv_type = flow_get_drv_type(dev, attr); 2055 assert(flow->drv_type > MLX5_FLOW_TYPE_MIN && 2056 flow->drv_type < MLX5_FLOW_TYPE_MAX); 2057 flow->queue = (void *)(flow + 1); 2058 LIST_INIT(&flow->dev_flows); 2059 if (rss && rss->types) { 2060 unsigned int graph_root; 2061 2062 graph_root = find_graph_root(items, rss->level); 2063 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 2064 items, rss->types, 2065 mlx5_support_expansion, 2066 graph_root); 2067 assert(ret > 0 && 2068 (unsigned int)ret < sizeof(expand_buffer.buffer)); 2069 } else { 2070 buf->entries = 1; 2071 buf->entry[0].pattern = (void *)(uintptr_t)items; 2072 } 2073 for (i = 0; i < buf->entries; ++i) { 2074 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern, 2075 actions, error); 2076 if (!dev_flow) 2077 goto error; 2078 dev_flow->flow = flow; 2079 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next); 2080 ret = flow_drv_translate(dev, dev_flow, attr, 2081 buf->entry[i].pattern, 2082 actions, error); 2083 if (ret < 0) 2084 goto error; 2085 } 2086 if (dev->data->dev_started) { 2087 ret = flow_drv_apply(dev, flow, error); 2088 if (ret < 0) 2089 goto error; 2090 } 2091 TAILQ_INSERT_TAIL(list, flow, next); 2092 flow_rxq_flags_set(dev, flow); 2093 return flow; 2094 error: 2095 ret = rte_errno; /* Save rte_errno before cleanup. */ 2096 assert(flow); 2097 flow_drv_destroy(dev, flow); 2098 rte_free(flow); 2099 rte_errno = ret; /* Restore rte_errno. */ 2100 return NULL; 2101 } 2102 2103 /** 2104 * Create a flow. 2105 * 2106 * @see rte_flow_create() 2107 * @see rte_flow_ops 2108 */ 2109 struct rte_flow * 2110 mlx5_flow_create(struct rte_eth_dev *dev, 2111 const struct rte_flow_attr *attr, 2112 const struct rte_flow_item items[], 2113 const struct rte_flow_action actions[], 2114 struct rte_flow_error *error) 2115 { 2116 return flow_list_create(dev, 2117 &((struct priv *)dev->data->dev_private)->flows, 2118 attr, items, actions, error); 2119 } 2120 2121 /** 2122 * Destroy a flow in a list. 2123 * 2124 * @param dev 2125 * Pointer to Ethernet device. 2126 * @param list 2127 * Pointer to a TAILQ flow list. 2128 * @param[in] flow 2129 * Flow to destroy. 2130 */ 2131 static void 2132 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2133 struct rte_flow *flow) 2134 { 2135 flow_drv_destroy(dev, flow); 2136 TAILQ_REMOVE(list, flow, next); 2137 /* 2138 * Update RX queue flags only if port is started, otherwise it is 2139 * already clean. 2140 */ 2141 if (dev->data->dev_started) 2142 flow_rxq_flags_trim(dev, flow); 2143 rte_free(flow->fdir); 2144 rte_free(flow); 2145 } 2146 2147 /** 2148 * Destroy all flows. 2149 * 2150 * @param dev 2151 * Pointer to Ethernet device. 2152 * @param list 2153 * Pointer to a TAILQ flow list. 2154 */ 2155 void 2156 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2157 { 2158 while (!TAILQ_EMPTY(list)) { 2159 struct rte_flow *flow; 2160 2161 flow = TAILQ_FIRST(list); 2162 flow_list_destroy(dev, list, flow); 2163 } 2164 } 2165 2166 /** 2167 * Remove all flows. 2168 * 2169 * @param dev 2170 * Pointer to Ethernet device. 2171 * @param list 2172 * Pointer to a TAILQ flow list. 2173 */ 2174 void 2175 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2176 { 2177 struct rte_flow *flow; 2178 2179 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) 2180 flow_drv_remove(dev, flow); 2181 flow_rxq_flags_clear(dev); 2182 } 2183 2184 /** 2185 * Add all flows. 2186 * 2187 * @param dev 2188 * Pointer to Ethernet device. 2189 * @param list 2190 * Pointer to a TAILQ flow list. 2191 * 2192 * @return 2193 * 0 on success, a negative errno value otherwise and rte_errno is set. 2194 */ 2195 int 2196 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2197 { 2198 struct rte_flow *flow; 2199 struct rte_flow_error error; 2200 int ret = 0; 2201 2202 TAILQ_FOREACH(flow, list, next) { 2203 ret = flow_drv_apply(dev, flow, &error); 2204 if (ret < 0) 2205 goto error; 2206 flow_rxq_flags_set(dev, flow); 2207 } 2208 return 0; 2209 error: 2210 ret = rte_errno; /* Save rte_errno before cleanup. */ 2211 mlx5_flow_stop(dev, list); 2212 rte_errno = ret; /* Restore rte_errno. */ 2213 return -rte_errno; 2214 } 2215 2216 /** 2217 * Verify the flow list is empty 2218 * 2219 * @param dev 2220 * Pointer to Ethernet device. 2221 * 2222 * @return the number of flows not released. 2223 */ 2224 int 2225 mlx5_flow_verify(struct rte_eth_dev *dev) 2226 { 2227 struct priv *priv = dev->data->dev_private; 2228 struct rte_flow *flow; 2229 int ret = 0; 2230 2231 TAILQ_FOREACH(flow, &priv->flows, next) { 2232 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2233 dev->data->port_id, (void *)flow); 2234 ++ret; 2235 } 2236 return ret; 2237 } 2238 2239 /** 2240 * Enable a control flow configured from the control plane. 2241 * 2242 * @param dev 2243 * Pointer to Ethernet device. 2244 * @param eth_spec 2245 * An Ethernet flow spec to apply. 2246 * @param eth_mask 2247 * An Ethernet flow mask to apply. 2248 * @param vlan_spec 2249 * A VLAN flow spec to apply. 2250 * @param vlan_mask 2251 * A VLAN flow mask to apply. 2252 * 2253 * @return 2254 * 0 on success, a negative errno value otherwise and rte_errno is set. 2255 */ 2256 int 2257 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2258 struct rte_flow_item_eth *eth_spec, 2259 struct rte_flow_item_eth *eth_mask, 2260 struct rte_flow_item_vlan *vlan_spec, 2261 struct rte_flow_item_vlan *vlan_mask) 2262 { 2263 struct priv *priv = dev->data->dev_private; 2264 const struct rte_flow_attr attr = { 2265 .ingress = 1, 2266 .priority = MLX5_FLOW_PRIO_RSVD, 2267 }; 2268 struct rte_flow_item items[] = { 2269 { 2270 .type = RTE_FLOW_ITEM_TYPE_ETH, 2271 .spec = eth_spec, 2272 .last = NULL, 2273 .mask = eth_mask, 2274 }, 2275 { 2276 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2277 RTE_FLOW_ITEM_TYPE_END, 2278 .spec = vlan_spec, 2279 .last = NULL, 2280 .mask = vlan_mask, 2281 }, 2282 { 2283 .type = RTE_FLOW_ITEM_TYPE_END, 2284 }, 2285 }; 2286 uint16_t queue[priv->reta_idx_n]; 2287 struct rte_flow_action_rss action_rss = { 2288 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2289 .level = 0, 2290 .types = priv->rss_conf.rss_hf, 2291 .key_len = priv->rss_conf.rss_key_len, 2292 .queue_num = priv->reta_idx_n, 2293 .key = priv->rss_conf.rss_key, 2294 .queue = queue, 2295 }; 2296 struct rte_flow_action actions[] = { 2297 { 2298 .type = RTE_FLOW_ACTION_TYPE_RSS, 2299 .conf = &action_rss, 2300 }, 2301 { 2302 .type = RTE_FLOW_ACTION_TYPE_END, 2303 }, 2304 }; 2305 struct rte_flow *flow; 2306 struct rte_flow_error error; 2307 unsigned int i; 2308 2309 if (!priv->reta_idx_n) { 2310 rte_errno = EINVAL; 2311 return -rte_errno; 2312 } 2313 for (i = 0; i != priv->reta_idx_n; ++i) 2314 queue[i] = (*priv->reta_idx)[i]; 2315 flow = flow_list_create(dev, &priv->ctrl_flows, 2316 &attr, items, actions, &error); 2317 if (!flow) 2318 return -rte_errno; 2319 return 0; 2320 } 2321 2322 /** 2323 * Enable a flow control configured from the control plane. 2324 * 2325 * @param dev 2326 * Pointer to Ethernet device. 2327 * @param eth_spec 2328 * An Ethernet flow spec to apply. 2329 * @param eth_mask 2330 * An Ethernet flow mask to apply. 2331 * 2332 * @return 2333 * 0 on success, a negative errno value otherwise and rte_errno is set. 2334 */ 2335 int 2336 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2337 struct rte_flow_item_eth *eth_spec, 2338 struct rte_flow_item_eth *eth_mask) 2339 { 2340 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2341 } 2342 2343 /** 2344 * Destroy a flow. 2345 * 2346 * @see rte_flow_destroy() 2347 * @see rte_flow_ops 2348 */ 2349 int 2350 mlx5_flow_destroy(struct rte_eth_dev *dev, 2351 struct rte_flow *flow, 2352 struct rte_flow_error *error __rte_unused) 2353 { 2354 struct priv *priv = dev->data->dev_private; 2355 2356 flow_list_destroy(dev, &priv->flows, flow); 2357 return 0; 2358 } 2359 2360 /** 2361 * Destroy all flows. 2362 * 2363 * @see rte_flow_flush() 2364 * @see rte_flow_ops 2365 */ 2366 int 2367 mlx5_flow_flush(struct rte_eth_dev *dev, 2368 struct rte_flow_error *error __rte_unused) 2369 { 2370 struct priv *priv = dev->data->dev_private; 2371 2372 mlx5_flow_list_flush(dev, &priv->flows); 2373 return 0; 2374 } 2375 2376 /** 2377 * Isolated mode. 2378 * 2379 * @see rte_flow_isolate() 2380 * @see rte_flow_ops 2381 */ 2382 int 2383 mlx5_flow_isolate(struct rte_eth_dev *dev, 2384 int enable, 2385 struct rte_flow_error *error) 2386 { 2387 struct priv *priv = dev->data->dev_private; 2388 2389 if (dev->data->dev_started) { 2390 rte_flow_error_set(error, EBUSY, 2391 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2392 NULL, 2393 "port must be stopped first"); 2394 return -rte_errno; 2395 } 2396 priv->isolated = !!enable; 2397 if (enable) 2398 dev->dev_ops = &mlx5_dev_ops_isolate; 2399 else 2400 dev->dev_ops = &mlx5_dev_ops; 2401 return 0; 2402 } 2403 2404 /** 2405 * Query a flow. 2406 * 2407 * @see rte_flow_query() 2408 * @see rte_flow_ops 2409 */ 2410 static int 2411 flow_drv_query(struct rte_eth_dev *dev, 2412 struct rte_flow *flow, 2413 const struct rte_flow_action *actions, 2414 void *data, 2415 struct rte_flow_error *error) 2416 { 2417 const struct mlx5_flow_driver_ops *fops; 2418 enum mlx5_flow_drv_type ftype = flow->drv_type; 2419 2420 assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 2421 fops = flow_get_drv_ops(ftype); 2422 2423 return fops->query(dev, flow, actions, data, error); 2424 } 2425 2426 /** 2427 * Query a flow. 2428 * 2429 * @see rte_flow_query() 2430 * @see rte_flow_ops 2431 */ 2432 int 2433 mlx5_flow_query(struct rte_eth_dev *dev, 2434 struct rte_flow *flow, 2435 const struct rte_flow_action *actions, 2436 void *data, 2437 struct rte_flow_error *error) 2438 { 2439 int ret; 2440 2441 ret = flow_drv_query(dev, flow, actions, data, error); 2442 if (ret < 0) 2443 return ret; 2444 return 0; 2445 } 2446 2447 /** 2448 * Convert a flow director filter to a generic flow. 2449 * 2450 * @param dev 2451 * Pointer to Ethernet device. 2452 * @param fdir_filter 2453 * Flow director filter to add. 2454 * @param attributes 2455 * Generic flow parameters structure. 2456 * 2457 * @return 2458 * 0 on success, a negative errno value otherwise and rte_errno is set. 2459 */ 2460 static int 2461 flow_fdir_filter_convert(struct rte_eth_dev *dev, 2462 const struct rte_eth_fdir_filter *fdir_filter, 2463 struct mlx5_fdir *attributes) 2464 { 2465 struct priv *priv = dev->data->dev_private; 2466 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2467 const struct rte_eth_fdir_masks *mask = 2468 &dev->data->dev_conf.fdir_conf.mask; 2469 2470 /* Validate queue number. */ 2471 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2472 DRV_LOG(ERR, "port %u invalid queue number %d", 2473 dev->data->port_id, fdir_filter->action.rx_queue); 2474 rte_errno = EINVAL; 2475 return -rte_errno; 2476 } 2477 attributes->attr.ingress = 1; 2478 attributes->items[0] = (struct rte_flow_item) { 2479 .type = RTE_FLOW_ITEM_TYPE_ETH, 2480 .spec = &attributes->l2, 2481 .mask = &attributes->l2_mask, 2482 }; 2483 switch (fdir_filter->action.behavior) { 2484 case RTE_ETH_FDIR_ACCEPT: 2485 attributes->actions[0] = (struct rte_flow_action){ 2486 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2487 .conf = &attributes->queue, 2488 }; 2489 break; 2490 case RTE_ETH_FDIR_REJECT: 2491 attributes->actions[0] = (struct rte_flow_action){ 2492 .type = RTE_FLOW_ACTION_TYPE_DROP, 2493 }; 2494 break; 2495 default: 2496 DRV_LOG(ERR, "port %u invalid behavior %d", 2497 dev->data->port_id, 2498 fdir_filter->action.behavior); 2499 rte_errno = ENOTSUP; 2500 return -rte_errno; 2501 } 2502 attributes->queue.index = fdir_filter->action.rx_queue; 2503 /* Handle L3. */ 2504 switch (fdir_filter->input.flow_type) { 2505 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2506 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2507 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2508 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2509 .src_addr = input->flow.ip4_flow.src_ip, 2510 .dst_addr = input->flow.ip4_flow.dst_ip, 2511 .time_to_live = input->flow.ip4_flow.ttl, 2512 .type_of_service = input->flow.ip4_flow.tos, 2513 }; 2514 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){ 2515 .src_addr = mask->ipv4_mask.src_ip, 2516 .dst_addr = mask->ipv4_mask.dst_ip, 2517 .time_to_live = mask->ipv4_mask.ttl, 2518 .type_of_service = mask->ipv4_mask.tos, 2519 .next_proto_id = mask->ipv4_mask.proto, 2520 }; 2521 attributes->items[1] = (struct rte_flow_item){ 2522 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2523 .spec = &attributes->l3, 2524 .mask = &attributes->l3_mask, 2525 }; 2526 break; 2527 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2528 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2529 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2530 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2531 .hop_limits = input->flow.ipv6_flow.hop_limits, 2532 .proto = input->flow.ipv6_flow.proto, 2533 }; 2534 2535 memcpy(attributes->l3.ipv6.hdr.src_addr, 2536 input->flow.ipv6_flow.src_ip, 2537 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2538 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2539 input->flow.ipv6_flow.dst_ip, 2540 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2541 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 2542 mask->ipv6_mask.src_ip, 2543 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2544 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 2545 mask->ipv6_mask.dst_ip, 2546 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2547 attributes->items[1] = (struct rte_flow_item){ 2548 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2549 .spec = &attributes->l3, 2550 .mask = &attributes->l3_mask, 2551 }; 2552 break; 2553 default: 2554 DRV_LOG(ERR, "port %u invalid flow type%d", 2555 dev->data->port_id, fdir_filter->input.flow_type); 2556 rte_errno = ENOTSUP; 2557 return -rte_errno; 2558 } 2559 /* Handle L4. */ 2560 switch (fdir_filter->input.flow_type) { 2561 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2562 attributes->l4.udp.hdr = (struct udp_hdr){ 2563 .src_port = input->flow.udp4_flow.src_port, 2564 .dst_port = input->flow.udp4_flow.dst_port, 2565 }; 2566 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2567 .src_port = mask->src_port_mask, 2568 .dst_port = mask->dst_port_mask, 2569 }; 2570 attributes->items[2] = (struct rte_flow_item){ 2571 .type = RTE_FLOW_ITEM_TYPE_UDP, 2572 .spec = &attributes->l4, 2573 .mask = &attributes->l4_mask, 2574 }; 2575 break; 2576 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2577 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2578 .src_port = input->flow.tcp4_flow.src_port, 2579 .dst_port = input->flow.tcp4_flow.dst_port, 2580 }; 2581 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2582 .src_port = mask->src_port_mask, 2583 .dst_port = mask->dst_port_mask, 2584 }; 2585 attributes->items[2] = (struct rte_flow_item){ 2586 .type = RTE_FLOW_ITEM_TYPE_TCP, 2587 .spec = &attributes->l4, 2588 .mask = &attributes->l4_mask, 2589 }; 2590 break; 2591 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2592 attributes->l4.udp.hdr = (struct udp_hdr){ 2593 .src_port = input->flow.udp6_flow.src_port, 2594 .dst_port = input->flow.udp6_flow.dst_port, 2595 }; 2596 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2597 .src_port = mask->src_port_mask, 2598 .dst_port = mask->dst_port_mask, 2599 }; 2600 attributes->items[2] = (struct rte_flow_item){ 2601 .type = RTE_FLOW_ITEM_TYPE_UDP, 2602 .spec = &attributes->l4, 2603 .mask = &attributes->l4_mask, 2604 }; 2605 break; 2606 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2607 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2608 .src_port = input->flow.tcp6_flow.src_port, 2609 .dst_port = input->flow.tcp6_flow.dst_port, 2610 }; 2611 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2612 .src_port = mask->src_port_mask, 2613 .dst_port = mask->dst_port_mask, 2614 }; 2615 attributes->items[2] = (struct rte_flow_item){ 2616 .type = RTE_FLOW_ITEM_TYPE_TCP, 2617 .spec = &attributes->l4, 2618 .mask = &attributes->l4_mask, 2619 }; 2620 break; 2621 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2622 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2623 break; 2624 default: 2625 DRV_LOG(ERR, "port %u invalid flow type%d", 2626 dev->data->port_id, fdir_filter->input.flow_type); 2627 rte_errno = ENOTSUP; 2628 return -rte_errno; 2629 } 2630 return 0; 2631 } 2632 2633 #define FLOW_FDIR_CMP(f1, f2, fld) \ 2634 memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld)) 2635 2636 /** 2637 * Compare two FDIR flows. If items and actions are identical, the two flows are 2638 * regarded as same. 2639 * 2640 * @param dev 2641 * Pointer to Ethernet device. 2642 * @param f1 2643 * FDIR flow to compare. 2644 * @param f2 2645 * FDIR flow to compare. 2646 * 2647 * @return 2648 * Zero on match, 1 otherwise. 2649 */ 2650 static int 2651 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2) 2652 { 2653 if (FLOW_FDIR_CMP(f1, f2, attr) || 2654 FLOW_FDIR_CMP(f1, f2, l2) || 2655 FLOW_FDIR_CMP(f1, f2, l2_mask) || 2656 FLOW_FDIR_CMP(f1, f2, l3) || 2657 FLOW_FDIR_CMP(f1, f2, l3_mask) || 2658 FLOW_FDIR_CMP(f1, f2, l4) || 2659 FLOW_FDIR_CMP(f1, f2, l4_mask) || 2660 FLOW_FDIR_CMP(f1, f2, actions[0])) 2661 return 1; 2662 if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE && 2663 FLOW_FDIR_CMP(f1, f2, queue)) 2664 return 1; 2665 return 0; 2666 } 2667 2668 /** 2669 * Search device flow list to find out a matched FDIR flow. 2670 * 2671 * @param dev 2672 * Pointer to Ethernet device. 2673 * @param fdir_flow 2674 * FDIR flow to lookup. 2675 * 2676 * @return 2677 * Pointer of flow if found, NULL otherwise. 2678 */ 2679 static struct rte_flow * 2680 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow) 2681 { 2682 struct priv *priv = dev->data->dev_private; 2683 struct rte_flow *flow = NULL; 2684 2685 assert(fdir_flow); 2686 TAILQ_FOREACH(flow, &priv->flows, next) { 2687 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) { 2688 DRV_LOG(DEBUG, "port %u found FDIR flow %p", 2689 dev->data->port_id, (void *)flow); 2690 break; 2691 } 2692 } 2693 return flow; 2694 } 2695 2696 /** 2697 * Add new flow director filter and store it in list. 2698 * 2699 * @param dev 2700 * Pointer to Ethernet device. 2701 * @param fdir_filter 2702 * Flow director filter to add. 2703 * 2704 * @return 2705 * 0 on success, a negative errno value otherwise and rte_errno is set. 2706 */ 2707 static int 2708 flow_fdir_filter_add(struct rte_eth_dev *dev, 2709 const struct rte_eth_fdir_filter *fdir_filter) 2710 { 2711 struct priv *priv = dev->data->dev_private; 2712 struct mlx5_fdir *fdir_flow; 2713 struct rte_flow *flow; 2714 int ret; 2715 2716 fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0); 2717 if (!fdir_flow) { 2718 rte_errno = ENOMEM; 2719 return -rte_errno; 2720 } 2721 ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow); 2722 if (ret) 2723 goto error; 2724 flow = flow_fdir_filter_lookup(dev, fdir_flow); 2725 if (flow) { 2726 rte_errno = EEXIST; 2727 goto error; 2728 } 2729 flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr, 2730 fdir_flow->items, fdir_flow->actions, NULL); 2731 if (!flow) 2732 goto error; 2733 assert(!flow->fdir); 2734 flow->fdir = fdir_flow; 2735 DRV_LOG(DEBUG, "port %u created FDIR flow %p", 2736 dev->data->port_id, (void *)flow); 2737 return 0; 2738 error: 2739 rte_free(fdir_flow); 2740 return -rte_errno; 2741 } 2742 2743 /** 2744 * Delete specific filter. 2745 * 2746 * @param dev 2747 * Pointer to Ethernet device. 2748 * @param fdir_filter 2749 * Filter to be deleted. 2750 * 2751 * @return 2752 * 0 on success, a negative errno value otherwise and rte_errno is set. 2753 */ 2754 static int 2755 flow_fdir_filter_delete(struct rte_eth_dev *dev, 2756 const struct rte_eth_fdir_filter *fdir_filter) 2757 { 2758 struct priv *priv = dev->data->dev_private; 2759 struct rte_flow *flow; 2760 struct mlx5_fdir fdir_flow = { 2761 .attr.group = 0, 2762 }; 2763 int ret; 2764 2765 ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow); 2766 if (ret) 2767 return -rte_errno; 2768 flow = flow_fdir_filter_lookup(dev, &fdir_flow); 2769 if (!flow) { 2770 rte_errno = ENOENT; 2771 return -rte_errno; 2772 } 2773 flow_list_destroy(dev, &priv->flows, flow); 2774 DRV_LOG(DEBUG, "port %u deleted FDIR flow %p", 2775 dev->data->port_id, (void *)flow); 2776 return 0; 2777 } 2778 2779 /** 2780 * Update queue for specific filter. 2781 * 2782 * @param dev 2783 * Pointer to Ethernet device. 2784 * @param fdir_filter 2785 * Filter to be updated. 2786 * 2787 * @return 2788 * 0 on success, a negative errno value otherwise and rte_errno is set. 2789 */ 2790 static int 2791 flow_fdir_filter_update(struct rte_eth_dev *dev, 2792 const struct rte_eth_fdir_filter *fdir_filter) 2793 { 2794 int ret; 2795 2796 ret = flow_fdir_filter_delete(dev, fdir_filter); 2797 if (ret) 2798 return ret; 2799 return flow_fdir_filter_add(dev, fdir_filter); 2800 } 2801 2802 /** 2803 * Flush all filters. 2804 * 2805 * @param dev 2806 * Pointer to Ethernet device. 2807 */ 2808 static void 2809 flow_fdir_filter_flush(struct rte_eth_dev *dev) 2810 { 2811 struct priv *priv = dev->data->dev_private; 2812 2813 mlx5_flow_list_flush(dev, &priv->flows); 2814 } 2815 2816 /** 2817 * Get flow director information. 2818 * 2819 * @param dev 2820 * Pointer to Ethernet device. 2821 * @param[out] fdir_info 2822 * Resulting flow director information. 2823 */ 2824 static void 2825 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 2826 { 2827 struct rte_eth_fdir_masks *mask = 2828 &dev->data->dev_conf.fdir_conf.mask; 2829 2830 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 2831 fdir_info->guarant_spc = 0; 2832 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2833 fdir_info->max_flexpayload = 0; 2834 fdir_info->flow_types_mask[0] = 0; 2835 fdir_info->flex_payload_unit = 0; 2836 fdir_info->max_flex_payload_segment_num = 0; 2837 fdir_info->flex_payload_limit = 0; 2838 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2839 } 2840 2841 /** 2842 * Deal with flow director operations. 2843 * 2844 * @param dev 2845 * Pointer to Ethernet device. 2846 * @param filter_op 2847 * Operation to perform. 2848 * @param arg 2849 * Pointer to operation-specific structure. 2850 * 2851 * @return 2852 * 0 on success, a negative errno value otherwise and rte_errno is set. 2853 */ 2854 static int 2855 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 2856 void *arg) 2857 { 2858 enum rte_fdir_mode fdir_mode = 2859 dev->data->dev_conf.fdir_conf.mode; 2860 2861 if (filter_op == RTE_ETH_FILTER_NOP) 2862 return 0; 2863 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2864 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2865 DRV_LOG(ERR, "port %u flow director mode %d not supported", 2866 dev->data->port_id, fdir_mode); 2867 rte_errno = EINVAL; 2868 return -rte_errno; 2869 } 2870 switch (filter_op) { 2871 case RTE_ETH_FILTER_ADD: 2872 return flow_fdir_filter_add(dev, arg); 2873 case RTE_ETH_FILTER_UPDATE: 2874 return flow_fdir_filter_update(dev, arg); 2875 case RTE_ETH_FILTER_DELETE: 2876 return flow_fdir_filter_delete(dev, arg); 2877 case RTE_ETH_FILTER_FLUSH: 2878 flow_fdir_filter_flush(dev); 2879 break; 2880 case RTE_ETH_FILTER_INFO: 2881 flow_fdir_info_get(dev, arg); 2882 break; 2883 default: 2884 DRV_LOG(DEBUG, "port %u unknown operation %u", 2885 dev->data->port_id, filter_op); 2886 rte_errno = EINVAL; 2887 return -rte_errno; 2888 } 2889 return 0; 2890 } 2891 2892 /** 2893 * Manage filter operations. 2894 * 2895 * @param dev 2896 * Pointer to Ethernet device structure. 2897 * @param filter_type 2898 * Filter type. 2899 * @param filter_op 2900 * Operation to perform. 2901 * @param arg 2902 * Pointer to operation-specific structure. 2903 * 2904 * @return 2905 * 0 on success, a negative errno value otherwise and rte_errno is set. 2906 */ 2907 int 2908 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 2909 enum rte_filter_type filter_type, 2910 enum rte_filter_op filter_op, 2911 void *arg) 2912 { 2913 switch (filter_type) { 2914 case RTE_ETH_FILTER_GENERIC: 2915 if (filter_op != RTE_ETH_FILTER_GET) { 2916 rte_errno = EINVAL; 2917 return -rte_errno; 2918 } 2919 *(const void **)arg = &mlx5_flow_ops; 2920 return 0; 2921 case RTE_ETH_FILTER_FDIR: 2922 return flow_fdir_ctrl_func(dev, filter_op, arg); 2923 default: 2924 DRV_LOG(ERR, "port %u filter type (%d) not supported", 2925 dev->data->port_id, filter_type); 2926 rte_errno = ENOTSUP; 2927 return -rte_errno; 2928 } 2929 return 0; 2930 } 2931