xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision b7ed955a20eee5979eaecc9fab500a176e2741c5)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_item items[4];
243 	struct rte_flow_item_eth l2;
244 	struct rte_flow_item_eth l2_mask;
245 	union {
246 		struct rte_flow_item_ipv4 ipv4;
247 		struct rte_flow_item_ipv6 ipv6;
248 	} l3;
249 	union {
250 		struct rte_flow_item_ipv4 ipv4;
251 		struct rte_flow_item_ipv6 ipv6;
252 	} l3_mask;
253 	union {
254 		struct rte_flow_item_udp udp;
255 		struct rte_flow_item_tcp tcp;
256 	} l4;
257 	union {
258 		struct rte_flow_item_udp udp;
259 		struct rte_flow_item_tcp tcp;
260 	} l4_mask;
261 	struct rte_flow_action actions[2];
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct mlx5_priv *priv = dev->data->dev_private;
319 	struct {
320 		struct ibv_flow_attr attr;
321 		struct ibv_flow_spec_eth eth;
322 		struct ibv_flow_spec_action_drop drop;
323 	} flow_attr = {
324 		.attr = {
325 			.num_of_specs = 2,
326 			.port = (uint8_t)priv->ibv_port,
327 		},
328 		.eth = {
329 			.type = IBV_FLOW_SPEC_ETH,
330 			.size = sizeof(struct ibv_flow_spec_eth),
331 		},
332 		.drop = {
333 			.size = sizeof(struct ibv_flow_spec_action_drop),
334 			.type = IBV_FLOW_SPEC_ACTION_DROP,
335 		},
336 	};
337 	struct ibv_flow *flow;
338 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
339 	uint16_t vprio[] = { 8, 16 };
340 	int i;
341 	int priority = 0;
342 
343 	if (!drop) {
344 		rte_errno = ENOTSUP;
345 		return -rte_errno;
346 	}
347 	for (i = 0; i != RTE_DIM(vprio); i++) {
348 		flow_attr.attr.priority = vprio[i] - 1;
349 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
350 		if (!flow)
351 			break;
352 		claim_zero(mlx5_glue->destroy_flow(flow));
353 		priority = vprio[i];
354 	}
355 	mlx5_hrxq_drop_release(dev);
356 	switch (priority) {
357 	case 8:
358 		priority = RTE_DIM(priority_map_3);
359 		break;
360 	case 16:
361 		priority = RTE_DIM(priority_map_5);
362 		break;
363 	default:
364 		rte_errno = ENOTSUP;
365 		DRV_LOG(ERR,
366 			"port %u verbs maximum priority: %d expected 8/16",
367 			dev->data->port_id, priority);
368 		return -rte_errno;
369 	}
370 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
371 		dev->data->port_id, priority);
372 	return priority;
373 }
374 
375 /**
376  * Adjust flow priority based on the highest layer and the request priority.
377  *
378  * @param[in] dev
379  *   Pointer to the Ethernet device structure.
380  * @param[in] priority
381  *   The rule base priority.
382  * @param[in] subpriority
383  *   The priority based on the items.
384  *
385  * @return
386  *   The new priority.
387  */
388 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
389 				   uint32_t subpriority)
390 {
391 	uint32_t res = 0;
392 	struct mlx5_priv *priv = dev->data->dev_private;
393 
394 	switch (priv->config.flow_prio) {
395 	case RTE_DIM(priority_map_3):
396 		res = priority_map_3[priority][subpriority];
397 		break;
398 	case RTE_DIM(priority_map_5):
399 		res = priority_map_5[priority][subpriority];
400 		break;
401 	}
402 	return  res;
403 }
404 
405 /**
406  * Verify the @p item specifications (spec, last, mask) are compatible with the
407  * NIC capabilities.
408  *
409  * @param[in] item
410  *   Item specification.
411  * @param[in] mask
412  *   @p item->mask or flow default bit-masks.
413  * @param[in] nic_mask
414  *   Bit-masks covering supported fields by the NIC to compare with user mask.
415  * @param[in] size
416  *   Bit-masks size in bytes.
417  * @param[out] error
418  *   Pointer to error structure.
419  *
420  * @return
421  *   0 on success, a negative errno value otherwise and rte_errno is set.
422  */
423 int
424 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
425 			  const uint8_t *mask,
426 			  const uint8_t *nic_mask,
427 			  unsigned int size,
428 			  struct rte_flow_error *error)
429 {
430 	unsigned int i;
431 
432 	assert(nic_mask);
433 	for (i = 0; i < size; ++i)
434 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
435 			return rte_flow_error_set(error, ENOTSUP,
436 						  RTE_FLOW_ERROR_TYPE_ITEM,
437 						  item,
438 						  "mask enables non supported"
439 						  " bits");
440 	if (!item->spec && (item->mask || item->last))
441 		return rte_flow_error_set(error, EINVAL,
442 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
443 					  "mask/last without a spec is not"
444 					  " supported");
445 	if (item->spec && item->last) {
446 		uint8_t spec[size];
447 		uint8_t last[size];
448 		unsigned int i;
449 		int ret;
450 
451 		for (i = 0; i < size; ++i) {
452 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
453 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
454 		}
455 		ret = memcmp(spec, last, size);
456 		if (ret != 0)
457 			return rte_flow_error_set(error, EINVAL,
458 						  RTE_FLOW_ERROR_TYPE_ITEM,
459 						  item,
460 						  "range is not valid");
461 	}
462 	return 0;
463 }
464 
465 /**
466  * Adjust the hash fields according to the @p flow information.
467  *
468  * @param[in] dev_flow.
469  *   Pointer to the mlx5_flow.
470  * @param[in] tunnel
471  *   1 when the hash field is for a tunnel item.
472  * @param[in] layer_types
473  *   ETH_RSS_* types.
474  * @param[in] hash_fields
475  *   Item hash fields.
476  *
477  * @return
478  *   The hash fileds that should be used.
479  */
480 uint64_t
481 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
482 			    int tunnel __rte_unused, uint64_t layer_types,
483 			    uint64_t hash_fields)
484 {
485 	struct rte_flow *flow = dev_flow->flow;
486 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
487 	int rss_request_inner = flow->rss.level >= 2;
488 
489 	/* Check RSS hash level for tunnel. */
490 	if (tunnel && rss_request_inner)
491 		hash_fields |= IBV_RX_HASH_INNER;
492 	else if (tunnel || rss_request_inner)
493 		return 0;
494 #endif
495 	/* Check if requested layer matches RSS hash fields. */
496 	if (!(flow->rss.types & layer_types))
497 		return 0;
498 	return hash_fields;
499 }
500 
501 /**
502  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
503  * if several tunnel rules are used on this queue, the tunnel ptype will be
504  * cleared.
505  *
506  * @param rxq_ctrl
507  *   Rx queue to update.
508  */
509 static void
510 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
511 {
512 	unsigned int i;
513 	uint32_t tunnel_ptype = 0;
514 
515 	/* Look up for the ptype to use. */
516 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
517 		if (!rxq_ctrl->flow_tunnels_n[i])
518 			continue;
519 		if (!tunnel_ptype) {
520 			tunnel_ptype = tunnels_info[i].ptype;
521 		} else {
522 			tunnel_ptype = 0;
523 			break;
524 		}
525 	}
526 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
527 }
528 
529 /**
530  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
531  * flow.
532  *
533  * @param[in] dev
534  *   Pointer to the Ethernet device structure.
535  * @param[in] dev_flow
536  *   Pointer to device flow structure.
537  */
538 static void
539 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
540 {
541 	struct mlx5_priv *priv = dev->data->dev_private;
542 	struct rte_flow *flow = dev_flow->flow;
543 	const int mark = !!(flow->actions &
544 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
545 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
546 	unsigned int i;
547 
548 	for (i = 0; i != flow->rss.queue_num; ++i) {
549 		int idx = (*flow->queue)[i];
550 		struct mlx5_rxq_ctrl *rxq_ctrl =
551 			container_of((*priv->rxqs)[idx],
552 				     struct mlx5_rxq_ctrl, rxq);
553 
554 		if (mark) {
555 			rxq_ctrl->rxq.mark = 1;
556 			rxq_ctrl->flow_mark_n++;
557 		}
558 		if (tunnel) {
559 			unsigned int j;
560 
561 			/* Increase the counter matching the flow. */
562 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
563 				if ((tunnels_info[j].tunnel &
564 				     dev_flow->layers) ==
565 				    tunnels_info[j].tunnel) {
566 					rxq_ctrl->flow_tunnels_n[j]++;
567 					break;
568 				}
569 			}
570 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
571 		}
572 	}
573 }
574 
575 /**
576  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
577  *
578  * @param[in] dev
579  *   Pointer to the Ethernet device structure.
580  * @param[in] flow
581  *   Pointer to flow structure.
582  */
583 static void
584 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
585 {
586 	struct mlx5_flow *dev_flow;
587 
588 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
589 		flow_drv_rxq_flags_set(dev, dev_flow);
590 }
591 
592 /**
593  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
594  * device flow if no other flow uses it with the same kind of request.
595  *
596  * @param dev
597  *   Pointer to Ethernet device.
598  * @param[in] dev_flow
599  *   Pointer to the device flow.
600  */
601 static void
602 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
603 {
604 	struct mlx5_priv *priv = dev->data->dev_private;
605 	struct rte_flow *flow = dev_flow->flow;
606 	const int mark = !!(flow->actions &
607 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
608 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
609 	unsigned int i;
610 
611 	assert(dev->data->dev_started);
612 	for (i = 0; i != flow->rss.queue_num; ++i) {
613 		int idx = (*flow->queue)[i];
614 		struct mlx5_rxq_ctrl *rxq_ctrl =
615 			container_of((*priv->rxqs)[idx],
616 				     struct mlx5_rxq_ctrl, rxq);
617 
618 		if (mark) {
619 			rxq_ctrl->flow_mark_n--;
620 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
621 		}
622 		if (tunnel) {
623 			unsigned int j;
624 
625 			/* Decrease the counter matching the flow. */
626 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
627 				if ((tunnels_info[j].tunnel &
628 				     dev_flow->layers) ==
629 				    tunnels_info[j].tunnel) {
630 					rxq_ctrl->flow_tunnels_n[j]--;
631 					break;
632 				}
633 			}
634 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
635 		}
636 	}
637 }
638 
639 /**
640  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
641  * @p flow if no other flow uses it with the same kind of request.
642  *
643  * @param dev
644  *   Pointer to Ethernet device.
645  * @param[in] flow
646  *   Pointer to the flow.
647  */
648 static void
649 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
650 {
651 	struct mlx5_flow *dev_flow;
652 
653 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
654 		flow_drv_rxq_flags_trim(dev, dev_flow);
655 }
656 
657 /**
658  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
659  *
660  * @param dev
661  *   Pointer to Ethernet device.
662  */
663 static void
664 flow_rxq_flags_clear(struct rte_eth_dev *dev)
665 {
666 	struct mlx5_priv *priv = dev->data->dev_private;
667 	unsigned int i;
668 
669 	for (i = 0; i != priv->rxqs_n; ++i) {
670 		struct mlx5_rxq_ctrl *rxq_ctrl;
671 		unsigned int j;
672 
673 		if (!(*priv->rxqs)[i])
674 			continue;
675 		rxq_ctrl = container_of((*priv->rxqs)[i],
676 					struct mlx5_rxq_ctrl, rxq);
677 		rxq_ctrl->flow_mark_n = 0;
678 		rxq_ctrl->rxq.mark = 0;
679 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
680 			rxq_ctrl->flow_tunnels_n[j] = 0;
681 		rxq_ctrl->rxq.tunnel = 0;
682 	}
683 }
684 
685 /*
686  * Validate the flag action.
687  *
688  * @param[in] action_flags
689  *   Bit-fields that holds the actions detected until now.
690  * @param[in] attr
691  *   Attributes of flow that includes this action.
692  * @param[out] error
693  *   Pointer to error structure.
694  *
695  * @return
696  *   0 on success, a negative errno value otherwise and rte_errno is set.
697  */
698 int
699 mlx5_flow_validate_action_flag(uint64_t action_flags,
700 			       const struct rte_flow_attr *attr,
701 			       struct rte_flow_error *error)
702 {
703 
704 	if (action_flags & MLX5_FLOW_ACTION_DROP)
705 		return rte_flow_error_set(error, EINVAL,
706 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
707 					  "can't drop and flag in same flow");
708 	if (action_flags & MLX5_FLOW_ACTION_MARK)
709 		return rte_flow_error_set(error, EINVAL,
710 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
711 					  "can't mark and flag in same flow");
712 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
713 		return rte_flow_error_set(error, EINVAL,
714 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
715 					  "can't have 2 flag"
716 					  " actions in same flow");
717 	if (attr->egress)
718 		return rte_flow_error_set(error, ENOTSUP,
719 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
720 					  "flag action not supported for "
721 					  "egress");
722 	return 0;
723 }
724 
725 /*
726  * Validate the mark action.
727  *
728  * @param[in] action
729  *   Pointer to the queue action.
730  * @param[in] action_flags
731  *   Bit-fields that holds the actions detected until now.
732  * @param[in] attr
733  *   Attributes of flow that includes this action.
734  * @param[out] error
735  *   Pointer to error structure.
736  *
737  * @return
738  *   0 on success, a negative errno value otherwise and rte_errno is set.
739  */
740 int
741 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
742 			       uint64_t action_flags,
743 			       const struct rte_flow_attr *attr,
744 			       struct rte_flow_error *error)
745 {
746 	const struct rte_flow_action_mark *mark = action->conf;
747 
748 	if (!mark)
749 		return rte_flow_error_set(error, EINVAL,
750 					  RTE_FLOW_ERROR_TYPE_ACTION,
751 					  action,
752 					  "configuration cannot be null");
753 	if (mark->id >= MLX5_FLOW_MARK_MAX)
754 		return rte_flow_error_set(error, EINVAL,
755 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
756 					  &mark->id,
757 					  "mark id must in 0 <= id < "
758 					  RTE_STR(MLX5_FLOW_MARK_MAX));
759 	if (action_flags & MLX5_FLOW_ACTION_DROP)
760 		return rte_flow_error_set(error, EINVAL,
761 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
762 					  "can't drop and mark in same flow");
763 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
764 		return rte_flow_error_set(error, EINVAL,
765 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
766 					  "can't flag and mark in same flow");
767 	if (action_flags & MLX5_FLOW_ACTION_MARK)
768 		return rte_flow_error_set(error, EINVAL,
769 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
770 					  "can't have 2 mark actions in same"
771 					  " flow");
772 	if (attr->egress)
773 		return rte_flow_error_set(error, ENOTSUP,
774 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
775 					  "mark action not supported for "
776 					  "egress");
777 	return 0;
778 }
779 
780 /*
781  * Validate the drop action.
782  *
783  * @param[in] action_flags
784  *   Bit-fields that holds the actions detected until now.
785  * @param[in] attr
786  *   Attributes of flow that includes this action.
787  * @param[out] error
788  *   Pointer to error structure.
789  *
790  * @return
791  *   0 on success, a negative errno value otherwise and rte_errno is set.
792  */
793 int
794 mlx5_flow_validate_action_drop(uint64_t action_flags,
795 			       const struct rte_flow_attr *attr,
796 			       struct rte_flow_error *error)
797 {
798 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
799 		return rte_flow_error_set(error, EINVAL,
800 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
801 					  "can't drop and flag in same flow");
802 	if (action_flags & MLX5_FLOW_ACTION_MARK)
803 		return rte_flow_error_set(error, EINVAL,
804 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
805 					  "can't drop and mark in same flow");
806 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
807 		return rte_flow_error_set(error, EINVAL,
808 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
809 					  "can't have 2 fate actions in"
810 					  " same flow");
811 	if (attr->egress)
812 		return rte_flow_error_set(error, ENOTSUP,
813 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
814 					  "drop action not supported for "
815 					  "egress");
816 	return 0;
817 }
818 
819 /*
820  * Validate the queue action.
821  *
822  * @param[in] action
823  *   Pointer to the queue action.
824  * @param[in] action_flags
825  *   Bit-fields that holds the actions detected until now.
826  * @param[in] dev
827  *   Pointer to the Ethernet device structure.
828  * @param[in] attr
829  *   Attributes of flow that includes this action.
830  * @param[out] error
831  *   Pointer to error structure.
832  *
833  * @return
834  *   0 on success, a negative errno value otherwise and rte_errno is set.
835  */
836 int
837 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
838 				uint64_t action_flags,
839 				struct rte_eth_dev *dev,
840 				const struct rte_flow_attr *attr,
841 				struct rte_flow_error *error)
842 {
843 	struct mlx5_priv *priv = dev->data->dev_private;
844 	const struct rte_flow_action_queue *queue = action->conf;
845 
846 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
847 		return rte_flow_error_set(error, EINVAL,
848 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
849 					  "can't have 2 fate actions in"
850 					  " same flow");
851 	if (!priv->rxqs_n)
852 		return rte_flow_error_set(error, EINVAL,
853 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
854 					  NULL, "No Rx queues configured");
855 	if (queue->index >= priv->rxqs_n)
856 		return rte_flow_error_set(error, EINVAL,
857 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
858 					  &queue->index,
859 					  "queue index out of range");
860 	if (!(*priv->rxqs)[queue->index])
861 		return rte_flow_error_set(error, EINVAL,
862 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
863 					  &queue->index,
864 					  "queue is not configured");
865 	if (attr->egress)
866 		return rte_flow_error_set(error, ENOTSUP,
867 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
868 					  "queue action not supported for "
869 					  "egress");
870 	return 0;
871 }
872 
873 /*
874  * Validate the rss action.
875  *
876  * @param[in] action
877  *   Pointer to the queue action.
878  * @param[in] action_flags
879  *   Bit-fields that holds the actions detected until now.
880  * @param[in] dev
881  *   Pointer to the Ethernet device structure.
882  * @param[in] attr
883  *   Attributes of flow that includes this action.
884  * @param[in] item_flags
885  *   Items that were detected.
886  * @param[out] error
887  *   Pointer to error structure.
888  *
889  * @return
890  *   0 on success, a negative errno value otherwise and rte_errno is set.
891  */
892 int
893 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
894 			      uint64_t action_flags,
895 			      struct rte_eth_dev *dev,
896 			      const struct rte_flow_attr *attr,
897 			      uint64_t item_flags,
898 			      struct rte_flow_error *error)
899 {
900 	struct mlx5_priv *priv = dev->data->dev_private;
901 	const struct rte_flow_action_rss *rss = action->conf;
902 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
903 	unsigned int i;
904 
905 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
906 		return rte_flow_error_set(error, EINVAL,
907 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
908 					  "can't have 2 fate actions"
909 					  " in same flow");
910 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
911 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
912 		return rte_flow_error_set(error, ENOTSUP,
913 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
914 					  &rss->func,
915 					  "RSS hash function not supported");
916 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
917 	if (rss->level > 2)
918 #else
919 	if (rss->level > 1)
920 #endif
921 		return rte_flow_error_set(error, ENOTSUP,
922 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
923 					  &rss->level,
924 					  "tunnel RSS is not supported");
925 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
926 	if (rss->key_len == 0 && rss->key != NULL)
927 		return rte_flow_error_set(error, ENOTSUP,
928 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929 					  &rss->key_len,
930 					  "RSS hash key length 0");
931 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
932 		return rte_flow_error_set(error, ENOTSUP,
933 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
934 					  &rss->key_len,
935 					  "RSS hash key too small");
936 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
937 		return rte_flow_error_set(error, ENOTSUP,
938 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
939 					  &rss->key_len,
940 					  "RSS hash key too large");
941 	if (rss->queue_num > priv->config.ind_table_max_size)
942 		return rte_flow_error_set(error, ENOTSUP,
943 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944 					  &rss->queue_num,
945 					  "number of queues too large");
946 	if (rss->types & MLX5_RSS_HF_MASK)
947 		return rte_flow_error_set(error, ENOTSUP,
948 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
949 					  &rss->types,
950 					  "some RSS protocols are not"
951 					  " supported");
952 	if (!priv->rxqs_n)
953 		return rte_flow_error_set(error, EINVAL,
954 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
955 					  NULL, "No Rx queues configured");
956 	if (!rss->queue_num)
957 		return rte_flow_error_set(error, EINVAL,
958 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
959 					  NULL, "No queues configured");
960 	for (i = 0; i != rss->queue_num; ++i) {
961 		if (!(*priv->rxqs)[rss->queue[i]])
962 			return rte_flow_error_set
963 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
964 				 &rss->queue[i], "queue is not configured");
965 	}
966 	if (attr->egress)
967 		return rte_flow_error_set(error, ENOTSUP,
968 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
969 					  "rss action not supported for "
970 					  "egress");
971 	if (rss->level > 1 &&  !tunnel)
972 		return rte_flow_error_set(error, EINVAL,
973 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
974 					  "inner RSS is not supported for "
975 					  "non-tunnel flows");
976 	return 0;
977 }
978 
979 /*
980  * Validate the count action.
981  *
982  * @param[in] dev
983  *   Pointer to the Ethernet device structure.
984  * @param[in] attr
985  *   Attributes of flow that includes this action.
986  * @param[out] error
987  *   Pointer to error structure.
988  *
989  * @return
990  *   0 on success, a negative errno value otherwise and rte_errno is set.
991  */
992 int
993 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
994 				const struct rte_flow_attr *attr,
995 				struct rte_flow_error *error)
996 {
997 	if (attr->egress)
998 		return rte_flow_error_set(error, ENOTSUP,
999 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1000 					  "count action not supported for "
1001 					  "egress");
1002 	return 0;
1003 }
1004 
1005 /**
1006  * Verify the @p attributes will be correctly understood by the NIC and store
1007  * them in the @p flow if everything is correct.
1008  *
1009  * @param[in] dev
1010  *   Pointer to the Ethernet device structure.
1011  * @param[in] attributes
1012  *   Pointer to flow attributes
1013  * @param[out] error
1014  *   Pointer to error structure.
1015  *
1016  * @return
1017  *   0 on success, a negative errno value otherwise and rte_errno is set.
1018  */
1019 int
1020 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1021 			      const struct rte_flow_attr *attributes,
1022 			      struct rte_flow_error *error)
1023 {
1024 	struct mlx5_priv *priv = dev->data->dev_private;
1025 	uint32_t priority_max = priv->config.flow_prio - 1;
1026 
1027 	if (attributes->group)
1028 		return rte_flow_error_set(error, ENOTSUP,
1029 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1030 					  NULL, "groups is not supported");
1031 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1032 	    attributes->priority >= priority_max)
1033 		return rte_flow_error_set(error, ENOTSUP,
1034 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1035 					  NULL, "priority out of range");
1036 	if (attributes->egress)
1037 		return rte_flow_error_set(error, ENOTSUP,
1038 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1039 					  "egress is not supported");
1040 	if (attributes->transfer)
1041 		return rte_flow_error_set(error, ENOTSUP,
1042 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1043 					  NULL, "transfer is not supported");
1044 	if (!attributes->ingress)
1045 		return rte_flow_error_set(error, EINVAL,
1046 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1047 					  NULL,
1048 					  "ingress attribute is mandatory");
1049 	return 0;
1050 }
1051 
1052 /**
1053  * Validate Ethernet item.
1054  *
1055  * @param[in] item
1056  *   Item specification.
1057  * @param[in] item_flags
1058  *   Bit-fields that holds the items detected until now.
1059  * @param[out] error
1060  *   Pointer to error structure.
1061  *
1062  * @return
1063  *   0 on success, a negative errno value otherwise and rte_errno is set.
1064  */
1065 int
1066 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1067 			    uint64_t item_flags,
1068 			    struct rte_flow_error *error)
1069 {
1070 	const struct rte_flow_item_eth *mask = item->mask;
1071 	const struct rte_flow_item_eth nic_mask = {
1072 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1073 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1074 		.type = RTE_BE16(0xffff),
1075 	};
1076 	int ret;
1077 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1078 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1079 				       MLX5_FLOW_LAYER_OUTER_L2;
1080 
1081 	if (item_flags & ethm)
1082 		return rte_flow_error_set(error, ENOTSUP,
1083 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1084 					  "multiple L2 layers not supported");
1085 	if (!mask)
1086 		mask = &rte_flow_item_eth_mask;
1087 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1088 					(const uint8_t *)&nic_mask,
1089 					sizeof(struct rte_flow_item_eth),
1090 					error);
1091 	return ret;
1092 }
1093 
1094 /**
1095  * Validate VLAN item.
1096  *
1097  * @param[in] item
1098  *   Item specification.
1099  * @param[in] item_flags
1100  *   Bit-fields that holds the items detected until now.
1101  * @param[out] error
1102  *   Pointer to error structure.
1103  *
1104  * @return
1105  *   0 on success, a negative errno value otherwise and rte_errno is set.
1106  */
1107 int
1108 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1109 			     uint64_t item_flags,
1110 			     struct rte_flow_error *error)
1111 {
1112 	const struct rte_flow_item_vlan *spec = item->spec;
1113 	const struct rte_flow_item_vlan *mask = item->mask;
1114 	const struct rte_flow_item_vlan nic_mask = {
1115 		.tci = RTE_BE16(0x0fff),
1116 		.inner_type = RTE_BE16(0xffff),
1117 	};
1118 	uint16_t vlan_tag = 0;
1119 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1120 	int ret;
1121 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1122 					MLX5_FLOW_LAYER_INNER_L4) :
1123 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1124 					MLX5_FLOW_LAYER_OUTER_L4);
1125 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1126 					MLX5_FLOW_LAYER_OUTER_VLAN;
1127 
1128 	if (item_flags & vlanm)
1129 		return rte_flow_error_set(error, EINVAL,
1130 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1131 					  "multiple VLAN layers not supported");
1132 	else if ((item_flags & l34m) != 0)
1133 		return rte_flow_error_set(error, EINVAL,
1134 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1135 					  "L2 layer cannot follow L3/L4 layer");
1136 	if (!mask)
1137 		mask = &rte_flow_item_vlan_mask;
1138 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1139 					(const uint8_t *)&nic_mask,
1140 					sizeof(struct rte_flow_item_vlan),
1141 					error);
1142 	if (ret)
1143 		return ret;
1144 	if (spec) {
1145 		vlan_tag = spec->tci;
1146 		vlan_tag &= mask->tci;
1147 	}
1148 	/*
1149 	 * From verbs perspective an empty VLAN is equivalent
1150 	 * to a packet without VLAN layer.
1151 	 */
1152 	if (!vlan_tag)
1153 		return rte_flow_error_set(error, EINVAL,
1154 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1155 					  item->spec,
1156 					  "VLAN cannot be empty");
1157 	return 0;
1158 }
1159 
1160 /**
1161  * Validate IPV4 item.
1162  *
1163  * @param[in] item
1164  *   Item specification.
1165  * @param[in] item_flags
1166  *   Bit-fields that holds the items detected until now.
1167  * @param[in] acc_mask
1168  *   Acceptable mask, if NULL default internal default mask
1169  *   will be used to check whether item fields are supported.
1170  * @param[out] error
1171  *   Pointer to error structure.
1172  *
1173  * @return
1174  *   0 on success, a negative errno value otherwise and rte_errno is set.
1175  */
1176 int
1177 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1178 			     uint64_t item_flags,
1179 			     const struct rte_flow_item_ipv4 *acc_mask,
1180 			     struct rte_flow_error *error)
1181 {
1182 	const struct rte_flow_item_ipv4 *mask = item->mask;
1183 	const struct rte_flow_item_ipv4 nic_mask = {
1184 		.hdr = {
1185 			.src_addr = RTE_BE32(0xffffffff),
1186 			.dst_addr = RTE_BE32(0xffffffff),
1187 			.type_of_service = 0xff,
1188 			.next_proto_id = 0xff,
1189 		},
1190 	};
1191 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1192 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1193 				      MLX5_FLOW_LAYER_OUTER_L3;
1194 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1195 				      MLX5_FLOW_LAYER_OUTER_L4;
1196 	int ret;
1197 
1198 	if (item_flags & l3m)
1199 		return rte_flow_error_set(error, ENOTSUP,
1200 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1201 					  "multiple L3 layers not supported");
1202 	else if (item_flags & l4m)
1203 		return rte_flow_error_set(error, EINVAL,
1204 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1205 					  "L3 cannot follow an L4 layer.");
1206 	if (!mask)
1207 		mask = &rte_flow_item_ipv4_mask;
1208 	else if (mask->hdr.next_proto_id != 0 &&
1209 		 mask->hdr.next_proto_id != 0xff)
1210 		return rte_flow_error_set(error, EINVAL,
1211 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1212 					  "partial mask is not supported"
1213 					  " for protocol");
1214 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1215 					acc_mask ? (const uint8_t *)acc_mask
1216 						 : (const uint8_t *)&nic_mask,
1217 					sizeof(struct rte_flow_item_ipv4),
1218 					error);
1219 	if (ret < 0)
1220 		return ret;
1221 	return 0;
1222 }
1223 
1224 /**
1225  * Validate IPV6 item.
1226  *
1227  * @param[in] item
1228  *   Item specification.
1229  * @param[in] item_flags
1230  *   Bit-fields that holds the items detected until now.
1231  * @param[in] acc_mask
1232  *   Acceptable mask, if NULL default internal default mask
1233  *   will be used to check whether item fields are supported.
1234  * @param[out] error
1235  *   Pointer to error structure.
1236  *
1237  * @return
1238  *   0 on success, a negative errno value otherwise and rte_errno is set.
1239  */
1240 int
1241 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1242 			     uint64_t item_flags,
1243 			     const struct rte_flow_item_ipv6 *acc_mask,
1244 			     struct rte_flow_error *error)
1245 {
1246 	const struct rte_flow_item_ipv6 *mask = item->mask;
1247 	const struct rte_flow_item_ipv6 nic_mask = {
1248 		.hdr = {
1249 			.src_addr =
1250 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1251 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1252 			.dst_addr =
1253 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1254 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1255 			.vtc_flow = RTE_BE32(0xffffffff),
1256 			.proto = 0xff,
1257 			.hop_limits = 0xff,
1258 		},
1259 	};
1260 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1261 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1262 				      MLX5_FLOW_LAYER_OUTER_L3;
1263 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1264 				      MLX5_FLOW_LAYER_OUTER_L4;
1265 	int ret;
1266 
1267 	if (item_flags & l3m)
1268 		return rte_flow_error_set(error, ENOTSUP,
1269 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1270 					  "multiple L3 layers not supported");
1271 	else if (item_flags & l4m)
1272 		return rte_flow_error_set(error, EINVAL,
1273 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1274 					  "L3 cannot follow an L4 layer.");
1275 	if (!mask)
1276 		mask = &rte_flow_item_ipv6_mask;
1277 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1278 					acc_mask ? (const uint8_t *)acc_mask
1279 						 : (const uint8_t *)&nic_mask,
1280 					sizeof(struct rte_flow_item_ipv6),
1281 					error);
1282 	if (ret < 0)
1283 		return ret;
1284 	return 0;
1285 }
1286 
1287 /**
1288  * Validate UDP item.
1289  *
1290  * @param[in] item
1291  *   Item specification.
1292  * @param[in] item_flags
1293  *   Bit-fields that holds the items detected until now.
1294  * @param[in] target_protocol
1295  *   The next protocol in the previous item.
1296  * @param[in] flow_mask
1297  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1298  * @param[out] error
1299  *   Pointer to error structure.
1300  *
1301  * @return
1302  *   0 on success, a negative errno value otherwise and rte_errno is set.
1303  */
1304 int
1305 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1306 			    uint64_t item_flags,
1307 			    uint8_t target_protocol,
1308 			    struct rte_flow_error *error)
1309 {
1310 	const struct rte_flow_item_udp *mask = item->mask;
1311 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1312 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1313 				      MLX5_FLOW_LAYER_OUTER_L3;
1314 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1315 				      MLX5_FLOW_LAYER_OUTER_L4;
1316 	int ret;
1317 
1318 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1319 		return rte_flow_error_set(error, EINVAL,
1320 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1321 					  "protocol filtering not compatible"
1322 					  " with UDP layer");
1323 	if (!(item_flags & l3m))
1324 		return rte_flow_error_set(error, EINVAL,
1325 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1326 					  "L3 is mandatory to filter on L4");
1327 	if (item_flags & l4m)
1328 		return rte_flow_error_set(error, EINVAL,
1329 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1330 					  "multiple L4 layers not supported");
1331 	if (!mask)
1332 		mask = &rte_flow_item_udp_mask;
1333 	ret = mlx5_flow_item_acceptable
1334 		(item, (const uint8_t *)mask,
1335 		 (const uint8_t *)&rte_flow_item_udp_mask,
1336 		 sizeof(struct rte_flow_item_udp), error);
1337 	if (ret < 0)
1338 		return ret;
1339 	return 0;
1340 }
1341 
1342 /**
1343  * Validate TCP item.
1344  *
1345  * @param[in] item
1346  *   Item specification.
1347  * @param[in] item_flags
1348  *   Bit-fields that holds the items detected until now.
1349  * @param[in] target_protocol
1350  *   The next protocol in the previous item.
1351  * @param[out] error
1352  *   Pointer to error structure.
1353  *
1354  * @return
1355  *   0 on success, a negative errno value otherwise and rte_errno is set.
1356  */
1357 int
1358 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1359 			    uint64_t item_flags,
1360 			    uint8_t target_protocol,
1361 			    const struct rte_flow_item_tcp *flow_mask,
1362 			    struct rte_flow_error *error)
1363 {
1364 	const struct rte_flow_item_tcp *mask = item->mask;
1365 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1366 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1367 				      MLX5_FLOW_LAYER_OUTER_L3;
1368 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1369 				      MLX5_FLOW_LAYER_OUTER_L4;
1370 	int ret;
1371 
1372 	assert(flow_mask);
1373 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1374 		return rte_flow_error_set(error, EINVAL,
1375 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1376 					  "protocol filtering not compatible"
1377 					  " with TCP layer");
1378 	if (!(item_flags & l3m))
1379 		return rte_flow_error_set(error, EINVAL,
1380 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1381 					  "L3 is mandatory to filter on L4");
1382 	if (item_flags & l4m)
1383 		return rte_flow_error_set(error, EINVAL,
1384 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1385 					  "multiple L4 layers not supported");
1386 	if (!mask)
1387 		mask = &rte_flow_item_tcp_mask;
1388 	ret = mlx5_flow_item_acceptable
1389 		(item, (const uint8_t *)mask,
1390 		 (const uint8_t *)flow_mask,
1391 		 sizeof(struct rte_flow_item_tcp), error);
1392 	if (ret < 0)
1393 		return ret;
1394 	return 0;
1395 }
1396 
1397 /**
1398  * Validate VXLAN item.
1399  *
1400  * @param[in] item
1401  *   Item specification.
1402  * @param[in] item_flags
1403  *   Bit-fields that holds the items detected until now.
1404  * @param[in] target_protocol
1405  *   The next protocol in the previous item.
1406  * @param[out] error
1407  *   Pointer to error structure.
1408  *
1409  * @return
1410  *   0 on success, a negative errno value otherwise and rte_errno is set.
1411  */
1412 int
1413 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1414 			      uint64_t item_flags,
1415 			      struct rte_flow_error *error)
1416 {
1417 	const struct rte_flow_item_vxlan *spec = item->spec;
1418 	const struct rte_flow_item_vxlan *mask = item->mask;
1419 	int ret;
1420 	union vni {
1421 		uint32_t vlan_id;
1422 		uint8_t vni[4];
1423 	} id = { .vlan_id = 0, };
1424 	uint32_t vlan_id = 0;
1425 
1426 
1427 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1428 		return rte_flow_error_set(error, ENOTSUP,
1429 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1430 					  "multiple tunnel layers not"
1431 					  " supported");
1432 	/*
1433 	 * Verify only UDPv4 is present as defined in
1434 	 * https://tools.ietf.org/html/rfc7348
1435 	 */
1436 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1437 		return rte_flow_error_set(error, EINVAL,
1438 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1439 					  "no outer UDP layer found");
1440 	if (!mask)
1441 		mask = &rte_flow_item_vxlan_mask;
1442 	ret = mlx5_flow_item_acceptable
1443 		(item, (const uint8_t *)mask,
1444 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1445 		 sizeof(struct rte_flow_item_vxlan),
1446 		 error);
1447 	if (ret < 0)
1448 		return ret;
1449 	if (spec) {
1450 		memcpy(&id.vni[1], spec->vni, 3);
1451 		vlan_id = id.vlan_id;
1452 		memcpy(&id.vni[1], mask->vni, 3);
1453 		vlan_id &= id.vlan_id;
1454 	}
1455 	/*
1456 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1457 	 * only this layer is defined in the Verbs specification it is
1458 	 * interpreted as wildcard and all packets will match this
1459 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1460 	 * udp), all packets matching the layers before will also
1461 	 * match this rule.  To avoid such situation, VNI 0 is
1462 	 * currently refused.
1463 	 */
1464 	if (!vlan_id)
1465 		return rte_flow_error_set(error, ENOTSUP,
1466 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1467 					  "VXLAN vni cannot be 0");
1468 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1469 		return rte_flow_error_set(error, ENOTSUP,
1470 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1471 					  "VXLAN tunnel must be fully defined");
1472 	return 0;
1473 }
1474 
1475 /**
1476  * Validate VXLAN_GPE item.
1477  *
1478  * @param[in] item
1479  *   Item specification.
1480  * @param[in] item_flags
1481  *   Bit-fields that holds the items detected until now.
1482  * @param[in] priv
1483  *   Pointer to the private data structure.
1484  * @param[in] target_protocol
1485  *   The next protocol in the previous item.
1486  * @param[out] error
1487  *   Pointer to error structure.
1488  *
1489  * @return
1490  *   0 on success, a negative errno value otherwise and rte_errno is set.
1491  */
1492 int
1493 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1494 				  uint64_t item_flags,
1495 				  struct rte_eth_dev *dev,
1496 				  struct rte_flow_error *error)
1497 {
1498 	struct mlx5_priv *priv = dev->data->dev_private;
1499 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1500 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1501 	int ret;
1502 	union vni {
1503 		uint32_t vlan_id;
1504 		uint8_t vni[4];
1505 	} id = { .vlan_id = 0, };
1506 	uint32_t vlan_id = 0;
1507 
1508 	if (!priv->config.l3_vxlan_en)
1509 		return rte_flow_error_set(error, ENOTSUP,
1510 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1511 					  "L3 VXLAN is not enabled by device"
1512 					  " parameter and/or not configured in"
1513 					  " firmware");
1514 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1515 		return rte_flow_error_set(error, ENOTSUP,
1516 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1517 					  "multiple tunnel layers not"
1518 					  " supported");
1519 	/*
1520 	 * Verify only UDPv4 is present as defined in
1521 	 * https://tools.ietf.org/html/rfc7348
1522 	 */
1523 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1524 		return rte_flow_error_set(error, EINVAL,
1525 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1526 					  "no outer UDP layer found");
1527 	if (!mask)
1528 		mask = &rte_flow_item_vxlan_gpe_mask;
1529 	ret = mlx5_flow_item_acceptable
1530 		(item, (const uint8_t *)mask,
1531 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1532 		 sizeof(struct rte_flow_item_vxlan_gpe),
1533 		 error);
1534 	if (ret < 0)
1535 		return ret;
1536 	if (spec) {
1537 		if (spec->protocol)
1538 			return rte_flow_error_set(error, ENOTSUP,
1539 						  RTE_FLOW_ERROR_TYPE_ITEM,
1540 						  item,
1541 						  "VxLAN-GPE protocol"
1542 						  " not supported");
1543 		memcpy(&id.vni[1], spec->vni, 3);
1544 		vlan_id = id.vlan_id;
1545 		memcpy(&id.vni[1], mask->vni, 3);
1546 		vlan_id &= id.vlan_id;
1547 	}
1548 	/*
1549 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1550 	 * layer is defined in the Verbs specification it is interpreted as
1551 	 * wildcard and all packets will match this rule, if it follows a full
1552 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1553 	 * before will also match this rule.  To avoid such situation, VNI 0
1554 	 * is currently refused.
1555 	 */
1556 	if (!vlan_id)
1557 		return rte_flow_error_set(error, ENOTSUP,
1558 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1559 					  "VXLAN-GPE vni cannot be 0");
1560 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1561 		return rte_flow_error_set(error, ENOTSUP,
1562 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1563 					  "VXLAN-GPE tunnel must be fully"
1564 					  " defined");
1565 	return 0;
1566 }
1567 
1568 /**
1569  * Validate GRE item.
1570  *
1571  * @param[in] item
1572  *   Item specification.
1573  * @param[in] item_flags
1574  *   Bit flags to mark detected items.
1575  * @param[in] target_protocol
1576  *   The next protocol in the previous item.
1577  * @param[out] error
1578  *   Pointer to error structure.
1579  *
1580  * @return
1581  *   0 on success, a negative errno value otherwise and rte_errno is set.
1582  */
1583 int
1584 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1585 			    uint64_t item_flags,
1586 			    uint8_t target_protocol,
1587 			    struct rte_flow_error *error)
1588 {
1589 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1590 	const struct rte_flow_item_gre *mask = item->mask;
1591 	int ret;
1592 
1593 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1594 		return rte_flow_error_set(error, EINVAL,
1595 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1596 					  "protocol filtering not compatible"
1597 					  " with this GRE layer");
1598 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1599 		return rte_flow_error_set(error, ENOTSUP,
1600 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1601 					  "multiple tunnel layers not"
1602 					  " supported");
1603 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1604 		return rte_flow_error_set(error, ENOTSUP,
1605 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1606 					  "L3 Layer is missing");
1607 	if (!mask)
1608 		mask = &rte_flow_item_gre_mask;
1609 	ret = mlx5_flow_item_acceptable
1610 		(item, (const uint8_t *)mask,
1611 		 (const uint8_t *)&rte_flow_item_gre_mask,
1612 		 sizeof(struct rte_flow_item_gre), error);
1613 	if (ret < 0)
1614 		return ret;
1615 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1616 	if (spec && (spec->protocol & mask->protocol))
1617 		return rte_flow_error_set(error, ENOTSUP,
1618 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1619 					  "without MPLS support the"
1620 					  " specification cannot be used for"
1621 					  " filtering");
1622 #endif
1623 	return 0;
1624 }
1625 
1626 /**
1627  * Validate MPLS item.
1628  *
1629  * @param[in] dev
1630  *   Pointer to the rte_eth_dev structure.
1631  * @param[in] item
1632  *   Item specification.
1633  * @param[in] item_flags
1634  *   Bit-fields that holds the items detected until now.
1635  * @param[in] prev_layer
1636  *   The protocol layer indicated in previous item.
1637  * @param[out] error
1638  *   Pointer to error structure.
1639  *
1640  * @return
1641  *   0 on success, a negative errno value otherwise and rte_errno is set.
1642  */
1643 int
1644 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1645 			     const struct rte_flow_item *item __rte_unused,
1646 			     uint64_t item_flags __rte_unused,
1647 			     uint64_t prev_layer __rte_unused,
1648 			     struct rte_flow_error *error)
1649 {
1650 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1651 	const struct rte_flow_item_mpls *mask = item->mask;
1652 	struct mlx5_priv *priv = dev->data->dev_private;
1653 	int ret;
1654 
1655 	if (!priv->config.mpls_en)
1656 		return rte_flow_error_set(error, ENOTSUP,
1657 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1658 					  "MPLS not supported or"
1659 					  " disabled in firmware"
1660 					  " configuration.");
1661 	/* MPLS over IP, UDP, GRE is allowed */
1662 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1663 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1664 			    MLX5_FLOW_LAYER_GRE)))
1665 		return rte_flow_error_set(error, EINVAL,
1666 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1667 					  "protocol filtering not compatible"
1668 					  " with MPLS layer");
1669 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1670 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1671 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1672 		return rte_flow_error_set(error, ENOTSUP,
1673 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1674 					  "multiple tunnel layers not"
1675 					  " supported");
1676 	if (!mask)
1677 		mask = &rte_flow_item_mpls_mask;
1678 	ret = mlx5_flow_item_acceptable
1679 		(item, (const uint8_t *)mask,
1680 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1681 		 sizeof(struct rte_flow_item_mpls), error);
1682 	if (ret < 0)
1683 		return ret;
1684 	return 0;
1685 #endif
1686 	return rte_flow_error_set(error, ENOTSUP,
1687 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1688 				  "MPLS is not supported by Verbs, please"
1689 				  " update.");
1690 }
1691 
1692 static int
1693 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1694 		   const struct rte_flow_attr *attr __rte_unused,
1695 		   const struct rte_flow_item items[] __rte_unused,
1696 		   const struct rte_flow_action actions[] __rte_unused,
1697 		   struct rte_flow_error *error __rte_unused)
1698 {
1699 	rte_errno = ENOTSUP;
1700 	return -rte_errno;
1701 }
1702 
1703 static struct mlx5_flow *
1704 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1705 		  const struct rte_flow_item items[] __rte_unused,
1706 		  const struct rte_flow_action actions[] __rte_unused,
1707 		  struct rte_flow_error *error __rte_unused)
1708 {
1709 	rte_errno = ENOTSUP;
1710 	return NULL;
1711 }
1712 
1713 static int
1714 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1715 		    struct mlx5_flow *dev_flow __rte_unused,
1716 		    const struct rte_flow_attr *attr __rte_unused,
1717 		    const struct rte_flow_item items[] __rte_unused,
1718 		    const struct rte_flow_action actions[] __rte_unused,
1719 		    struct rte_flow_error *error __rte_unused)
1720 {
1721 	rte_errno = ENOTSUP;
1722 	return -rte_errno;
1723 }
1724 
1725 static int
1726 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1727 		struct rte_flow *flow __rte_unused,
1728 		struct rte_flow_error *error __rte_unused)
1729 {
1730 	rte_errno = ENOTSUP;
1731 	return -rte_errno;
1732 }
1733 
1734 static void
1735 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1736 		 struct rte_flow *flow __rte_unused)
1737 {
1738 }
1739 
1740 static void
1741 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1742 		  struct rte_flow *flow __rte_unused)
1743 {
1744 }
1745 
1746 static int
1747 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1748 		struct rte_flow *flow __rte_unused,
1749 		const struct rte_flow_action *actions __rte_unused,
1750 		void *data __rte_unused,
1751 		struct rte_flow_error *error __rte_unused)
1752 {
1753 	rte_errno = ENOTSUP;
1754 	return -rte_errno;
1755 }
1756 
1757 /* Void driver to protect from null pointer reference. */
1758 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1759 	.validate = flow_null_validate,
1760 	.prepare = flow_null_prepare,
1761 	.translate = flow_null_translate,
1762 	.apply = flow_null_apply,
1763 	.remove = flow_null_remove,
1764 	.destroy = flow_null_destroy,
1765 	.query = flow_null_query,
1766 };
1767 
1768 /**
1769  * Select flow driver type according to flow attributes and device
1770  * configuration.
1771  *
1772  * @param[in] dev
1773  *   Pointer to the dev structure.
1774  * @param[in] attr
1775  *   Pointer to the flow attributes.
1776  *
1777  * @return
1778  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1779  */
1780 static enum mlx5_flow_drv_type
1781 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1782 {
1783 	struct mlx5_priv *priv = dev->data->dev_private;
1784 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1785 
1786 	if (attr->transfer)
1787 		type = MLX5_FLOW_TYPE_TCF;
1788 	else
1789 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1790 						 MLX5_FLOW_TYPE_VERBS;
1791 	return type;
1792 }
1793 
1794 #define flow_get_drv_ops(type) flow_drv_ops[type]
1795 
1796 /**
1797  * Flow driver validation API. This abstracts calling driver specific functions.
1798  * The type of flow driver is determined according to flow attributes.
1799  *
1800  * @param[in] dev
1801  *   Pointer to the dev structure.
1802  * @param[in] attr
1803  *   Pointer to the flow attributes.
1804  * @param[in] items
1805  *   Pointer to the list of items.
1806  * @param[in] actions
1807  *   Pointer to the list of actions.
1808  * @param[out] error
1809  *   Pointer to the error structure.
1810  *
1811  * @return
1812  *   0 on success, a negative errno value otherwise and rte_errno is set.
1813  */
1814 static inline int
1815 flow_drv_validate(struct rte_eth_dev *dev,
1816 		  const struct rte_flow_attr *attr,
1817 		  const struct rte_flow_item items[],
1818 		  const struct rte_flow_action actions[],
1819 		  struct rte_flow_error *error)
1820 {
1821 	const struct mlx5_flow_driver_ops *fops;
1822 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1823 
1824 	fops = flow_get_drv_ops(type);
1825 	return fops->validate(dev, attr, items, actions, error);
1826 }
1827 
1828 /**
1829  * Flow driver preparation API. This abstracts calling driver specific
1830  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1831  * calculates the size of memory required for device flow, allocates the memory,
1832  * initializes the device flow and returns the pointer.
1833  *
1834  * @note
1835  *   This function initializes device flow structure such as dv, tcf or verbs in
1836  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1837  *   rest. For example, adding returning device flow to flow->dev_flow list and
1838  *   setting backward reference to the flow should be done out of this function.
1839  *   layers field is not filled either.
1840  *
1841  * @param[in] attr
1842  *   Pointer to the flow attributes.
1843  * @param[in] items
1844  *   Pointer to the list of items.
1845  * @param[in] actions
1846  *   Pointer to the list of actions.
1847  * @param[out] error
1848  *   Pointer to the error structure.
1849  *
1850  * @return
1851  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1852  */
1853 static inline struct mlx5_flow *
1854 flow_drv_prepare(const struct rte_flow *flow,
1855 		 const struct rte_flow_attr *attr,
1856 		 const struct rte_flow_item items[],
1857 		 const struct rte_flow_action actions[],
1858 		 struct rte_flow_error *error)
1859 {
1860 	const struct mlx5_flow_driver_ops *fops;
1861 	enum mlx5_flow_drv_type type = flow->drv_type;
1862 
1863 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1864 	fops = flow_get_drv_ops(type);
1865 	return fops->prepare(attr, items, actions, error);
1866 }
1867 
1868 /**
1869  * Flow driver translation API. This abstracts calling driver specific
1870  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1871  * translates a generic flow into a driver flow. flow_drv_prepare() must
1872  * precede.
1873  *
1874  * @note
1875  *   dev_flow->layers could be filled as a result of parsing during translation
1876  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1877  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1878  *   flow->actions could be overwritten even though all the expanded dev_flows
1879  *   have the same actions.
1880  *
1881  * @param[in] dev
1882  *   Pointer to the rte dev structure.
1883  * @param[in, out] dev_flow
1884  *   Pointer to the mlx5 flow.
1885  * @param[in] attr
1886  *   Pointer to the flow attributes.
1887  * @param[in] items
1888  *   Pointer to the list of items.
1889  * @param[in] actions
1890  *   Pointer to the list of actions.
1891  * @param[out] error
1892  *   Pointer to the error structure.
1893  *
1894  * @return
1895  *   0 on success, a negative errno value otherwise and rte_errno is set.
1896  */
1897 static inline int
1898 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1899 		   const struct rte_flow_attr *attr,
1900 		   const struct rte_flow_item items[],
1901 		   const struct rte_flow_action actions[],
1902 		   struct rte_flow_error *error)
1903 {
1904 	const struct mlx5_flow_driver_ops *fops;
1905 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1906 
1907 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1908 	fops = flow_get_drv_ops(type);
1909 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1910 }
1911 
1912 /**
1913  * Flow driver apply API. This abstracts calling driver specific functions.
1914  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1915  * translated driver flows on to device. flow_drv_translate() must precede.
1916  *
1917  * @param[in] dev
1918  *   Pointer to Ethernet device structure.
1919  * @param[in, out] flow
1920  *   Pointer to flow structure.
1921  * @param[out] error
1922  *   Pointer to error structure.
1923  *
1924  * @return
1925  *   0 on success, a negative errno value otherwise and rte_errno is set.
1926  */
1927 static inline int
1928 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1929 	       struct rte_flow_error *error)
1930 {
1931 	const struct mlx5_flow_driver_ops *fops;
1932 	enum mlx5_flow_drv_type type = flow->drv_type;
1933 
1934 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1935 	fops = flow_get_drv_ops(type);
1936 	return fops->apply(dev, flow, error);
1937 }
1938 
1939 /**
1940  * Flow driver remove API. This abstracts calling driver specific functions.
1941  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1942  * on device. All the resources of the flow should be freed by calling
1943  * flow_drv_destroy().
1944  *
1945  * @param[in] dev
1946  *   Pointer to Ethernet device.
1947  * @param[in, out] flow
1948  *   Pointer to flow structure.
1949  */
1950 static inline void
1951 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1952 {
1953 	const struct mlx5_flow_driver_ops *fops;
1954 	enum mlx5_flow_drv_type type = flow->drv_type;
1955 
1956 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1957 	fops = flow_get_drv_ops(type);
1958 	fops->remove(dev, flow);
1959 }
1960 
1961 /**
1962  * Flow driver destroy API. This abstracts calling driver specific functions.
1963  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1964  * on device and releases resources of the flow.
1965  *
1966  * @param[in] dev
1967  *   Pointer to Ethernet device.
1968  * @param[in, out] flow
1969  *   Pointer to flow structure.
1970  */
1971 static inline void
1972 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1973 {
1974 	const struct mlx5_flow_driver_ops *fops;
1975 	enum mlx5_flow_drv_type type = flow->drv_type;
1976 
1977 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1978 	fops = flow_get_drv_ops(type);
1979 	fops->destroy(dev, flow);
1980 }
1981 
1982 /**
1983  * Validate a flow supported by the NIC.
1984  *
1985  * @see rte_flow_validate()
1986  * @see rte_flow_ops
1987  */
1988 int
1989 mlx5_flow_validate(struct rte_eth_dev *dev,
1990 		   const struct rte_flow_attr *attr,
1991 		   const struct rte_flow_item items[],
1992 		   const struct rte_flow_action actions[],
1993 		   struct rte_flow_error *error)
1994 {
1995 	int ret;
1996 
1997 	ret = flow_drv_validate(dev, attr, items, actions, error);
1998 	if (ret < 0)
1999 		return ret;
2000 	return 0;
2001 }
2002 
2003 /**
2004  * Get RSS action from the action list.
2005  *
2006  * @param[in] actions
2007  *   Pointer to the list of actions.
2008  *
2009  * @return
2010  *   Pointer to the RSS action if exist, else return NULL.
2011  */
2012 static const struct rte_flow_action_rss*
2013 flow_get_rss_action(const struct rte_flow_action actions[])
2014 {
2015 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2016 		switch (actions->type) {
2017 		case RTE_FLOW_ACTION_TYPE_RSS:
2018 			return (const struct rte_flow_action_rss *)
2019 			       actions->conf;
2020 		default:
2021 			break;
2022 		}
2023 	}
2024 	return NULL;
2025 }
2026 
2027 static unsigned int
2028 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2029 {
2030 	const struct rte_flow_item *item;
2031 	unsigned int has_vlan = 0;
2032 
2033 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2034 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2035 			has_vlan = 1;
2036 			break;
2037 		}
2038 	}
2039 	if (has_vlan)
2040 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2041 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2042 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2043 			       MLX5_EXPANSION_ROOT_OUTER;
2044 }
2045 
2046 /**
2047  * Create a flow and add it to @p list.
2048  *
2049  * @param dev
2050  *   Pointer to Ethernet device.
2051  * @param list
2052  *   Pointer to a TAILQ flow list.
2053  * @param[in] attr
2054  *   Flow rule attributes.
2055  * @param[in] items
2056  *   Pattern specification (list terminated by the END pattern item).
2057  * @param[in] actions
2058  *   Associated actions (list terminated by the END action).
2059  * @param[out] error
2060  *   Perform verbose error reporting if not NULL.
2061  *
2062  * @return
2063  *   A flow on success, NULL otherwise and rte_errno is set.
2064  */
2065 static struct rte_flow *
2066 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2067 		 const struct rte_flow_attr *attr,
2068 		 const struct rte_flow_item items[],
2069 		 const struct rte_flow_action actions[],
2070 		 struct rte_flow_error *error)
2071 {
2072 	struct rte_flow *flow = NULL;
2073 	struct mlx5_flow *dev_flow;
2074 	const struct rte_flow_action_rss *rss;
2075 	union {
2076 		struct rte_flow_expand_rss buf;
2077 		uint8_t buffer[2048];
2078 	} expand_buffer;
2079 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2080 	int ret;
2081 	uint32_t i;
2082 	uint32_t flow_size;
2083 
2084 	ret = flow_drv_validate(dev, attr, items, actions, error);
2085 	if (ret < 0)
2086 		return NULL;
2087 	flow_size = sizeof(struct rte_flow);
2088 	rss = flow_get_rss_action(actions);
2089 	if (rss)
2090 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2091 					    sizeof(void *));
2092 	else
2093 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2094 	flow = rte_calloc(__func__, 1, flow_size, 0);
2095 	flow->drv_type = flow_get_drv_type(dev, attr);
2096 	flow->ingress = attr->ingress;
2097 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2098 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2099 	flow->queue = (void *)(flow + 1);
2100 	LIST_INIT(&flow->dev_flows);
2101 	if (rss && rss->types) {
2102 		unsigned int graph_root;
2103 
2104 		graph_root = find_graph_root(items, rss->level);
2105 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2106 					  items, rss->types,
2107 					  mlx5_support_expansion,
2108 					  graph_root);
2109 		assert(ret > 0 &&
2110 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2111 	} else {
2112 		buf->entries = 1;
2113 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2114 	}
2115 	for (i = 0; i < buf->entries; ++i) {
2116 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2117 					    actions, error);
2118 		if (!dev_flow)
2119 			goto error;
2120 		dev_flow->flow = flow;
2121 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2122 		ret = flow_drv_translate(dev, dev_flow, attr,
2123 					 buf->entry[i].pattern,
2124 					 actions, error);
2125 		if (ret < 0)
2126 			goto error;
2127 	}
2128 	if (dev->data->dev_started) {
2129 		ret = flow_drv_apply(dev, flow, error);
2130 		if (ret < 0)
2131 			goto error;
2132 	}
2133 	TAILQ_INSERT_TAIL(list, flow, next);
2134 	flow_rxq_flags_set(dev, flow);
2135 	return flow;
2136 error:
2137 	ret = rte_errno; /* Save rte_errno before cleanup. */
2138 	assert(flow);
2139 	flow_drv_destroy(dev, flow);
2140 	rte_free(flow);
2141 	rte_errno = ret; /* Restore rte_errno. */
2142 	return NULL;
2143 }
2144 
2145 /**
2146  * Create a flow.
2147  *
2148  * @see rte_flow_create()
2149  * @see rte_flow_ops
2150  */
2151 struct rte_flow *
2152 mlx5_flow_create(struct rte_eth_dev *dev,
2153 		 const struct rte_flow_attr *attr,
2154 		 const struct rte_flow_item items[],
2155 		 const struct rte_flow_action actions[],
2156 		 struct rte_flow_error *error)
2157 {
2158 	struct mlx5_priv *priv = (struct mlx5_priv *)dev->data->dev_private;
2159 
2160 	return flow_list_create(dev, &priv->flows,
2161 				attr, items, actions, error);
2162 }
2163 
2164 /**
2165  * Destroy a flow in a list.
2166  *
2167  * @param dev
2168  *   Pointer to Ethernet device.
2169  * @param list
2170  *   Pointer to a TAILQ flow list.
2171  * @param[in] flow
2172  *   Flow to destroy.
2173  */
2174 static void
2175 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2176 		  struct rte_flow *flow)
2177 {
2178 	/*
2179 	 * Update RX queue flags only if port is started, otherwise it is
2180 	 * already clean.
2181 	 */
2182 	if (dev->data->dev_started)
2183 		flow_rxq_flags_trim(dev, flow);
2184 	flow_drv_destroy(dev, flow);
2185 	TAILQ_REMOVE(list, flow, next);
2186 	rte_free(flow->fdir);
2187 	rte_free(flow);
2188 }
2189 
2190 /**
2191  * Destroy all flows.
2192  *
2193  * @param dev
2194  *   Pointer to Ethernet device.
2195  * @param list
2196  *   Pointer to a TAILQ flow list.
2197  */
2198 void
2199 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2200 {
2201 	while (!TAILQ_EMPTY(list)) {
2202 		struct rte_flow *flow;
2203 
2204 		flow = TAILQ_FIRST(list);
2205 		flow_list_destroy(dev, list, flow);
2206 	}
2207 }
2208 
2209 /**
2210  * Remove all flows.
2211  *
2212  * @param dev
2213  *   Pointer to Ethernet device.
2214  * @param list
2215  *   Pointer to a TAILQ flow list.
2216  */
2217 void
2218 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2219 {
2220 	struct rte_flow *flow;
2221 
2222 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2223 		flow_drv_remove(dev, flow);
2224 	flow_rxq_flags_clear(dev);
2225 }
2226 
2227 /**
2228  * Add all flows.
2229  *
2230  * @param dev
2231  *   Pointer to Ethernet device.
2232  * @param list
2233  *   Pointer to a TAILQ flow list.
2234  *
2235  * @return
2236  *   0 on success, a negative errno value otherwise and rte_errno is set.
2237  */
2238 int
2239 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2240 {
2241 	struct rte_flow *flow;
2242 	struct rte_flow_error error;
2243 	int ret = 0;
2244 
2245 	TAILQ_FOREACH(flow, list, next) {
2246 		ret = flow_drv_apply(dev, flow, &error);
2247 		if (ret < 0)
2248 			goto error;
2249 		flow_rxq_flags_set(dev, flow);
2250 	}
2251 	return 0;
2252 error:
2253 	ret = rte_errno; /* Save rte_errno before cleanup. */
2254 	mlx5_flow_stop(dev, list);
2255 	rte_errno = ret; /* Restore rte_errno. */
2256 	return -rte_errno;
2257 }
2258 
2259 /**
2260  * Verify the flow list is empty
2261  *
2262  * @param dev
2263  *  Pointer to Ethernet device.
2264  *
2265  * @return the number of flows not released.
2266  */
2267 int
2268 mlx5_flow_verify(struct rte_eth_dev *dev)
2269 {
2270 	struct mlx5_priv *priv = dev->data->dev_private;
2271 	struct rte_flow *flow;
2272 	int ret = 0;
2273 
2274 	TAILQ_FOREACH(flow, &priv->flows, next) {
2275 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2276 			dev->data->port_id, (void *)flow);
2277 		++ret;
2278 	}
2279 	return ret;
2280 }
2281 
2282 /**
2283  * Enable a control flow configured from the control plane.
2284  *
2285  * @param dev
2286  *   Pointer to Ethernet device.
2287  * @param eth_spec
2288  *   An Ethernet flow spec to apply.
2289  * @param eth_mask
2290  *   An Ethernet flow mask to apply.
2291  * @param vlan_spec
2292  *   A VLAN flow spec to apply.
2293  * @param vlan_mask
2294  *   A VLAN flow mask to apply.
2295  *
2296  * @return
2297  *   0 on success, a negative errno value otherwise and rte_errno is set.
2298  */
2299 int
2300 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2301 		    struct rte_flow_item_eth *eth_spec,
2302 		    struct rte_flow_item_eth *eth_mask,
2303 		    struct rte_flow_item_vlan *vlan_spec,
2304 		    struct rte_flow_item_vlan *vlan_mask)
2305 {
2306 	struct mlx5_priv *priv = dev->data->dev_private;
2307 	const struct rte_flow_attr attr = {
2308 		.ingress = 1,
2309 		.priority = MLX5_FLOW_PRIO_RSVD,
2310 	};
2311 	struct rte_flow_item items[] = {
2312 		{
2313 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2314 			.spec = eth_spec,
2315 			.last = NULL,
2316 			.mask = eth_mask,
2317 		},
2318 		{
2319 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2320 					      RTE_FLOW_ITEM_TYPE_END,
2321 			.spec = vlan_spec,
2322 			.last = NULL,
2323 			.mask = vlan_mask,
2324 		},
2325 		{
2326 			.type = RTE_FLOW_ITEM_TYPE_END,
2327 		},
2328 	};
2329 	uint16_t queue[priv->reta_idx_n];
2330 	struct rte_flow_action_rss action_rss = {
2331 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2332 		.level = 0,
2333 		.types = priv->rss_conf.rss_hf,
2334 		.key_len = priv->rss_conf.rss_key_len,
2335 		.queue_num = priv->reta_idx_n,
2336 		.key = priv->rss_conf.rss_key,
2337 		.queue = queue,
2338 	};
2339 	struct rte_flow_action actions[] = {
2340 		{
2341 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2342 			.conf = &action_rss,
2343 		},
2344 		{
2345 			.type = RTE_FLOW_ACTION_TYPE_END,
2346 		},
2347 	};
2348 	struct rte_flow *flow;
2349 	struct rte_flow_error error;
2350 	unsigned int i;
2351 
2352 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2353 		return 0;
2354 	}
2355 	for (i = 0; i != priv->reta_idx_n; ++i)
2356 		queue[i] = (*priv->reta_idx)[i];
2357 	flow = flow_list_create(dev, &priv->ctrl_flows,
2358 				&attr, items, actions, &error);
2359 	if (!flow)
2360 		return -rte_errno;
2361 	return 0;
2362 }
2363 
2364 /**
2365  * Enable a flow control configured from the control plane.
2366  *
2367  * @param dev
2368  *   Pointer to Ethernet device.
2369  * @param eth_spec
2370  *   An Ethernet flow spec to apply.
2371  * @param eth_mask
2372  *   An Ethernet flow mask to apply.
2373  *
2374  * @return
2375  *   0 on success, a negative errno value otherwise and rte_errno is set.
2376  */
2377 int
2378 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2379 	       struct rte_flow_item_eth *eth_spec,
2380 	       struct rte_flow_item_eth *eth_mask)
2381 {
2382 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2383 }
2384 
2385 /**
2386  * Destroy a flow.
2387  *
2388  * @see rte_flow_destroy()
2389  * @see rte_flow_ops
2390  */
2391 int
2392 mlx5_flow_destroy(struct rte_eth_dev *dev,
2393 		  struct rte_flow *flow,
2394 		  struct rte_flow_error *error __rte_unused)
2395 {
2396 	struct mlx5_priv *priv = dev->data->dev_private;
2397 
2398 	flow_list_destroy(dev, &priv->flows, flow);
2399 	return 0;
2400 }
2401 
2402 /**
2403  * Destroy all flows.
2404  *
2405  * @see rte_flow_flush()
2406  * @see rte_flow_ops
2407  */
2408 int
2409 mlx5_flow_flush(struct rte_eth_dev *dev,
2410 		struct rte_flow_error *error __rte_unused)
2411 {
2412 	struct mlx5_priv *priv = dev->data->dev_private;
2413 
2414 	mlx5_flow_list_flush(dev, &priv->flows);
2415 	return 0;
2416 }
2417 
2418 /**
2419  * Isolated mode.
2420  *
2421  * @see rte_flow_isolate()
2422  * @see rte_flow_ops
2423  */
2424 int
2425 mlx5_flow_isolate(struct rte_eth_dev *dev,
2426 		  int enable,
2427 		  struct rte_flow_error *error)
2428 {
2429 	struct mlx5_priv *priv = dev->data->dev_private;
2430 
2431 	if (dev->data->dev_started) {
2432 		rte_flow_error_set(error, EBUSY,
2433 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2434 				   NULL,
2435 				   "port must be stopped first");
2436 		return -rte_errno;
2437 	}
2438 	priv->isolated = !!enable;
2439 	if (enable)
2440 		dev->dev_ops = &mlx5_dev_ops_isolate;
2441 	else
2442 		dev->dev_ops = &mlx5_dev_ops;
2443 	return 0;
2444 }
2445 
2446 /**
2447  * Query a flow.
2448  *
2449  * @see rte_flow_query()
2450  * @see rte_flow_ops
2451  */
2452 static int
2453 flow_drv_query(struct rte_eth_dev *dev,
2454 	       struct rte_flow *flow,
2455 	       const struct rte_flow_action *actions,
2456 	       void *data,
2457 	       struct rte_flow_error *error)
2458 {
2459 	const struct mlx5_flow_driver_ops *fops;
2460 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2461 
2462 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2463 	fops = flow_get_drv_ops(ftype);
2464 
2465 	return fops->query(dev, flow, actions, data, error);
2466 }
2467 
2468 /**
2469  * Query a flow.
2470  *
2471  * @see rte_flow_query()
2472  * @see rte_flow_ops
2473  */
2474 int
2475 mlx5_flow_query(struct rte_eth_dev *dev,
2476 		struct rte_flow *flow,
2477 		const struct rte_flow_action *actions,
2478 		void *data,
2479 		struct rte_flow_error *error)
2480 {
2481 	int ret;
2482 
2483 	ret = flow_drv_query(dev, flow, actions, data, error);
2484 	if (ret < 0)
2485 		return ret;
2486 	return 0;
2487 }
2488 
2489 /**
2490  * Convert a flow director filter to a generic flow.
2491  *
2492  * @param dev
2493  *   Pointer to Ethernet device.
2494  * @param fdir_filter
2495  *   Flow director filter to add.
2496  * @param attributes
2497  *   Generic flow parameters structure.
2498  *
2499  * @return
2500  *   0 on success, a negative errno value otherwise and rte_errno is set.
2501  */
2502 static int
2503 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2504 			 const struct rte_eth_fdir_filter *fdir_filter,
2505 			 struct mlx5_fdir *attributes)
2506 {
2507 	struct mlx5_priv *priv = dev->data->dev_private;
2508 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2509 	const struct rte_eth_fdir_masks *mask =
2510 		&dev->data->dev_conf.fdir_conf.mask;
2511 
2512 	/* Validate queue number. */
2513 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2514 		DRV_LOG(ERR, "port %u invalid queue number %d",
2515 			dev->data->port_id, fdir_filter->action.rx_queue);
2516 		rte_errno = EINVAL;
2517 		return -rte_errno;
2518 	}
2519 	attributes->attr.ingress = 1;
2520 	attributes->items[0] = (struct rte_flow_item) {
2521 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2522 		.spec = &attributes->l2,
2523 		.mask = &attributes->l2_mask,
2524 	};
2525 	switch (fdir_filter->action.behavior) {
2526 	case RTE_ETH_FDIR_ACCEPT:
2527 		attributes->actions[0] = (struct rte_flow_action){
2528 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2529 			.conf = &attributes->queue,
2530 		};
2531 		break;
2532 	case RTE_ETH_FDIR_REJECT:
2533 		attributes->actions[0] = (struct rte_flow_action){
2534 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2535 		};
2536 		break;
2537 	default:
2538 		DRV_LOG(ERR, "port %u invalid behavior %d",
2539 			dev->data->port_id,
2540 			fdir_filter->action.behavior);
2541 		rte_errno = ENOTSUP;
2542 		return -rte_errno;
2543 	}
2544 	attributes->queue.index = fdir_filter->action.rx_queue;
2545 	/* Handle L3. */
2546 	switch (fdir_filter->input.flow_type) {
2547 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2548 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2549 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2550 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2551 			.src_addr = input->flow.ip4_flow.src_ip,
2552 			.dst_addr = input->flow.ip4_flow.dst_ip,
2553 			.time_to_live = input->flow.ip4_flow.ttl,
2554 			.type_of_service = input->flow.ip4_flow.tos,
2555 		};
2556 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2557 			.src_addr = mask->ipv4_mask.src_ip,
2558 			.dst_addr = mask->ipv4_mask.dst_ip,
2559 			.time_to_live = mask->ipv4_mask.ttl,
2560 			.type_of_service = mask->ipv4_mask.tos,
2561 			.next_proto_id = mask->ipv4_mask.proto,
2562 		};
2563 		attributes->items[1] = (struct rte_flow_item){
2564 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2565 			.spec = &attributes->l3,
2566 			.mask = &attributes->l3_mask,
2567 		};
2568 		break;
2569 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2570 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2571 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2572 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2573 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2574 			.proto = input->flow.ipv6_flow.proto,
2575 		};
2576 
2577 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2578 		       input->flow.ipv6_flow.src_ip,
2579 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2580 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2581 		       input->flow.ipv6_flow.dst_ip,
2582 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2583 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2584 		       mask->ipv6_mask.src_ip,
2585 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2586 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2587 		       mask->ipv6_mask.dst_ip,
2588 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2589 		attributes->items[1] = (struct rte_flow_item){
2590 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2591 			.spec = &attributes->l3,
2592 			.mask = &attributes->l3_mask,
2593 		};
2594 		break;
2595 	default:
2596 		DRV_LOG(ERR, "port %u invalid flow type%d",
2597 			dev->data->port_id, fdir_filter->input.flow_type);
2598 		rte_errno = ENOTSUP;
2599 		return -rte_errno;
2600 	}
2601 	/* Handle L4. */
2602 	switch (fdir_filter->input.flow_type) {
2603 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2604 		attributes->l4.udp.hdr = (struct udp_hdr){
2605 			.src_port = input->flow.udp4_flow.src_port,
2606 			.dst_port = input->flow.udp4_flow.dst_port,
2607 		};
2608 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2609 			.src_port = mask->src_port_mask,
2610 			.dst_port = mask->dst_port_mask,
2611 		};
2612 		attributes->items[2] = (struct rte_flow_item){
2613 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2614 			.spec = &attributes->l4,
2615 			.mask = &attributes->l4_mask,
2616 		};
2617 		break;
2618 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2619 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2620 			.src_port = input->flow.tcp4_flow.src_port,
2621 			.dst_port = input->flow.tcp4_flow.dst_port,
2622 		};
2623 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2624 			.src_port = mask->src_port_mask,
2625 			.dst_port = mask->dst_port_mask,
2626 		};
2627 		attributes->items[2] = (struct rte_flow_item){
2628 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2629 			.spec = &attributes->l4,
2630 			.mask = &attributes->l4_mask,
2631 		};
2632 		break;
2633 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2634 		attributes->l4.udp.hdr = (struct udp_hdr){
2635 			.src_port = input->flow.udp6_flow.src_port,
2636 			.dst_port = input->flow.udp6_flow.dst_port,
2637 		};
2638 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2639 			.src_port = mask->src_port_mask,
2640 			.dst_port = mask->dst_port_mask,
2641 		};
2642 		attributes->items[2] = (struct rte_flow_item){
2643 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2644 			.spec = &attributes->l4,
2645 			.mask = &attributes->l4_mask,
2646 		};
2647 		break;
2648 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2649 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2650 			.src_port = input->flow.tcp6_flow.src_port,
2651 			.dst_port = input->flow.tcp6_flow.dst_port,
2652 		};
2653 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2654 			.src_port = mask->src_port_mask,
2655 			.dst_port = mask->dst_port_mask,
2656 		};
2657 		attributes->items[2] = (struct rte_flow_item){
2658 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2659 			.spec = &attributes->l4,
2660 			.mask = &attributes->l4_mask,
2661 		};
2662 		break;
2663 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2664 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2665 		break;
2666 	default:
2667 		DRV_LOG(ERR, "port %u invalid flow type%d",
2668 			dev->data->port_id, fdir_filter->input.flow_type);
2669 		rte_errno = ENOTSUP;
2670 		return -rte_errno;
2671 	}
2672 	return 0;
2673 }
2674 
2675 #define FLOW_FDIR_CMP(f1, f2, fld) \
2676 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2677 
2678 /**
2679  * Compare two FDIR flows. If items and actions are identical, the two flows are
2680  * regarded as same.
2681  *
2682  * @param dev
2683  *   Pointer to Ethernet device.
2684  * @param f1
2685  *   FDIR flow to compare.
2686  * @param f2
2687  *   FDIR flow to compare.
2688  *
2689  * @return
2690  *   Zero on match, 1 otherwise.
2691  */
2692 static int
2693 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2694 {
2695 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2696 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2697 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2698 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2699 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2700 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2701 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2702 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2703 		return 1;
2704 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2705 	    FLOW_FDIR_CMP(f1, f2, queue))
2706 		return 1;
2707 	return 0;
2708 }
2709 
2710 /**
2711  * Search device flow list to find out a matched FDIR flow.
2712  *
2713  * @param dev
2714  *   Pointer to Ethernet device.
2715  * @param fdir_flow
2716  *   FDIR flow to lookup.
2717  *
2718  * @return
2719  *   Pointer of flow if found, NULL otherwise.
2720  */
2721 static struct rte_flow *
2722 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2723 {
2724 	struct mlx5_priv *priv = dev->data->dev_private;
2725 	struct rte_flow *flow = NULL;
2726 
2727 	assert(fdir_flow);
2728 	TAILQ_FOREACH(flow, &priv->flows, next) {
2729 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2730 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2731 				dev->data->port_id, (void *)flow);
2732 			break;
2733 		}
2734 	}
2735 	return flow;
2736 }
2737 
2738 /**
2739  * Add new flow director filter and store it in list.
2740  *
2741  * @param dev
2742  *   Pointer to Ethernet device.
2743  * @param fdir_filter
2744  *   Flow director filter to add.
2745  *
2746  * @return
2747  *   0 on success, a negative errno value otherwise and rte_errno is set.
2748  */
2749 static int
2750 flow_fdir_filter_add(struct rte_eth_dev *dev,
2751 		     const struct rte_eth_fdir_filter *fdir_filter)
2752 {
2753 	struct mlx5_priv *priv = dev->data->dev_private;
2754 	struct mlx5_fdir *fdir_flow;
2755 	struct rte_flow *flow;
2756 	int ret;
2757 
2758 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2759 	if (!fdir_flow) {
2760 		rte_errno = ENOMEM;
2761 		return -rte_errno;
2762 	}
2763 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2764 	if (ret)
2765 		goto error;
2766 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2767 	if (flow) {
2768 		rte_errno = EEXIST;
2769 		goto error;
2770 	}
2771 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2772 				fdir_flow->items, fdir_flow->actions, NULL);
2773 	if (!flow)
2774 		goto error;
2775 	assert(!flow->fdir);
2776 	flow->fdir = fdir_flow;
2777 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2778 		dev->data->port_id, (void *)flow);
2779 	return 0;
2780 error:
2781 	rte_free(fdir_flow);
2782 	return -rte_errno;
2783 }
2784 
2785 /**
2786  * Delete specific filter.
2787  *
2788  * @param dev
2789  *   Pointer to Ethernet device.
2790  * @param fdir_filter
2791  *   Filter to be deleted.
2792  *
2793  * @return
2794  *   0 on success, a negative errno value otherwise and rte_errno is set.
2795  */
2796 static int
2797 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2798 			const struct rte_eth_fdir_filter *fdir_filter)
2799 {
2800 	struct mlx5_priv *priv = dev->data->dev_private;
2801 	struct rte_flow *flow;
2802 	struct mlx5_fdir fdir_flow = {
2803 		.attr.group = 0,
2804 	};
2805 	int ret;
2806 
2807 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2808 	if (ret)
2809 		return -rte_errno;
2810 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2811 	if (!flow) {
2812 		rte_errno = ENOENT;
2813 		return -rte_errno;
2814 	}
2815 	flow_list_destroy(dev, &priv->flows, flow);
2816 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2817 		dev->data->port_id, (void *)flow);
2818 	return 0;
2819 }
2820 
2821 /**
2822  * Update queue for specific filter.
2823  *
2824  * @param dev
2825  *   Pointer to Ethernet device.
2826  * @param fdir_filter
2827  *   Filter to be updated.
2828  *
2829  * @return
2830  *   0 on success, a negative errno value otherwise and rte_errno is set.
2831  */
2832 static int
2833 flow_fdir_filter_update(struct rte_eth_dev *dev,
2834 			const struct rte_eth_fdir_filter *fdir_filter)
2835 {
2836 	int ret;
2837 
2838 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2839 	if (ret)
2840 		return ret;
2841 	return flow_fdir_filter_add(dev, fdir_filter);
2842 }
2843 
2844 /**
2845  * Flush all filters.
2846  *
2847  * @param dev
2848  *   Pointer to Ethernet device.
2849  */
2850 static void
2851 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2852 {
2853 	struct mlx5_priv *priv = dev->data->dev_private;
2854 
2855 	mlx5_flow_list_flush(dev, &priv->flows);
2856 }
2857 
2858 /**
2859  * Get flow director information.
2860  *
2861  * @param dev
2862  *   Pointer to Ethernet device.
2863  * @param[out] fdir_info
2864  *   Resulting flow director information.
2865  */
2866 static void
2867 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2868 {
2869 	struct rte_eth_fdir_masks *mask =
2870 		&dev->data->dev_conf.fdir_conf.mask;
2871 
2872 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2873 	fdir_info->guarant_spc = 0;
2874 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2875 	fdir_info->max_flexpayload = 0;
2876 	fdir_info->flow_types_mask[0] = 0;
2877 	fdir_info->flex_payload_unit = 0;
2878 	fdir_info->max_flex_payload_segment_num = 0;
2879 	fdir_info->flex_payload_limit = 0;
2880 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2881 }
2882 
2883 /**
2884  * Deal with flow director operations.
2885  *
2886  * @param dev
2887  *   Pointer to Ethernet device.
2888  * @param filter_op
2889  *   Operation to perform.
2890  * @param arg
2891  *   Pointer to operation-specific structure.
2892  *
2893  * @return
2894  *   0 on success, a negative errno value otherwise and rte_errno is set.
2895  */
2896 static int
2897 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2898 		    void *arg)
2899 {
2900 	enum rte_fdir_mode fdir_mode =
2901 		dev->data->dev_conf.fdir_conf.mode;
2902 
2903 	if (filter_op == RTE_ETH_FILTER_NOP)
2904 		return 0;
2905 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2906 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2907 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2908 			dev->data->port_id, fdir_mode);
2909 		rte_errno = EINVAL;
2910 		return -rte_errno;
2911 	}
2912 	switch (filter_op) {
2913 	case RTE_ETH_FILTER_ADD:
2914 		return flow_fdir_filter_add(dev, arg);
2915 	case RTE_ETH_FILTER_UPDATE:
2916 		return flow_fdir_filter_update(dev, arg);
2917 	case RTE_ETH_FILTER_DELETE:
2918 		return flow_fdir_filter_delete(dev, arg);
2919 	case RTE_ETH_FILTER_FLUSH:
2920 		flow_fdir_filter_flush(dev);
2921 		break;
2922 	case RTE_ETH_FILTER_INFO:
2923 		flow_fdir_info_get(dev, arg);
2924 		break;
2925 	default:
2926 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2927 			dev->data->port_id, filter_op);
2928 		rte_errno = EINVAL;
2929 		return -rte_errno;
2930 	}
2931 	return 0;
2932 }
2933 
2934 /**
2935  * Manage filter operations.
2936  *
2937  * @param dev
2938  *   Pointer to Ethernet device structure.
2939  * @param filter_type
2940  *   Filter type.
2941  * @param filter_op
2942  *   Operation to perform.
2943  * @param arg
2944  *   Pointer to operation-specific structure.
2945  *
2946  * @return
2947  *   0 on success, a negative errno value otherwise and rte_errno is set.
2948  */
2949 int
2950 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2951 		     enum rte_filter_type filter_type,
2952 		     enum rte_filter_op filter_op,
2953 		     void *arg)
2954 {
2955 	switch (filter_type) {
2956 	case RTE_ETH_FILTER_GENERIC:
2957 		if (filter_op != RTE_ETH_FILTER_GET) {
2958 			rte_errno = EINVAL;
2959 			return -rte_errno;
2960 		}
2961 		*(const void **)arg = &mlx5_flow_ops;
2962 		return 0;
2963 	case RTE_ETH_FILTER_FDIR:
2964 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2965 	default:
2966 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2967 			dev->data->port_id, filter_type);
2968 		rte_errno = ENOTSUP;
2969 		return -rte_errno;
2970 	}
2971 	return 0;
2972 }
2973