1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 #include <stdbool.h> 12 13 #include <rte_common.h> 14 #include <rte_ether.h> 15 #include <rte_ethdev_driver.h> 16 #include <rte_eal_paging.h> 17 #include <rte_flow.h> 18 #include <rte_cycles.h> 19 #include <rte_flow_driver.h> 20 #include <rte_malloc.h> 21 #include <rte_ip.h> 22 23 #include <mlx5_glue.h> 24 #include <mlx5_devx_cmds.h> 25 #include <mlx5_prm.h> 26 #include <mlx5_malloc.h> 27 28 #include "mlx5_defs.h" 29 #include "mlx5.h" 30 #include "mlx5_flow.h" 31 #include "mlx5_flow_os.h" 32 #include "mlx5_rxtx.h" 33 #include "mlx5_common_os.h" 34 #include "rte_pmd_mlx5.h" 35 36 static struct mlx5_flow_tunnel * 37 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id); 38 static void 39 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel); 40 static const struct mlx5_flow_tbl_data_entry * 41 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark); 42 static int 43 mlx5_get_flow_tunnel(struct rte_eth_dev *dev, 44 const struct rte_flow_tunnel *app_tunnel, 45 struct mlx5_flow_tunnel **tunnel); 46 47 48 /** Device flow drivers. */ 49 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 50 51 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 52 53 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 54 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 55 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 56 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 57 #endif 58 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 59 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 60 }; 61 62 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */ 63 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \ 64 (const int []){ \ 65 __VA_ARGS__, 0, \ 66 } 67 68 /** Node object of input graph for mlx5_flow_expand_rss(). */ 69 struct mlx5_flow_expand_node { 70 const int *const next; 71 /**< 72 * List of next node indexes. Index 0 is interpreted as a terminator. 73 */ 74 const enum rte_flow_item_type type; 75 /**< Pattern item type of current node. */ 76 uint64_t rss_types; 77 /**< 78 * RSS types bit-field associated with this node 79 * (see ETH_RSS_* definitions). 80 */ 81 }; 82 83 /** Object returned by mlx5_flow_expand_rss(). */ 84 struct mlx5_flow_expand_rss { 85 uint32_t entries; 86 /**< Number of entries @p patterns and @p priorities. */ 87 struct { 88 struct rte_flow_item *pattern; /**< Expanded pattern array. */ 89 uint32_t priority; /**< Priority offset for each expansion. */ 90 } entry[]; 91 }; 92 93 static enum rte_flow_item_type 94 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item) 95 { 96 enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID; 97 uint16_t ether_type = 0; 98 uint16_t ether_type_m; 99 uint8_t ip_next_proto = 0; 100 uint8_t ip_next_proto_m; 101 102 if (item == NULL || item->spec == NULL) 103 return ret; 104 switch (item->type) { 105 case RTE_FLOW_ITEM_TYPE_ETH: 106 if (item->mask) 107 ether_type_m = ((const struct rte_flow_item_eth *) 108 (item->mask))->type; 109 else 110 ether_type_m = rte_flow_item_eth_mask.type; 111 if (ether_type_m != RTE_BE16(0xFFFF)) 112 break; 113 ether_type = ((const struct rte_flow_item_eth *) 114 (item->spec))->type; 115 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) 116 ret = RTE_FLOW_ITEM_TYPE_IPV4; 117 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) 118 ret = RTE_FLOW_ITEM_TYPE_IPV6; 119 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) 120 ret = RTE_FLOW_ITEM_TYPE_VLAN; 121 else 122 ret = RTE_FLOW_ITEM_TYPE_END; 123 break; 124 case RTE_FLOW_ITEM_TYPE_VLAN: 125 if (item->mask) 126 ether_type_m = ((const struct rte_flow_item_vlan *) 127 (item->mask))->inner_type; 128 else 129 ether_type_m = rte_flow_item_vlan_mask.inner_type; 130 if (ether_type_m != RTE_BE16(0xFFFF)) 131 break; 132 ether_type = ((const struct rte_flow_item_vlan *) 133 (item->spec))->inner_type; 134 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) 135 ret = RTE_FLOW_ITEM_TYPE_IPV4; 136 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) 137 ret = RTE_FLOW_ITEM_TYPE_IPV6; 138 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) 139 ret = RTE_FLOW_ITEM_TYPE_VLAN; 140 else 141 ret = RTE_FLOW_ITEM_TYPE_END; 142 break; 143 case RTE_FLOW_ITEM_TYPE_IPV4: 144 if (item->mask) 145 ip_next_proto_m = ((const struct rte_flow_item_ipv4 *) 146 (item->mask))->hdr.next_proto_id; 147 else 148 ip_next_proto_m = 149 rte_flow_item_ipv4_mask.hdr.next_proto_id; 150 if (ip_next_proto_m != 0xFF) 151 break; 152 ip_next_proto = ((const struct rte_flow_item_ipv4 *) 153 (item->spec))->hdr.next_proto_id; 154 if (ip_next_proto == IPPROTO_UDP) 155 ret = RTE_FLOW_ITEM_TYPE_UDP; 156 else if (ip_next_proto == IPPROTO_TCP) 157 ret = RTE_FLOW_ITEM_TYPE_TCP; 158 else if (ip_next_proto == IPPROTO_IP) 159 ret = RTE_FLOW_ITEM_TYPE_IPV4; 160 else if (ip_next_proto == IPPROTO_IPV6) 161 ret = RTE_FLOW_ITEM_TYPE_IPV6; 162 else 163 ret = RTE_FLOW_ITEM_TYPE_END; 164 break; 165 case RTE_FLOW_ITEM_TYPE_IPV6: 166 if (item->mask) 167 ip_next_proto_m = ((const struct rte_flow_item_ipv6 *) 168 (item->mask))->hdr.proto; 169 else 170 ip_next_proto_m = 171 rte_flow_item_ipv6_mask.hdr.proto; 172 if (ip_next_proto_m != 0xFF) 173 break; 174 ip_next_proto = ((const struct rte_flow_item_ipv6 *) 175 (item->spec))->hdr.proto; 176 if (ip_next_proto == IPPROTO_UDP) 177 ret = RTE_FLOW_ITEM_TYPE_UDP; 178 else if (ip_next_proto == IPPROTO_TCP) 179 ret = RTE_FLOW_ITEM_TYPE_TCP; 180 else if (ip_next_proto == IPPROTO_IP) 181 ret = RTE_FLOW_ITEM_TYPE_IPV4; 182 else if (ip_next_proto == IPPROTO_IPV6) 183 ret = RTE_FLOW_ITEM_TYPE_IPV6; 184 else 185 ret = RTE_FLOW_ITEM_TYPE_END; 186 break; 187 default: 188 ret = RTE_FLOW_ITEM_TYPE_VOID; 189 break; 190 } 191 return ret; 192 } 193 194 /** 195 * Expand RSS flows into several possible flows according to the RSS hash 196 * fields requested and the driver capabilities. 197 * 198 * @param[out] buf 199 * Buffer to store the result expansion. 200 * @param[in] size 201 * Buffer size in bytes. If 0, @p buf can be NULL. 202 * @param[in] pattern 203 * User flow pattern. 204 * @param[in] types 205 * RSS types to expand (see ETH_RSS_* definitions). 206 * @param[in] graph 207 * Input graph to expand @p pattern according to @p types. 208 * @param[in] graph_root_index 209 * Index of root node in @p graph, typically 0. 210 * 211 * @return 212 * A positive value representing the size of @p buf in bytes regardless of 213 * @p size on success, a negative errno value otherwise and rte_errno is 214 * set, the following errors are defined: 215 * 216 * -E2BIG: graph-depth @p graph is too deep. 217 */ 218 static int 219 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size, 220 const struct rte_flow_item *pattern, uint64_t types, 221 const struct mlx5_flow_expand_node graph[], 222 int graph_root_index) 223 { 224 const int elt_n = 8; 225 const struct rte_flow_item *item; 226 const struct mlx5_flow_expand_node *node = &graph[graph_root_index]; 227 const int *next_node; 228 const int *stack[elt_n]; 229 int stack_pos = 0; 230 struct rte_flow_item flow_items[elt_n]; 231 unsigned int i; 232 size_t lsize; 233 size_t user_pattern_size = 0; 234 void *addr = NULL; 235 const struct mlx5_flow_expand_node *next = NULL; 236 struct rte_flow_item missed_item; 237 int missed = 0; 238 int elt = 0; 239 const struct rte_flow_item *last_item = NULL; 240 241 memset(&missed_item, 0, sizeof(missed_item)); 242 lsize = offsetof(struct mlx5_flow_expand_rss, entry) + 243 elt_n * sizeof(buf->entry[0]); 244 if (lsize <= size) { 245 buf->entry[0].priority = 0; 246 buf->entry[0].pattern = (void *)&buf->entry[elt_n]; 247 buf->entries = 0; 248 addr = buf->entry[0].pattern; 249 } 250 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 251 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 252 last_item = item; 253 for (i = 0; node->next && node->next[i]; ++i) { 254 next = &graph[node->next[i]]; 255 if (next->type == item->type) 256 break; 257 } 258 if (next) 259 node = next; 260 user_pattern_size += sizeof(*item); 261 } 262 user_pattern_size += sizeof(*item); /* Handle END item. */ 263 lsize += user_pattern_size; 264 /* Copy the user pattern in the first entry of the buffer. */ 265 if (lsize <= size) { 266 rte_memcpy(addr, pattern, user_pattern_size); 267 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 268 buf->entries = 1; 269 } 270 /* Start expanding. */ 271 memset(flow_items, 0, sizeof(flow_items)); 272 user_pattern_size -= sizeof(*item); 273 /* 274 * Check if the last valid item has spec set, need complete pattern, 275 * and the pattern can be used for expansion. 276 */ 277 missed_item.type = mlx5_flow_expand_rss_item_complete(last_item); 278 if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) { 279 /* Item type END indicates expansion is not required. */ 280 return lsize; 281 } 282 if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) { 283 next = NULL; 284 missed = 1; 285 for (i = 0; node->next && node->next[i]; ++i) { 286 next = &graph[node->next[i]]; 287 if (next->type == missed_item.type) { 288 flow_items[0].type = missed_item.type; 289 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 290 break; 291 } 292 next = NULL; 293 } 294 } 295 if (next && missed) { 296 elt = 2; /* missed item + item end. */ 297 node = next; 298 lsize += elt * sizeof(*item) + user_pattern_size; 299 if ((node->rss_types & types) && lsize <= size) { 300 buf->entry[buf->entries].priority = 1; 301 buf->entry[buf->entries].pattern = addr; 302 buf->entries++; 303 rte_memcpy(addr, buf->entry[0].pattern, 304 user_pattern_size); 305 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 306 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 307 addr = (void *)(((uintptr_t)addr) + 308 elt * sizeof(*item)); 309 } 310 } 311 memset(flow_items, 0, sizeof(flow_items)); 312 next_node = node->next; 313 stack[stack_pos] = next_node; 314 node = next_node ? &graph[*next_node] : NULL; 315 while (node) { 316 flow_items[stack_pos].type = node->type; 317 if (node->rss_types & types) { 318 /* 319 * compute the number of items to copy from the 320 * expansion and copy it. 321 * When the stack_pos is 0, there are 1 element in it, 322 * plus the addition END item. 323 */ 324 elt = stack_pos + 2; 325 flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END; 326 lsize += elt * sizeof(*item) + user_pattern_size; 327 if (lsize <= size) { 328 size_t n = elt * sizeof(*item); 329 330 buf->entry[buf->entries].priority = 331 stack_pos + 1 + missed; 332 buf->entry[buf->entries].pattern = addr; 333 buf->entries++; 334 rte_memcpy(addr, buf->entry[0].pattern, 335 user_pattern_size); 336 addr = (void *)(((uintptr_t)addr) + 337 user_pattern_size); 338 rte_memcpy(addr, &missed_item, 339 missed * sizeof(*item)); 340 addr = (void *)(((uintptr_t)addr) + 341 missed * sizeof(*item)); 342 rte_memcpy(addr, flow_items, n); 343 addr = (void *)(((uintptr_t)addr) + n); 344 } 345 } 346 /* Go deeper. */ 347 if (node->next) { 348 next_node = node->next; 349 if (stack_pos++ == elt_n) { 350 rte_errno = E2BIG; 351 return -rte_errno; 352 } 353 stack[stack_pos] = next_node; 354 } else if (*(next_node + 1)) { 355 /* Follow up with the next possibility. */ 356 ++next_node; 357 } else { 358 /* Move to the next path. */ 359 if (stack_pos) 360 next_node = stack[--stack_pos]; 361 next_node++; 362 stack[stack_pos] = next_node; 363 } 364 node = *next_node ? &graph[*next_node] : NULL; 365 }; 366 /* no expanded flows but we have missed item, create one rule for it */ 367 if (buf->entries == 1 && missed != 0) { 368 elt = 2; 369 lsize += elt * sizeof(*item) + user_pattern_size; 370 if (lsize <= size) { 371 buf->entry[buf->entries].priority = 1; 372 buf->entry[buf->entries].pattern = addr; 373 buf->entries++; 374 flow_items[0].type = missed_item.type; 375 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 376 rte_memcpy(addr, buf->entry[0].pattern, 377 user_pattern_size); 378 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 379 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 380 addr = (void *)(((uintptr_t)addr) + 381 elt * sizeof(*item)); 382 } 383 } 384 return lsize; 385 } 386 387 enum mlx5_expansion { 388 MLX5_EXPANSION_ROOT, 389 MLX5_EXPANSION_ROOT_OUTER, 390 MLX5_EXPANSION_ROOT_ETH_VLAN, 391 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 392 MLX5_EXPANSION_OUTER_ETH, 393 MLX5_EXPANSION_OUTER_ETH_VLAN, 394 MLX5_EXPANSION_OUTER_VLAN, 395 MLX5_EXPANSION_OUTER_IPV4, 396 MLX5_EXPANSION_OUTER_IPV4_UDP, 397 MLX5_EXPANSION_OUTER_IPV4_TCP, 398 MLX5_EXPANSION_OUTER_IPV6, 399 MLX5_EXPANSION_OUTER_IPV6_UDP, 400 MLX5_EXPANSION_OUTER_IPV6_TCP, 401 MLX5_EXPANSION_VXLAN, 402 MLX5_EXPANSION_VXLAN_GPE, 403 MLX5_EXPANSION_GRE, 404 MLX5_EXPANSION_MPLS, 405 MLX5_EXPANSION_ETH, 406 MLX5_EXPANSION_ETH_VLAN, 407 MLX5_EXPANSION_VLAN, 408 MLX5_EXPANSION_IPV4, 409 MLX5_EXPANSION_IPV4_UDP, 410 MLX5_EXPANSION_IPV4_TCP, 411 MLX5_EXPANSION_IPV6, 412 MLX5_EXPANSION_IPV6_UDP, 413 MLX5_EXPANSION_IPV6_TCP, 414 }; 415 416 /** Supported expansion of items. */ 417 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = { 418 [MLX5_EXPANSION_ROOT] = { 419 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 420 MLX5_EXPANSION_IPV4, 421 MLX5_EXPANSION_IPV6), 422 .type = RTE_FLOW_ITEM_TYPE_END, 423 }, 424 [MLX5_EXPANSION_ROOT_OUTER] = { 425 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 426 MLX5_EXPANSION_OUTER_IPV4, 427 MLX5_EXPANSION_OUTER_IPV6), 428 .type = RTE_FLOW_ITEM_TYPE_END, 429 }, 430 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 431 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 432 .type = RTE_FLOW_ITEM_TYPE_END, 433 }, 434 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 435 .next = MLX5_FLOW_EXPAND_RSS_NEXT 436 (MLX5_EXPANSION_OUTER_ETH_VLAN), 437 .type = RTE_FLOW_ITEM_TYPE_END, 438 }, 439 [MLX5_EXPANSION_OUTER_ETH] = { 440 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 441 MLX5_EXPANSION_OUTER_IPV6, 442 MLX5_EXPANSION_MPLS), 443 .type = RTE_FLOW_ITEM_TYPE_ETH, 444 .rss_types = 0, 445 }, 446 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 447 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 448 .type = RTE_FLOW_ITEM_TYPE_ETH, 449 .rss_types = 0, 450 }, 451 [MLX5_EXPANSION_OUTER_VLAN] = { 452 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 453 MLX5_EXPANSION_OUTER_IPV6), 454 .type = RTE_FLOW_ITEM_TYPE_VLAN, 455 }, 456 [MLX5_EXPANSION_OUTER_IPV4] = { 457 .next = MLX5_FLOW_EXPAND_RSS_NEXT 458 (MLX5_EXPANSION_OUTER_IPV4_UDP, 459 MLX5_EXPANSION_OUTER_IPV4_TCP, 460 MLX5_EXPANSION_GRE, 461 MLX5_EXPANSION_IPV4, 462 MLX5_EXPANSION_IPV6), 463 .type = RTE_FLOW_ITEM_TYPE_IPV4, 464 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 465 ETH_RSS_NONFRAG_IPV4_OTHER, 466 }, 467 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 468 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 469 MLX5_EXPANSION_VXLAN_GPE), 470 .type = RTE_FLOW_ITEM_TYPE_UDP, 471 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 472 }, 473 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 474 .type = RTE_FLOW_ITEM_TYPE_TCP, 475 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 476 }, 477 [MLX5_EXPANSION_OUTER_IPV6] = { 478 .next = MLX5_FLOW_EXPAND_RSS_NEXT 479 (MLX5_EXPANSION_OUTER_IPV6_UDP, 480 MLX5_EXPANSION_OUTER_IPV6_TCP, 481 MLX5_EXPANSION_IPV4, 482 MLX5_EXPANSION_IPV6), 483 .type = RTE_FLOW_ITEM_TYPE_IPV6, 484 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 485 ETH_RSS_NONFRAG_IPV6_OTHER, 486 }, 487 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 488 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 489 MLX5_EXPANSION_VXLAN_GPE), 490 .type = RTE_FLOW_ITEM_TYPE_UDP, 491 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 492 }, 493 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 494 .type = RTE_FLOW_ITEM_TYPE_TCP, 495 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 496 }, 497 [MLX5_EXPANSION_VXLAN] = { 498 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 499 MLX5_EXPANSION_IPV4, 500 MLX5_EXPANSION_IPV6), 501 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 502 }, 503 [MLX5_EXPANSION_VXLAN_GPE] = { 504 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 505 MLX5_EXPANSION_IPV4, 506 MLX5_EXPANSION_IPV6), 507 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 508 }, 509 [MLX5_EXPANSION_GRE] = { 510 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 511 .type = RTE_FLOW_ITEM_TYPE_GRE, 512 }, 513 [MLX5_EXPANSION_MPLS] = { 514 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 515 MLX5_EXPANSION_IPV6), 516 .type = RTE_FLOW_ITEM_TYPE_MPLS, 517 }, 518 [MLX5_EXPANSION_ETH] = { 519 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 520 MLX5_EXPANSION_IPV6), 521 .type = RTE_FLOW_ITEM_TYPE_ETH, 522 }, 523 [MLX5_EXPANSION_ETH_VLAN] = { 524 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 525 .type = RTE_FLOW_ITEM_TYPE_ETH, 526 }, 527 [MLX5_EXPANSION_VLAN] = { 528 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 529 MLX5_EXPANSION_IPV6), 530 .type = RTE_FLOW_ITEM_TYPE_VLAN, 531 }, 532 [MLX5_EXPANSION_IPV4] = { 533 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 534 MLX5_EXPANSION_IPV4_TCP), 535 .type = RTE_FLOW_ITEM_TYPE_IPV4, 536 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 537 ETH_RSS_NONFRAG_IPV4_OTHER, 538 }, 539 [MLX5_EXPANSION_IPV4_UDP] = { 540 .type = RTE_FLOW_ITEM_TYPE_UDP, 541 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 542 }, 543 [MLX5_EXPANSION_IPV4_TCP] = { 544 .type = RTE_FLOW_ITEM_TYPE_TCP, 545 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 546 }, 547 [MLX5_EXPANSION_IPV6] = { 548 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 549 MLX5_EXPANSION_IPV6_TCP), 550 .type = RTE_FLOW_ITEM_TYPE_IPV6, 551 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 552 ETH_RSS_NONFRAG_IPV6_OTHER, 553 }, 554 [MLX5_EXPANSION_IPV6_UDP] = { 555 .type = RTE_FLOW_ITEM_TYPE_UDP, 556 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 557 }, 558 [MLX5_EXPANSION_IPV6_TCP] = { 559 .type = RTE_FLOW_ITEM_TYPE_TCP, 560 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 561 }, 562 }; 563 564 static struct rte_flow_shared_action * 565 mlx5_shared_action_create(struct rte_eth_dev *dev, 566 const struct rte_flow_shared_action_conf *conf, 567 const struct rte_flow_action *action, 568 struct rte_flow_error *error); 569 static int mlx5_shared_action_destroy 570 (struct rte_eth_dev *dev, 571 struct rte_flow_shared_action *shared_action, 572 struct rte_flow_error *error); 573 static int mlx5_shared_action_update 574 (struct rte_eth_dev *dev, 575 struct rte_flow_shared_action *shared_action, 576 const struct rte_flow_action *action, 577 struct rte_flow_error *error); 578 static int mlx5_shared_action_query 579 (struct rte_eth_dev *dev, 580 const struct rte_flow_shared_action *action, 581 void *data, 582 struct rte_flow_error *error); 583 static inline bool 584 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev, 585 struct rte_flow_tunnel *tunnel, 586 const char *err_msg) 587 { 588 err_msg = NULL; 589 if (!is_tunnel_offload_active(dev)) { 590 err_msg = "tunnel offload was not activated"; 591 goto out; 592 } else if (!tunnel) { 593 err_msg = "no application tunnel"; 594 goto out; 595 } 596 597 switch (tunnel->type) { 598 default: 599 err_msg = "unsupported tunnel type"; 600 goto out; 601 case RTE_FLOW_ITEM_TYPE_VXLAN: 602 break; 603 } 604 605 out: 606 return !err_msg; 607 } 608 609 610 static int 611 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 612 struct rte_flow_tunnel *app_tunnel, 613 struct rte_flow_action **actions, 614 uint32_t *num_of_actions, 615 struct rte_flow_error *error) 616 { 617 int ret; 618 struct mlx5_flow_tunnel *tunnel; 619 const char *err_msg = NULL; 620 bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg); 621 622 if (!verdict) 623 return rte_flow_error_set(error, EINVAL, 624 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 625 err_msg); 626 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 627 if (ret < 0) { 628 return rte_flow_error_set(error, ret, 629 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 630 "failed to initialize pmd tunnel"); 631 } 632 *actions = &tunnel->action; 633 *num_of_actions = 1; 634 return 0; 635 } 636 637 static int 638 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 639 struct rte_flow_tunnel *app_tunnel, 640 struct rte_flow_item **items, 641 uint32_t *num_of_items, 642 struct rte_flow_error *error) 643 { 644 int ret; 645 struct mlx5_flow_tunnel *tunnel; 646 const char *err_msg = NULL; 647 bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg); 648 649 if (!verdict) 650 return rte_flow_error_set(error, EINVAL, 651 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 652 err_msg); 653 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 654 if (ret < 0) { 655 return rte_flow_error_set(error, ret, 656 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 657 "failed to initialize pmd tunnel"); 658 } 659 *items = &tunnel->item; 660 *num_of_items = 1; 661 return 0; 662 } 663 664 static int 665 mlx5_flow_item_release(struct rte_eth_dev *dev, 666 struct rte_flow_item *pmd_items, 667 uint32_t num_items, struct rte_flow_error *err) 668 { 669 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 670 struct mlx5_flow_tunnel *tun; 671 672 LIST_FOREACH(tun, &thub->tunnels, chain) { 673 if (&tun->item == pmd_items) 674 break; 675 } 676 if (!tun || num_items != 1) 677 return rte_flow_error_set(err, EINVAL, 678 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 679 "invalid argument"); 680 if (!__atomic_sub_fetch(&tun->refctn, 1, __ATOMIC_RELAXED)) 681 mlx5_flow_tunnel_free(dev, tun); 682 return 0; 683 } 684 685 static int 686 mlx5_flow_action_release(struct rte_eth_dev *dev, 687 struct rte_flow_action *pmd_actions, 688 uint32_t num_actions, struct rte_flow_error *err) 689 { 690 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 691 struct mlx5_flow_tunnel *tun; 692 693 LIST_FOREACH(tun, &thub->tunnels, chain) { 694 if (&tun->action == pmd_actions) 695 break; 696 } 697 if (!tun || num_actions != 1) 698 return rte_flow_error_set(err, EINVAL, 699 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 700 "invalid argument"); 701 if (!__atomic_sub_fetch(&tun->refctn, 1, __ATOMIC_RELAXED)) 702 mlx5_flow_tunnel_free(dev, tun); 703 704 return 0; 705 } 706 707 static int 708 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 709 struct rte_mbuf *m, 710 struct rte_flow_restore_info *info, 711 struct rte_flow_error *err) 712 { 713 uint64_t ol_flags = m->ol_flags; 714 const struct mlx5_flow_tbl_data_entry *tble; 715 const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID; 716 717 if ((ol_flags & mask) != mask) 718 goto err; 719 tble = tunnel_mark_decode(dev, m->hash.fdir.hi); 720 if (!tble) { 721 DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x", 722 dev->data->port_id, m->hash.fdir.hi); 723 goto err; 724 } 725 MLX5_ASSERT(tble->tunnel); 726 memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel)); 727 info->group_id = tble->group_id; 728 info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL | 729 RTE_FLOW_RESTORE_INFO_GROUP_ID | 730 RTE_FLOW_RESTORE_INFO_ENCAPSULATED; 731 732 return 0; 733 734 err: 735 return rte_flow_error_set(err, EINVAL, 736 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 737 "failed to get restore info"); 738 } 739 740 static const struct rte_flow_ops mlx5_flow_ops = { 741 .validate = mlx5_flow_validate, 742 .create = mlx5_flow_create, 743 .destroy = mlx5_flow_destroy, 744 .flush = mlx5_flow_flush, 745 .isolate = mlx5_flow_isolate, 746 .query = mlx5_flow_query, 747 .dev_dump = mlx5_flow_dev_dump, 748 .get_aged_flows = mlx5_flow_get_aged_flows, 749 .shared_action_create = mlx5_shared_action_create, 750 .shared_action_destroy = mlx5_shared_action_destroy, 751 .shared_action_update = mlx5_shared_action_update, 752 .shared_action_query = mlx5_shared_action_query, 753 .tunnel_decap_set = mlx5_flow_tunnel_decap_set, 754 .tunnel_match = mlx5_flow_tunnel_match, 755 .tunnel_action_decap_release = mlx5_flow_action_release, 756 .tunnel_item_release = mlx5_flow_item_release, 757 .get_restore_info = mlx5_flow_tunnel_get_restore_info, 758 }; 759 760 /* Convert FDIR request to Generic flow. */ 761 struct mlx5_fdir { 762 struct rte_flow_attr attr; 763 struct rte_flow_item items[4]; 764 struct rte_flow_item_eth l2; 765 struct rte_flow_item_eth l2_mask; 766 union { 767 struct rte_flow_item_ipv4 ipv4; 768 struct rte_flow_item_ipv6 ipv6; 769 } l3; 770 union { 771 struct rte_flow_item_ipv4 ipv4; 772 struct rte_flow_item_ipv6 ipv6; 773 } l3_mask; 774 union { 775 struct rte_flow_item_udp udp; 776 struct rte_flow_item_tcp tcp; 777 } l4; 778 union { 779 struct rte_flow_item_udp udp; 780 struct rte_flow_item_tcp tcp; 781 } l4_mask; 782 struct rte_flow_action actions[2]; 783 struct rte_flow_action_queue queue; 784 }; 785 786 /* Tunnel information. */ 787 struct mlx5_flow_tunnel_info { 788 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 789 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 790 }; 791 792 static struct mlx5_flow_tunnel_info tunnels_info[] = { 793 { 794 .tunnel = MLX5_FLOW_LAYER_VXLAN, 795 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 796 }, 797 { 798 .tunnel = MLX5_FLOW_LAYER_GENEVE, 799 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP, 800 }, 801 { 802 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 803 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 804 }, 805 { 806 .tunnel = MLX5_FLOW_LAYER_GRE, 807 .ptype = RTE_PTYPE_TUNNEL_GRE, 808 }, 809 { 810 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 811 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 812 }, 813 { 814 .tunnel = MLX5_FLOW_LAYER_MPLS, 815 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 816 }, 817 { 818 .tunnel = MLX5_FLOW_LAYER_NVGRE, 819 .ptype = RTE_PTYPE_TUNNEL_NVGRE, 820 }, 821 { 822 .tunnel = MLX5_FLOW_LAYER_IPIP, 823 .ptype = RTE_PTYPE_TUNNEL_IP, 824 }, 825 { 826 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP, 827 .ptype = RTE_PTYPE_TUNNEL_IP, 828 }, 829 { 830 .tunnel = MLX5_FLOW_LAYER_GTP, 831 .ptype = RTE_PTYPE_TUNNEL_GTPU, 832 }, 833 }; 834 835 /* Key of thread specific flow workspace data. */ 836 static pthread_key_t key_workspace; 837 838 /* Thread specific flow workspace data once initialization data. */ 839 static pthread_once_t key_workspace_init; 840 841 842 /** 843 * Translate tag ID to register. 844 * 845 * @param[in] dev 846 * Pointer to the Ethernet device structure. 847 * @param[in] feature 848 * The feature that request the register. 849 * @param[in] id 850 * The request register ID. 851 * @param[out] error 852 * Error description in case of any. 853 * 854 * @return 855 * The request register on success, a negative errno 856 * value otherwise and rte_errno is set. 857 */ 858 int 859 mlx5_flow_get_reg_id(struct rte_eth_dev *dev, 860 enum mlx5_feature_name feature, 861 uint32_t id, 862 struct rte_flow_error *error) 863 { 864 struct mlx5_priv *priv = dev->data->dev_private; 865 struct mlx5_dev_config *config = &priv->config; 866 enum modify_reg start_reg; 867 bool skip_mtr_reg = false; 868 869 switch (feature) { 870 case MLX5_HAIRPIN_RX: 871 return REG_B; 872 case MLX5_HAIRPIN_TX: 873 return REG_A; 874 case MLX5_METADATA_RX: 875 switch (config->dv_xmeta_en) { 876 case MLX5_XMETA_MODE_LEGACY: 877 return REG_B; 878 case MLX5_XMETA_MODE_META16: 879 return REG_C_0; 880 case MLX5_XMETA_MODE_META32: 881 return REG_C_1; 882 } 883 break; 884 case MLX5_METADATA_TX: 885 return REG_A; 886 case MLX5_METADATA_FDB: 887 switch (config->dv_xmeta_en) { 888 case MLX5_XMETA_MODE_LEGACY: 889 return REG_NON; 890 case MLX5_XMETA_MODE_META16: 891 return REG_C_0; 892 case MLX5_XMETA_MODE_META32: 893 return REG_C_1; 894 } 895 break; 896 case MLX5_FLOW_MARK: 897 switch (config->dv_xmeta_en) { 898 case MLX5_XMETA_MODE_LEGACY: 899 return REG_NON; 900 case MLX5_XMETA_MODE_META16: 901 return REG_C_1; 902 case MLX5_XMETA_MODE_META32: 903 return REG_C_0; 904 } 905 break; 906 case MLX5_MTR_SFX: 907 /* 908 * If meter color and flow match share one register, flow match 909 * should use the meter color register for match. 910 */ 911 if (priv->mtr_reg_share) 912 return priv->mtr_color_reg; 913 else 914 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 915 REG_C_3; 916 case MLX5_MTR_COLOR: 917 MLX5_ASSERT(priv->mtr_color_reg != REG_NON); 918 return priv->mtr_color_reg; 919 case MLX5_COPY_MARK: 920 /* 921 * Metadata COPY_MARK register using is in meter suffix sub 922 * flow while with meter. It's safe to share the same register. 923 */ 924 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3; 925 case MLX5_APP_TAG: 926 /* 927 * If meter is enable, it will engage the register for color 928 * match and flow match. If meter color match is not using the 929 * REG_C_2, need to skip the REG_C_x be used by meter color 930 * match. 931 * If meter is disable, free to use all available registers. 932 */ 933 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 934 (priv->mtr_reg_share ? REG_C_3 : REG_C_4); 935 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2); 936 if (id > (REG_C_7 - start_reg)) 937 return rte_flow_error_set(error, EINVAL, 938 RTE_FLOW_ERROR_TYPE_ITEM, 939 NULL, "invalid tag id"); 940 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON) 941 return rte_flow_error_set(error, ENOTSUP, 942 RTE_FLOW_ERROR_TYPE_ITEM, 943 NULL, "unsupported tag id"); 944 /* 945 * This case means meter is using the REG_C_x great than 2. 946 * Take care not to conflict with meter color REG_C_x. 947 * If the available index REG_C_y >= REG_C_x, skip the 948 * color register. 949 */ 950 if (skip_mtr_reg && config->flow_mreg_c 951 [id + start_reg - REG_C_0] >= priv->mtr_color_reg) { 952 if (id >= (REG_C_7 - start_reg)) 953 return rte_flow_error_set(error, EINVAL, 954 RTE_FLOW_ERROR_TYPE_ITEM, 955 NULL, "invalid tag id"); 956 if (config->flow_mreg_c 957 [id + 1 + start_reg - REG_C_0] != REG_NON) 958 return config->flow_mreg_c 959 [id + 1 + start_reg - REG_C_0]; 960 return rte_flow_error_set(error, ENOTSUP, 961 RTE_FLOW_ERROR_TYPE_ITEM, 962 NULL, "unsupported tag id"); 963 } 964 return config->flow_mreg_c[id + start_reg - REG_C_0]; 965 } 966 MLX5_ASSERT(false); 967 return rte_flow_error_set(error, EINVAL, 968 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 969 NULL, "invalid feature name"); 970 } 971 972 /** 973 * Check extensive flow metadata register support. 974 * 975 * @param dev 976 * Pointer to rte_eth_dev structure. 977 * 978 * @return 979 * True if device supports extensive flow metadata register, otherwise false. 980 */ 981 bool 982 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev) 983 { 984 struct mlx5_priv *priv = dev->data->dev_private; 985 struct mlx5_dev_config *config = &priv->config; 986 987 /* 988 * Having available reg_c can be regarded inclusively as supporting 989 * extensive flow metadata register, which could mean, 990 * - metadata register copy action by modify header. 991 * - 16 modify header actions is supported. 992 * - reg_c's are preserved across different domain (FDB and NIC) on 993 * packet loopback by flow lookup miss. 994 */ 995 return config->flow_mreg_c[2] != REG_NON; 996 } 997 998 /** 999 * Verify the @p item specifications (spec, last, mask) are compatible with the 1000 * NIC capabilities. 1001 * 1002 * @param[in] item 1003 * Item specification. 1004 * @param[in] mask 1005 * @p item->mask or flow default bit-masks. 1006 * @param[in] nic_mask 1007 * Bit-masks covering supported fields by the NIC to compare with user mask. 1008 * @param[in] size 1009 * Bit-masks size in bytes. 1010 * @param[in] range_accepted 1011 * True if range of values is accepted for specific fields, false otherwise. 1012 * @param[out] error 1013 * Pointer to error structure. 1014 * 1015 * @return 1016 * 0 on success, a negative errno value otherwise and rte_errno is set. 1017 */ 1018 int 1019 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 1020 const uint8_t *mask, 1021 const uint8_t *nic_mask, 1022 unsigned int size, 1023 bool range_accepted, 1024 struct rte_flow_error *error) 1025 { 1026 unsigned int i; 1027 1028 MLX5_ASSERT(nic_mask); 1029 for (i = 0; i < size; ++i) 1030 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 1031 return rte_flow_error_set(error, ENOTSUP, 1032 RTE_FLOW_ERROR_TYPE_ITEM, 1033 item, 1034 "mask enables non supported" 1035 " bits"); 1036 if (!item->spec && (item->mask || item->last)) 1037 return rte_flow_error_set(error, EINVAL, 1038 RTE_FLOW_ERROR_TYPE_ITEM, item, 1039 "mask/last without a spec is not" 1040 " supported"); 1041 if (item->spec && item->last && !range_accepted) { 1042 uint8_t spec[size]; 1043 uint8_t last[size]; 1044 unsigned int i; 1045 int ret; 1046 1047 for (i = 0; i < size; ++i) { 1048 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 1049 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 1050 } 1051 ret = memcmp(spec, last, size); 1052 if (ret != 0) 1053 return rte_flow_error_set(error, EINVAL, 1054 RTE_FLOW_ERROR_TYPE_ITEM, 1055 item, 1056 "range is not valid"); 1057 } 1058 return 0; 1059 } 1060 1061 /** 1062 * Adjust the hash fields according to the @p flow information. 1063 * 1064 * @param[in] dev_flow. 1065 * Pointer to the mlx5_flow. 1066 * @param[in] tunnel 1067 * 1 when the hash field is for a tunnel item. 1068 * @param[in] layer_types 1069 * ETH_RSS_* types. 1070 * @param[in] hash_fields 1071 * Item hash fields. 1072 * 1073 * @return 1074 * The hash fields that should be used. 1075 */ 1076 uint64_t 1077 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc, 1078 int tunnel __rte_unused, uint64_t layer_types, 1079 uint64_t hash_fields) 1080 { 1081 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 1082 int rss_request_inner = rss_desc->level >= 2; 1083 1084 /* Check RSS hash level for tunnel. */ 1085 if (tunnel && rss_request_inner) 1086 hash_fields |= IBV_RX_HASH_INNER; 1087 else if (tunnel || rss_request_inner) 1088 return 0; 1089 #endif 1090 /* Check if requested layer matches RSS hash fields. */ 1091 if (!(rss_desc->types & layer_types)) 1092 return 0; 1093 return hash_fields; 1094 } 1095 1096 /** 1097 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 1098 * if several tunnel rules are used on this queue, the tunnel ptype will be 1099 * cleared. 1100 * 1101 * @param rxq_ctrl 1102 * Rx queue to update. 1103 */ 1104 static void 1105 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 1106 { 1107 unsigned int i; 1108 uint32_t tunnel_ptype = 0; 1109 1110 /* Look up for the ptype to use. */ 1111 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 1112 if (!rxq_ctrl->flow_tunnels_n[i]) 1113 continue; 1114 if (!tunnel_ptype) { 1115 tunnel_ptype = tunnels_info[i].ptype; 1116 } else { 1117 tunnel_ptype = 0; 1118 break; 1119 } 1120 } 1121 rxq_ctrl->rxq.tunnel = tunnel_ptype; 1122 } 1123 1124 /** 1125 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 1126 * flow. 1127 * 1128 * @param[in] dev 1129 * Pointer to the Ethernet device structure. 1130 * @param[in] dev_handle 1131 * Pointer to device flow handle structure. 1132 */ 1133 static void 1134 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, 1135 struct mlx5_flow_handle *dev_handle) 1136 { 1137 struct mlx5_priv *priv = dev->data->dev_private; 1138 const int mark = dev_handle->mark; 1139 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1140 struct mlx5_hrxq *hrxq; 1141 unsigned int i; 1142 1143 if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE) 1144 return; 1145 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1146 dev_handle->rix_hrxq); 1147 if (!hrxq) 1148 return; 1149 for (i = 0; i != hrxq->ind_table->queues_n; ++i) { 1150 int idx = hrxq->ind_table->queues[i]; 1151 struct mlx5_rxq_ctrl *rxq_ctrl = 1152 container_of((*priv->rxqs)[idx], 1153 struct mlx5_rxq_ctrl, rxq); 1154 1155 /* 1156 * To support metadata register copy on Tx loopback, 1157 * this must be always enabled (metadata may arive 1158 * from other port - not from local flows only. 1159 */ 1160 if (priv->config.dv_flow_en && 1161 priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 1162 mlx5_flow_ext_mreg_supported(dev)) { 1163 rxq_ctrl->rxq.mark = 1; 1164 rxq_ctrl->flow_mark_n = 1; 1165 } else if (mark) { 1166 rxq_ctrl->rxq.mark = 1; 1167 rxq_ctrl->flow_mark_n++; 1168 } 1169 if (tunnel) { 1170 unsigned int j; 1171 1172 /* Increase the counter matching the flow. */ 1173 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1174 if ((tunnels_info[j].tunnel & 1175 dev_handle->layers) == 1176 tunnels_info[j].tunnel) { 1177 rxq_ctrl->flow_tunnels_n[j]++; 1178 break; 1179 } 1180 } 1181 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1182 } 1183 } 1184 } 1185 1186 /** 1187 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 1188 * 1189 * @param[in] dev 1190 * Pointer to the Ethernet device structure. 1191 * @param[in] flow 1192 * Pointer to flow structure. 1193 */ 1194 static void 1195 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 1196 { 1197 struct mlx5_priv *priv = dev->data->dev_private; 1198 uint32_t handle_idx; 1199 struct mlx5_flow_handle *dev_handle; 1200 1201 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1202 handle_idx, dev_handle, next) 1203 flow_drv_rxq_flags_set(dev, dev_handle); 1204 } 1205 1206 /** 1207 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1208 * device flow if no other flow uses it with the same kind of request. 1209 * 1210 * @param dev 1211 * Pointer to Ethernet device. 1212 * @param[in] dev_handle 1213 * Pointer to the device flow handle structure. 1214 */ 1215 static void 1216 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, 1217 struct mlx5_flow_handle *dev_handle) 1218 { 1219 struct mlx5_priv *priv = dev->data->dev_private; 1220 const int mark = dev_handle->mark; 1221 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1222 struct mlx5_hrxq *hrxq; 1223 unsigned int i; 1224 1225 if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE) 1226 return; 1227 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1228 dev_handle->rix_hrxq); 1229 if (!hrxq) 1230 return; 1231 MLX5_ASSERT(dev->data->dev_started); 1232 for (i = 0; i != hrxq->ind_table->queues_n; ++i) { 1233 int idx = hrxq->ind_table->queues[i]; 1234 struct mlx5_rxq_ctrl *rxq_ctrl = 1235 container_of((*priv->rxqs)[idx], 1236 struct mlx5_rxq_ctrl, rxq); 1237 1238 if (priv->config.dv_flow_en && 1239 priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 1240 mlx5_flow_ext_mreg_supported(dev)) { 1241 rxq_ctrl->rxq.mark = 1; 1242 rxq_ctrl->flow_mark_n = 1; 1243 } else if (mark) { 1244 rxq_ctrl->flow_mark_n--; 1245 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 1246 } 1247 if (tunnel) { 1248 unsigned int j; 1249 1250 /* Decrease the counter matching the flow. */ 1251 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1252 if ((tunnels_info[j].tunnel & 1253 dev_handle->layers) == 1254 tunnels_info[j].tunnel) { 1255 rxq_ctrl->flow_tunnels_n[j]--; 1256 break; 1257 } 1258 } 1259 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1260 } 1261 } 1262 } 1263 1264 /** 1265 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1266 * @p flow if no other flow uses it with the same kind of request. 1267 * 1268 * @param dev 1269 * Pointer to Ethernet device. 1270 * @param[in] flow 1271 * Pointer to the flow. 1272 */ 1273 static void 1274 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 1275 { 1276 struct mlx5_priv *priv = dev->data->dev_private; 1277 uint32_t handle_idx; 1278 struct mlx5_flow_handle *dev_handle; 1279 1280 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1281 handle_idx, dev_handle, next) 1282 flow_drv_rxq_flags_trim(dev, dev_handle); 1283 } 1284 1285 /** 1286 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 1287 * 1288 * @param dev 1289 * Pointer to Ethernet device. 1290 */ 1291 static void 1292 flow_rxq_flags_clear(struct rte_eth_dev *dev) 1293 { 1294 struct mlx5_priv *priv = dev->data->dev_private; 1295 unsigned int i; 1296 1297 for (i = 0; i != priv->rxqs_n; ++i) { 1298 struct mlx5_rxq_ctrl *rxq_ctrl; 1299 unsigned int j; 1300 1301 if (!(*priv->rxqs)[i]) 1302 continue; 1303 rxq_ctrl = container_of((*priv->rxqs)[i], 1304 struct mlx5_rxq_ctrl, rxq); 1305 rxq_ctrl->flow_mark_n = 0; 1306 rxq_ctrl->rxq.mark = 0; 1307 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 1308 rxq_ctrl->flow_tunnels_n[j] = 0; 1309 rxq_ctrl->rxq.tunnel = 0; 1310 } 1311 } 1312 1313 /** 1314 * Set the Rx queue dynamic metadata (mask and offset) for a flow 1315 * 1316 * @param[in] dev 1317 * Pointer to the Ethernet device structure. 1318 */ 1319 void 1320 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev) 1321 { 1322 struct mlx5_priv *priv = dev->data->dev_private; 1323 struct mlx5_rxq_data *data; 1324 unsigned int i; 1325 1326 for (i = 0; i != priv->rxqs_n; ++i) { 1327 if (!(*priv->rxqs)[i]) 1328 continue; 1329 data = (*priv->rxqs)[i]; 1330 if (!rte_flow_dynf_metadata_avail()) { 1331 data->dynf_meta = 0; 1332 data->flow_meta_mask = 0; 1333 data->flow_meta_offset = -1; 1334 } else { 1335 data->dynf_meta = 1; 1336 data->flow_meta_mask = rte_flow_dynf_metadata_mask; 1337 data->flow_meta_offset = rte_flow_dynf_metadata_offs; 1338 } 1339 } 1340 } 1341 1342 /* 1343 * return a pointer to the desired action in the list of actions. 1344 * 1345 * @param[in] actions 1346 * The list of actions to search the action in. 1347 * @param[in] action 1348 * The action to find. 1349 * 1350 * @return 1351 * Pointer to the action in the list, if found. NULL otherwise. 1352 */ 1353 const struct rte_flow_action * 1354 mlx5_flow_find_action(const struct rte_flow_action *actions, 1355 enum rte_flow_action_type action) 1356 { 1357 if (actions == NULL) 1358 return NULL; 1359 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) 1360 if (actions->type == action) 1361 return actions; 1362 return NULL; 1363 } 1364 1365 /* 1366 * Validate the flag action. 1367 * 1368 * @param[in] action_flags 1369 * Bit-fields that holds the actions detected until now. 1370 * @param[in] attr 1371 * Attributes of flow that includes this action. 1372 * @param[out] error 1373 * Pointer to error structure. 1374 * 1375 * @return 1376 * 0 on success, a negative errno value otherwise and rte_errno is set. 1377 */ 1378 int 1379 mlx5_flow_validate_action_flag(uint64_t action_flags, 1380 const struct rte_flow_attr *attr, 1381 struct rte_flow_error *error) 1382 { 1383 if (action_flags & MLX5_FLOW_ACTION_MARK) 1384 return rte_flow_error_set(error, EINVAL, 1385 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1386 "can't mark and flag in same flow"); 1387 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1388 return rte_flow_error_set(error, EINVAL, 1389 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1390 "can't have 2 flag" 1391 " actions in same flow"); 1392 if (attr->egress) 1393 return rte_flow_error_set(error, ENOTSUP, 1394 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1395 "flag action not supported for " 1396 "egress"); 1397 return 0; 1398 } 1399 1400 /* 1401 * Validate the mark action. 1402 * 1403 * @param[in] action 1404 * Pointer to the queue action. 1405 * @param[in] action_flags 1406 * Bit-fields that holds the actions detected until now. 1407 * @param[in] attr 1408 * Attributes of flow that includes this action. 1409 * @param[out] error 1410 * Pointer to error structure. 1411 * 1412 * @return 1413 * 0 on success, a negative errno value otherwise and rte_errno is set. 1414 */ 1415 int 1416 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 1417 uint64_t action_flags, 1418 const struct rte_flow_attr *attr, 1419 struct rte_flow_error *error) 1420 { 1421 const struct rte_flow_action_mark *mark = action->conf; 1422 1423 if (!mark) 1424 return rte_flow_error_set(error, EINVAL, 1425 RTE_FLOW_ERROR_TYPE_ACTION, 1426 action, 1427 "configuration cannot be null"); 1428 if (mark->id >= MLX5_FLOW_MARK_MAX) 1429 return rte_flow_error_set(error, EINVAL, 1430 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1431 &mark->id, 1432 "mark id must in 0 <= id < " 1433 RTE_STR(MLX5_FLOW_MARK_MAX)); 1434 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1435 return rte_flow_error_set(error, EINVAL, 1436 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1437 "can't flag and mark in same flow"); 1438 if (action_flags & MLX5_FLOW_ACTION_MARK) 1439 return rte_flow_error_set(error, EINVAL, 1440 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1441 "can't have 2 mark actions in same" 1442 " flow"); 1443 if (attr->egress) 1444 return rte_flow_error_set(error, ENOTSUP, 1445 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1446 "mark action not supported for " 1447 "egress"); 1448 return 0; 1449 } 1450 1451 /* 1452 * Validate the drop action. 1453 * 1454 * @param[in] action_flags 1455 * Bit-fields that holds the actions detected until now. 1456 * @param[in] attr 1457 * Attributes of flow that includes this action. 1458 * @param[out] error 1459 * Pointer to error structure. 1460 * 1461 * @return 1462 * 0 on success, a negative errno value otherwise and rte_errno is set. 1463 */ 1464 int 1465 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused, 1466 const struct rte_flow_attr *attr, 1467 struct rte_flow_error *error) 1468 { 1469 if (attr->egress) 1470 return rte_flow_error_set(error, ENOTSUP, 1471 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1472 "drop action not supported for " 1473 "egress"); 1474 return 0; 1475 } 1476 1477 /* 1478 * Validate the queue action. 1479 * 1480 * @param[in] action 1481 * Pointer to the queue action. 1482 * @param[in] action_flags 1483 * Bit-fields that holds the actions detected until now. 1484 * @param[in] dev 1485 * Pointer to the Ethernet device structure. 1486 * @param[in] attr 1487 * Attributes of flow that includes this action. 1488 * @param[out] error 1489 * Pointer to error structure. 1490 * 1491 * @return 1492 * 0 on success, a negative errno value otherwise and rte_errno is set. 1493 */ 1494 int 1495 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 1496 uint64_t action_flags, 1497 struct rte_eth_dev *dev, 1498 const struct rte_flow_attr *attr, 1499 struct rte_flow_error *error) 1500 { 1501 struct mlx5_priv *priv = dev->data->dev_private; 1502 const struct rte_flow_action_queue *queue = action->conf; 1503 1504 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1505 return rte_flow_error_set(error, EINVAL, 1506 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1507 "can't have 2 fate actions in" 1508 " same flow"); 1509 if (!priv->rxqs_n) 1510 return rte_flow_error_set(error, EINVAL, 1511 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1512 NULL, "No Rx queues configured"); 1513 if (queue->index >= priv->rxqs_n) 1514 return rte_flow_error_set(error, EINVAL, 1515 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1516 &queue->index, 1517 "queue index out of range"); 1518 if (!(*priv->rxqs)[queue->index]) 1519 return rte_flow_error_set(error, EINVAL, 1520 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1521 &queue->index, 1522 "queue is not configured"); 1523 if (attr->egress) 1524 return rte_flow_error_set(error, ENOTSUP, 1525 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1526 "queue action not supported for " 1527 "egress"); 1528 return 0; 1529 } 1530 1531 /* 1532 * Validate the rss action. 1533 * 1534 * @param[in] dev 1535 * Pointer to the Ethernet device structure. 1536 * @param[in] action 1537 * Pointer to the queue action. 1538 * @param[out] error 1539 * Pointer to error structure. 1540 * 1541 * @return 1542 * 0 on success, a negative errno value otherwise and rte_errno is set. 1543 */ 1544 int 1545 mlx5_validate_action_rss(struct rte_eth_dev *dev, 1546 const struct rte_flow_action *action, 1547 struct rte_flow_error *error) 1548 { 1549 struct mlx5_priv *priv = dev->data->dev_private; 1550 const struct rte_flow_action_rss *rss = action->conf; 1551 unsigned int i; 1552 1553 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 1554 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 1555 return rte_flow_error_set(error, ENOTSUP, 1556 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1557 &rss->func, 1558 "RSS hash function not supported"); 1559 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 1560 if (rss->level > 2) 1561 #else 1562 if (rss->level > 1) 1563 #endif 1564 return rte_flow_error_set(error, ENOTSUP, 1565 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1566 &rss->level, 1567 "tunnel RSS is not supported"); 1568 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 1569 if (rss->key_len == 0 && rss->key != NULL) 1570 return rte_flow_error_set(error, ENOTSUP, 1571 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1572 &rss->key_len, 1573 "RSS hash key length 0"); 1574 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 1575 return rte_flow_error_set(error, ENOTSUP, 1576 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1577 &rss->key_len, 1578 "RSS hash key too small"); 1579 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 1580 return rte_flow_error_set(error, ENOTSUP, 1581 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1582 &rss->key_len, 1583 "RSS hash key too large"); 1584 if (rss->queue_num > priv->config.ind_table_max_size) 1585 return rte_flow_error_set(error, ENOTSUP, 1586 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1587 &rss->queue_num, 1588 "number of queues too large"); 1589 if (rss->types & MLX5_RSS_HF_MASK) 1590 return rte_flow_error_set(error, ENOTSUP, 1591 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1592 &rss->types, 1593 "some RSS protocols are not" 1594 " supported"); 1595 if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) && 1596 !(rss->types & ETH_RSS_IP)) 1597 return rte_flow_error_set(error, EINVAL, 1598 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1599 "L3 partial RSS requested but L3 RSS" 1600 " type not specified"); 1601 if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) && 1602 !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP))) 1603 return rte_flow_error_set(error, EINVAL, 1604 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1605 "L4 partial RSS requested but L4 RSS" 1606 " type not specified"); 1607 if (!priv->rxqs_n) 1608 return rte_flow_error_set(error, EINVAL, 1609 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1610 NULL, "No Rx queues configured"); 1611 if (!rss->queue_num) 1612 return rte_flow_error_set(error, EINVAL, 1613 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1614 NULL, "No queues configured"); 1615 for (i = 0; i != rss->queue_num; ++i) { 1616 if (rss->queue[i] >= priv->rxqs_n) 1617 return rte_flow_error_set 1618 (error, EINVAL, 1619 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1620 &rss->queue[i], "queue index out of range"); 1621 if (!(*priv->rxqs)[rss->queue[i]]) 1622 return rte_flow_error_set 1623 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1624 &rss->queue[i], "queue is not configured"); 1625 } 1626 return 0; 1627 } 1628 1629 /* 1630 * Validate the rss action. 1631 * 1632 * @param[in] action 1633 * Pointer to the queue action. 1634 * @param[in] action_flags 1635 * Bit-fields that holds the actions detected until now. 1636 * @param[in] dev 1637 * Pointer to the Ethernet device structure. 1638 * @param[in] attr 1639 * Attributes of flow that includes this action. 1640 * @param[in] item_flags 1641 * Items that were detected. 1642 * @param[out] error 1643 * Pointer to error structure. 1644 * 1645 * @return 1646 * 0 on success, a negative errno value otherwise and rte_errno is set. 1647 */ 1648 int 1649 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 1650 uint64_t action_flags, 1651 struct rte_eth_dev *dev, 1652 const struct rte_flow_attr *attr, 1653 uint64_t item_flags, 1654 struct rte_flow_error *error) 1655 { 1656 const struct rte_flow_action_rss *rss = action->conf; 1657 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1658 int ret; 1659 1660 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1661 return rte_flow_error_set(error, EINVAL, 1662 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1663 "can't have 2 fate actions" 1664 " in same flow"); 1665 ret = mlx5_validate_action_rss(dev, action, error); 1666 if (ret) 1667 return ret; 1668 if (attr->egress) 1669 return rte_flow_error_set(error, ENOTSUP, 1670 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1671 "rss action not supported for " 1672 "egress"); 1673 if (rss->level > 1 && !tunnel) 1674 return rte_flow_error_set(error, EINVAL, 1675 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1676 "inner RSS is not supported for " 1677 "non-tunnel flows"); 1678 if ((item_flags & MLX5_FLOW_LAYER_ECPRI) && 1679 !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) { 1680 return rte_flow_error_set(error, EINVAL, 1681 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1682 "RSS on eCPRI is not supported now"); 1683 } 1684 return 0; 1685 } 1686 1687 /* 1688 * Validate the default miss action. 1689 * 1690 * @param[in] action_flags 1691 * Bit-fields that holds the actions detected until now. 1692 * @param[out] error 1693 * Pointer to error structure. 1694 * 1695 * @return 1696 * 0 on success, a negative errno value otherwise and rte_errno is set. 1697 */ 1698 int 1699 mlx5_flow_validate_action_default_miss(uint64_t action_flags, 1700 const struct rte_flow_attr *attr, 1701 struct rte_flow_error *error) 1702 { 1703 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1704 return rte_flow_error_set(error, EINVAL, 1705 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1706 "can't have 2 fate actions in" 1707 " same flow"); 1708 if (attr->egress) 1709 return rte_flow_error_set(error, ENOTSUP, 1710 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1711 "default miss action not supported " 1712 "for egress"); 1713 if (attr->group) 1714 return rte_flow_error_set(error, ENOTSUP, 1715 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL, 1716 "only group 0 is supported"); 1717 if (attr->transfer) 1718 return rte_flow_error_set(error, ENOTSUP, 1719 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1720 NULL, "transfer is not supported"); 1721 return 0; 1722 } 1723 1724 /* 1725 * Validate the count action. 1726 * 1727 * @param[in] dev 1728 * Pointer to the Ethernet device structure. 1729 * @param[in] attr 1730 * Attributes of flow that includes this action. 1731 * @param[out] error 1732 * Pointer to error structure. 1733 * 1734 * @return 1735 * 0 on success, a negative errno value otherwise and rte_errno is set. 1736 */ 1737 int 1738 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 1739 const struct rte_flow_attr *attr, 1740 struct rte_flow_error *error) 1741 { 1742 if (attr->egress) 1743 return rte_flow_error_set(error, ENOTSUP, 1744 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1745 "count action not supported for " 1746 "egress"); 1747 return 0; 1748 } 1749 1750 /** 1751 * Verify the @p attributes will be correctly understood by the NIC and store 1752 * them in the @p flow if everything is correct. 1753 * 1754 * @param[in] dev 1755 * Pointer to the Ethernet device structure. 1756 * @param[in] attributes 1757 * Pointer to flow attributes 1758 * @param[out] error 1759 * Pointer to error structure. 1760 * 1761 * @return 1762 * 0 on success, a negative errno value otherwise and rte_errno is set. 1763 */ 1764 int 1765 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 1766 const struct rte_flow_attr *attributes, 1767 struct rte_flow_error *error) 1768 { 1769 struct mlx5_priv *priv = dev->data->dev_private; 1770 uint32_t priority_max = priv->config.flow_prio - 1; 1771 1772 if (attributes->group) 1773 return rte_flow_error_set(error, ENOTSUP, 1774 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1775 NULL, "groups is not supported"); 1776 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1777 attributes->priority >= priority_max) 1778 return rte_flow_error_set(error, ENOTSUP, 1779 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1780 NULL, "priority out of range"); 1781 if (attributes->egress) 1782 return rte_flow_error_set(error, ENOTSUP, 1783 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1784 "egress is not supported"); 1785 if (attributes->transfer && !priv->config.dv_esw_en) 1786 return rte_flow_error_set(error, ENOTSUP, 1787 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1788 NULL, "transfer is not supported"); 1789 if (!attributes->ingress) 1790 return rte_flow_error_set(error, EINVAL, 1791 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1792 NULL, 1793 "ingress attribute is mandatory"); 1794 return 0; 1795 } 1796 1797 /** 1798 * Validate ICMP6 item. 1799 * 1800 * @param[in] item 1801 * Item specification. 1802 * @param[in] item_flags 1803 * Bit-fields that holds the items detected until now. 1804 * @param[in] ext_vlan_sup 1805 * Whether extended VLAN features are supported or not. 1806 * @param[out] error 1807 * Pointer to error structure. 1808 * 1809 * @return 1810 * 0 on success, a negative errno value otherwise and rte_errno is set. 1811 */ 1812 int 1813 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item, 1814 uint64_t item_flags, 1815 uint8_t target_protocol, 1816 struct rte_flow_error *error) 1817 { 1818 const struct rte_flow_item_icmp6 *mask = item->mask; 1819 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1820 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 1821 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 1822 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1823 MLX5_FLOW_LAYER_OUTER_L4; 1824 int ret; 1825 1826 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6) 1827 return rte_flow_error_set(error, EINVAL, 1828 RTE_FLOW_ERROR_TYPE_ITEM, item, 1829 "protocol filtering not compatible" 1830 " with ICMP6 layer"); 1831 if (!(item_flags & l3m)) 1832 return rte_flow_error_set(error, EINVAL, 1833 RTE_FLOW_ERROR_TYPE_ITEM, item, 1834 "IPv6 is mandatory to filter on" 1835 " ICMP6"); 1836 if (item_flags & l4m) 1837 return rte_flow_error_set(error, EINVAL, 1838 RTE_FLOW_ERROR_TYPE_ITEM, item, 1839 "multiple L4 layers not supported"); 1840 if (!mask) 1841 mask = &rte_flow_item_icmp6_mask; 1842 ret = mlx5_flow_item_acceptable 1843 (item, (const uint8_t *)mask, 1844 (const uint8_t *)&rte_flow_item_icmp6_mask, 1845 sizeof(struct rte_flow_item_icmp6), 1846 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1847 if (ret < 0) 1848 return ret; 1849 return 0; 1850 } 1851 1852 /** 1853 * Validate ICMP item. 1854 * 1855 * @param[in] item 1856 * Item specification. 1857 * @param[in] item_flags 1858 * Bit-fields that holds the items detected until now. 1859 * @param[out] error 1860 * Pointer to error structure. 1861 * 1862 * @return 1863 * 0 on success, a negative errno value otherwise and rte_errno is set. 1864 */ 1865 int 1866 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item, 1867 uint64_t item_flags, 1868 uint8_t target_protocol, 1869 struct rte_flow_error *error) 1870 { 1871 const struct rte_flow_item_icmp *mask = item->mask; 1872 const struct rte_flow_item_icmp nic_mask = { 1873 .hdr.icmp_type = 0xff, 1874 .hdr.icmp_code = 0xff, 1875 .hdr.icmp_ident = RTE_BE16(0xffff), 1876 .hdr.icmp_seq_nb = RTE_BE16(0xffff), 1877 }; 1878 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1879 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 1880 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 1881 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1882 MLX5_FLOW_LAYER_OUTER_L4; 1883 int ret; 1884 1885 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP) 1886 return rte_flow_error_set(error, EINVAL, 1887 RTE_FLOW_ERROR_TYPE_ITEM, item, 1888 "protocol filtering not compatible" 1889 " with ICMP layer"); 1890 if (!(item_flags & l3m)) 1891 return rte_flow_error_set(error, EINVAL, 1892 RTE_FLOW_ERROR_TYPE_ITEM, item, 1893 "IPv4 is mandatory to filter" 1894 " on ICMP"); 1895 if (item_flags & l4m) 1896 return rte_flow_error_set(error, EINVAL, 1897 RTE_FLOW_ERROR_TYPE_ITEM, item, 1898 "multiple L4 layers not supported"); 1899 if (!mask) 1900 mask = &nic_mask; 1901 ret = mlx5_flow_item_acceptable 1902 (item, (const uint8_t *)mask, 1903 (const uint8_t *)&nic_mask, 1904 sizeof(struct rte_flow_item_icmp), 1905 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1906 if (ret < 0) 1907 return ret; 1908 return 0; 1909 } 1910 1911 /** 1912 * Validate Ethernet item. 1913 * 1914 * @param[in] item 1915 * Item specification. 1916 * @param[in] item_flags 1917 * Bit-fields that holds the items detected until now. 1918 * @param[out] error 1919 * Pointer to error structure. 1920 * 1921 * @return 1922 * 0 on success, a negative errno value otherwise and rte_errno is set. 1923 */ 1924 int 1925 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1926 uint64_t item_flags, bool ext_vlan_sup, 1927 struct rte_flow_error *error) 1928 { 1929 const struct rte_flow_item_eth *mask = item->mask; 1930 const struct rte_flow_item_eth nic_mask = { 1931 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1932 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1933 .type = RTE_BE16(0xffff), 1934 .has_vlan = ext_vlan_sup ? 1 : 0, 1935 }; 1936 int ret; 1937 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1938 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1939 MLX5_FLOW_LAYER_OUTER_L2; 1940 1941 if (item_flags & ethm) 1942 return rte_flow_error_set(error, ENOTSUP, 1943 RTE_FLOW_ERROR_TYPE_ITEM, item, 1944 "multiple L2 layers not supported"); 1945 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) || 1946 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))) 1947 return rte_flow_error_set(error, EINVAL, 1948 RTE_FLOW_ERROR_TYPE_ITEM, item, 1949 "L2 layer should not follow " 1950 "L3 layers"); 1951 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) || 1952 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN))) 1953 return rte_flow_error_set(error, EINVAL, 1954 RTE_FLOW_ERROR_TYPE_ITEM, item, 1955 "L2 layer should not follow VLAN"); 1956 if (!mask) 1957 mask = &rte_flow_item_eth_mask; 1958 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1959 (const uint8_t *)&nic_mask, 1960 sizeof(struct rte_flow_item_eth), 1961 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1962 return ret; 1963 } 1964 1965 /** 1966 * Validate VLAN item. 1967 * 1968 * @param[in] item 1969 * Item specification. 1970 * @param[in] item_flags 1971 * Bit-fields that holds the items detected until now. 1972 * @param[in] dev 1973 * Ethernet device flow is being created on. 1974 * @param[out] error 1975 * Pointer to error structure. 1976 * 1977 * @return 1978 * 0 on success, a negative errno value otherwise and rte_errno is set. 1979 */ 1980 int 1981 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1982 uint64_t item_flags, 1983 struct rte_eth_dev *dev, 1984 struct rte_flow_error *error) 1985 { 1986 const struct rte_flow_item_vlan *spec = item->spec; 1987 const struct rte_flow_item_vlan *mask = item->mask; 1988 const struct rte_flow_item_vlan nic_mask = { 1989 .tci = RTE_BE16(UINT16_MAX), 1990 .inner_type = RTE_BE16(UINT16_MAX), 1991 }; 1992 uint16_t vlan_tag = 0; 1993 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1994 int ret; 1995 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1996 MLX5_FLOW_LAYER_INNER_L4) : 1997 (MLX5_FLOW_LAYER_OUTER_L3 | 1998 MLX5_FLOW_LAYER_OUTER_L4); 1999 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 2000 MLX5_FLOW_LAYER_OUTER_VLAN; 2001 2002 if (item_flags & vlanm) 2003 return rte_flow_error_set(error, EINVAL, 2004 RTE_FLOW_ERROR_TYPE_ITEM, item, 2005 "multiple VLAN layers not supported"); 2006 else if ((item_flags & l34m) != 0) 2007 return rte_flow_error_set(error, EINVAL, 2008 RTE_FLOW_ERROR_TYPE_ITEM, item, 2009 "VLAN cannot follow L3/L4 layer"); 2010 if (!mask) 2011 mask = &rte_flow_item_vlan_mask; 2012 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2013 (const uint8_t *)&nic_mask, 2014 sizeof(struct rte_flow_item_vlan), 2015 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2016 if (ret) 2017 return ret; 2018 if (!tunnel && mask->tci != RTE_BE16(0x0fff)) { 2019 struct mlx5_priv *priv = dev->data->dev_private; 2020 2021 if (priv->vmwa_context) { 2022 /* 2023 * Non-NULL context means we have a virtual machine 2024 * and SR-IOV enabled, we have to create VLAN interface 2025 * to make hypervisor to setup E-Switch vport 2026 * context correctly. We avoid creating the multiple 2027 * VLAN interfaces, so we cannot support VLAN tag mask. 2028 */ 2029 return rte_flow_error_set(error, EINVAL, 2030 RTE_FLOW_ERROR_TYPE_ITEM, 2031 item, 2032 "VLAN tag mask is not" 2033 " supported in virtual" 2034 " environment"); 2035 } 2036 } 2037 if (spec) { 2038 vlan_tag = spec->tci; 2039 vlan_tag &= mask->tci; 2040 } 2041 /* 2042 * From verbs perspective an empty VLAN is equivalent 2043 * to a packet without VLAN layer. 2044 */ 2045 if (!vlan_tag) 2046 return rte_flow_error_set(error, EINVAL, 2047 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 2048 item->spec, 2049 "VLAN cannot be empty"); 2050 return 0; 2051 } 2052 2053 /** 2054 * Validate IPV4 item. 2055 * 2056 * @param[in] item 2057 * Item specification. 2058 * @param[in] item_flags 2059 * Bit-fields that holds the items detected until now. 2060 * @param[in] last_item 2061 * Previous validated item in the pattern items. 2062 * @param[in] ether_type 2063 * Type in the ethernet layer header (including dot1q). 2064 * @param[in] acc_mask 2065 * Acceptable mask, if NULL default internal default mask 2066 * will be used to check whether item fields are supported. 2067 * @param[in] range_accepted 2068 * True if range of values is accepted for specific fields, false otherwise. 2069 * @param[out] error 2070 * Pointer to error structure. 2071 * 2072 * @return 2073 * 0 on success, a negative errno value otherwise and rte_errno is set. 2074 */ 2075 int 2076 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 2077 uint64_t item_flags, 2078 uint64_t last_item, 2079 uint16_t ether_type, 2080 const struct rte_flow_item_ipv4 *acc_mask, 2081 bool range_accepted, 2082 struct rte_flow_error *error) 2083 { 2084 const struct rte_flow_item_ipv4 *mask = item->mask; 2085 const struct rte_flow_item_ipv4 *spec = item->spec; 2086 const struct rte_flow_item_ipv4 nic_mask = { 2087 .hdr = { 2088 .src_addr = RTE_BE32(0xffffffff), 2089 .dst_addr = RTE_BE32(0xffffffff), 2090 .type_of_service = 0xff, 2091 .next_proto_id = 0xff, 2092 }, 2093 }; 2094 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2095 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2096 MLX5_FLOW_LAYER_OUTER_L3; 2097 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2098 MLX5_FLOW_LAYER_OUTER_L4; 2099 int ret; 2100 uint8_t next_proto = 0xFF; 2101 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 2102 MLX5_FLOW_LAYER_OUTER_VLAN | 2103 MLX5_FLOW_LAYER_INNER_VLAN); 2104 2105 if ((last_item & l2_vlan) && ether_type && 2106 ether_type != RTE_ETHER_TYPE_IPV4) 2107 return rte_flow_error_set(error, EINVAL, 2108 RTE_FLOW_ERROR_TYPE_ITEM, item, 2109 "IPv4 cannot follow L2/VLAN layer " 2110 "which ether type is not IPv4"); 2111 if (item_flags & MLX5_FLOW_LAYER_IPIP) { 2112 if (mask && spec) 2113 next_proto = mask->hdr.next_proto_id & 2114 spec->hdr.next_proto_id; 2115 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2116 return rte_flow_error_set(error, EINVAL, 2117 RTE_FLOW_ERROR_TYPE_ITEM, 2118 item, 2119 "multiple tunnel " 2120 "not supported"); 2121 } 2122 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) 2123 return rte_flow_error_set(error, EINVAL, 2124 RTE_FLOW_ERROR_TYPE_ITEM, item, 2125 "wrong tunnel type - IPv6 specified " 2126 "but IPv4 item provided"); 2127 if (item_flags & l3m) 2128 return rte_flow_error_set(error, ENOTSUP, 2129 RTE_FLOW_ERROR_TYPE_ITEM, item, 2130 "multiple L3 layers not supported"); 2131 else if (item_flags & l4m) 2132 return rte_flow_error_set(error, EINVAL, 2133 RTE_FLOW_ERROR_TYPE_ITEM, item, 2134 "L3 cannot follow an L4 layer."); 2135 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2136 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2137 return rte_flow_error_set(error, EINVAL, 2138 RTE_FLOW_ERROR_TYPE_ITEM, item, 2139 "L3 cannot follow an NVGRE layer."); 2140 if (!mask) 2141 mask = &rte_flow_item_ipv4_mask; 2142 else if (mask->hdr.next_proto_id != 0 && 2143 mask->hdr.next_proto_id != 0xff) 2144 return rte_flow_error_set(error, EINVAL, 2145 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2146 "partial mask is not supported" 2147 " for protocol"); 2148 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2149 acc_mask ? (const uint8_t *)acc_mask 2150 : (const uint8_t *)&nic_mask, 2151 sizeof(struct rte_flow_item_ipv4), 2152 range_accepted, error); 2153 if (ret < 0) 2154 return ret; 2155 return 0; 2156 } 2157 2158 /** 2159 * Validate IPV6 item. 2160 * 2161 * @param[in] item 2162 * Item specification. 2163 * @param[in] item_flags 2164 * Bit-fields that holds the items detected until now. 2165 * @param[in] last_item 2166 * Previous validated item in the pattern items. 2167 * @param[in] ether_type 2168 * Type in the ethernet layer header (including dot1q). 2169 * @param[in] acc_mask 2170 * Acceptable mask, if NULL default internal default mask 2171 * will be used to check whether item fields are supported. 2172 * @param[out] error 2173 * Pointer to error structure. 2174 * 2175 * @return 2176 * 0 on success, a negative errno value otherwise and rte_errno is set. 2177 */ 2178 int 2179 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 2180 uint64_t item_flags, 2181 uint64_t last_item, 2182 uint16_t ether_type, 2183 const struct rte_flow_item_ipv6 *acc_mask, 2184 struct rte_flow_error *error) 2185 { 2186 const struct rte_flow_item_ipv6 *mask = item->mask; 2187 const struct rte_flow_item_ipv6 *spec = item->spec; 2188 const struct rte_flow_item_ipv6 nic_mask = { 2189 .hdr = { 2190 .src_addr = 2191 "\xff\xff\xff\xff\xff\xff\xff\xff" 2192 "\xff\xff\xff\xff\xff\xff\xff\xff", 2193 .dst_addr = 2194 "\xff\xff\xff\xff\xff\xff\xff\xff" 2195 "\xff\xff\xff\xff\xff\xff\xff\xff", 2196 .vtc_flow = RTE_BE32(0xffffffff), 2197 .proto = 0xff, 2198 }, 2199 }; 2200 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2201 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2202 MLX5_FLOW_LAYER_OUTER_L3; 2203 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2204 MLX5_FLOW_LAYER_OUTER_L4; 2205 int ret; 2206 uint8_t next_proto = 0xFF; 2207 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 2208 MLX5_FLOW_LAYER_OUTER_VLAN | 2209 MLX5_FLOW_LAYER_INNER_VLAN); 2210 2211 if ((last_item & l2_vlan) && ether_type && 2212 ether_type != RTE_ETHER_TYPE_IPV6) 2213 return rte_flow_error_set(error, EINVAL, 2214 RTE_FLOW_ERROR_TYPE_ITEM, item, 2215 "IPv6 cannot follow L2/VLAN layer " 2216 "which ether type is not IPv6"); 2217 if (mask && mask->hdr.proto == UINT8_MAX && spec) 2218 next_proto = spec->hdr.proto; 2219 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) { 2220 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2221 return rte_flow_error_set(error, EINVAL, 2222 RTE_FLOW_ERROR_TYPE_ITEM, 2223 item, 2224 "multiple tunnel " 2225 "not supported"); 2226 } 2227 if (next_proto == IPPROTO_HOPOPTS || 2228 next_proto == IPPROTO_ROUTING || 2229 next_proto == IPPROTO_FRAGMENT || 2230 next_proto == IPPROTO_ESP || 2231 next_proto == IPPROTO_AH || 2232 next_proto == IPPROTO_DSTOPTS) 2233 return rte_flow_error_set(error, EINVAL, 2234 RTE_FLOW_ERROR_TYPE_ITEM, item, 2235 "IPv6 proto (next header) should " 2236 "not be set as extension header"); 2237 if (item_flags & MLX5_FLOW_LAYER_IPIP) 2238 return rte_flow_error_set(error, EINVAL, 2239 RTE_FLOW_ERROR_TYPE_ITEM, item, 2240 "wrong tunnel type - IPv4 specified " 2241 "but IPv6 item provided"); 2242 if (item_flags & l3m) 2243 return rte_flow_error_set(error, ENOTSUP, 2244 RTE_FLOW_ERROR_TYPE_ITEM, item, 2245 "multiple L3 layers not supported"); 2246 else if (item_flags & l4m) 2247 return rte_flow_error_set(error, EINVAL, 2248 RTE_FLOW_ERROR_TYPE_ITEM, item, 2249 "L3 cannot follow an L4 layer."); 2250 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2251 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2252 return rte_flow_error_set(error, EINVAL, 2253 RTE_FLOW_ERROR_TYPE_ITEM, item, 2254 "L3 cannot follow an NVGRE layer."); 2255 if (!mask) 2256 mask = &rte_flow_item_ipv6_mask; 2257 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2258 acc_mask ? (const uint8_t *)acc_mask 2259 : (const uint8_t *)&nic_mask, 2260 sizeof(struct rte_flow_item_ipv6), 2261 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2262 if (ret < 0) 2263 return ret; 2264 return 0; 2265 } 2266 2267 /** 2268 * Validate UDP item. 2269 * 2270 * @param[in] item 2271 * Item specification. 2272 * @param[in] item_flags 2273 * Bit-fields that holds the items detected until now. 2274 * @param[in] target_protocol 2275 * The next protocol in the previous item. 2276 * @param[in] flow_mask 2277 * mlx5 flow-specific (DV, verbs, etc.) supported header fields mask. 2278 * @param[out] error 2279 * Pointer to error structure. 2280 * 2281 * @return 2282 * 0 on success, a negative errno value otherwise and rte_errno is set. 2283 */ 2284 int 2285 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 2286 uint64_t item_flags, 2287 uint8_t target_protocol, 2288 struct rte_flow_error *error) 2289 { 2290 const struct rte_flow_item_udp *mask = item->mask; 2291 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2292 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2293 MLX5_FLOW_LAYER_OUTER_L3; 2294 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2295 MLX5_FLOW_LAYER_OUTER_L4; 2296 int ret; 2297 2298 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 2299 return rte_flow_error_set(error, EINVAL, 2300 RTE_FLOW_ERROR_TYPE_ITEM, item, 2301 "protocol filtering not compatible" 2302 " with UDP layer"); 2303 if (!(item_flags & l3m)) 2304 return rte_flow_error_set(error, EINVAL, 2305 RTE_FLOW_ERROR_TYPE_ITEM, item, 2306 "L3 is mandatory to filter on L4"); 2307 if (item_flags & l4m) 2308 return rte_flow_error_set(error, EINVAL, 2309 RTE_FLOW_ERROR_TYPE_ITEM, item, 2310 "multiple L4 layers not supported"); 2311 if (!mask) 2312 mask = &rte_flow_item_udp_mask; 2313 ret = mlx5_flow_item_acceptable 2314 (item, (const uint8_t *)mask, 2315 (const uint8_t *)&rte_flow_item_udp_mask, 2316 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2317 error); 2318 if (ret < 0) 2319 return ret; 2320 return 0; 2321 } 2322 2323 /** 2324 * Validate TCP item. 2325 * 2326 * @param[in] item 2327 * Item specification. 2328 * @param[in] item_flags 2329 * Bit-fields that holds the items detected until now. 2330 * @param[in] target_protocol 2331 * The next protocol in the previous item. 2332 * @param[out] error 2333 * Pointer to error structure. 2334 * 2335 * @return 2336 * 0 on success, a negative errno value otherwise and rte_errno is set. 2337 */ 2338 int 2339 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 2340 uint64_t item_flags, 2341 uint8_t target_protocol, 2342 const struct rte_flow_item_tcp *flow_mask, 2343 struct rte_flow_error *error) 2344 { 2345 const struct rte_flow_item_tcp *mask = item->mask; 2346 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2347 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2348 MLX5_FLOW_LAYER_OUTER_L3; 2349 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2350 MLX5_FLOW_LAYER_OUTER_L4; 2351 int ret; 2352 2353 MLX5_ASSERT(flow_mask); 2354 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 2355 return rte_flow_error_set(error, EINVAL, 2356 RTE_FLOW_ERROR_TYPE_ITEM, item, 2357 "protocol filtering not compatible" 2358 " with TCP layer"); 2359 if (!(item_flags & l3m)) 2360 return rte_flow_error_set(error, EINVAL, 2361 RTE_FLOW_ERROR_TYPE_ITEM, item, 2362 "L3 is mandatory to filter on L4"); 2363 if (item_flags & l4m) 2364 return rte_flow_error_set(error, EINVAL, 2365 RTE_FLOW_ERROR_TYPE_ITEM, item, 2366 "multiple L4 layers not supported"); 2367 if (!mask) 2368 mask = &rte_flow_item_tcp_mask; 2369 ret = mlx5_flow_item_acceptable 2370 (item, (const uint8_t *)mask, 2371 (const uint8_t *)flow_mask, 2372 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2373 error); 2374 if (ret < 0) 2375 return ret; 2376 return 0; 2377 } 2378 2379 /** 2380 * Validate VXLAN item. 2381 * 2382 * @param[in] item 2383 * Item specification. 2384 * @param[in] item_flags 2385 * Bit-fields that holds the items detected until now. 2386 * @param[in] target_protocol 2387 * The next protocol in the previous item. 2388 * @param[out] error 2389 * Pointer to error structure. 2390 * 2391 * @return 2392 * 0 on success, a negative errno value otherwise and rte_errno is set. 2393 */ 2394 int 2395 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 2396 uint64_t item_flags, 2397 struct rte_flow_error *error) 2398 { 2399 const struct rte_flow_item_vxlan *spec = item->spec; 2400 const struct rte_flow_item_vxlan *mask = item->mask; 2401 int ret; 2402 union vni { 2403 uint32_t vlan_id; 2404 uint8_t vni[4]; 2405 } id = { .vlan_id = 0, }; 2406 2407 2408 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2409 return rte_flow_error_set(error, ENOTSUP, 2410 RTE_FLOW_ERROR_TYPE_ITEM, item, 2411 "multiple tunnel layers not" 2412 " supported"); 2413 /* 2414 * Verify only UDPv4 is present as defined in 2415 * https://tools.ietf.org/html/rfc7348 2416 */ 2417 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2418 return rte_flow_error_set(error, EINVAL, 2419 RTE_FLOW_ERROR_TYPE_ITEM, item, 2420 "no outer UDP layer found"); 2421 if (!mask) 2422 mask = &rte_flow_item_vxlan_mask; 2423 ret = mlx5_flow_item_acceptable 2424 (item, (const uint8_t *)mask, 2425 (const uint8_t *)&rte_flow_item_vxlan_mask, 2426 sizeof(struct rte_flow_item_vxlan), 2427 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2428 if (ret < 0) 2429 return ret; 2430 if (spec) { 2431 memcpy(&id.vni[1], spec->vni, 3); 2432 memcpy(&id.vni[1], mask->vni, 3); 2433 } 2434 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2435 return rte_flow_error_set(error, ENOTSUP, 2436 RTE_FLOW_ERROR_TYPE_ITEM, item, 2437 "VXLAN tunnel must be fully defined"); 2438 return 0; 2439 } 2440 2441 /** 2442 * Validate VXLAN_GPE item. 2443 * 2444 * @param[in] item 2445 * Item specification. 2446 * @param[in] item_flags 2447 * Bit-fields that holds the items detected until now. 2448 * @param[in] priv 2449 * Pointer to the private data structure. 2450 * @param[in] target_protocol 2451 * The next protocol in the previous item. 2452 * @param[out] error 2453 * Pointer to error structure. 2454 * 2455 * @return 2456 * 0 on success, a negative errno value otherwise and rte_errno is set. 2457 */ 2458 int 2459 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 2460 uint64_t item_flags, 2461 struct rte_eth_dev *dev, 2462 struct rte_flow_error *error) 2463 { 2464 struct mlx5_priv *priv = dev->data->dev_private; 2465 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 2466 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 2467 int ret; 2468 union vni { 2469 uint32_t vlan_id; 2470 uint8_t vni[4]; 2471 } id = { .vlan_id = 0, }; 2472 2473 if (!priv->config.l3_vxlan_en) 2474 return rte_flow_error_set(error, ENOTSUP, 2475 RTE_FLOW_ERROR_TYPE_ITEM, item, 2476 "L3 VXLAN is not enabled by device" 2477 " parameter and/or not configured in" 2478 " firmware"); 2479 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2480 return rte_flow_error_set(error, ENOTSUP, 2481 RTE_FLOW_ERROR_TYPE_ITEM, item, 2482 "multiple tunnel layers not" 2483 " supported"); 2484 /* 2485 * Verify only UDPv4 is present as defined in 2486 * https://tools.ietf.org/html/rfc7348 2487 */ 2488 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2489 return rte_flow_error_set(error, EINVAL, 2490 RTE_FLOW_ERROR_TYPE_ITEM, item, 2491 "no outer UDP layer found"); 2492 if (!mask) 2493 mask = &rte_flow_item_vxlan_gpe_mask; 2494 ret = mlx5_flow_item_acceptable 2495 (item, (const uint8_t *)mask, 2496 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 2497 sizeof(struct rte_flow_item_vxlan_gpe), 2498 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2499 if (ret < 0) 2500 return ret; 2501 if (spec) { 2502 if (spec->protocol) 2503 return rte_flow_error_set(error, ENOTSUP, 2504 RTE_FLOW_ERROR_TYPE_ITEM, 2505 item, 2506 "VxLAN-GPE protocol" 2507 " not supported"); 2508 memcpy(&id.vni[1], spec->vni, 3); 2509 memcpy(&id.vni[1], mask->vni, 3); 2510 } 2511 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2512 return rte_flow_error_set(error, ENOTSUP, 2513 RTE_FLOW_ERROR_TYPE_ITEM, item, 2514 "VXLAN-GPE tunnel must be fully" 2515 " defined"); 2516 return 0; 2517 } 2518 /** 2519 * Validate GRE Key item. 2520 * 2521 * @param[in] item 2522 * Item specification. 2523 * @param[in] item_flags 2524 * Bit flags to mark detected items. 2525 * @param[in] gre_item 2526 * Pointer to gre_item 2527 * @param[out] error 2528 * Pointer to error structure. 2529 * 2530 * @return 2531 * 0 on success, a negative errno value otherwise and rte_errno is set. 2532 */ 2533 int 2534 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item, 2535 uint64_t item_flags, 2536 const struct rte_flow_item *gre_item, 2537 struct rte_flow_error *error) 2538 { 2539 const rte_be32_t *mask = item->mask; 2540 int ret = 0; 2541 rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX); 2542 const struct rte_flow_item_gre *gre_spec; 2543 const struct rte_flow_item_gre *gre_mask; 2544 2545 if (item_flags & MLX5_FLOW_LAYER_GRE_KEY) 2546 return rte_flow_error_set(error, ENOTSUP, 2547 RTE_FLOW_ERROR_TYPE_ITEM, item, 2548 "Multiple GRE key not support"); 2549 if (!(item_flags & MLX5_FLOW_LAYER_GRE)) 2550 return rte_flow_error_set(error, ENOTSUP, 2551 RTE_FLOW_ERROR_TYPE_ITEM, item, 2552 "No preceding GRE header"); 2553 if (item_flags & MLX5_FLOW_LAYER_INNER) 2554 return rte_flow_error_set(error, ENOTSUP, 2555 RTE_FLOW_ERROR_TYPE_ITEM, item, 2556 "GRE key following a wrong item"); 2557 gre_mask = gre_item->mask; 2558 if (!gre_mask) 2559 gre_mask = &rte_flow_item_gre_mask; 2560 gre_spec = gre_item->spec; 2561 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) && 2562 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000))) 2563 return rte_flow_error_set(error, EINVAL, 2564 RTE_FLOW_ERROR_TYPE_ITEM, item, 2565 "Key bit must be on"); 2566 2567 if (!mask) 2568 mask = &gre_key_default_mask; 2569 ret = mlx5_flow_item_acceptable 2570 (item, (const uint8_t *)mask, 2571 (const uint8_t *)&gre_key_default_mask, 2572 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2573 return ret; 2574 } 2575 2576 /** 2577 * Validate GRE item. 2578 * 2579 * @param[in] item 2580 * Item specification. 2581 * @param[in] item_flags 2582 * Bit flags to mark detected items. 2583 * @param[in] target_protocol 2584 * The next protocol in the previous item. 2585 * @param[out] error 2586 * Pointer to error structure. 2587 * 2588 * @return 2589 * 0 on success, a negative errno value otherwise and rte_errno is set. 2590 */ 2591 int 2592 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 2593 uint64_t item_flags, 2594 uint8_t target_protocol, 2595 struct rte_flow_error *error) 2596 { 2597 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 2598 const struct rte_flow_item_gre *mask = item->mask; 2599 int ret; 2600 const struct rte_flow_item_gre nic_mask = { 2601 .c_rsvd0_ver = RTE_BE16(0xB000), 2602 .protocol = RTE_BE16(UINT16_MAX), 2603 }; 2604 2605 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 2606 return rte_flow_error_set(error, EINVAL, 2607 RTE_FLOW_ERROR_TYPE_ITEM, item, 2608 "protocol filtering not compatible" 2609 " with this GRE layer"); 2610 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2611 return rte_flow_error_set(error, ENOTSUP, 2612 RTE_FLOW_ERROR_TYPE_ITEM, item, 2613 "multiple tunnel layers not" 2614 " supported"); 2615 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 2616 return rte_flow_error_set(error, ENOTSUP, 2617 RTE_FLOW_ERROR_TYPE_ITEM, item, 2618 "L3 Layer is missing"); 2619 if (!mask) 2620 mask = &rte_flow_item_gre_mask; 2621 ret = mlx5_flow_item_acceptable 2622 (item, (const uint8_t *)mask, 2623 (const uint8_t *)&nic_mask, 2624 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2625 error); 2626 if (ret < 0) 2627 return ret; 2628 #ifndef HAVE_MLX5DV_DR 2629 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 2630 if (spec && (spec->protocol & mask->protocol)) 2631 return rte_flow_error_set(error, ENOTSUP, 2632 RTE_FLOW_ERROR_TYPE_ITEM, item, 2633 "without MPLS support the" 2634 " specification cannot be used for" 2635 " filtering"); 2636 #endif 2637 #endif 2638 return 0; 2639 } 2640 2641 /** 2642 * Validate Geneve item. 2643 * 2644 * @param[in] item 2645 * Item specification. 2646 * @param[in] itemFlags 2647 * Bit-fields that holds the items detected until now. 2648 * @param[in] enPriv 2649 * Pointer to the private data structure. 2650 * @param[out] error 2651 * Pointer to error structure. 2652 * 2653 * @return 2654 * 0 on success, a negative errno value otherwise and rte_errno is set. 2655 */ 2656 2657 int 2658 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item, 2659 uint64_t item_flags, 2660 struct rte_eth_dev *dev, 2661 struct rte_flow_error *error) 2662 { 2663 struct mlx5_priv *priv = dev->data->dev_private; 2664 const struct rte_flow_item_geneve *spec = item->spec; 2665 const struct rte_flow_item_geneve *mask = item->mask; 2666 int ret; 2667 uint16_t gbhdr; 2668 uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ? 2669 MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0; 2670 const struct rte_flow_item_geneve nic_mask = { 2671 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80), 2672 .vni = "\xff\xff\xff", 2673 .protocol = RTE_BE16(UINT16_MAX), 2674 }; 2675 2676 if (!priv->config.hca_attr.tunnel_stateless_geneve_rx) 2677 return rte_flow_error_set(error, ENOTSUP, 2678 RTE_FLOW_ERROR_TYPE_ITEM, item, 2679 "L3 Geneve is not enabled by device" 2680 " parameter and/or not configured in" 2681 " firmware"); 2682 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2683 return rte_flow_error_set(error, ENOTSUP, 2684 RTE_FLOW_ERROR_TYPE_ITEM, item, 2685 "multiple tunnel layers not" 2686 " supported"); 2687 /* 2688 * Verify only UDPv4 is present as defined in 2689 * https://tools.ietf.org/html/rfc7348 2690 */ 2691 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2692 return rte_flow_error_set(error, EINVAL, 2693 RTE_FLOW_ERROR_TYPE_ITEM, item, 2694 "no outer UDP layer found"); 2695 if (!mask) 2696 mask = &rte_flow_item_geneve_mask; 2697 ret = mlx5_flow_item_acceptable 2698 (item, (const uint8_t *)mask, 2699 (const uint8_t *)&nic_mask, 2700 sizeof(struct rte_flow_item_geneve), 2701 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2702 if (ret) 2703 return ret; 2704 if (spec) { 2705 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0); 2706 if (MLX5_GENEVE_VER_VAL(gbhdr) || 2707 MLX5_GENEVE_CRITO_VAL(gbhdr) || 2708 MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1) 2709 return rte_flow_error_set(error, ENOTSUP, 2710 RTE_FLOW_ERROR_TYPE_ITEM, 2711 item, 2712 "Geneve protocol unsupported" 2713 " fields are being used"); 2714 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len) 2715 return rte_flow_error_set 2716 (error, ENOTSUP, 2717 RTE_FLOW_ERROR_TYPE_ITEM, 2718 item, 2719 "Unsupported Geneve options length"); 2720 } 2721 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2722 return rte_flow_error_set 2723 (error, ENOTSUP, 2724 RTE_FLOW_ERROR_TYPE_ITEM, item, 2725 "Geneve tunnel must be fully defined"); 2726 return 0; 2727 } 2728 2729 /** 2730 * Validate MPLS item. 2731 * 2732 * @param[in] dev 2733 * Pointer to the rte_eth_dev structure. 2734 * @param[in] item 2735 * Item specification. 2736 * @param[in] item_flags 2737 * Bit-fields that holds the items detected until now. 2738 * @param[in] prev_layer 2739 * The protocol layer indicated in previous item. 2740 * @param[out] error 2741 * Pointer to error structure. 2742 * 2743 * @return 2744 * 0 on success, a negative errno value otherwise and rte_errno is set. 2745 */ 2746 int 2747 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 2748 const struct rte_flow_item *item __rte_unused, 2749 uint64_t item_flags __rte_unused, 2750 uint64_t prev_layer __rte_unused, 2751 struct rte_flow_error *error) 2752 { 2753 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 2754 const struct rte_flow_item_mpls *mask = item->mask; 2755 struct mlx5_priv *priv = dev->data->dev_private; 2756 int ret; 2757 2758 if (!priv->config.mpls_en) 2759 return rte_flow_error_set(error, ENOTSUP, 2760 RTE_FLOW_ERROR_TYPE_ITEM, item, 2761 "MPLS not supported or" 2762 " disabled in firmware" 2763 " configuration."); 2764 /* MPLS over IP, UDP, GRE is allowed */ 2765 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 2766 MLX5_FLOW_LAYER_OUTER_L4_UDP | 2767 MLX5_FLOW_LAYER_GRE))) 2768 return rte_flow_error_set(error, EINVAL, 2769 RTE_FLOW_ERROR_TYPE_ITEM, item, 2770 "protocol filtering not compatible" 2771 " with MPLS layer"); 2772 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 2773 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 2774 !(item_flags & MLX5_FLOW_LAYER_GRE)) 2775 return rte_flow_error_set(error, ENOTSUP, 2776 RTE_FLOW_ERROR_TYPE_ITEM, item, 2777 "multiple tunnel layers not" 2778 " supported"); 2779 if (!mask) 2780 mask = &rte_flow_item_mpls_mask; 2781 ret = mlx5_flow_item_acceptable 2782 (item, (const uint8_t *)mask, 2783 (const uint8_t *)&rte_flow_item_mpls_mask, 2784 sizeof(struct rte_flow_item_mpls), 2785 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2786 if (ret < 0) 2787 return ret; 2788 return 0; 2789 #else 2790 return rte_flow_error_set(error, ENOTSUP, 2791 RTE_FLOW_ERROR_TYPE_ITEM, item, 2792 "MPLS is not supported by Verbs, please" 2793 " update."); 2794 #endif 2795 } 2796 2797 /** 2798 * Validate NVGRE item. 2799 * 2800 * @param[in] item 2801 * Item specification. 2802 * @param[in] item_flags 2803 * Bit flags to mark detected items. 2804 * @param[in] target_protocol 2805 * The next protocol in the previous item. 2806 * @param[out] error 2807 * Pointer to error structure. 2808 * 2809 * @return 2810 * 0 on success, a negative errno value otherwise and rte_errno is set. 2811 */ 2812 int 2813 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item, 2814 uint64_t item_flags, 2815 uint8_t target_protocol, 2816 struct rte_flow_error *error) 2817 { 2818 const struct rte_flow_item_nvgre *mask = item->mask; 2819 int ret; 2820 2821 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 2822 return rte_flow_error_set(error, EINVAL, 2823 RTE_FLOW_ERROR_TYPE_ITEM, item, 2824 "protocol filtering not compatible" 2825 " with this GRE layer"); 2826 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2827 return rte_flow_error_set(error, ENOTSUP, 2828 RTE_FLOW_ERROR_TYPE_ITEM, item, 2829 "multiple tunnel layers not" 2830 " supported"); 2831 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 2832 return rte_flow_error_set(error, ENOTSUP, 2833 RTE_FLOW_ERROR_TYPE_ITEM, item, 2834 "L3 Layer is missing"); 2835 if (!mask) 2836 mask = &rte_flow_item_nvgre_mask; 2837 ret = mlx5_flow_item_acceptable 2838 (item, (const uint8_t *)mask, 2839 (const uint8_t *)&rte_flow_item_nvgre_mask, 2840 sizeof(struct rte_flow_item_nvgre), 2841 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2842 if (ret < 0) 2843 return ret; 2844 return 0; 2845 } 2846 2847 /** 2848 * Validate eCPRI item. 2849 * 2850 * @param[in] item 2851 * Item specification. 2852 * @param[in] item_flags 2853 * Bit-fields that holds the items detected until now. 2854 * @param[in] last_item 2855 * Previous validated item in the pattern items. 2856 * @param[in] ether_type 2857 * Type in the ethernet layer header (including dot1q). 2858 * @param[in] acc_mask 2859 * Acceptable mask, if NULL default internal default mask 2860 * will be used to check whether item fields are supported. 2861 * @param[out] error 2862 * Pointer to error structure. 2863 * 2864 * @return 2865 * 0 on success, a negative errno value otherwise and rte_errno is set. 2866 */ 2867 int 2868 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item, 2869 uint64_t item_flags, 2870 uint64_t last_item, 2871 uint16_t ether_type, 2872 const struct rte_flow_item_ecpri *acc_mask, 2873 struct rte_flow_error *error) 2874 { 2875 const struct rte_flow_item_ecpri *mask = item->mask; 2876 const struct rte_flow_item_ecpri nic_mask = { 2877 .hdr = { 2878 .common = { 2879 .u32 = 2880 RTE_BE32(((const struct rte_ecpri_common_hdr) { 2881 .type = 0xFF, 2882 }).u32), 2883 }, 2884 .dummy[0] = 0xFFFFFFFF, 2885 }, 2886 }; 2887 const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 | 2888 MLX5_FLOW_LAYER_OUTER_VLAN); 2889 struct rte_flow_item_ecpri mask_lo; 2890 2891 if ((last_item & outer_l2_vlan) && ether_type && 2892 ether_type != RTE_ETHER_TYPE_ECPRI) 2893 return rte_flow_error_set(error, EINVAL, 2894 RTE_FLOW_ERROR_TYPE_ITEM, item, 2895 "eCPRI cannot follow L2/VLAN layer " 2896 "which ether type is not 0xAEFE."); 2897 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2898 return rte_flow_error_set(error, EINVAL, 2899 RTE_FLOW_ERROR_TYPE_ITEM, item, 2900 "eCPRI with tunnel is not supported " 2901 "right now."); 2902 if (item_flags & MLX5_FLOW_LAYER_OUTER_L3) 2903 return rte_flow_error_set(error, ENOTSUP, 2904 RTE_FLOW_ERROR_TYPE_ITEM, item, 2905 "multiple L3 layers not supported"); 2906 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP) 2907 return rte_flow_error_set(error, EINVAL, 2908 RTE_FLOW_ERROR_TYPE_ITEM, item, 2909 "eCPRI cannot follow a TCP layer."); 2910 /* In specification, eCPRI could be over UDP layer. */ 2911 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP) 2912 return rte_flow_error_set(error, EINVAL, 2913 RTE_FLOW_ERROR_TYPE_ITEM, item, 2914 "eCPRI over UDP layer is not yet " 2915 "supported right now."); 2916 /* Mask for type field in common header could be zero. */ 2917 if (!mask) 2918 mask = &rte_flow_item_ecpri_mask; 2919 mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32); 2920 /* Input mask is in big-endian format. */ 2921 if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff) 2922 return rte_flow_error_set(error, EINVAL, 2923 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2924 "partial mask is not supported " 2925 "for protocol"); 2926 else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0) 2927 return rte_flow_error_set(error, EINVAL, 2928 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2929 "message header mask must be after " 2930 "a type mask"); 2931 return mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2932 acc_mask ? (const uint8_t *)acc_mask 2933 : (const uint8_t *)&nic_mask, 2934 sizeof(struct rte_flow_item_ecpri), 2935 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2936 } 2937 2938 /** 2939 * Release resource related QUEUE/RSS action split. 2940 * 2941 * @param dev 2942 * Pointer to Ethernet device. 2943 * @param flow 2944 * Flow to release id's from. 2945 */ 2946 static void 2947 flow_mreg_split_qrss_release(struct rte_eth_dev *dev, 2948 struct rte_flow *flow) 2949 { 2950 struct mlx5_priv *priv = dev->data->dev_private; 2951 uint32_t handle_idx; 2952 struct mlx5_flow_handle *dev_handle; 2953 2954 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 2955 handle_idx, dev_handle, next) 2956 if (dev_handle->split_flow_id) 2957 mlx5_ipool_free(priv->sh->ipool 2958 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 2959 dev_handle->split_flow_id); 2960 } 2961 2962 static int 2963 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 2964 const struct rte_flow_attr *attr __rte_unused, 2965 const struct rte_flow_item items[] __rte_unused, 2966 const struct rte_flow_action actions[] __rte_unused, 2967 bool external __rte_unused, 2968 int hairpin __rte_unused, 2969 struct rte_flow_error *error) 2970 { 2971 return rte_flow_error_set(error, ENOTSUP, 2972 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2973 } 2974 2975 static struct mlx5_flow * 2976 flow_null_prepare(struct rte_eth_dev *dev __rte_unused, 2977 const struct rte_flow_attr *attr __rte_unused, 2978 const struct rte_flow_item items[] __rte_unused, 2979 const struct rte_flow_action actions[] __rte_unused, 2980 struct rte_flow_error *error) 2981 { 2982 rte_flow_error_set(error, ENOTSUP, 2983 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2984 return NULL; 2985 } 2986 2987 static int 2988 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 2989 struct mlx5_flow *dev_flow __rte_unused, 2990 const struct rte_flow_attr *attr __rte_unused, 2991 const struct rte_flow_item items[] __rte_unused, 2992 const struct rte_flow_action actions[] __rte_unused, 2993 struct rte_flow_error *error) 2994 { 2995 return rte_flow_error_set(error, ENOTSUP, 2996 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2997 } 2998 2999 static int 3000 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 3001 struct rte_flow *flow __rte_unused, 3002 struct rte_flow_error *error) 3003 { 3004 return rte_flow_error_set(error, ENOTSUP, 3005 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3006 } 3007 3008 static void 3009 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 3010 struct rte_flow *flow __rte_unused) 3011 { 3012 } 3013 3014 static void 3015 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 3016 struct rte_flow *flow __rte_unused) 3017 { 3018 } 3019 3020 static int 3021 flow_null_query(struct rte_eth_dev *dev __rte_unused, 3022 struct rte_flow *flow __rte_unused, 3023 const struct rte_flow_action *actions __rte_unused, 3024 void *data __rte_unused, 3025 struct rte_flow_error *error) 3026 { 3027 return rte_flow_error_set(error, ENOTSUP, 3028 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3029 } 3030 3031 static int 3032 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused, 3033 uint32_t domains __rte_unused, 3034 uint32_t flags __rte_unused) 3035 { 3036 return 0; 3037 } 3038 3039 /* Void driver to protect from null pointer reference. */ 3040 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 3041 .validate = flow_null_validate, 3042 .prepare = flow_null_prepare, 3043 .translate = flow_null_translate, 3044 .apply = flow_null_apply, 3045 .remove = flow_null_remove, 3046 .destroy = flow_null_destroy, 3047 .query = flow_null_query, 3048 .sync_domain = flow_null_sync_domain, 3049 }; 3050 3051 /** 3052 * Select flow driver type according to flow attributes and device 3053 * configuration. 3054 * 3055 * @param[in] dev 3056 * Pointer to the dev structure. 3057 * @param[in] attr 3058 * Pointer to the flow attributes. 3059 * 3060 * @return 3061 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 3062 */ 3063 static enum mlx5_flow_drv_type 3064 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 3065 { 3066 struct mlx5_priv *priv = dev->data->dev_private; 3067 /* The OS can determine first a specific flow type (DV, VERBS) */ 3068 enum mlx5_flow_drv_type type = mlx5_flow_os_get_type(); 3069 3070 if (type != MLX5_FLOW_TYPE_MAX) 3071 return type; 3072 /* If no OS specific type - continue with DV/VERBS selection */ 3073 if (attr->transfer && priv->config.dv_esw_en) 3074 type = MLX5_FLOW_TYPE_DV; 3075 if (!attr->transfer) 3076 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 3077 MLX5_FLOW_TYPE_VERBS; 3078 return type; 3079 } 3080 3081 #define flow_get_drv_ops(type) flow_drv_ops[type] 3082 3083 /** 3084 * Flow driver validation API. This abstracts calling driver specific functions. 3085 * The type of flow driver is determined according to flow attributes. 3086 * 3087 * @param[in] dev 3088 * Pointer to the dev structure. 3089 * @param[in] attr 3090 * Pointer to the flow attributes. 3091 * @param[in] items 3092 * Pointer to the list of items. 3093 * @param[in] actions 3094 * Pointer to the list of actions. 3095 * @param[in] external 3096 * This flow rule is created by request external to PMD. 3097 * @param[in] hairpin 3098 * Number of hairpin TX actions, 0 means classic flow. 3099 * @param[out] error 3100 * Pointer to the error structure. 3101 * 3102 * @return 3103 * 0 on success, a negative errno value otherwise and rte_errno is set. 3104 */ 3105 static inline int 3106 flow_drv_validate(struct rte_eth_dev *dev, 3107 const struct rte_flow_attr *attr, 3108 const struct rte_flow_item items[], 3109 const struct rte_flow_action actions[], 3110 bool external, int hairpin, struct rte_flow_error *error) 3111 { 3112 const struct mlx5_flow_driver_ops *fops; 3113 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 3114 3115 fops = flow_get_drv_ops(type); 3116 return fops->validate(dev, attr, items, actions, external, 3117 hairpin, error); 3118 } 3119 3120 /** 3121 * Flow driver preparation API. This abstracts calling driver specific 3122 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3123 * calculates the size of memory required for device flow, allocates the memory, 3124 * initializes the device flow and returns the pointer. 3125 * 3126 * @note 3127 * This function initializes device flow structure such as dv or verbs in 3128 * struct mlx5_flow. However, it is caller's responsibility to initialize the 3129 * rest. For example, adding returning device flow to flow->dev_flow list and 3130 * setting backward reference to the flow should be done out of this function. 3131 * layers field is not filled either. 3132 * 3133 * @param[in] dev 3134 * Pointer to the dev structure. 3135 * @param[in] attr 3136 * Pointer to the flow attributes. 3137 * @param[in] items 3138 * Pointer to the list of items. 3139 * @param[in] actions 3140 * Pointer to the list of actions. 3141 * @param[in] flow_idx 3142 * This memory pool index to the flow. 3143 * @param[out] error 3144 * Pointer to the error structure. 3145 * 3146 * @return 3147 * Pointer to device flow on success, otherwise NULL and rte_errno is set. 3148 */ 3149 static inline struct mlx5_flow * 3150 flow_drv_prepare(struct rte_eth_dev *dev, 3151 const struct rte_flow *flow, 3152 const struct rte_flow_attr *attr, 3153 const struct rte_flow_item items[], 3154 const struct rte_flow_action actions[], 3155 uint32_t flow_idx, 3156 struct rte_flow_error *error) 3157 { 3158 const struct mlx5_flow_driver_ops *fops; 3159 enum mlx5_flow_drv_type type = flow->drv_type; 3160 struct mlx5_flow *mlx5_flow = NULL; 3161 3162 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3163 fops = flow_get_drv_ops(type); 3164 mlx5_flow = fops->prepare(dev, attr, items, actions, error); 3165 if (mlx5_flow) 3166 mlx5_flow->flow_idx = flow_idx; 3167 return mlx5_flow; 3168 } 3169 3170 /** 3171 * Flow driver translation API. This abstracts calling driver specific 3172 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3173 * translates a generic flow into a driver flow. flow_drv_prepare() must 3174 * precede. 3175 * 3176 * @note 3177 * dev_flow->layers could be filled as a result of parsing during translation 3178 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 3179 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 3180 * flow->actions could be overwritten even though all the expanded dev_flows 3181 * have the same actions. 3182 * 3183 * @param[in] dev 3184 * Pointer to the rte dev structure. 3185 * @param[in, out] dev_flow 3186 * Pointer to the mlx5 flow. 3187 * @param[in] attr 3188 * Pointer to the flow attributes. 3189 * @param[in] items 3190 * Pointer to the list of items. 3191 * @param[in] actions 3192 * Pointer to the list of actions. 3193 * @param[out] error 3194 * Pointer to the error structure. 3195 * 3196 * @return 3197 * 0 on success, a negative errno value otherwise and rte_errno is set. 3198 */ 3199 static inline int 3200 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 3201 const struct rte_flow_attr *attr, 3202 const struct rte_flow_item items[], 3203 const struct rte_flow_action actions[], 3204 struct rte_flow_error *error) 3205 { 3206 const struct mlx5_flow_driver_ops *fops; 3207 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 3208 3209 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3210 fops = flow_get_drv_ops(type); 3211 return fops->translate(dev, dev_flow, attr, items, actions, error); 3212 } 3213 3214 /** 3215 * Flow driver apply API. This abstracts calling driver specific functions. 3216 * Parent flow (rte_flow) should have driver type (drv_type). It applies 3217 * translated driver flows on to device. flow_drv_translate() must precede. 3218 * 3219 * @param[in] dev 3220 * Pointer to Ethernet device structure. 3221 * @param[in, out] flow 3222 * Pointer to flow structure. 3223 * @param[out] error 3224 * Pointer to error structure. 3225 * 3226 * @return 3227 * 0 on success, a negative errno value otherwise and rte_errno is set. 3228 */ 3229 static inline int 3230 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 3231 struct rte_flow_error *error) 3232 { 3233 const struct mlx5_flow_driver_ops *fops; 3234 enum mlx5_flow_drv_type type = flow->drv_type; 3235 3236 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3237 fops = flow_get_drv_ops(type); 3238 return fops->apply(dev, flow, error); 3239 } 3240 3241 /** 3242 * Flow driver remove API. This abstracts calling driver specific functions. 3243 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 3244 * on device. All the resources of the flow should be freed by calling 3245 * flow_drv_destroy(). 3246 * 3247 * @param[in] dev 3248 * Pointer to Ethernet device. 3249 * @param[in, out] flow 3250 * Pointer to flow structure. 3251 */ 3252 static inline void 3253 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 3254 { 3255 const struct mlx5_flow_driver_ops *fops; 3256 enum mlx5_flow_drv_type type = flow->drv_type; 3257 3258 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3259 fops = flow_get_drv_ops(type); 3260 fops->remove(dev, flow); 3261 } 3262 3263 /** 3264 * Flow driver destroy API. This abstracts calling driver specific functions. 3265 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 3266 * on device and releases resources of the flow. 3267 * 3268 * @param[in] dev 3269 * Pointer to Ethernet device. 3270 * @param[in, out] flow 3271 * Pointer to flow structure. 3272 */ 3273 static inline void 3274 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 3275 { 3276 const struct mlx5_flow_driver_ops *fops; 3277 enum mlx5_flow_drv_type type = flow->drv_type; 3278 3279 flow_mreg_split_qrss_release(dev, flow); 3280 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3281 fops = flow_get_drv_ops(type); 3282 fops->destroy(dev, flow); 3283 } 3284 3285 /** 3286 * Get RSS action from the action list. 3287 * 3288 * @param[in] actions 3289 * Pointer to the list of actions. 3290 * 3291 * @return 3292 * Pointer to the RSS action if exist, else return NULL. 3293 */ 3294 static const struct rte_flow_action_rss* 3295 flow_get_rss_action(const struct rte_flow_action actions[]) 3296 { 3297 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3298 switch (actions->type) { 3299 case RTE_FLOW_ACTION_TYPE_RSS: 3300 return (const struct rte_flow_action_rss *) 3301 actions->conf; 3302 default: 3303 break; 3304 } 3305 } 3306 return NULL; 3307 } 3308 3309 /* maps shared action to translated non shared in some actions array */ 3310 struct mlx5_translated_shared_action { 3311 struct rte_flow_shared_action *action; /**< Shared action */ 3312 int index; /**< Index in related array of rte_flow_action */ 3313 }; 3314 3315 /** 3316 * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related 3317 * non shared action if translation possible. 3318 * This functionality used to run same execution path for both shared & non 3319 * shared actions on flow create. All necessary preparations for shared 3320 * action handling should be preformed on *shared* actions list returned 3321 * from this call. 3322 * 3323 * @param[in] actions 3324 * List of actions to translate. 3325 * @param[out] shared 3326 * List to store translated shared actions. 3327 * @param[in, out] shared_n 3328 * Size of *shared* array. On return should be updated with number of shared 3329 * actions retrieved from the *actions* list. 3330 * @param[out] translated_actions 3331 * List of actions where all shared actions were translated to non shared 3332 * if possible. NULL if no translation took place. 3333 * @param[out] error 3334 * Pointer to the error structure. 3335 * 3336 * @return 3337 * 0 on success, a negative errno value otherwise and rte_errno is set. 3338 */ 3339 static int 3340 flow_shared_actions_translate(const struct rte_flow_action actions[], 3341 struct mlx5_translated_shared_action *shared, 3342 int *shared_n, 3343 struct rte_flow_action **translated_actions, 3344 struct rte_flow_error *error) 3345 { 3346 struct rte_flow_action *translated = NULL; 3347 size_t actions_size; 3348 int n; 3349 int copied_n = 0; 3350 struct mlx5_translated_shared_action *shared_end = NULL; 3351 3352 for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) { 3353 if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED) 3354 continue; 3355 if (copied_n == *shared_n) { 3356 return rte_flow_error_set 3357 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, 3358 NULL, "too many shared actions"); 3359 } 3360 rte_memcpy(&shared[copied_n].action, &actions[n].conf, 3361 sizeof(actions[n].conf)); 3362 shared[copied_n].index = n; 3363 copied_n++; 3364 } 3365 n++; 3366 *shared_n = copied_n; 3367 if (!copied_n) 3368 return 0; 3369 actions_size = sizeof(struct rte_flow_action) * n; 3370 translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY); 3371 if (!translated) { 3372 rte_errno = ENOMEM; 3373 return -ENOMEM; 3374 } 3375 memcpy(translated, actions, actions_size); 3376 for (shared_end = shared + copied_n; shared < shared_end; shared++) { 3377 const struct rte_flow_shared_action *shared_action; 3378 3379 shared_action = shared->action; 3380 switch (shared_action->type) { 3381 case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS: 3382 translated[shared->index].type = 3383 RTE_FLOW_ACTION_TYPE_RSS; 3384 translated[shared->index].conf = 3385 &shared_action->rss.origin; 3386 break; 3387 default: 3388 mlx5_free(translated); 3389 return rte_flow_error_set 3390 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, 3391 NULL, "invalid shared action type"); 3392 } 3393 } 3394 *translated_actions = translated; 3395 return 0; 3396 } 3397 3398 /** 3399 * Get Shared RSS action from the action list. 3400 * 3401 * @param[in] shared 3402 * Pointer to the list of actions. 3403 * @param[in] shared_n 3404 * Actions list length. 3405 * 3406 * @return 3407 * Pointer to the MLX5 RSS action if exists, otherwise return NULL. 3408 */ 3409 static struct mlx5_shared_action_rss * 3410 flow_get_shared_rss_action(struct mlx5_translated_shared_action *shared, 3411 int shared_n) 3412 { 3413 struct mlx5_translated_shared_action *shared_end; 3414 3415 for (shared_end = shared + shared_n; shared < shared_end; shared++) { 3416 struct rte_flow_shared_action *shared_action; 3417 3418 shared_action = shared->action; 3419 switch (shared_action->type) { 3420 case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS: 3421 __atomic_add_fetch(&shared_action->refcnt, 1, 3422 __ATOMIC_RELAXED); 3423 return &shared_action->rss; 3424 default: 3425 break; 3426 } 3427 } 3428 return NULL; 3429 } 3430 3431 struct rte_flow_shared_action * 3432 mlx5_flow_get_shared_rss(struct rte_flow *flow) 3433 { 3434 if (flow->shared_rss) 3435 return container_of(flow->shared_rss, 3436 struct rte_flow_shared_action, rss); 3437 else 3438 return NULL; 3439 } 3440 3441 static unsigned int 3442 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 3443 { 3444 const struct rte_flow_item *item; 3445 unsigned int has_vlan = 0; 3446 3447 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 3448 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 3449 has_vlan = 1; 3450 break; 3451 } 3452 } 3453 if (has_vlan) 3454 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 3455 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 3456 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 3457 MLX5_EXPANSION_ROOT_OUTER; 3458 } 3459 3460 /** 3461 * Get layer flags from the prefix flow. 3462 * 3463 * Some flows may be split to several subflows, the prefix subflow gets the 3464 * match items and the suffix sub flow gets the actions. 3465 * Some actions need the user defined match item flags to get the detail for 3466 * the action. 3467 * This function helps the suffix flow to get the item layer flags from prefix 3468 * subflow. 3469 * 3470 * @param[in] dev_flow 3471 * Pointer the created preifx subflow. 3472 * 3473 * @return 3474 * The layers get from prefix subflow. 3475 */ 3476 static inline uint64_t 3477 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow) 3478 { 3479 uint64_t layers = 0; 3480 3481 /* 3482 * Layers bits could be localization, but usually the compiler will 3483 * help to do the optimization work for source code. 3484 * If no decap actions, use the layers directly. 3485 */ 3486 if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP)) 3487 return dev_flow->handle->layers; 3488 /* Convert L3 layers with decap action. */ 3489 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4) 3490 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4; 3491 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6) 3492 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6; 3493 /* Convert L4 layers with decap action. */ 3494 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP) 3495 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP; 3496 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP) 3497 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP; 3498 return layers; 3499 } 3500 3501 /** 3502 * Get metadata split action information. 3503 * 3504 * @param[in] actions 3505 * Pointer to the list of actions. 3506 * @param[out] qrss 3507 * Pointer to the return pointer. 3508 * @param[out] qrss_type 3509 * Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned 3510 * if no QUEUE/RSS is found. 3511 * @param[out] encap_idx 3512 * Pointer to the index of the encap action if exists, otherwise the last 3513 * action index. 3514 * 3515 * @return 3516 * Total number of actions. 3517 */ 3518 static int 3519 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[], 3520 const struct rte_flow_action **qrss, 3521 int *encap_idx) 3522 { 3523 const struct rte_flow_action_raw_encap *raw_encap; 3524 int actions_n = 0; 3525 int raw_decap_idx = -1; 3526 3527 *encap_idx = -1; 3528 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3529 switch (actions->type) { 3530 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3531 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3532 *encap_idx = actions_n; 3533 break; 3534 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 3535 raw_decap_idx = actions_n; 3536 break; 3537 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3538 raw_encap = actions->conf; 3539 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 3540 *encap_idx = raw_decap_idx != -1 ? 3541 raw_decap_idx : actions_n; 3542 break; 3543 case RTE_FLOW_ACTION_TYPE_QUEUE: 3544 case RTE_FLOW_ACTION_TYPE_RSS: 3545 *qrss = actions; 3546 break; 3547 default: 3548 break; 3549 } 3550 actions_n++; 3551 } 3552 if (*encap_idx == -1) 3553 *encap_idx = actions_n; 3554 /* Count RTE_FLOW_ACTION_TYPE_END. */ 3555 return actions_n + 1; 3556 } 3557 3558 /** 3559 * Check meter action from the action list. 3560 * 3561 * @param[in] actions 3562 * Pointer to the list of actions. 3563 * @param[out] mtr 3564 * Pointer to the meter exist flag. 3565 * 3566 * @return 3567 * Total number of actions. 3568 */ 3569 static int 3570 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr) 3571 { 3572 int actions_n = 0; 3573 3574 MLX5_ASSERT(mtr); 3575 *mtr = 0; 3576 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3577 switch (actions->type) { 3578 case RTE_FLOW_ACTION_TYPE_METER: 3579 *mtr = 1; 3580 break; 3581 default: 3582 break; 3583 } 3584 actions_n++; 3585 } 3586 /* Count RTE_FLOW_ACTION_TYPE_END. */ 3587 return actions_n + 1; 3588 } 3589 3590 /** 3591 * Check if the flow should be split due to hairpin. 3592 * The reason for the split is that in current HW we can't 3593 * support encap and push-vlan on Rx, so if a flow contains 3594 * these actions we move it to Tx. 3595 * 3596 * @param dev 3597 * Pointer to Ethernet device. 3598 * @param[in] attr 3599 * Flow rule attributes. 3600 * @param[in] actions 3601 * Associated actions (list terminated by the END action). 3602 * 3603 * @return 3604 * > 0 the number of actions and the flow should be split, 3605 * 0 when no split required. 3606 */ 3607 static int 3608 flow_check_hairpin_split(struct rte_eth_dev *dev, 3609 const struct rte_flow_attr *attr, 3610 const struct rte_flow_action actions[]) 3611 { 3612 int queue_action = 0; 3613 int action_n = 0; 3614 int split = 0; 3615 const struct rte_flow_action_queue *queue; 3616 const struct rte_flow_action_rss *rss; 3617 const struct rte_flow_action_raw_encap *raw_encap; 3618 const struct rte_eth_hairpin_conf *conf; 3619 3620 if (!attr->ingress) 3621 return 0; 3622 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3623 switch (actions->type) { 3624 case RTE_FLOW_ACTION_TYPE_QUEUE: 3625 queue = actions->conf; 3626 if (queue == NULL) 3627 return 0; 3628 conf = mlx5_rxq_get_hairpin_conf(dev, queue->index); 3629 if (conf != NULL && !!conf->tx_explicit) 3630 return 0; 3631 queue_action = 1; 3632 action_n++; 3633 break; 3634 case RTE_FLOW_ACTION_TYPE_RSS: 3635 rss = actions->conf; 3636 if (rss == NULL || rss->queue_num == 0) 3637 return 0; 3638 conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]); 3639 if (conf != NULL && !!conf->tx_explicit) 3640 return 0; 3641 queue_action = 1; 3642 action_n++; 3643 break; 3644 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3645 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3646 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 3647 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 3648 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 3649 split++; 3650 action_n++; 3651 break; 3652 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3653 raw_encap = actions->conf; 3654 if (raw_encap->size > 3655 (sizeof(struct rte_flow_item_eth) + 3656 sizeof(struct rte_flow_item_ipv4))) 3657 split++; 3658 action_n++; 3659 break; 3660 default: 3661 action_n++; 3662 break; 3663 } 3664 } 3665 if (split && queue_action) 3666 return action_n; 3667 return 0; 3668 } 3669 3670 /* Declare flow create/destroy prototype in advance. */ 3671 static uint32_t 3672 flow_list_create(struct rte_eth_dev *dev, uint32_t *list, 3673 const struct rte_flow_attr *attr, 3674 const struct rte_flow_item items[], 3675 const struct rte_flow_action actions[], 3676 bool external, struct rte_flow_error *error); 3677 3678 static void 3679 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list, 3680 uint32_t flow_idx); 3681 3682 /** 3683 * Add a flow of copying flow metadata registers in RX_CP_TBL. 3684 * 3685 * As mark_id is unique, if there's already a registered flow for the mark_id, 3686 * return by increasing the reference counter of the resource. Otherwise, create 3687 * the resource (mcp_res) and flow. 3688 * 3689 * Flow looks like, 3690 * - If ingress port is ANY and reg_c[1] is mark_id, 3691 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 3692 * 3693 * For default flow (zero mark_id), flow is like, 3694 * - If ingress port is ANY, 3695 * reg_b := reg_c[0] and jump to RX_ACT_TBL. 3696 * 3697 * @param dev 3698 * Pointer to Ethernet device. 3699 * @param mark_id 3700 * ID of MARK action, zero means default flow for META. 3701 * @param[out] error 3702 * Perform verbose error reporting if not NULL. 3703 * 3704 * @return 3705 * Associated resource on success, NULL otherwise and rte_errno is set. 3706 */ 3707 static struct mlx5_flow_mreg_copy_resource * 3708 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id, 3709 struct rte_flow_error *error) 3710 { 3711 struct mlx5_priv *priv = dev->data->dev_private; 3712 struct rte_flow_attr attr = { 3713 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 3714 .ingress = 1, 3715 }; 3716 struct mlx5_rte_flow_item_tag tag_spec = { 3717 .data = mark_id, 3718 }; 3719 struct rte_flow_item items[] = { 3720 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, }, 3721 }; 3722 struct rte_flow_action_mark ftag = { 3723 .id = mark_id, 3724 }; 3725 struct mlx5_flow_action_copy_mreg cp_mreg = { 3726 .dst = REG_B, 3727 .src = REG_NON, 3728 }; 3729 struct rte_flow_action_jump jump = { 3730 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 3731 }; 3732 struct rte_flow_action actions[] = { 3733 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, }, 3734 }; 3735 struct mlx5_flow_mreg_copy_resource *mcp_res; 3736 uint32_t idx = 0; 3737 int ret; 3738 3739 /* Fill the register fileds in the flow. */ 3740 ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error); 3741 if (ret < 0) 3742 return NULL; 3743 tag_spec.id = ret; 3744 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 3745 if (ret < 0) 3746 return NULL; 3747 cp_mreg.src = ret; 3748 /* Check if already registered. */ 3749 MLX5_ASSERT(priv->mreg_cp_tbl); 3750 mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, NULL); 3751 if (mcp_res) { 3752 /* For non-default rule. */ 3753 if (mark_id != MLX5_DEFAULT_COPY_ID) 3754 mcp_res->refcnt++; 3755 MLX5_ASSERT(mark_id != MLX5_DEFAULT_COPY_ID || 3756 mcp_res->refcnt == 1); 3757 return mcp_res; 3758 } 3759 /* Provide the full width of FLAG specific value. */ 3760 if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT)) 3761 tag_spec.data = MLX5_FLOW_MARK_DEFAULT; 3762 /* Build a new flow. */ 3763 if (mark_id != MLX5_DEFAULT_COPY_ID) { 3764 items[0] = (struct rte_flow_item){ 3765 .type = (enum rte_flow_item_type) 3766 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 3767 .spec = &tag_spec, 3768 }; 3769 items[1] = (struct rte_flow_item){ 3770 .type = RTE_FLOW_ITEM_TYPE_END, 3771 }; 3772 actions[0] = (struct rte_flow_action){ 3773 .type = (enum rte_flow_action_type) 3774 MLX5_RTE_FLOW_ACTION_TYPE_MARK, 3775 .conf = &ftag, 3776 }; 3777 actions[1] = (struct rte_flow_action){ 3778 .type = (enum rte_flow_action_type) 3779 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 3780 .conf = &cp_mreg, 3781 }; 3782 actions[2] = (struct rte_flow_action){ 3783 .type = RTE_FLOW_ACTION_TYPE_JUMP, 3784 .conf = &jump, 3785 }; 3786 actions[3] = (struct rte_flow_action){ 3787 .type = RTE_FLOW_ACTION_TYPE_END, 3788 }; 3789 } else { 3790 /* Default rule, wildcard match. */ 3791 attr.priority = MLX5_FLOW_PRIO_RSVD; 3792 items[0] = (struct rte_flow_item){ 3793 .type = RTE_FLOW_ITEM_TYPE_END, 3794 }; 3795 actions[0] = (struct rte_flow_action){ 3796 .type = (enum rte_flow_action_type) 3797 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 3798 .conf = &cp_mreg, 3799 }; 3800 actions[1] = (struct rte_flow_action){ 3801 .type = RTE_FLOW_ACTION_TYPE_JUMP, 3802 .conf = &jump, 3803 }; 3804 actions[2] = (struct rte_flow_action){ 3805 .type = RTE_FLOW_ACTION_TYPE_END, 3806 }; 3807 } 3808 /* Build a new entry. */ 3809 mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx); 3810 if (!mcp_res) { 3811 rte_errno = ENOMEM; 3812 return NULL; 3813 } 3814 mcp_res->idx = idx; 3815 /* 3816 * The copy Flows are not included in any list. There 3817 * ones are referenced from other Flows and can not 3818 * be applied, removed, deleted in ardbitrary order 3819 * by list traversing. 3820 */ 3821 mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items, 3822 actions, false, error); 3823 if (!mcp_res->rix_flow) 3824 goto error; 3825 mcp_res->refcnt++; 3826 mcp_res->hlist_ent.key = mark_id; 3827 ret = !mlx5_hlist_insert(priv->mreg_cp_tbl, &mcp_res->hlist_ent); 3828 MLX5_ASSERT(!ret); 3829 if (ret) 3830 goto error; 3831 return mcp_res; 3832 error: 3833 if (mcp_res->rix_flow) 3834 flow_list_destroy(dev, NULL, mcp_res->rix_flow); 3835 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 3836 return NULL; 3837 } 3838 3839 /** 3840 * Release flow in RX_CP_TBL. 3841 * 3842 * @param dev 3843 * Pointer to Ethernet device. 3844 * @flow 3845 * Parent flow for wich copying is provided. 3846 */ 3847 static void 3848 flow_mreg_del_copy_action(struct rte_eth_dev *dev, 3849 struct rte_flow *flow) 3850 { 3851 struct mlx5_flow_mreg_copy_resource *mcp_res; 3852 struct mlx5_priv *priv = dev->data->dev_private; 3853 3854 if (!flow->rix_mreg_copy) 3855 return; 3856 mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP], 3857 flow->rix_mreg_copy); 3858 if (!mcp_res || !priv->mreg_cp_tbl) 3859 return; 3860 if (flow->copy_applied) { 3861 MLX5_ASSERT(mcp_res->appcnt); 3862 flow->copy_applied = 0; 3863 --mcp_res->appcnt; 3864 if (!mcp_res->appcnt) { 3865 struct rte_flow *mcp_flow = mlx5_ipool_get 3866 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], 3867 mcp_res->rix_flow); 3868 3869 if (mcp_flow) 3870 flow_drv_remove(dev, mcp_flow); 3871 } 3872 } 3873 /* 3874 * We do not check availability of metadata registers here, 3875 * because copy resources are not allocated in this case. 3876 */ 3877 if (--mcp_res->refcnt) 3878 return; 3879 MLX5_ASSERT(mcp_res->rix_flow); 3880 flow_list_destroy(dev, NULL, mcp_res->rix_flow); 3881 mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent); 3882 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 3883 flow->rix_mreg_copy = 0; 3884 } 3885 3886 /** 3887 * Start flow in RX_CP_TBL. 3888 * 3889 * @param dev 3890 * Pointer to Ethernet device. 3891 * @flow 3892 * Parent flow for wich copying is provided. 3893 * 3894 * @return 3895 * 0 on success, a negative errno value otherwise and rte_errno is set. 3896 */ 3897 static int 3898 flow_mreg_start_copy_action(struct rte_eth_dev *dev, 3899 struct rte_flow *flow) 3900 { 3901 struct mlx5_flow_mreg_copy_resource *mcp_res; 3902 struct mlx5_priv *priv = dev->data->dev_private; 3903 int ret; 3904 3905 if (!flow->rix_mreg_copy || flow->copy_applied) 3906 return 0; 3907 mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP], 3908 flow->rix_mreg_copy); 3909 if (!mcp_res) 3910 return 0; 3911 if (!mcp_res->appcnt) { 3912 struct rte_flow *mcp_flow = mlx5_ipool_get 3913 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], 3914 mcp_res->rix_flow); 3915 3916 if (mcp_flow) { 3917 ret = flow_drv_apply(dev, mcp_flow, NULL); 3918 if (ret) 3919 return ret; 3920 } 3921 } 3922 ++mcp_res->appcnt; 3923 flow->copy_applied = 1; 3924 return 0; 3925 } 3926 3927 /** 3928 * Stop flow in RX_CP_TBL. 3929 * 3930 * @param dev 3931 * Pointer to Ethernet device. 3932 * @flow 3933 * Parent flow for wich copying is provided. 3934 */ 3935 static void 3936 flow_mreg_stop_copy_action(struct rte_eth_dev *dev, 3937 struct rte_flow *flow) 3938 { 3939 struct mlx5_flow_mreg_copy_resource *mcp_res; 3940 struct mlx5_priv *priv = dev->data->dev_private; 3941 3942 if (!flow->rix_mreg_copy || !flow->copy_applied) 3943 return; 3944 mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP], 3945 flow->rix_mreg_copy); 3946 if (!mcp_res) 3947 return; 3948 MLX5_ASSERT(mcp_res->appcnt); 3949 --mcp_res->appcnt; 3950 flow->copy_applied = 0; 3951 if (!mcp_res->appcnt) { 3952 struct rte_flow *mcp_flow = mlx5_ipool_get 3953 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], 3954 mcp_res->rix_flow); 3955 3956 if (mcp_flow) 3957 flow_drv_remove(dev, mcp_flow); 3958 } 3959 } 3960 3961 /** 3962 * Remove the default copy action from RX_CP_TBL. 3963 * 3964 * @param dev 3965 * Pointer to Ethernet device. 3966 */ 3967 static void 3968 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev) 3969 { 3970 struct mlx5_flow_mreg_copy_resource *mcp_res; 3971 struct mlx5_priv *priv = dev->data->dev_private; 3972 3973 /* Check if default flow is registered. */ 3974 if (!priv->mreg_cp_tbl) 3975 return; 3976 mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl, 3977 MLX5_DEFAULT_COPY_ID, NULL); 3978 if (!mcp_res) 3979 return; 3980 MLX5_ASSERT(mcp_res->rix_flow); 3981 flow_list_destroy(dev, NULL, mcp_res->rix_flow); 3982 mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent); 3983 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 3984 } 3985 3986 /** 3987 * Add the default copy action in in RX_CP_TBL. 3988 * 3989 * @param dev 3990 * Pointer to Ethernet device. 3991 * @param[out] error 3992 * Perform verbose error reporting if not NULL. 3993 * 3994 * @return 3995 * 0 for success, negative value otherwise and rte_errno is set. 3996 */ 3997 static int 3998 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev, 3999 struct rte_flow_error *error) 4000 { 4001 struct mlx5_priv *priv = dev->data->dev_private; 4002 struct mlx5_flow_mreg_copy_resource *mcp_res; 4003 4004 /* Check whether extensive metadata feature is engaged. */ 4005 if (!priv->config.dv_flow_en || 4006 priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 4007 !mlx5_flow_ext_mreg_supported(dev) || 4008 !priv->sh->dv_regc0_mask) 4009 return 0; 4010 mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error); 4011 if (!mcp_res) 4012 return -rte_errno; 4013 return 0; 4014 } 4015 4016 /** 4017 * Add a flow of copying flow metadata registers in RX_CP_TBL. 4018 * 4019 * All the flow having Q/RSS action should be split by 4020 * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL 4021 * performs the following, 4022 * - CQE->flow_tag := reg_c[1] (MARK) 4023 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 4024 * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1] 4025 * but there should be a flow per each MARK ID set by MARK action. 4026 * 4027 * For the aforementioned reason, if there's a MARK action in flow's action 4028 * list, a corresponding flow should be added to the RX_CP_TBL in order to copy 4029 * the MARK ID to CQE's flow_tag like, 4030 * - If reg_c[1] is mark_id, 4031 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 4032 * 4033 * For SET_META action which stores value in reg_c[0], as the destination is 4034 * also a flow metadata register (reg_b), adding a default flow is enough. Zero 4035 * MARK ID means the default flow. The default flow looks like, 4036 * - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL. 4037 * 4038 * @param dev 4039 * Pointer to Ethernet device. 4040 * @param flow 4041 * Pointer to flow structure. 4042 * @param[in] actions 4043 * Pointer to the list of actions. 4044 * @param[out] error 4045 * Perform verbose error reporting if not NULL. 4046 * 4047 * @return 4048 * 0 on success, negative value otherwise and rte_errno is set. 4049 */ 4050 static int 4051 flow_mreg_update_copy_table(struct rte_eth_dev *dev, 4052 struct rte_flow *flow, 4053 const struct rte_flow_action *actions, 4054 struct rte_flow_error *error) 4055 { 4056 struct mlx5_priv *priv = dev->data->dev_private; 4057 struct mlx5_dev_config *config = &priv->config; 4058 struct mlx5_flow_mreg_copy_resource *mcp_res; 4059 const struct rte_flow_action_mark *mark; 4060 4061 /* Check whether extensive metadata feature is engaged. */ 4062 if (!config->dv_flow_en || 4063 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 4064 !mlx5_flow_ext_mreg_supported(dev) || 4065 !priv->sh->dv_regc0_mask) 4066 return 0; 4067 /* Find MARK action. */ 4068 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4069 switch (actions->type) { 4070 case RTE_FLOW_ACTION_TYPE_FLAG: 4071 mcp_res = flow_mreg_add_copy_action 4072 (dev, MLX5_FLOW_MARK_DEFAULT, error); 4073 if (!mcp_res) 4074 return -rte_errno; 4075 flow->rix_mreg_copy = mcp_res->idx; 4076 if (dev->data->dev_started) { 4077 mcp_res->appcnt++; 4078 flow->copy_applied = 1; 4079 } 4080 return 0; 4081 case RTE_FLOW_ACTION_TYPE_MARK: 4082 mark = (const struct rte_flow_action_mark *) 4083 actions->conf; 4084 mcp_res = 4085 flow_mreg_add_copy_action(dev, mark->id, error); 4086 if (!mcp_res) 4087 return -rte_errno; 4088 flow->rix_mreg_copy = mcp_res->idx; 4089 if (dev->data->dev_started) { 4090 mcp_res->appcnt++; 4091 flow->copy_applied = 1; 4092 } 4093 return 0; 4094 default: 4095 break; 4096 } 4097 } 4098 return 0; 4099 } 4100 4101 #define MLX5_MAX_SPLIT_ACTIONS 24 4102 #define MLX5_MAX_SPLIT_ITEMS 24 4103 4104 /** 4105 * Split the hairpin flow. 4106 * Since HW can't support encap and push-vlan on Rx, we move these 4107 * actions to Tx. 4108 * If the count action is after the encap then we also 4109 * move the count action. in this case the count will also measure 4110 * the outer bytes. 4111 * 4112 * @param dev 4113 * Pointer to Ethernet device. 4114 * @param[in] actions 4115 * Associated actions (list terminated by the END action). 4116 * @param[out] actions_rx 4117 * Rx flow actions. 4118 * @param[out] actions_tx 4119 * Tx flow actions.. 4120 * @param[out] pattern_tx 4121 * The pattern items for the Tx flow. 4122 * @param[out] flow_id 4123 * The flow ID connected to this flow. 4124 * 4125 * @return 4126 * 0 on success. 4127 */ 4128 static int 4129 flow_hairpin_split(struct rte_eth_dev *dev, 4130 const struct rte_flow_action actions[], 4131 struct rte_flow_action actions_rx[], 4132 struct rte_flow_action actions_tx[], 4133 struct rte_flow_item pattern_tx[], 4134 uint32_t flow_id) 4135 { 4136 const struct rte_flow_action_raw_encap *raw_encap; 4137 const struct rte_flow_action_raw_decap *raw_decap; 4138 struct mlx5_rte_flow_action_set_tag *set_tag; 4139 struct rte_flow_action *tag_action; 4140 struct mlx5_rte_flow_item_tag *tag_item; 4141 struct rte_flow_item *item; 4142 char *addr; 4143 int encap = 0; 4144 4145 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4146 switch (actions->type) { 4147 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 4148 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 4149 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4150 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4151 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 4152 rte_memcpy(actions_tx, actions, 4153 sizeof(struct rte_flow_action)); 4154 actions_tx++; 4155 break; 4156 case RTE_FLOW_ACTION_TYPE_COUNT: 4157 if (encap) { 4158 rte_memcpy(actions_tx, actions, 4159 sizeof(struct rte_flow_action)); 4160 actions_tx++; 4161 } else { 4162 rte_memcpy(actions_rx, actions, 4163 sizeof(struct rte_flow_action)); 4164 actions_rx++; 4165 } 4166 break; 4167 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4168 raw_encap = actions->conf; 4169 if (raw_encap->size > 4170 (sizeof(struct rte_flow_item_eth) + 4171 sizeof(struct rte_flow_item_ipv4))) { 4172 memcpy(actions_tx, actions, 4173 sizeof(struct rte_flow_action)); 4174 actions_tx++; 4175 encap = 1; 4176 } else { 4177 rte_memcpy(actions_rx, actions, 4178 sizeof(struct rte_flow_action)); 4179 actions_rx++; 4180 } 4181 break; 4182 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4183 raw_decap = actions->conf; 4184 if (raw_decap->size < 4185 (sizeof(struct rte_flow_item_eth) + 4186 sizeof(struct rte_flow_item_ipv4))) { 4187 memcpy(actions_tx, actions, 4188 sizeof(struct rte_flow_action)); 4189 actions_tx++; 4190 } else { 4191 rte_memcpy(actions_rx, actions, 4192 sizeof(struct rte_flow_action)); 4193 actions_rx++; 4194 } 4195 break; 4196 default: 4197 rte_memcpy(actions_rx, actions, 4198 sizeof(struct rte_flow_action)); 4199 actions_rx++; 4200 break; 4201 } 4202 } 4203 /* Add set meta action and end action for the Rx flow. */ 4204 tag_action = actions_rx; 4205 tag_action->type = (enum rte_flow_action_type) 4206 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4207 actions_rx++; 4208 rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action)); 4209 actions_rx++; 4210 set_tag = (void *)actions_rx; 4211 set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL); 4212 MLX5_ASSERT(set_tag->id > REG_NON); 4213 set_tag->data = flow_id; 4214 tag_action->conf = set_tag; 4215 /* Create Tx item list. */ 4216 rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action)); 4217 addr = (void *)&pattern_tx[2]; 4218 item = pattern_tx; 4219 item->type = (enum rte_flow_item_type) 4220 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 4221 tag_item = (void *)addr; 4222 tag_item->data = flow_id; 4223 tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL); 4224 MLX5_ASSERT(set_tag->id > REG_NON); 4225 item->spec = tag_item; 4226 addr += sizeof(struct mlx5_rte_flow_item_tag); 4227 tag_item = (void *)addr; 4228 tag_item->data = UINT32_MAX; 4229 tag_item->id = UINT16_MAX; 4230 item->mask = tag_item; 4231 item->last = NULL; 4232 item++; 4233 item->type = RTE_FLOW_ITEM_TYPE_END; 4234 return 0; 4235 } 4236 4237 __extension__ 4238 union tunnel_offload_mark { 4239 uint32_t val; 4240 struct { 4241 uint32_t app_reserve:8; 4242 uint32_t table_id:15; 4243 uint32_t transfer:1; 4244 uint32_t _unused_:8; 4245 }; 4246 }; 4247 4248 struct tunnel_default_miss_ctx { 4249 uint16_t *queue; 4250 __extension__ 4251 union { 4252 struct rte_flow_action_rss action_rss; 4253 struct rte_flow_action_queue miss_queue; 4254 struct rte_flow_action_jump miss_jump; 4255 uint8_t raw[0]; 4256 }; 4257 }; 4258 4259 static int 4260 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 4261 struct rte_flow *flow, 4262 const struct rte_flow_attr *attr, 4263 const struct rte_flow_action *app_actions, 4264 uint32_t flow_idx, 4265 struct tunnel_default_miss_ctx *ctx, 4266 struct rte_flow_error *error) 4267 { 4268 struct mlx5_priv *priv = dev->data->dev_private; 4269 struct mlx5_flow *dev_flow; 4270 struct rte_flow_attr miss_attr = *attr; 4271 const struct mlx5_flow_tunnel *tunnel = app_actions[0].conf; 4272 const struct rte_flow_item miss_items[2] = { 4273 { 4274 .type = RTE_FLOW_ITEM_TYPE_ETH, 4275 .spec = NULL, 4276 .last = NULL, 4277 .mask = NULL 4278 }, 4279 { 4280 .type = RTE_FLOW_ITEM_TYPE_END, 4281 .spec = NULL, 4282 .last = NULL, 4283 .mask = NULL 4284 } 4285 }; 4286 union tunnel_offload_mark mark_id; 4287 struct rte_flow_action_mark miss_mark; 4288 struct rte_flow_action miss_actions[3] = { 4289 [0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark }, 4290 [2] = { .type = RTE_FLOW_ACTION_TYPE_END, .conf = NULL } 4291 }; 4292 const struct rte_flow_action_jump *jump_data; 4293 uint32_t i, flow_table = 0; /* prevent compilation warning */ 4294 struct flow_grp_info grp_info = { 4295 .external = 1, 4296 .transfer = attr->transfer, 4297 .fdb_def_rule = !!priv->fdb_def_rule, 4298 .std_tbl_fix = 0, 4299 }; 4300 int ret; 4301 4302 if (!attr->transfer) { 4303 uint32_t q_size; 4304 4305 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS; 4306 q_size = priv->reta_idx_n * sizeof(ctx->queue[0]); 4307 ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size, 4308 0, SOCKET_ID_ANY); 4309 if (!ctx->queue) 4310 return rte_flow_error_set 4311 (error, ENOMEM, 4312 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 4313 NULL, "invalid default miss RSS"); 4314 ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT, 4315 ctx->action_rss.level = 0, 4316 ctx->action_rss.types = priv->rss_conf.rss_hf, 4317 ctx->action_rss.key_len = priv->rss_conf.rss_key_len, 4318 ctx->action_rss.queue_num = priv->reta_idx_n, 4319 ctx->action_rss.key = priv->rss_conf.rss_key, 4320 ctx->action_rss.queue = ctx->queue; 4321 if (!priv->reta_idx_n || !priv->rxqs_n) 4322 return rte_flow_error_set 4323 (error, EINVAL, 4324 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 4325 NULL, "invalid port configuration"); 4326 if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) 4327 ctx->action_rss.types = 0; 4328 for (i = 0; i != priv->reta_idx_n; ++i) 4329 ctx->queue[i] = (*priv->reta_idx)[i]; 4330 } else { 4331 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP; 4332 ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP; 4333 } 4334 miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw; 4335 for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++); 4336 jump_data = app_actions->conf; 4337 miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY; 4338 miss_attr.group = jump_data->group; 4339 ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group, 4340 &flow_table, grp_info, error); 4341 if (ret) 4342 return rte_flow_error_set(error, EINVAL, 4343 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 4344 NULL, "invalid tunnel id"); 4345 mark_id.app_reserve = 0; 4346 mark_id.table_id = tunnel_flow_tbl_to_id(flow_table); 4347 mark_id.transfer = !!attr->transfer; 4348 mark_id._unused_ = 0; 4349 miss_mark.id = mark_id.val; 4350 dev_flow = flow_drv_prepare(dev, flow, &miss_attr, 4351 miss_items, miss_actions, flow_idx, error); 4352 if (!dev_flow) 4353 return -rte_errno; 4354 dev_flow->flow = flow; 4355 dev_flow->external = true; 4356 dev_flow->tunnel = tunnel; 4357 /* Subflow object was created, we must include one in the list. */ 4358 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 4359 dev_flow->handle, next); 4360 DRV_LOG(DEBUG, 4361 "port %u tunnel type=%d id=%u miss rule priority=%u group=%u", 4362 dev->data->port_id, tunnel->app_tunnel.type, 4363 tunnel->tunnel_id, miss_attr.priority, miss_attr.group); 4364 ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items, 4365 miss_actions, error); 4366 if (!ret) 4367 ret = flow_mreg_update_copy_table(dev, flow, miss_actions, 4368 error); 4369 4370 return ret; 4371 } 4372 4373 /** 4374 * The last stage of splitting chain, just creates the subflow 4375 * without any modification. 4376 * 4377 * @param[in] dev 4378 * Pointer to Ethernet device. 4379 * @param[in] flow 4380 * Parent flow structure pointer. 4381 * @param[in, out] sub_flow 4382 * Pointer to return the created subflow, may be NULL. 4383 * @param[in] prefix_layers 4384 * Prefix subflow layers, may be 0. 4385 * @param[in] prefix_mark 4386 * Prefix subflow mark flag, may be 0. 4387 * @param[in] attr 4388 * Flow rule attributes. 4389 * @param[in] items 4390 * Pattern specification (list terminated by the END pattern item). 4391 * @param[in] actions 4392 * Associated actions (list terminated by the END action). 4393 * @param[in] external 4394 * This flow rule is created by request external to PMD. 4395 * @param[in] flow_idx 4396 * This memory pool index to the flow. 4397 * @param[out] error 4398 * Perform verbose error reporting if not NULL. 4399 * @return 4400 * 0 on success, negative value otherwise 4401 */ 4402 static int 4403 flow_create_split_inner(struct rte_eth_dev *dev, 4404 struct rte_flow *flow, 4405 struct mlx5_flow **sub_flow, 4406 uint64_t prefix_layers, 4407 uint32_t prefix_mark, 4408 const struct rte_flow_attr *attr, 4409 const struct rte_flow_item items[], 4410 const struct rte_flow_action actions[], 4411 bool external, uint32_t flow_idx, 4412 struct rte_flow_error *error) 4413 { 4414 struct mlx5_flow *dev_flow; 4415 4416 dev_flow = flow_drv_prepare(dev, flow, attr, items, actions, 4417 flow_idx, error); 4418 if (!dev_flow) 4419 return -rte_errno; 4420 dev_flow->flow = flow; 4421 dev_flow->external = external; 4422 /* Subflow object was created, we must include one in the list. */ 4423 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 4424 dev_flow->handle, next); 4425 /* 4426 * If dev_flow is as one of the suffix flow, some actions in suffix 4427 * flow may need some user defined item layer flags, and pass the 4428 * Metadate rxq mark flag to suffix flow as well. 4429 */ 4430 if (prefix_layers) 4431 dev_flow->handle->layers = prefix_layers; 4432 if (prefix_mark) 4433 dev_flow->handle->mark = 1; 4434 if (sub_flow) 4435 *sub_flow = dev_flow; 4436 return flow_drv_translate(dev, dev_flow, attr, items, actions, error); 4437 } 4438 4439 /** 4440 * Split the meter flow. 4441 * 4442 * As meter flow will split to three sub flow, other than meter 4443 * action, the other actions make sense to only meter accepts 4444 * the packet. If it need to be dropped, no other additional 4445 * actions should be take. 4446 * 4447 * One kind of special action which decapsulates the L3 tunnel 4448 * header will be in the prefix sub flow, as not to take the 4449 * L3 tunnel header into account. 4450 * 4451 * @param dev 4452 * Pointer to Ethernet device. 4453 * @param[in] items 4454 * Pattern specification (list terminated by the END pattern item). 4455 * @param[out] sfx_items 4456 * Suffix flow match items (list terminated by the END pattern item). 4457 * @param[in] actions 4458 * Associated actions (list terminated by the END action). 4459 * @param[out] actions_sfx 4460 * Suffix flow actions. 4461 * @param[out] actions_pre 4462 * Prefix flow actions. 4463 * @param[out] pattern_sfx 4464 * The pattern items for the suffix flow. 4465 * @param[out] tag_sfx 4466 * Pointer to suffix flow tag. 4467 * 4468 * @return 4469 * 0 on success. 4470 */ 4471 static int 4472 flow_meter_split_prep(struct rte_eth_dev *dev, 4473 const struct rte_flow_item items[], 4474 struct rte_flow_item sfx_items[], 4475 const struct rte_flow_action actions[], 4476 struct rte_flow_action actions_sfx[], 4477 struct rte_flow_action actions_pre[]) 4478 { 4479 struct mlx5_priv *priv = dev->data->dev_private; 4480 struct rte_flow_action *tag_action = NULL; 4481 struct rte_flow_item *tag_item; 4482 struct mlx5_rte_flow_action_set_tag *set_tag; 4483 struct rte_flow_error error; 4484 const struct rte_flow_action_raw_encap *raw_encap; 4485 const struct rte_flow_action_raw_decap *raw_decap; 4486 struct mlx5_rte_flow_item_tag *tag_spec; 4487 struct mlx5_rte_flow_item_tag *tag_mask; 4488 uint32_t tag_id = 0; 4489 bool copy_vlan = false; 4490 4491 /* Prepare the actions for prefix and suffix flow. */ 4492 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4493 struct rte_flow_action **action_cur = NULL; 4494 4495 switch (actions->type) { 4496 case RTE_FLOW_ACTION_TYPE_METER: 4497 /* Add the extra tag action first. */ 4498 tag_action = actions_pre; 4499 tag_action->type = (enum rte_flow_action_type) 4500 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4501 actions_pre++; 4502 action_cur = &actions_pre; 4503 break; 4504 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: 4505 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP: 4506 action_cur = &actions_pre; 4507 break; 4508 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4509 raw_encap = actions->conf; 4510 if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE) 4511 action_cur = &actions_pre; 4512 break; 4513 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4514 raw_decap = actions->conf; 4515 if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 4516 action_cur = &actions_pre; 4517 break; 4518 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4519 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4520 copy_vlan = true; 4521 break; 4522 default: 4523 break; 4524 } 4525 if (!action_cur) 4526 action_cur = &actions_sfx; 4527 memcpy(*action_cur, actions, sizeof(struct rte_flow_action)); 4528 (*action_cur)++; 4529 } 4530 /* Add end action to the actions. */ 4531 actions_sfx->type = RTE_FLOW_ACTION_TYPE_END; 4532 actions_pre->type = RTE_FLOW_ACTION_TYPE_END; 4533 actions_pre++; 4534 /* Set the tag. */ 4535 set_tag = (void *)actions_pre; 4536 set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error); 4537 mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 4538 &tag_id); 4539 if (tag_id >= (1 << (sizeof(tag_id) * 8 - MLX5_MTR_COLOR_BITS))) { 4540 DRV_LOG(ERR, "Port %u meter flow id exceed max limit.", 4541 dev->data->port_id); 4542 mlx5_ipool_free(priv->sh->ipool 4543 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], tag_id); 4544 return 0; 4545 } else if (!tag_id) { 4546 return 0; 4547 } 4548 set_tag->data = tag_id << MLX5_MTR_COLOR_BITS; 4549 assert(tag_action); 4550 tag_action->conf = set_tag; 4551 /* Prepare the suffix subflow items. */ 4552 tag_item = sfx_items++; 4553 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 4554 int item_type = items->type; 4555 4556 switch (item_type) { 4557 case RTE_FLOW_ITEM_TYPE_PORT_ID: 4558 memcpy(sfx_items, items, sizeof(*sfx_items)); 4559 sfx_items++; 4560 break; 4561 case RTE_FLOW_ITEM_TYPE_VLAN: 4562 if (copy_vlan) { 4563 memcpy(sfx_items, items, sizeof(*sfx_items)); 4564 /* 4565 * Convert to internal match item, it is used 4566 * for vlan push and set vid. 4567 */ 4568 sfx_items->type = (enum rte_flow_item_type) 4569 MLX5_RTE_FLOW_ITEM_TYPE_VLAN; 4570 sfx_items++; 4571 } 4572 break; 4573 default: 4574 break; 4575 } 4576 } 4577 sfx_items->type = RTE_FLOW_ITEM_TYPE_END; 4578 sfx_items++; 4579 tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items; 4580 tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS; 4581 tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error); 4582 tag_mask = tag_spec + 1; 4583 tag_mask->data = 0xffffff00; 4584 tag_item->type = (enum rte_flow_item_type) 4585 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 4586 tag_item->spec = tag_spec; 4587 tag_item->last = NULL; 4588 tag_item->mask = tag_mask; 4589 return tag_id; 4590 } 4591 4592 /** 4593 * Split action list having QUEUE/RSS for metadata register copy. 4594 * 4595 * Once Q/RSS action is detected in user's action list, the flow action 4596 * should be split in order to copy metadata registers, which will happen in 4597 * RX_CP_TBL like, 4598 * - CQE->flow_tag := reg_c[1] (MARK) 4599 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 4600 * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL. 4601 * This is because the last action of each flow must be a terminal action 4602 * (QUEUE, RSS or DROP). 4603 * 4604 * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is 4605 * stored and kept in the mlx5_flow structure per each sub_flow. 4606 * 4607 * The Q/RSS action is replaced with, 4608 * - SET_TAG, setting the allocated flow ID to reg_c[2]. 4609 * And the following JUMP action is added at the end, 4610 * - JUMP, to RX_CP_TBL. 4611 * 4612 * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by 4613 * flow_create_split_metadata() routine. The flow will look like, 4614 * - If flow ID matches (reg_c[2]), perform Q/RSS. 4615 * 4616 * @param dev 4617 * Pointer to Ethernet device. 4618 * @param[out] split_actions 4619 * Pointer to store split actions to jump to CP_TBL. 4620 * @param[in] actions 4621 * Pointer to the list of original flow actions. 4622 * @param[in] qrss 4623 * Pointer to the Q/RSS action. 4624 * @param[in] actions_n 4625 * Number of original actions. 4626 * @param[out] error 4627 * Perform verbose error reporting if not NULL. 4628 * 4629 * @return 4630 * non-zero unique flow_id on success, otherwise 0 and 4631 * error/rte_error are set. 4632 */ 4633 static uint32_t 4634 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev, 4635 struct rte_flow_action *split_actions, 4636 const struct rte_flow_action *actions, 4637 const struct rte_flow_action *qrss, 4638 int actions_n, struct rte_flow_error *error) 4639 { 4640 struct mlx5_priv *priv = dev->data->dev_private; 4641 struct mlx5_rte_flow_action_set_tag *set_tag; 4642 struct rte_flow_action_jump *jump; 4643 const int qrss_idx = qrss - actions; 4644 uint32_t flow_id = 0; 4645 int ret = 0; 4646 4647 /* 4648 * Given actions will be split 4649 * - Replace QUEUE/RSS action with SET_TAG to set flow ID. 4650 * - Add jump to mreg CP_TBL. 4651 * As a result, there will be one more action. 4652 */ 4653 ++actions_n; 4654 memcpy(split_actions, actions, sizeof(*split_actions) * actions_n); 4655 set_tag = (void *)(split_actions + actions_n); 4656 /* 4657 * If tag action is not set to void(it means we are not the meter 4658 * suffix flow), add the tag action. Since meter suffix flow already 4659 * has the tag added. 4660 */ 4661 if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) { 4662 /* 4663 * Allocate the new subflow ID. This one is unique within 4664 * device and not shared with representors. Otherwise, 4665 * we would have to resolve multi-thread access synch 4666 * issue. Each flow on the shared device is appended 4667 * with source vport identifier, so the resulting 4668 * flows will be unique in the shared (by master and 4669 * representors) domain even if they have coinciding 4670 * IDs. 4671 */ 4672 mlx5_ipool_malloc(priv->sh->ipool 4673 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id); 4674 if (!flow_id) 4675 return rte_flow_error_set(error, ENOMEM, 4676 RTE_FLOW_ERROR_TYPE_ACTION, 4677 NULL, "can't allocate id " 4678 "for split Q/RSS subflow"); 4679 /* Internal SET_TAG action to set flow ID. */ 4680 *set_tag = (struct mlx5_rte_flow_action_set_tag){ 4681 .data = flow_id, 4682 }; 4683 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error); 4684 if (ret < 0) 4685 return ret; 4686 set_tag->id = ret; 4687 /* Construct new actions array. */ 4688 /* Replace QUEUE/RSS action. */ 4689 split_actions[qrss_idx] = (struct rte_flow_action){ 4690 .type = (enum rte_flow_action_type) 4691 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 4692 .conf = set_tag, 4693 }; 4694 } 4695 /* JUMP action to jump to mreg copy table (CP_TBL). */ 4696 jump = (void *)(set_tag + 1); 4697 *jump = (struct rte_flow_action_jump){ 4698 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 4699 }; 4700 split_actions[actions_n - 2] = (struct rte_flow_action){ 4701 .type = RTE_FLOW_ACTION_TYPE_JUMP, 4702 .conf = jump, 4703 }; 4704 split_actions[actions_n - 1] = (struct rte_flow_action){ 4705 .type = RTE_FLOW_ACTION_TYPE_END, 4706 }; 4707 return flow_id; 4708 } 4709 4710 /** 4711 * Extend the given action list for Tx metadata copy. 4712 * 4713 * Copy the given action list to the ext_actions and add flow metadata register 4714 * copy action in order to copy reg_a set by WQE to reg_c[0]. 4715 * 4716 * @param[out] ext_actions 4717 * Pointer to the extended action list. 4718 * @param[in] actions 4719 * Pointer to the list of actions. 4720 * @param[in] actions_n 4721 * Number of actions in the list. 4722 * @param[out] error 4723 * Perform verbose error reporting if not NULL. 4724 * @param[in] encap_idx 4725 * The encap action inndex. 4726 * 4727 * @return 4728 * 0 on success, negative value otherwise 4729 */ 4730 static int 4731 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev, 4732 struct rte_flow_action *ext_actions, 4733 const struct rte_flow_action *actions, 4734 int actions_n, struct rte_flow_error *error, 4735 int encap_idx) 4736 { 4737 struct mlx5_flow_action_copy_mreg *cp_mreg = 4738 (struct mlx5_flow_action_copy_mreg *) 4739 (ext_actions + actions_n + 1); 4740 int ret; 4741 4742 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 4743 if (ret < 0) 4744 return ret; 4745 cp_mreg->dst = ret; 4746 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error); 4747 if (ret < 0) 4748 return ret; 4749 cp_mreg->src = ret; 4750 if (encap_idx != 0) 4751 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx); 4752 if (encap_idx == actions_n - 1) { 4753 ext_actions[actions_n - 1] = (struct rte_flow_action){ 4754 .type = (enum rte_flow_action_type) 4755 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4756 .conf = cp_mreg, 4757 }; 4758 ext_actions[actions_n] = (struct rte_flow_action){ 4759 .type = RTE_FLOW_ACTION_TYPE_END, 4760 }; 4761 } else { 4762 ext_actions[encap_idx] = (struct rte_flow_action){ 4763 .type = (enum rte_flow_action_type) 4764 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4765 .conf = cp_mreg, 4766 }; 4767 memcpy(ext_actions + encap_idx + 1, actions + encap_idx, 4768 sizeof(*ext_actions) * (actions_n - encap_idx)); 4769 } 4770 return 0; 4771 } 4772 4773 /** 4774 * Check the match action from the action list. 4775 * 4776 * @param[in] actions 4777 * Pointer to the list of actions. 4778 * @param[in] attr 4779 * Flow rule attributes. 4780 * @param[in] action 4781 * The action to be check if exist. 4782 * @param[out] match_action_pos 4783 * Pointer to the position of the matched action if exists, otherwise is -1. 4784 * @param[out] qrss_action_pos 4785 * Pointer to the position of the Queue/RSS action if exists, otherwise is -1. 4786 * 4787 * @return 4788 * > 0 the total number of actions. 4789 * 0 if not found match action in action list. 4790 */ 4791 static int 4792 flow_check_match_action(const struct rte_flow_action actions[], 4793 const struct rte_flow_attr *attr, 4794 enum rte_flow_action_type action, 4795 int *match_action_pos, int *qrss_action_pos) 4796 { 4797 const struct rte_flow_action_sample *sample; 4798 int actions_n = 0; 4799 int jump_flag = 0; 4800 uint32_t ratio = 0; 4801 int sub_type = 0; 4802 int flag = 0; 4803 4804 *match_action_pos = -1; 4805 *qrss_action_pos = -1; 4806 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4807 if (actions->type == action) { 4808 flag = 1; 4809 *match_action_pos = actions_n; 4810 } 4811 if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE || 4812 actions->type == RTE_FLOW_ACTION_TYPE_RSS) 4813 *qrss_action_pos = actions_n; 4814 if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP) 4815 jump_flag = 1; 4816 if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) { 4817 sample = actions->conf; 4818 ratio = sample->ratio; 4819 sub_type = ((const struct rte_flow_action *) 4820 (sample->actions))->type; 4821 } 4822 actions_n++; 4823 } 4824 if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) { 4825 if (ratio == 1) { 4826 /* JUMP Action not support for Mirroring; 4827 * Mirroring support multi-destination; 4828 */ 4829 if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END) 4830 flag = 0; 4831 } 4832 } 4833 /* Count RTE_FLOW_ACTION_TYPE_END. */ 4834 return flag ? actions_n + 1 : 0; 4835 } 4836 4837 #define SAMPLE_SUFFIX_ITEM 2 4838 4839 /** 4840 * Split the sample flow. 4841 * 4842 * As sample flow will split to two sub flow, sample flow with 4843 * sample action, the other actions will move to new suffix flow. 4844 * 4845 * Also add unique tag id with tag action in the sample flow, 4846 * the same tag id will be as match in the suffix flow. 4847 * 4848 * @param dev 4849 * Pointer to Ethernet device. 4850 * @param[in] fdb_tx 4851 * FDB egress flow flag. 4852 * @param[out] sfx_items 4853 * Suffix flow match items (list terminated by the END pattern item). 4854 * @param[in] actions 4855 * Associated actions (list terminated by the END action). 4856 * @param[out] actions_sfx 4857 * Suffix flow actions. 4858 * @param[out] actions_pre 4859 * Prefix flow actions. 4860 * @param[in] actions_n 4861 * The total number of actions. 4862 * @param[in] sample_action_pos 4863 * The sample action position. 4864 * @param[in] qrss_action_pos 4865 * The Queue/RSS action position. 4866 * @param[out] error 4867 * Perform verbose error reporting if not NULL. 4868 * 4869 * @return 4870 * 0 on success, or unique flow_id, a negative errno value 4871 * otherwise and rte_errno is set. 4872 */ 4873 static int 4874 flow_sample_split_prep(struct rte_eth_dev *dev, 4875 uint32_t fdb_tx, 4876 struct rte_flow_item sfx_items[], 4877 const struct rte_flow_action actions[], 4878 struct rte_flow_action actions_sfx[], 4879 struct rte_flow_action actions_pre[], 4880 int actions_n, 4881 int sample_action_pos, 4882 int qrss_action_pos, 4883 struct rte_flow_error *error) 4884 { 4885 struct mlx5_priv *priv = dev->data->dev_private; 4886 struct mlx5_rte_flow_action_set_tag *set_tag; 4887 struct mlx5_rte_flow_item_tag *tag_spec; 4888 struct mlx5_rte_flow_item_tag *tag_mask; 4889 uint32_t tag_id = 0; 4890 int index; 4891 int ret; 4892 4893 if (sample_action_pos < 0) 4894 return rte_flow_error_set(error, EINVAL, 4895 RTE_FLOW_ERROR_TYPE_ACTION, 4896 NULL, "invalid position of sample " 4897 "action in list"); 4898 if (!fdb_tx) { 4899 /* Prepare the prefix tag action. */ 4900 set_tag = (void *)(actions_pre + actions_n + 1); 4901 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error); 4902 if (ret < 0) 4903 return ret; 4904 set_tag->id = ret; 4905 mlx5_ipool_malloc(priv->sh->ipool 4906 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id); 4907 set_tag->data = tag_id; 4908 /* Prepare the suffix subflow items. */ 4909 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM); 4910 tag_spec->data = tag_id; 4911 tag_spec->id = set_tag->id; 4912 tag_mask = tag_spec + 1; 4913 tag_mask->data = UINT32_MAX; 4914 sfx_items[0] = (struct rte_flow_item){ 4915 .type = (enum rte_flow_item_type) 4916 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 4917 .spec = tag_spec, 4918 .last = NULL, 4919 .mask = tag_mask, 4920 }; 4921 sfx_items[1] = (struct rte_flow_item){ 4922 .type = (enum rte_flow_item_type) 4923 RTE_FLOW_ITEM_TYPE_END, 4924 }; 4925 } 4926 /* Prepare the actions for prefix and suffix flow. */ 4927 if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) { 4928 index = qrss_action_pos; 4929 /* Put the preceding the Queue/RSS action into prefix flow. */ 4930 if (index != 0) 4931 memcpy(actions_pre, actions, 4932 sizeof(struct rte_flow_action) * index); 4933 /* Put others preceding the sample action into prefix flow. */ 4934 if (sample_action_pos > index + 1) 4935 memcpy(actions_pre + index, actions + index + 1, 4936 sizeof(struct rte_flow_action) * 4937 (sample_action_pos - index - 1)); 4938 index = sample_action_pos - 1; 4939 /* Put Queue/RSS action into Suffix flow. */ 4940 memcpy(actions_sfx, actions + qrss_action_pos, 4941 sizeof(struct rte_flow_action)); 4942 actions_sfx++; 4943 } else { 4944 index = sample_action_pos; 4945 if (index != 0) 4946 memcpy(actions_pre, actions, 4947 sizeof(struct rte_flow_action) * index); 4948 } 4949 /* Add the extra tag action for NIC-RX and E-Switch ingress. */ 4950 if (!fdb_tx) { 4951 actions_pre[index++] = 4952 (struct rte_flow_action){ 4953 .type = (enum rte_flow_action_type) 4954 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 4955 .conf = set_tag, 4956 }; 4957 } 4958 memcpy(actions_pre + index, actions + sample_action_pos, 4959 sizeof(struct rte_flow_action)); 4960 index += 1; 4961 actions_pre[index] = (struct rte_flow_action){ 4962 .type = (enum rte_flow_action_type) 4963 RTE_FLOW_ACTION_TYPE_END, 4964 }; 4965 /* Put the actions after sample into Suffix flow. */ 4966 memcpy(actions_sfx, actions + sample_action_pos + 1, 4967 sizeof(struct rte_flow_action) * 4968 (actions_n - sample_action_pos - 1)); 4969 return tag_id; 4970 } 4971 4972 /** 4973 * The splitting for metadata feature. 4974 * 4975 * - Q/RSS action on NIC Rx should be split in order to pass by 4976 * the mreg copy table (RX_CP_TBL) and then it jumps to the 4977 * action table (RX_ACT_TBL) which has the split Q/RSS action. 4978 * 4979 * - All the actions on NIC Tx should have a mreg copy action to 4980 * copy reg_a from WQE to reg_c[0]. 4981 * 4982 * @param dev 4983 * Pointer to Ethernet device. 4984 * @param[in] flow 4985 * Parent flow structure pointer. 4986 * @param[in] prefix_layers 4987 * Prefix flow layer flags. 4988 * @param[in] prefix_mark 4989 * Prefix subflow mark flag, may be 0. 4990 * @param[in] attr 4991 * Flow rule attributes. 4992 * @param[in] items 4993 * Pattern specification (list terminated by the END pattern item). 4994 * @param[in] actions 4995 * Associated actions (list terminated by the END action). 4996 * @param[in] external 4997 * This flow rule is created by request external to PMD. 4998 * @param[in] flow_idx 4999 * This memory pool index to the flow. 5000 * @param[out] error 5001 * Perform verbose error reporting if not NULL. 5002 * @return 5003 * 0 on success, negative value otherwise 5004 */ 5005 static int 5006 flow_create_split_metadata(struct rte_eth_dev *dev, 5007 struct rte_flow *flow, 5008 uint64_t prefix_layers, 5009 uint32_t prefix_mark, 5010 const struct rte_flow_attr *attr, 5011 const struct rte_flow_item items[], 5012 const struct rte_flow_action actions[], 5013 bool external, uint32_t flow_idx, 5014 struct rte_flow_error *error) 5015 { 5016 struct mlx5_priv *priv = dev->data->dev_private; 5017 struct mlx5_dev_config *config = &priv->config; 5018 const struct rte_flow_action *qrss = NULL; 5019 struct rte_flow_action *ext_actions = NULL; 5020 struct mlx5_flow *dev_flow = NULL; 5021 uint32_t qrss_id = 0; 5022 int mtr_sfx = 0; 5023 size_t act_size; 5024 int actions_n; 5025 int encap_idx; 5026 int ret; 5027 5028 /* Check whether extensive metadata feature is engaged. */ 5029 if (!config->dv_flow_en || 5030 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 5031 !mlx5_flow_ext_mreg_supported(dev)) 5032 return flow_create_split_inner(dev, flow, NULL, prefix_layers, 5033 prefix_mark, attr, items, 5034 actions, external, flow_idx, 5035 error); 5036 actions_n = flow_parse_metadata_split_actions_info(actions, &qrss, 5037 &encap_idx); 5038 if (qrss) { 5039 /* Exclude hairpin flows from splitting. */ 5040 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 5041 const struct rte_flow_action_queue *queue; 5042 5043 queue = qrss->conf; 5044 if (mlx5_rxq_get_type(dev, queue->index) == 5045 MLX5_RXQ_TYPE_HAIRPIN) 5046 qrss = NULL; 5047 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) { 5048 const struct rte_flow_action_rss *rss; 5049 5050 rss = qrss->conf; 5051 if (mlx5_rxq_get_type(dev, rss->queue[0]) == 5052 MLX5_RXQ_TYPE_HAIRPIN) 5053 qrss = NULL; 5054 } 5055 } 5056 if (qrss) { 5057 /* Check if it is in meter suffix table. */ 5058 mtr_sfx = attr->group == (attr->transfer ? 5059 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) : 5060 MLX5_FLOW_TABLE_LEVEL_SUFFIX); 5061 /* 5062 * Q/RSS action on NIC Rx should be split in order to pass by 5063 * the mreg copy table (RX_CP_TBL) and then it jumps to the 5064 * action table (RX_ACT_TBL) which has the split Q/RSS action. 5065 */ 5066 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 5067 sizeof(struct rte_flow_action_set_tag) + 5068 sizeof(struct rte_flow_action_jump); 5069 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 5070 SOCKET_ID_ANY); 5071 if (!ext_actions) 5072 return rte_flow_error_set(error, ENOMEM, 5073 RTE_FLOW_ERROR_TYPE_ACTION, 5074 NULL, "no memory to split " 5075 "metadata flow"); 5076 /* 5077 * If we are the suffix flow of meter, tag already exist. 5078 * Set the tag action to void. 5079 */ 5080 if (mtr_sfx) 5081 ext_actions[qrss - actions].type = 5082 RTE_FLOW_ACTION_TYPE_VOID; 5083 else 5084 ext_actions[qrss - actions].type = 5085 (enum rte_flow_action_type) 5086 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 5087 /* 5088 * Create the new actions list with removed Q/RSS action 5089 * and appended set tag and jump to register copy table 5090 * (RX_CP_TBL). We should preallocate unique tag ID here 5091 * in advance, because it is needed for set tag action. 5092 */ 5093 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions, 5094 qrss, actions_n, error); 5095 if (!mtr_sfx && !qrss_id) { 5096 ret = -rte_errno; 5097 goto exit; 5098 } 5099 } else if (attr->egress && !attr->transfer) { 5100 /* 5101 * All the actions on NIC Tx should have a metadata register 5102 * copy action to copy reg_a from WQE to reg_c[meta] 5103 */ 5104 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 5105 sizeof(struct mlx5_flow_action_copy_mreg); 5106 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 5107 SOCKET_ID_ANY); 5108 if (!ext_actions) 5109 return rte_flow_error_set(error, ENOMEM, 5110 RTE_FLOW_ERROR_TYPE_ACTION, 5111 NULL, "no memory to split " 5112 "metadata flow"); 5113 /* Create the action list appended with copy register. */ 5114 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions, 5115 actions_n, error, encap_idx); 5116 if (ret < 0) 5117 goto exit; 5118 } 5119 /* Add the unmodified original or prefix subflow. */ 5120 ret = flow_create_split_inner(dev, flow, &dev_flow, prefix_layers, 5121 prefix_mark, attr, 5122 items, ext_actions ? ext_actions : 5123 actions, external, flow_idx, error); 5124 if (ret < 0) 5125 goto exit; 5126 MLX5_ASSERT(dev_flow); 5127 if (qrss) { 5128 const struct rte_flow_attr q_attr = { 5129 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 5130 .ingress = 1, 5131 }; 5132 /* Internal PMD action to set register. */ 5133 struct mlx5_rte_flow_item_tag q_tag_spec = { 5134 .data = qrss_id, 5135 .id = REG_NON, 5136 }; 5137 struct rte_flow_item q_items[] = { 5138 { 5139 .type = (enum rte_flow_item_type) 5140 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 5141 .spec = &q_tag_spec, 5142 .last = NULL, 5143 .mask = NULL, 5144 }, 5145 { 5146 .type = RTE_FLOW_ITEM_TYPE_END, 5147 }, 5148 }; 5149 struct rte_flow_action q_actions[] = { 5150 { 5151 .type = qrss->type, 5152 .conf = qrss->conf, 5153 }, 5154 { 5155 .type = RTE_FLOW_ACTION_TYPE_END, 5156 }, 5157 }; 5158 uint64_t layers = flow_get_prefix_layer_flags(dev_flow); 5159 5160 /* 5161 * Configure the tag item only if there is no meter subflow. 5162 * Since tag is already marked in the meter suffix subflow 5163 * we can just use the meter suffix items as is. 5164 */ 5165 if (qrss_id) { 5166 /* Not meter subflow. */ 5167 MLX5_ASSERT(!mtr_sfx); 5168 /* 5169 * Put unique id in prefix flow due to it is destroyed 5170 * after suffix flow and id will be freed after there 5171 * is no actual flows with this id and identifier 5172 * reallocation becomes possible (for example, for 5173 * other flows in other threads). 5174 */ 5175 dev_flow->handle->split_flow_id = qrss_id; 5176 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, 5177 error); 5178 if (ret < 0) 5179 goto exit; 5180 q_tag_spec.id = ret; 5181 } 5182 dev_flow = NULL; 5183 /* Add suffix subflow to execute Q/RSS. */ 5184 ret = flow_create_split_inner(dev, flow, &dev_flow, layers, 0, 5185 &q_attr, mtr_sfx ? items : 5186 q_items, q_actions, 5187 external, flow_idx, error); 5188 if (ret < 0) 5189 goto exit; 5190 /* qrss ID should be freed if failed. */ 5191 qrss_id = 0; 5192 MLX5_ASSERT(dev_flow); 5193 } 5194 5195 exit: 5196 /* 5197 * We do not destroy the partially created sub_flows in case of error. 5198 * These ones are included into parent flow list and will be destroyed 5199 * by flow_drv_destroy. 5200 */ 5201 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 5202 qrss_id); 5203 mlx5_free(ext_actions); 5204 return ret; 5205 } 5206 5207 /** 5208 * The splitting for meter feature. 5209 * 5210 * - The meter flow will be split to two flows as prefix and 5211 * suffix flow. The packets make sense only it pass the prefix 5212 * meter action. 5213 * 5214 * - Reg_C_5 is used for the packet to match betweend prefix and 5215 * suffix flow. 5216 * 5217 * @param dev 5218 * Pointer to Ethernet device. 5219 * @param[in] flow 5220 * Parent flow structure pointer. 5221 * @param[in] prefix_layers 5222 * Prefix subflow layers, may be 0. 5223 * @param[in] prefix_mark 5224 * Prefix subflow mark flag, may be 0. 5225 * @param[in] attr 5226 * Flow rule attributes. 5227 * @param[in] items 5228 * Pattern specification (list terminated by the END pattern item). 5229 * @param[in] actions 5230 * Associated actions (list terminated by the END action). 5231 * @param[in] external 5232 * This flow rule is created by request external to PMD. 5233 * @param[in] flow_idx 5234 * This memory pool index to the flow. 5235 * @param[out] error 5236 * Perform verbose error reporting if not NULL. 5237 * @return 5238 * 0 on success, negative value otherwise 5239 */ 5240 static int 5241 flow_create_split_meter(struct rte_eth_dev *dev, 5242 struct rte_flow *flow, 5243 uint64_t prefix_layers, 5244 uint32_t prefix_mark, 5245 const struct rte_flow_attr *attr, 5246 const struct rte_flow_item items[], 5247 const struct rte_flow_action actions[], 5248 bool external, uint32_t flow_idx, 5249 struct rte_flow_error *error) 5250 { 5251 struct mlx5_priv *priv = dev->data->dev_private; 5252 struct rte_flow_action *sfx_actions = NULL; 5253 struct rte_flow_action *pre_actions = NULL; 5254 struct rte_flow_item *sfx_items = NULL; 5255 struct mlx5_flow *dev_flow = NULL; 5256 struct rte_flow_attr sfx_attr = *attr; 5257 uint32_t mtr = 0; 5258 uint32_t mtr_tag_id = 0; 5259 size_t act_size; 5260 size_t item_size; 5261 int actions_n = 0; 5262 int ret; 5263 5264 if (priv->mtr_en) 5265 actions_n = flow_check_meter_action(actions, &mtr); 5266 if (mtr) { 5267 /* The five prefix actions: meter, decap, encap, tag, end. */ 5268 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) + 5269 sizeof(struct mlx5_rte_flow_action_set_tag); 5270 /* tag, vlan, port id, end. */ 5271 #define METER_SUFFIX_ITEM 4 5272 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM + 5273 sizeof(struct mlx5_rte_flow_item_tag) * 2; 5274 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size), 5275 0, SOCKET_ID_ANY); 5276 if (!sfx_actions) 5277 return rte_flow_error_set(error, ENOMEM, 5278 RTE_FLOW_ERROR_TYPE_ACTION, 5279 NULL, "no memory to split " 5280 "meter flow"); 5281 sfx_items = (struct rte_flow_item *)((char *)sfx_actions + 5282 act_size); 5283 pre_actions = sfx_actions + actions_n; 5284 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items, 5285 actions, sfx_actions, 5286 pre_actions); 5287 if (!mtr_tag_id) { 5288 ret = -rte_errno; 5289 goto exit; 5290 } 5291 /* Add the prefix subflow. */ 5292 ret = flow_create_split_inner(dev, flow, &dev_flow, 5293 prefix_layers, 0, 5294 attr, items, 5295 pre_actions, external, 5296 flow_idx, error); 5297 if (ret) { 5298 ret = -rte_errno; 5299 goto exit; 5300 } 5301 dev_flow->handle->split_flow_id = mtr_tag_id; 5302 /* Setting the sfx group atrr. */ 5303 sfx_attr.group = sfx_attr.transfer ? 5304 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) : 5305 MLX5_FLOW_TABLE_LEVEL_SUFFIX; 5306 } 5307 /* Add the prefix subflow. */ 5308 ret = flow_create_split_metadata(dev, flow, dev_flow ? 5309 flow_get_prefix_layer_flags(dev_flow) : 5310 prefix_layers, dev_flow ? 5311 dev_flow->handle->mark : prefix_mark, 5312 &sfx_attr, sfx_items ? 5313 sfx_items : items, 5314 sfx_actions ? sfx_actions : actions, 5315 external, flow_idx, error); 5316 exit: 5317 if (sfx_actions) 5318 mlx5_free(sfx_actions); 5319 return ret; 5320 } 5321 5322 /** 5323 * The splitting for sample feature. 5324 * 5325 * Once Sample action is detected in the action list, the flow actions should 5326 * be split into prefix sub flow and suffix sub flow. 5327 * 5328 * The original items remain in the prefix sub flow, all actions preceding the 5329 * sample action and the sample action itself will be copied to the prefix 5330 * sub flow, the actions following the sample action will be copied to the 5331 * suffix sub flow, Queue action always be located in the suffix sub flow. 5332 * 5333 * In order to make the packet from prefix sub flow matches with suffix sub 5334 * flow, an extra tag action be added into prefix sub flow, and the suffix sub 5335 * flow uses tag item with the unique flow id. 5336 * 5337 * @param dev 5338 * Pointer to Ethernet device. 5339 * @param[in] flow 5340 * Parent flow structure pointer. 5341 * @param[in] attr 5342 * Flow rule attributes. 5343 * @param[in] items 5344 * Pattern specification (list terminated by the END pattern item). 5345 * @param[in] actions 5346 * Associated actions (list terminated by the END action). 5347 * @param[in] external 5348 * This flow rule is created by request external to PMD. 5349 * @param[in] flow_idx 5350 * This memory pool index to the flow. 5351 * @param[out] error 5352 * Perform verbose error reporting if not NULL. 5353 * @return 5354 * 0 on success, negative value otherwise 5355 */ 5356 static int 5357 flow_create_split_sample(struct rte_eth_dev *dev, 5358 struct rte_flow *flow, 5359 const struct rte_flow_attr *attr, 5360 const struct rte_flow_item items[], 5361 const struct rte_flow_action actions[], 5362 bool external, uint32_t flow_idx, 5363 struct rte_flow_error *error) 5364 { 5365 struct mlx5_priv *priv = dev->data->dev_private; 5366 struct rte_flow_action *sfx_actions = NULL; 5367 struct rte_flow_action *pre_actions = NULL; 5368 struct rte_flow_item *sfx_items = NULL; 5369 struct mlx5_flow *dev_flow = NULL; 5370 struct rte_flow_attr sfx_attr = *attr; 5371 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5372 struct mlx5_flow_dv_sample_resource *sample_res; 5373 struct mlx5_flow_tbl_data_entry *sfx_tbl_data; 5374 struct mlx5_flow_tbl_resource *sfx_tbl; 5375 union mlx5_flow_tbl_key sfx_table_key; 5376 #endif 5377 size_t act_size; 5378 size_t item_size; 5379 uint32_t fdb_tx = 0; 5380 int32_t tag_id = 0; 5381 int actions_n = 0; 5382 int sample_action_pos; 5383 int qrss_action_pos; 5384 int ret = 0; 5385 5386 if (priv->sampler_en) 5387 actions_n = flow_check_match_action(actions, attr, 5388 RTE_FLOW_ACTION_TYPE_SAMPLE, 5389 &sample_action_pos, &qrss_action_pos); 5390 if (actions_n) { 5391 /* The prefix actions must includes sample, tag, end. */ 5392 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1) 5393 + sizeof(struct mlx5_rte_flow_action_set_tag); 5394 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM + 5395 sizeof(struct mlx5_rte_flow_item_tag) * 2; 5396 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + 5397 item_size), 0, SOCKET_ID_ANY); 5398 if (!sfx_actions) 5399 return rte_flow_error_set(error, ENOMEM, 5400 RTE_FLOW_ERROR_TYPE_ACTION, 5401 NULL, "no memory to split " 5402 "sample flow"); 5403 /* The representor_id is -1 for uplink. */ 5404 fdb_tx = (attr->transfer && priv->representor_id != -1); 5405 if (!fdb_tx) 5406 sfx_items = (struct rte_flow_item *)((char *)sfx_actions 5407 + act_size); 5408 pre_actions = sfx_actions + actions_n; 5409 tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items, 5410 actions, sfx_actions, 5411 pre_actions, actions_n, 5412 sample_action_pos, 5413 qrss_action_pos, error); 5414 if (tag_id < 0 || (!fdb_tx && !tag_id)) { 5415 ret = -rte_errno; 5416 goto exit; 5417 } 5418 /* Add the prefix subflow. */ 5419 ret = flow_create_split_inner(dev, flow, &dev_flow, 0, 0, attr, 5420 items, pre_actions, external, 5421 flow_idx, error); 5422 if (ret) { 5423 ret = -rte_errno; 5424 goto exit; 5425 } 5426 dev_flow->handle->split_flow_id = tag_id; 5427 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5428 /* Set the sfx group attr. */ 5429 sample_res = (struct mlx5_flow_dv_sample_resource *) 5430 dev_flow->dv.sample_res; 5431 sfx_tbl = (struct mlx5_flow_tbl_resource *) 5432 sample_res->normal_path_tbl; 5433 sfx_tbl_data = container_of(sfx_tbl, 5434 struct mlx5_flow_tbl_data_entry, tbl); 5435 sfx_table_key.v64 = sfx_tbl_data->entry.key; 5436 sfx_attr.group = sfx_attr.transfer ? 5437 (sfx_table_key.table_id - 1) : 5438 sfx_table_key.table_id; 5439 #endif 5440 } 5441 /* Add the suffix subflow. */ 5442 ret = flow_create_split_meter(dev, flow, dev_flow ? 5443 flow_get_prefix_layer_flags(dev_flow) : 0, 5444 dev_flow ? dev_flow->handle->mark : 0, 5445 &sfx_attr, sfx_items ? sfx_items : items, 5446 sfx_actions ? sfx_actions : actions, 5447 external, flow_idx, error); 5448 exit: 5449 if (sfx_actions) 5450 mlx5_free(sfx_actions); 5451 return ret; 5452 } 5453 5454 /** 5455 * Split the flow to subflow set. The splitters might be linked 5456 * in the chain, like this: 5457 * flow_create_split_outer() calls: 5458 * flow_create_split_meter() calls: 5459 * flow_create_split_metadata(meter_subflow_0) calls: 5460 * flow_create_split_inner(metadata_subflow_0) 5461 * flow_create_split_inner(metadata_subflow_1) 5462 * flow_create_split_inner(metadata_subflow_2) 5463 * flow_create_split_metadata(meter_subflow_1) calls: 5464 * flow_create_split_inner(metadata_subflow_0) 5465 * flow_create_split_inner(metadata_subflow_1) 5466 * flow_create_split_inner(metadata_subflow_2) 5467 * 5468 * This provide flexible way to add new levels of flow splitting. 5469 * The all of successfully created subflows are included to the 5470 * parent flow dev_flow list. 5471 * 5472 * @param dev 5473 * Pointer to Ethernet device. 5474 * @param[in] flow 5475 * Parent flow structure pointer. 5476 * @param[in] attr 5477 * Flow rule attributes. 5478 * @param[in] items 5479 * Pattern specification (list terminated by the END pattern item). 5480 * @param[in] actions 5481 * Associated actions (list terminated by the END action). 5482 * @param[in] external 5483 * This flow rule is created by request external to PMD. 5484 * @param[in] flow_idx 5485 * This memory pool index to the flow. 5486 * @param[out] error 5487 * Perform verbose error reporting if not NULL. 5488 * @return 5489 * 0 on success, negative value otherwise 5490 */ 5491 static int 5492 flow_create_split_outer(struct rte_eth_dev *dev, 5493 struct rte_flow *flow, 5494 const struct rte_flow_attr *attr, 5495 const struct rte_flow_item items[], 5496 const struct rte_flow_action actions[], 5497 bool external, uint32_t flow_idx, 5498 struct rte_flow_error *error) 5499 { 5500 int ret; 5501 5502 ret = flow_create_split_sample(dev, flow, attr, items, 5503 actions, external, flow_idx, error); 5504 MLX5_ASSERT(ret <= 0); 5505 return ret; 5506 } 5507 5508 static struct mlx5_flow_tunnel * 5509 flow_tunnel_from_rule(struct rte_eth_dev *dev, 5510 const struct rte_flow_attr *attr, 5511 const struct rte_flow_item items[], 5512 const struct rte_flow_action actions[]) 5513 { 5514 struct mlx5_flow_tunnel *tunnel; 5515 5516 #pragma GCC diagnostic push 5517 #pragma GCC diagnostic ignored "-Wcast-qual" 5518 if (is_flow_tunnel_match_rule(dev, attr, items, actions)) 5519 tunnel = (struct mlx5_flow_tunnel *)items[0].spec; 5520 else if (is_flow_tunnel_steer_rule(dev, attr, items, actions)) 5521 tunnel = (struct mlx5_flow_tunnel *)actions[0].conf; 5522 else 5523 tunnel = NULL; 5524 #pragma GCC diagnostic pop 5525 5526 return tunnel; 5527 } 5528 5529 /** 5530 * Adjust flow RSS workspace if needed. 5531 * 5532 * @param wks 5533 * Pointer to thread flow work space. 5534 * @param rss_desc 5535 * Pointer to RSS descriptor. 5536 * @param[in] nrssq_num 5537 * New RSS queue number. 5538 * 5539 * @return 5540 * 0 on success, -1 otherwise and rte_errno is set. 5541 */ 5542 static int 5543 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks, 5544 struct mlx5_flow_rss_desc *rss_desc, 5545 uint32_t nrssq_num) 5546 { 5547 bool fidx = !!wks->flow_idx; 5548 5549 if (likely(nrssq_num <= wks->rssq_num[fidx])) 5550 return 0; 5551 rss_desc->queue = realloc(rss_desc->queue, 5552 sizeof(rss_desc->queue[0]) * RTE_ALIGN(nrssq_num, 2)); 5553 if (!rss_desc->queue) { 5554 rte_errno = ENOMEM; 5555 return -1; 5556 } 5557 wks->rssq_num[fidx] = RTE_ALIGN(nrssq_num, 2); 5558 return 0; 5559 } 5560 5561 /** 5562 * Create a flow and add it to @p list. 5563 * 5564 * @param dev 5565 * Pointer to Ethernet device. 5566 * @param list 5567 * Pointer to a TAILQ flow list. If this parameter NULL, 5568 * no list insertion occurred, flow is just created, 5569 * this is caller's responsibility to track the 5570 * created flow. 5571 * @param[in] attr 5572 * Flow rule attributes. 5573 * @param[in] items 5574 * Pattern specification (list terminated by the END pattern item). 5575 * @param[in] actions 5576 * Associated actions (list terminated by the END action). 5577 * @param[in] external 5578 * This flow rule is created by request external to PMD. 5579 * @param[out] error 5580 * Perform verbose error reporting if not NULL. 5581 * 5582 * @return 5583 * A flow index on success, 0 otherwise and rte_errno is set. 5584 */ 5585 static uint32_t 5586 flow_list_create(struct rte_eth_dev *dev, uint32_t *list, 5587 const struct rte_flow_attr *attr, 5588 const struct rte_flow_item items[], 5589 const struct rte_flow_action original_actions[], 5590 bool external, struct rte_flow_error *error) 5591 { 5592 struct mlx5_priv *priv = dev->data->dev_private; 5593 struct rte_flow *flow = NULL; 5594 struct mlx5_flow *dev_flow; 5595 const struct rte_flow_action_rss *rss; 5596 struct mlx5_translated_shared_action 5597 shared_actions[MLX5_MAX_SHARED_ACTIONS]; 5598 int shared_actions_n = MLX5_MAX_SHARED_ACTIONS; 5599 union { 5600 struct mlx5_flow_expand_rss buf; 5601 uint8_t buffer[2048]; 5602 } expand_buffer; 5603 union { 5604 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 5605 uint8_t buffer[2048]; 5606 } actions_rx; 5607 union { 5608 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 5609 uint8_t buffer[2048]; 5610 } actions_hairpin_tx; 5611 union { 5612 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS]; 5613 uint8_t buffer[2048]; 5614 } items_tx; 5615 struct mlx5_flow_expand_rss *buf = &expand_buffer.buf; 5616 struct mlx5_flow_rss_desc *rss_desc; 5617 const struct rte_flow_action *p_actions_rx; 5618 uint32_t i; 5619 uint32_t idx = 0; 5620 int hairpin_flow; 5621 struct rte_flow_attr attr_tx = { .priority = 0 }; 5622 struct rte_flow_attr attr_factor = {0}; 5623 const struct rte_flow_action *actions; 5624 struct rte_flow_action *translated_actions = NULL; 5625 struct mlx5_flow_tunnel *tunnel; 5626 struct tunnel_default_miss_ctx default_miss_ctx = { 0, }; 5627 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 5628 bool fidx = !!wks->flow_idx; 5629 int ret; 5630 5631 MLX5_ASSERT(wks); 5632 rss_desc = &wks->rss_desc[fidx]; 5633 ret = flow_shared_actions_translate(original_actions, 5634 shared_actions, 5635 &shared_actions_n, 5636 &translated_actions, error); 5637 if (ret < 0) { 5638 MLX5_ASSERT(translated_actions == NULL); 5639 return 0; 5640 } 5641 actions = translated_actions ? translated_actions : original_actions; 5642 memcpy((void *)&attr_factor, (const void *)attr, sizeof(*attr)); 5643 p_actions_rx = actions; 5644 hairpin_flow = flow_check_hairpin_split(dev, &attr_factor, actions); 5645 ret = flow_drv_validate(dev, &attr_factor, items, p_actions_rx, 5646 external, hairpin_flow, error); 5647 if (ret < 0) 5648 goto error_before_hairpin_split; 5649 flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx); 5650 if (!flow) { 5651 rte_errno = ENOMEM; 5652 goto error_before_hairpin_split; 5653 } 5654 if (hairpin_flow > 0) { 5655 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) { 5656 rte_errno = EINVAL; 5657 goto error_before_hairpin_split; 5658 } 5659 flow_hairpin_split(dev, actions, actions_rx.actions, 5660 actions_hairpin_tx.actions, items_tx.items, 5661 idx); 5662 p_actions_rx = actions_rx.actions; 5663 } 5664 flow->drv_type = flow_get_drv_type(dev, &attr_factor); 5665 MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN && 5666 flow->drv_type < MLX5_FLOW_TYPE_MAX); 5667 memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue)); 5668 rss = flow_get_rss_action(p_actions_rx); 5669 if (rss) { 5670 if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num)) 5671 return 0; 5672 /* 5673 * The following information is required by 5674 * mlx5_flow_hashfields_adjust() in advance. 5675 */ 5676 rss_desc->level = rss->level; 5677 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */ 5678 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types; 5679 } 5680 flow->dev_handles = 0; 5681 if (rss && rss->types) { 5682 unsigned int graph_root; 5683 5684 graph_root = find_graph_root(items, rss->level); 5685 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 5686 items, rss->types, 5687 mlx5_support_expansion, graph_root); 5688 MLX5_ASSERT(ret > 0 && 5689 (unsigned int)ret < sizeof(expand_buffer.buffer)); 5690 } else { 5691 buf->entries = 1; 5692 buf->entry[0].pattern = (void *)(uintptr_t)items; 5693 } 5694 flow->shared_rss = flow_get_shared_rss_action(shared_actions, 5695 shared_actions_n); 5696 /* 5697 * Record the start index when there is a nested call. All sub-flows 5698 * need to be translated before another calling. 5699 * No need to use ping-pong buffer to save memory here. 5700 */ 5701 if (fidx) { 5702 MLX5_ASSERT(!wks->flow_nested_idx); 5703 wks->flow_nested_idx = fidx; 5704 } 5705 for (i = 0; i < buf->entries; ++i) { 5706 /* 5707 * The splitter may create multiple dev_flows, 5708 * depending on configuration. In the simplest 5709 * case it just creates unmodified original flow. 5710 */ 5711 ret = flow_create_split_outer(dev, flow, &attr_factor, 5712 buf->entry[i].pattern, 5713 p_actions_rx, external, idx, 5714 error); 5715 if (ret < 0) 5716 goto error; 5717 if (is_flow_tunnel_steer_rule(dev, attr, 5718 buf->entry[i].pattern, 5719 p_actions_rx)) { 5720 ret = flow_tunnel_add_default_miss(dev, flow, attr, 5721 p_actions_rx, 5722 idx, 5723 &default_miss_ctx, 5724 error); 5725 if (ret < 0) { 5726 mlx5_free(default_miss_ctx.queue); 5727 goto error; 5728 } 5729 } 5730 } 5731 /* Create the tx flow. */ 5732 if (hairpin_flow) { 5733 attr_tx.group = MLX5_HAIRPIN_TX_TABLE; 5734 attr_tx.ingress = 0; 5735 attr_tx.egress = 1; 5736 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items, 5737 actions_hairpin_tx.actions, 5738 idx, error); 5739 if (!dev_flow) 5740 goto error; 5741 dev_flow->flow = flow; 5742 dev_flow->external = 0; 5743 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 5744 dev_flow->handle, next); 5745 ret = flow_drv_translate(dev, dev_flow, &attr_tx, 5746 items_tx.items, 5747 actions_hairpin_tx.actions, error); 5748 if (ret < 0) 5749 goto error; 5750 } 5751 /* 5752 * Update the metadata register copy table. If extensive 5753 * metadata feature is enabled and registers are supported 5754 * we might create the extra rte_flow for each unique 5755 * MARK/FLAG action ID. 5756 * 5757 * The table is updated for ingress Flows only, because 5758 * the egress Flows belong to the different device and 5759 * copy table should be updated in peer NIC Rx domain. 5760 */ 5761 if (attr_factor.ingress && 5762 (external || attr_factor.group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) { 5763 ret = flow_mreg_update_copy_table(dev, flow, actions, error); 5764 if (ret) 5765 goto error; 5766 } 5767 /* 5768 * If the flow is external (from application) OR device is started, then 5769 * the flow will be applied immediately. 5770 */ 5771 if (external || dev->data->dev_started) { 5772 ret = flow_drv_apply(dev, flow, error); 5773 if (ret < 0) 5774 goto error; 5775 } 5776 if (list) { 5777 rte_spinlock_lock(&priv->flow_list_lock); 5778 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx, 5779 flow, next); 5780 rte_spinlock_unlock(&priv->flow_list_lock); 5781 } 5782 flow_rxq_flags_set(dev, flow); 5783 rte_free(translated_actions); 5784 /* Nested flow creation index recovery. */ 5785 wks->flow_idx = wks->flow_nested_idx; 5786 if (wks->flow_nested_idx) 5787 wks->flow_nested_idx = 0; 5788 tunnel = flow_tunnel_from_rule(dev, attr, items, actions); 5789 if (tunnel) { 5790 flow->tunnel = 1; 5791 flow->tunnel_id = tunnel->tunnel_id; 5792 __atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED); 5793 mlx5_free(default_miss_ctx.queue); 5794 } 5795 return idx; 5796 error: 5797 MLX5_ASSERT(flow); 5798 ret = rte_errno; /* Save rte_errno before cleanup. */ 5799 flow_mreg_del_copy_action(dev, flow); 5800 flow_drv_destroy(dev, flow); 5801 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx); 5802 rte_errno = ret; /* Restore rte_errno. */ 5803 ret = rte_errno; 5804 rte_errno = ret; 5805 wks->flow_idx = wks->flow_nested_idx; 5806 if (wks->flow_nested_idx) 5807 wks->flow_nested_idx = 0; 5808 error_before_hairpin_split: 5809 rte_free(translated_actions); 5810 return 0; 5811 } 5812 5813 /** 5814 * Create a dedicated flow rule on e-switch table 0 (root table), to direct all 5815 * incoming packets to table 1. 5816 * 5817 * Other flow rules, requested for group n, will be created in 5818 * e-switch table n+1. 5819 * Jump action to e-switch group n will be created to group n+1. 5820 * 5821 * Used when working in switchdev mode, to utilise advantages of table 1 5822 * and above. 5823 * 5824 * @param dev 5825 * Pointer to Ethernet device. 5826 * 5827 * @return 5828 * Pointer to flow on success, NULL otherwise and rte_errno is set. 5829 */ 5830 struct rte_flow * 5831 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev) 5832 { 5833 const struct rte_flow_attr attr = { 5834 .group = 0, 5835 .priority = 0, 5836 .ingress = 1, 5837 .egress = 0, 5838 .transfer = 1, 5839 }; 5840 const struct rte_flow_item pattern = { 5841 .type = RTE_FLOW_ITEM_TYPE_END, 5842 }; 5843 struct rte_flow_action_jump jump = { 5844 .group = 1, 5845 }; 5846 const struct rte_flow_action actions[] = { 5847 { 5848 .type = RTE_FLOW_ACTION_TYPE_JUMP, 5849 .conf = &jump, 5850 }, 5851 { 5852 .type = RTE_FLOW_ACTION_TYPE_END, 5853 }, 5854 }; 5855 struct mlx5_priv *priv = dev->data->dev_private; 5856 struct rte_flow_error error; 5857 5858 return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows, 5859 &attr, &pattern, 5860 actions, false, &error); 5861 } 5862 5863 /** 5864 * Validate a flow supported by the NIC. 5865 * 5866 * @see rte_flow_validate() 5867 * @see rte_flow_ops 5868 */ 5869 int 5870 mlx5_flow_validate(struct rte_eth_dev *dev, 5871 const struct rte_flow_attr *attr, 5872 const struct rte_flow_item items[], 5873 const struct rte_flow_action original_actions[], 5874 struct rte_flow_error *error) 5875 { 5876 int hairpin_flow; 5877 struct mlx5_translated_shared_action 5878 shared_actions[MLX5_MAX_SHARED_ACTIONS]; 5879 int shared_actions_n = MLX5_MAX_SHARED_ACTIONS; 5880 const struct rte_flow_action *actions; 5881 struct rte_flow_action *translated_actions = NULL; 5882 int ret = flow_shared_actions_translate(original_actions, 5883 shared_actions, 5884 &shared_actions_n, 5885 &translated_actions, error); 5886 5887 if (ret) 5888 return ret; 5889 actions = translated_actions ? translated_actions : original_actions; 5890 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 5891 ret = flow_drv_validate(dev, attr, items, actions, 5892 true, hairpin_flow, error); 5893 rte_free(translated_actions); 5894 return ret; 5895 } 5896 5897 /** 5898 * Create a flow. 5899 * 5900 * @see rte_flow_create() 5901 * @see rte_flow_ops 5902 */ 5903 struct rte_flow * 5904 mlx5_flow_create(struct rte_eth_dev *dev, 5905 const struct rte_flow_attr *attr, 5906 const struct rte_flow_item items[], 5907 const struct rte_flow_action actions[], 5908 struct rte_flow_error *error) 5909 { 5910 struct mlx5_priv *priv = dev->data->dev_private; 5911 5912 /* 5913 * If the device is not started yet, it is not allowed to created a 5914 * flow from application. PMD default flows and traffic control flows 5915 * are not affected. 5916 */ 5917 if (unlikely(!dev->data->dev_started)) { 5918 DRV_LOG(DEBUG, "port %u is not started when " 5919 "inserting a flow", dev->data->port_id); 5920 rte_flow_error_set(error, ENODEV, 5921 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 5922 NULL, 5923 "port not started"); 5924 return NULL; 5925 } 5926 5927 return (void *)(uintptr_t)flow_list_create(dev, &priv->flows, 5928 attr, items, actions, true, error); 5929 } 5930 5931 /** 5932 * Destroy a flow in a list. 5933 * 5934 * @param dev 5935 * Pointer to Ethernet device. 5936 * @param list 5937 * Pointer to the Indexed flow list. If this parameter NULL, 5938 * there is no flow removal from the list. Be noted that as 5939 * flow is add to the indexed list, memory of the indexed 5940 * list points to maybe changed as flow destroyed. 5941 * @param[in] flow_idx 5942 * Index of flow to destroy. 5943 */ 5944 static void 5945 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list, 5946 uint32_t flow_idx) 5947 { 5948 struct mlx5_priv *priv = dev->data->dev_private; 5949 struct mlx5_fdir_flow *priv_fdir_flow = NULL; 5950 struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool 5951 [MLX5_IPOOL_RTE_FLOW], flow_idx); 5952 5953 if (!flow) 5954 return; 5955 /* 5956 * Update RX queue flags only if port is started, otherwise it is 5957 * already clean. 5958 */ 5959 if (dev->data->dev_started) 5960 flow_rxq_flags_trim(dev, flow); 5961 flow_drv_destroy(dev, flow); 5962 if (list) { 5963 rte_spinlock_lock(&priv->flow_list_lock); 5964 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, 5965 flow_idx, flow, next); 5966 rte_spinlock_unlock(&priv->flow_list_lock); 5967 } 5968 flow_mreg_del_copy_action(dev, flow); 5969 if (flow->fdir) { 5970 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) { 5971 if (priv_fdir_flow->rix_flow == flow_idx) 5972 break; 5973 } 5974 if (priv_fdir_flow) { 5975 LIST_REMOVE(priv_fdir_flow, next); 5976 mlx5_free(priv_fdir_flow->fdir); 5977 mlx5_free(priv_fdir_flow); 5978 } 5979 } 5980 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx); 5981 if (flow->tunnel) { 5982 struct mlx5_flow_tunnel *tunnel; 5983 tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id); 5984 RTE_VERIFY(tunnel); 5985 if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED)) 5986 mlx5_flow_tunnel_free(dev, tunnel); 5987 } 5988 } 5989 5990 /** 5991 * Destroy all flows. 5992 * 5993 * @param dev 5994 * Pointer to Ethernet device. 5995 * @param list 5996 * Pointer to the Indexed flow list. 5997 * @param active 5998 * If flushing is called avtively. 5999 */ 6000 void 6001 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active) 6002 { 6003 uint32_t num_flushed = 0; 6004 6005 while (*list) { 6006 flow_list_destroy(dev, list, *list); 6007 num_flushed++; 6008 } 6009 if (active) { 6010 DRV_LOG(INFO, "port %u: %u flows flushed before stopping", 6011 dev->data->port_id, num_flushed); 6012 } 6013 } 6014 6015 /** 6016 * Remove all flows. 6017 * 6018 * @param dev 6019 * Pointer to Ethernet device. 6020 * @param list 6021 * Pointer to the Indexed flow list. 6022 */ 6023 void 6024 mlx5_flow_stop(struct rte_eth_dev *dev, uint32_t *list) 6025 { 6026 struct mlx5_priv *priv = dev->data->dev_private; 6027 struct rte_flow *flow = NULL; 6028 uint32_t idx; 6029 6030 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx, 6031 flow, next) { 6032 flow_drv_remove(dev, flow); 6033 flow_mreg_stop_copy_action(dev, flow); 6034 } 6035 flow_mreg_del_default_copy_action(dev); 6036 flow_rxq_flags_clear(dev); 6037 } 6038 6039 /** 6040 * Add all flows. 6041 * 6042 * @param dev 6043 * Pointer to Ethernet device. 6044 * @param list 6045 * Pointer to the Indexed flow list. 6046 * 6047 * @return 6048 * 0 on success, a negative errno value otherwise and rte_errno is set. 6049 */ 6050 int 6051 mlx5_flow_start(struct rte_eth_dev *dev, uint32_t *list) 6052 { 6053 struct mlx5_priv *priv = dev->data->dev_private; 6054 struct rte_flow *flow = NULL; 6055 struct rte_flow_error error; 6056 uint32_t idx; 6057 int ret = 0; 6058 6059 /* Make sure default copy action (reg_c[0] -> reg_b) is created. */ 6060 ret = flow_mreg_add_default_copy_action(dev, &error); 6061 if (ret < 0) 6062 return -rte_errno; 6063 /* Apply Flows created by application. */ 6064 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx, 6065 flow, next) { 6066 ret = flow_mreg_start_copy_action(dev, flow); 6067 if (ret < 0) 6068 goto error; 6069 ret = flow_drv_apply(dev, flow, &error); 6070 if (ret < 0) 6071 goto error; 6072 flow_rxq_flags_set(dev, flow); 6073 } 6074 return 0; 6075 error: 6076 ret = rte_errno; /* Save rte_errno before cleanup. */ 6077 mlx5_flow_stop(dev, list); 6078 rte_errno = ret; /* Restore rte_errno. */ 6079 return -rte_errno; 6080 } 6081 6082 /** 6083 * Stop all default actions for flows. 6084 * 6085 * @param dev 6086 * Pointer to Ethernet device. 6087 */ 6088 void 6089 mlx5_flow_stop_default(struct rte_eth_dev *dev) 6090 { 6091 flow_mreg_del_default_copy_action(dev); 6092 flow_rxq_flags_clear(dev); 6093 } 6094 6095 /** 6096 * Start all default actions for flows. 6097 * 6098 * @param dev 6099 * Pointer to Ethernet device. 6100 * @return 6101 * 0 on success, a negative errno value otherwise and rte_errno is set. 6102 */ 6103 int 6104 mlx5_flow_start_default(struct rte_eth_dev *dev) 6105 { 6106 struct rte_flow_error error; 6107 6108 /* Make sure default copy action (reg_c[0] -> reg_b) is created. */ 6109 return flow_mreg_add_default_copy_action(dev, &error); 6110 } 6111 6112 /** 6113 * Release key of thread specific flow workspace data. 6114 */ 6115 static void 6116 flow_release_workspace(void *data) 6117 { 6118 struct mlx5_flow_workspace *wks = data; 6119 6120 if (!wks) 6121 return; 6122 free(wks->rss_desc[0].queue); 6123 free(wks->rss_desc[1].queue); 6124 free(wks); 6125 } 6126 6127 /** 6128 * Initialize key of thread specific flow workspace data. 6129 */ 6130 static void 6131 flow_alloc_workspace(void) 6132 { 6133 if (pthread_key_create(&key_workspace, flow_release_workspace)) 6134 DRV_LOG(ERR, "Can't create flow workspace data thread key."); 6135 } 6136 6137 /** 6138 * Get thread specific flow workspace. 6139 * 6140 * @return pointer to thread specific flowworkspace data, NULL on error. 6141 */ 6142 struct mlx5_flow_workspace* 6143 mlx5_flow_get_thread_workspace(void) 6144 { 6145 struct mlx5_flow_workspace *data; 6146 6147 if (pthread_once(&key_workspace_init, flow_alloc_workspace)) { 6148 DRV_LOG(ERR, "Failed to init flow workspace data thread key."); 6149 return NULL; 6150 } 6151 data = pthread_getspecific(key_workspace); 6152 if (!data) { 6153 data = calloc(1, sizeof(*data)); 6154 if (!data) { 6155 DRV_LOG(ERR, "Failed to allocate flow workspace " 6156 "memory."); 6157 return NULL; 6158 } 6159 data->rss_desc[0].queue = calloc(1, 6160 sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM); 6161 if (!data->rss_desc[0].queue) 6162 goto err; 6163 data->rss_desc[1].queue = calloc(1, 6164 sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM); 6165 if (!data->rss_desc[1].queue) 6166 goto err; 6167 data->rssq_num[0] = MLX5_RSSQ_DEFAULT_NUM; 6168 data->rssq_num[1] = MLX5_RSSQ_DEFAULT_NUM; 6169 if (pthread_setspecific(key_workspace, data)) { 6170 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 6171 goto err; 6172 } 6173 } 6174 return data; 6175 err: 6176 if (data->rss_desc[0].queue) 6177 free(data->rss_desc[0].queue); 6178 if (data->rss_desc[1].queue) 6179 free(data->rss_desc[1].queue); 6180 free(data); 6181 return NULL; 6182 } 6183 6184 /** 6185 * Verify the flow list is empty 6186 * 6187 * @param dev 6188 * Pointer to Ethernet device. 6189 * 6190 * @return the number of flows not released. 6191 */ 6192 int 6193 mlx5_flow_verify(struct rte_eth_dev *dev) 6194 { 6195 struct mlx5_priv *priv = dev->data->dev_private; 6196 struct rte_flow *flow; 6197 uint32_t idx; 6198 int ret = 0; 6199 6200 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx, 6201 flow, next) { 6202 DRV_LOG(DEBUG, "port %u flow %p still referenced", 6203 dev->data->port_id, (void *)flow); 6204 ++ret; 6205 } 6206 return ret; 6207 } 6208 6209 /** 6210 * Enable default hairpin egress flow. 6211 * 6212 * @param dev 6213 * Pointer to Ethernet device. 6214 * @param queue 6215 * The queue index. 6216 * 6217 * @return 6218 * 0 on success, a negative errno value otherwise and rte_errno is set. 6219 */ 6220 int 6221 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev, 6222 uint32_t queue) 6223 { 6224 struct mlx5_priv *priv = dev->data->dev_private; 6225 const struct rte_flow_attr attr = { 6226 .egress = 1, 6227 .priority = 0, 6228 }; 6229 struct mlx5_rte_flow_item_tx_queue queue_spec = { 6230 .queue = queue, 6231 }; 6232 struct mlx5_rte_flow_item_tx_queue queue_mask = { 6233 .queue = UINT32_MAX, 6234 }; 6235 struct rte_flow_item items[] = { 6236 { 6237 .type = (enum rte_flow_item_type) 6238 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE, 6239 .spec = &queue_spec, 6240 .last = NULL, 6241 .mask = &queue_mask, 6242 }, 6243 { 6244 .type = RTE_FLOW_ITEM_TYPE_END, 6245 }, 6246 }; 6247 struct rte_flow_action_jump jump = { 6248 .group = MLX5_HAIRPIN_TX_TABLE, 6249 }; 6250 struct rte_flow_action actions[2]; 6251 uint32_t flow_idx; 6252 struct rte_flow_error error; 6253 6254 actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP; 6255 actions[0].conf = &jump; 6256 actions[1].type = RTE_FLOW_ACTION_TYPE_END; 6257 flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6258 &attr, items, actions, false, &error); 6259 if (!flow_idx) { 6260 DRV_LOG(DEBUG, 6261 "Failed to create ctrl flow: rte_errno(%d)," 6262 " type(%d), message(%s)", 6263 rte_errno, error.type, 6264 error.message ? error.message : " (no stated reason)"); 6265 return -rte_errno; 6266 } 6267 return 0; 6268 } 6269 6270 /** 6271 * Enable a control flow configured from the control plane. 6272 * 6273 * @param dev 6274 * Pointer to Ethernet device. 6275 * @param eth_spec 6276 * An Ethernet flow spec to apply. 6277 * @param eth_mask 6278 * An Ethernet flow mask to apply. 6279 * @param vlan_spec 6280 * A VLAN flow spec to apply. 6281 * @param vlan_mask 6282 * A VLAN flow mask to apply. 6283 * 6284 * @return 6285 * 0 on success, a negative errno value otherwise and rte_errno is set. 6286 */ 6287 int 6288 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 6289 struct rte_flow_item_eth *eth_spec, 6290 struct rte_flow_item_eth *eth_mask, 6291 struct rte_flow_item_vlan *vlan_spec, 6292 struct rte_flow_item_vlan *vlan_mask) 6293 { 6294 struct mlx5_priv *priv = dev->data->dev_private; 6295 const struct rte_flow_attr attr = { 6296 .ingress = 1, 6297 .priority = MLX5_FLOW_PRIO_RSVD, 6298 }; 6299 struct rte_flow_item items[] = { 6300 { 6301 .type = RTE_FLOW_ITEM_TYPE_ETH, 6302 .spec = eth_spec, 6303 .last = NULL, 6304 .mask = eth_mask, 6305 }, 6306 { 6307 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 6308 RTE_FLOW_ITEM_TYPE_END, 6309 .spec = vlan_spec, 6310 .last = NULL, 6311 .mask = vlan_mask, 6312 }, 6313 { 6314 .type = RTE_FLOW_ITEM_TYPE_END, 6315 }, 6316 }; 6317 uint16_t queue[priv->reta_idx_n]; 6318 struct rte_flow_action_rss action_rss = { 6319 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 6320 .level = 0, 6321 .types = priv->rss_conf.rss_hf, 6322 .key_len = priv->rss_conf.rss_key_len, 6323 .queue_num = priv->reta_idx_n, 6324 .key = priv->rss_conf.rss_key, 6325 .queue = queue, 6326 }; 6327 struct rte_flow_action actions[] = { 6328 { 6329 .type = RTE_FLOW_ACTION_TYPE_RSS, 6330 .conf = &action_rss, 6331 }, 6332 { 6333 .type = RTE_FLOW_ACTION_TYPE_END, 6334 }, 6335 }; 6336 uint32_t flow_idx; 6337 struct rte_flow_error error; 6338 unsigned int i; 6339 6340 if (!priv->reta_idx_n || !priv->rxqs_n) { 6341 return 0; 6342 } 6343 if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) 6344 action_rss.types = 0; 6345 for (i = 0; i != priv->reta_idx_n; ++i) 6346 queue[i] = (*priv->reta_idx)[i]; 6347 flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6348 &attr, items, actions, false, &error); 6349 if (!flow_idx) 6350 return -rte_errno; 6351 return 0; 6352 } 6353 6354 /** 6355 * Enable a flow control configured from the control plane. 6356 * 6357 * @param dev 6358 * Pointer to Ethernet device. 6359 * @param eth_spec 6360 * An Ethernet flow spec to apply. 6361 * @param eth_mask 6362 * An Ethernet flow mask to apply. 6363 * 6364 * @return 6365 * 0 on success, a negative errno value otherwise and rte_errno is set. 6366 */ 6367 int 6368 mlx5_ctrl_flow(struct rte_eth_dev *dev, 6369 struct rte_flow_item_eth *eth_spec, 6370 struct rte_flow_item_eth *eth_mask) 6371 { 6372 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 6373 } 6374 6375 /** 6376 * Create default miss flow rule matching lacp traffic 6377 * 6378 * @param dev 6379 * Pointer to Ethernet device. 6380 * @param eth_spec 6381 * An Ethernet flow spec to apply. 6382 * 6383 * @return 6384 * 0 on success, a negative errno value otherwise and rte_errno is set. 6385 */ 6386 int 6387 mlx5_flow_lacp_miss(struct rte_eth_dev *dev) 6388 { 6389 struct mlx5_priv *priv = dev->data->dev_private; 6390 /* 6391 * The LACP matching is done by only using ether type since using 6392 * a multicast dst mac causes kernel to give low priority to this flow. 6393 */ 6394 static const struct rte_flow_item_eth lacp_spec = { 6395 .type = RTE_BE16(0x8809), 6396 }; 6397 static const struct rte_flow_item_eth lacp_mask = { 6398 .type = 0xffff, 6399 }; 6400 const struct rte_flow_attr attr = { 6401 .ingress = 1, 6402 }; 6403 struct rte_flow_item items[] = { 6404 { 6405 .type = RTE_FLOW_ITEM_TYPE_ETH, 6406 .spec = &lacp_spec, 6407 .mask = &lacp_mask, 6408 }, 6409 { 6410 .type = RTE_FLOW_ITEM_TYPE_END, 6411 }, 6412 }; 6413 struct rte_flow_action actions[] = { 6414 { 6415 .type = (enum rte_flow_action_type) 6416 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS, 6417 }, 6418 { 6419 .type = RTE_FLOW_ACTION_TYPE_END, 6420 }, 6421 }; 6422 struct rte_flow_error error; 6423 uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6424 &attr, items, actions, false, &error); 6425 6426 if (!flow_idx) 6427 return -rte_errno; 6428 return 0; 6429 } 6430 6431 /** 6432 * Destroy a flow. 6433 * 6434 * @see rte_flow_destroy() 6435 * @see rte_flow_ops 6436 */ 6437 int 6438 mlx5_flow_destroy(struct rte_eth_dev *dev, 6439 struct rte_flow *flow, 6440 struct rte_flow_error *error __rte_unused) 6441 { 6442 struct mlx5_priv *priv = dev->data->dev_private; 6443 6444 flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow); 6445 return 0; 6446 } 6447 6448 /** 6449 * Destroy all flows. 6450 * 6451 * @see rte_flow_flush() 6452 * @see rte_flow_ops 6453 */ 6454 int 6455 mlx5_flow_flush(struct rte_eth_dev *dev, 6456 struct rte_flow_error *error __rte_unused) 6457 { 6458 struct mlx5_priv *priv = dev->data->dev_private; 6459 6460 mlx5_flow_list_flush(dev, &priv->flows, false); 6461 return 0; 6462 } 6463 6464 /** 6465 * Isolated mode. 6466 * 6467 * @see rte_flow_isolate() 6468 * @see rte_flow_ops 6469 */ 6470 int 6471 mlx5_flow_isolate(struct rte_eth_dev *dev, 6472 int enable, 6473 struct rte_flow_error *error) 6474 { 6475 struct mlx5_priv *priv = dev->data->dev_private; 6476 6477 if (dev->data->dev_started) { 6478 rte_flow_error_set(error, EBUSY, 6479 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6480 NULL, 6481 "port must be stopped first"); 6482 return -rte_errno; 6483 } 6484 priv->isolated = !!enable; 6485 if (enable) 6486 dev->dev_ops = &mlx5_os_dev_ops_isolate; 6487 else 6488 dev->dev_ops = &mlx5_os_dev_ops; 6489 6490 dev->rx_descriptor_status = mlx5_rx_descriptor_status; 6491 dev->tx_descriptor_status = mlx5_tx_descriptor_status; 6492 6493 return 0; 6494 } 6495 6496 /** 6497 * Query a flow. 6498 * 6499 * @see rte_flow_query() 6500 * @see rte_flow_ops 6501 */ 6502 static int 6503 flow_drv_query(struct rte_eth_dev *dev, 6504 uint32_t flow_idx, 6505 const struct rte_flow_action *actions, 6506 void *data, 6507 struct rte_flow_error *error) 6508 { 6509 struct mlx5_priv *priv = dev->data->dev_private; 6510 const struct mlx5_flow_driver_ops *fops; 6511 struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool 6512 [MLX5_IPOOL_RTE_FLOW], 6513 flow_idx); 6514 enum mlx5_flow_drv_type ftype; 6515 6516 if (!flow) { 6517 return rte_flow_error_set(error, ENOENT, 6518 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6519 NULL, 6520 "invalid flow handle"); 6521 } 6522 ftype = flow->drv_type; 6523 MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 6524 fops = flow_get_drv_ops(ftype); 6525 6526 return fops->query(dev, flow, actions, data, error); 6527 } 6528 6529 /** 6530 * Query a flow. 6531 * 6532 * @see rte_flow_query() 6533 * @see rte_flow_ops 6534 */ 6535 int 6536 mlx5_flow_query(struct rte_eth_dev *dev, 6537 struct rte_flow *flow, 6538 const struct rte_flow_action *actions, 6539 void *data, 6540 struct rte_flow_error *error) 6541 { 6542 int ret; 6543 6544 ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data, 6545 error); 6546 if (ret < 0) 6547 return ret; 6548 return 0; 6549 } 6550 6551 /** 6552 * Convert a flow director filter to a generic flow. 6553 * 6554 * @param dev 6555 * Pointer to Ethernet device. 6556 * @param fdir_filter 6557 * Flow director filter to add. 6558 * @param attributes 6559 * Generic flow parameters structure. 6560 * 6561 * @return 6562 * 0 on success, a negative errno value otherwise and rte_errno is set. 6563 */ 6564 static int 6565 flow_fdir_filter_convert(struct rte_eth_dev *dev, 6566 const struct rte_eth_fdir_filter *fdir_filter, 6567 struct mlx5_fdir *attributes) 6568 { 6569 struct mlx5_priv *priv = dev->data->dev_private; 6570 const struct rte_eth_fdir_input *input = &fdir_filter->input; 6571 const struct rte_eth_fdir_masks *mask = 6572 &dev->data->dev_conf.fdir_conf.mask; 6573 6574 /* Validate queue number. */ 6575 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 6576 DRV_LOG(ERR, "port %u invalid queue number %d", 6577 dev->data->port_id, fdir_filter->action.rx_queue); 6578 rte_errno = EINVAL; 6579 return -rte_errno; 6580 } 6581 attributes->attr.ingress = 1; 6582 attributes->items[0] = (struct rte_flow_item) { 6583 .type = RTE_FLOW_ITEM_TYPE_ETH, 6584 .spec = &attributes->l2, 6585 .mask = &attributes->l2_mask, 6586 }; 6587 switch (fdir_filter->action.behavior) { 6588 case RTE_ETH_FDIR_ACCEPT: 6589 attributes->actions[0] = (struct rte_flow_action){ 6590 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 6591 .conf = &attributes->queue, 6592 }; 6593 break; 6594 case RTE_ETH_FDIR_REJECT: 6595 attributes->actions[0] = (struct rte_flow_action){ 6596 .type = RTE_FLOW_ACTION_TYPE_DROP, 6597 }; 6598 break; 6599 default: 6600 DRV_LOG(ERR, "port %u invalid behavior %d", 6601 dev->data->port_id, 6602 fdir_filter->action.behavior); 6603 rte_errno = ENOTSUP; 6604 return -rte_errno; 6605 } 6606 attributes->queue.index = fdir_filter->action.rx_queue; 6607 /* Handle L3. */ 6608 switch (fdir_filter->input.flow_type) { 6609 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 6610 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 6611 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 6612 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){ 6613 .src_addr = input->flow.ip4_flow.src_ip, 6614 .dst_addr = input->flow.ip4_flow.dst_ip, 6615 .time_to_live = input->flow.ip4_flow.ttl, 6616 .type_of_service = input->flow.ip4_flow.tos, 6617 }; 6618 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){ 6619 .src_addr = mask->ipv4_mask.src_ip, 6620 .dst_addr = mask->ipv4_mask.dst_ip, 6621 .time_to_live = mask->ipv4_mask.ttl, 6622 .type_of_service = mask->ipv4_mask.tos, 6623 .next_proto_id = mask->ipv4_mask.proto, 6624 }; 6625 attributes->items[1] = (struct rte_flow_item){ 6626 .type = RTE_FLOW_ITEM_TYPE_IPV4, 6627 .spec = &attributes->l3, 6628 .mask = &attributes->l3_mask, 6629 }; 6630 break; 6631 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 6632 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 6633 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 6634 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){ 6635 .hop_limits = input->flow.ipv6_flow.hop_limits, 6636 .proto = input->flow.ipv6_flow.proto, 6637 }; 6638 6639 memcpy(attributes->l3.ipv6.hdr.src_addr, 6640 input->flow.ipv6_flow.src_ip, 6641 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 6642 memcpy(attributes->l3.ipv6.hdr.dst_addr, 6643 input->flow.ipv6_flow.dst_ip, 6644 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 6645 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 6646 mask->ipv6_mask.src_ip, 6647 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 6648 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 6649 mask->ipv6_mask.dst_ip, 6650 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 6651 attributes->items[1] = (struct rte_flow_item){ 6652 .type = RTE_FLOW_ITEM_TYPE_IPV6, 6653 .spec = &attributes->l3, 6654 .mask = &attributes->l3_mask, 6655 }; 6656 break; 6657 default: 6658 DRV_LOG(ERR, "port %u invalid flow type%d", 6659 dev->data->port_id, fdir_filter->input.flow_type); 6660 rte_errno = ENOTSUP; 6661 return -rte_errno; 6662 } 6663 /* Handle L4. */ 6664 switch (fdir_filter->input.flow_type) { 6665 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 6666 attributes->l4.udp.hdr = (struct rte_udp_hdr){ 6667 .src_port = input->flow.udp4_flow.src_port, 6668 .dst_port = input->flow.udp4_flow.dst_port, 6669 }; 6670 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){ 6671 .src_port = mask->src_port_mask, 6672 .dst_port = mask->dst_port_mask, 6673 }; 6674 attributes->items[2] = (struct rte_flow_item){ 6675 .type = RTE_FLOW_ITEM_TYPE_UDP, 6676 .spec = &attributes->l4, 6677 .mask = &attributes->l4_mask, 6678 }; 6679 break; 6680 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 6681 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){ 6682 .src_port = input->flow.tcp4_flow.src_port, 6683 .dst_port = input->flow.tcp4_flow.dst_port, 6684 }; 6685 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){ 6686 .src_port = mask->src_port_mask, 6687 .dst_port = mask->dst_port_mask, 6688 }; 6689 attributes->items[2] = (struct rte_flow_item){ 6690 .type = RTE_FLOW_ITEM_TYPE_TCP, 6691 .spec = &attributes->l4, 6692 .mask = &attributes->l4_mask, 6693 }; 6694 break; 6695 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 6696 attributes->l4.udp.hdr = (struct rte_udp_hdr){ 6697 .src_port = input->flow.udp6_flow.src_port, 6698 .dst_port = input->flow.udp6_flow.dst_port, 6699 }; 6700 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){ 6701 .src_port = mask->src_port_mask, 6702 .dst_port = mask->dst_port_mask, 6703 }; 6704 attributes->items[2] = (struct rte_flow_item){ 6705 .type = RTE_FLOW_ITEM_TYPE_UDP, 6706 .spec = &attributes->l4, 6707 .mask = &attributes->l4_mask, 6708 }; 6709 break; 6710 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 6711 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){ 6712 .src_port = input->flow.tcp6_flow.src_port, 6713 .dst_port = input->flow.tcp6_flow.dst_port, 6714 }; 6715 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){ 6716 .src_port = mask->src_port_mask, 6717 .dst_port = mask->dst_port_mask, 6718 }; 6719 attributes->items[2] = (struct rte_flow_item){ 6720 .type = RTE_FLOW_ITEM_TYPE_TCP, 6721 .spec = &attributes->l4, 6722 .mask = &attributes->l4_mask, 6723 }; 6724 break; 6725 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 6726 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 6727 break; 6728 default: 6729 DRV_LOG(ERR, "port %u invalid flow type%d", 6730 dev->data->port_id, fdir_filter->input.flow_type); 6731 rte_errno = ENOTSUP; 6732 return -rte_errno; 6733 } 6734 return 0; 6735 } 6736 6737 #define FLOW_FDIR_CMP(f1, f2, fld) \ 6738 memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld)) 6739 6740 /** 6741 * Compare two FDIR flows. If items and actions are identical, the two flows are 6742 * regarded as same. 6743 * 6744 * @param dev 6745 * Pointer to Ethernet device. 6746 * @param f1 6747 * FDIR flow to compare. 6748 * @param f2 6749 * FDIR flow to compare. 6750 * 6751 * @return 6752 * Zero on match, 1 otherwise. 6753 */ 6754 static int 6755 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2) 6756 { 6757 if (FLOW_FDIR_CMP(f1, f2, attr) || 6758 FLOW_FDIR_CMP(f1, f2, l2) || 6759 FLOW_FDIR_CMP(f1, f2, l2_mask) || 6760 FLOW_FDIR_CMP(f1, f2, l3) || 6761 FLOW_FDIR_CMP(f1, f2, l3_mask) || 6762 FLOW_FDIR_CMP(f1, f2, l4) || 6763 FLOW_FDIR_CMP(f1, f2, l4_mask) || 6764 FLOW_FDIR_CMP(f1, f2, actions[0].type)) 6765 return 1; 6766 if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE && 6767 FLOW_FDIR_CMP(f1, f2, queue)) 6768 return 1; 6769 return 0; 6770 } 6771 6772 /** 6773 * Search device flow list to find out a matched FDIR flow. 6774 * 6775 * @param dev 6776 * Pointer to Ethernet device. 6777 * @param fdir_flow 6778 * FDIR flow to lookup. 6779 * 6780 * @return 6781 * Index of flow if found, 0 otherwise. 6782 */ 6783 static uint32_t 6784 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow) 6785 { 6786 struct mlx5_priv *priv = dev->data->dev_private; 6787 uint32_t flow_idx = 0; 6788 struct mlx5_fdir_flow *priv_fdir_flow = NULL; 6789 6790 MLX5_ASSERT(fdir_flow); 6791 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) { 6792 if (!flow_fdir_cmp(priv_fdir_flow->fdir, fdir_flow)) { 6793 DRV_LOG(DEBUG, "port %u found FDIR flow %u", 6794 dev->data->port_id, flow_idx); 6795 flow_idx = priv_fdir_flow->rix_flow; 6796 break; 6797 } 6798 } 6799 return flow_idx; 6800 } 6801 6802 /** 6803 * Add new flow director filter and store it in list. 6804 * 6805 * @param dev 6806 * Pointer to Ethernet device. 6807 * @param fdir_filter 6808 * Flow director filter to add. 6809 * 6810 * @return 6811 * 0 on success, a negative errno value otherwise and rte_errno is set. 6812 */ 6813 static int 6814 flow_fdir_filter_add(struct rte_eth_dev *dev, 6815 const struct rte_eth_fdir_filter *fdir_filter) 6816 { 6817 struct mlx5_priv *priv = dev->data->dev_private; 6818 struct mlx5_fdir *fdir_flow; 6819 struct rte_flow *flow; 6820 struct mlx5_fdir_flow *priv_fdir_flow = NULL; 6821 uint32_t flow_idx; 6822 int ret; 6823 6824 fdir_flow = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*fdir_flow), 0, 6825 SOCKET_ID_ANY); 6826 if (!fdir_flow) { 6827 rte_errno = ENOMEM; 6828 return -rte_errno; 6829 } 6830 ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow); 6831 if (ret) 6832 goto error; 6833 flow_idx = flow_fdir_filter_lookup(dev, fdir_flow); 6834 if (flow_idx) { 6835 rte_errno = EEXIST; 6836 goto error; 6837 } 6838 priv_fdir_flow = mlx5_malloc(MLX5_MEM_ZERO, 6839 sizeof(struct mlx5_fdir_flow), 6840 0, SOCKET_ID_ANY); 6841 if (!priv_fdir_flow) { 6842 rte_errno = ENOMEM; 6843 goto error; 6844 } 6845 flow_idx = flow_list_create(dev, &priv->flows, &fdir_flow->attr, 6846 fdir_flow->items, fdir_flow->actions, true, 6847 NULL); 6848 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx); 6849 if (!flow) 6850 goto error; 6851 flow->fdir = 1; 6852 priv_fdir_flow->fdir = fdir_flow; 6853 priv_fdir_flow->rix_flow = flow_idx; 6854 LIST_INSERT_HEAD(&priv->fdir_flows, priv_fdir_flow, next); 6855 DRV_LOG(DEBUG, "port %u created FDIR flow %p", 6856 dev->data->port_id, (void *)flow); 6857 return 0; 6858 error: 6859 mlx5_free(priv_fdir_flow); 6860 mlx5_free(fdir_flow); 6861 return -rte_errno; 6862 } 6863 6864 /** 6865 * Delete specific filter. 6866 * 6867 * @param dev 6868 * Pointer to Ethernet device. 6869 * @param fdir_filter 6870 * Filter to be deleted. 6871 * 6872 * @return 6873 * 0 on success, a negative errno value otherwise and rte_errno is set. 6874 */ 6875 static int 6876 flow_fdir_filter_delete(struct rte_eth_dev *dev, 6877 const struct rte_eth_fdir_filter *fdir_filter) 6878 { 6879 struct mlx5_priv *priv = dev->data->dev_private; 6880 uint32_t flow_idx; 6881 struct mlx5_fdir fdir_flow = { 6882 .attr.group = 0, 6883 }; 6884 struct mlx5_fdir_flow *priv_fdir_flow = NULL; 6885 int ret; 6886 6887 ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow); 6888 if (ret) 6889 return -rte_errno; 6890 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) { 6891 /* Find the fdir in priv list */ 6892 if (!flow_fdir_cmp(priv_fdir_flow->fdir, &fdir_flow)) 6893 break; 6894 } 6895 if (!priv_fdir_flow) 6896 return 0; 6897 LIST_REMOVE(priv_fdir_flow, next); 6898 flow_idx = priv_fdir_flow->rix_flow; 6899 flow_list_destroy(dev, &priv->flows, flow_idx); 6900 mlx5_free(priv_fdir_flow->fdir); 6901 mlx5_free(priv_fdir_flow); 6902 DRV_LOG(DEBUG, "port %u deleted FDIR flow %u", 6903 dev->data->port_id, flow_idx); 6904 return 0; 6905 } 6906 6907 /** 6908 * Update queue for specific filter. 6909 * 6910 * @param dev 6911 * Pointer to Ethernet device. 6912 * @param fdir_filter 6913 * Filter to be updated. 6914 * 6915 * @return 6916 * 0 on success, a negative errno value otherwise and rte_errno is set. 6917 */ 6918 static int 6919 flow_fdir_filter_update(struct rte_eth_dev *dev, 6920 const struct rte_eth_fdir_filter *fdir_filter) 6921 { 6922 int ret; 6923 6924 ret = flow_fdir_filter_delete(dev, fdir_filter); 6925 if (ret) 6926 return ret; 6927 return flow_fdir_filter_add(dev, fdir_filter); 6928 } 6929 6930 /** 6931 * Flush all filters. 6932 * 6933 * @param dev 6934 * Pointer to Ethernet device. 6935 */ 6936 static void 6937 flow_fdir_filter_flush(struct rte_eth_dev *dev) 6938 { 6939 struct mlx5_priv *priv = dev->data->dev_private; 6940 struct mlx5_fdir_flow *priv_fdir_flow = NULL; 6941 6942 while (!LIST_EMPTY(&priv->fdir_flows)) { 6943 priv_fdir_flow = LIST_FIRST(&priv->fdir_flows); 6944 LIST_REMOVE(priv_fdir_flow, next); 6945 flow_list_destroy(dev, &priv->flows, priv_fdir_flow->rix_flow); 6946 mlx5_free(priv_fdir_flow->fdir); 6947 mlx5_free(priv_fdir_flow); 6948 } 6949 } 6950 6951 /** 6952 * Get flow director information. 6953 * 6954 * @param dev 6955 * Pointer to Ethernet device. 6956 * @param[out] fdir_info 6957 * Resulting flow director information. 6958 */ 6959 static void 6960 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 6961 { 6962 struct rte_eth_fdir_masks *mask = 6963 &dev->data->dev_conf.fdir_conf.mask; 6964 6965 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 6966 fdir_info->guarant_spc = 0; 6967 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 6968 fdir_info->max_flexpayload = 0; 6969 fdir_info->flow_types_mask[0] = 0; 6970 fdir_info->flex_payload_unit = 0; 6971 fdir_info->max_flex_payload_segment_num = 0; 6972 fdir_info->flex_payload_limit = 0; 6973 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 6974 } 6975 6976 /** 6977 * Deal with flow director operations. 6978 * 6979 * @param dev 6980 * Pointer to Ethernet device. 6981 * @param filter_op 6982 * Operation to perform. 6983 * @param arg 6984 * Pointer to operation-specific structure. 6985 * 6986 * @return 6987 * 0 on success, a negative errno value otherwise and rte_errno is set. 6988 */ 6989 static int 6990 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 6991 void *arg) 6992 { 6993 enum rte_fdir_mode fdir_mode = 6994 dev->data->dev_conf.fdir_conf.mode; 6995 6996 if (filter_op == RTE_ETH_FILTER_NOP) 6997 return 0; 6998 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 6999 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 7000 DRV_LOG(ERR, "port %u flow director mode %d not supported", 7001 dev->data->port_id, fdir_mode); 7002 rte_errno = EINVAL; 7003 return -rte_errno; 7004 } 7005 switch (filter_op) { 7006 case RTE_ETH_FILTER_ADD: 7007 return flow_fdir_filter_add(dev, arg); 7008 case RTE_ETH_FILTER_UPDATE: 7009 return flow_fdir_filter_update(dev, arg); 7010 case RTE_ETH_FILTER_DELETE: 7011 return flow_fdir_filter_delete(dev, arg); 7012 case RTE_ETH_FILTER_FLUSH: 7013 flow_fdir_filter_flush(dev); 7014 break; 7015 case RTE_ETH_FILTER_INFO: 7016 flow_fdir_info_get(dev, arg); 7017 break; 7018 default: 7019 DRV_LOG(DEBUG, "port %u unknown operation %u", 7020 dev->data->port_id, filter_op); 7021 rte_errno = EINVAL; 7022 return -rte_errno; 7023 } 7024 return 0; 7025 } 7026 7027 /** 7028 * Manage filter operations. 7029 * 7030 * @param dev 7031 * Pointer to Ethernet device structure. 7032 * @param filter_type 7033 * Filter type. 7034 * @param filter_op 7035 * Operation to perform. 7036 * @param arg 7037 * Pointer to operation-specific structure. 7038 * 7039 * @return 7040 * 0 on success, a negative errno value otherwise and rte_errno is set. 7041 */ 7042 int 7043 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 7044 enum rte_filter_type filter_type, 7045 enum rte_filter_op filter_op, 7046 void *arg) 7047 { 7048 switch (filter_type) { 7049 case RTE_ETH_FILTER_GENERIC: 7050 if (filter_op != RTE_ETH_FILTER_GET) { 7051 rte_errno = EINVAL; 7052 return -rte_errno; 7053 } 7054 *(const void **)arg = &mlx5_flow_ops; 7055 return 0; 7056 case RTE_ETH_FILTER_FDIR: 7057 return flow_fdir_ctrl_func(dev, filter_op, arg); 7058 default: 7059 DRV_LOG(ERR, "port %u filter type (%d) not supported", 7060 dev->data->port_id, filter_type); 7061 rte_errno = ENOTSUP; 7062 return -rte_errno; 7063 } 7064 return 0; 7065 } 7066 7067 /** 7068 * Create the needed meter and suffix tables. 7069 * 7070 * @param[in] dev 7071 * Pointer to Ethernet device. 7072 * @param[in] fm 7073 * Pointer to the flow meter. 7074 * 7075 * @return 7076 * Pointer to table set on success, NULL otherwise. 7077 */ 7078 struct mlx5_meter_domains_infos * 7079 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev, 7080 const struct mlx5_flow_meter *fm) 7081 { 7082 const struct mlx5_flow_driver_ops *fops; 7083 7084 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7085 return fops->create_mtr_tbls(dev, fm); 7086 } 7087 7088 /** 7089 * Destroy the meter table set. 7090 * 7091 * @param[in] dev 7092 * Pointer to Ethernet device. 7093 * @param[in] tbl 7094 * Pointer to the meter table set. 7095 * 7096 * @return 7097 * 0 on success. 7098 */ 7099 int 7100 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev, 7101 struct mlx5_meter_domains_infos *tbls) 7102 { 7103 const struct mlx5_flow_driver_ops *fops; 7104 7105 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7106 return fops->destroy_mtr_tbls(dev, tbls); 7107 } 7108 7109 /** 7110 * Create policer rules. 7111 * 7112 * @param[in] dev 7113 * Pointer to Ethernet device. 7114 * @param[in] fm 7115 * Pointer to flow meter structure. 7116 * @param[in] attr 7117 * Pointer to flow attributes. 7118 * 7119 * @return 7120 * 0 on success, -1 otherwise. 7121 */ 7122 int 7123 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev, 7124 struct mlx5_flow_meter *fm, 7125 const struct rte_flow_attr *attr) 7126 { 7127 const struct mlx5_flow_driver_ops *fops; 7128 7129 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7130 return fops->create_policer_rules(dev, fm, attr); 7131 } 7132 7133 /** 7134 * Destroy policer rules. 7135 * 7136 * @param[in] fm 7137 * Pointer to flow meter structure. 7138 * @param[in] attr 7139 * Pointer to flow attributes. 7140 * 7141 * @return 7142 * 0 on success, -1 otherwise. 7143 */ 7144 int 7145 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev, 7146 struct mlx5_flow_meter *fm, 7147 const struct rte_flow_attr *attr) 7148 { 7149 const struct mlx5_flow_driver_ops *fops; 7150 7151 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7152 return fops->destroy_policer_rules(dev, fm, attr); 7153 } 7154 7155 /** 7156 * Allocate a counter. 7157 * 7158 * @param[in] dev 7159 * Pointer to Ethernet device structure. 7160 * 7161 * @return 7162 * Index to allocated counter on success, 0 otherwise. 7163 */ 7164 uint32_t 7165 mlx5_counter_alloc(struct rte_eth_dev *dev) 7166 { 7167 const struct mlx5_flow_driver_ops *fops; 7168 struct rte_flow_attr attr = { .transfer = 0 }; 7169 7170 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 7171 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7172 return fops->counter_alloc(dev); 7173 } 7174 DRV_LOG(ERR, 7175 "port %u counter allocate is not supported.", 7176 dev->data->port_id); 7177 return 0; 7178 } 7179 7180 /** 7181 * Free a counter. 7182 * 7183 * @param[in] dev 7184 * Pointer to Ethernet device structure. 7185 * @param[in] cnt 7186 * Index to counter to be free. 7187 */ 7188 void 7189 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt) 7190 { 7191 const struct mlx5_flow_driver_ops *fops; 7192 struct rte_flow_attr attr = { .transfer = 0 }; 7193 7194 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 7195 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7196 fops->counter_free(dev, cnt); 7197 return; 7198 } 7199 DRV_LOG(ERR, 7200 "port %u counter free is not supported.", 7201 dev->data->port_id); 7202 } 7203 7204 /** 7205 * Query counter statistics. 7206 * 7207 * @param[in] dev 7208 * Pointer to Ethernet device structure. 7209 * @param[in] cnt 7210 * Index to counter to query. 7211 * @param[in] clear 7212 * Set to clear counter statistics. 7213 * @param[out] pkts 7214 * The counter hits packets number to save. 7215 * @param[out] bytes 7216 * The counter hits bytes number to save. 7217 * 7218 * @return 7219 * 0 on success, a negative errno value otherwise. 7220 */ 7221 int 7222 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt, 7223 bool clear, uint64_t *pkts, uint64_t *bytes) 7224 { 7225 const struct mlx5_flow_driver_ops *fops; 7226 struct rte_flow_attr attr = { .transfer = 0 }; 7227 7228 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 7229 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7230 return fops->counter_query(dev, cnt, clear, pkts, bytes); 7231 } 7232 DRV_LOG(ERR, 7233 "port %u counter query is not supported.", 7234 dev->data->port_id); 7235 return -ENOTSUP; 7236 } 7237 7238 /** 7239 * Allocate a new memory for the counter values wrapped by all the needed 7240 * management. 7241 * 7242 * @param[in] sh 7243 * Pointer to mlx5_dev_ctx_shared object. 7244 * 7245 * @return 7246 * 0 on success, a negative errno value otherwise. 7247 */ 7248 static int 7249 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh) 7250 { 7251 struct mlx5_devx_mkey_attr mkey_attr; 7252 struct mlx5_counter_stats_mem_mng *mem_mng; 7253 volatile struct flow_counter_stats *raw_data; 7254 int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES; 7255 int size = (sizeof(struct flow_counter_stats) * 7256 MLX5_COUNTERS_PER_POOL + 7257 sizeof(struct mlx5_counter_stats_raw)) * raws_n + 7258 sizeof(struct mlx5_counter_stats_mem_mng); 7259 size_t pgsize = rte_mem_page_size(); 7260 uint8_t *mem; 7261 int i; 7262 7263 if (pgsize == (size_t)-1) { 7264 DRV_LOG(ERR, "Failed to get mem page size"); 7265 rte_errno = ENOMEM; 7266 return -ENOMEM; 7267 } 7268 mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY); 7269 if (!mem) { 7270 rte_errno = ENOMEM; 7271 return -ENOMEM; 7272 } 7273 mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1; 7274 size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n; 7275 mem_mng->umem = mlx5_glue->devx_umem_reg(sh->ctx, mem, size, 7276 IBV_ACCESS_LOCAL_WRITE); 7277 if (!mem_mng->umem) { 7278 rte_errno = errno; 7279 mlx5_free(mem); 7280 return -rte_errno; 7281 } 7282 mkey_attr.addr = (uintptr_t)mem; 7283 mkey_attr.size = size; 7284 mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem); 7285 mkey_attr.pd = sh->pdn; 7286 mkey_attr.log_entity_size = 0; 7287 mkey_attr.pg_access = 0; 7288 mkey_attr.klm_array = NULL; 7289 mkey_attr.klm_num = 0; 7290 mkey_attr.relaxed_ordering = sh->cmng.relaxed_ordering; 7291 mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr); 7292 if (!mem_mng->dm) { 7293 mlx5_glue->devx_umem_dereg(mem_mng->umem); 7294 rte_errno = errno; 7295 mlx5_free(mem); 7296 return -rte_errno; 7297 } 7298 mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size); 7299 raw_data = (volatile struct flow_counter_stats *)mem; 7300 for (i = 0; i < raws_n; ++i) { 7301 mem_mng->raws[i].mem_mng = mem_mng; 7302 mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL; 7303 } 7304 for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i) 7305 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, 7306 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i, 7307 next); 7308 LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next); 7309 sh->cmng.mem_mng = mem_mng; 7310 return 0; 7311 } 7312 7313 /** 7314 * Set the statistic memory to the new counter pool. 7315 * 7316 * @param[in] sh 7317 * Pointer to mlx5_dev_ctx_shared object. 7318 * @param[in] pool 7319 * Pointer to the pool to set the statistic memory. 7320 * 7321 * @return 7322 * 0 on success, a negative errno value otherwise. 7323 */ 7324 static int 7325 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh, 7326 struct mlx5_flow_counter_pool *pool) 7327 { 7328 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 7329 /* Resize statistic memory once used out. */ 7330 if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) && 7331 mlx5_flow_create_counter_stat_mem_mng(sh)) { 7332 DRV_LOG(ERR, "Cannot resize counter stat mem."); 7333 return -1; 7334 } 7335 rte_spinlock_lock(&pool->sl); 7336 pool->raw = cmng->mem_mng->raws + pool->index % 7337 MLX5_CNT_CONTAINER_RESIZE; 7338 rte_spinlock_unlock(&pool->sl); 7339 pool->raw_hw = NULL; 7340 return 0; 7341 } 7342 7343 #define MLX5_POOL_QUERY_FREQ_US 1000000 7344 7345 /** 7346 * Set the periodic procedure for triggering asynchronous batch queries for all 7347 * the counter pools. 7348 * 7349 * @param[in] sh 7350 * Pointer to mlx5_dev_ctx_shared object. 7351 */ 7352 void 7353 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh) 7354 { 7355 uint32_t pools_n, us; 7356 7357 pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED); 7358 us = MLX5_POOL_QUERY_FREQ_US / pools_n; 7359 DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us); 7360 if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) { 7361 sh->cmng.query_thread_on = 0; 7362 DRV_LOG(ERR, "Cannot reinitialize query alarm"); 7363 } else { 7364 sh->cmng.query_thread_on = 1; 7365 } 7366 } 7367 7368 /** 7369 * The periodic procedure for triggering asynchronous batch queries for all the 7370 * counter pools. This function is probably called by the host thread. 7371 * 7372 * @param[in] arg 7373 * The parameter for the alarm process. 7374 */ 7375 void 7376 mlx5_flow_query_alarm(void *arg) 7377 { 7378 struct mlx5_dev_ctx_shared *sh = arg; 7379 int ret; 7380 uint16_t pool_index = sh->cmng.pool_index; 7381 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 7382 struct mlx5_flow_counter_pool *pool; 7383 uint16_t n_valid; 7384 7385 if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES) 7386 goto set_alarm; 7387 rte_spinlock_lock(&cmng->pool_update_sl); 7388 pool = cmng->pools[pool_index]; 7389 n_valid = cmng->n_valid; 7390 rte_spinlock_unlock(&cmng->pool_update_sl); 7391 /* Set the statistic memory to the new created pool. */ 7392 if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool))) 7393 goto set_alarm; 7394 if (pool->raw_hw) 7395 /* There is a pool query in progress. */ 7396 goto set_alarm; 7397 pool->raw_hw = 7398 LIST_FIRST(&sh->cmng.free_stat_raws); 7399 if (!pool->raw_hw) 7400 /* No free counter statistics raw memory. */ 7401 goto set_alarm; 7402 /* 7403 * Identify the counters released between query trigger and query 7404 * handle more efficiently. The counter released in this gap period 7405 * should wait for a new round of query as the new arrived packets 7406 * will not be taken into account. 7407 */ 7408 pool->query_gen++; 7409 ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0, 7410 MLX5_COUNTERS_PER_POOL, 7411 NULL, NULL, 7412 pool->raw_hw->mem_mng->dm->id, 7413 (void *)(uintptr_t) 7414 pool->raw_hw->data, 7415 sh->devx_comp, 7416 (uint64_t)(uintptr_t)pool); 7417 if (ret) { 7418 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID" 7419 " %d", pool->min_dcs->id); 7420 pool->raw_hw = NULL; 7421 goto set_alarm; 7422 } 7423 LIST_REMOVE(pool->raw_hw, next); 7424 sh->cmng.pending_queries++; 7425 pool_index++; 7426 if (pool_index >= n_valid) 7427 pool_index = 0; 7428 set_alarm: 7429 sh->cmng.pool_index = pool_index; 7430 mlx5_set_query_alarm(sh); 7431 } 7432 7433 /** 7434 * Check and callback event for new aged flow in the counter pool 7435 * 7436 * @param[in] sh 7437 * Pointer to mlx5_dev_ctx_shared object. 7438 * @param[in] pool 7439 * Pointer to Current counter pool. 7440 */ 7441 static void 7442 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh, 7443 struct mlx5_flow_counter_pool *pool) 7444 { 7445 struct mlx5_priv *priv; 7446 struct mlx5_flow_counter *cnt; 7447 struct mlx5_age_info *age_info; 7448 struct mlx5_age_param *age_param; 7449 struct mlx5_counter_stats_raw *cur = pool->raw_hw; 7450 struct mlx5_counter_stats_raw *prev = pool->raw; 7451 const uint64_t curr_time = MLX5_CURR_TIME_SEC; 7452 const uint32_t time_delta = curr_time - pool->time_of_last_age_check; 7453 uint16_t expected = AGE_CANDIDATE; 7454 uint32_t i; 7455 7456 pool->time_of_last_age_check = curr_time; 7457 for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) { 7458 cnt = MLX5_POOL_GET_CNT(pool, i); 7459 age_param = MLX5_CNT_TO_AGE(cnt); 7460 if (__atomic_load_n(&age_param->state, 7461 __ATOMIC_RELAXED) != AGE_CANDIDATE) 7462 continue; 7463 if (cur->data[i].hits != prev->data[i].hits) { 7464 __atomic_store_n(&age_param->sec_since_last_hit, 0, 7465 __ATOMIC_RELAXED); 7466 continue; 7467 } 7468 if (__atomic_add_fetch(&age_param->sec_since_last_hit, 7469 time_delta, 7470 __ATOMIC_RELAXED) <= age_param->timeout) 7471 continue; 7472 /** 7473 * Hold the lock first, or if between the 7474 * state AGE_TMOUT and tailq operation the 7475 * release happened, the release procedure 7476 * may delete a non-existent tailq node. 7477 */ 7478 priv = rte_eth_devices[age_param->port_id].data->dev_private; 7479 age_info = GET_PORT_AGE_INFO(priv); 7480 rte_spinlock_lock(&age_info->aged_sl); 7481 if (__atomic_compare_exchange_n(&age_param->state, &expected, 7482 AGE_TMOUT, false, 7483 __ATOMIC_RELAXED, 7484 __ATOMIC_RELAXED)) { 7485 TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next); 7486 MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW); 7487 } 7488 rte_spinlock_unlock(&age_info->aged_sl); 7489 } 7490 for (i = 0; i < sh->max_port; i++) { 7491 age_info = &sh->port[i].age_info; 7492 if (!MLX5_AGE_GET(age_info, MLX5_AGE_EVENT_NEW)) 7493 continue; 7494 if (MLX5_AGE_GET(age_info, MLX5_AGE_TRIGGER)) 7495 rte_eth_dev_callback_process 7496 (&rte_eth_devices[sh->port[i].devx_ih_port_id], 7497 RTE_ETH_EVENT_FLOW_AGED, NULL); 7498 age_info->flags = 0; 7499 } 7500 } 7501 7502 /** 7503 * Handler for the HW respond about ready values from an asynchronous batch 7504 * query. This function is probably called by the host thread. 7505 * 7506 * @param[in] sh 7507 * The pointer to the shared device context. 7508 * @param[in] async_id 7509 * The Devx async ID. 7510 * @param[in] status 7511 * The status of the completion. 7512 */ 7513 void 7514 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh, 7515 uint64_t async_id, int status) 7516 { 7517 struct mlx5_flow_counter_pool *pool = 7518 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id; 7519 struct mlx5_counter_stats_raw *raw_to_free; 7520 uint8_t query_gen = pool->query_gen ^ 1; 7521 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 7522 enum mlx5_counter_type cnt_type = 7523 pool->is_aged ? MLX5_COUNTER_TYPE_AGE : 7524 MLX5_COUNTER_TYPE_ORIGIN; 7525 7526 if (unlikely(status)) { 7527 raw_to_free = pool->raw_hw; 7528 } else { 7529 raw_to_free = pool->raw; 7530 if (pool->is_aged) 7531 mlx5_flow_aging_check(sh, pool); 7532 rte_spinlock_lock(&pool->sl); 7533 pool->raw = pool->raw_hw; 7534 rte_spinlock_unlock(&pool->sl); 7535 /* Be sure the new raw counters data is updated in memory. */ 7536 rte_io_wmb(); 7537 if (!TAILQ_EMPTY(&pool->counters[query_gen])) { 7538 rte_spinlock_lock(&cmng->csl[cnt_type]); 7539 TAILQ_CONCAT(&cmng->counters[cnt_type], 7540 &pool->counters[query_gen], next); 7541 rte_spinlock_unlock(&cmng->csl[cnt_type]); 7542 } 7543 } 7544 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next); 7545 pool->raw_hw = NULL; 7546 sh->cmng.pending_queries--; 7547 } 7548 7549 static const struct mlx5_flow_tbl_data_entry * 7550 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark) 7551 { 7552 struct mlx5_priv *priv = dev->data->dev_private; 7553 struct mlx5_dev_ctx_shared *sh = priv->sh; 7554 struct mlx5_hlist_entry *he; 7555 union tunnel_offload_mark mbits = { .val = mark }; 7556 union mlx5_flow_tbl_key table_key = { 7557 { 7558 .table_id = tunnel_id_to_flow_tbl(mbits.table_id), 7559 .dummy = 0, 7560 .domain = !!mbits.transfer, 7561 .direction = 0, 7562 } 7563 }; 7564 he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL); 7565 return he ? 7566 container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL; 7567 } 7568 7569 static uint32_t 7570 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 7571 const struct mlx5_flow_tunnel *tunnel, 7572 uint32_t group, uint32_t *table, 7573 struct rte_flow_error *error) 7574 { 7575 struct mlx5_priv *priv = dev->data->dev_private; 7576 struct mlx5_hlist_entry *he; 7577 struct tunnel_tbl_entry *tte; 7578 union tunnel_tbl_key key = { 7579 .tunnel_id = tunnel ? tunnel->tunnel_id : 0, 7580 .group = group 7581 }; 7582 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7583 struct mlx5_hlist *group_hash; 7584 7585 group_hash = tunnel ? tunnel->groups : thub->groups; 7586 he = mlx5_hlist_lookup(group_hash, key.val, NULL); 7587 if (!he) { 7588 tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, 7589 sizeof(*tte), 0, 7590 SOCKET_ID_ANY); 7591 if (!tte) 7592 goto err; 7593 tte->hash.key = key.val; 7594 mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7595 &tte->flow_table); 7596 if (tte->flow_table >= MLX5_MAX_TABLES) { 7597 DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.", 7598 tte->flow_table); 7599 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7600 tte->flow_table); 7601 goto err; 7602 } else if (!tte->flow_table) { 7603 goto err; 7604 } 7605 tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table); 7606 mlx5_hlist_insert(group_hash, &tte->hash); 7607 } else { 7608 tte = container_of(he, typeof(*tte), hash); 7609 } 7610 *table = tte->flow_table; 7611 DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x", 7612 dev->data->port_id, key.tunnel_id, group, *table); 7613 return 0; 7614 7615 err: 7616 if (tte) 7617 mlx5_free(tte); 7618 return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 7619 NULL, "tunnel group index not supported"); 7620 } 7621 7622 static int 7623 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table, 7624 struct flow_grp_info grp_info, struct rte_flow_error *error) 7625 { 7626 if (grp_info.transfer && grp_info.external && grp_info.fdb_def_rule) { 7627 if (group == UINT32_MAX) 7628 return rte_flow_error_set 7629 (error, EINVAL, 7630 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 7631 NULL, 7632 "group index not supported"); 7633 *table = group + 1; 7634 } else { 7635 *table = group; 7636 } 7637 DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table); 7638 return 0; 7639 } 7640 7641 /** 7642 * Translate the rte_flow group index to HW table value. 7643 * 7644 * If tunnel offload is disabled, all group ids converted to flow table 7645 * id using the standard method. 7646 * If tunnel offload is enabled, group id can be converted using the 7647 * standard or tunnel conversion method. Group conversion method 7648 * selection depends on flags in `grp_info` parameter: 7649 * - Internal (grp_info.external == 0) groups conversion uses the 7650 * standard method. 7651 * - Group ids in JUMP action converted with the tunnel conversion. 7652 * - Group id in rule attribute conversion depends on a rule type and 7653 * group id value: 7654 * ** non zero group attributes converted with the tunnel method 7655 * ** zero group attribute in non-tunnel rule is converted using the 7656 * standard method - there's only one root table 7657 * ** zero group attribute in steer tunnel rule is converted with the 7658 * standard method - single root table 7659 * ** zero group attribute in match tunnel rule is a special OvS 7660 * case: that value is used for portability reasons. That group 7661 * id is converted with the tunnel conversion method. 7662 * 7663 * @param[in] dev 7664 * Port device 7665 * @param[in] tunnel 7666 * PMD tunnel offload object 7667 * @param[in] group 7668 * rte_flow group index value. 7669 * @param[out] table 7670 * HW table value. 7671 * @param[in] grp_info 7672 * flags used for conversion 7673 * @param[out] error 7674 * Pointer to error structure. 7675 * 7676 * @return 7677 * 0 on success, a negative errno value otherwise and rte_errno is set. 7678 */ 7679 int 7680 mlx5_flow_group_to_table(struct rte_eth_dev *dev, 7681 const struct mlx5_flow_tunnel *tunnel, 7682 uint32_t group, uint32_t *table, 7683 struct flow_grp_info grp_info, 7684 struct rte_flow_error *error) 7685 { 7686 int ret; 7687 bool standard_translation; 7688 7689 if (grp_info.external && group < MLX5_MAX_TABLES_EXTERNAL) 7690 group *= MLX5_FLOW_TABLE_FACTOR; 7691 if (is_tunnel_offload_active(dev)) { 7692 standard_translation = !grp_info.external || 7693 grp_info.std_tbl_fix; 7694 } else { 7695 standard_translation = true; 7696 } 7697 DRV_LOG(DEBUG, 7698 "port %u group=%#x transfer=%d external=%d fdb_def_rule=%d translate=%s", 7699 dev->data->port_id, group, grp_info.transfer, 7700 grp_info.external, grp_info.fdb_def_rule, 7701 standard_translation ? "STANDARD" : "TUNNEL"); 7702 if (standard_translation) 7703 ret = flow_group_to_table(dev->data->port_id, group, table, 7704 grp_info, error); 7705 else 7706 ret = tunnel_flow_group_to_flow_table(dev, tunnel, group, 7707 table, error); 7708 7709 return ret; 7710 } 7711 7712 /** 7713 * Discover availability of metadata reg_c's. 7714 * 7715 * Iteratively use test flows to check availability. 7716 * 7717 * @param[in] dev 7718 * Pointer to the Ethernet device structure. 7719 * 7720 * @return 7721 * 0 on success, a negative errno value otherwise and rte_errno is set. 7722 */ 7723 int 7724 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev) 7725 { 7726 struct mlx5_priv *priv = dev->data->dev_private; 7727 struct mlx5_dev_config *config = &priv->config; 7728 enum modify_reg idx; 7729 int n = 0; 7730 7731 /* reg_c[0] and reg_c[1] are reserved. */ 7732 config->flow_mreg_c[n++] = REG_C_0; 7733 config->flow_mreg_c[n++] = REG_C_1; 7734 /* Discover availability of other reg_c's. */ 7735 for (idx = REG_C_2; idx <= REG_C_7; ++idx) { 7736 struct rte_flow_attr attr = { 7737 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 7738 .priority = MLX5_FLOW_PRIO_RSVD, 7739 .ingress = 1, 7740 }; 7741 struct rte_flow_item items[] = { 7742 [0] = { 7743 .type = RTE_FLOW_ITEM_TYPE_END, 7744 }, 7745 }; 7746 struct rte_flow_action actions[] = { 7747 [0] = { 7748 .type = (enum rte_flow_action_type) 7749 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 7750 .conf = &(struct mlx5_flow_action_copy_mreg){ 7751 .src = REG_C_1, 7752 .dst = idx, 7753 }, 7754 }, 7755 [1] = { 7756 .type = RTE_FLOW_ACTION_TYPE_JUMP, 7757 .conf = &(struct rte_flow_action_jump){ 7758 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 7759 }, 7760 }, 7761 [2] = { 7762 .type = RTE_FLOW_ACTION_TYPE_END, 7763 }, 7764 }; 7765 uint32_t flow_idx; 7766 struct rte_flow *flow; 7767 struct rte_flow_error error; 7768 7769 if (!config->dv_flow_en) 7770 break; 7771 /* Create internal flow, validation skips copy action. */ 7772 flow_idx = flow_list_create(dev, NULL, &attr, items, 7773 actions, false, &error); 7774 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], 7775 flow_idx); 7776 if (!flow) 7777 continue; 7778 if (dev->data->dev_started || !flow_drv_apply(dev, flow, NULL)) 7779 config->flow_mreg_c[n++] = idx; 7780 flow_list_destroy(dev, NULL, flow_idx); 7781 } 7782 for (; n < MLX5_MREG_C_NUM; ++n) 7783 config->flow_mreg_c[n] = REG_NON; 7784 return 0; 7785 } 7786 7787 /** 7788 * Dump flow raw hw data to file 7789 * 7790 * @param[in] dev 7791 * The pointer to Ethernet device. 7792 * @param[in] file 7793 * A pointer to a file for output. 7794 * @param[out] error 7795 * Perform verbose error reporting if not NULL. PMDs initialize this 7796 * structure in case of error only. 7797 * @return 7798 * 0 on success, a nagative value otherwise. 7799 */ 7800 int 7801 mlx5_flow_dev_dump(struct rte_eth_dev *dev, 7802 FILE *file, 7803 struct rte_flow_error *error __rte_unused) 7804 { 7805 struct mlx5_priv *priv = dev->data->dev_private; 7806 struct mlx5_dev_ctx_shared *sh = priv->sh; 7807 7808 if (!priv->config.dv_flow_en) { 7809 if (fputs("device dv flow disabled\n", file) <= 0) 7810 return -errno; 7811 return -ENOTSUP; 7812 } 7813 return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain, 7814 sh->tx_domain, file); 7815 } 7816 7817 /** 7818 * Get aged-out flows. 7819 * 7820 * @param[in] dev 7821 * Pointer to the Ethernet device structure. 7822 * @param[in] context 7823 * The address of an array of pointers to the aged-out flows contexts. 7824 * @param[in] nb_countexts 7825 * The length of context array pointers. 7826 * @param[out] error 7827 * Perform verbose error reporting if not NULL. Initialized in case of 7828 * error only. 7829 * 7830 * @return 7831 * how many contexts get in success, otherwise negative errno value. 7832 * if nb_contexts is 0, return the amount of all aged contexts. 7833 * if nb_contexts is not 0 , return the amount of aged flows reported 7834 * in the context array. 7835 */ 7836 int 7837 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts, 7838 uint32_t nb_contexts, struct rte_flow_error *error) 7839 { 7840 const struct mlx5_flow_driver_ops *fops; 7841 struct rte_flow_attr attr = { .transfer = 0 }; 7842 7843 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 7844 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7845 return fops->get_aged_flows(dev, contexts, nb_contexts, 7846 error); 7847 } 7848 DRV_LOG(ERR, 7849 "port %u get aged flows is not supported.", 7850 dev->data->port_id); 7851 return -ENOTSUP; 7852 } 7853 7854 /* Wrapper for driver action_validate op callback */ 7855 static int 7856 flow_drv_action_validate(struct rte_eth_dev *dev, 7857 const struct rte_flow_shared_action_conf *conf, 7858 const struct rte_flow_action *action, 7859 const struct mlx5_flow_driver_ops *fops, 7860 struct rte_flow_error *error) 7861 { 7862 static const char err_msg[] = "shared action validation unsupported"; 7863 7864 if (!fops->action_validate) { 7865 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7866 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7867 NULL, err_msg); 7868 return -rte_errno; 7869 } 7870 return fops->action_validate(dev, conf, action, error); 7871 } 7872 7873 /** 7874 * Destroys the shared action by handle. 7875 * 7876 * @param dev 7877 * Pointer to Ethernet device structure. 7878 * @param[in] action 7879 * Handle for the shared action to be destroyed. 7880 * @param[out] error 7881 * Perform verbose error reporting if not NULL. PMDs initialize this 7882 * structure in case of error only. 7883 * 7884 * @return 7885 * 0 on success, a negative errno value otherwise and rte_errno is set. 7886 * 7887 * @note: wrapper for driver action_create op callback. 7888 */ 7889 static int 7890 mlx5_shared_action_destroy(struct rte_eth_dev *dev, 7891 struct rte_flow_shared_action *action, 7892 struct rte_flow_error *error) 7893 { 7894 static const char err_msg[] = "shared action destruction unsupported"; 7895 struct rte_flow_attr attr = { .transfer = 0 }; 7896 const struct mlx5_flow_driver_ops *fops = 7897 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7898 7899 if (!fops->action_destroy) { 7900 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7901 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7902 NULL, err_msg); 7903 return -rte_errno; 7904 } 7905 return fops->action_destroy(dev, action, error); 7906 } 7907 7908 /* Wrapper for driver action_destroy op callback */ 7909 static int 7910 flow_drv_action_update(struct rte_eth_dev *dev, 7911 struct rte_flow_shared_action *action, 7912 const void *action_conf, 7913 const struct mlx5_flow_driver_ops *fops, 7914 struct rte_flow_error *error) 7915 { 7916 static const char err_msg[] = "shared action update unsupported"; 7917 7918 if (!fops->action_update) { 7919 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7920 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7921 NULL, err_msg); 7922 return -rte_errno; 7923 } 7924 return fops->action_update(dev, action, action_conf, error); 7925 } 7926 7927 /** 7928 * Create shared action for reuse in multiple flow rules. 7929 * 7930 * @param dev 7931 * Pointer to Ethernet device structure. 7932 * @param[in] action 7933 * Action configuration for shared action creation. 7934 * @param[out] error 7935 * Perform verbose error reporting if not NULL. PMDs initialize this 7936 * structure in case of error only. 7937 * @return 7938 * A valid handle in case of success, NULL otherwise and rte_errno is set. 7939 */ 7940 static struct rte_flow_shared_action * 7941 mlx5_shared_action_create(struct rte_eth_dev *dev, 7942 const struct rte_flow_shared_action_conf *conf, 7943 const struct rte_flow_action *action, 7944 struct rte_flow_error *error) 7945 { 7946 static const char err_msg[] = "shared action creation unsupported"; 7947 struct rte_flow_attr attr = { .transfer = 0 }; 7948 const struct mlx5_flow_driver_ops *fops = 7949 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7950 7951 if (flow_drv_action_validate(dev, conf, action, fops, error)) 7952 return NULL; 7953 if (!fops->action_create) { 7954 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7955 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7956 NULL, err_msg); 7957 return NULL; 7958 } 7959 return fops->action_create(dev, conf, action, error); 7960 } 7961 7962 /** 7963 * Updates inplace the shared action configuration pointed by *action* handle 7964 * with the configuration provided as *action* argument. 7965 * The update of the shared action configuration effects all flow rules reusing 7966 * the action via handle. 7967 * 7968 * @param dev 7969 * Pointer to Ethernet device structure. 7970 * @param[in] shared_action 7971 * Handle for the shared action to be updated. 7972 * @param[in] action 7973 * Action specification used to modify the action pointed by handle. 7974 * *action* should be of same type with the action pointed by the *action* 7975 * handle argument, otherwise considered as invalid. 7976 * @param[out] error 7977 * Perform verbose error reporting if not NULL. PMDs initialize this 7978 * structure in case of error only. 7979 * 7980 * @return 7981 * 0 on success, a negative errno value otherwise and rte_errno is set. 7982 */ 7983 static int 7984 mlx5_shared_action_update(struct rte_eth_dev *dev, 7985 struct rte_flow_shared_action *shared_action, 7986 const struct rte_flow_action *action, 7987 struct rte_flow_error *error) 7988 { 7989 struct rte_flow_attr attr = { .transfer = 0 }; 7990 const struct mlx5_flow_driver_ops *fops = 7991 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7992 int ret; 7993 7994 switch (shared_action->type) { 7995 case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS: 7996 if (action->type != RTE_FLOW_ACTION_TYPE_RSS) { 7997 return rte_flow_error_set(error, EINVAL, 7998 RTE_FLOW_ERROR_TYPE_ACTION, 7999 NULL, 8000 "update action type invalid"); 8001 } 8002 ret = flow_drv_action_validate(dev, NULL, action, fops, error); 8003 if (ret) 8004 return ret; 8005 return flow_drv_action_update(dev, shared_action, action->conf, 8006 fops, error); 8007 default: 8008 return rte_flow_error_set(error, ENOTSUP, 8009 RTE_FLOW_ERROR_TYPE_ACTION, 8010 NULL, 8011 "action type not supported"); 8012 } 8013 } 8014 8015 /** 8016 * Query the shared action by handle. 8017 * 8018 * This function allows retrieving action-specific data such as counters. 8019 * Data is gathered by special action which may be present/referenced in 8020 * more than one flow rule definition. 8021 * 8022 * \see RTE_FLOW_ACTION_TYPE_COUNT 8023 * 8024 * @param dev 8025 * Pointer to Ethernet device structure. 8026 * @param[in] action 8027 * Handle for the shared action to query. 8028 * @param[in, out] data 8029 * Pointer to storage for the associated query data type. 8030 * @param[out] error 8031 * Perform verbose error reporting if not NULL. PMDs initialize this 8032 * structure in case of error only. 8033 * 8034 * @return 8035 * 0 on success, a negative errno value otherwise and rte_errno is set. 8036 */ 8037 static int 8038 mlx5_shared_action_query(struct rte_eth_dev *dev, 8039 const struct rte_flow_shared_action *action, 8040 void *data, 8041 struct rte_flow_error *error) 8042 { 8043 (void)dev; 8044 switch (action->type) { 8045 case MLX5_RTE_FLOW_ACTION_TYPE_SHARED_RSS: 8046 __atomic_load(&action->refcnt, (uint32_t *)data, 8047 __ATOMIC_RELAXED); 8048 return 0; 8049 default: 8050 return rte_flow_error_set(error, ENOTSUP, 8051 RTE_FLOW_ERROR_TYPE_ACTION, 8052 NULL, 8053 "action type not supported"); 8054 } 8055 } 8056 8057 /** 8058 * Destroy all shared actions. 8059 * 8060 * @param dev 8061 * Pointer to Ethernet device. 8062 * 8063 * @return 8064 * 0 on success, a negative errno value otherwise and rte_errno is set. 8065 */ 8066 int 8067 mlx5_shared_action_flush(struct rte_eth_dev *dev) 8068 { 8069 struct rte_flow_error error; 8070 struct mlx5_priv *priv = dev->data->dev_private; 8071 struct rte_flow_shared_action *action; 8072 int ret = 0; 8073 8074 while (!LIST_EMPTY(&priv->shared_actions)) { 8075 action = LIST_FIRST(&priv->shared_actions); 8076 ret = mlx5_shared_action_destroy(dev, action, &error); 8077 } 8078 return ret; 8079 } 8080 8081 static void 8082 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, 8083 struct mlx5_flow_tunnel *tunnel) 8084 { 8085 struct mlx5_priv *priv = dev->data->dev_private; 8086 8087 DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x", 8088 dev->data->port_id, tunnel->tunnel_id); 8089 RTE_VERIFY(!__atomic_load_n(&tunnel->refctn, __ATOMIC_RELAXED)); 8090 LIST_REMOVE(tunnel, chain); 8091 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID], 8092 tunnel->tunnel_id); 8093 mlx5_hlist_destroy(tunnel->groups); 8094 mlx5_free(tunnel); 8095 } 8096 8097 static struct mlx5_flow_tunnel * 8098 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id) 8099 { 8100 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 8101 struct mlx5_flow_tunnel *tun; 8102 8103 LIST_FOREACH(tun, &thub->tunnels, chain) { 8104 if (tun->tunnel_id == id) 8105 break; 8106 } 8107 8108 return tun; 8109 } 8110 8111 static struct mlx5_flow_tunnel * 8112 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev, 8113 const struct rte_flow_tunnel *app_tunnel) 8114 { 8115 struct mlx5_priv *priv = dev->data->dev_private; 8116 struct mlx5_flow_tunnel *tunnel; 8117 uint32_t id; 8118 8119 mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 8120 &id); 8121 if (id >= MLX5_MAX_TUNNELS) { 8122 mlx5_ipool_free(priv->sh->ipool 8123 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], id); 8124 DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id); 8125 return NULL; 8126 } else if (!id) { 8127 return NULL; 8128 } 8129 /** 8130 * mlx5 flow tunnel is an auxlilary data structure 8131 * It's not part of IO. No need to allocate it from 8132 * huge pages pools dedicated for IO 8133 */ 8134 tunnel = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*tunnel), 8135 0, SOCKET_ID_ANY); 8136 if (!tunnel) { 8137 mlx5_ipool_free(priv->sh->ipool 8138 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], id); 8139 return NULL; 8140 } 8141 tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0, 8142 NULL, NULL, NULL); 8143 if (!tunnel->groups) { 8144 mlx5_ipool_free(priv->sh->ipool 8145 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], id); 8146 mlx5_free(tunnel); 8147 return NULL; 8148 } 8149 /* initiate new PMD tunnel */ 8150 memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel)); 8151 tunnel->tunnel_id = id; 8152 tunnel->action.type = (typeof(tunnel->action.type)) 8153 MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET; 8154 tunnel->action.conf = tunnel; 8155 tunnel->item.type = (typeof(tunnel->item.type)) 8156 MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL; 8157 tunnel->item.spec = tunnel; 8158 tunnel->item.last = NULL; 8159 tunnel->item.mask = NULL; 8160 8161 DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x", 8162 dev->data->port_id, tunnel->tunnel_id); 8163 8164 return tunnel; 8165 } 8166 8167 static int 8168 mlx5_get_flow_tunnel(struct rte_eth_dev *dev, 8169 const struct rte_flow_tunnel *app_tunnel, 8170 struct mlx5_flow_tunnel **tunnel) 8171 { 8172 int ret; 8173 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 8174 struct mlx5_flow_tunnel *tun; 8175 8176 LIST_FOREACH(tun, &thub->tunnels, chain) { 8177 if (!memcmp(app_tunnel, &tun->app_tunnel, 8178 sizeof(*app_tunnel))) { 8179 *tunnel = tun; 8180 ret = 0; 8181 break; 8182 } 8183 } 8184 if (!tun) { 8185 tun = mlx5_flow_tunnel_allocate(dev, app_tunnel); 8186 if (tun) { 8187 LIST_INSERT_HEAD(&thub->tunnels, tun, chain); 8188 *tunnel = tun; 8189 } else { 8190 ret = -ENOMEM; 8191 } 8192 } 8193 if (tun) 8194 __atomic_add_fetch(&tun->refctn, 1, __ATOMIC_RELAXED); 8195 8196 return ret; 8197 } 8198 8199 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id) 8200 { 8201 struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub; 8202 8203 if (!thub) 8204 return; 8205 if (!LIST_EMPTY(&thub->tunnels)) 8206 DRV_LOG(WARNING, "port %u tunnels present\n", port_id); 8207 mlx5_hlist_destroy(thub->groups); 8208 mlx5_free(thub); 8209 } 8210 8211 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh) 8212 { 8213 int err; 8214 struct mlx5_flow_tunnel_hub *thub; 8215 8216 thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub), 8217 0, SOCKET_ID_ANY); 8218 if (!thub) 8219 return -ENOMEM; 8220 LIST_INIT(&thub->tunnels); 8221 thub->groups = mlx5_hlist_create("flow groups", MLX5_MAX_TABLES, 0, 8222 0, NULL, NULL, NULL); 8223 if (!thub->groups) { 8224 err = -rte_errno; 8225 goto err; 8226 } 8227 sh->tunnel_hub = thub; 8228 8229 return 0; 8230 8231 err: 8232 if (thub->groups) 8233 mlx5_hlist_destroy(thub->groups); 8234 if (thub) 8235 mlx5_free(thub); 8236 return err; 8237 } 8238 8239 #ifndef HAVE_MLX5DV_DR 8240 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1)) 8241 #else 8242 #define MLX5_DOMAIN_SYNC_FLOW \ 8243 (MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW) 8244 #endif 8245 8246 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains) 8247 { 8248 struct rte_eth_dev *dev = &rte_eth_devices[port_id]; 8249 const struct mlx5_flow_driver_ops *fops; 8250 int ret; 8251 struct rte_flow_attr attr = { .transfer = 0 }; 8252 8253 fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 8254 ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW); 8255 if (ret > 0) 8256 ret = -ret; 8257 return ret; 8258 } 8259